WorldWideScience

Sample records for heterogeneous multiple layers

  1. Implications of Heterogeneity in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Sanjay de Mel

    2014-01-01

    Full Text Available Multiple myeloma is the second most common hematologic malignancy in the world. Despite improvement in outcome, the disease is still incurable for most patients. However, not all myeloma are the same. With the same treatment, some patients can have very long survival whereas others can have very short survival. This suggests that there is underlying heterogeneity in myeloma. Studies over the years have revealed multiple layers of heterogeneity. First, clinical parameters such as age and tumor burden could significantly affect outcome. At the genetic level, there are also significant heterogeneity ranging for chromosome numbers, genetic translocations, and genetic mutations. At the clonal level, there appears to be significant clonal heterogeneity with multiple clones coexisting in the same patient. At the cell differentiation level, there appears to be a hierarchy of clonally related cells that have different clonogenic potential and sensitivity to therapies. These levels of complexities present challenges in terms of treatment and prognostication as well as monitoring of treatment. However, if we can clearly delineate and dissect this heterogeneity, we may also be presented with unique opportunities for precision and personalized treatment of myeloma. Some proof of concepts of such approaches has been demonstrated.

  2. Scaling the heterogeneously heated convective boundary layer

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  3. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics.

    Science.gov (United States)

    Yuan, Chengzhi; Licht, Stephen; He, Haibo

    2017-09-26

    In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

  4. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Heterogeneity in the multiple myeloma tumor clone

    NARCIS (Netherlands)

    Guikema, JEJ; Hovenga, S; Vellenga, E; Bos, NA

    Multiple Myeloma ( MM) is a plasma cell malignancy which is characterized by a very heterogeneous disease outcome. Heterogeneity in plasma cell characteristics, including morphology, maturation status, immunophenotype and genetic abnormalities partly account for the variable disease outcome.

  6. Heterogeneity in the multiple myeloma tumor clone

    NARCIS (Netherlands)

    Guikema, Jeroen E. J.; Hovenga, Sjoerd; Vellenga, Edo; Bos, Nicolaas A.

    2004-01-01

    Multiple Myeloma (MM) is a plasma cell malignancy which is characterized by a very heterogeneous disease outcome. Heterogeneity in plasma cell characteristics, including morphology, maturation status, immunophenotype and genetic abnormalities partly account for the variable disease outcome. Although

  7. Physical-layer Network Coding in Two-Way Heterogeneous Cellular Networks with Power Imbalance

    OpenAIRE

    Thampi, Ajay K; Liew, Soung Chang; Armour, Simon M D; Fan, Zhong; You, Lizhao; Kaleshi, Dritan

    2016-01-01

    The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the application of physical-layer network coding (PNC), a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximising relay selection algorithm for a single cell with multiple relays assuming the decode...

  8. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  9. Transition from single to multiple double layers

    International Nuclear Information System (INIS)

    Chan, C.; Hershkowitz, N.

    1982-01-01

    It is shown that laboratory double layers become multiple double layers when the ratio of Debye length to system length is decreased. This result exhibits characteristics described by boundary layer theory

  10. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  11. Cross-Layer Optimal Rate Allocation for Heterogeneous Wireless Multicast

    Directory of Open Access Journals (Sweden)

    Amr Mohamed

    2009-01-01

    Full Text Available Heterogeneous multicast is an efficient communication scheme especially for multimedia applications running over multihop networks. The term heterogeneous refers to the phenomenon when multicast receivers in the same session require service at different rates commensurate with their capabilities. In this paper, we address the problem of resource allocation for a set of heterogeneous multicast sessions over multihop wireless networks. We propose an iterative algorithm that achieves the optimal rates for a set of heterogeneous multicast sessions such that the aggregate utility for all sessions is maximized. We present the formulation of the multicast resource allocation problem as a nonlinear optimization model and highlight the cross-layer framework that can solve this problem in a distributed ad hoc network environment with asynchronous computations. Our simulations show that the algorithm achieves optimal resource utilization, guarantees fairness among multicast sessions, provides flexibility in allocating rates over different parts of the multicast sessions, and adapts to changing conditions such as dynamic channel capacity and node mobility. Our results show that the proposed algorithm not only provides flexibility in allocating resources across multicast sessions, but also increases the aggregate system utility and improves the overall system throughput by almost 30% compared to homogeneous multicast.

  12. Heterogeneous networking in the home environment

    OpenAIRE

    Bolla, Raffaele; Davoli, Franco; Repetto, Matteo; Fragopoulos, Tasos; Serpanos, D.; Chessa, Stefano; Ferro, Erina

    2006-01-01

    The management and control at multiple protocol layers of a heterogeneous networking structure, to support multimedia applications in the home environment, is considered. The paper examines possible scenarios, and corresponding architectural solutions, also in the light of existing wireless and sensor networks technologies.

  13. Retinal layer segmentation in multiple sclerosis

    DEFF Research Database (Denmark)

    Petzold, Axel; Balcer, Laura J; Calabresi, Peter A

    2017-01-01

    BACKGROUND: Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal...... layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. METHODS: In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people...... with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified...

  14. Multiple Layers of Credit and Mortgage Crises

    OpenAIRE

    Paula Hernandez-Verme

    2011-01-01

    I examine a production economy with a financial sector that contains multiple layers of credit. Such layers are designed to constitute credit chains which are inclusive of a simple mortgage market. The focus is on the nature and contagion properties of credit chains in an economy where the financial sector plays a real allocative role and agents have a nontrivial choice of whether to default on mortgages or not. Multiple equilibria with different rates of default are observed, due to the pres...

  15. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  16. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  17. A perfectly matched layer for the time-dependent wave equation in heterogeneous and layered media

    KAUST Repository

    Duru, Kenneth

    2014-01-01

    A mathematical analysis of the perfectly matched layer (PML) for the time-dependent wave equation in heterogeneous and layered media is presented. We prove the stability of the PML for discontinuous media with piecewise constant coefficients, and derive energy estimates for discontinuous media with piecewise smooth coefficients. We consider a computational setup consisting of smaller structured subdomains that are discretized using high order accurate finite difference operators for approximating spatial derivatives. The subdomains are then patched together into a global domain by a weak enforcement of interface conditions using penalties. In order to ensure the stability of the discrete PML, it is necessary to transform the interface conditions to include the auxiliary variables. In the discrete setting, the transformed interface conditions are crucial in deriving discrete energy estimates analogous to the continuous energy estimates, thus proving stability and convergence of the numerical method. Finally, we present numerical experiments demonstrating the stability of the PML in a layered medium and high order accuracy of the proposed interface conditions. © 2013 Elsevier Inc.

  18. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    International Nuclear Information System (INIS)

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  19. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Science.gov (United States)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  20. Double-Layer Low-Density Parity-Check Codes over Multiple-Input Multiple-Output Channels

    Directory of Open Access Journals (Sweden)

    Yun Mao

    2012-01-01

    Full Text Available We introduce a double-layer code based on the combination of a low-density parity-check (LDPC code with the multiple-input multiple-output (MIMO system, where the decoding can be done in both inner-iteration and outer-iteration manners. The present code, called low-density MIMO code (LDMC, has a double-layer structure, that is, one layer defines subcodes that are embedded in each transmission vector and another glues these subcodes together. It supports inner iterations inside the LDPC decoder and outeriterations between detectors and decoders, simultaneously. It can also achieve the desired design rates due to the full rank of the deployed parity-check matrix. Simulations show that the LDMC performs favorably over the MIMO systems.

  1. Heterogeneities in illite/smectite mixed/layers clays: some comments and recollections

    International Nuclear Information System (INIS)

    Johns, W.D.

    1995-01-01

    A review of some studies of heterogeneities, structure and surface in illite/smectite mixed-layer clays of Vienna Basin using X-ray diffraction, high resolution-transmission electron microscopy, infra-red spectroscopy, laser microprobe mass analysis, Auger electron spectroscopy, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy is given. The models of hexyl ammonium ion configuration complexed between silica sheets is discussed. 1 tab., 10 figs., 6 refs

  2. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    Science.gov (United States)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  3. Influence of Silver and Gold Nanoparticles and Thin Layers on Charge Carrier Generation in InGaN/GaN Multiple Quantum Well Structures and Crystalline Zinc Oxide Films

    Science.gov (United States)

    Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.

    2018-04-01

    It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.

  4. Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space

    Science.gov (United States)

    Singh, Abhishek Kumar; Das, Amrita; Parween, Zeenat; Chattopadhyay, Amares

    2015-10-01

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.

  5. Rendering Intelligence at Physical Layer for Smart Addressing and Multiple Access

    DEFF Research Database (Denmark)

    Sanyal, Rajarshi; Prasad, Ramjee; Cianca, Ernestina

    2010-01-01

    addressing of a node. For a typical closed user group type of network, we propose a multiple access mechanism and network topology which will not only eliminate the need of intelligent core network equipments in the network area , but to use this intelligent physical layer to directly reach any node over......The primary objective of this work is to propose a technique of wireless communication, where we render intelligence to the physical layer. We aim to realize a physical layer that can take part in some processes which is otherwise confined to higher layer signalling activities, like for example...... the fundamentals behind the proposed multiple access scheme and draws out the benefits compared to the existing multiple access processes based on cellular approach....

  6. Multiple Temporalities, Layered Histories

    Directory of Open Access Journals (Sweden)

    Steven Pearson

    2017-11-01

    Full Text Available In Quotational Practices: Repeating the Future in Contemporary Art, Patrick Greaney asserts, “the past matters not only because of what actually happened but also because of the possibilities that were not realized and that still could be. Quotation evokes those possibilities. By repeating the past, artists and writers may be attempting to repeat that past’s unrealized futures.”[1]  In the information age, the Internet, for instance, provides us an expanded collection of visual information—quite literally available at our fingertips—summoning together aspects of the past and possibilities of the future into a boundless present. Sketchbook Revisions (2014–2015, a series of mixed-media paintings, represents my attempt to communicate the ways in which I experience my contemporary moment constructed from multiple temporalities excavated from my past. This body of work combines fragments of representational paintings created between 1995 and 2003 and nonrepresentational renderings produced between 2003 and 2014. Using traditional tracing paper and graphic color, I randomly select moments of my previous work to transfer and layer over selected areas of already-filled pages of a sketchbook I used from 2003 to 2004. These sketches depict objects I encountered in studio art classrooms and iconic architecture on the campus of McDaniel College, and often incorporate teaching notes. The final renditions of fragmented and layered histories enact the ways that we collectively experience multiple temporalities in the present. Quoting my various bodies of work, Sketchbook Revisions challenges both material and conceptual boundaries that determine fixed notions of artistic identity.

  7. A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data.

    Directory of Open Access Journals (Sweden)

    Giovanni Delussu

    Full Text Available This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR's formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called "Constant Load" and "Constant Number of Records", with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes.

  8. A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data

    Science.gov (United States)

    Lianas, Luca; Frexia, Francesca; Zanetti, Gianluigi

    2016-01-01

    This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR’s formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called “Constant Load” and “Constant Number of Records”, with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes. PMID:27936191

  9. A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data.

    Science.gov (United States)

    Delussu, Giovanni; Lianas, Luca; Frexia, Francesca; Zanetti, Gianluigi

    2016-01-01

    This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR's formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called "Constant Load" and "Constant Number of Records", with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes.

  10. On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity

    Science.gov (United States)

    Hanum, F.; Hartono, A. P.; Bakhtiar, T.

    2018-03-01

    This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.

  11. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  12. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  13. Synchronization in networks with multiple interaction layers

    Science.gov (United States)

    del Genio, Charo I.; Gómez-Gardeñes, Jesús; Bonamassa, Ivan; Boccaletti, Stefano

    2016-01-01

    The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multilayered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavor in mathematics and physics and has potential applications in several socially relevant topics, such as power grid engineering and neural dynamics. We propose a general framework to assess the stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the master stability function approach. We validate our method by applying it to a network of Rössler oscillators with a double layer of interactions and show that highly rich phenomenology emerges from this. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely arising from the true multilayer structure of the interactions among the units in the network. PMID:28138540

  14. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    Directory of Open Access Journals (Sweden)

    Laurette Tavel

    2016-10-01

    Full Text Available Multiple myeloma (MM is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS nuclear magnetic resonance (NMR metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions.

  15. Cross-Layer Design for Two-Way Relaying Networks with Multiple Antennas

    Directory of Open Access Journals (Sweden)

    zhuo wu

    2015-10-01

    Full Text Available In this paper, we developed a cross-layer design for two-way relaying (TWR networks with multiple antennas, where two single antenna source nodes exchange information with the aid of one multiple antenna relay node. The proposed cross-layer design considers adaptive modulation (AM and space-time block coding (STBC at the physical layer with an automatic repeat request (ARQ protocol at the data link layer, in order to maximize the spectral efficiency under specific delay and packet error ratio (PER constraints. An MMSE-interference cancellation (IC receiver is employed at the relay node, to remove the interference in the fist phase of the TWR transmission. The transmission mode is updated for each phase of the TWR transmission on a frame-by-frame basis, to match the time-varying channel conditions and exploit the system performance and throughput gain. Simulation results show that retransmission at the data link layer could alleviate rigorous error-control requirements at the physical layer, and thereby allows higher data transmission. As a result, cross-layer design helps to achieve considerable system spectral efficiency gain for TWR networks, compared to those without cross-layer design.

  16. Application of heterogeneous multiple camera system with panoramic capabilities in a harbor environment

    NARCIS (Netherlands)

    Schwering, P.B.W.; Lensen, H.A.; Broek, S.P. van den; Hollander, R.J.M. den; Mark, W. van der; Bouma, H.; Kemp, R.A.W.

    2009-01-01

    In a harbor environment threats like explosives-packed rubber boats, mine-carrying swimmers and divers must be detected in an early stage. This paper describes the integration and use of a heterogeneous multiple camera system with panoramic observation capabilities for detecting these small vessels

  17. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite Imagery Heterogeneity at Multiple Spatial Scales

    Science.gov (United States)

    Rocchini, Duccio

    2009-01-01

    Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600

  18. On the importance of considering heterogeneity in witnesses' competence levels when reconstructing crimes from multiple witness testimonies.

    Science.gov (United States)

    Waubert de Puiseau, Berenike; Greving, Sven; Aßfalg, André; Musch, Jochen

    2017-09-01

    Aggregating information across multiple testimonies may improve crime reconstructions. However, different aggregation methods are available, and research on which method is best suited for aggregating multiple observations is lacking. Furthermore, little is known about how variance in the accuracy of individual testimonies impacts the performance of competing aggregation procedures. We investigated the superiority of aggregation-based crime reconstructions involving multiple individual testimonies and whether this superiority varied as a function of the number of witnesses and the degree of heterogeneity in witnesses' ability to accurately report their observations. Moreover, we examined whether heterogeneity in competence levels differentially affected the relative accuracy of two aggregation procedures: a simple majority rule, which ignores individual differences, and the more complex general Condorcet model (Romney et al., Am Anthropol 88(2):313-338, 1986; Batchelder and Romney, Psychometrika 53(1):71-92, 1988), which takes into account differences in competence between individuals. 121 participants viewed a simulated crime and subsequently answered 128 true/false questions about the crime. We experimentally generated groups of witnesses with homogeneous or heterogeneous competences. Both the majority rule and the general Condorcet model provided more accurate reconstructions of the observed crime than individual testimonies. The superiority of aggregated crime reconstructions involving multiple individual testimonies increased with an increasing number of witnesses. Crime reconstructions were most accurate when competences were heterogeneous and aggregation was based on the general Condorcet model. We argue that a formal aggregation should be considered more often when eyewitness testimonies have to be assessed and that the general Condorcet model provides a good framework for such aggregations.

  19. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    International Nuclear Information System (INIS)

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J.; California Univ., Berkeley, CA; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.

    1995-01-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p o final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA

  20. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    Integration of heterogeneous materials is crucial for many nanophotonic devices. The integration is often achieved by bonding using polymer adhesives or metals. A much better and cleaner option is direct wafer bonding, but the high annealing temperatures required make it a much less attractive...... atomic layer deposited Al2O3 an excellent choice for the intermediate layer. The authors have optimized the bonding process to achieve a high interface energy of 1.7 J/m2 for a low temperature annealing of 300 °C. The authors also demonstrate wafer bonding of InP to SiO2 on Si and GaAs to sapphire using...

  1. Unsupervised multiple kernel learning for heterogeneous data integration.

    Science.gov (United States)

    Mariette, Jérôme; Villa-Vialaneix, Nathalie

    2018-03-15

    Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.

  2. Using PKiKP coda to study heterogeneity in the top layer of the inner core's western hemisphere

    Science.gov (United States)

    Wu, Wenbo; Irving, Jessica C. E.

    2017-05-01

    Significant lateral and depth variations of the inner core's properties, such as the large-scale hemispherical pattern, have been confirmed by a variety of seismological observations. However it is still unclear which dynamic processes in the core are responsible for these variations. Small-scale volumetric heterogeneity has been detected in the top layer of the inner core by PKiKP coda observations. Studies of these small-scale heterogeneities can provide critical information, such as the degree of alignment of iron crystals, the presence of possible partial melt and the grain size of iron crystals, all of which can be used to constrain the dynamic processes of the inner core. However, most previous observations sampled the inner core beneath the Pacific Ocean and Asia, often in the inner core's 'eastern hemisphere'. We use seismic stations in the North America, including the Earthscope Transportable Array, to look at PKiKP and its coda waves. We find 21 events with clear signals. In agreement with previous studies, inner core scattering (ICS), resulting in clear PKiKP coda, is found at epicentral distances of 60°-95°. However, the ICS we observe in these 21 western hemisphere events is weaker than previously reported for the eastern hemisphere. Comparing our observations with numerical simulations, we conclude that this relatively weak ICS indicates small-scale heterogeneity in at least the top layer of the inner core beneath Central America. Combining our clear observations with previous studies suggests either a hemispherical difference, or a regional variation, of small-scale heterogeneity in the inner core.

  3. The formation of multiple layers of ice particles in the polar summer mesopause region

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-01-01

    Full Text Available This paper presents a two-dimensional theoretical model to study the formation process of multiple layers of small ice particles in the polar summer mesosphere as measured by rockets and associated with polar mesosphere summer echoes (PMSE. The proposed mechanism primarily takes into account the transport processes induced by gravity waves through collision coupling between the neutral atmosphere and the ice particles. Numerical solutions of the model indicate that the dynamic influence of wind variation induced by gravity waves can make a significant contribution to the vertical and horizontal transport of ice particles and ultimately transform them into thin multiple layers. Additionally, the pattern of the multiple layers at least partially depends on the vertical wavelength of the gravity wave, the ice particle size and the wind velocity. The results presented in this paper will be helpful to better understand the occurrence of multiple layers of PMSE as well as its variation process.

  4. Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation

    Science.gov (United States)

    Wang, X.; Jourde, H.

    2017-12-01

    Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.

  5. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis.

    Science.gov (United States)

    Petzold, Axel; Balcer, Laura J; Calabresi, Peter A; Costello, Fiona; Frohman, Teresa C; Frohman, Elliot M; Martinez-Lapiscina, Elena H; Green, Ari J; Kardon, Randy; Outteryck, Olivier; Paul, Friedemann; Schippling, Sven; Vermersch, Patrik; Villoslada, Pablo; Balk, Lisanne J

    2017-10-01

    Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified data on eyes into healthy controls, multiple-sclerosis-associated optic neuritis (MSON), and multiple sclerosis without optic neuritis (MSNON). We assessed thickness of the retinal layers and we rated individual layer segmentation performance by random effects meta-analysis for MSON eyes versus control eyes, MSNON eyes versus control eyes, and MSNON eyes versus MSON eyes. We excluded relevant sources of bias by funnel plots. Of 25 497 records identified, 110 articles were eligible and 40 reported data (in total 5776 eyes from patients with multiple sclerosis [1667 MSON eyes and 4109 MSNON eyes] and 1697 eyes from healthy controls) that met published OCT quality control criteria and were suitable for meta-analysis. Compared with control eyes, the peripapillary retinal nerve fibre layer (RNFL) showed thinning in MSON eyes (mean difference -20·10 μm, 95% CI -22·76 to -17·44; pmultiple sclerosis and control eyes were found in the peripapillary RNFL and macular GCIPL. Inflammatory disease activity might be captured by the INL. Because of the consistency, robustness, and large effect size, we

  6. Relationship of Tree Stand Heterogeneity and Forest Naturalness

    Directory of Open Access Journals (Sweden)

    BARTHA, Dénes

    2006-01-01

    Full Text Available The aim of our study was to investigate if compositional (tree species richness andstructural (vertical structure, age-structure, patterns of canopy closure heterogeneity of the canopylayer is related to individual naturalness criteria and to overall forest naturalness at the stand scale. Thenaturalness values of the assessed criteria (tree species composition, tree stand structure, speciescomposition and structure of shrub layer and forest floor vegetation, dead wood, effects of game, sitecharacteristics showed similar behaviour when groups of stands with different heterogeneity werecompared, regardless of the studied aspect of canopy heterogeneity. The greatest difference was foundfor criteria describing the canopy layer. Composition and structure of canopy layer, dead wood andtotal naturalness of the stand differed significantly among the stand groups showing consistentlyhigher values from homogeneous to the most heterogeneous group. Naturalness of the compositionand structure of the shrub layer is slightly but significantly higher in stands with heterogeneous canopylayer. Regarding other criteria, significant differences were found only between the homogeneous andthe most heterogeneous groups, while groups with intermediate level of heterogeneity did not differsignificantly from one extreme. However, the criterion describing effects of game got lowernaturalness values in more heterogeneous stands. Naturalness of site characteristics did not differsignificantly among the groups except for when stands were grouped based on pattern of canopyclosure. From the practical viewpoint it is shown that purposeful forestry operations affecting thecanopy layer cause changes in compositional and structural characteristics of other layers as well as inoverall stand scale forest naturalness.

  7. Dislocation reduction in nitride-based Schottky diodes by using multiple MgxNy/GaN nucleation layers

    International Nuclear Information System (INIS)

    Lee, K.H.; Chang, P.C.; Chang, S.J.; Su, Y.K.; Wang, Y.C.; Yu, C.L.; Kuo, C.H.

    2010-01-01

    We present the characteristics of nitride-based Schottky diodes with a single low-temperature (LT) GaN nucleation layer and multiple Mg x N y /GaN nucleation layers. With multiple Mg x N y /GaN nucleation layers, it was found that reverse leakage current became smaller by six orders of magnitude than that with a conventional LT GaN nucleation layer. This result might be attributed to the significant reduction of threading dislocations (TDs) and TD-related surface states. From the double crystal X-ray diffraction and photoluminescence analyses, it was found that the introduction of multiple Mg x N y /GaN nucleation layers could be able to effectively reduce the edge-type TDs. Furthermore, it was also found that effective Schottky barrier height (Φ B ) increased from 1.07 to 1.15 eV with the insertion of the multiple Mg x N y /GaN nucleation layers.

  8. Complex confining layers : a physical and geochemical characterization of heterogeneous unconsolidated fluvial deposits using a facies-based approach

    NARCIS (Netherlands)

    Helvoort, Pieter-Jan van

    2003-01-01

    A proper characterization of physical and chemical heterogeneities in the subsoil is an important condition for successful modeling of groundwater flow and solute transport. This study focuses on the physical and chemical characterization of a complex confining layer in the Rhine–Meuse deltaic plain

  9. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina

    2017-10-26

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  10. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina; Kiani, Narsis A.; Abad, Elena; Martinez-Lapiscina, Elena H.; Andorra, Magi; Zubizarreta, Irati; Pulido-Valdeolivas, Irene; Pertsovskaya, Inna; Alexopoulos, Leonidas G.; Olsson, Tomas; Martin, Roland; Paul, Friedemann; Tegner, Jesper; Garcia-Ojalvo, Jordi; Villoslada, Pablo

    2017-01-01

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  11. Thermionic detector with multiple layered ionization source

    International Nuclear Information System (INIS)

    Patterson, P. L.

    1985-01-01

    Method and apparatus for analyzing specific chemical substances in a gaseous environment comprises a thermionic source formed of multiple layers of ceramic material composition, an electrical current instrumentality for heating the thermionic source to operating temperatures in the range of 100 0 C. to 1000 0 C., an instrumentality for exposing the surface of the thermionic source to contact with the specific chemical substances for the purpose of forming gas phase ionization of the substances by a process of electrical charge emission from the surface, a collector electrode disposed adjacent to the thermiomic source, an instrumentality for biasing the thermionic source at an electrical potential which causes the gas phase ions to move toward the collector, and an instrumentality for measuring the ion current arriving at the collector. The thermionic source is constructed of a metallic heater element molded inside a sub-layer of hardened ceramic cement material impregnated with a metallic compound additive which is non-corrosive to the heater element during operation. The sub-layer is further covered by a surface-layer formed of hardened ceramic cement material impregnated with an alkali metal compound in a manner that eliminates corrosive contact of the alkali compounds with the heater element. The sub-layer further protects the heater element from contact with gas environments which may be corrosive. The specific ionization of different chemical substances is varied over a wide range by changing the composition and temperature of the thermionic source, and by changing the composition of the gas environment

  12. Multimodal diagnosis of multiple and heterogeneous liver lesions in a young patient; Multimodale Bildgebung multipler Leberlaesionen bei einem jungen Patienten

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, F.; Schlemmer, H.-P. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg (Germany). Abteilung fuer onkologische Diagnostik und Therapie

    2005-10-01

    The classification of liver lesions is often problematic in particular if they are multiple and show an heterogeneous shape. Here we report of a young patient with multiple liver lesions of up to 3 cm size. Using ultrasound, the lesions were hyper-, hypoechogen or mixed. In serial contrast enhanced CT scans some of the lesions showed the typical enhancement pattern of hemangiomas, however, the diagnosis could still not be faithfully determined for all lesions. Therefore, the patient was conducted to contrast enhanced MRI (Gd-DTPA and MnDPDP). While with Gd-DTPA some of the lesions showed a strong enhancement, they remained hypointense after administration of MnDPDP. Finally to exclude a metastatic disease a {sup 99m}Tc-erythrocyte SPECT was performed confirming the diagnosis of hemangiomas for most of the lesions. Diagnosis was not assessed by biopsy because this would only clarify the diagnosis for one or few of the lesions. The patient was subsequently followed up for 3 years and all lesions remained unchanged. This case clearly illustrates the difficulty to get a certain diagnosis of multiple liver lesions with heterogeneous appearance despite the multimodal diagnostic conduct. (orig.) [German] Bei einer Routineuntersuchung wurden bei einem jungen Patienten sonographisch multiple Leberrundherde mit hyper-, hypoechogener und gemischter Echogenitaet detektiert. Auch mittels triphasischer kontrastmittelverstaerkter CT gelang nur bei einem Teil der Herde die Einstufung als Haemangiome anhand ihres Irisblendenphaenomens. MRT-Untersuchungen unter Verwendung von Gd-DTPA und MnDPDP wurden angeschlossen. Mit Gd-DTPA zeigten einige Herde ein kraeftiges Enhancement, unter Verwendung von MnDPDP jedoch blieben sie hypointens. Auf eine Biopsie wurde verzichtet, da diese nur bei einem oder wenigen Herden die Diagnose liefern wuerde, die anderen Herde aber unter Beruecksichtigung ihrer Heterogenitaet unklar geblieben waeren. Eine Sicherung der Diagnose gelang fuer die meisten

  13. Coevolution of Cooperation and Layer Selection Strategy in Multiplex Networks

    Directory of Open Access Journals (Sweden)

    Katsuki Hayashi

    2016-11-01

    Full Text Available Recently, the emergent dynamics in multiplex networks, composed of layers of multiple networks, has been discussed extensively in network sciences. However, little is still known about whether and how the evolution of strategy for selecting a layer to participate in can contribute to the emergence of cooperative behaviors in multiplex networks of social interactions. To investigate these issues, we constructed a coevolutionary model of cooperation and layer selection strategies in which each an individual selects one layer from multiple layers of social networks and plays the Prisoner’s Dilemma with neighbors in the selected layer. We found that the proportion of cooperative strategies increased with increasing the number of layers regardless of the degree of dilemma, and this increase occurred due to a cyclic coevolution process of game strategies and layer selection strategies. We also showed that the heterogeneity of links among layers is a key factor for multiplex networks to facilitate the evolution of cooperation, and such positive effects on cooperation were observed regardless of the difference in the stochastic properties of network topologies.

  14. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    Science.gov (United States)

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  15. Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors.

    Science.gov (United States)

    Chen, Mikai; Wang, Yifan; Shepherd, Nathan; Huard, Chad; Zhou, Jiantao; Guo, L J; Lu, Wei; Liang, Xiaogan

    2017-01-24

    To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe 2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe 2 flakes, whereas they cannot be generated in widely studied few-layer MoS 2 transistors. Such charge-trapping characteristics of WSe 2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe 2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.

  16. GPGPU Accelerated Deep Object Classification on a Heterogeneous Mobile Platform

    Directory of Open Access Journals (Sweden)

    Syed Tahir Hussain Rizvi

    2016-12-01

    Full Text Available Deep convolutional neural networks achieve state-of-the-art performance in image classification. The computational and memory requirements of such networks are however huge, and that is an issue on embedded devices due to their constraints. Most of this complexity derives from the convolutional layers and in particular from the matrix multiplications they entail. This paper proposes a complete approach to image classification providing common layers used in neural networks. Namely, the proposed approach relies on a heterogeneous CPU-GPU scheme for performing convolutions in the transform domain. The Compute Unified Device Architecture(CUDA-based implementation of the proposed approach is evaluated over three different image classification networks on a Tegra K1 CPU-GPU mobile processor. Experiments show that the presented heterogeneous scheme boasts a 50× speedup over the CPU-only reference and outperforms a GPU-based reference by 2×, while slashing the power consumption by nearly 30%.

  17. Investigating the effect of multiple layers of insulation with a bubble wrap experiment

    Science.gov (United States)

    Eggers, Dolores; Ruiz, Michael J.

    2018-03-01

    We provide a fun, inexpensive laboratory experiment for students to investigate the effects of multiple layers of insulation and observe diminishing values for additional layers using bubble wrap. This experiment provides an opportunity for students to learn about heat transfer through conduction using readily available materials. A water-ice pack is placed on top of five layers of bubble wrap. The temperature is taken between each layer periodically for at least 15 min. Students determine asymptotic temperatures for varying layers. This experiment also suggests a real world application.

  18. Multiple embryos, multiple nepionts and multiple equatorial layers in Cycloclypeus carpenteri.

    Science.gov (United States)

    Briguglio, Antonino; Kinoshita, Shunichi; Wolfgring, Erik; Hohenegger, Johann

    2016-04-01

    In this study, 17 specimens of Cycloclypeus carpenteri have been analyzed by means of microCT scanning. We used CT scanning technique as it enables the visualization and the quantifications of internal structures of hollow specimens without their destruction. It has been observed that many specimens possessing the natural morphology of this taxon, actually contain multiple embryos (up to 16 in one single specimen) and, in some few cases, multiple nepionts each with its own heterosteginid chambers (up to three separated nepionts). The diameter of each proloculus has been measured, and as a result, they are very variable even within the same specimen, therefore questioning the long known theory that schizonts have smaller proloculi than gamonts and also questioning the fact that proloculi in the same species should all have comparable size. Furthermore, we have observed the presence of additional equatorial planes on several specimens. Such additional planes are always connected to what seems to be the main equatorial plane. Such connections are T-shaped and are located at the junction between two equatorial layers; these junctions are made by a chamberlet, which possesses an unusually higher number of apertures. The connections between equatorial planes are always perfectly synchronized with the relative growth step and the same chamber can be therefore followed along the multiple equatorial planes. Apparently there is a perfect geometric relationship between the creation of additional equatorial planes and the position of the nepionts. Whenever the nepionts are positioned on different planes, additional planes are created and the angle of the nepionts is related to the banding angle of the equatorial planes. The presence of additional planes do not hamper the life of the cell, on the contrary, it seems that the cell is still able to build nicely shaped chamberlets and, after volumetric calculations, it seems all specimens managed to keep their logistic growth

  19. Numerical Computation of Underground Inundation in Multiple Layers Using the Adaptive Transfer Method

    Directory of Open Access Journals (Sweden)

    Hyung-Jun Kim

    2018-01-01

    Full Text Available Extreme rainfall causes surface runoff to flow towards lowlands and subterranean facilities, such as subway stations and buildings with underground spaces in densely packed urban areas. These facilities and areas are therefore vulnerable to catastrophic submergence. However, flood modeling of underground space has not yet been adequately studied because there are difficulties in reproducing the associated multiple horizontal layers connected with staircases or elevators. This study proposes a convenient approach to simulate underground inundation when two layers are connected. The main facet of this approach is to compute the flow flux passing through staircases in an upper layer and to transfer the equivalent quantity to a lower layer. This is defined as the ‘adaptive transfer method’. This method overcomes the limitations of 2D modeling by introducing layers connecting concepts to prevent large variations in mesh sizes caused by complicated underlying obstacles or local details. Consequently, this study aims to contribute to the numerical analysis of flow in inundated underground spaces with multiple floors.

  20. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Hegen, Harald; Adrianto, Indra; Lessard, Christopher J

    2016-01-01

    OBJECTIVE: To evaluate serum cytokine profiles for their utility to determine the heterogeneous responses to interferon (IFN)-β treatment in patients with multiple sclerosis (MS). METHODS: Patients with relapsing-remitting MS (RRMS) or clinically isolated syndrome receiving de novo IFN-β treatment...... were included in this prospective, observational study. Number of relapses and changes in disability were assessed 2 years prior to and 2 years after initiation of treatment. Sera were collected at baseline and after 3 months on therapy. Cytokine levels in sera were assessed by Luminex multiplex assays...

  1. Determination of stress distribution in III-V single crystal layers for heterogeneous integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.; Hayashi, S. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Goorsky, M.S.; Sandhu, R.; Chang-Chien, P.; Gutierrez-Aitken, A.; Tsai, R. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Noori, A.; Poust, B. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2007-08-15

    Double crystal X-ray diffraction imaging and a variable temperature stage are employed to determine the stress distribution in heterogeneous wafer bonded layers though the superposition of images produced at different rocking curve angles. The stress distribution in InP layers transferred to a silicon substrate at room temperature exhibits an anticlastic deformation, with different regions of the wafer experiencing different signs of curvature. Measurements at elevated temperatures ({<=}125 C) reveals that differences in thermal expansion coefficients dominate the stress and that interfacial particulates introduce very high local stress gradients that increase with increased temperature. For thinned GaAs substrates (100 {mu}m) bonded using patterned metal interlayers to a separate GaAs substrate at {approx}200 C, residual stresses are produced at room temperature due to local stress points from metallization contacts and vias and the complex stress patterns can be observed using the diffraction imaging technique. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...

  3. Dual-Layer Density Estimation for Multiple Object Instance Detection

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-01-01

    Full Text Available This paper introduces a dual-layer density estimation-based architecture for multiple object instance detection in robot inventory management applications. The approach consists of raw scale-invariant feature transform (SIFT feature matching and key point projection. The dominant scale ratio and a reference clustering threshold are estimated using the first layer of the density estimation. A cascade of filters is applied after feature template reconstruction and refined feature matching to eliminate false matches. Before the second layer of density estimation, the adaptive threshold is finalized by multiplying an empirical coefficient for the reference value. The coefficient is identified experimentally. Adaptive threshold-based grid voting is applied to find all candidate object instances. Error detection is eliminated using final geometric verification in accordance with Random Sample Consensus (RANSAC. The detection results of the proposed approach are evaluated on a self-built dataset collected in a supermarket. The results demonstrate that the approach provides high robustness and low latency for inventory management application.

  4. Effect of heterogeneity in a horizontal well with multiple fractures on the long term forecast in shale gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nobakht, M.; Ambrose, R.; Clarkson, C.R. [Society of Petroleum Engineers (Canada)

    2011-07-01

    Multiple fracture horizontal wells (MFHWs) are the most popular type of method used for exploiting shale gas reservoirs. When analyzing MFHW's a homogeneous completion model is often used, but this rarely occurs in the field. This paper develops a hybrid method for forecasting MFHWs based on a heterogeneous completion and investigates the effect of completion heterogeneity on production forecasts. First, a current forecasting method for homogeneous completions was modified for heterogeneous completions. The new forecasting method was then validated using a numerical simulation. A relationship between Arps' hyperbolic decline exponent and the heterogeneity of a completion for a particular case was then developed. Lastly, a field case was analyzed to compare the impact of forecasting with and without taking a heterogeneous completion into consideration. Through analysis and simulations this paper found that the long-term forecast of MFHWs can be greatly impacted should heterogeneity of the completion be ignored.

  5. Static multiplicities in heterogeneous azeotropic distillation sequences

    DEFF Research Database (Denmark)

    Esbjerg, Klavs; Andersen, Torben Ravn; Jørgensen, Sten Bay

    1998-01-01

    In this paper the results of a bifurcation analysis on heterogeneous azeotropic distillation sequences are given. Two sequences suitable for ethanol dehydration are compared: The 'direct' and the 'indirect' sequence. It is shown, that the two sequences, despite their similarities, exhibit very...... different static behavior. The method of Petlyuk and Avet'yan (1971), Bekiaris et al. (1993), which assumes infinite reflux and infinite number of stages, is extended to and applied on heterogeneous azeotropic distillation sequences. The predictions are substantiated through simulations. The static sequence...

  6. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    Science.gov (United States)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  7. Bio-inspired heterogeneous composites for broadband vibration mitigation.

    Science.gov (United States)

    Chen, Yanyu; Wang, Lifeng

    2015-12-08

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known "brick and mortar" microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  8. A Parameterization for Land-Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land.

    Science.gov (United States)

    Wetzel, Peter J.; Boone, Aaron

    1995-07-01

    This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were

  9. Multi-area layered multicast scheme for MPLS networks

    Science.gov (United States)

    Ma, Yajie; Yang, Zongkai; Wang, Yuming; Chen, Jingwen

    2005-02-01

    Multi-protocol label switching (MPLS) is multiprotocols both at layer 2 and layer 3. It is suggested to overcome the shortcomings of performing complex longest prefix matching in layer 3 routing by using short, fixed length labels. The MPLS community has put more effort into the label switching of unicast IP traffic, but less in the MPLS multicast mechanism. The reasons are the higher label consumption, the dynamical mapping of L3 multicast tree to L2 LSPs and the 20-bit shim header which is much fewer than the IPv4 IP header. On the other hand, heterogeneity of node capability degrades total performance of a multicast group. In order to achieve the scalability as well as the heterogeneity in MPLS networks, a novel scheme of MPLS-based Multi-area Layered Multicast Scheme (MALM) is proposed. Unlike the existing schemes which focus on aggregating the multicast stream, we construct the multicast tree based on the virtual topology aggregation. The MPLS area is divided into different sub-areas to form the hierarchical virtual topology and the multicast group is reconstructed into multiple layers according to the node capability. At the same time, the label stack is used to save the label space. For stability of the MALM protocol, a multi-layer protection scheme is also discussed. The experiment results show that the proposed scheme saves label space and decrease the Multicast Forwarding Table in much degree.

  10. Multiple pass and multiple layer friction stir welding and material enhancement processes

    Science.gov (United States)

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  11. Logisnet: A tool for multimethod, multiple soil layers slope stability analysis

    Science.gov (United States)

    Legorreta Paulin, G.; Bursik, M.

    2009-05-01

    Shallow landslides and slope failures have been studied from several points of view (inventory, heuristic, statistic, and deterministic). In particular, numerous methods embedded in Geographic Information Systems (GIS) applications have been developed to assess slope stability. However, little work has been done on the systematic comparison of different techniques and the incorporation of vertical contrasts of geotechnical properties in multiple soil layers. In this research, stability is modeled by using LOGISNET, an acronym for Multiple Logistic Regression, Geographic Information System, and Neural Network. The main purpose of LOGISNET is to provide government planners and decision makers a tool to assess landslide susceptibility. The system is fully operational for models handling an enhanced cartographic-hydrologic model (SINMAP) and multiple logistic regression. The enhanced implementation of SINMAP was tested at regional scale in the Highway 101 corridor in Del Norte County, California, and its susceptibility map was found to have improved factor of safety estimates based on comparison with landslide inventory maps. The enhanced SINMAP and multiple logistic regression subsystems have functions that allow the user to include vertical variation in geotechnical properties through summation of forces in specific soil layers acting on failure planes for a local or regional-scale mapping. The working group of LOGISNET foresees the development of an integrated tool system to handle and support the prognostic studies of slope instability, and communicate the results to the public through maps.

  12. A Context-Aware Adaptive Streaming Media Distribution System in a Heterogeneous Network with Multiple Terminals

    Directory of Open Access Journals (Sweden)

    Yepeng Ni

    2016-01-01

    Full Text Available We consider the problem of streaming media transmission in a heterogeneous network from a multisource server to home multiple terminals. In wired network, the transmission performance is limited by network state (e.g., the bandwidth variation, jitter, and packet loss. In wireless network, the multiple user terminals can cause bandwidth competition. Thus, the streaming media distribution in a heterogeneous network becomes a severe challenge which is critical for QoS guarantee. In this paper, we propose a context-aware adaptive streaming media distribution system (CAASS, which implements the context-aware module to perceive the environment parameters and use the strategy analysis (SA module to deduce the most suitable service level. This approach is able to improve the video quality for guarantying streaming QoS. We formulate the optimization problem of QoS relationship with the environment parameters based on the QoS testing algorithm for IPTV in ITU-T G.1070. We evaluate the performance of the proposed CAASS through 12 types of experimental environments using a prototype system. Experimental results show that CAASS can dynamically adjust the service level according to the environment variation (e.g., network state and terminal performances and outperforms the existing streaming approaches in adaptive streaming media distribution according to peak signal-to-noise ratio (PSNR.

  13. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  14. Sepsis: Multiple Abnormalities, Heterogeneous Responses, and Evolving Understanding

    Science.gov (United States)

    Iskander, Kendra N.; Osuchowski, Marcin F.; Stearns-Kurosawa, Deborah J.; Kurosawa, Shinichiro; Stepien, David; Valentine, Catherine

    2013-01-01

    Sepsis represents the host's systemic inflammatory response to a severe infection. It causes substantial human morbidity resulting in hundreds of thousands of deaths each year. Despite decades of intense research, the basic mechanisms still remain elusive. In either experimental animal models of sepsis or human patients, there are substantial physiological changes, many of which may result in subsequent organ injury. Variations in age, gender, and medical comorbidities including diabetes and renal failure create additional complexity that influence the outcomes in septic patients. Specific system-based alterations, such as the coagulopathy observed in sepsis, offer both potential insight and possible therapeutic targets. Intracellular stress induces changes in the endoplasmic reticulum yielding misfolded proteins that contribute to the underlying pathophysiological changes. With these multiple changes it is difficult to precisely classify an individual's response in sepsis as proinflammatory or immunosuppressed. This heterogeneity also may explain why most therapeutic interventions have not improved survival. Given the complexity of sepsis, biomarkers and mathematical models offer potential guidance once they have been carefully validated. This review discusses each of these important factors to provide a framework for understanding the complex and current challenges of managing the septic patient. Clinical trial failures and the therapeutic interventions that have proven successful are also discussed. PMID:23899564

  15. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions.

    Science.gov (United States)

    Tokuda, Tomoki; Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data.

  16. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions.

    Directory of Open Access Journals (Sweden)

    Tomoki Tokuda

    Full Text Available We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data.

  17. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions

    Science.gov (United States)

    Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392

  18. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  19. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    International Nuclear Information System (INIS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-01-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking

  20. Growth and characterization of semi-insulating carbon-doped/undoped GaN multiple-layer buffer

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Won, Chul-Ho; Kang, Hee-Sung; Kim, Young-Jo; Kang, In Man; Lee, Jung-Hee; Kim, Yong Tae

    2015-01-01

    We have proposed a new semi-insulating GaN buffer layer, which consists of multiple carbon-doped and undoped GaN layer. The buffer layer showed sufficiently good semi-insulating characteristics, attributed to the depletion effect between the carbon-doped GaN and the undoped GaN layers, even though the thickness of the carbon-doped GaN layer in the periodic structure was designed to be very thin to minimize the total carbon incorporation into the buffer layer. The AlGaN/AlN/GaN heterostructure grown on the proposed buffer exhibited much better electrical and structural properties than that grown on the conventional thick carbon-doped semi-insulating GaN buffer layer, confirmed by Hall measurement, x-ray diffraction, and secondary ion mass spectrometry. The fabricated device also showed excellent buffer breakdown characteristics. (paper)

  1. Performance of a Polymer Flood with Shear-Thinning Fluid in Heterogeneous Layered Systems with Crossflow

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee

    2011-08-01

    Full Text Available Assessment of the potential of a polymer flood for mobility control requires an accurate model on the viscosities of displacement fluids involved in the process. Because most polymers used in EOR exhibit shear-thinning behavior, the effective viscosity of a polymer solution is a highly nonlinear function of shear rate. A reservoir simulator including the model for the shear-rate dependence of viscosity was used to investigate shear-thinning effects of polymer solution on the performance of the layered reservoir in a five-spot pattern operating under polymer flood followed by waterflood. The model can be used as a quantitative tool to evaluate the comparative studies of different polymer flooding scenarios with respect to shear-rate dependence of fluids’ viscosities. Results of cumulative oil recovery and water-oil ratio are presented for parameters of shear-rate dependencies, permeability heterogeneity, and crossflow. The results of this work have proven the importance of taking non-Newtonian behavior of polymer solution into account for the successful evaluation of polymer flood processes. Horizontal and vertical permeabilities of each layer are shown to impact the predicted performance substantially. In reservoirs with a severe permeability contrast between horizontal layers, decrease in oil recovery and sudden increase in WOR are obtained by the low sweep efficiency and early water breakthrough through highly permeable layer, especially for shear-thinning fluids. An increase in the degree of crossflow resulting from sufficient vertical permeability is responsible for the enhanced sweep of the low permeability layers, which results in increased oil recovery. It was observed that a thinning fluid coefficient would increase injectivity significantly from simulations with various injection rates. A thorough understanding of polymer rheology in the reservoir and accurate numerical modeling are of fundamental importance for the exact estimation

  2. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    Science.gov (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  3. Multiple prismatic calcium phosphate layers in the jaws of present-day sharks (Chondrichthyes; Selachii).

    Science.gov (United States)

    Dingerkus, G; Séret, B; Guilbert, E

    1991-01-15

    Jaws of large individuals, over 2 m in total length, of the shark species Carcharodon carcharias (great white shark) and Isurus oxyrinchus (mako shark) of the family Lamnidae, and Galeocerdo cuvieri (tiger shark) and Carcharhinus leucas (bull shark) of the family Carcharhinidae were found to have multiple, up to five, layers of prismatic calcium phosphate surrounding the cartilages. Smaller individuals of these species and other known species of living chondrichthyans have only one layer of prismatic calcium phosphate surrounding the cartilages, as also do most species of fossil chondrichthyans. Two exceptions are the fossil shark genera Xenacanthus and Tamiobatis. Where it is found in living forms, this multiple layered calcification does not appear to be phylogenetic, as it appears to be lacking in other lamnid and carcharhinid genera and species. Rather it appears to be functional, only appearing in larger individuals and species of these two groups, and hence may be necessary to strengthen the jaw cartilages of such individuals for biting.

  4. Transfer Printed Nanomembranes for Heterogeneously Integrated Membrane Photonics

    Directory of Open Access Journals (Sweden)

    Hongjun Yang

    2015-11-01

    Full Text Available Heterogeneous crystalline semiconductor nanomembrane (NM integration is investigated for single-layer and double-layer Silicon (Si NM photonics, III-V/Si NM lasers, and graphene/Si NM total absorption devices. Both homogeneous and heterogeneous integration are realized by the versatile transfer printing technique. The performance of these integrated membrane devices shows, not only intact optical and electrical characteristics as their bulk counterparts, but also the unique light and matter interactions, such as Fano resonance, slow light, and critical coupling in photonic crystal cavities. Such a heterogeneous integration approach offers tremendous practical application potentials on unconventional, Si CMOS compatible, and high performance optoelectronic systems.

  5. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    Science.gov (United States)

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and

  6. Surface current double-heterogeneous multilayer multicell methodology

    International Nuclear Information System (INIS)

    Stepanek, J.; Segev, M.

    1991-01-01

    A surface current methodology is developed to respond to the need for treating the various levels of material heterogeneity in a double-heterogeneous multilayer multicell in processing neutron multigroup cross sections in the resonance as well as thermal energy range. First, the basic surface cosine current transport equations to calculate the energy-dependent neutron flux spatial distribution in the multilayered multicell are formulated. Slab, spherical and cylindrical geometries, as well as square and hexagonal lattices and pebble-bed configurations with white or reflective cell boundary conditions, are considered. Second, starting from the surface cosine-current formulation, a two-zone three-layer multicell formalism for reduction of heterogeneous flux expressions to equivalent homogeneous flux expression for table method was developed. This formalism allows an infinite, as well as a limited, number of second-heterogeneity cells within a partial first-heterogeneity cell layer to be considered. Also, the number of the first-and second-heterogeneity cell types is quite general. The 'outer' (right side) as well as 'inner' (left side) Dancoff probabilities can be calculated for any particular layer. An accurate, efficient, and compact interpolation procedure is developed to calculate the basic collision probabilities. These are transmission and escape probabilities for shells in slab, cylindrical, and spherical geometries, as well as Dancoff probabilities for cylinders in square and hexagonal lattices. The use of the interpolation procedure is exemplified in a multilayer multicell approximation for the Dancoff probability, enabling a routine evaluation of the equivalence-based shielded resonance integral in highly complex lattices of slab, cylindrical, or spherical cells. (author) 1 fig., 2 tabs., 10 refs

  7. Multiple defects in GaInN multiple quantum wells grown on ELO GaN layers and on GaN substrates

    International Nuclear Information System (INIS)

    Tomiya, S.; Goto, O.; Hoshina, Y.; Tanaka, T.; Ikeda, M.

    2006-01-01

    A new type of structural defects was observed in GaInN multiple quantum well structures with higher In concentrations that were grown on low-threading-dislocation-density templates. The defects were investigated by using various kinds of transmission electron microscopy techniques, and were found to consist of planar defects and associated dislocations. The planar defects nucleate at the interfaces between the quantum well layers and barrier layers. The dislocations are created at the edge boundary of the planar defects and run almost along the c-axis towards the epi-surface. The planar defects are revealed to be inversion domains which are thought to be caused by the segregation of excess In-In bonds at the interface between the quantum well layer and the barrier layer. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Multiple defects in GaInN multiple quantum wells grown on ELO GaN layers and on GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, Kanagawa (Japan); Goto, O.; Hoshina, Y.; Tanaka, T.; Ikeda, M. [Shiroishi Laser Center, Semiconductor Laser Division, MSNC, Sony Corporation, Miyagi (Japan)

    2006-06-15

    A new type of structural defects was observed in GaInN multiple quantum well structures with higher In concentrations that were grown on low-threading-dislocation-density templates. The defects were investigated by using various kinds of transmission electron microscopy techniques, and were found to consist of planar defects and associated dislocations. The planar defects nucleate at the interfaces between the quantum well layers and barrier layers. The dislocations are created at the edge boundary of the planar defects and run almost along the c-axis towards the epi-surface. The planar defects are revealed to be inversion domains which are thought to be caused by the segregation of excess In-In bonds at the interface between the quantum well layer and the barrier layer. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. A link prediction method for heterogeneous networks based on BP neural network

    Science.gov (United States)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  10. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    Science.gov (United States)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith

    2018-06-01

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.

  11. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  12. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  13. Lessons learned from IOR steamflooding in a bitumen-light oil heterogeneous reservoir

    NARCIS (Netherlands)

    Al Mudhafar, W.J.M.; Hosseini Nasab, S.M.

    2015-01-01

    The Steamflooding was considered in this research to extract the discontinuous bitumen layers that are located at the oil-water contact for the heterogeneous light oil sandstone reservoir of South Rumaila Field. The reservoir heterogeneity and the bitumen layers impede water aquifer approaching into

  14. Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    Science.gov (United States)

    Soden, A. M.; Lunn, R. J.; Shipton, Z. K.

    2016-08-01

    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.

  15. Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.

    Science.gov (United States)

    Le Bihan, Nicolas; Margerin, Ludovic

    2009-07-01

    In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.

  16. Development of a novel two-layer multiplate magnetorheological clutch for high-power applications

    International Nuclear Information System (INIS)

    Wang, Daoming; Tian, Zuzhi; Meng, Qingrui; Hou, Youfu

    2013-01-01

    A novel magnetorheological (MR) clutch for high-power applications is designed, simulated and tested. The clutch is implemented in a two-layer multiplate transmission form and adopts a two-way liquid cooling method to improve the heat dissipation capability. In this paper, a brief introduction to the transmission form of the proposed MR clutch is given first. Then, theoretical analyses of the output torque, magnetic circuit and temperature characteristic are conducted and further design details are presented and discussed, followed by a magnetostatic simulation of the designed circuit. A prototype of the clutch was fabricated and several tests were carried out to evaluate the torque transmission, time response and steady slip power of the prototype. The results show that the proposed MR clutch can produce a maximum output torque of 1545 N m and possesses a high steady slip power of up to 35 kW. Therefore, the developed two-layer multiplate MR clutch is promising for applications in many high-power situations. (paper)

  17. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  18. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    International Nuclear Information System (INIS)

    Shang, Yu; Yu, Guoqiang

    2014-01-01

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  19. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  20. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    Science.gov (United States)

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  1. Intra-tumoral Heterogeneity of KRAS and BRAF Mutation Status in Patients with Advanced Colorectal Cancer (aCRC and Cost-Effectiveness of Multiple Sample Testing

    Directory of Open Access Journals (Sweden)

    Susan D. Richman

    2011-01-01

    Full Text Available KRAS mutation status is established as a predictive biomarker of benefit from anti-EGFr therapies. Mutations are normally assessed using DNA extracted from one formalin-fixed, paraffin-embedded (FFPE tumor block. We assessed heterogeneity of KRAS and BRAF mutation status intra-tumorally (multiple blocks from the same primary tumor. We also investigated the utility and efficiency of genotyping a ‘DNA cocktail’ prepared from multiple blocks. We studied 68 consenting patients in two randomized clinical trials. DNA was extracted, from ≥2 primary tumor FFPE blocks per patient. DNA was genotyped by pyrosequencing for KRAS codons 12, 13 and 61 and BRAF codon 600. In patients with heterogeneous mutation status, DNA cocktails were prepared and genotyped. Among 69 primary tumors in 68 patients, 7 (10.1% showed intratumoral heterogeneity; 5 (7.2% at KRAS codons 12, 13 and 2 (2.9% at BRAF codon 600. In patients displaying heterogeneity, the relevant KRAS or BRAF mutation was also identified in ‘DNA cocktail’ samples when including DNA from mutant and wild-type blocks. Heterogeneity is uncommon but not insignificant. Testing DNA from a single block will wrongly assign wild-type status to 10% patients. Testing more than one block, or preferably preparation of a ‘DNA cocktail’ from two or more tumor blocks, improves mutation detection at minimal extra cost.

  2. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    Science.gov (United States)

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a

  3. Receiver Heterogeneity Helps

    DEFF Research Database (Denmark)

    Kovács, Erika R.; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    Heterogeneity amongst devices and desired service are commonly seen as a source of additional challenges for setting up an efficient multi-layer multicast service. In particular, devices requiring only the base layer can become a key bottleneck to the performance for other devices. This paper...... studies the case of a wireless multi-layer multicast setting and shows that the judicious use of network coding allows devices with different computational capabilities to trade-off processing complexity for an improved quality of service. As a consequence, individual devices can determine their required...... effort, while bringing significant advantages to the system as a whole. Network coding is used as a key element to reduce signaling in order to deliver the multicast service. More importantly, our proposed approach focuses on creating some structure in the transmitted stream by allowing inter-layer...

  4. A theoretical study on Love wave sensors in a structure with multiple viscoelastic layers on a piezoelectric substrate

    International Nuclear Information System (INIS)

    Liu, Jiansheng

    2014-01-01

    A theoretical method is used to analyze the performance of Love wave sensors with multiple viscoelastic guiding layers on a piezoelectric substrate. The method is based upon the theoretical model for multi-elastic-layer piezoelectric Love waves and the Maxwell–Weichert model for viscoelastic materials. The relationship between sensor performance and the characteristics of Love waves is discussed. Numerical calculation is completed for a Love wave delay line consisting of a viscoelastic SU-8 layer, an elastic SiO 2 layer, an ST-90°X quartz substrate and two interdigital transducers (IDTs) with a period of 40 μm deposited on the substrate surface. The calculated results prove that a Love wave sensor with such a two-layer structure can achieve better performance than a Love wave sensor with only one (visco)elastic or elastic guiding layer. Some interesting abnormal phenomena, such as an oscillation in mass velocity sensitivity (S mv ), are predicted at the area where tail-raising occurs in the propagation velocity. The method and the numerical results presented in this work may help in the development of a high-performing Love wave sensor with multiple layers. (papers)

  5. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Nabovati, Aydin; Hinebaugh, James; Bazylak, Aimy; Amon, Cristina H.

    2014-02-01

    In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120™ GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher cross-plane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage.

  6. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  7. Study on the formation of heterogeneous structures in leached layers during the corrosion process of glass

    Directory of Open Access Journals (Sweden)

    Willemien Anaf

    2010-11-01

    Full Text Available Le verre, corrodé dans des conditions naturelles, montre souvent des hétérogénéités dans la couche lixiviée, comme une structure lamellaire ou des inclusions de MnO2 ou Ca3(PO42. La formation de ces hétérogénéités n’est pas encore bien comprise. Des structures de ce type ont été produites artificiellement en laboratoire en immergeant des échantillons de verre dans des solutions riches en métaux. Les résultats expérimentaux ont été comparés avec des théories décrivant la corrosion du verre.Glass that corrodes under natural conditions often shows heterogeneities in the leached layer, such as a lamellar structure or inclusions of MnO2 or Ca3(PO42. The formation of these heterogeneities is still not well understood. By means of experiments under laboratory conditions, our aim was to artificially generate specific structures. Therefore, glass samples were immersed in metal-rich solutions. The experimental results were compared with theories describing glass corrosion from a molecular point of view.

  8. Catalytic reaction in a porous solid subject to a boundary layer flow

    Energy Technology Data Exchange (ETDEWEB)

    Mihail, R; Teddorescu, C

    1978-01-01

    A mathematical model of a boundary layer flowing past a catalytic slab was developed which included an analysis of the coupled mass and heat transfer and the heterogeneous chemical reaction. The porous flat plate was used to illustrate the interaction of boundary layer flow with chemical reaction within a porous catalytic body. The model yielded systems of transcendental equations which were solved numerically by means of a superposition integral in connection with a norm reduction procedure. A parametric study was conducted and an analysis of the possible multiplicity of steady states was developed and illustrated for the extreme case of infinite solid thermal conductivity. Tables, diagrams, graphs, and 12 references.

  9. Thiolated alginate-based multiple layer mucoadhesive films of metformin forintra-pocket local delivery: in vitro characterization and clinical assessment.

    Science.gov (United States)

    Kassem, Abeer Ahmed; Issa, Doaa Ahmed Elsayed; Kotry, Gehan Sherif; Farid, Ragwa Mohamed

    2017-01-01

    Periodontal disease broadly defines group of conditions in which the supportive structure of the tooth (periodontium) is destroyed. Recent studies suggested that the anti-diabetic drug metformin hydrochloride (MF) has an osteogenic effect and is beneficial for the management of periodontitis. Development of strong mucoadhesive multiple layer film loading small dose of MF for intra-pocket application. Multiple layer film was developed by double casting followed by compression method. Either 6% carboxy methyl cellulose sodium (CMC) or sodium alginate (ALG) constituted the inner drug (0.6%) loaded layer. Thiolated sodium alginate (TSA; 2 or 4%) constituted the outer drug free layers to enhance mucoadhesion and achieve controlled drug release. Optimized formulation was assessed clinically on 20 subjects. Films were uniform, thin and hard enough for easy insertion into periodontal pockets. Based on water uptake and in vitro drug release, CMC based film with 4% TSA as an outer layer was the optimized formulation with enhanced mucoadhesion and controlled drug release (83.73% over 12 h). SEM showed the effective fabrication of the triple layer film in which connective lines between the layers could be observed. FTIR examination suggests possibility of hydrogen bonding between the -NH groups of metformin and -OH groups of CMC. DSC revealed the presence of MF mainly in the amorphous form. Clinical results indicated improvement of all clinical parameters six months post treatment. The results suggested that local application of the mucoadhesive multiple layer films loaded with metformin hydrochloride was able to manage moderate chronic periodontitis.

  10. Large-scale compositional heterogeneity in the Earth's mantle

    Science.gov (United States)

    Ballmer, M.

    2017-12-01

    Seismic imaging of subducted Farallon and Tethys lithosphere in the lower mantle has been taken as evidence for whole-mantle convection, and efficient mantle mixing. However, cosmochemical constraints point to a lower-mantle composition that has a lower Mg/Si compared to upper-mantle pyrolite. Moreover, geochemical signatures of magmatic rocks indicate the long-term persistence of primordial reservoirs somewhere in the mantle. In this presentation, I establish geodynamic mechanisms for sustaining large-scale (primordial) heterogeneity in the Earth's mantle using numerical models. Mantle flow is controlled by rock density and viscosity. Variations in intrinsic rock density, such as due to heterogeneity in basalt or iron content, can induce layering or partial layering in the mantle. Layering can be sustained in the presence of persistent whole mantle convection due to active "unmixing" of heterogeneity in low-viscosity domains, e.g. in the transition zone or near the core-mantle boundary [1]. On the other hand, lateral variations in intrinsic rock viscosity, such as due to heterogeneity in Mg/Si, can strongly affect the mixing timescales of the mantle. In the extreme case, intrinsically strong rocks may remain unmixed through the age of the Earth, and persist as large-scale domains in the mid-mantle due to focusing of deformation along weak conveyor belts [2]. That large-scale lateral heterogeneity and/or layering can persist in the presence of whole-mantle convection can explain the stagnation of some slabs, as well as the deflection of some plumes, in the mid-mantle. These findings indeed motivate new seismic studies for rigorous testing of model predictions. [1] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015), Science Advances, doi:10.1126/sciadv.1500815. [2] Ballmer, M. D., C. Houser, J. W. Hernlund, R. Wentzcovitch, and K. Hirose (2017), Nature Geoscience, doi:10.1038/ngeo2898.

  11. Brachytherapy dose measurements in heterogeneous tissues

    International Nuclear Information System (INIS)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H.; Rubo, R.

    2014-08-01

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  12. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  13. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  14. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    Science.gov (United States)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  15. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    Science.gov (United States)

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  16. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  17. CLASS-PAIR-GUIDED MULTIPLE KERNEL LEARNING OF INTEGRATING HETEROGENEOUS FEATURES FOR CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2017-10-01

    Full Text Available In recent years, many studies on remote sensing image classification have shown that using multiple features from different data sources can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL can conveniently be embedded in a variety of characteristics. The conventional combined kernel learned by MKL can be regarded as the compromise of all basic kernels for all classes in classification. It is the best of the whole, but not optimal for each specific class. For this problem, this paper proposes a class-pair-guided MKL method to integrate the heterogeneous features (HFs from multispectral image (MSI and light detection and ranging (LiDAR data. In particular, the one-against-one strategy is adopted, which converts multiclass classification problem to a plurality of two-class classification problem. Then, we select the best kernel from pre-constructed basic kernels set for each class-pair by kernel alignment (KA in the process of classification. The advantage of the proposed method is that only the best kernel for the classification of any two classes can be retained, which leads to greatly enhanced discriminability. Experiments are conducted on two real data sets, and the experimental results show that the proposed method achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms.

  18. Heterogeneity in Multiple Sclerosis: Scratching the Surface of a Complex Disease

    Science.gov (United States)

    Disanto, Giulio; Berlanga, Antonio J.; Handel, Adam E.; Para, Andrea E.; Burrell, Amy M.; Fries, Anastasia; Handunnetthi, Lahiru; De Luca, Gabriele C.; Morahan, Julia M.

    2011-01-01

    Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover, apart from the well-established association with the HLA-class II DRB1*15:01 allele, other genetic variants have been shown to vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that different pathways may be active in different MS patients. We conclude that these “MS subtypes” should still be considered as part of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim of modern research. PMID:21197462

  19. Comparative evaluation of concrete sealers and multiple layer polymer concrete overlays. Interim report no. 1.

    Science.gov (United States)

    1987-01-01

    The report presents comparisons of initial evaluations of several concrete sealers and multiple layer polymer concrete overlays. The sealers evaluated included a solvent-dlspersed epoxy, a water-dlspersed epoxy, a silane, and a high molecular weight ...

  20. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes

    NARCIS (Netherlands)

    Das, S.; Hardt, Steffen

    2011-01-01

    In this Brief Report, we calculate the electric-double-layer (EDL) electrostatic potential in a system of several layers of immiscible electrolytes. Verwey-Niessen theory predicts that at the interface between two immiscible electrolytes back-to-back EDLs are formed. The present analysis extends

  1. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Directory of Open Access Journals (Sweden)

    Eduardo Freitas Moreira

    Full Text Available Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for

  2. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Science.gov (United States)

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and

  3. Comparison of stress in single and multiple layer depositions of plasma-deposited amorphous silicon dioxide

    International Nuclear Information System (INIS)

    Au, V; Charles, C; Boswell, R W

    2006-01-01

    The stress in a single-layer continuous deposition of amorphous silicon dioxide (SiO 2 ) film is compared with the stress within multiple-layer intermittent or 'stop-start' depositions. The films were deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) to a 1 μm total film thickness. The relationships for stress as a function of film thickness for single, two, four and eight layer depositions have been obtained by employing the substrate curvature technique on a post-deposition etch-back of the SiO 2 film. At film thicknesses of less than 300 nm, the stress-thickness relationships clearly show an increase in stress in the multiple-layer samples compared with the relationship for the single-layer film. By comparison, there is little variation in the film stress between the samples when it is measured at 1 μm film thickness. Localized variations in stress were not observed in the regions where the 'stop-start' depositions occurred. The experimental results are interpreted as a possible indication of the presence of unstable, strained Si-O-Si bonds in the amorphous SiO 2 film. It is proposed that the subsequent introduction of a 'stop-start' deposition process places additional strain on these bonds to affect the film structure. The experimental stress-thickness relationships were reproduced independently by assuming a linear relationship between the measured bow and film thickness. The constants of the linear model are interpreted as an indication of the density of the amorphous film structure

  4. Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs

    Science.gov (United States)

    Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle

    2016-01-01

    The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.

  5. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  6. Neuropsychological heterogeneity in multiple sclerosis / Heterogeneidade neuropsicológica na esclerose múlipla

    Directory of Open Access Journals (Sweden)

    Eduardo de Paula Lima

    2008-01-01

    Full Text Available Multiple sclerosis (MS is a progressively disabling neurological disease which symptoms affect sensory, motor and psychological functioning. Several clinical neurological and psychological variables influence the neuropsychological profile in MS, which is extremely heterogeneous. The main objective of the present study was to investigate if it is possible to statistically stratify control subjects and MS patients from neurological, socio-demographic and neuropsychological dimensions. With this purpose we applied cluster analysis procedures to five neuropsychological instruments selected according to diagnostic accuracy from a pool of 9 neuropsychological tests. The sample was composed of 45 healthy controls and 35 MS patients with similar socio-demographic characteristics. The results indicated an ideal solution with 4 different clusters according to two dimensions: "cognitive" and "psychosocial" functioning, which represent independent but non-disjunctive aspects of neuropsychological functioning in MS.

  7. Synchronous message-based communication for distributed heterogeneous systems

    International Nuclear Information System (INIS)

    Wilkinson, N.; Dohan, D.

    1992-01-01

    The use of a synchronous, message-based real-time operating system (Unison) as the basis of transparent interprocess and inter-processor communication over VME-bus is described. The implementation of a synchronous, message-based protocol for network communication between heterogeneous systems is discussed. In particular, the design and implementation of a message-based session layer over a virtual circuit transport layer protocol using UDP/IP is described. Inter-process communication is achieved via a message-based semantic which is portable by virtue of its ease of implementation in other operating system environments. Protocol performance for network communication among heterogeneous architecture is presented, including VMS, Unix, Mach and Unison. (author)

  8. HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework.

    Science.gov (United States)

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2017-01-15

    Multivariate pattern analysis techniques have been increasingly used over the past decade to derive highly sensitive and specific biomarkers of diseases on an individual basis. The driving assumption behind the vast majority of the existing methodologies is that a single imaging pattern can distinguish between healthy and diseased populations, or between two subgroups of patients (e.g., progressors vs. non-progressors). This assumption effectively ignores the ample evidence for the heterogeneous nature of brain diseases. Neurodegenerative, neuropsychiatric and neurodevelopmental disorders are largely characterized by high clinical heterogeneity, which likely stems in part from underlying neuroanatomical heterogeneity of various pathologies. Detecting and characterizing heterogeneity may deepen our understanding of disease mechanisms and lead to patient-specific treatments. However, few approaches tackle disease subtype discovery in a principled machine learning framework. To address this challenge, we present a novel non-linear learning algorithm for simultaneous binary classification and subtype identification, termed HYDRA (Heterogeneity through Discriminative Analysis). Neuroanatomical subtypes are effectively captured by multiple linear hyperplanes, which form a convex polytope that separates two groups (e.g., healthy controls from pathologic samples); each face of this polytope effectively defines a disease subtype. We validated HYDRA on simulated and clinical data. In the latter case, we applied the proposed method independently to the imaging and genetic datasets of the Alzheimer's Disease Neuroimaging Initiative (ADNI 1) study. The imaging dataset consisted of T1-weighted volumetric magnetic resonance images of 123 AD patients and 177 controls. The genetic dataset consisted of single nucleotide polymorphism information of 103 AD patients and 139 controls. We identified 3 reproducible subtypes of atrophy in AD relative to controls: (1) diffuse and extensive

  9. SET: Session Layer-Assisted Efficient TCP Management Architecture for 6LoWPAN with Multiple Gateways

    Directory of Open Access Journals (Sweden)

    Akbar AliHammad

    2010-01-01

    Full Text Available 6LoWPAN (IPv6 based Low-Power Personal Area Network is a protocol specification that facilitates communication of IPv6 packets on top of IEEE 802.15.4 so that Internet and wireless sensor networks can be inter-connected. This interconnection is especially required in commercial and enterprise applications of sensor networks where reliable and timely data transfers such as multiple code updates are needed from Internet nodes to sensor nodes. For this type of inbound traffic which is mostly bulk, TCP as transport layer protocol is essential, resulting in end-to-end TCP session through a default gateway. In this scenario, a single gateway tends to become the bottleneck because of non-uniform connectivity to all the sensor nodes besides being vulnerable to buffer overflow. We propose SET; a management architecture for multiple split-TCP sessions across a number of serving gateways. SET implements striping and multiple TCP session management through a shim at session layer. Through analytical modeling and ns2 simulations, we show that our proposed architecture optimizes communication for ingress bulk data transfer while providing associated load balancing services. We conclude that multiple split-TCP sessions managed in parallel across a number of gateways result in reduced latency for bulk data transfer and provide robustness against gateway failures.

  10. Single-crystal micromachining using multiple fusion-bonded layers

    Science.gov (United States)

    Brown, Alan; O'Neill, Garry; Blackstone, Scott C.

    2000-08-01

    Multi-layer structures have been fabricated using Fusion bonding. The paper shows void free layers of between 2 and 100 microns that have been bonded to form multi-layer structures. Silicon layers have been bonded both with and without interfacial oxide layers.

  11. Efficiency enhancement of InGaN/GaN multiple quantum wells with graphene layer

    International Nuclear Information System (INIS)

    Deng, Zhen; Li, Zishen; Jiang, Yang; Ma, Ziguang; Fang, Yutao; Li, Yangfeng; Wang, Wenxin; Jia, Haiqiang; Chen, Hong

    2015-01-01

    In this work, a novel hybrid graphene/InGaN-based multiple quantum wells (MQWs) structure has been fabricated. Compared to the sample conventional structure (CS), the utilization of graphene transferred on top GaN layer significantly enhances the internal quantum efficiency and relatively photoluminescence intensity. Furthermore, the excitons in the MQWs of sample hybrid structure (HS) have a shorter decay lifetime of 3.4 ns than that of 6.7 ns for sample CS. These results are probably attributed to the free carriers in the graphene layer, which can screen the piezoelectric field in the active region and thus present a free quantum-confined Stark effect-like behavior. Our work demonstrates that the graphene on the top GaN layer can effectively increase the recombination rate in sample HS, which may further improve LEDs' performance. (orig.)

  12. Targeting multiple heterogeneous hardware platforms with OpenCL

    Science.gov (United States)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware

  13. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    Science.gov (United States)

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  14. Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Soo Mee; Lee, Dong Soo; Hong, Jong Hong; Sim, Kwang Souk; Rhee, June Tak

    2008-01-01

    To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 2D filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 2D reconstruction of multiple crystal layer PET data

  15. High-density multicore fiber with heterogeneous core arrangement

    DEFF Research Database (Denmark)

    Amma, Y.; Sasaki, Y.; Takenaga, K.

    2015-01-01

    A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m.......A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m....

  16. Multi-layer composite mechanical modeling for the inhomogeneous biofilm mechanical behavior.

    Science.gov (United States)

    Wang, Xiaoling; Han, Jingshi; Li, Kui; Wang, Guoqing; Hao, Mudong

    2016-08-01

    Experiments showed that bacterial biofilms are heterogeneous, for example, the density, the diffusion coefficient, and mechanical properties of the biofilm are different along the biofilm thickness. In this paper, we establish a multi-layer composite model to describe the biofilm mechanical inhomogeneity based on unified multiple-component cellular automaton (UMCCA) model. By using our model, we develop finite element simulation procedure for biofilm tension experiment. The failure limit and biofilm extension displacement obtained from our model agree well with experimental measurements. This method provides an alternative theory to study the mechanical inhomogeneity in biological materials.

  17. Influence of interface scattering on shock waves in heterogeneous solids

    International Nuclear Information System (INIS)

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  18. Imaging metabolic heterogeneity in cancer.

    Science.gov (United States)

    Sengupta, Debanti; Pratx, Guillem

    2016-01-06

    As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.

  19. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    Science.gov (United States)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  20. Optical response of heterogeneous polymer layers containing silver nanostructures

    Directory of Open Access Journals (Sweden)

    Miriam Carlberg

    2017-05-01

    Full Text Available This work is focused on the study of the optical properties of silver nanostructures embedded in a polymer host matrix. The introduction of silver nanostructures in polymer thin films is assumed to result in layers having adaptable optical properties. Thin film layers with inclusions of differently shaped nanoparticles, such as nanospheres and nanoprisms, and of different sizes, are optically characterized. The nanoparticles are produced by a simple chemical synthesis at room temperature in water. The plasmonic resonance peaks of the different colloidal solutions range from 390 to 1300 nm. The non-absorbing, transparent polymer matrix poly(vinylpyrrolidone (PVP was chosen because of its suitable optical and chemical properties. The optical studies of the layers include spectrophotometry and spectroscopic ellipsometry measurements, which provide information about the reflection, transmission, absorption of the material as well as the complex optical indices, n and k. Finite difference time domain simulations of nanoparticles in thin film layers allow the visualization of the nanoparticle interactions or the electric field enhancement on and around the nanoparticles to complete the optical characterization. A simple analysis method is proposed to obtain the complex refractive index of nanospheres and nanoprisms in a polymer matrix.

  1. Quantifying spatial heterogeneity from images

    International Nuclear Information System (INIS)

    Pomerantz, Andrew E; Song Yiqiao

    2008-01-01

    Visualization techniques are extremely useful for characterizing natural materials with complex spatial structure. Although many powerful imaging modalities exist, simple display of the images often does not convey the underlying spatial structure. Instead, quantitative image analysis can extract the most important features of the imaged object in a manner that is easier to comprehend and to compare from sample to sample. This paper describes the formulation of the heterogeneity spectrum to show the extent of spatial heterogeneity as a function of length scale for all length scales to which a particular measurement is sensitive. This technique is especially relevant for describing materials that simultaneously present spatial heterogeneity at multiple length scales. In this paper, the heterogeneity spectrum is applied for the first time to images from optical microscopy. The spectrum is measured for thin section images of complex carbonate rock cores showing heterogeneity at several length scales in the range 10-10 000 μm.

  2. Visual Analytics for Heterogeneous Geoscience Data

    Science.gov (United States)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We

  3. Findings of Optical Coherence Tomography of Retinal Nerve Fiber Layer in Two Common Types of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Gholamali Yousefipour

    2016-06-01

    Full Text Available Multiple sclerosis (MS is the most prevalent disease caused by the inflammatory demyelinating process that causes progressive nervous system degeneration over the time. Optical Coherence Tomography (OCT is a non-invasive optical imaging technology, which can measure the thickness of retinal nerve fiber layer as well as the diameter of the macula. The purpose of the study is evaluation OCT findings in two common types of multiple sclerosis. For doing the cross-sectional study, 63 patients with two prevalent types of multiple sclerosis (35 patients with Relapse Remitting Multiple Sclerosis (RRMS and 28 patients with Secondary Progressive Multiple Sclerosis (SPMS were evaluated for 6 months. Exclusion criteria of the study were a history of optic neuritis, suffering from diabetes mellitus, hypertension, ocular disease, and the presence of other neurologic degenerative diseases. Then, the thickness of retinal nerve fiber layer (RNFL, as well as thickness and volume of the macula, were measured in the patients using OCT technology. The disability rate of patients was evaluated according to Expanded Disability Status Scale (EDSS. Finally, data was analyzed by means of SPSS software. Overall, 35 patients with RRMS (with mean age of 32.37+10.01, average disease period of 3.81+3.42 and mean EDSS of 1.84+0.45 and 28 patients with SPMS (with mean age of 39.21+9.33, average disease period of 11.32+5.87 and mean EDSS of 5.12+1.46 were assessed and compared in terms of retinal nerve fiber layer and size and thickness of macula. In all of these sections, the thicknesses were smaller in SPMS patients than patients with RRMS. But, there was a significant difference in total thickness (81.82µm versus 96.03µm with P=0.04 and thickness of temporal sector (54.5 µm versus 69.34 µm with P=0.04 of retinal nerve fiber layer and macular size at the superior sector of external ring (1.48 mm³ versus 1.58 mm³ with P=0.03, and nasal sector of external ring surrounding

  4. Thermal inertia and surface heterogeneity on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  5. An emotional contagion model for heterogeneous social media with multiple behaviors

    Science.gov (United States)

    Xiong, Xi; Li, Yuanyuan; Qiao, Shaojie; Han, Nan; Wu, Yue; Peng, Jing; Li, Binyong

    2018-01-01

    The emotion varies and propagates with the spatial and temporal information of individuals through social media, which uncovers several interaction mechanisms and features the community structure in order to facilitate individuals' communication and emotional contagion in social networks. Aiming to show the detailed process and characteristics of emotional contagion within social media, we propose an emotional independent cascade model in which individual emotion can affect the subsequent emotion of his/her friends. The transmissibility is introduced to measure the capability of propagating emotion with respect to an individual in social networks. By analyzing the patterns of emotional contagion on Twitter data, we find that the value of transmissibility differs on different layers and on different community structures. Extensive experiments were conducted and the results reveal that, the polar emotion of hub users can lead to the disappearance of opposite emotion, and the transmissibility makes no sense. The final emotional distribution depends on the initial emotional distribution and the transmissibilities. Individuals from a small community are more likely to change their mood by the influence of community leaders. In addition, we compared the proposed model with two other models, the emotion-based spreader-ignorant-stifler model and the standard independent cascade model. The results demonstrate that the proposed model can reflect the real-world situation of emotional contagion for heterogeneous social media while the computational complexities of all these three models are similar.

  6. Influence of initial stress, irregularity and heterogeneity on Love-type ...

    Indian Academy of Sciences (India)

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half- space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface.

  7. Heterogeneity in magnetic complex oxides

    Science.gov (United States)

    Arenholz, Elke

    Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by

  8. Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain

    Science.gov (United States)

    Maurer, V.; Kalthoff, N.; Wieser, A.; Kohler, M.; Mauder, M.; Gantner, L.

    2016-02-01

    In the spring of 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain in northwestern Germany. For 6 mostly cloud-free convective days, vertical velocity variance profiles were calculated. Weighted-averaged surface fluxes proved to be more appropriate than data from individual sites for scaling the variance profiles; but even then, the scatter of profiles was mostly larger than the statistical error. The scatter could not be explained by mean wind speed or stability, whereas time periods with significantly increased variance contained broader thermals. Periods with an elevated maximum of the variance profiles could also be related to broad thermals. Moreover, statistically significant spatial differences of variance were found. They were not influenced by the existing surface heterogeneity. Instead, thermals were preserved between two sites when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than 2 h at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Organized structures of turbulence with subsidence prevailing in the surroundings of thermals can thus partly explain significant spatial variance differences existing for several hours. Therefore, the representativeness of individual variance profiles derived from measurements at a single site cannot be assumed.

  9. Glucose uptake heterogeneity of the leg muscles is similar between patients with multiple sclerosis and healthy controls during walking.

    Science.gov (United States)

    Kindred, John H; Ketelhut, Nathaniel B; Rudroff, Thorsten

    2015-02-01

    Difficulties in ambulation are one of the main problems reported by patients with multiple sclerosis. A previous study by our research group showed increased recruitment of muscle groups during walking, but the influence of skeletal muscle properties, such as muscle fiber activity, has not been fully elucidated. The purpose of this investigation was to use the novel method of calculating glucose uptake heterogeneity in the leg muscles of patients with multiple sclerosis and compare these results to healthy controls. Eight patients with multiple sclerosis (4 men) and 8 healthy controls (4 men) performed 15 min of treadmill walking at a comfortable self-selected speed following muscle strength tests. Participants were injected with ≈ 8 mCi of [(18)F]-fluorodeoxyglucose during walking after which positron emission tomography/computed tomography imaging was performed. No differences in muscle strength were detected between multiple sclerosis and control groups (P>0.27). Within the multiple sclerosis, group differences in muscle volume existed between the stronger and weaker legs in the vastus lateralis, semitendinosus, and semimembranosus (Pmuscle group or individual muscle of the legs (P>0.16, P≥0.05). Patients with multiple sclerosis and healthy controls showed similar muscle fiber activity during walking. Interpretations of these results, with respect to our previous study, suggest that walking difficulties in patients with multiple sclerosis may be more associated with altered central nervous system motor patterns rather than alterations in skeletal muscle properties. Published by Elsevier Ltd.

  10. Effective IPTV channel management method over heterogeneous environments

    Science.gov (United States)

    Joo, Hyunchul; Lee, Dai-boong; Song, Hwangjun

    2007-09-01

    This paper presents an effective IPTV channel management method using SVC (scalable video coding) that considers concurrently both channel zapping time and network utilization. A broadcasting channel is encoded in two-layered bitstream (base-layer channel and enhancement-layer channel) to supply for heterogeneous environments. The proposed algorithm locates only a limited numbers of base-layer channels close to users to reduce the network delay part of channel zapping time and adjusts the length of GOP (group of picture) into each base-layer channel to decrease the video decoding delay part of channel zapping time, which are performed based on user's channel preference information. Finally, the experimental results are provided to show the performance of the proposed schemes.

  11. Analysis of macular and nerve fiber layer thickness in multiple sclerosis patients according to severity level and optic neuritis episodes.

    Science.gov (United States)

    Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M

    2016-01-01

    Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Cross-Layer Scheduling and Resource Allocation for Heterogeneous Traffic in 3G LTE

    Directory of Open Access Journals (Sweden)

    Richard Musabe

    2014-01-01

    Full Text Available 3G long term evolution (LTE introduces stringent needs in order to provide different kinds of traffic with Quality of Service (QoS characteristics. The major problem with this nature of LTE is that it does not have any paradigm scheduling algorithm that will ideally control the assignment of resources which in turn will improve the user satisfaction. This has become an open subject and different scheduling algorithms have been proposed which are quite challenging and complex. To address this issue, in this paper, we investigate how our proposed algorithm improves the user satisfaction for heterogeneous traffic, that is, best-effort traffic such as file transfer protocol (FTP and real-time traffic such as voice over internet protocol (VoIP. Our proposed algorithm is formulated using the cross-layer technique. The goal of our proposed algorithm is to maximize the expected total user satisfaction (total-utility under different constraints. We compared our proposed algorithm with proportional fair (PF, exponential proportional fair (EXP-PF, and U-delay. Using simulations, our proposed algorithm improved the performance of real-time traffic based on throughput, VoIP delay, and VoIP packet loss ratio metrics while PF improved the performance of best-effort traffic based on FTP traffic received, FTP packet loss ratio, and FTP throughput metrics.

  13. Derivation of Batho's correction factor for heterogeneities

    International Nuclear Information System (INIS)

    Lulu, B.A.; Bjaerngard, B.E.

    1982-01-01

    Batho's correction factor for dose in a heterogeneous, layered medium is derived from the tissue--air ratio method (TARM). The reason why the Batho factor is superior to the TARM factor at low energy is ascribed to the fact that it accounts for the distribution of the scatter-generating matter along the centerline. The poor behavior of the Batho factor at high energies is explained as a consequence of the lack of electron equilibrium at appreciable depth below the surface. Key words: Batho factor, heterogeneity, inhomogeneity, tissue--air ratio method

  14. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers

    Directory of Open Access Journals (Sweden)

    Daniel M Spagnolo

    2016-01-01

    Full Text Available Background: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME are key contributors to heterogeneity. Methods: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI and visually represent heterogeneity with a two-dimensional map. Results: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. Conclusions: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI, which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different

  15. Collision-free motion coordination of heterogeneous robots

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Nak Yong [Chosun University, Gwangju (Korea, Republic of); Seo, Dong Jin [RedOne Technologies, Gwangju (Korea, Republic of); Simmons, Reid G. [Carnegie Mellon University, Pennsylvania (United States)

    2008-11-15

    This paper proposes a method to coordinate the motion of multiple heterogeneous robots on a network. The proposed method uses prioritization and avoidance. Priority is assigned to each robot; a robot with lower priority avoids the robots of higher priority. To avoid collision with other robots, elastic force and potential field force are used. Also, the method can be applied separately to the motion planning of a part of a robot from that of the other parts of the robot. This is useful for application to the robots of the type mobile manipulator or highly redundant robots. The method is tested by simulation, and it results in smooth and adaptive coordination in an environment with multiple heterogeneous robots

  16. Collision-free motion coordination of heterogeneous robots

    International Nuclear Information System (INIS)

    Ko, Nak Yong; Seo, Dong Jin; Simmons, Reid G.

    2008-01-01

    This paper proposes a method to coordinate the motion of multiple heterogeneous robots on a network. The proposed method uses prioritization and avoidance. Priority is assigned to each robot; a robot with lower priority avoids the robots of higher priority. To avoid collision with other robots, elastic force and potential field force are used. Also, the method can be applied separately to the motion planning of a part of a robot from that of the other parts of the robot. This is useful for application to the robots of the type mobile manipulator or highly redundant robots. The method is tested by simulation, and it results in smooth and adaptive coordination in an environment with multiple heterogeneous robots

  17. Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies

    International Nuclear Information System (INIS)

    Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.

    2002-01-01

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media

  18. Heterogeneous computing with OpenCL

    CERN Document Server

    2013-01-01

    Heterogeneous Computing with OpenCL teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs) such as AMD Fusion technology. Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. The authors explore memory spaces, optimization techniques, graphics interoperability, extensions, and debugging and profiling. Intended to support a parallel programming course, Heterogeneous Computing with OpenCL includes detailed examples throughout, plus additional online exercises and other supporting materials.

  19. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    Science.gov (United States)

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  20. Multiple-Layer Parking with Screening

    NARCIS (Netherlands)

    van Enter, Aernout; Fleurke, Sjoert; Rudas, Imre J.

    2015-01-01

    In this article a multilayer parking system with screening of size n = 3 is studied with a focus on the time-dependent particle density. We prove that the asymptotic limit of the particle density increases from an average density of 1/3 on the first layer to the value of (10 − √5 )/19 ≈ 0.4086 in

  1. Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Vanessa [Instituto de Ciências da Terra – Porto, DGAOT, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Geobiotec. Departamento de Geociências da Universidade de Aveiro, Campo Universitário de Santiago, 3810-193 Aveiro (Portugal); Rodríguez-Castellón, Enrique; Algarra, Manuel [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga. Campus de Teatino s/n, 29071 Málaga (Spain); Rocha, Fernando [Geobiotec. Departamento de Geociências da Universidade de Aveiro, Campo Universitário de Santiago, 3810-193 Aveiro (Portugal); Bobos, Iuliu, E-mail: ibobos@fc.up.pt [Instituto de Ciências da Terra – Porto, DGAOT, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-11-05

    Highlights: • The UO{sub 2}{sup 2+} sorption at pH 4 and 6 on heterogeneous smectite structure. • The cation exchange process is affected by layer charge distribution. • Surface complexation and cation exchange modelling. • New binding energy components identified by X-ray photoelectron spectroscopy. - Abstract: The UO{sub 2}{sup 2+} adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I = 0.02 M) and pH 6 (I = 0.2 M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8 nm (sample PS2), to 5.1 nm (sample PS3) and, to 7.4 nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO{sub 2}{sup 2+} sorption on smectite. The amount of UO{sub 2}{sup 2+} adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8 ± 0.3 and 382.2 ± 0.3 eV, assigned to hydrated UO{sub 2}{sup 2+} adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f{sub 7/2} peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3 ± 0.3 and 381.8 ± 0.3 eV assigned to ≡AlOUO{sub 2}{sup +} and ≡SiOUO{sub 2}{sup +} surface species were observed at pH 6.

  2. Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite

    International Nuclear Information System (INIS)

    Guimarães, Vanessa; Rodríguez-Castellón, Enrique; Algarra, Manuel; Rocha, Fernando; Bobos, Iuliu

    2016-01-01

    Highlights: • The UO_2"2"+ sorption at pH 4 and 6 on heterogeneous smectite structure. • The cation exchange process is affected by layer charge distribution. • Surface complexation and cation exchange modelling. • New binding energy components identified by X-ray photoelectron spectroscopy. - Abstract: The UO_2"2"+ adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I = 0.02 M) and pH 6 (I = 0.2 M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8 nm (sample PS2), to 5.1 nm (sample PS3) and, to 7.4 nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO_2"2"+ sorption on smectite. The amount of UO_2"2"+ adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8 ± 0.3 and 382.2 ± 0.3 eV, assigned to hydrated UO_2"2"+ adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f_7_/_2 peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3 ± 0.3 and 381.8 ± 0.3 eV assigned to ≡AlOUO_2"+ and ≡SiOUO_2"+ surface species were observed at pH 6.

  3. Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach.

    Science.gov (United States)

    Han, Hu; K Jain, Anil; Shan, Shiguang; Chen, Xilin

    2017-08-10

    Face attribute estimation has many potential applications in video surveillance, face retrieval, and social media. While a number of methods have been proposed for face attribute estimation, most of them did not explicitly consider the attribute correlation and heterogeneity (e.g., ordinal vs. nominal and holistic vs. local) during feature representation learning. In this paper, we present a Deep Multi-Task Learning (DMTL) approach to jointly estimate multiple heterogeneous attributes from a single face image. In DMTL, we tackle attribute correlation and heterogeneity with convolutional neural networks (CNNs) consisting of shared feature learning for all the attributes, and category-specific feature learning for heterogeneous attributes. We also introduce an unconstrained face database (LFW+), an extension of public-domain LFW, with heterogeneous demographic attributes (age, gender, and race) obtained via crowdsourcing. Experimental results on benchmarks with multiple face attributes (MORPH II, LFW+, CelebA, LFWA, and FotW) show that the proposed approach has superior performance compared to state of the art. Finally, evaluations on a public-domain face database (LAP) with a single attribute show that the proposed approach has excellent generalization ability.

  4. Lithology-dependent In Situ Stress in Heterogeneous Carbonate Reservoirs

    Science.gov (United States)

    Pham, C. N.; Chang, C.

    2017-12-01

    Characterization of in situ stress state for various geomechanical aspects in petroleum development may be particularly difficult in carbonate reservoirs in which rock properties are generally heterogeneous. We demonstrate that the variation of in situ stress in highly heterogeneous carbonate reservoirs is closely related to the heterogeneity in rock mechanical property. The carbonate reservoir studied consists of numerous sequential layers gently folded, exhibiting wide ranges of porosity (0.01 - 0.29) and Young's modulus (25 - 85 GPa) depending on lithology. Wellbore breakouts and drilling-induced tensile fractures (DITFs) observed in the image logs obtained from several wells indicate that the in situ state of stress orientation changes dramatically with depth and location. Even in a wellbore, the azimuth of the maximum horizontal stress changes by as much as 60° within a depth interval of 500 m. This dramatic change in stress orientation is inferred to be due to the contrast in elastic properties between different rock layers which are bent by folding in the reservoir. The horizontal principal stress magnitudes are constrained by back-calculating stress conditions necessary to induce the observed wellbore failures using breakout width and the presence of DITFs. The horizontal stresses vary widely, which cannot be represented by a constant stress gradient with depth. The horizontal principal stress gradient increases with Young's modulus of layer monotonically, indicating that a stiffer layer conveys a higher horizontal stress. This phenomenon can be simulated using a numerical modelling, in which the horizontal stress magnitudes depend on stiffness of individual layers although the applied far-field stress conditions are constant. The numerical results also suggest that the stress concentration at the wellbore wall is essentially higher in a stiffer layer, promoting the possibility of wellbore breakout formation. These results are in agreement with our

  5. Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

    Science.gov (United States)

    The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variab...

  6. Toward 3D-IPTV: design and implementation of a stereoscopic and multiple-perspective video streaming system

    Science.gov (United States)

    Petrovic, Goran; Farin, Dirk; de With, Peter H. N.

    2008-02-01

    3D-Video systems allow a user to perceive depth in the viewed scene and to display the scene from arbitrary viewpoints interactively and on-demand. This paper presents a prototype implementation of a 3D-video streaming system using an IP network. The architecture of our streaming system is layered, where each information layer conveys a single coded video signal or coded scene-description data. We demonstrate the benefits of a layered architecture with two examples: (a) stereoscopic video streaming, (b) monoscopic video streaming with remote multiple-perspective rendering. Our implementation experiments confirm that prototyping 3D-video streaming systems is possible with today's software and hardware. Furthermore, our current operational prototype demonstrates that highly heterogeneous clients can coexist in the system, ranging from auto-stereoscopic 3D displays to resource-constrained mobile devices.

  7. Nanoscale multiple gaseous layers on a hydrophobic surface.

    Science.gov (United States)

    Zhang, Lijuan; Zhang, Xuehua; Fan, Chunhai; Zhang, Yi; Hu, Jun

    2009-08-18

    The nanoscale gas state at the interfaces of liquids (water, acid, and salt solutions) and highly oriented pyrolytic graphite (HOPG) was investigated via tapping-mode atomic force microscopy (AFM). For the first time, we report that the interfacial gases could form bilayers and trilayers, i.e., on the top of a flat gas layer, there are one or two more gas layers. The formation of these gas layers could be induced by a local supersaturation of gases, which can be achieved by (1) temperature difference between the liquids and the HOPG substrates or (2) exchange ethanol with water. Furthermore, we found that the gas layers were less stable than spherical bubbles. They could transform to bubbles with time or under the perturbation of the AFM tip.

  8. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kaibin; Li, Dong, E-mail: lid@sues.edu.cn; Liu, Dongyu; Pei, Guangyu; Sun, Lei

    2015-06-15

    Highlights: • Grain morphology transformations of 308L stainless steel multiple-layer are studied. • The cladding metals solidify in AF mode and consist of austenite and about 10.48% δ ferrite. • The ferrite content distributes into an increasing trend as the number of layers increase. • The distribution of hardness from the substrate to the coating is relatively uniform. • The cladding tensile sample shows good tensile properties, and the fracture mode is the ductile fracture. - Abstract: Multiple-layer laser cladding of 308L stainless steel was obtained by a fiber laser using a way of wire feeding to repair the surface scrapped or erosive parts of 316L stainless steel. The microstructure of the coating was measured by a metallographic microscope, and phase composition was determined by X-ray diffraction. The results show that good metallurgical bonding can be obtained between the 308L stainless steel coating and 316L stainless steel substrate. The coating is mainly composed of columnar dendrites, and there are also a few planar crystals and cellular dendrites distributed in the bonding zone. Meanwhile, some equiaxed grains and steering dendrites are distributed in the apex of the coating. Grains incorporate in epitaxial columnar dendrite's growth between different layers and tracks. It has been proved using XRD that the coating basically consists of austenite and a small amount of δ ferrite. The coating solidifies in FA mode according to the Creq/Nieq ratio and metallurgical analysis results. The average content of δ ferrite is about 10.48% and morphologies of the ferrite are mostly vermicular, skeletal and lathy. Due to heat treatment and different cooling rate, the δ ferrite content generally increases as the number of laser cladding layers increases. The coating and the substrate have equivalent microhardness, and softening zone does not appear in the heat affected zone. The tensile strength and elongation of the coating are 548 MPa and 40

  9. How to program 122,400 heterogeneous cores and retain your sanity

    International Nuclear Information System (INIS)

    Patkin, Scott

    2010-01-01

    Current technology trends favor hybrid architectures, typically with each node in a cluster containing both general-purpose and specialized 'accelerator' processors. The typical model for programming such systems is host-centric: The general-purpose processor orchestrates the computation, offloading performance-critical work to the accelerator, and data is communicated only among general-purpose processors. In this talk we propose a radically different hybrid-programming approach, which we call the 'reverse-acceleration model'. In this model the accelerators orchestrate the computation, offloading unacceleratable work to the general-purpose processors. Data is communicated among accelerators, not among general-purpose processors. We present the Cell Messaging Layer (CML), an implementation of the reverse-acceleration model for Los Alamos National Laboratory's Roadrunner supercomputer, a complex conglomerate of 122,400 processor cores of various types, multiple memory domains, and multiple network types, all with radically different performance characteristics but which together make Roadrunner the world's second-fastest supercomputer. CML demonstrates a new messaging-layer implementation technique called 'receiver-initiated message passing', which reduces communication latency by up to a third. Our thesis is that the reverse-acceleration model simplifies porting codes to heterogeneous systems and facilitates performance optimization. We present a case study of a legacy neutron-transport code that we modified to use reverse acceleration. Performance results from running this code across the full Roadrunner system indicate a substantial performance improvement over the unaccelerated version of the code.

  10. Feasibility Study of Neutron Multiplicity Assay for a Heterogeneous Sludge Sample containing Na, Pu and other Impurities

    International Nuclear Information System (INIS)

    Nakamura, H.; Nakamichi, H.; Mukai, Y.; Yoshimoto, K.; Beddingfield, D.H.

    2010-01-01

    To reduce radioactivity of liquid waste generated at PCDF, a neutralization precipitation processes of radioactive nuclides by sodium hydroxide is used. We call the precipitate a 'sludge' after calcination. Pu mass in the sludge is normally determined by sampling and DA within the required uncertainty on DIQ. Annual yield of the mass is small but it accumulates and reaches to a few kilograms, so it is declared as retained waste and verified at PIV. A HM-5-based verification is applied for sludge verification. The sludge contains many chemical components. For example, Pu (-10wt%), U, Am, SUS components, halogens, NaNO 3 (main component), residual NaOH, and moisture. They are mixed together as an impure heterogeneous sludge sample. As a result, there is a large uncertainty in the sampling and DA that is currently used at PCDF. In order to improve the material accounting, we performed a feasibility study using neutron multiplicity assay for impure sludge samples. We have measured selected sludge samples using a multiplicity counter which is called FCAS (Fast Carton Assay System) which was designed by JAEA and Canberra. The PCDF sludge materials fall into the category of 'difficult to measure' because of the high levels of impurities, high alpha values and somewhat small Pu mass. For the sludge measurements, it was confirmed that good consistency between Pu mass in a pure sludge standard (PuO 2 -Na 2 U 2 O 7 , alpha=7) and the DA could be obtained. For unknown samples, using 14-hour measurements, we could obtain quite low statistical uncertainty on Doubles (-1%) and Triples (-10%) count rate although the alpha value was extremely high (15-25) and FCAS efficiency was relatively low (40%) for typical multiplicity counters. Despite the detector efficiency challenges and the material challenges (high alpha, low Pu mass, heterogeneous matrix), we have been able to obtain assay results that greatly exceed the accountancy requirements for retained waste materials. We have

  11. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  12. The coalescence of heterogeneous liquid metal on nano substrate

    Science.gov (United States)

    Wang, Long; Li, Yifan; Zhou, Xuyan; Li, Tao; Li, Hui

    2017-06-01

    Molecular dynamics simulation has been performed to study the asymmetric coalescence of heterogeneous liquid metal on graphene. Simulation results show that the anomalies in the drop coalescence is mainly caused by the wettability of heterogeneous liquid metal. The silver atoms incline to distribute on the outer layer of the gold and copper droplets, revealing that the structure is determined by the interaction between different metal atoms. The coalescence and fusion of heterogeneous liquid metal drop can be predicted by comparing the wettability and the atomic mass of metallic liquid drops, which has important implications in the industrial application such as ink-jet printing and metallurgy.

  13. Protein structure modeling for CASP10 by multiple layers of global optimization.

    Science.gov (United States)

    Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2014-02-01

    In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.

  14. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer.

    Science.gov (United States)

    Sernadela, Pedro; González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Posada, Manuel; Taruscio, Domenica; Lochmüller, Hanns; Robinson, Peter; Roos, Marco; Oliveira, José Luís

    2017-01-01

    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries.

  15. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  16. Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films

    International Nuclear Information System (INIS)

    Chen Dan; Huang Shu; Zhang Chao; Wang Weizhi; Liu Tianxi

    2010-01-01

    The layer-by-layer (LBL) self-assembly has been extensively used as a simple and effective method for the preparation of polyelectrolyte multilayer films. In this work, we utilized this unique method to prepare polyimide precursor/layered double hydroxide (LDH) ultrathin films. Well-crystallized Co-Al-CO 3 LDH and subsequent anion exchanged Co-Al-NO 3 LDH were prepared and characterized by scanning electron microscopy and X-ray diffraction (XRD). By vigorous shaking of the as-prepared Co-Al-NO 3 LDH, positively charged and exfoliated LDH nanosheets were obtained. Atomic force microscopy and XRD investigations indicated the delamination of LDH nanosheets. The precursor of polyimide, poly(amic acid) tertiary amine salt (PAS) was prepared by the polycondensation of dianhydride and diamine, and subsequent amine salt formation. By using the LBL method, heterogeneous ultrathin films of PAS and LDH were prepared. The formation of the ordered nanostructured assemblies was confirmed by the progressive enhancement of UV absorbance and the XRD results.

  17. Foundamental characteristics of layered pressure vessel

    International Nuclear Information System (INIS)

    Moriwaki, Yoshikazu; Fugino, Masayuki; Shimizu, Yasuhiro; Nakamura, Takeshi

    1978-01-01

    Pressure vessels become larger and the working pressure become higher with the remarkable development of petroleum, chemical, thermal power generation and atomic energy industries. Multi-layered pressure vessels can be manufactured cheaply without large installations, and large wall thickness can be made, therefore they are suitable for large pressure vessels. The stress and deformation behaviors of such vessels are very complex because of the effect of frictional force working between layers. In this study, the phenomena arising in multiple layers and the difference as compared with single wall were studied fundamentally as one step for analyzing multi-layered pressure vessels as a whole. Finite element technique was employed as the analyzing method, and the behavior of multiple layers was analyzed, regarding it as multiple contact problem. The behavior of multiple layers seems to appear conspicuously in case of bending load, therefore the basic characteristics regarding bending were examined. The evaluation of interfacial stiffness was carried out by experiment. The computer program for analyzing multiple contact problem was developed. In order to examine the validity of the program, comparison with the analytical solution heretofore and the result of calculation by finite element technique was carried out. Moreover, the experimental proof with multi-layered models was made. The frictional force between layers hardly contributes to the stiffness. (Kako, I.)

  18. Transfers in heterogeneous environments; Transferts en milieux heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Flesselles, J M [Saint-Gobain Recherche, 93 - Aubervilliers (France); Gouesbet, G; Mees, L; Roze, C; Girasole, Th; Grehan, G [Laboratoire d' Electromagnetisme et Systemes Particulaires (LESP), UMR CNRS 6614, CORIA. Universite de Rouen et INSA de Rouen, 76 - Saint-Etienne du Rouvray (France); Goyheneche, J M; Vignoles, G; Coindreau, O [Laboratoire des Composites Thermostructuraux (LCTS), UMR 5801, 33 - Pessac (France); Moyne, Ch [LEMTA (UMR 7563) CNRS-INPL-UHP, 54 - Vandoeuvre les Nancy (France); Coussy, O [Institut Navier - ENPC, 77 - Marne-la-Vallee (France); Lassabatere, Th [Electricite de France Les Renardieres, Dept. Materiaux Mecanique des Composants, 77 - Moret sur Loing (France); Tadrist, L [IUSTI - UMR 6595, 13 - Marseille (France)

    2004-07-01

    This document gathers the articles and transparencies of the invited talks given at the 2004 French congress of thermal engineering about transfers in heterogeneous environment. Content: transfer phenomena in industrial glass furnaces; simple and multiple scattering diagnosis by femto-second pulsed laser: application to particulate diagnoses; thermal modeling of thermo-structural composites; hybrid mixtures theory, average volumic measurement, periodical or stochastic homogenization: advance in scale change processes; thermo-hydro-chemical-mechanical coupling in porous medium: application to young concrete structures and to clay barriers of disposal facilities; transfers and flows in fluidization: recent advances and future challenges. (J.S.)

  19. The fluid control mechanism of bionic structural heterogeneous composite materials and its potential application in enhancing pump efficiency

    Directory of Open Access Journals (Sweden)

    Limei Tian

    2015-11-01

    Full Text Available Studies have shown that the structure of dolphin skin controls fluid media dynamically. Gaining inspiration from this phenomenon, a kind of bionic structural heterogeneous composite material was designed. The bionic structural heterogeneous composite material is composed of two materials: a rigid metal base layer with bionic structures and an elastic polymer surface layer with the corresponding mirror structures. The fluid control mechanism of the bionic structural heterogeneous composite material was investigated using a fluid–solid interaction method in ANSYS Workbench. The results indicated that the bionic structural heterogeneous composite material’s fluid control mechanism is its elastic deformation, which is caused by the coupling action between the elastic surface material and the bionic structure. This deformation can decrease the velocity gradient of the fluid boundary layer through changing the fluid–solid actual contact surface and reduce the frictional force. The bionic structural heterogeneous composite material can also absorb some energy through elastic deformation and avoid energy loss. The bionic structural heterogeneous composite material was applied to the impeller of a centrifugal pump in a contrast experiment, increasing the pump efficiency by 5% without changing the hydraulic model of the impeller. The development of this bionic structural heterogeneous composite material will be straightforward from an engineering point of view, and it will have valuable practical applications.

  20. Heterogeneous packing and hydraulic stability of cube and cubipod armor units

    OpenAIRE

    GÓMEZ-MARTÍN, M. ESTHER; Medina, Josep R.

    2014-01-01

    This paper describes the heterogeneous packing (HEP) failure mode of breakwater armor. HEP reduces packing density in the armor layer near and above the mean water level and increases packing density below it. With HEP, armor units may move in the armor layer, although they are not actually extracted from it. Thus, when HEP occurs, armor-layer porosity is not constant, and measurements obtained with conventional methods may underestimate armor damage. In this paper, the Virtual Net method ...

  1. Heterogeneity of smooth muscle cells in tunica media of aorta in ...

    African Journals Online (AJOL)

    ... of the tunica media of goat aorta are phenotypically heterogeneous and run in multiple directions. These characteristics probably confer mechanical strength and functional plasticity to the aortic wall. Designers of aortic substitutes should bear this in mind. Keywords: Vascular, Smooth Muscle Cells, Heterogeneity, Aorta ...

  2. Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering

    Science.gov (United States)

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2018-04-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.

  3. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  4. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    Science.gov (United States)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  5. The effect of intra-trappean heterogeneities on seismic data: A case study from the Deccan Traps

    Science.gov (United States)

    Pandey, Dhananjai; Singh, Satish; Sinha, Martin; MacGregor, Lucy

    2007-09-01

    Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this problem appears to have been overcome partly by using long offset seismic data. However near offset data are yet to be fully utilised due to the complex waveform caused by the surface as well as internal heterogeneity of the basalts. The near normal incidence data, which influence the sub-basalt imaging, are highly useful to understand the internal structure within a basalt layer. The use of converted waves for such targets has been proposed as an alternative in a rather homogeneous basalt layer. With a few synthetic modelling exercises here we highlight the practical difficulties in dealing with more realistic and heterogeneous basalt flow. Full waveform seismograms are computed to understand the effects of intra-trappean sediments on the seismic data. A case study from the Deccan Traps of India is presented in this paper. First, we discuss the effects of intercalated sediments on the overall seismic image. Later, the sonic log data from the field are used to compute the full wave-field response using the reflectivity method and compared with the field data. The feasibility of using mode converted waves (P to S and vice-versa at the top and bottom basalt interfaces) for sub-basalt imaging in Kutch region is discussed through a series of velocity-depth profiles. By comparing with the field data we demonstrate that the effects of multiple thin layering within the basalt can strongly deteriorate the image we seek to interpret and exploit.

  6. Heterogeneous dissipative composite structures

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris; Parshina, Ludmila

    2018-05-01

    The paper suggests mathematical models of decaying vibrations in layered anisotropic plates and orthotropic rods based on Hamilton variation principle, first-order shear deformation laminated plate theory (FSDT), as well as on the viscous-elastic correspondence principle of the linear viscoelasticity theory. In the description of the physical relationships between the materials of the layers forming stiff polymeric composites, the effect of vibration frequency and ambient temperature is assumed as negligible, whereas for the viscous-elastic polymer layer, temperature-frequency relationship of elastic dissipation and stiffness properties is considered by means of the experimentally determined generalized curves. Mitigation of Hamilton functional makes it possible to describe decaying vibration of anisotropic structures by an algebraic problem of complex eigenvalues. The system of algebraic equation is generated through Ritz method using Legendre polynomials as coordinate functions. First, real solutions are found. To find complex natural frequencies of the system, the obtained real natural frequencies are taken as input values, and then, by means of the 3rd order iteration method, complex natural frequencies are calculated. The paper provides convergence estimates for the numerical procedures. Reliability of the obtained results is confirmed by a good correlation between analytical and experimental values of natural frequencies and loss factors in the lower vibration tones for the two series of unsupported orthotropic rods formed by stiff GRP and CRP layers and a viscoelastic polymer layer. Analysis of the numerical test data has shown the dissipation & stiffness properties of heterogeneous composite plates and rods to considerably depend on relative thickness of the viscoelastic polymer layer, orientation of stiff composite layers, vibration frequency and ambient temperature.

  7. Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System

    Directory of Open Access Journals (Sweden)

    X. Yu

    2014-09-01

    Full Text Available By combining adaptive modulation (AM and automatic repeat request (ARQ protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE and packet error rate (PER of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs.

  8. Surface Passivation by Quantum Exclusion Using Multiple Layers

    Science.gov (United States)

    Hoenk, Michael E. (Inventor)

    2015-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.

  9. Joint-layer encoder optimization for HEVC scalable extensions

    Science.gov (United States)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  10. Thesaurus-based search in large heterogeneous collections

    NARCIS (Netherlands)

    J. Wielemaker (Jan); M. Hildebrand (Michiel); J.R. van Ossenbruggen (Jacco); G. Schreiber (Guus); A. Sheth; not CWI et al

    2008-01-01

    htmlabstractIn cultural heritage, large virtual collections are coming into existence. Such collections contain heterogeneous sets of metadata and vocabulary concepts, originating from multiple sources. In the context of the E-Culture demonstrator we have shown earlier that such virtual

  11. Speculative segmented sum for sparse matrix-vector multiplication on heterogeneous processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2015-01-01

    of the same chip is triggered to re-arrange the predicted partial sums for a correct resulting vector. On three heterogeneous processors from Intel, AMD and nVidia, using 20 sparse matrices as a benchmark suite, the experimental results show that our method obtains significant performance improvement over...

  12. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.

    Science.gov (United States)

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.

  13. Thesaurus-based search in large heterogeneous collections

    NARCIS (Netherlands)

    Wielemaker, J.; Hildebrand, M.; van Ossenbruggen, J.; Schreiber, G.

    2008-01-01

    In cultural heritage, large virtual collections are coming into existence. Such collections contain heterogeneous sets of metadata and vocabulary concepts, originating from multiple sources. In the context of the E-Culture demonstrator we have shown earlier that such virtual collections can be

  14. Waves spontaneously generated by heterogeneity in oscillatory media

    Science.gov (United States)

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-05-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.

  15. Clinical heterogeneity in Fabry disease

    Directory of Open Access Journals (Sweden)

    G. N. Salogub

    2015-01-01

    Full Text Available Fabry disease is an X-linked, lysosomal storage disease (OMIM: 301500, caused by α-galactosidase A deficiency, resulting in accumulation of its substrates, glycosphingolipids, primarily – globotriaosylceramide, in the lysosomes of multiple cell types with multi-system clinical manifestations, even within the same family, including abnormalities of the central and peripheral nervous system, kidneys, heart, gastrointestinal tract, lungs, organ of vision. Clinical heterogeneity is often the reason of the delayed diagnosis. Nowadays enzyme replacement therapy has proved its efficiency in the treatment of Fabry disease. Including Fabry disease in the differential diagnosis of a large range of disorders is important because of its wide clinical heterogeneity and the possibility of an earlier intervention with a beneficial treatment.

  16. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts

    NARCIS (Netherlands)

    Castaldi, Peter J; Benet, Marta; Petersen, Hans; Rafaels, Nicholas; Finigan, James; Paoletti, Matteo; Marike Boezen, H; Vonk, Judith M; Bowler, Russell; Pistolesi, Massimo; Puhan, Milo A; Anto, Josep; Wauters, Els; Lambrechts, Diether; Janssens, Wim; Bigazzi, Francesca; Camiciottoli, Gianna; Cho, Michael H; Hersh, Craig P; Barnes, Kathleen; Rennard, Stephen; Boorgula, Meher Preethi; Dy, Jennifer; Hansel, Nadia N; Crapo, James D; Tesfaigzi, Yohannes; Agusti, Alvar; Silverman, Edwin K; Garcia-Aymerich, Judith

    Background COPD is a heterogeneous disease, but there is little consensus on specific definitions for COPD subtypes. Unsupervised clustering offers the promise of 'unbiased' data-driven assessment of COPD heterogeneity. Multiple groups have identified COPD subtypes using cluster analysis, but there

  17. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    Science.gov (United States)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  18. SU-E-J-27: Shifting Multiple EPID Imager Layers to Improve Image Quality and Resolution in MV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Rottmann, J; Yip, S; Berbeco, R [Brigham and Women’s Hospital, Boston, Massachusetts (United States); Morf, D; Fueglistaller, R; Star-Lack, J; Zentai, G [Varian Medical Systems, Palo Alto, CA (United States)

    2015-06-15

    Purpose: Vertical stacking of four conventional EPID layers can improve DQE for MV-CBCT applications. We hypothesize that shifting each layer laterally by half a pixel relative to the layer above, will improve the contrast-to-noise ratio (CNR) and image resolution. Methods: For CNR assessment, a 20 cm diameter digital phantom with 8 inserts is created. The attenuation coefficient of the phantom is similar to lung at the average energy of a 6 MV photon beam. The inserts have attenuations 1, 2…8 times of lung. One of the inserts is close to soft tissue, resembling the case of a tumor in lung. For resolution assessment, a digital phantom featuring a bar pattern is created. The phantom has an attenuation coefficient similar to soft tissue and the bars have an attenuation coefficient of calcium sulfate. A 2 MeV photon beam is attenuated through these phantoms and hits each of the four stacked detector layers. Each successive layer is shifted by half a pixel in the x only, y only, and x and y (combined) directions, respectively. Blurring and statistical noise are added to the projections. Projections from one, two, three and four layers are used for reconstruction. CNR and image resolution are evaluated and compared. Results: When projections from multiple layers are combined for reconstruction, CNR increases with the number of layers involved. CNR in reconstructions from two, three and four layers are 1.4, 1.7 and 1.99 times that from one layer. The resolution from the shifted four layer detector is also improved from a single layer. In a comparison between one layer versus four layers in this preliminary study, the resolution from four shifted layers is at least 20% better. Conclusion: Layer-shifting in a stacked EPID imager design enhances resolution as well as CNR for half scan MV-CBCT. The project described was supported, in part, by a grant from Varian Medical Systems, Inc., and Award No. R01CA188446-01 from the National Cancer Institute. The content is solely

  19. Fuzzy Logic based Handoff Latency Reduction Mechanism in Layer 2 of Heterogeneous Mobile IPv6 Networks

    Science.gov (United States)

    Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.

    2013-12-01

    Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.

  20. Fuzzy Logic based Handoff Latency Reduction Mechanism in Layer 2 of Heterogeneous Mobile IPv6 Networks

    International Nuclear Information System (INIS)

    Anwar, Farhat; Masud, Mosharrof H; Latif, Suhaimi A

    2013-01-01

    Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6

  1. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  2. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities

    Science.gov (United States)

    Alder, C.; Bodin, T.; Ricard, Y.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are usually used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, seismic anisotropy observed in tomographic models provides important constraints on the geometry of mantle deformation associated with thermal convection and plate tectonics. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. In this paper, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1-D and 2-D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, that is, varying as 1/k, with k the wavenumber of these heterogeneities. The 1-D toy models correspond to simple layered media. In the 2-D case, our models depict marble-cake patterns in which an anomaly in shear wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, that is, apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1-D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1-D and 2-D media. In addition, we predict that 10 per cent of chemical heterogeneities in 2-D marble-cake models can

  3. Noninvasive In-Vivo Quantification of Mechanical Heterogeneity of Invasive Breast Carcinomas.

    Directory of Open Access Journals (Sweden)

    Tengxiao Liu

    Full Text Available Heterogeneity is a hallmark of cancer whether one considers the genotype of cancerous cells, the composition of their microenvironment, the distribution of blood and lymphatic microvasculature, or the spatial distribution of the desmoplastic reaction. It is logical to expect that this heterogeneity in tumor microenvironment will lead to spatial heterogeneity in its mechanical properties. In this study we seek to quantify the mechanical heterogeneity within malignant and benign tumors using ultrasound based elasticity imaging. By creating in-vivo elastic modulus images for ten human subjects with breast tumors, we show that Young's modulus distribution in cancerous breast tumors is more heterogeneous when compared with tumors that are not malignant, and that this signature may be used to distinguish malignant breast tumors. Our results complement the view of cancer as a heterogeneous disease on multiple length scales by demonstrating that mechanical properties within cancerous tumors are also spatially heterogeneous.

  4. Wind resource assessment in heterogeneous terrain

    Science.gov (United States)

    Vanderwel, C.; Placidi, M.; Ganapathisubramani, B.

    2017-03-01

    High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM1"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM2"/> (where U is the streamwise velocity), which act as proxies for thrust and power output. For the second case, the secondary flows that cause low- and high-momentum pathways when the spacing between adjacent hills is beyond a critical value result in significant variations in wind resource availability. Contour maps of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM3"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM4"/> show a large difference in thrust and power potential (over 50%) between hills and valleys (at a fixed vertical height). These variations do not seem to be present when adjacent hills are close to each other (i.e. when the spacing is much less than the boundary layer thickness). The

  5. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Research on Heterogeneous Data Exchange based on XML

    Science.gov (United States)

    Li, Huanqin; Liu, Jinfeng

    Integration of multiple data sources is becoming increasingly important for enterprises that cooperate closely with their partners for e-commerce. OLAP enables analysts and decision makers fast access to various materialized views from data warehouses. However, many corporations have internal business applications deployed on different platforms. This paper introduces a model for heterogeneous data exchange based on XML. The system can exchange and share the data among the different sources. The method used to realize the heterogeneous data exchange is given in this paper.

  7. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  8. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  9. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide - polyaniline composite.

    Science.gov (United States)

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Li, Jian; Han, Shumin

    2018-02-15

    In this work, a novel ultrasensitive electrochemical biosensor was developed for the detection of K562 cell by a signal amplification strategy based on multiple layer CdS QDs functionalized polystyrene microspheres(PS) as bioprobe and graphene oxide(GO) -polyaniline(PANI) composite as modified materials of capture electrode. Due to electrostatic force of different charge, CdS QDs were decorated on the surface of PS by PDDA (poly(diallyldimethyl-ammonium chloride)) through a layer-by-layer(LBL) assemble technology, in which the structure of multiple layer CdS QDs increased the detection signal intensity. Moreover, GO-PANI composite not only enhanced the electron transfer rate, but also increased tumor cells load ratio. The resulting electrochemical biosensor was used to detect K562 cells with a lower detection limit of 3 cellsmL -1 (S/N = 3) and a wider linear range from 10 to 1.0 × 10 7 cellsmL -1 . This sensor was also used for mannosyl groups on HeLa cells and Hct116 cells, which showed high specificity and sensitivity. This signal amplification strategy would provide a novel approach for detection, diagnosis and treatment for tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Integration of heterogeneous features for remote sensing scene classification

    Science.gov (United States)

    Wang, Xin; Xiong, Xingnan; Ning, Chen; Shi, Aiye; Lv, Guofang

    2018-01-01

    Scene classification is one of the most important issues in remote sensing (RS) image processing. We find that features from different channels (shape, spectral, texture, etc.), levels (low-level and middle-level), or perspectives (local and global) could provide various properties for RS images, and then propose a heterogeneous feature framework to extract and integrate heterogeneous features with different types for RS scene classification. The proposed method is composed of three modules (1) heterogeneous features extraction, where three heterogeneous feature types, called DS-SURF-LLC, mean-Std-LLC, and MS-CLBP, are calculated, (2) heterogeneous features fusion, where the multiple kernel learning (MKL) is utilized to integrate the heterogeneous features, and (3) an MKL support vector machine classifier for RS scene classification. The proposed method is extensively evaluated on three challenging benchmark datasets (a 6-class dataset, a 12-class dataset, and a 21-class dataset), and the experimental results show that the proposed method leads to good classification performance. It produces good informative features to describe the RS image scenes. Moreover, the integration of heterogeneous features outperforms some state-of-the-art features on RS scene classification tasks.

  11. Enhanced interlaminar excitation or reduced superficial layer inhibition in neocortex generates different spike-and-wave-like electrographic events in vitro.

    Science.gov (United States)

    Hall, Stephen P; Traub, Roger D; Adams, Natalie E; Cunningham, Mark O; Schofield, Ian; Jenkins, Alistair J; Whittington, Miles A

    2018-01-01

    Acute in vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike-and-wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalized and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden, and apparent anatomical origin (thalamic, neocortical, or both), but any relationship between this heterogeneity and underlying pathology remains elusive. In this study we demonstrate that physiological delta-frequency rhythms act as an effective substrate to permit modeling of SpW of cortical origin and may help to address this issue. For a starting point of delta activity, multiple subtypes of SpW could be modeled computationally and experimentally by either enhancing the magnitude of excitatory synaptic events ascending from neocortical layer 5 to layers 2/3 or selectively modifying superficial layer GABAergic inhibition. The former generated SpW containing multiple field spikes with long interspike intervals, whereas the latter generated SpW with short-interval multiple field spikes. Both types had different laminar origins and each disrupted interlaminar cortical dynamics in a different manner. A small number of examples of human recordings from patients with different diagnoses revealed SpW subtypes with the same temporal signatures, suggesting that detailed quantification of the pattern of spikes in SpW discharges may be a useful indicator of disparate underlying epileptogenic pathologies. NEW & NOTEWORTHY Spike-and-wave-type discharges (SpW) are a common feature in many epilepsies. Their electrographic manifestation is highly varied, as are available genetic clues to associated underlying pathology. Using computational and in vitro models, we demonstrate that distinct subtypes of SpW are generated by lamina-selective disinhibition or enhanced

  12. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  13. Layer-by-layer-assembled healable antifouling films.

    Science.gov (United States)

    Chen, Dongdong; Wu, Mingda; Li, Bochao; Ren, Kefeng; Cheng, Zhongkai; Ji, Jian; Li, Yang; Sun, Junqi

    2015-10-21

    Healable antifouling films are fabricated by the exponential layer-by-layer assembly of PEGylated branched poly(ethylenimine) and hyaluronic acid followed by post-crosslinking. The antifouling function originates from the grafted PEG and the extremely soft nature of the films. The rapid and multiple healing of damaged antifouling functions caused by cuts and scratches can be readily achieved by immersing the films in normal saline solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Collaborative-Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Tom [USC; Ghani, Nasir [UNM; Boyd, Eric [UCAID

    2010-08-31

    At a high level, there were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, including OSCARS layer2 and InterDomain Adaptation, Integration of LambdaStation and Terapaths with Layer2 dynamic provisioning, Control plane software release, Scheduling, AAA, security architecture, Network Virtualization architecture, Multi-Layer Network Architecture Framework Definition; o Heterogeneous DataPlane Testing; o Simulation; o Project Publications, Reports, and Presentations.

  15. Optical Coherence Tomography-A New Diagnostic Tool to Evaluate Axonal Degeneration in Multiple Sclerosis: A Review

    Directory of Open Access Journals (Sweden)

    Nilüfer Kale

    2010-09-01

    Full Text Available Multiple sclerosis is an inflammatory demyelinating disorder of the central nervous system with a wide spectrum of clinical signs and symptoms. Multiple sclerosis lesions have a predilection for the optic nerves, periventricular white matter, brainstem, spinal cord, and cerebellum. The mechanisms responsible for multiple sclerosis are complex and heterogeneous across patients and disease stages. No specific markers exist for the definite diagnosis and prognosis of multiple sclerosis. The afferent visual pathway, which extends from the retina to the primary visual cortex including the optic nerve, is one of the most commonly affected sites in multiple sclerosis (94-99%. Pathology of affected optic nerves exhibits inflammation, demyelination, gliosis, axonal injury, and thinning of the retinal nerve fiber layer (RNFL. The RNFL is composed of unmyelinated axons, and measuring RNFL thickness is a viable method to monitor axonal loss reflecting disease progression. Optical coherence tomography is a noninvasive and reproducible tool in assessing the impact of multiple sclerosis on the thickness of the RNFL. Assessment of the afferent visual pathway using clinical, imaging and electrophysiological methods provides insights into the pathophysiology of multiple sclerosis and may also serve a prognostic role in multiple sclerosis

  16. Collision Resolution Scheme with Offset for Improved Performance of Heterogeneous WLAN

    Science.gov (United States)

    Upadhyay, Raksha; Vyavahare, Prakash D.; Tokekar, Sanjiv

    2016-03-01

    CSMA/CA based DCF of 802.11 MAC layer employs best effort delivery model, in which all stations compete for channel access with same priority. Heterogeneous conditions result in unfairness among stations and degradation in throughput, therefore, providing different priorities to different applications for required quality of service in heterogeneous networks is challenging task. This paper proposes a collision resolution scheme with a novel concept of introducing offset, which is suitable for heterogeneous networks. Selection of random value by a station for its contention with offset results in reduced probability of collision. Expression for the optimum value of the offset is also derived. Results show that proposed scheme, when applied to heterogeneous networks, has improved throughput and fairness than conventional scheme. Results show that proposed scheme also exhibits higher throughput and fairness with reduced delay in homogeneous networks.

  17. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  18. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  19. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  20. Quantitative determination of 14C(-)-epicatechin and 14C-rutin on the Uncaria plant by a two-step heterogeneous thin-layer chromatographic-liquid scintillation counting procedure

    International Nuclear Information System (INIS)

    Das, N.P.; Law, K.H.

    1987-01-01

    A simple, rapid, precise and relatively inexpensive thin-layer chromatographic method coupled to heterogeneous liquid scintillation counting procedure was used for the quantitation of radioactivity of biologically synthesized ( 14 C) flavonoids and other phenolic plant constituents. The two flavonoids, namely ( 14 C) rutin and ( 14 C) (-) -epicatechin, extracted from the plant Uncaria elliptica Roxb were separated on plastic thin-layer plates coated with silica gel using the two solvent systems : acetonitrile-acetic acid-water (8.5:0.5:1.5) and ethyl acetate-acetic acid-water (3:1:3). The respective spots on the plates that corresponded to the two flavonoids were cut out and eluted with 3 ml aliquots of methanol followed by direct addition of scintillation flour. This method gave 99 +- 2 per cent of the total count indicating the excellent elution procedure. The results were reproducible and showed linearity over the range of 0 - 35000 dpm. The elution efficiency by several other organic solvents were also investigated. (author). 19 refs., 4 tables

  1. Analysis of the Coupled Influence of Hydraulic Conductivity and Porosity Heterogeneity on Probabilistic Risk Analysis

    Science.gov (United States)

    Libera, A.; Henri, C.; de Barros, F.

    2017-12-01

    Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (Φ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on flow and solute transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs computational tools to investigate the joint effect of the spatial variabilities of K and Φ on the transport behavior of a solute plume. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological system, and compare the computational results from the joint K and Φ heterogeneous system with the results originating from the generally adopted constant porosity case. In our work, we assume that the heterogeneous porosity is positively correlated to hydraulic conductivity. We perform numerical Monte Carlo simulations of conservative and reactive contaminant transport in a 3D aquifer. Contaminant mass and plume arrival times at multiple control planes and/or pumping wells operating under different extraction rates are analyzed. We employ different probabilistic metrics to quantify the risk at the monitoring locations, e.g., increased lifetime cancer risk and exceedance of Maximum Contaminant Levels (MCLs), under multiple transport scenarios (i.e., different levels of heterogeneity, conservative or reactive solutes and different contaminant species). Results show that early and late arrival times of the solute mass at the selected sensitive locations (i.e. control planes/pumping wells) as well as risk metrics are strongly influenced by the spatial variability of the Φ field.

  2. Characterizing vertical heterogeneity of permafrost soils in support of ABoVE radar retrievals

    Science.gov (United States)

    Tabatabaeenejad, A.; Chen, R. H.; Silva, A.; Schaefer, K. M.; Moghaddam, M.

    2017-12-01

    Permafrost-affected soils, including the top active layer and underlying permafrost, have unique seasonal variations in terms of soil temperature, soil moisture, and freeze/thaw-state profiles. The presence of a perennially frozen and impermeable substrate maintains the required temperature gradient for the descending thawing front, and causes meltwater to accumulate and form the saturated zone in the active layer. Radar backscattering measurements are sensitive to dielectric properties of subsurface soils, which are strongly correlated with unfrozen water content and soil texture/composition. To enable accurate radar retrievals, we need to properly characterize soil profile heterogeneity, which can be modeled with layered soil or depth-dependent functions. To this end, we first cross compare the measured radar backscatter and model-predicted radar backscatter using in-situ dielectric profile measurements as well as mathematical or hydrologic-based profile functions. Since radar signal's backscatter has limited penetration, to fully capture the true heterogeneity profile, we determine the optimal profile function by minimizing the error between predicted and measured radar backscatter signals as well as between in-situ and fitted profiles. The in-situ soil profile data (temperature, dielectric constant, unfrozen water content, organic/mineral soils) are collected from the Soil Moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) sensor networks and from the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in August 2017 (concurrent with the ABoVE August flights over Alaska North Slope) while the radar data are acquired by NASA's P-band AirMOSS and L-band UAVSAR as part of the ABoVE airborne campaign. The retrieval results using our new heterogeneity model will be compared with the results from retrievals that model soil as a layered medium. This analysis can advance the accuracy of retrieval of active layer properties using low-frequency SAR

  3. Multi-Layer Mobility Load Balancing in a Heterogeneous LTE Network

    DEFF Research Database (Denmark)

    Fotiadis, Panagiotis; Polignano, Michele; Laselva, Daniela

    2012-01-01

    This paper analyzes the behavior of a distributed Mobility Load Balancing (MLB) scheme in a multi-layer 3GPP (3rd Generation Partnership Project) Long Term Evolution (LTE) deployment with different User Equipment (UE) densities in certain network areas covered with pico cells. Target of the study...

  4. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  5. Deconstructing transcriptional heterogeneity in pluripotent stem cells

    Science.gov (United States)

    Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879

  6. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  7. Asymmetric Temporal Integration of Layer 4 and Layer 2/3 Inputs in Visual Cortex

    OpenAIRE

    Hang, Giao B.; Dan, Yang

    2010-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices...

  8. The tritium labeling of Butibufen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.

    1986-01-01

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs

  9. Boundary layer structure over areas of heterogeneous heat fluxes

    International Nuclear Information System (INIS)

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns

  10. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  11. Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model.

    Science.gov (United States)

    Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D

    2017-03-01

    The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.

  12. On the physical mechanism at the origin of multiple double layers appearance in plasma

    International Nuclear Information System (INIS)

    Dimitriu, D.G.; Gurlui, S.; Aflori, M.; Ivan, L.M.

    2005-01-01

    Double layers (DLs) in plasma are nonlinear potential structures consisting of two adjacent layers of positive and negative space charge, respectively. Between these layers a potential jump exists, creating an electric field. A common way to obtain a DL structure is to positively bias an electrode immersed in asymptotic stable plasma. In this way, a complex space charge structure (CSCS) in form of a positive 'nucleus' surrounded by a nearly spherical DL is obtained. Under certain experimental conditions (gas nature and pressure, plasma density, electron temperature) a more complex structure in form of two or more subsequent DLs was observed, which was called multiple double layers (MDL). It appears as several bright and concentric plasma shells attached to the electrode. The successive DLs are located at the abrupt changes of luminosity between two adjacent plasma shells. Probe measurements emphasized that the axial profile of the plasma potential has a stair steps shape, with potential jumps close to the ionization potential of the used gas. Experimental results clarify the essential role of excitation and ionization electron-neutral collisions for the generation and dynamics of MDL structures. However, if the electrode is large, the MDL structure appears non-concentrically, as a network of plasma spheres, near each other, almost equally distributed on the electrode surface. Each of the plasma spots is a CSCS as described above. Here, we will present experimental result on concentric and non-concentric MDL, which prove that the same physical mechanism is at the origin of their appearance in plasma. In this mechanism the electron-neutral impact excitations and ionizations play the key role. A simultaneously generation of both types of MDL was recorded. The dynamics of the MDL structures was analyzed by using the modern methods provided by the nonlinear dynamics. In this way, a scenario of transition to chaos by torus breakdown was emphasized, related with the

  13. Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Summerhill, Richard [Internet2, Washington, DC (United States); Lehman, Tom [Univ. of Southern California, Los Angeles, CA (United States). Information Sciences Inst. (ISI); Ghani, Nasir [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical & Computer Engineering; Boyd, Eric [Univ. Corporation for Advanced Internet Development (UCAID), Washington, DC (United States)

    2009-08-14

    There were four basic task areas identified for the Hybrid-MLN project. They are: Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation; Heterogeneous DataPlane Testing; Simulation; Project Publications, Reports, and Presentations.

  14. Modelling Configuration Knowledge in Heterogeneous Product Families

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit; Männistö, Tomi; Ricci, Laurent

    2011-01-01

    Product configuration systems play an important role in the development of Mass Customisation. The configuration of complex product families may nowadays involve multiple design disciplines, e.g. hardware, software and services. In this paper, we present a conceptual approach for modelling...... the variability in such heterogeneous product families. Our approach is based on a framework that aims to cater for the different stakeholders involved in the modelling and management of the product family. The modelling approach is centred around the concepts of views, types and constraints and is illustrated...... by a motivation example. Furthermore, as a proof of concept, a prototype has been implemented for configuring a non-trivial heterogeneous product family....

  15. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  16. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation

  17. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

    2014-03-15

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

  18. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Science.gov (United States)

    King, Elizabeth G; Sanderson, Brian J; McNeil, Casey L; Long, Anthony D; Macdonald, Stuart J

    2014-05-01

    Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS) implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  19. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    Science.gov (United States)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  20. Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks.

    Science.gov (United States)

    Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S

    2017-08-03

    Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.

  1. Analysis of the Decoupled Access for Downlink and Uplink in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Smiljkovikj, K.; Popovski, Petar; Gavrilovska, L.

    2015-01-01

    Wireless cellular networks evolve towards a heterogeneous infrastructure, featuring multiple types of Base Stations (BSs), such as Femto BSs (FBSs) and Macro BSs (MBSs). A wireless device observes multiple points (BSs) through which it can access the infrastructure and it may choose to receive th...

  2. Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex

    Directory of Open Access Journals (Sweden)

    Lorenza eMagno

    2012-09-01

    Full Text Available Cortical GABAergic interneurons in rodents originate in three subcortical regions: the medial ganglionic eminence (MGE, the lateral/caudal ganglionic eminence (LGE/CGE and the preoptic area (POA. Each of these neuroepithelial precursor domains contributes different interneuron subtypes to the cortex. nNOS-expressing neurons represent a heterogenous population of cortical interneurons. We examined the development of these cells in the mouse embryonic cortex and their abundance and distribution in adult animals. Using genetic lineage tracing in transgenic mice we find that nNOS type I cells originate only in the MGE whereas type II cells have a triple origin in the MGE, LGE/CGE and POA. The two populations are born at different times during development, occupy different layers in the adult cortex and have distinct neurochemical profiles. nNOS neurons are more numerous in the adult cortex than previously reported and constitute a significant proportion of the cortical interneuron population. Our data suggest that the heterogeneity of nNOS neurons in the cortex can be attributed to their multiple embryonic origins which likely impose distinct genetic specification programs.

  3. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    Science.gov (United States)

    Limmer, David T.; Willard, Adam P.

    2015-01-01

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering a new direction for study in heterogeneous catalysis at the nanoscale.

  4. The effect of heterogeneity on the character of density-driven natural convection of CO{sub 2} overlying a brine layer

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, R. [Shell International Exploration and Production, Houston, TX (United States); Ranganathan, P.; Zitha, P.L.J.; Bruining, J. [Delft Univ. of Technology, Delft (Netherlands)

    2010-07-01

    This paper investigated the effect of heterogeneity on the character of natural-convection flow of carbon dioxide (CO{sub 2}) in aquifers and on the dissolution rate of CO{sub 2} in brine, contributing to a better understanding of the effect of heterogeneity on CO{sub 2} mass transfer in aquifers, which is necessary for efficient storage of CO{sub 2} in aquifers. The aquifer permeability, which is in practice heterogeneous, largely governs the efficiency of mixing in density-driven natural convection. The aquifer's degree of permeability variance and the correlation length informs the character of flow-driven mixing processes. Numerical simulation was used to identify different flow regimes of a density-driven natural flow regime. Heterogeneous fields were generated using a spectral method that allows the use of power-law variograms. From the simulations it was observed that the rate of mass transfer of carbon dioxide (CO{sub 2}) into water is higher for heterogeneous media. The formulation of the physical model and related equations and the method for generating the permeability fields were described. The simulation results indicated that gravity-induced fingering is the dominant pattern in low heterogeneity, but fingering will not occur in realistic porous media. The results also showed that the permeability field structure dominates at moderate heterogeneity, and that the flow is dispersive at high heterogeneity when the correlation length of the field is small. Heterogeneous media facilitate a larger rate of CO{sub 2} dissolution than homogenous media, which means that the former can store larger volumes of CO{sub 2}. 49 refs., 3 tabs., 13 figs.

  5. Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Antonin [X-ray; Liu, Hao [X-ray; Wiaderek, Kamila M. [X-ray; Lebens-Higgins, Zachary W. [Department; Borkiewicz, Olaf J. [X-ray; Piper, Louis F. J. [Department; Chupas, Peter J. [Energy; Chapman, Karena W. [X-ray

    2017-08-15

    Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surface impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.

  6. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain

    Science.gov (United States)

    Wang, Zhe; Wang, Weihao; Tham, Yee Jun; Li, Qinyi; Wang, Hao; Wen, Liang; Wang, Xinfeng; Wang, Tao

    2017-10-01

    Dinitrogen pentoxide (N2O5) and nitryl chloride (ClNO2) are key species in nocturnal tropospheric chemistry and have significant effects on particulate nitrate formation and the following day's photochemistry through chlorine radical production and NOx recycling upon photolysis of ClNO2. To better understand the roles of N2O5 and ClNO2 in the high-aerosol-loading environment of northern China, an intensive field study was carried out at a high-altitude site (Mt. Tai, 1465 m a.s.l.) in the North China Plain (NCP) during the summer of 2014. Elevated ClNO2 plumes were frequently observed in the nocturnal residual layer with a maximum mixing ratio of 2.1 ppbv (1 min), whilst N2O5 was typically present at very low levels (coal-fired industry and power plants in the NCP. The heterogeneous N2O5 uptake coefficient (γ) and ClNO2 yield (ϕ) were estimated from steady-state analysis and observed growth rate of ClNO2. The derived γ and ϕ exhibited high variability, with means of 0.061 ± 0.025 and 0.28 ± 0.24, respectively. These values are higher than those derived from previous laboratory and field studies in other regions and cannot be well characterized by model parameterizations. Fast heterogeneous N2O5 reactions dominated the nocturnal NOx loss in the residual layer over this region and contributed to substantial nitrate formation of up to 17 µg m-3. The estimated nocturnal nitrate formation rates ranged from 0.2 to 4.8 µg m-3 h-1 in various plumes, with a mean of 2.2 ± 1.4 µg m-3 h-1. The results demonstrate the significance of heterogeneous N2O5 reactivity and chlorine activation in the NCP, and their unique and universal roles in fine aerosol formation and NOx transformation, and thus their potential impacts on regional haze pollution in northern China.

  7. Real-time video streaming in mobile cloud over heterogeneous wireless networks

    Science.gov (United States)

    Abdallah-Saleh, Saleh; Wang, Qi; Grecos, Christos

    2012-06-01

    Recently, the concept of Mobile Cloud Computing (MCC) has been proposed to offload the resource requirements in computational capabilities, storage and security from mobile devices into the cloud. Internet video applications such as real-time streaming are expected to be ubiquitously deployed and supported over the cloud for mobile users, who typically encounter a range of wireless networks of diverse radio access technologies during their roaming. However, real-time video streaming for mobile cloud users across heterogeneous wireless networks presents multiple challenges. The network-layer quality of service (QoS) provision to support high-quality mobile video delivery in this demanding scenario remains an open research question, and this in turn affects the application-level visual quality and impedes mobile users' perceived quality of experience (QoE). In this paper, we devise a framework to support real-time video streaming in this new mobile video networking paradigm and evaluate the performance of the proposed framework empirically through a lab-based yet realistic testing platform. One particular issue we focus on is the effect of users' mobility on the QoS of video streaming over the cloud. We design and implement a hybrid platform comprising of a test-bed and an emulator, on which our concept of mobile cloud computing, video streaming and heterogeneous wireless networks are implemented and integrated to allow the testing of our framework. As representative heterogeneous wireless networks, the popular WLAN (Wi-Fi) and MAN (WiMAX) networks are incorporated in order to evaluate effects of handovers between these different radio access technologies. The H.264/AVC (Advanced Video Coding) standard is employed for real-time video streaming from a server to mobile users (client nodes) in the networks. Mobility support is introduced to enable continuous streaming experience for a mobile user across the heterogeneous wireless network. Real-time video stream packets

  8. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Science.gov (United States)

    Hayat, T.; Shah, Faisal; Alsaedi, A.; Hussain, Zakir

    The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction.

  9. Overview of medium heterogeneity and transport processes

    International Nuclear Information System (INIS)

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ''point'' measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions

  10. The tritium labelling of ibuprofen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.V.; Rivera, P.; Estaban, M.

    1986-01-01

    The tritium labelling of 2-(4-isobutylphenyl) propionic acid (ibuprofen) was performed. The method employed was heterogeneous catalytic exchange between ibuprofen and tritiated water. Prior to labelling, thermic stability of ibuprofen was studied. Purification was accomplished through thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Concentration, purity and specific activity of the labelled compound were determined by ultraviolet, HPLC and liquid scintillation techniques. (author)

  11. Stable multiple-layer stationary solutions of a semilinear parabolic equation in two-dimensional domains

    Directory of Open Access Journals (Sweden)

    Arnaldo Simal do Nascimento

    1997-12-01

    Full Text Available We use $Gamma$--convergence to prove existence of stable multiple--layer stationary solutions (stable patterns to the reaction--diffusion equation. $$ eqalign{ {partial v_varepsilon over partial t} =& varepsilon^2, hbox{div}, (k_1(xabla v_varepsilon + k_2(x(v_varepsilon -alpha(Beta-v_varepsilon (v_varepsilon -gamma_varepsilon(x,,hbox{ in }Omegaimes{Bbb R}^+ cr &v_varepsilon(x,0 = v_0 quad {partial v_varepsilon over partial widehat{n}} = 0,, quadhbox{ for } xin partialOmega,, t >0,.} $$ Given nested simple closed curves in ${Bbb R}^2$, we give sufficient conditions on their curvature so that the reaction--diffusion problem possesses a family of stable patterns. In particular, we extend to two-dimensional domains and to a spatially inhomogeneous source term, a previous result by Yanagida and Miyata.

  12. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles.

    Science.gov (United States)

    Witham, Cole A; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N; Somorjai, Gabor A; Toste, F Dean

    2010-01-01

    A continuing goal in catalysis is to unite the advantages of homogeneous and heterogeneous catalytic processes. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this unification can also be supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl(2), and catalyse a range of π-bond activation reactions previously only catalysed through homogeneous processes. Multiple experimental methods are used to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, a size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared with larger, polymer-capped analogues.

  13. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.

    Science.gov (United States)

    Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan

    2017-09-01

    Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.

  14. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  15. Calculation of cobalt-60 primary and scatter dose in layered heterogeneous phantoms using primary and scatter dose spread arrays

    International Nuclear Information System (INIS)

    Iwasaki, Akira

    1993-01-01

    A method of making 60 Co γ-ray primary and scatter dose spread arrays in water is described. The primary dose spread array is made using forward and backward primary dose spread equations (h 1 and h 2 ), where both equations contain a laterally spread primary dose equation (G), made from measured dose data in a cork phantom. The scatter dose spread array is made using differential scatter-maximum ratio (dSMR) and differential backscatter factor (dBSF) equations (k 1 and k 2 ), where both equations are made to be continuous on the boundary. Primary and scatter dose calculations are performed along the beam axis in layered cork heterogeneous phantoms. It is found, even for 60 Co γ-rays, that when a small tumor in the lung is irradiated with a field that just surrounds the tumor, the beam entrance surface and lateral side of the tumor may obtain no therapeutic dose, because of loss of longitudinal and lateral electronic equilibrium, and when a large tumor in the lung is irradiated with a field just surrounding the tumor, the lateral side of the tumor may obtain no therapeutic dose due to loss of lateral electronic equilibrium. (author)

  16. Influence of Magnetic Field on the Rectification Process of Binary Heterogeneous Azeotrope

    Institute of Scientific and Technical Information of China (English)

    JIA Shaoyi; WU Songhai; LI Zhen; JIA Liang

    2005-01-01

    To improve separate effect of binary heterogeneous azeotrope in the magnetic field with different magnetic induction intensity, the influence of magnetic field on the rectification process of binary heterogeneous azeotrope was investigated with 1-butanol-water system. The results show that the composition of liquid-liquid phase equilibrium of 1-butanol-water system has definitely changed, the composition of 1-butanol in light phase (1-butanol layer) increases by 1.17%-1.63% and the composition of water in heavy phase (water layer) increases by 1.21%-1.58% under the influence of magnetic field. By separation of magnetization, the composition of 1-butanol increases by 0.8%-1.2% and the recovery ratio of 1-butanol increases by 1.6%-2.5%. Magnetic field has positive effect, however, the magnetized effect is not in proportion to magnetic induction intensity and has an optimum condition, in the range of 0.25 T-0.3 T.

  17. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  18. PropBase Query Layer: a single portal to UK subsurface physical property databases

    Science.gov (United States)

    Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham

    2013-04-01

    Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple

  19. Multiple modes of proepicardial cell migration require heartbeat.

    Science.gov (United States)

    Plavicki, Jessica S; Hofsteen, Peter; Yue, Monica S; Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2014-05-15

    The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms. We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with "donor" hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO

  20. Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations

    Science.gov (United States)

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Wei Min Hao

    2010-01-01

    Data-processing techniques for the scanning lidar data are considered that allow determining the upper and lower boundaries of the smoke plume or smoke layering in the vicinity of wildfires. The task is fulfilled by utilizing the Atmospheric Heterogeneity Height Indicator (AHHI). The AHHI is a histogram, which shows a number of heterogeneity events defined by scanning...

  1. Physics considerations in MV-CBCT multi-layer imager design.

    Science.gov (United States)

    Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I

    2018-05-30

    Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will

  2. Apparent thermal inertia and the surface heterogeneity of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.

  3. A radiosity model for heterogeneous canopies in remote sensing

    Science.gov (United States)

    GarcíA-Haro, F. J.; Gilabert, M. A.; Meliá, J.

    1999-05-01

    A radiosity model has been developed to compute bidirectional reflectance from a heterogeneous canopy approximated by an arbitrary configuration of plants or clumps of vegetation, placed on the ground surface in a prescribed manner. Plants are treated as porous cylinders formed by aggregations of layers of leaves. This model explicitly computes solar radiation leaving each individual surface, taking into account multiple scattering processes between leaves and soil, and occlusion of neighboring plants. Canopy structural parameters adopted in this study have served to simplify the computation of the geometric factors of the radiosity equation, and thus this model has enabled us to simulate multispectral images of vegetation scenes. Simulated images have shown to be valuable approximations of satellite data, and then a sensitivity analysis to the dominant parameters of discontinuous canopies (plant density, leaf area index (LAI), leaf angle distribution (LAD), plant dimensions, soil optical properties, etc.) and scene (sun/ view angles and atmospheric conditions) has been undertaken. The radiosity model has let us gain a deep insight into the radiative regime inside the canopy, showing it to be governed by occlusion of incoming irradiance, multiple scattering of radiation between canopy elements and interception of upward radiance by leaves. Results have indicated that unlike leaf distribution, other structural parameters such as LAI, LAD, and plant dimensions have a strong influence on canopy reflectance. In addition, concepts have been developed that are useful to understand the reflectance behavior of the canopy, such as an effective LAI related to leaf inclination.

  4. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Elizabeth G King

    2014-05-01

    Full Text Available Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  5. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers

    NARCIS (Netherlands)

    Fatima, T.; Ijioma, E.R.; Ogawa, T.; Muntean, A.

    2014-01-01

    We study the homogenization of a reaction-diffusion-convection system posed in an e-periodic d-thin layer made of a two-component (solid-air) composite material. The microscopic system includes heat flow, diffusion and convection coupled with a nonlinear surface chemical reaction. We treat two

  6. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  7. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    Science.gov (United States)

    Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  8. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research

    OpenAIRE

    Milchenko, Mikhail; Snyder, Abraham Z.; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L.; Fouke, Sarah Jost; Marcus, Daniel S.

    2016-01-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis.

  9. 3D modeling of carbonates petro-acoustic heterogeneities

    Science.gov (United States)

    Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie

    2015-04-01

    Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.

  10. The influence of idealized surface heterogeneity on virtual turbulent flux measurements

    Science.gov (United States)

    De Roo, Frederik; Mauder, Matthias

    2018-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy

  11. Does heterogeneity of pimonidazole labelling correspond to the heterogeneity of radiation-response of FaDu human squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Yaromina, Ala; Hoelscher, Tobias; Eicheler, Wolfgang; Rosner, Andrea; Krause, Mechthild; Hessel, Franziska; Petersen, Cordula; Thames, Howard D.; Baumann, Michael; Zips, Daniel

    2005-01-01

    Background and purpose: Pimonidazole is a marker for hypoxic cells which are radioresistant and thereby important for the outcome of radiotherapy. The present study evaluates heterogeneity in pimonidazole binding within and between tumours and relates the results to the heterogeneity of radiation response in the same tumour cell line. Materials and methods: FaDu, a poorly differentiated human squamous cell carcinoma line, was transplanted subcutaneously into the right hind-leg of NMRI nude mice. Tumours were irradiated with graded single doses either under ambient or clamped blood flow conditions and local tumour control was evaluated after 120 days. Complete dose-response curves for local tumour control were generated and the slope, a measure of heterogeneity of radiation response, was determined. In parallel, 12 unirradiated tumours were examined histologically. Seven serial 10 μm cross-sections per tumour were evaluated using fluorescence microscopy and computerised image analysis to determine the pimonidazole hypoxic fraction (pHF). Heterogeneity in pHF was quantified by its coefficient of variation (CV). Poisson-based model calculations considering the intertumoural heterogeneity of pHF were performed and the slopes of the predicted and the observed dose-response curves were compared. Results: The mean pHF was 11% [CV 50%] when one central section per tumour was evaluated. Measurements of multiple sections per tumour resulted in a mean pHF of 12% [CV 46%] (P=0.7). Intertumoural heterogeneity in pHF was more pronounced than heterogeneity in individual tumours by a factor of 2. Model calculations based on the variability in pHF resulted in similar slopes of the dose-response curve for local tumour control in comparison with the observed slope when the heterogeneity in an unknown and arbitrarily chosen additional radiobiologically relevant parameter, in this example clonogen density, was taken into account. Conclusions: While the average pimonidazole hypoxic

  12. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  13. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms.

    Science.gov (United States)

    Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian

    2018-01-01

    We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI.

    Science.gov (United States)

    Yiannakas, Marios C; Tozer, Daniel J; Schmierer, Klaus; Chard, Declan T; Anderson, Valerie M; Altmann, Daniel R; Miller, David H; Wheeler-Kingshott, Claudia A M

    2013-05-01

    There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. We obtained conventional PDw and T2w images from 10 patients with relapsing-remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. Our study's ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished.

  15. Integrating heterogeneous healthcare call centers.

    Science.gov (United States)

    Peschel, K M; Reed, W C; Salter, K

    1998-01-01

    In a relatively short period, OHS has absorbed multiple call centers supporting different LOBs from various acquisitions, functioning with diverse standards, processes, and technologies. However, customer and employee satisfaction is predicated on OHS's ability to thoroughly integrate these heterogeneous call centers. The integration was initiated and has successfully progressed through a balanced program of focused leadership and a defined strategy which includes site consolidation, sound performance management philosophies, and enabling technology. Benefits have already been achieved with even more substantive ones to occur as the integration continues to evolve.

  16. Detection of Heterogeneous Small Inclusions by a Multi-Step MUSIC Method

    Science.gov (United States)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of detecting and localizing scatterers with small (in terms of wavelength) cross sections by collecting their scattered field is addressed. The problem is dealt with for a two-dimensional and scalar configuration where the background is given as a two-layered cylindrical medium. More in detail, while scattered field data are taken in the outermost layer, inclusions are embedded within the inner layer. Moreover, the case of heterogeneous inclusions (i.e., having different scattering coefficients) is addressed. As a pertinent applicative context we identify the problem of diagnose concrete pillars in order to detect and locate rebars, ducts and other small in-homogeneities that can populate the interior of the pillar. The nature of inclusions influences the scattering coefficients. For example, the field scattered by rebars is stronger than the one due to ducts. Accordingly, it is expected that the more weakly scattering inclusions can be difficult to be detected as their scattered fields tend to be overwhelmed by those of strong scatterers. In order to circumvent this problem, in this contribution a multi-step MUltiple SIgnal Classification (MUSIC) detection algorithm is adopted [1]. In particular, the first stage aims at detecting rebars. Once rebars have been detected, their positions are exploited to update the Green's function and to subtract the scattered field due to their presence. The procedure is repeated until all the inclusions are detected. The analysis is conducted by numerical experiments for a multi-view/multi-static single-frequency configuration and the synthetic data are generated by a FDTD forward solver. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] R. Solimene, A. Dell'Aversano and G. Leone, "MUSIC algorithms for rebar detection," J. of Geophysics and Engineering, vol. 10, pp. 1

  17. Effect of heterogeneities on evaluating earthquake triggering of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    J. Takekawa

    2013-02-01

    Full Text Available Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF. In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.

  18. Physical Layer Multi-Core Prototyping A Dataflow-Based Approach for LTE eNodeB

    CERN Document Server

    Pelcat, Maxime; Piat, Jonathan; Nezan, Jean-François

    2013-01-01

    Base stations developed according to the 3GPP Long Term Evolution (LTE) standard require unprecedented processing power. 3GPP LTE enables data rates beyond hundreds of Mbits/s by using advanced technologies, necessitating a highly complex LTE physical layer. The operating power of base stations is a significant cost for operators, and is currently optimized using state-of-the-art hardware solutions, such as heterogeneous distributed systems. The traditional system design method of porting algorithms to heterogeneous distributed systems based on test-and-refine methods is a manual, thus time-expensive, task.   Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE eNodeB provides a clear introduction to the 3GPP LTE physical layer and to dataflow-based prototyping and programming. The difficulties in the process of 3GPP LTE physical layer porting are outlined, with particular focus on automatic partitioning and scheduling, load balancing and computation latency reduction, specifically in sys...

  19. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  20. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    Science.gov (United States)

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different

  1. Non-linear waves in heterogeneous elastic rods via homogenization

    KAUST Repository

    Quezada de Luna, Manuel

    2012-03-01

    We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.

  2. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  3. Relative influence of deposition and diagenesis on carbonate reservoir layering

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Emmanuelle [Total E and P, Courbevoie (France); Javaux, Catherine [Total E and P, Pointe Noire (Congo)

    2008-07-01

    The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)

  4. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  5. Modeling a four-layer location-routing problem

    Directory of Open Access Journals (Sweden)

    Mohsen Hamidi

    2012-01-01

    Full Text Available Distribution is an indispensable component of logistics and supply chain management. Location-Routing Problem (LRP is an NP-hard problem that simultaneously takes into consideration location, allocation, and vehicle routing decisions to design an optimal distribution network. Multi-layer and multi-product LRP is even more complex as it deals with the decisions at multiple layers of a distribution network where multiple products are transported within and between layers of the network. This paper focuses on modeling a complicated four-layer and multi-product LRP which has not been tackled yet. The distribution network consists of plants, central depots, regional depots, and customers. In this study, the structure, assumptions, and limitations of the distribution network are defined and the mathematical optimization programming model that can be used to obtain the optimal solution is developed. Presented by a mixed-integer programming model, the LRP considers the location problem at two layers, the allocation problem at three layers, the vehicle routing problem at three layers, and a transshipment problem. The mathematical model locates central and regional depots, allocates customers to plants, central depots, and regional depots, constructs tours from each plant or open depot to customers, and constructs transshipment paths from plants to depots and from depots to other depots. Considering realistic assumptions and limitations such as producing multiple products, limited production capacity, limited depot and vehicle capacity, and limited traveling distances enables the user to capture the real world situations.

  6. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  7. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-21

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  8. Self-organized criticality: An interplay between stable and turbulent regimes of multiple anodic double layers in glow discharge plasma

    Science.gov (United States)

    Alex, Prince; Carreras, Benjamin Andres; Arumugam, Saravanan; Sinha, Suraj Kumar

    2018-05-01

    The role of self-organized criticality (SOC) in the transformation of multiple anodic double layers (MADLs) from the stable to turbulent regime has been investigated experimentally as the system approaches towards critical behavior. The experiment was performed in a modified glow discharge plasma setup, and the initial stable state of MADL comprising three concentric perceptible layers was produced when the drift velocity of electrons towards the anode exceeds the electron thermal velocity (νd ≥ 1.3νte). The macroscopic arrangement of both positive and negative charges in opposite layers of MADL is attributed to the self-organization scenario. Beyond νd ≥ 3νte, MADL begins to collapse and approaches critical and supercritical states through layer reduction which continue till the last remaining layer of the double layer is transformed into a highly unstable radiant anode glow. The avalanche resulting from the collapse of MADL leads to the rise of turbulence in the system. Long-range correlations, a key signature of SOC, have been explored in the turbulent floating potential fluctuations using the rescaled-range analysis technique. The result shows that the existence of the self-similarity regime with self-similarity parameter H varies between 0.55 and 0.91 for time lags longer than the decorrelation time. The power law tail in the rank function, slowly decaying tail of the autocorrelation function, and 1/f behavior of the power spectra of the fluctuations are consistent with the fact that SOC plays a conclusive role in the transformation of MADL from the stable to turbulent regime. Since the existence of SOC gives a measure of complexity in the system, the result provides the condition under which complexity arises in cold plasma.

  9. Fabrication of GaAs/Al0.3Ga0.7As multiple quantum well nanostructures on (100) si substrate using a 1-nm InAs relief layer.

    Science.gov (United States)

    Oh, H J; Park, S J; Lim, J Y; Cho, N K; Song, J D; Lee, W; Lee, Y J; Myoung, J M; Choi, W J

    2014-04-01

    Nanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MQW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MQW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.

  10. Cross-layer protocol design for QoS optimization in real-time wireless sensor networks

    Science.gov (United States)

    Hortos, William S.

    2010-04-01

    The metrics of quality of service (QoS) for each sensor type in a wireless sensor network can be associated with metrics for multimedia that describe the quality of fused information, e.g., throughput, delay, jitter, packet error rate, information correlation, etc. These QoS metrics are typically set at the highest, or application, layer of the protocol stack to ensure that performance requirements for each type of sensor data are satisfied. Application-layer metrics, in turn, depend on the support of the lower protocol layers: session, transport, network, data link (MAC), and physical. The dependencies of the QoS metrics on the performance of the higher layers of the Open System Interconnection (OSI) reference model of the WSN protocol, together with that of the lower three layers, are the basis for a comprehensive approach to QoS optimization for multiple sensor types in a general WSN model. The cross-layer design accounts for the distributed power consumption along energy-constrained routes and their constituent nodes. Following the author's previous work, the cross-layer interactions in the WSN protocol are represented by a set of concatenated protocol parameters and enabling resource levels. The "best" cross-layer designs to achieve optimal QoS are established by applying the general theory of martingale representations to the parameterized multivariate point processes (MVPPs) for discrete random events occurring in the WSN. Adaptive control of network behavior through the cross-layer design is realized through the parametric factorization of the stochastic conditional rates of the MVPPs. The cross-layer protocol parameters for optimal QoS are determined in terms of solutions to stochastic dynamic programming conditions derived from models of transient flows for heterogeneous sensor data and aggregate information over a finite time horizon. Markov state processes, embedded within the complex combinatorial history of WSN events, are more computationally

  11. The doctrinal illusion of heterogeneity of international law-making processes

    NARCIS (Netherlands)

    d' Aspremont, J.; Ruiz Fabri, H.; Wofrum, R.; Gogolin, J.

    2010-01-01

    Contemporary practice shows that the image of international lawmaking as a diverse and heterogeneous process, understood in terms of the multiplicity of the actors involved, is mostly an illusion. Despite strong empirical evidence, many scholars have been lured by this idea or have tried to promote

  12. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  13. Surface decontamination by heterogeneous foams and suspensions

    International Nuclear Information System (INIS)

    Polyakov, A.; Poluektov, P.; Emets, E.; Kuchumov, V.; Rybakov, K.; Teterin, E.

    2000-01-01

    A variety of methods was used to investigate the surface of stainless steel as delivered or treated (electrochemically polished, machine ground). Micro X-ray spectral analysis evidenced a uniform distribution of alloying elements. Auger spectroscopy revealed the layer-by-layer composition by elements and the thickness of the superficial oxide film. The distribution of heterogeneous uranium dioxide powders on the stainless steel surface was examined by microprobe analysis (using Comebax). In the order of increasing contamination by uranium dioxide, the surfaces can be arranged as: untreated - polished - ground. The behaviour of hydrogen peroxide in alkaline solutions was studied by spectrophotometry and laser analysis. Decontamination of stainless steel surfaces from UO 2 by microgaseous emulsions in alkaline media with surfactants present was tested. The decontamination factor was determined as a function of the size and volume of gas bubbles. It was shown to rise with increasing gas content. (author)

  14. MPTCP Tunnel: An Architecture for Aggregating Bandwidth of Heterogeneous Access Networks

    Directory of Open Access Journals (Sweden)

    Xiaolan Liu

    2018-01-01

    Full Text Available Fixed and cellular networks are two typical access networks provided by operators. Fixed access network is widely employed; nevertheless, its bandwidth is sometimes not sufficient enough to meet user bandwidth requirements. Meanwhile, cellular access network owns unique advantages of wider coverage, faster increasing link speed, more flexible deployment, and so forth. Therefore, it is attractive for operators to mitigate the bandwidth shortage by bundling these two. Actually, there have been existing schemes proposed to aggregate the bandwidth of two access networks, whereas they all have their own problems, like packet reordering or extra latency overhead. To address this problem, we design new architecture, MPTCP Tunnel, to aggregate the bandwidth of multiple heterogeneous access networks from the perspective of operators. MPTCP Tunnel uses MPTCP, which solves the reordering problem essentially, to bundle multiple access networks. Besides, MPTCP Tunnel sets up only one MPTCP connection at play which adapts itself to multiple traffic types and TCP flows. Furthermore, MPTCP Tunnel forwards intact IP packets through access networks, maintaining the end-to-end TCP semantics. Experimental results manifest that MPTCP Tunnel can efficiently aggregate the bandwidth of multiple access networks and is more adaptable to the increasing heterogeneity of access networks than existing mechanisms.

  15. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    Science.gov (United States)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  16. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    Science.gov (United States)

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a

  17. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments...... facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view...... of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function....

  18. Simultaneous Two-Way Clustering of Multiple Correspondence Analysis

    Science.gov (United States)

    Hwang, Heungsun; Dillon, William R.

    2010-01-01

    A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…

  19. Radiography for a Shock-accelerated Liquid Layer

    International Nuclear Information System (INIS)

    P. Meekunnasombat J.G. Oakley/inst M.H. Anderson R. Bonazza

    2005-01-01

    This program supported the experimental study of the interaction of planar shock waves with both solid structures (a single cylinder or a bank of cylinders) and single and multiple liquid layers. Objectives of the study included: characterization of the shock refraction patterns; measurements of the impulsive loading of the solid structures; observation of the response of the liquid layers to shock acceleration; assessment of the shock-mitigation effects of single and multiple liquid layers. The uploaded paper is intended as a final report for the entire funding period. The poster described in the paper won the Best Poster Award at the 25 International Symposium on Shock Waves

  20. Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions

    Science.gov (United States)

    Calaf, M.; Margairaz, F.; Pardyjak, E.

    2017-12-01

    Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow

  1. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  2. Heterogeneity of D-Serine Distribution in the Human Central Nervous System

    Science.gov (United States)

    Suzuki, Masataka; Imanishi, Nobuaki; Mita, Masashi; Hamase, Kenji; Aiso, Sadakazu

    2017-01-01

    D-serine is an endogenous ligand for N-methyl-D-aspartate glutamate receptors. Accumulating evidence including genetic associations of D-serine metabolism with neurological or psychiatric diseases suggest that D-serine is crucial in human neurophysiology. However, distribution and regulation of D-serine in humans are not well understood. Here, we found that D-serine is heterogeneously distributed in the human central nervous system (CNS). The cerebrum contains the highest level of D-serine among the areas in the CNS. There is heterogeneity in its distribution in the cerebrum and even within the cerebral neocortex. The neocortical heterogeneity is associated with Brodmann or functional areas but is unrelated to basic patterns of cortical layer structure or regional expressional variation of metabolic enzymes for D-serine. Such D-serine distribution may reflect functional diversity of glutamatergic neurons in the human CNS, which may serve as a basis for clinical and pharmacological studies on D-serine modulation. PMID:28604057

  3. Revealing spatially heterogeneous relaxation in a model nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shiwang; Bocharova, Vera [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Mirigian, Stephen; Schweizer, Kenneth S. [Department of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Carrillo, Jan-Michael Y.; Sumpter, Bobby G. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sokolov, Alexei P., E-mail: sokolov@utk.edu [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Chemistry, Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-11-21

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no “glassy” layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk T{sub g}. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

  4. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    Science.gov (United States)

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  5. Permafrost sub-grid heterogeneity of soil properties key for 3-D soil processes and future climate projections

    Directory of Open Access Journals (Sweden)

    Christian Beer

    2016-08-01

    Full Text Available There are massive carbon stocks stored in permafrost-affected soils due to the 3-D soil movement process called cryoturbation. For a reliable projection of the past, recent and future Arctic carbon balance, and hence climate, a reliable concept for representing cryoturbation in a land surface model (LSM is required. The basis of the underlying transport processes is pedon-scale heterogeneity of soil hydrological and thermal properties as well as insulating layers, such as snow and vegetation. Today we still lack a concept of how to reliably represent pedon-scale properties and processes in a LSM. One possibility could be a statistical approach. This perspective paper demonstrates the importance of sub-grid heterogeneity in permafrost soils as a pre-requisite to implement any lateral transport parametrization. Representing such heterogeneity at the sub-pixel size of a LSM is the next logical step of model advancements. As a result of a theoretical experiment, heterogeneity of thermal and hydrological soil properties alone lead to a remarkable initial sub-grid range of subsoil temperature of 2 deg C, and active-layer thickness of 150 cm in East Siberia. These results show the way forward in representing combined lateral and vertical transport of water and soil in LSMs.

  6. A QoS-Based Dynamic Queue Length Scheduling Algorithm in Multiantenna Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Verikoukis Christos

    2010-01-01

    Full Text Available The use of real-time delay-sensitive applications in wireless systems has significantly grown during the last years. Therefore the designers of wireless systems have faced a challenging issue to guarantee the required Quality of Service (QoS. On the other hand, the recent advances and the extensive use of multiple antennas have already been included in several commercial standards, where the multibeam opportunistic transmission beamforming strategies have been proposed to improve the performance of the wireless systems. A cross-layer-based dynamically tuned queue length scheduler is presented in this paper, for the Downlink of multiuser and multiantenna WLAN systems with heterogeneous traffic requirements. To align with modern wireless systems transmission strategies, an opportunistic scheduling algorithm is employed, while a priority to the different traffic classes is applied. A tradeoff between the maximization of the throughput of the system and the guarantee of the maximum allowed delay is obtained. Therefore, the length of the queue is dynamically adjusted to select the appropriate conditions based on the operator requirements.

  7. IDENTIFIABILITY VERSUS HETEROGENEITY IN GROUNDWATER MODELING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A M BENALI

    2003-06-01

    Full Text Available Review of history matching of reservoirs parameters in groundwater flow raises the problem of identifiability of aquifer systems. Lack of identifiability means that there exists parameters to which the heads are insensitive. From the guidelines of the study of the homogeneous case, we inspect the identifiability of the distributed transmissivity field of heterogeneous groundwater aquifers. These are derived from multiple realizations of a random function Y = log T  whose probability distribution function is normal. We follow the identifiability of the autocorrelated block transmissivities through the measure of the sensitivity of the local derivatives DTh = (∂hi  ∕ ∂Tj computed for each sample of a population N (0; σY, αY. Results obtained from an analysis of Monte Carlo type suggest that the more a system is heterogeneous, the less it is identifiable.

  8. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    Science.gov (United States)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  9. Distinction of heterogeneity on Au nanostructured surface based on phase contrast imaging of atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Mi; Choi, Jeong-Woo

    2010-01-01

    The discrimination of the heterogeneity of different materials on nanostructured surfaces has attracted a great deal of interest in biotechnology as well as nanotechnology. Phase imaging through tapping mode of atomic force microscopy (TMAFM) can be used to distinguish the heterogeneity on a nanostructured surface. Nanostructures were fabricated using anodic aluminum oxide (AAO). An 11-mercaptoundecanoic acid (11-MUA) layer adsorbed onto the Au nanodots through self-assembly to improve the bio-compatibility. The Au nanostructures that were modified with 11-MUA and the concave surfaces were investigated using the TMAFM phase images to compare the heterogeneous and homogeneous nanostructured surfaces. Although the topography and phase images were taken simultaneously, the images were different. Therefore, the contrast in the TMAFM phase images revealed the different compositional materials on the heterogeneous nanostructure surface.

  10. 5G heterogeneous networks self-organizing and optimization

    CERN Document Server

    Rong, Bo; Kadoch, Michel; Sun, Songlin; Li, Wenjing

    2016-01-01

    This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.

  11. Genomic prediction based on data from three layer lines using non-linear regression models.

    Science.gov (United States)

    Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

    2014-11-06

    Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional

  12. A heterogeneous stochastic FEM framework for elliptic PDEs

    International Nuclear Information System (INIS)

    Hou, Thomas Y.; Liu, Pengfei

    2015-01-01

    We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage

  13. Multilayer Spectral Graph Clustering via Convex Layer Aggregation: Theory and Algorithms

    OpenAIRE

    Chen, Pin-Yu; Hero, Alfred O.

    2017-01-01

    Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. Non-standard multilayer graph clustering methods are needed for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a multilayer spectral graph clustering (SGC) framework that performs convex layer aggregation. Under a multilayer signal plus noise model, we provide a phase transition analys...

  14. Porous double-layer polymer tubing for the potential use in heterogeneous continuous flow reactions.

    Science.gov (United States)

    Herwig, Gordon; Hornung, Christian H; Peeters, Gary; Ebdon, Nicholas; Savage, G Paul

    2014-12-24

    Functional polymer tubing with an OD of 1/16 or 1/8 in. was fabricated by a simple polymer coextrusion process. The tubing was made of an outer impervious polypropylene layer and an inner layer, consisting of a blend of a functional polymer, polyethylene-co-methacrylic acid, and a sacrificial polymer, polystyrene. After a simple solvent leaching step using common organic solvents, the polystyrene was removed, leaving behind a porous inner layer that contains functional carboxylic acid groups, which could then be used for the immobilization of target molecules. Solution-phase reactions using amines or isocyanates have proven successful for the immobilization of a series of small molecules and polymers. This flexible multilayered functional tubing can be easily cut to the desired length and connected via standard microfluidic fittings.

  15. Sloshing analysis of tanks containing multiple fluid layers

    International Nuclear Information System (INIS)

    Uras, R.A.; Tang, Yu.

    1994-01-01

    The effect of liquid density changes in high level radioactive liquid waste storage tanks is studied. The density variations with the liquid depth is modeled by layers of piece wise constant densities. A computational formulation based on the finite element method is presented. The computer code FLUSTR-ANL has been modified for the analysis of the sloshing response under seismic excitation

  16. Effects of Low-Permeability Layers in the Hyporheic Zone on Oxygen Consumption Under Losing and Gaining Groundwater Flow Conditions

    Science.gov (United States)

    Arnon, S.; Krause, S.; Gomez-Velez, J. D.; De Falco, N.

    2017-12-01

    Recent studies at the watershed scale have demonstrated the dominant role that river bedforms play in driving hyporheic exchange and constraining biogeochemical processes along river corridors. At the reach and bedform scales, modeling studies have shown that sediment heterogeneity significantly modifies hyporheic flow patterns within bedforms, resulting in spatially heterogeneous biogeochemical processes. In this work, we summarize a series of flume experiments to evaluate the effect that low-permeability layers, representative of structural heterogeneity, have on hyporheic exchange and oxygen consumption in sandy streambeds. In this case, we systematically changed the geometry of the heterogeneities, the surface channel flow driving the exchange, and groundwater fluxes (gaining/losing) modulating the exchange. The flume was packed with natural sediments, which were amended with compost to minimize carbon limitations. Structural heterogeneities were represented by continuous and discontinuous layers of clay material. Flow patterns were studied using dye imaging through the side walls. Oxygen distribution in the streambed was measured using planar optodes. The experimental observations revealed that the clay layer had a significant effect on flow patterns and oxygen distribution in the streambed under neutral and losing conditions. Under gaining conditions, the aerobic zone was limited to the upper sections of the bedform and thus was less influenced by the clay layers that were located at a depth of 1-3 cm below the water-sediment interface. We are currently analyzing the results with a numerical flow and transport model to quantify the reactions rates under the different flow conditions and spatial sediment structures. Our preliminary results enable us to show the importance of the coupling between flow conditions, local heterogeneity within the streambed and oxygen consumption along bed forms and are expected to improve our ability to model the effect of stream

  17. Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers

    Science.gov (United States)

    Tumer, K.; Lawson, J.

    2003-01-01

    Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.

  18. Heterogeneity of reward mechanisms.

    Science.gov (United States)

    Lajtha, A; Sershen, H

    2010-06-01

    The finding that many drugs that have abuse potential and other natural stimuli such as food or sexual activity cause similar chemical changes in the brain, an increase in extracellular dopamine (DA) in the shell of the nucleus accumbens (NAccS), indicated some time ago that the reward mechanism is at least very similar for all stimuli and that the mechanism is relatively simple. The presently available information shows that the mechanisms involved are more complex and have multiple elements. Multiple brain regions, multiple receptors, multiple distinct neurons, multiple transmitters, multiple transporters, circuits, peptides, proteins, metabolism of transmitters, and phosphorylation, all participate in reward mechanisms. The system is variable, is changed during development, is sex-dependent, and is influenced by genetic differences. Not all of the elements participate in the reward of all stimuli. Different set of mechanisms are involved in the reward of different drugs of abuse, yet different mechanisms in the reward of natural stimuli such as food or sexual activity; thus there are different systems that distinguish different stimuli. Separate functions of the reward system such as anticipation, evaluation, consummation and identification; all contain function-specific elements. The level of the stimulus also influences the participation of the elements of the reward system, there are possible reactions to even below threshold stimuli, and excessive stimuli can change reward to aversion involving parts of the system. Learning and memory of past reward is an important integral element of reward and addictive behavior. Many of the reward elements are altered by repeated or chronic stimuli, and chronic exposure to one drug is likely to alter the response to another stimulus. To evaluate and identify the reward stimulus thus requires heterogeneity of the reward components in the brain.

  19. Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis.

    Science.gov (United States)

    Diwakar, N; Sperandio, M; Sherriff, M; Brown, A; Odell, E W

    2005-04-01

    Oral squamous carcinomas appear heterogeneous on DNA ploidy analysis. However, this may be partly a result of sample dilution or the detection limit of techniques. The aim of this study was to determine whether oral squamous carcinomas are heterogeneous for ploidy status using image-based ploidy analysis and to determine whether ploidy status correlates with histological parameters. Multiple samples from 42 oral squamous carcinomas were analysed for DNA ploidy using an image-based system and scored for histological parameters. 22 were uniformly aneuploid, 1 uniformly tetraploid and 3 uniformly diploid. 16 appeared heterogeneous but only 8 appeared to be genuinely heterogeneous when minor ploidy histogram peaks were taken into account. Ploidy was closely related to nuclear pleomorphism but not differentiation. Sample variation, detection limits and diagnostic criteria account for much of the ploidy heterogeneity observed. Confident diagnosis of diploid status in an oral squamous cell carcinoma requires a minimum of 5 samples.

  20. Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Shunmugavel, Saravanamurugan; Taarning, Esben

    2010-01-01

    of mono-and disaccharides that are dissolved in methanol to methyl lactate at 160 C. With sucrose as the substrate, methyl lactate yield reaches 68%, and the heterogeneous catalyst can be easily recovered by filtration and reused multiple times after calcination without any substantial change...

  1. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  2. Metabolic Changes in the Visual Cortex Are Linked to Retinal Nerve Fiber Layer Thinning in Multiple Sclerosis

    Science.gov (United States)

    Schubert, Florian; Bock, Markus; Walaszek, Bernadeta; Waiczies, Helmar; Schwenteck, Thomas; Dörr, Jan; Bellmann-Strobl, Judith; Mohr, Christian; Weinges-Evers, Nicholetta; Ittermann, Bernd; Wuerfel, Jens T.; Paul, Friedemann

    2011-01-01

    Objective To investigate the damage to the retinal nerve fiber layer as part of the anterior visual pathway as well as an impairment of the neuronal and axonal integrity in the visual cortex as part of the posterior visual pathway with complementary neuroimaging techniques, and to correlate our results to patients' clinical symptoms concerning the visual pathway. Design, Subjects and Methods Survey of 86 patients with relapsing-remitting multiple sclerosis that were subjected to retinal nerve fiber layer thickness (RNFLT) measurement by optical coherence tomography, to a routine MRI scan including the calculation of the brain parenchymal fraction (BPF), and to magnetic resonance spectroscopy at 3 tesla, quantifying N-acetyl aspartate (NAA) concentrations in the visual cortex and normal-appearing white matter. Results RNFLT correlated significantly with BPF and visual cortex NAA, but not with normal-appearing white matter NAA. This was connected with the patients' history of a previous optic neuritis. In a combined model, both BPF and visual cortex NAA were independently associated with RNFLT. Conclusions Our data suggest the existence of functional pathway-specific damage patterns exceeding global neurodegeneration. They suggest a strong interrelationship between damage to the anterior and the posterior visual pathway. PMID:21494672

  3. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    Science.gov (United States)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  4. Heterogeneous analysis of non-uniform neutron field formation

    International Nuclear Information System (INIS)

    Zagrebaev, A.M.; Fedosov, A.M.

    1979-01-01

    Investigated are the specific features of spatial-energy neutron distribution formation in the transient zone between regions, operating at different levels of energy release with accounting for the real structure of fuel element lattice and control elements in the channel reactors of high power. Presented are the calculation results, obtained by heterogeneous method in the two-group monopole approximation by means of the HETLAT code. The analysis, based on the homogeneous model shows, that the efficiency of the transient zone in forming neutron flux qradient can be increased by introducing an additional interlayer of moderator between the layers with extreme multiplying properties. It is stressed, that the most favourable from the point of view of energy release uniformity in zones and width of the transient zone is the variant in which neutron flux gradient is carried out by moving the control elements on the boundaries of regions while the internal rows of control elements create the conditions for flattening the energy release in the zones. The result obtained corresponds to the recommendation on optimal control, coming from the Pontryagin maximum principle. The analysis of neutron field formation using heterogeneous models mainly proves the conclusions following from homogeneous calculations using the maximum principle. At the same time quantitative results for the zones of small dimensions (less than 10 migration lengths) with a vividly expressed heterogeneous structure essentially differ from the forecast, obtained on the basis of the simplified homogeneous one-group model. The heterogeneous analysis shows possibilities for further optimization of the transient zone structure with account of the control element location

  5. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  6. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  7. Semiconductor Sensors for Studying the Heterogeneous Destruction of Ozone at Low Concentrations

    Science.gov (United States)

    Obvintseva, L. A.; Sharova, T. B.; Avetisov, A. K.; Sukhareva, I. P.

    2018-06-01

    Prospects for the use of semiconductor resistive sensors in studies of the heterogeneous destruction of ozone at low concentrations (5-400 μg/m3) were shown. The influence of various factors (sensor temperature, gas flow rate, ozone concentration) on the results of ozone concentration measurements with sensors of various types was studied. Methods for forming a sensitive layer of In2O3(3% Fe2O3) sensors with specified parameters of calibration curves were proposed. The optimum conditions for the operation of sensors in a flow mode were formulated. The results of the study of heterogeneous destruction of ozone on microfiber polymer and natural disperse (sand, coals) materials obtained by the developed method were presented.

  8. Analysis of heterogeneous hydrological properties of a mountainous hillslope using intensive water flow measurements

    Science.gov (United States)

    Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Mizuyama, Takahisa; Tsutsumi, Daizo

    2013-04-01

    Heterogeneous hydrological properties in a foot slope area of mountainous hillslopes should be assessed to understand hydrological phenomena and their effects on discharge and sediment transport. In this study, we analyzed the high-resolution and three-dimensional water movement data to clarify the hydrological process, including heterogeneous phenomena, in detail. We continuously monitored the soil matric pressure head, psi, using 111 tensiometers installed at grid intervals of approximately 1 meter within the soil mantle at the study hillslope. Under a no-rainfall condition, the existence of perennial groundwater seepage flow was detected by exfiltration flux and temporal psi waveforms, which showed delayed responses, only to heavy storm events, and gradual recession limbs. The seepage water spread in the downslope direction and supplied water constantly to the lower section of the slope. At some points in the center of the slope, a perched saturated area was detected in the middle of soil layer, while psi exhibited negative values above the bedrock surface. These phenomena could be inferred partly from the bedrock topography and the distribution of soil hydraulic conductivity assumed from the result of penetration test. At the peak of a rainfall event, on the other hand, continuous high pressure zones (i.e., psi > 50 cmH2O) were generated in the right and left sections of the slope. Both of these high pressure zones converged at the lower region, showing a sharp psi spike up to 100 cmH2O. Along the high pressure zones, flux vectors showed large values and water exfiltration, indicating the occurrence of preferential flow. Moreover, the preferential flow occurred within the area beneath the perched water, indicating the existence of a weathered bedrock layer. This layer had low permeability, which prevented the vertical infiltration of water in the upper part of the layer, but had high permeability as a result of the fractures distributed heterogeneously inside

  9. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    bonding solution for heterogeneous material systems has not yet been developed. This has been a roadblock in the realization of novel devices which need the integration of new semiconductor platforms such as III-V on Si, Ge on Sapphire, LiNbO3 on GaAs etc. The large thermal expansion coefficient mismatch...

  10. Integration Of Data From Heterogeneous Sources Using Etl Technology.

    Directory of Open Access Journals (Sweden)

    Marek Macura

    2014-01-01

    Full Text Available Data integration is a crucial issue in environments of heterogeneous data sources. At present mentioned heterogeneity is becoming widespread. Whenever, based on various data sources, we want to gain useful information and knowledge we must solve data integration problem in order to apply appropriate analytical methods on comprehensive and uniform data. Such activity is known as knowledge discovery from data process. Therefore approaches to data integration problem are very interesting and bring us closer to the "age of information". The paper presents an architecture, which implements knowledge discovery from data process. The solution combines ETL technology and wrapper layer known from mediated systems. It also provides semantic integration through connections mechanism between data elements. The solution allows for integration of any data sources and implementation of analytical methods in one environment. The proposed environment is verified by applying it to data sources on the foundry industry.

  11. A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms

    KAUST Repository

    Calo, Victor M.

    2011-09-01

    In this short note, we discuss variational multiscale methods for solving porous media flows in high-contrast heterogeneous media with rough source terms. Our objective is to separate, as much as possible, subgrid effects induced by the media properties from those due to heterogeneous source terms. For this reason, enriched coarse spaces designed for high-contrast multiscale problems are used to represent the effects of heterogeneities of the media. Furthermore, rough source terms are captured via auxiliary correction equations that appear in the formulation of variational multiscale methods [23]. These auxiliary equations are localized and one can use additive or multiplicative constructions for the subgrid corrections as discussed in the current paper. Our preliminary numerical results show that one can capture the effects due to both spatial heterogeneities in the coefficients (such as permeability field) and source terms (e.g., due to singular well terms) in one iteration. We test the cases for both smooth source terms and rough source terms and show that with the multiplicative correction, the numerical approximations are more accurate compared to the additive correction. © 2010 Elsevier Ltd.

  12. Evidence for a Significant Level of Extrinsic Anisotropy Due to Heterogeneities in the Mantle.

    Science.gov (United States)

    Alder, C.; Bodin, T.; Ricard, Y. R.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, it provides important constraints on the geometry of mantle deformation. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. Here, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1D and 2D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, i.e. varying as 1/k, with k the wavenumber of these heterogeneities. The 1D toy models correspond to simple layered media. In the 2D case, our models depict marble-cake patterns in which an anomaly in S-wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, i.e. apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1D and 2D media. In addition, we predict that 10 % of chemical heterogeneities in 2D marble-cake models can induce more than 3.9 % of extrinsic radial S-wave anisotropy. We thus predict that a non-negligible part of the observed anisotropy in tomographic

  13. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    Science.gov (United States)

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Saadati, Shagayegh [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman; Rostami, Amin [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. Black-Right-Pointing-Pointer First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation. Black-Right-Pointing-Pointer With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. Black-Right-Pointing-Pointer Immobilized catalase shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Black-Right-Pointing-Pointer Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH{sub 2}-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH{sub 2}-IL and negatively charged catalase a sensitive H{sub 2}O{sub 2} biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}) of immobilized catalase were 3.32 Multiplication-Sign 10{sup -12} mol cm{sup -2}, 5.28 s{sup -1} and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 {mu}A mM{sup -1} cm{sup -2} and low detection limit of 100 nM at concentration range up to 2.1 mM.

  15. Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI.

    Science.gov (United States)

    Gensheimer, Michael F; Hawkins, Douglas S; Ermoian, Ralph P; Trister, Andrew D

    2015-02-07

    In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.

  16. The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage

    DEFF Research Database (Denmark)

    Owens, Trevor

    2003-01-01

    progression correlate with axonal damage, and that brain atrophy resulting from axonal loss is a feature of early multiple sclerosis, and is not restricted to the secondary progressive forms of the disease. Inflammatory mediators (CD8 T cells and antibodies) are implicated in axonal damage, and treatment...... cells for oligodendrocytes. SUMMARY: Oligodendrocyte precursors are abundant in multiple sclerosis lesions, but fail to remyelinate. Oligodendrocyte growth and regeneration are probably compromised by the action of growth inhibitory signals and lack of growth stimuli. Inflammatory cells and mediators......PURPOSE OF REVIEW: The demyelinating disease multiple sclerosis has an autoimmune inflammatory component, which has dominated the description of multiple sclerosis. A degenerative component to multiple sclerosis was always apparent, but was underappreciated until recently. Recent work has brought...

  17. Zebrafish as a model to assess cancer heterogeneity, progression and relapse

    Science.gov (United States)

    Blackburn, Jessica S.; Langenau, David M.

    2014-01-01

    Clonal evolution is the process by which genetic and epigenetic diversity is created within malignant tumor cells. This process culminates in a heterogeneous tumor, consisting of multiple subpopulations of cancer cells that often do not contain the same underlying mutations. Continuous selective pressure permits outgrowth of clones that harbor lesions that are capable of enhancing disease progression, including those that contribute to therapy resistance, metastasis and relapse. Clonal evolution and the resulting intratumoral heterogeneity pose a substantial challenge to biomarker identification, personalized cancer therapies and the discovery of underlying driver mutations in cancer. The purpose of this Review is to highlight the unique strengths of zebrafish cancer models in assessing the roles that intratumoral heterogeneity and clonal evolution play in cancer, including transgenesis, imaging technologies, high-throughput cell transplantation approaches and in vivo single-cell functional assays. PMID:24973745

  18. Homogenization technique for strongly heterogeneous zones in research reactors

    International Nuclear Information System (INIS)

    Lee, J.T.; Lee, B.H.; Cho, N.Z.; Oh, S.K.

    1991-01-01

    This paper reports on an iterative homogenization method using transport theory in a one-dimensional cylindrical cell model developed to improve the homogenized cross sections fro strongly heterogeneous zones in research reactors. The flux-weighting homogenized cross sections are modified by a correction factor, the cell flux ratio under an albedo boundary condition. The albedo at the cell boundary is iteratively determined to reflect the geometry effects of the material properties of the adjacent cells. This method has been tested with a simplified core model of the Korea Multipurpose Research Reactor. The results demonstrate that the reaction rates of an off-center control shroud cell, the multiplication factor, and the power distribution of the reactor core are close to those of the fine-mesh heterogeneous transport model

  19. First-principles study on ferrite/TiC heterogeneous nucleation interface

    International Nuclear Information System (INIS)

    Yang, Jian; Zhang, Pengfei; Zhou, Yefei; Guo, Jing; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2013-01-01

    Highlights: ► Interface stability of ferrite (1 0 0)/TiC (1 0 0) was studied. ► The effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. ► Ti-termination and C-termination are the two binding modes for ferrite/TiC interface. ► Interfacial energy of the Ti-termination is larger than that of the C-termination. ► On C-termination, ability of TiC promotes ferrite heterogeneous nucleation is strong. -- Abstract: Interface atomic structure, bonding character, cohesive energy and interfacial energy of ferrite (1 0 0)/TiC (1 0 0) were studied using a first-principles density functional plane-wave ultrasoft pseudopotential method. Meanwhile, the effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. The results indicated that, TiC bonding is dominated by the C-2p, C-2s and Ti-3d electrons, which exhibits high covalency. With increase of the atomic layers, the interfacial energies of ferrite and TiC are both declined rapidly and stabilized gradually. There are two binding modes for TiC as the heterogeneous nuclei of ferrite, which are Fe atoms above the Ti atoms (Ti-termination) and Fe atoms above the C atoms (C-termination). Interfacial energy of the Ti-termination is larger than that of the C-termination, which means that for Fe atoms above the C atoms, the ability of TiC promotes ferrite heterogeneous nucleation on its surface is larger than that for Fe atoms above the Ti atoms

  20. Programming heterogeneous MPSoCs tool flows to close the software productivity gap

    CERN Document Server

    Castrillón Mazo, Jerónimo

    2014-01-01

    This book provides embedded software developers with techniques for programmingheterogeneous Multi-Processor Systems-on-Chip (MPSoCs), capable of executing multiple applications simultaneously. It describes a set of algorithms and methodologies to narrow the software productivity gap, as well as an in-depth description of the underlying problems and challenges of today’s programming practices. The authors present four different tool flows: A parallelism extraction flow for applications writtenusing the C programming language, a mapping and scheduling flow for parallel applications, a special mapping flow for baseband applications in the context of Software Defined Radio (SDR) and a final flow for analyzing multiple applications at design time. The tool flows are evaluated on Virtual Platforms (VPs), which mimic different characteristics of state-of-the-art heterogeneous MPSoCs.   • Provides a novel set of algorithms and methodologies for programming heterogeneous Multi-Processor Systems-on-Chip (MPSoCs)...

  1. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  2. Heterogeneidade neuropsicológica na esclerose múlipla Neuropsychological heterogeneity in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Eduardo de Paula Lima

    2008-01-01

    Full Text Available A esclerose múltipla (EM é uma doença neurológica progressiva e incapacitante, cujos sintomas afetam o funcionamento motor, sensorial e psicológico. Diversas variáveis clínicas e psicossociais influenciam o perfil neuropsicológico na EM, que é extremamente heterogêneo. O objetivo principal do presente estudo foi investigar a possibilidade de estratificar estatisticamente portadores de EM e controles a partir das dimensões neurológica, sócio-demográfica e neuropsicológica de funcionamento. A partir desse objetivo, foi conduzido um procedimento de análise de conglomerados utilizando cinco instrumentos neuropsicológicos, selecionados dentre uma gama de nove medidas, de acordo com a acurácia diagnóstica. A amostra foi constituída por 45 pessoas saudáveis e 35 portadores de EM com características sócio-demográficas semelhantes. Os resultados indicaram uma solução ideal com quatro conglomerados a partir de duas dimensões, funcionamento "cognitivo" e "psicossocial", que representam aspectos independentes, porém não disjuntivos, do funcionamento neuropsicológico na EM.Multiple sclerosis (MS is a progressively disabling neurological disease which symptoms affect sensory, motor and psychological functioning. Several clinical neurological and psychological variables influence the neuropsychological profile in MS, which is extremely heterogeneous. The main objective of the present study was to investigate if it is possible to statistically stratify control subjects and MS patients from neurological, socio-demographic and neuropsychological dimensions. With this purpose we applied cluster analysis procedures to five neuropsychological instruments selected according to diagnostic accuracy from a pool of 9 neuropsychological tests. The sample was composed of 45 healthy controls and 35 MS patients with similar socio-demographic characteristics. The results indicated an ideal solution with 4 different clusters according to two

  3. High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Marion Jeantet

    2016-12-01

    Full Text Available Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs, possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques.

  4. Investigation of silicon/silicon germanium multiple quantum well layers in silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Loudon, A.Y.

    2002-01-01

    Silicon single photon avalanche diodes (SPADs) are currently utilised in many single photon counting systems due to their high efficiency, fast response times, low voltage operation and potentially low cost. For fibre based applications however (at wavelengths 1.3 and 1.55μm) and eye-safe wavelength applications (>1.4μm), Si devices are not suitable due to their 1.1μm absorption edge and hence greatly reduced absorption above this wavelength. InGaAs/InP or Ge SPADs absorb at these longer wavelengths, but both require cryogenic cooling for low noise operation and III-V integration with conventional Si circuitry is difficult. Si/SiGe is currently attracting great interest for optoelectronic applications and attempts to combine Si avalanche photodiodes with Si/SiGe multiple quantum well absorbing layers have been successful. Here, an effort to utilise this material system has shown an improvement in photon counting efficiency above 1.1μm of more than 30 times compared to an all-Si control device. In addition to its longer wavelength response, this Si/SiGe device has room temperature operation, low cost fabrication and is compatible with conventional Si circuitry. (author)

  5. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  6. Research and implementation of intelligent gateway driver layer based on Linux bus

    Directory of Open Access Journals (Sweden)

    ZHANG Jian

    2016-10-01

    Full Text Available Currently,in the field of smart home,there is no relevant organization that yet has proposed an unified protocol standard.It increases the complexity and limitations of heterogeneous gateway software framework design that different vendor′s devices have different communication mode and protocol standards.In this paper,a serial of interfaces are provided by Linux kernel,and a virtual bus is registered under Linux.The physical device drivers are able to connect to the virtual bus.The detailed designs of the communication protocol are placed in the underlying adapters,making the integration of heterogeneous networks more natural.At the same time,designing the intelligent gateway system driver layer based on Linux bus can let the application layer be more unified and clear logical.And it also let the hardware access network become more convenient and distinct.

  7. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing

    Directory of Open Access Journals (Sweden)

    Yu GongXin

    2010-10-01

    Full Text Available Abstract Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing and their isogenic reference (using simulated data. As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time

  8. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    Science.gov (United States)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  9. An automated approach for annual layer counting in ice cores

    Directory of Open Access Journals (Sweden)

    M. Winstrup

    2012-11-01

    Full Text Available A novel method for automated annual layer counting in seasonally-resolved paleoclimate records has been developed. It relies on algorithms from the statistical framework of hidden Markov models (HMMs, which originally was developed for use in machine speech recognition. The strength of the layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on statistical criteria for annual layer identification. The most likely positions of multiple layer boundaries in a section of ice core data are determined simultaneously, and a probabilistic uncertainty estimate of the resulting layer count is provided, ensuring an objective treatment of ambiguous layers in the data. Furthermore, multiple data series can be incorporated and used simultaneously. In this study, the automated layer counting algorithm has been applied to two ice core records from Greenland: one displaying a distinct annual signal and one which is more challenging. The algorithm shows high skill in reproducing the results from manual layer counts, and the resulting timescale compares well to absolute-dated volcanic marker horizons where these exist.

  10. Heterogeneous computing with OpenCL 2.0

    CERN Document Server

    Kaeli, David R; Schaa, Dana; Zhang, Dong Ping

    2015-01-01

    Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources Dynamic parallelism which reduces processor load and avoids bottlenecks Improved imaging support and integration with OpenGL  Designed to work on multiple platfor

  11. Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.

    2018-04-01

    Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.

  12. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    Science.gov (United States)

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  13. Porting AMG2013 to Heterogeneous CPU+GPU Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Samfass, Philipp [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-26

    LLNL's future advanced technology system SIERRA will feature heterogeneous compute nodes that consist of IBM PowerV9 CPUs and NVIDIA Volta GPUs. Conceptually, the motivation for such an architecture is quite straightforward: While GPUs are optimized for throughput on massively parallel workloads, CPUs strive to minimize latency for rather sequential operations. Yet, making optimal use of heterogeneous architectures raises new challenges for the development of scalable parallel software, e.g., with respect to work distribution. Porting LLNL's parallel numerical libraries to upcoming heterogeneous CPU+GPU architectures is therefore a critical factor for ensuring LLNL's future success in ful lling its national mission. One of these libraries, called HYPRE, provides parallel solvers and precondi- tioners for large, sparse linear systems of equations. In the context of this intern- ship project, I consider AMG2013 which is a proxy application for major parts of HYPRE that implements a benchmark for setting up and solving di erent systems of linear equations. In the following, I describe in detail how I ported multiple parts of AMG2013 to the GPU (Section 2) and present results for di erent experiments that demonstrate a successful parallel implementation on the heterogeneous ma- chines surface and ray (Section 3). In Section 4, I give guidelines on how my code should be used. Finally, I conclude and give an outlook for future work (Section 5).

  14. Modelling Preference Heterogeneity for Theatre Tickets

    DEFF Research Database (Denmark)

    Baldin, Andrea; Bille, Trine

    2018-01-01

    This article analyses the behavioural choice for theatre tickets using a rich data set for 2010–2013 from the sale system of the Royal Danish National Theatre. A consumer who decides to attend a theatre production faces multiple sources of price variation that involves a choice by the consumer...... among different ticket alternatives. Three modelling approaches are proposed in order to model ticket purchases: conditional logit with socio-demographic characteristics, nested logit and latent class. These models allow us explicitly to take into account consumers’ preference heterogeneity with respect...... of behaviour in the choice of theatre ticket....

  15. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    Science.gov (United States)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  16. Analysis of a homogenous and heterogeneous stylized half core of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    EL-Khawlani, Afrah [Physics Department, Sana' a (Yemen); Aziz, Moustafa [Nuclear and radiological regulatory authority, Cairo (Egypt); Ismail, Mahmud Yehia; Ellithi, Ali Yehia [Cairo Univ. (Egypt). Faculty of Science

    2015-03-15

    The MCNPX (Monte Carlo N-Particle Transport Code System) code has been used for modeling and simulation of a half core of CANDU (CANada Deuterium-Uranium) reactor, both homogenous and heterogeneous model for the reactor core are designed. The fuel is burnt in normal operation conditions of CANDU reactors. Natural uranium fuel is used in the model. The multiplication factor for homogeneous and heterogeneous reactor core is calculated and compared during fuel burnup. The concentration of both uranium and plutonium isotopes are analysed in the model. The flux and power distributions through channels are calculated.

  17. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  18. Tracer test modeling for characterizing heterogeneity and local scale residence time distribution in an artificial recharge site.

    Science.gov (United States)

    Valhondo, Cristina; Martinez-Landa, Lurdes; Carrera, Jesús; Hidalgo, Juan J.; Ayora, Carlos

    2017-04-01

    hypothesis considered a homogeneous medium where flow and transport parameters were constant for all layers. The second hypothesis considered heterogeneous media and thus parameters were different for each layer. Heterogeneous model yielded to a better fit, measured as root mean square weighted error, of the measured tracer breakthrough curves. Both homogeneous and heterogeneous models reproduce the long tails observed in some observation points implying that the broad RTDs are caused not only by heterogeneity but also by the mean flow structure. We contend that it is this broad RTD, together with the sequence of redox states produced by our reactive layer, what explains the excellent behavior of the system in removing recalcitrant organic micropollutants.

  19. Multiple equilibria and minimum wages in labor markets with informationale frictions and heterogeneous production technologies

    NARCIS (Netherlands)

    van den Berg, G.J.

    2003-01-01

    It is often argued that a mandatory minimum wage is binding only if the wage density displays a spike at it. In this article, we analyze a model with search frictions and heterogeneous production technologies, in which imposition of a minimum wage affects wages even though, after imposition, the

  20. Multiple Equilibria and Minimum Wages in Labor Markets with Informational Frictions and Heterogeneous Production Technologies

    NARCIS (Netherlands)

    G.J. van den Berg (Gerard)

    2003-01-01

    textabstractIt is often argued that a mandatory minimum wage is binding only if the wage density displays a spike at it. In this paper we analyze a model with wage setting, search frictions, and heterogeneous production technologies, in which imposition of a minimum wage affects wages even though,

  1. Application of multiple-point geostatistics to simulate the effect of small-scale aquifer heterogeneity on the efficiency of aquifer thermal energy storage

    Science.gov (United States)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-08-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for aquifer thermal energy storage (ATES) systems and wells. Recent model studies indicate that meter-scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In a study site in Bierbeek, Belgium, the influence of centimeter-scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3-3.6 %) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6-10.2 %) on the energy output of the ATES system. It is concluded that it is important to incorporate small-scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  2. Application of multiple-point geostatistics to simulate the effect of small scale aquifer heterogeneity on the efficiency of Aquifer Thermal Energy Storage (ATES)

    Science.gov (United States)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for Aquifer Thermal Energy Storage (ATES) systems and wells. Recent model studies indicate that meter scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In this paper, the influence of centimeter scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3 - 3.6%) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6 - 10.2%) on the energy output of the ATES system. It is concluded that it is important to incorporate small scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  3. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition

    Science.gov (United States)

    2014-11-18

    cture heterogeneity in MoS2 atomiclayers grown by chemical vapour deposition 6. AUTHORS Zheng Liu, Matin Amani, Sina Najmaei, Quan Xu, Xiaolong Zou...deposition Zheng Liu1•2•3·*, Matin Amani4·*, Sina Najmaei5·*, Quan Xu6•7, Xiaolong Zou5, Wu Zhou8, Ting Yu9, Caiyu Qiu9, A Glen Birdwell4, Frank J. Crowne4

  4. Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI

    International Nuclear Information System (INIS)

    Gensheimer, Michael F; Ermoian, Ralph P; Hawkins, Douglas S; Trister, Andrew D

    2015-01-01

    In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment. (paper)

  5. Novel subdomains of the mouse olfactory bulb defined by molecular heterogeneity in the nascent external plexiform and glomerular layers

    Directory of Open Access Journals (Sweden)

    Yona Golan

    2007-05-01

    Full Text Available Abstract Background In the mouse olfactory system, the role of the olfactory bulb in guiding olfactory sensory neuron (OSN axons to their targets is poorly understood. What cell types within the bulb are necessary for targeting is unknown. What genes are important for this process is also unknown. Although projection neurons are not required, other cell-types within the external plexiform and glomerular layers also form synapses with OSNs. We hypothesized that these cells are important for targeting, and express spatially differentially expressed guidance cues that act to guide OSN axons within the bulb. Results We used laser microdissection and microarray analysis to find genes that are differentially expressed along the dorsal-ventral, medial-lateral, and anterior-posterior axes of the bulb. The expression patterns of these genes divide the bulb into previously unrecognized subdomains. Interestingly, some genes are expressed in both the medial and lateral bulb, showing for the first time the existence of symmetric expression along this axis. We use a regeneration paradigm to show that several of these genes are altered in expression in response to deafferentation, consistent with the interpretation that they are expressed in cells that interact with OSNs. Conclusion We demonstrate that the nascent external plexiform and glomerular layers of the bulb can be divided into multiple domains based on the expression of these genes, several of which are known to function in axon guidance, synaptogenesis, and angiogenesis. These genes represent candidate guidance cues that may act to guide OSN axons within the bulb during targeting.

  6. Integrating heterogeneous databases in clustered medic care environments using object-oriented technology

    Science.gov (United States)

    Thakore, Arun K.; Sauer, Frank

    1994-05-01

    The organization of modern medical care environments into disease-related clusters, such as a cancer center, a diabetes clinic, etc., has the side-effect of introducing multiple heterogeneous databases, often containing similar information, within the same organization. This heterogeneity fosters incompatibility and prevents the effective sharing of data amongst applications at different sites. Although integration of heterogeneous databases is now feasible, in the medical arena this is often an ad hoc process, not founded on proven database technology or formal methods. In this paper we illustrate the use of a high-level object- oriented semantic association method to model information found in different databases into an integrated conceptual global model that integrates the databases. We provide examples from the medical domain to illustrate an integration approach resulting in a consistent global view, without attacking the autonomy of the underlying databases.

  7. The role of long-term strain history on the generation and amplification of inherited heterogeneities in continental lithosphere extensional settings

    Science.gov (United States)

    Morena Salerno, V.; Capitanio, Fabio A.

    2017-04-01

    The Earth's lithosphere is characters by various types of heterogeneities, at different scales and located at variable depth. They can be represented at crustal level by remnants of earlier tectonics evolution, such as previous orogenetic structures, remains of passive margins and magmatic bodies intrusion, or at deeper level by mantle anisotropies. These heterogeneities can severely affect the stress and strain localization in subsequent continental lithospheric extension and rift basins evolution, hence contributing to the formation of diverse and complex rift basin types and architectures. In order to explain the difference in rift basin and passive margin types, their subsidence patterns and melt production, previous studies have exanimated the role of initial heterogeneities, rheological layering, geothermal gradients, and extension rates during a single rifting event. However, this approach does not consider the previous strain history of many basins that are characterized by multiple rifting events. In this study we use numerical models of a pristine lithosphere undergoing two rifting events separated by cooling, to show the effect of early events on later evolution. The strain histories are controlled by the variation of velocity of boundary displacement during two rifting events. We use both fast and slow first rifting events, followed by a cooling period, producing diverse mechanical heterogeneities at Moho level that represent inherited initial conditions for the second rifting event. These inherited heterogeneities range from several small perturbations distributed along the numerical domain at the end of the slowest first rifting event, to a single large perturbation at the end of first fastest rifting event. In the second rifting event, the inherited heterogeneities are amplified at different degree and time, depending on the velocity of boundary displacement used. To highlight the role of previous strain history, we parametrize the inherited

  8. Multi-Layer Soft Frequency Reuse Scheme for 5G Heterogeneous Cellular Networks

    DEFF Research Database (Denmark)

    Shakir, Md. Hossain; Tariq, Faisal; Safdar, Ghazanfar

    2017-01-01

    Heterogeneous network (HetNet) is a promising cell deployment technique where low power access points are deployed overlaid on a macrocell system. It attains high throughput by intelligently reusing spectrum, and brings a trade-off between energy- and spectral-efficiency. An efficient resource...... allocation strategy is required to significantly improve its throughput in a bid to meet the fifth-generation (5G) high data rate requirements. In this correspondence, a new resource allocation scheme for HetNet, called multi-level soft frequency reuse for HetNet (ML-SFR HetNet), is proposed which increases...... the throughput several fold. We derived spectrum and power allocation expression for a generalized HetNet scenario. In addition, analytical expressions for the throughput and area spectral efficiency (ASE) are also developed. The simulations results demonstrates the efficiency of the proposed scheme which...

  9. Compensatory Analysis and Optimization for MADM for Heterogeneous Wireless Network Selection

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-01-01

    Full Text Available In the next-generation heterogeneous wireless networks, a mobile terminal with a multi-interface may have network access from different service providers using various technologies. In spite of this heterogeneity, seamless intersystem mobility is a mandatory requirement. One of the major challenges for seamless mobility is the creation of a network selection scheme, which is for users that select an optimal network with best comprehensive performance between different types of networks. However, the optimal network may be not the most reasonable one due to compensation of MADM (Multiple Attribute Decision Making, and the network is called pseudo-optimal network. This paper conducts a performance evaluation of a number of widely used MADM-based methods for network selection that aim to keep the mobile users always best connected anywhere and anytime, where subjective weight and objective weight are all considered. The performance analysis shows that the selection scheme based on MEW (weighted multiplicative method and combination weight can better avoid accessing pseudo-optimal network for balancing network load and reducing ping-pong effect in comparison with three other MADM solutions.

  10. Spatial Distribution of Bacterial Communities Driven by Multiple Environmental Factors in a Beach Wetland of the Largest Freshwater Lake in China

    Directory of Open Access Journals (Sweden)

    Xia eDing

    2015-02-01

    Full Text Available The spatial distributions of bacterial communities may be driven by multiple environmental factors. Thus, understanding the relationships between bacterial distribution and environmental factors is critical for understanding wetland stability and the functioning of freshwater lakes. However, little research on the bacterial communities in deep sediment layers exists. In this study, thirty clone libraries of 16S rRNA were constructed from a beach wetland of the Poyang Lake along both horizontal (distance to the water-land junction and vertical (sediment depth gradients to assess the effects of sediment properties on bacterial community structure and diversity. Our results showed that bacterial diversity increased along the horizontal gradient and decreased along the vertical gradient. The heterogeneous sediment properties along gradients substantially affected the dominant bacterial groups at the phylum and species levels. For example, the NH4+ concentration decreased with increasing depth, which was positively correlated with the relative abundance of Alphaproteobacteria. The changes in bacterial diversity and dominant bacterial groups showed that the top layer had a different bacterial community structure than the deeper layers. Principal component analysis revealed that both gradients, not each gradient independently, contributed to the shift in the bacterial community structure. A multiple linear regression model explained the changes in bacterial diversity and richness along the depth and distance gradients. Overall, our results suggest that spatial gradients associated with sediment properties shaped the bacterial communities in the Poyang Lake beach wetland.

  11. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  12. A Preliminary Study on the Multiple Mapping Structure of Classification Systems for Heterogeneous Databases

    OpenAIRE

    Seok-Hyoung Lee; Hwan-Min Kim; Ho-Seop Choe

    2012-01-01

    While science and technology information service portals and heterogeneous databases produced in Korea and other countries are integrated, methods of connecting the unique classification systems applied to each database have been studied. Results of technologists' research, such as, journal articles, patent specifications, and research reports, are organically related to each other. In this case, if the most basic and meaningful classification systems are not connected, it is difficult to ach...

  13. Intraparticulate Metal Speciation Analysis of Soft Complexing Nanoparticles. The Intrinsic Chemical Heterogeneity of Metal-Humic Acid Complexes

    DEFF Research Database (Denmark)

    Town, R. M.; van Leeuwen, Herman P.

    2016-01-01

    ion condensation potential for higher valency counterions within the intraparticulate double layer zone of the soft NP. The approach offers new insights into the intrinsic heterogeneity of the HA. complexes, as revealed by the intraparticulate speciation as a function of the true degree of inner......-sphere complexation, theta(M). The ensuing intrinsic heterogeneity parameters, Gamma, for CdHA and CuHA complexes are in very good agreement with those obtained from dynamic electrochemical stripping chronopotentiometric measurements. The overall intraparticulate metal ion speciation is found to depend on theta...

  14. Representation Learning from Time Labelled Heterogeneous Data for Mobile Crowdsensing

    Directory of Open Access Journals (Sweden)

    Chunmei Ma

    2016-01-01

    Full Text Available Mobile crowdsensing is a new paradigm that can utilize pervasive smartphones to collect and analyze data to benefit users. However, sensory data gathered by smartphone usually involves different data types because of different granularity and multiple sensor sources. Besides, the data are also time labelled. The heterogeneous and time sequential data raise new challenges for data analyzing. Some existing solutions try to learn each type of data one by one and analyze them separately without considering time information. In addition, the traditional methods also have to determine phone orientation because some sensors equipped in smartphone are orientation related. In this paper, we think that a combination of multiple sensors can represent an invariant feature for a crowdsensing context. Therefore, we propose a new representation learning method of heterogeneous data with time labels to extract typical features using deep learning. We evaluate that our proposed method can adapt data generated by different orientations effectively. Furthermore, we test the performance of the proposed method by recognizing two group mobile activities, walking/cycling and driving/bus with smartphone sensors. It achieves precisions of 98.6% and 93.7% in distinguishing cycling from walking and bus from driving, respectively.

  15. Neutronics characteristics of micro-heterogeneous ThO2-UO2 PWR cores

    International Nuclear Information System (INIS)

    Zhao, X.; Driscoll, M.J.; Kazimi, S.

    2001-01-01

    A new fuel concept, axially-micro-heterogeneous ThO 2 -UO 2 fuel, where ThO 2 fuel pellets and UO 2 fuel pellets are stacked in separate layers in the fuel rods, is being studied at MIT as an option to reduce plutonium production in LWR fuel. Very interesting neutronic behavior is observed: (1) A reactivity increase of 3% to 4% at EOL for a given 235 U inventory which results in a 20-30% increase in average core discharge burnup; (2) For certain configurations, a ''burnable poison'' effect is observed. Analysis shows that these effects are achieved due to a combination of changes in self-shielding, local fissile worth, and conversion ratio, among which self-shielding is the dominant effect at the end of a reactivity-limited burnup. Other variations of micro-heterogeneous UO 2 -ThO 2 fuel including duplex pellets, checkerboard pin distribution, and checkerboard-axial combinations have also been investigated, and their neutronic performance compared. It is concluded that the axial fuel micro-heterogeneity provides the largest gain in reactivity-limited burnup. (author)

  16. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    Science.gov (United States)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  17. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  18. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  19. Multiple recharge processes to heterogeneous Mediterranean coastal aquifers and implications on recharge rates evolution in time

    Science.gov (United States)

    Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H.

    2018-04-01

    Climate change is nowadays widely considered to have major effects on groundwater resources. Climatic projections suggest a global increase in evaporation and higher frequency of strong rainfall events especially in Mediterranean context. Since evaporation is synonym of low recharge conditions whereas strong rainfall events are more favourable to recharge in heterogeneous subsurface contexts, a lack of knowledge remains then on the real ongoing and future drinking groundwater supply availability at aquifers scale. Due to low recharge potential and high inter-annual climate variability, this issue is strategic for the Mediterranean hydrosystems. This is especially the case for coastal aquifers because they are exposed to seawater intrusion, sea-level rise and overpumping risks. In this context, recharge processes and rates were investigated in a Mediterranean coastal aquifer with subsurface heterogeneity located in Southern Corsica (France). Aquifer recharge rates from combining ten physical and chemical methods were computed. In addition, hydrochemical and isotopic investigations were carried out through a monthly two years monitoring combining major ions and stable isotopes of water in rain, runoff and groundwater. Diffuse, focused, lateral mountain system and irrigation recharge processes were identified and characterized. A predominant focused recharge conditioned by subsurface heterogeneity is evidenced in agreement with variable but highly favourable recharge rates. The fast water transfer from the surface to the aquifer implied by this recharge process suggests less evaporation, which means higher groundwater renewal and availability in such Mediterranean coastal aquifers.

  20. AXAF user interfaces for heterogeneous analysis environments

    Science.gov (United States)

    Mandel, Eric; Roll, John; Ackerman, Mark S.

    1992-01-01

    The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors

  1. Quantification of elemental area densities in multiple metal layers (Au/Ni/Cu) on a Cr-coated quartz glass substrate for certification of NMIJ CRM 5208-a.

    Science.gov (United States)

    Ariga, Tomoko; Zhu, Yanbei; Ito, Mika; Takatsuka, Toshiko; Terauchi, Shinya; Kurokawa, Akira; Inagaki, Kazumi

    2018-04-01

    Area densities of Au/Ni/Cu layers on a Cr-coated quartz substrate were characterized to certify a multiple-metal-layer certified reference material (NMIJ CRM5208-a) that is intended for use in the analysis of the layer area density and the thickness by an X-ray fluorescence spectrometer. The area densities of Au/Ni/Cu layers were calculated from layer mass amounts and area. The layer mass amounts were determined by using wet chemical analyses, namely inductively coupled plasma mass spectrometry (ICP-MS), isotope-dilution (ID-) ICP-MS, and inductively coupled plasma optical emission spectrometry (ICP-OES) after dissolving the layers with diluted mixture of HCl and HNO 3 (1:1, v/v). Analytical results of the layer mass amounts obtained by the methods agreed well with each another within their uncertainty ranges. The area of the layer was determined by using a high-resolution optical scanner calibrated by Japan Calibration Service System (JCSS) standard scales. The property values of area density were 1.84 ± 0.05 μg/mm 2 for Au, 8.69 ± 0.17 μg/mm 2 for Ni, and 8.80 ± 0.14 μg/mm 2 for Cu (mean ± expanded uncertainty, coverage factor k = 2). In order to assess the reliability of these values, the density of each metal layer calculated from the property values of the area density and layer thickness measured by using a scanning electron microscope were compared with available literature values and good agreement between the observed values and values obtained in previous studies.

  2. Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes.

    Science.gov (United States)

    Liu, Hao; Wolf, Mark; Karki, Khim; Yu, Young-Sang; Stach, Eric A; Cabana, Jordi; Chapman, Karena W; Chupas, Peter J

    2017-06-14

    Capacity fading has limited commercial layered Li-ion battery electrodes to NCA) electrode change after capacity fade following months of slow charge-discharge. The changes in the reactions that underpin energy storage after long-term cycling directly correlate to the capacity loss; heterogeneous reaction kinetics observed during extended cycles quantitatively account for the capacity loss. This reaction heterogeneity is ultimately attributed to intergranular fracturing that degrades the connectivity of subsurface grains within the polycrystalline NCA aggregate.

  3. Seamless Data Services for Real Time Communication in a Heterogeneous Networks using Network Tracking and Management

    OpenAIRE

    T, Adiline Macriga.; Kumar, Dr. P. Anandha

    2010-01-01

    Heterogeneous Networks is the integration of all existing networks under a single environment with an understanding between the functional operations and also includes the ability to make use of multiple broadband transport technologies and to support generalized mobility. It is a challenging feature for Heterogeneous networks to integrate several IP-based access technologies in a seamless way. The focus of this paper is on the requirements of a mobility management scheme for multimedia real-...

  4. Multichannel MAC Layer In Mobile Ad—Hoc Network

    Science.gov (United States)

    Logesh, K.; Rao, Samba Siva

    2010-11-01

    This paper we presented the design objectives and technical challenges in Multichannel MAC protocols in Mobile Ad-hoc Network. In IEEE 802.11 a/b/g standards allow use of multiple channels, only a single channel is popularly used, due to the lack of efficient protocols that enable use of Multiple Channels. Even though complex environments in ad hoc networks require a combined control of physical (PHY) and medium access control (MAC) layers resources in order to optimize performance. And also we discuss the characteristics of cross-layer frame and give a multichannel MAC approach.

  5. A MODEL OF HETEROGENEOUS DISTRIBUTED SYSTEM FOR FOREIGN EXCHANGE PORTFOLIO ANALYSIS

    Directory of Open Access Journals (Sweden)

    Dragutin Kermek

    2006-06-01

    Full Text Available The paper investigates the design of heterogeneous distributed system for foreign exchange portfolio analysis. The proposed model includes few separated and dislocated but connected parts through distributed mechanisms. Making system distributed brings new perspectives to performance busting where software based load balancer gets very important role. Desired system should spread over multiple, heterogeneous platforms in order to fulfil open platform goal. Building such a model incorporates different patterns from GOF design patterns, business patterns, J2EE patterns, integration patterns, enterprise patterns, distributed design patterns to Web services patterns. The authors try to find as much as possible appropriate patterns for planned tasks in order to capture best modelling and programming practices.

  6. Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad

    2016-01-01

    and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular......Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional...... and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures...

  7. An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options

    Institute of Scientific and Technical Information of China (English)

    Anne Masi; Marilena M.DeMayo; Nicholas Glozier; Adam J.Guastella

    2017-01-01

    Since the documented observations of Kanner in 1943,there has been great debate about the diagnoses,the sub-types,and the diagnostic threshold that relates to what is now known as autism spectrum disorder (ASD).Reflecting this complicated history,there has been continual refinement from DSM-Ⅲ with ‘Infantile Autism’ to the current DSM-Ⅴ diagnosis.The disorder is now widely accepted as a complex,pervasive,heterogeneous condition with multiple etiologies,sub-types,and developmental trajectories.Diagnosis remains based on observation of atypical behaviors,with criteria of persistent deficits in social communication and restricted and repetitive patterns of behavior.This review provides a broad overview of the history,prevalence,etiology,clinical presentation,and heterogeneity of ASD.Factors contributing to heterogeneity,including genetic variability,comorbidity,and gender are reviewed.We then explore current evidencebased pharmacological and behavioral treatments for ASD and highlight the complexities of conducting clinical trials that evaluate therapeutic efficacy in ASD populations.Finally,we discuss the potential of a new wave of research examining objective biomarkers to facilitate the evaluation of sub-typing,diagnosis,and treatment response in ASD.

  8. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    Science.gov (United States)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  9. Unified Multi-Layer among Software Defined Multi-Domain Optical Networks (Invited

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2015-06-01

    Full Text Available The software defined networking (SDN enabled by OpenFlow protocol has gained popularity which can enable the network to be programmable and accommodate both fixed and flexible bandwidth services. In this paper, we present a unified multi-layer (UML architecture with multiple controllers and a dynamic orchestra plane (DOP for software defined multi-domain optical networks. The proposed architecture can shield the differences among various optical devices from multi-vendors and the details of connecting heterogeneous networks. The cross-domain services with on-demand bandwidth can be deployed via unified interfaces provided by the dynamic orchestra plane. Additionally, the globalization strategy and practical capture of signal processing are presented based on the architecture. The overall feasibility and efficiency of the proposed architecture is experimentally verified on the control plane of our OpenFlow-based testbed. The performance of globalization strategy under heavy traffic load scenario is also quantitatively evaluated based on UML architecture compared with other strategies in terms of blocking probability, average hops, and average resource consumption.

  10. Scale-up of miscible flood processes for heterogeneous reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1996-04-01

    Results of a wide-ranging investigation of the scaling of gas injection processes are reported. The research examines how the physical mechanisms at work during a gas injection project interact to determine process performance. In particular, the authors examine: the interactions of equilibrium phase behavior and two-phase flow that determine local displacement efficiency and minimum miscibility pressure, the combined effects of viscous fingering, gravity segregation and heterogeneity that control sweep efficiency in 2- and 3-dimensional porous media, the use of streamtube/streamline methods to create very efficient simulation technique for multiphase compositional displacements, the scaling of viscous, capillary and gravity forces for heterogeneous reservoirs, and the effects of the thin films and spreading behavior on three-phase flow. The following key results are documented: rigorous procedures for determination of minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for miscibility have been developed for multicomponent systems; the complex dependence of MMP`s for nitrogen/methane floods on oil and injection gas composition observed experimentally is explained for the first time; the presence of layer-like heterogeneities strongly influences the interplay of gravity segregation and viscous fingering, as viscous fingers adapt to preferential flow paths and low permeability layers restrict vertical flow; streamtube/streamline simulation techniques are demonstrated for a variety of injection processes in 2 and 3 dimensions; quantitative scaling estimates for the transitions from capillary-dominated to gravity-dominated to viscous-dominated flows are reported; experimental results are given that demonstrate that high pressure CO{sub 2} can be used to generate low IFT gravity drainage in fractured reservoirs if fractures are suitably connected; and the effect of wetting and spreading behavior on three-phase flow is described. 209 refs.

  11. Analytical bounds on the area spectral efficiency of uplink heterogeneous networks over generalized fading channels

    KAUST Repository

    Shakir, Muhammad; Tabassum, Hina; Alouini, Mohamed-Slim

    2014-01-01

    Heterogeneous networks (HetNets) are envisioned to enable next-generation cellular networks by providing higher spectral and energy efficiency. A HetNet is typically composed of multiple radio access technologies where several low-power low

  12. Optimal Routing for Heterogeneous Fixed Fleets of Multicompartment Vehicles

    OpenAIRE

    Wang, Qian; Ji, Qingkai; Chiu, Chun-Hung

    2014-01-01

    We present a metaheuristic called the reactive guided tabu search (RGTS) to solve the heterogeneous fleet multicompartment vehicle routing problem (MCVRP), where a single vehicle is required for cotransporting multiple customer orders. MCVRP is commonly found in delivery of fashion apparel, petroleum distribution, food distribution, and waste collection. In searching the optimum solution of MCVRP, we need to handle a large amount of local optima in the solution spaces. To overcome this proble...

  13. Effects of mechanical layering on hydrofracture emplacement and fluid transport in reservoirs

    Directory of Open Access Journals (Sweden)

    Sonja Leonie Philipp

    2013-12-01

    Full Text Available Fractures generated by internal fluid pressure, for example, dykes, mineral veins, many joints and man-made hydraulic fractures, are referred to as hydrofractures. Together with shear fractures, they contribute significantly to the permeability of fluid reservoirs such as those of petroleum, geothermal water, and groundwater. Analytical and numerical models show that – in homogeneous host rocks – any significant overpressure in hydrofractures theoretically generates very high crack tip tensile stresses. Consequently, overpressured hydrofractures should propagate and help to form interconnected fracture systems that would then contribute to the permeability of fluid reservoirs. Field observations, however, show that in heterogeneous and anisotropic, e.g., layered, rocks many hydrofractures become arrested or offset at layer contacts and do not form vertically interconnected networks. The most important factors that contribute to hydrofracture arrest are discontinuities (including contacts, stiffness changes between layers, and stress barriers, where the local stress field is unfavourable to hydrofracture propagation. A necessary condition for a hydrofracture to propagate to the surface is that the stress field along its potential path is everywhere favourable to extension-fracture formation so that the probability of hydrofracture arrest is minimised. Mechanical layering and the resulting heterogeneous stress field largely control whether evolving hydrofractures become confined to single layers (strata¬bound frac¬tures or not (non-stratabound fractures and, there¬fore, if a vertically intercon¬nec¬ted fracture system forms. Non-stratabound hydrofractures may propagate through many layers and generate interconnected fracture systems. Such systems commonly reach the percolation threshold and largely control the overall permeability of the fluid reservoirs within which they develop.

  14. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  15. Clinical and pathological heterogeneity of cervical intraepithelial neoplasia grade 3.

    Directory of Open Access Journals (Sweden)

    Hannah P Yang

    Full Text Available Cervical intraepithelial neoplasia grade 3 (CIN3, the immediate cervical cancer precursor, is a target of cervical cancer prevention. However, less than half of CIN3s will progress to cancer. Routine treatment of all CIN3s and the majority of CIN2s may lead to overtreatment of many lesions that would not progress. To improve our understanding of CIN3 natural history, we performed a detailed characterization of CIN3 heterogeneity in a large referral population in the US.We examined 309 CIN3 cases in the SUCCEED, a large population-based study of women with abnormal cervical cancer screening results. Histology information for 12 individual loop electrosurgical excision procedure (LEEP segments was evaluated for each woman. We performed case-case comparisons of CIN3s to analyze determinants of heterogeneity and screening test performance.CIN3 cases varied substantially by size (1-10 LEEP segments and by presentation with concomitant CIN2 and CIN1. All grades of CINs were equally distributed over the cervical surface. In half of the women, CIN3 lesions were found as multiple distinct lesions on the cervix. Women with large and solitary CIN3 lesions were more likely to be older, have longer sexual activity span, and have fewer multiple high risk HPV infections. Screening frequency, but not HPV16 positivity, was an important predictor of CIN3 size. Large CIN3 lesions were also characterized by high-grade clinical test results.We demonstrate substantial heterogeneity in clinical and pathological presentation of CIN3 in a US population. Time since sexual debut and participation in screening were predictors of CIN3 size. We did not observe a preferential site of CIN3 on the cervical surface that could serve as a target for cervical biopsy. Cervical cancer screening procedures were more likely to detect larger CIN3s, suggesting that CIN3s detected by multiple independent diagnostic tests may represent cases with increased risk of invasion.

  16. Heterogeneous ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, A. [Helsinki Univ. (Finland). Dept. of Physics

    1994-12-31

    The classical theory of heterogenous ice nucleation is reviewed in detail. The modelling of ice nucleation in the adsorbed water films on natural particles by analogous ice nucleation in adsorbed water films on the walls of porous media is discussed. Ice nucleation in adsorbed films of purewater and the HNO{sub 3}/H{sub 2}0 binary system on the surface of porous aerosol (SiO{sub 2}) was investigated using the method of NMR spectroscopy. The median freezing temperature and freezing temperature region were shown to be highly sensitive both to the average thickness of the adsorbed films and to the amount of adsorbed nitric acid. The character of the ice phase formation tends to approach that of bulk liquid with increasing adsorbed film thickness. Under the given conditions the thickness of the adsorbed films decreases with an increasing amount of adsorbed nitric acid molecules The molar concentration of nitric acid in the adsorbed films is very small (of the order of 10{sup -}3 10{sup -}2 (M/l)). Nitric acid molecules tend to adsorb on the surface of aerosol to a greater extent than in subsequent layers. The concentration is greatest in layers situated close to the surface and sharply decreases with the distance from the surface. The difference between the median freezing temperatures for adsorbed pure water and for the binary system was found to be about 9 K for films of equal thickness. This is about 150 times greater than the difference between the median freezing temperatures of bulk pure water and a solution with the same concentration of nitric acid. (orig.)

  17. Characterizing Tumor Heterogeneity With Functional Imaging and Quantifying High-Risk Tumor Volume for Early Prediction of Treatment Outcome: Cervical Cancer as a Model

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Nina A., E-mail: Nina.Mayr@osumc.edu [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Huang Zhibin [Department of Radiation Oncology and Department of Physics, East Carolina University, Greenville, NC (United States); Wang, Jian Z. [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Lo, Simon S. [Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH (United States); Fan, Joline M. [Department of Molecular Biology, Stanford University, Stanford, CA (United States); Grecula, John C. [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Sammet, Steffen [Department of Radiology, University of Chicago, Chicago, IL (United States); Department of Radiology, Ohio State University, Columbus, OH (United States); Sammet, Christina L. [Department of Radiology, University of Chicago, Chicago, IL (United States); Jia Guang; Zhang Jun; Knopp, Michael V.; Yuh, William T.C. [Department of Radiology, Ohio State University, Columbus, OH (United States)

    2012-07-01

    Purpose: Treatment response in cancer has been monitored by measuring anatomic tumor volume (ATV) at various times without considering the inherent functional tumor heterogeneity known to critically influence ultimate treatment outcome: primary tumor control and survival. This study applied dynamic contrast-enhanced (DCE) functional MRI to characterize tumors' heterogeneous subregions with low DCE values, at risk for treatment failure, and to quantify the functional risk volume (FRV) for personalized early prediction of treatment outcome. Methods and Materials: DCE-MRI was performed in 102 stage IB{sub 2}-IVA cervical cancer patients to assess tumor perfusion heterogeneity before and during radiation/chemotherapy. FRV represents the total volume of tumor voxels with critically low DCE signal intensity (<2.1 compared with precontrast image, determined by previous receiver operator characteristic analysis). FRVs were correlated with treatment outcome (follow-up: 0.2-9.4, mean 6.8 years) and compared with ATVs (Mann-Whitney, Kaplan-Meier, and multivariate analyses). Results: Before and during therapy at 2-2.5 and 4-5 weeks of RT, FRVs >20, >13, and >5 cm{sup 3}, respectively, significantly predicted unfavorable 6-year primary tumor control (p = 0.003, 7.3 Multiplication-Sign 10{sup -8}, 2.0 Multiplication-Sign 10{sup -8}) and disease-specific survival (p = 1.9 Multiplication-Sign 10{sup -4}, 2.1 Multiplication-Sign 10{sup -6}, 2.5 Multiplication-Sign 10{sup -7}, respectively). The FRVs were superior to the ATVs as early predictors of outcome, and the differentiating power of FRVs increased during treatment. Discussion: Our preliminary results suggest that functional tumor heterogeneity can be characterized by DCE-MRI to quantify FRV for predicting ultimate long-term treatment outcome. FRV is a novel functional imaging heterogeneity parameter, superior to ATV, and can be clinically translated for personalized early outcome prediction before or as early as 2

  18. Genomic prediction based on data from three layer lines using non-linear regression models

    NARCIS (Netherlands)

    Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.

    2014-01-01

    Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate

  19. Predicting Protein Function via Semantic Integration of Multiple Networks.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  20. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    Science.gov (United States)

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  1. Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential

    Science.gov (United States)

    Cardiff, M.; Bakhos, T.; Kitanidis, P. K.; Barrash, W.

    2013-09-01

    Periodic pumping tests, in which a fluid is extracted during half a period, then reinjected, have been used historically to estimate effective aquifer properties. In this work, we suggest a modified approach to periodic pumping test analysis in which one uses several periodic pumping signals of different frequencies as stimulation, and responses are analyzed through inverse modeling using a "steady-periodic" model formulation. We refer to this strategy as multifrequency oscillatory hydraulic imaging. Oscillating pumping tests have several advantages that have been noted, including no net water extraction during testing and robust signal measurement through signal processing. Through numerical experiments, we demonstrate additional distinct advantages that multifrequency stimulations have, including: (1) drastically reduced computational cost through use of a steady-periodic numerical model and (2) full utilization of the aquifer heterogeneity information provided by responses at different frequencies. We first perform fully transient numerical modeling for heterogeneous aquifers and show that equivalent results are obtained using a faster steady-periodic heterogeneous numerical model of the wave phasor. The sensitivities of observed signal response to aquifer heterogeneities are derived using an adjoint state-based approach, which shows that different frequency stimulations provide complementary information. Finally, we present an example 2-D application in which sinusoidal signals at multiple frequencies are used as a data source and are inverted to obtain estimates of aquifer heterogeneity. These analyses show the different heterogeneity information that can be obtained from different stimulation frequencies, and that data from several sinusoidal pumping tests can be rapidly inverted using the steady-periodic framework.

  2. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Gerum, E.; Straub, J.; Grigull, U.

    1979-01-01

    With the heterogeneous nucleation theory the superheating of the liquid boundary layer in nucleate boiling is described not only for the onset of nuclear boiling but also for the boiling crisis. The rate of superheat depends on the thermodynamic stability of the metastable liquid, which is influenced by the statistical fluctuations in the liquid and the nucleation at the solid surface. Because of the fact that the cavities acting as nuclei are too small for microscopic observation, the size and distribution function of the nuclei on the surface necessary for the determination of the probability of bubble formation cannot be detected by measuring techniques. The work of bubble formation reduced by the nuclei can be represented by a simple empirical function whose coefficients are determined from boiling experiments. Using this the heterogeneous nucleation theory describes the superheating of the liquid. Several fluids including refrigerants, liquid gases, organic liquids and water were used to check the theory. (author)

  3. Cornu Ammonis Regions–Antecedents of Cortical Layers?

    Science.gov (United States)

    Mercer, Audrey; Thomson, Alex M.

    2017-01-01

    Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions—which might be seen as hippocampal antecedents of neocortical layers—lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the “cells that fire and wire together” into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five “pyramidal layers.” If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can

  4. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  5. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    or no fixed heterogeneity influences this trait. We propose that dynamic heterogeneity provides a 'neutral' model for assessing the possible role of unobserved 'quality' differences between individuals. We discuss fitness for dynamic life histories, and the implications of dynamic heterogeneity...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...... distributions of lifetime reproductive success. Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate variation between life histories. We show by an example that observed distributions of lifetime reproductive success are often consistent with the claim that little...

  6. Localizing genes to cerebellar layers by classifying ISH images.

    Directory of Open Access Journals (Sweden)

    Lior Kirsch

    Full Text Available Gene expression controls how the brain develops and functions. Understanding control processes in the brain is particularly hard since they involve numerous types of neurons and glia, and very little is known about which genes are expressed in which cells and brain layers. Here we describe an approach to detect genes whose expression is primarily localized to a specific brain layer and apply it to the mouse cerebellum. We learn typical spatial patterns of expression from a few markers that are known to be localized to specific layers, and use these patterns to predict localization for new genes. We analyze images of in-situ hybridization (ISH experiments, which we represent using histograms of local binary patterns (LBP and train image classifiers and gene classifiers for four layers of the cerebellum: the Purkinje, granular, molecular and white matter layer. On held-out data, the layer classifiers achieve accuracy above 94% (AUC by representing each image at multiple scales and by combining multiple image scores into a single gene-level decision. When applied to the full mouse genome, the classifiers predict specific layer localization for hundreds of new genes in the Purkinje and granular layers. Many genes localized to the Purkinje layer are likely to be expressed in astrocytes, and many others are involved in lipid metabolism, possibly due to the unusual size of Purkinje cells.

  7. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com [Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  8. Multiple layered metallic nanostructures for strong surface-enhanced Raman spectroscopy enhancement

    International Nuclear Information System (INIS)

    Xia, Ming; Xie, Ya-Hong; Qiao Kuan; Cheng Zhiyuan

    2016-01-01

    We report a systematic study on a practical way of patterning metallic nanostructures to achieve high surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs) and high hot-spot density. By simply superimposing a 1-layer Au nanotriangle array on another to form a multilayer nanotriangle array, the SERS signal can be enhanced by 2 orders of magnitude compared with a 1-layer nanotriangle array. The drastic increases in the SERS EF and the hot spot density of the multilayer Au nanotriangle array are due to the increase in the number of gaps formed between Au nanotriangles and the decrease of the gap width. (author)

  9. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2......, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been...... quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test...

  10. An effective anisotropic poroelastic model for elastic wave propagation in finely layered media

    NARCIS (Netherlands)

    Kudarova, A.; van Dalen, K.N.; Drijkoningen, G.G.

    2016-01-01

    Mesoscopic-scale heterogeneities in porous media cause attenuation and dispersion at seismic frequencies. Effective models are often used to account for this. We have developed a new effective poroelastic model for finely layered media, and we evaluated its impact focusing on the angledependent

  11. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso, M.; Kaiser, F.

    1977-01-01

    The influence of the temperature at 65degC and 120degC on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, diphenyl glioxal and 2,3-tetramethylene-4-phenylthien-7-oxodiacetin. The method employed was the heterogeneous catalytic exchange between tritiaded water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolitic effects on labelled benzoic acid were also considered. (author) [es

  12. Interference Mitigation for Coexistence of Heterogeneous Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wu Haitao

    2006-01-01

    Full Text Available Two ultra-wideband (UWB specifications, that is, direct-sequence (DS UWB and multiband-orthogonal frequency division multiplexing (MB-OFDM UWB, have been proposed as the candidates of the IEEE 802.15.3a, competing for the standard of high-speed wireless personal area networks (WPAN. Due to the withdrawal of the standardization process, the two heterogeneous UWB technologies will coexist in the future commercial market. In this paper, we investigate the mutual interference of such coexistence scenarios by physical layer Monte Carlo simulations. The results reveal that the coexistence severely degrades the performance of both UWB systems. Moreover, such interference is asymmetric due to the heterogeneity of the two systems. Therefore, we propose the goodput-oriented utility-based transmit power control (GUTPC algorithm for interference mitigation. The feasible condition and the convergence property of GUTPC are investigated, and the choice of the coefficients is discussed for fairness and efficiency. Numerical results demonstrate that GUTPC improves the goodput of the coexisting systems effectively and fairly with saved power.

  13. Field verification of advanced transport models of radionuclides in heterogeneous soils

    International Nuclear Information System (INIS)

    Visser, W.; Meurs, G.A.M.; Weststrate, F.A.

    1991-01-01

    This report deals with a verification study of advanced transport models of radionuclides in heterogeneous soils. The study reported here is the third phase of a research program carried out by Delft Geotechnics concerning the influence of soil heterogeneities on the migration of radionuclides in the soil and soil-water system. Phases 1 and 2 have been reported earlier in the EC Nuclear Science and technology series (EUR 12111 EN, 1989). The verification study involves the predictive modelling of a field tracer experiment carried out by the British Geological Survey (BGS) at Drigg, Cumbria (UK). Conservative (I 131 , Cl-, H 3 ) as well as non-conservative (Co-EDTA) tracers were used. The inverse modelling shows that micro dispersion may be considered as a soil constant related to grainsize. Micro dispersion shows a slow increase with distance from the source. This increase is caused by mass transfer between adjacent layers of different permeability. Macro dispersion is observed when sampling over a larger interval then permitted by the detail with which the heterogeneity is described in the model. The prediction of the migration of radionuclides through heterogeneous soils is possible. The advection dispersion equation seems to be an adequate description of the migration of conservative tracers. The models based on this equation give comparable results on a small field test scale (3.5 m). The prediction of the migration of adsorbing species is more difficult. The mathematical descriptions seem appropriate, but the heterogeneity in soils seems to create a higher order of uncertainty which can not be described as yet with calculation strategies available at this moment

  14. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Markfort, Corey D. [University of Minnesota, Saint Anthony Falls Laboratory, Department of Civil Engineering, Minneapolis, MN (United States); Porte-Agel, Fernando [Ecole Polytechnique Federale de Lausanne (EPFL), ENAC-IIE-WIRE, Wind Engineering and Renewable Energy Laboratory (WIRE), Lausanne (Switzerland)

    2012-05-15

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (x-z) and vertical span-wise planes (y-z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and

  15. Conceptualizing a tool to optimize therapy based on dynamic heterogeneity

    International Nuclear Information System (INIS)

    Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D

    2012-01-01

    Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both ‘large’ and ‘small’ numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. (paper)

  16. Multiscale Characterization of Structural Compositional and Textural Heterogeneity of Nano-porous Geomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hongkyu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-01

    The purpose of the project was to perform multiscale characterization of low permeability rocks to determine the effect of physical and chemical heterogeneity on the poromechanical and flow responses of shales and carbonate rocks with a broad range of physical and chemical heterogeneity . An integrated multiscale imaging of shale and carbonate rocks from nanometer to centimeter scales include s dual focused ion beam - scanning electron microscopy (FIB - SEM) , micro computed tomography (micro - CT) , optical and confocal microscopy, and 2D and 3D energy dispersive spectroscopy (EDS). In addition, mineralogical mapping and backscattered imaging with nanoindentation testing advanced the quantitative evaluat ion of the relationship between material heterogeneity and mechanical behavior. T he spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy were employed as inputs for brittle fracture simulations using a phase field model . Comparison of experimental and numerical simulations reveal ed that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, can yield improvements on the numerical prediction of the mesoscale fracture patterns and hence the macroscopic effective toughness. Overall, a comprehensive framework to evaluate the relationship between mechanical response and micro-lithofacial features can allow us to make more accurate prediction of reservoir performance by developing a multi - scale understanding of poromechanical response to coupled chemical and mechanical interactions for subsurface energy related activities.

  17. Heterogeneity within populations of recombinant Chinese hamster ovary cells expressing human interferon-gamma.

    Science.gov (United States)

    Coppen, S R; Newsam, R; Bull, A T; Baines, A J

    1995-04-20

    The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.

  18. Lipid and protein composition as driving force for multiple sclerosis

    Science.gov (United States)

    Beck, Roy; Shaharabani, Rona

    Physical models and experiments often reduce the number of components aiming to address the fundamental mechanisms. Nevertheless, the inherent heterogeneity is an essential ingredient in the biological context. We present our recent efforts to model and understand the development of multiple sclerosis (MS) from a biophysical perspective. Myelin sheath is a multilamellar complex of various lipids and proteins that surround axons and acts as an insulating layer for proper nerve conduction. In MS the myelin structure is disrupted impairing its function. Previous studies showed that MS is correlated with small lipid composition variation and reduction in the adhesive myelin basic protein. We found that such alterations result in pathological phase transition from a lamellar to inverted hexagonal that involve enhanced local curvature. Similar curvatures are also found in vivo in diseased myelin sheaths. Since the etiology and recovery pathways of MS are currently unclear, these findings delineate novel functional roles to dominant constituents in cytoplasmic myelin sheaths, shed new light on mechanisms disrupting lipid-protein complexes, and suggest new courses for diagnosis and treatment for MS.

  19. Quantifying visual pathway axonal and myelin loss in multiple sclerosis and neuromyelitis optica.

    Science.gov (United States)

    Manogaran, Praveena; Vavasour, Irene M; Lange, Alex P; Zhao, Yinshan; McMullen, Katrina; Rauscher, Alexander; Carruthers, Robert; Li, David K B; Traboulsee, Anthony L; Kolind, Shannon H

    2016-01-01

    The optic nerve is frequently injured in multiple sclerosis and neuromyelitis optica, resulting in visual dysfunction, which may be reflected by measures distant from the site of injury. To determine how retinal nerve fiber layer as a measure of axonal health, and macular volume as a measure of neuronal health are related to changes in myelin water fraction in the optic radiations of multiple sclerosis and neuromyelitis optica participants with and without optic neuritis and compared to healthy controls. 12 healthy controls, 42 multiple sclerosis (16 with optic neuritis), and 10 neuromyelitis optica participants (8 with optic neuritis) were included in this study. Optical coherence tomography assessment involved measurements of the segmented macular layers (total macular, ganglion cell layer, inner plexiform layer, and inner nuclear layer volume) and paripapillary retinal nerve fiber layer thickness. The MRI protocol included a 32-echo T2-relaxation GRASE sequence. Average myelin water fraction values were calculated within the optic radiations as a measure of myelin density. Multiple sclerosis and neuromyelitis optica eyes with optic neuritis history had lower retinal nerve fiber layer thickness, total macular, ganglion cell and inner plexiform layer volumes compared to eyes without optic neuritis history and controls. Inner nuclear layer volume increased in multiple sclerosis with optic neuritis history (mean = 0.99 mm(3), SD = 0.06) compared to those without (mean = 0.97 mm(3), SD = 0.06; p = 0.003). Mean myelin water fraction in the optic radiations was significantly lower in demyelinating diseases (neuromyelitis optica: mean = 0.098, SD = 0.01, multiple sclerosis with optic neuritis history: mean = 0.096, SD = 0.01, multiple sclerosis without optic neuritis history: mean = 0.098, SD = 0.02; F3,55 = 3.35, p = 0.03) compared to controls. Positive correlations between MRI and optical coherence tomography measures were also apparent

  20. Full-Scale Continuous Mini-Reactor Setup for Heterogeneous Grignard Alkylation of a Pharmaceutical Intermediate

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Holm, Thomas; Rahbek, Jesper P.

    2013-01-01

    A reactor setup consisting of two reactors in series has been implemented for a full-scale, heterogeneous Grignard alkylation. Solutions pass from a small filter reactor into a static mixer reactor with multiple side entries, thus combining continuous stirred tank reactor (CSTR) and plug flow...

  1. The S-Layer Glycoprotein of the Crenarchaeote Sulfolobus acidocaldarius Is Glycosylated at Multiple Sites with Chitobiose-Linked N-Glycans

    Directory of Open Access Journals (Sweden)

    Elham Peyfoon

    2010-01-01

    Full Text Available Glycosylation of the S-layer of the crenarchaea Sulfolobus acidocaldarius has been investigated using glycoproteomic methodologies. The mature protein is predicted to contain 31 N-glycosylation consensus sites with approximately one third being found in the C-terminal domain spanning residues L1004-Q1395. Since this domain is rich in Lys and Arg and therefore relatively tractable to glycoproteomic analysis, this study has focused on mapping its N-glycosylation. Our analysis identified nine of the 11 consensus sequence sites, and all were found to be glycosylated. This constitutes a remarkably high glycosylation density in the C-terminal domain averaging one site for each stretch of 30–40 residues. Each of the glycosylation sites observed was shown to be modified with a heterogeneous family of glycans, with the largest having a composition Glc1Man2GlcNAc2 plus 6-sulfoquinovose (QuiS, consistent with the tribranched hexasaccharide previously reported in the cytochrome b558/566 of S. acidocaldarius. S. acidocaldarius is the only archaeal species whose N-glycans are known to be linked via the chitobiose core disaccharide that characterises the N-linked glycans of Eukarya.

  2. Addressing the Externalities from Genetically Modified Pollen Drift on a Heterogeneous Landscape

    Directory of Open Access Journals (Sweden)

    Mattia C. Mancini

    2016-10-01

    Full Text Available Genetically modified (GM crops have single or multiple genes introduced to obtain crop characteristics that cannot be obtained through conventional breeding. Pollen mediated gene flow from GM to non-GM crops causes some crops planted as non-GM to become GM, and this imposes economic losses on farmers who planted a non-GM crop but then have to sell the harvest on a GM market. The economic losses that result when both crops are grown together depend on the institutional arrangements and the type of property rights in place. We analyze how the spatial heterogeneity of a farmer’s fields affects the land allocation between buffers, the GM, and the non-GM crop based on cross-pollination and initial assignment of property rights. Greater spatial heterogeneity reduces the possibility of coexistence of crops on the landscape and increases the economic losses. Buffer zones enforced to reduce cross-pollination result in less coexistence on heterogeneous landscapes.

  3. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    Science.gov (United States)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  4. Heterogeneous catalysis in a micro channel using a layer of carbon nano fibers on the channel wall

    NARCIS (Netherlands)

    Loos, de S.R.A.; Schaaf, van der J.; Croon, de M.H.J.M.; Nijhuis, T.A.; Schouten, J.C.

    2012-01-01

    This paper presents the increase of the overall reaction rate of a heterogeneously catalyzed multi-phase reaction using a carbon nanofiber (CNF) based catalyst with a factor of 3.5–4 compared with an unsupported flat plate catalyst in a microreactor. This was done by quantifying the hydrogen

  5. Mining the Mind Research Network: A Novel Framework for Exploring Large Scale, Heterogeneous Translational Neuroscience Research Data Sources

    Science.gov (United States)

    Bockholt, Henry J.; Scully, Mark; Courtney, William; Rachakonda, Srinivas; Scott, Adam; Caprihan, Arvind; Fries, Jill; Kalyanam, Ravi; Segall, Judith M.; de la Garza, Raul; Lane, Susan; Calhoun, Vince D.

    2009-01-01

    A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining. PMID:20461147

  6. Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources.

    Directory of Open Access Journals (Sweden)

    Henry Jeremy Bockholt

    2010-04-01

    Full Text Available A neuroinformatics (NI system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN, database system has been designed and improved through our experience with 200 research studies and 250 researchers from 7 different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining.

  7. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  8. The role of mechanical heterogeneities during continental breakup: a 3D lithospheric-scale modelling approach

    Science.gov (United States)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2015-04-01

    How and why do continents break? More than two decades of analogue and 2D plane-strain numerical experiments have shown that despite the origin of the forces driving extension, the geometry of continental rifts falls into three categories - or modes: narrow rift, wide rift, or core complex. The mode of extension itself is strongly influenced by the rheology (and rheological behaviour) of the modelled layered system. In every model, an initial thermal or mechanical heterogeneity, such as a weak seed or a notch, is imposed to help localise the deformation and avoid uniform stretching of the lithosphere by pure shear. While it is widely accepted that structural inheritance is a key parameter for controlling rift localisation - as implied by the Wilson Cycle - modelling the effect of lithospheric heterogeneities on the long-term tectonic evolution of an extending plate in full 3D remains challenging. Recent progress in finite-element methods applied to computational tectonics along with the improved accessibility to high performance computers, now enable to switch from plane strain thermo-mechanical experiments to full 3D high-resolution experiments. Here we investigate the role of mechanical heterogeneities on rift opening, linkage and propagation during extension of a layered lithospheric systems with pTatin3d, a geodynamics modeling package utilising the material-point-method for tracking material composition, combined with a multigrid finite-element method to solve heterogeneous, incompressible visco-plastic Stokes problems. The initial model setup consists in a box of 1200 km horizontally by 250 km deep. It includes a 35 km layer of continental crust, underlaid by 85 km of sub-continental lithospheric mantle, and an asthenospheric mantle. Crust and mantle have visco-plastic rheologies with a pressure dependent yielding, which includes strain weakening, and a temperature, stress, strain-rate-dependent viscosity based on wet quartzite rheology for the crust, and wet

  9. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    Science.gov (United States)

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  10. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  11. Surface modification of upconverting nanoparticles by layer-by-layer assembled polyelectrolytes and metal ions.

    Science.gov (United States)

    Palo, Emilia; Salomäki, Mikko; Lastusaari, Mika

    2017-12-15

    Modificating and protecting the upconversion luminescence nanoparticles is important for their potential in various applications. In this work we demonstrate successful coating of the nanoparticles by a simple layer-by-layer method using negatively charged polyelectrolytes and neodymium ions. The layer fabrication conditions such as number of the bilayers, solution concentrations and selected polyelectrolytes were studied to find the most suitable conditions for the process. The bilayers were characterized and the presence of the desired components was studied and confirmed by various methods. In addition, the upconversion luminescence of the bilayered nanoparticles was studied to see the effect of the surface modification on the overall intensity. It was observed that with selected deposition concentrations the bilayer successfully shielded the particle resulting in stronger upconversion luminescence. The layer-by-layer method offers multiple possibilities to control the bilayer growth even further and thus gives promises that the use of upconverting nanoparticles in applications could become even easier with less modification steps in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A numerical two layer model for blood oxygenation in lungs

    International Nuclear Information System (INIS)

    Aminatai, A.

    2001-01-01

    In the modelling of the simultaneous transport of O 2 and CO 2 in the pulmonary circulation described in our earlier studies, the blood has been treated as a homogeneous layer of haemoglobin solution. Since the size of the erythrocyte is not negligible in comparison with that of the capillary, the blood can no longer be considered as a homogeneous fluid and hence, It is worthwhile to consider the blood flow as a two-phase flow consisting of cells and plasma. In the present study, the heterogeneous nature of blood has been proposed by considering the axial train model for the flow [whitmore (1967)], in order to analyze the effect of cell free plasma layer on the process of blood oxygenation in pulmonary capillaries. The proposed model consists of a core of suspended erythrocytes surrounded by a cell free plasma layer near the wall. The coupled system of convective diffusion equaions together with the physiologically relevant boundary, entrance and interface conditions is solved numerically by a four-point semi-implicit scheme to gether with a fixed point iterative technique. The distance traversed by the blood before getting fully oxygenated is computed. It is shown that the core haematocrit and the thickness of the cell depleted layer affect the oxygenation process significantly. It is found that (i) oxygen takes longest and carbondioxide is the fastest to attain equilibraton, (ii) the blood is completely oxygenated within one-fifth part of its transit and (iii) the rate of oxygenation is smaller in case of homogeneous model than that in heterogenous model in the capillary. Finally, the effect of various physiological parameters on the rate of oxygenation has been examined

  13. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  14. Use of Graph Database for the Integration of Heterogeneous Biological Data.

    Science.gov (United States)

    Yoon, Byoung-Ha; Kim, Seon-Kyu; Kim, Seon-Young

    2017-03-01

    Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.

  15. Modelling Preference Heterogeneity for Theatre Tickets

    DEFF Research Database (Denmark)

    Baldin, Andrea; Bille, Trine

    This paper analyzes the behavioural choice for theatre tickets using a rich dataset for 2010-2013 from the sale system of the Royal Danish National Theatre. A consumer who decides to attend a theater production faces multiple sources of price variation that depends on: socio-economic characterist......This paper analyzes the behavioural choice for theatre tickets using a rich dataset for 2010-2013 from the sale system of the Royal Danish National Theatre. A consumer who decides to attend a theater production faces multiple sources of price variation that depends on: socio......-economic characteristics, quality of the seat, day of the performance and timing of purchase. Except for the first case, factors of price differentiation involves a choice by the consumer among different ticket alternatives. Two modelling approaches, namely multinomial logit (with socio-demographic characteristics......) and latent class are proposed in order to model ticket purchase behaviour. These models allow us explicitly to take into account consumers' preference heterogeneity with respect to the attributes associated to each ticket alternative In addition, the distribution of the willingness-to-pay (WTP) of choice...

  16. Semantic distributed resource discovery for multiple resource providers

    NARCIS (Netherlands)

    Pittaras, C.; Ghijsen, M.; Wibisono, A.; Grosso, P.; van der Ham, J.; de Laat, C.

    2012-01-01

    An emerging modus operandi among providers of cloud infrastructures is the one where they share and combine their heterogenous resources to offer end user services tailored to specific scientific and business needs. A challenge to overcome is the discovery of suitable resources among these multiple

  17. Effect of Coatings on the Uptake Rate and HONO Yield in Heterogeneous Reaction of Soot with NO2

    Science.gov (United States)

    Cruz-Quiñones, M.; Khalizov, A. F.; Zhang, R.

    2009-12-01

    Heterogeneous reaction of nitrogen dioxide on carbon soot aerosols has been suggested as a possible source of nighttime nitrous acid (HONO) in atmosphere boundary layer. Available laboratory data show significant variability in the measured reaction probabilities and HONO yields, making it difficult to asses the atmospheric significance of this process. Moreover, little is known of how aging of soot aerosol through internal mixing with other atmospheric trace constituents will affect the heterogeneous reactivity and HONO production. In this work, the heterogeneous reaction of NO2 on fresh and aged soot films leading to HONO formation was studied through a series of kinetic uptake experiments and HONO yield measurements. Soot samples were prepared by incomplete combustion of propane and kerosene fuels under lean and rich flame conditions. Experiments were performed in a low-pressure, fast-flow reactor coupled to a chemical ionization mass spectrometer (CIMS), using atmospheric-level NO2 concentrations. Heterogeneous uptake coefficients, γ(geom) and γ(BET), were calculated using geometric and internal BET soot surface areas, respectively. The uptake coefficient and the HONO yield depend on the type of fuel and combustion regime and are the highest for soot samples prepared using rich kerosene flame. Although, the internal surface area of soot measured by BET method is a factor of 50 to 500 larger than the geometric surface area, only the top soot layers are involved in heterogeneous reaction with NO2 as follows from the observed weak dependence of γ(geom) and decrease in γ(BET) with increasing sample mass. Heating the soot samples before exposure to NO2 increases the BET surface area, the HONO yield, and the NO2 uptake coefficient due to the removal of the organic fraction from the soot backbone that unblocks active sites and makes them accessible for physical adsorption and chemical reactions. Our results support the oxidation-reduction mechanism involving

  18. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    Science.gov (United States)

    Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.

    2014-10-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the

  19. HETEROGENEOUS REBURNING BY MIXED FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  20. DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer.

    Science.gov (United States)

    Saha, Abhijoy; Banerjee, Sayantan; Kurtek, Sebastian; Narang, Shivali; Lee, Joonsang; Rao, Ganesh; Martinez, Juan; Bharath, Karthik; Rao, Arvind U K; Baladandayuthapani, Veerabhadran

    2016-01-01

    Tumor heterogeneity is a crucial area of cancer research wherein inter- and intra-tumor differences are investigated to assess and monitor disease development and progression, especially in cancer. The proliferation of imaging and linked genomic data has enabled us to evaluate tumor heterogeneity on multiple levels. In this work, we examine magnetic resonance imaging (MRI) in patients with brain cancer to assess image-based tumor heterogeneity. Standard approaches to this problem use scalar summary measures (e.g., intensity-based histogram statistics) that do not adequately capture the complete and finer scale information in the voxel-level data. In this paper, we introduce a novel technique, DEMARCATE (DEnsity-based MAgnetic Resonance image Clustering for Assessing Tumor hEterogeneity) to explore the entire tumor heterogeneity density profiles (THDPs) obtained from the full tumor voxel space. THDPs are smoothed representations of the probability density function of the tumor images. We develop tools for analyzing such objects under the Fisher-Rao Riemannian framework that allows us to construct metrics for THDP comparisons across patients, which can be used in conjunction with standard clustering approaches. Our analyses of The Cancer Genome Atlas (TCGA) based Glioblastoma dataset reveal two significant clusters of patients with marked differences in tumor morphology, genomic characteristics and prognostic clinical outcomes. In addition, we see enrichment of image-based clusters with known molecular subtypes of glioblastoma multiforme, which further validates our representation of tumor heterogeneity and subsequent clustering techniques.

  1. On efficiently computing multigroup multi-layer neutron reflection and transmission conditions

    International Nuclear Information System (INIS)

    Abreu, Marcos P. de

    2007-01-01

    In this article, we present an algorithm for efficient computation of multigroup discrete ordinates neutron reflection and transmission conditions, which replace a multi-layered boundary region in neutron multiplication eigenvalue computations with no spatial truncation error. In contrast to the independent layer-by-layer algorithm considered thus far in our computations, the algorithm here is based on an inductive approach developed by the present author for deriving neutron reflection and transmission conditions for a nonactive boundary region with an arbitrary number of arbitrarily thick layers. With this new algorithm, we were able to increase significantly the computational efficiency of our spectral diamond-spectral Green's function method for solving multigroup neutron multiplication eigenvalue problems with multi-layered boundary regions. We provide comparative results for a two-group reactor core model to illustrate the increased efficiency of our spectral method, and we conclude this article with a number of general remarks. (author)

  2. Molecular Heterogeneity in Primary Breast Carcinomas and Axillary Lymph Node Metastases Assessed by Genomic Fingerprinting Analysis

    Science.gov (United States)

    Ellsworth, Rachel E; Toro, Allyson L; Blackburn, Heather L; Decewicz, Alisha; Deyarmin, Brenda; Mamula, Kimberly A; Costantino, Nicholas S; Hooke, Jeffrey A; Shriver, Craig D; Ellsworth, Darrell L

    2015-01-01

    Molecular heterogeneity within primary breast carcinomas and among axillary lymph node (LN) metastases may impact diagnosis and confound treatment. In this study, we used short tandem repeated sequences to assess genomic heterogeneity and to determine hereditary relationships among primary tumor areas and regional metastases from 30 breast cancer patients. We found that primary carcinomas were genetically heterogeneous and sampling multiple areas was necessary to adequately assess genomic variability. LN metastases appeared to originate at different time periods during disease progression from different sites of the primary tumor and the extent of genomic divergence among regional metastases was associated with a less favorable patient outcome (P = 0.009). In conclusion, metastasis is a complex process influenced by primary tumor heterogeneity and variability in the timing of dissemination. Genomic variation in primary breast tumors and regional metastases may negatively impact clinical diagnostics and contribute to therapeutic resistance. PMID:26279627

  3. Molecular Heterogeneity in Primary Breast Carcinomas and Axillary Lymph Node Metastases Assessed by Genomic Fingerprinting Analysis

    Directory of Open Access Journals (Sweden)

    Rachel E. Ellsworth

    2015-01-01

    Full Text Available Molecular heterogeneity within primary breast carcinomas and among axillary lymph node (LN metastases may impact diagnosis and confound treatment. In this study, we used short tandem repeated sequences to assess genomic heterogeneity and to determine hereditary relationships among primary tumor areas and regional metastases from 30 breast cancer patients. We found that primary carcinomas were genetically heterogeneous and sampling multiple areas was necessary to adequately assess genomic variability. LN metastases appeared to originate at different time periods during disease progression from different sites of the primary tumor and the extent of genomic divergence among regional metastases was associated with a less favorable patient outcome ( P = 0.009. In conclusion, metastasis is a complex process influenced by primary tumor heterogeneity and variability in the timing of dissemination. Genomic variation in primary breast tumors and regional metastases may negatively impact clinical diagnostics and contribute to therapeutic resistance.

  4. Multi-Layered Effects of Fe on EMI Shielding of Sn-Al Hotel Architectural Powder

    Directory of Open Access Journals (Sweden)

    Hung Fei-Shuo

    2016-01-01

    Full Text Available No evident effect in shielding efficiency is observed when the electromagnetic wave-absorbing coating materials were applied in single layers because of the dispersing nature of the powder. When increased to two-layer coating, shielding effects were evident at both high and low frequencies, with greater shielding efficiency at low frequencies over high frequencies. It is worth noting that when increased to three-layer coating, as the weight percentage of powdered Fe increased from 5% to 8% , the shielding efficiency of the powdered-Fe composite material was raised to −35 dB This shows that, as the weight percentage gets higher, the powder shows the resonance phenomenon of permeability spectrum, and at high frequencies, the electromagnetic wave shielding efficiency of the composite materials were greatly increased. As the weight percentage of the powered Fe were increased to 8% , we were unable to spread the powder evenly in the epoxy because of the dispersing characteristic in the electromagnetic properties of Fe and the anisotropic and heterogeneous nature of a powered composite material. During production, the powder aggregates often resulted in greater heterogeneity in the materials and consequently, lowered shielding efficiency at 3GHz.

  5. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses

  6. Quantum key distribution network for multiple applications

    Science.gov (United States)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  7. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    International Nuclear Information System (INIS)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent

  8. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    Energy Technology Data Exchange (ETDEWEB)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent.

  9. Persistence of Immunopathological and Radiological Traits in Multiple Sclerosis

    NARCIS (Netherlands)

    Koenig, Fatima B.; Wildemann, Brigitte; Nessler, Stefan; Zhou, Dun; Hemmer, Bernhard; Metz, Imke; Hartung, Hans-Peter; Kieseier, Bernd C.; Brueck, Wolfgang

    Background: Multiple sclerosis (MS) is a heterogeneous autoimmune disease of the central nervous system. The identification of 4 different immunopathological subtypes of MS raises the question of whether these subtypes represent different patient subgroups that can be distinguished according to

  10. Multiplicity: An Explorative Interview Study on Personal Experiences of People with Multiple Selves.

    Science.gov (United States)

    Ribáry, Gergő; Lajtai, László; Demetrovics, Zsolt; Maraz, Aniko

    2017-01-01

    Background and aims: Personality psychology research relies on the notion that humans have a single self that is the result of the individual's thoughts, feelings, and behaviors that can be reliably described (i.e., through traits). People who identify themselves as "multiple" have a system of multiple or alternative, selves, that share the same physical body. This is the first study to explore the phenomenon of multiplicity by assessing the experiences of people who identify themselves as "multiple." Methods: First, an Internet forum search was performed using the terms "multiplicity" and "multiple system." Based on that search, people who identified themselves as multiple were contacted. Interviews were conducted by a consultant psychiatrist, which produced six case vignettes. Results: Multiplicity is discussed on Twitter, Tumblr, Google+ and several other personal websites, blogs, and forums maintained by multiples. According to the study's estimates, there are 200-300 individuals who participate in these forums and believe they are multiple. Based on the six interviews, it appears that multiples have several selves who are relatively independent of each other and constitute the personality's system. Each "resident person" or self, has their own unique behavioral pattern, which is triggered by different situations. However, multiples are a heterogeneous group in terms of their system organization, memory functions, and control over switching between selves. Conclusions: Multiplicity can be placed along a continuum between identity disturbance and dissociative identity disorder (DID), although most systems function relatively well in everyday life. Further research is needed to explore this phenomenon, especially in terms of the extent to which multiplicity can be regarded as a healthy way of coping.

  11. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  12. Modeling fine-scale geological heterogeneity-examples of sand lenses in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio

    2013-01-01

    that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality......Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated...... on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images...

  13. Emerging heterogeneous integrated photonic platforms on silicon

    Directory of Open Access Journals (Sweden)

    Fathpour Sasan

    2015-05-01

    Full Text Available Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths and feasibility of electrically-injected lasers (at least at room temperature. More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for

  14. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  15. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes

    Science.gov (United States)

    Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.

    2014-12-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence

  16. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso Marina, M.; Kaiser Ruiz del Olmo, F.

    1977-01-01

    The influence of the temperature at 65 degree centigree and 120 degree centigree on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, de phenyl glyoxal and 2,3-tetramethylene-4-pantothenyl-7-oxo diacetin.The method employed was the heterogeneous catalytic exchange between tritiated water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolytic effects on labelled benzoic acid were also considered. (Author) 9 refs

  17. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions.

    Science.gov (United States)

    Hayat, Tasawar; Haider, Farwa; Muhammad, Taseer; Alsaedi, Ahmed

    2017-01-01

    Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field.

  18. Multi-layered Chalcogenides with potential for magnetism and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: lil2@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Parker, David S. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cruz, Clarina R. dela [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Sefat, Athena S., E-mail: sefata@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-12-15

    Highlights: • A comprehensive study on multi-layered thallium copper chalcogenides TlCu{sub 2n}Ch{sub n+1}. • All the TlCu{sub 2n}Ch{sub n+1} exhibit metallic behaviors with no long-range magnetism. • Calculations suggest a lack of Fermi-level spectral weight for magnetic instability. • Our results suggest a likelihood of magnetism for multiple structural layers with Fe. - Abstract: Layered thallium copper chalcogenides can form single, double, or triple layers of Cu–Ch separated by Tl sheets. Here we report on the preparation and properties of Tl-based materials of TlCu{sub 2}Se{sub 2}, TlCu{sub 4}S{sub 3}, TlCu{sub 4}Se{sub 3} and TlCu{sub 6}S{sub 4}. Having no long-range magnetism for these materials is quite surprising considering the possibilities of inter- and intra-layer exchange interactions through Cu 3d, and we measure by magnetic susceptibility and confirm by neutron diffraction. First principles density-functional theory calculations for both the single-layer TlCu{sub 2}Se{sub 2} (isostructural to the ‘122’ iron-based superconductors) and the double-layer TlCu{sub 4}Se{sub 3} suggest a lack of Fermi-level spectral weight that is needed to drive a magnetic or superconducting instability. However, for multiple structural layers with Fe, there is much greater likelihood for magnetism and superconductivity.

  19. Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite.

    Science.gov (United States)

    Guimarães, Vanessa; Rodríguez-Castellón, Enrique; Algarra, Manuel; Rocha, Fernando; Bobos, Iuliu

    2016-11-05

    The UO2(2+) adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I=0.02M) and pH 6 (I=0.2M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8nm (sample PS2), to 5.1nm (sample PS3) and, to 7.4nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO2(2+) sorption on smectite. The amount of UO2(2+) adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8±0.3 and 382.2±0.3eV, assigned to hydrated UO2(2+) adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f7/2 peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3±0.3 and 381.8±0.3eV assigned to AlOUO2(+) and SiOUO2(+) surface species were observed at pH 6. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis.

    Science.gov (United States)

    Nelson, Ronald M; Pettersson, Mats E; Li, Xidan; Carlborg, Örjan

    2013-01-01

    Here, we describe the results from the first variance heterogeneity Genome Wide Association Study (VGWAS) on yeast expression data. Using this forward genetics approach, we show that the genetic regulation of gene-expression in the budding yeast, Saccharomyces cerevisiae, includes mechanisms that can lead to variance heterogeneity in the expression between genotypes. Additionally, we performed a mean effect association study (GWAS). Comparing the mean and variance heterogeneity analyses, we find that the mean expression level is under genetic regulation from a larger absolute number of loci but that a higher proportion of the variance controlling loci were trans-regulated. Both mean and variance regulating loci cluster in regulatory hotspots that affect a large number of phenotypes; a single variance-controlling locus, mapping close to DIA2, was found to be involved in more than 10% of the significant associations. It has been suggested in the literature that variance-heterogeneity between the genotypes might be due to genetic interactions. We therefore screened the multi-locus genotype-phenotype maps for several traits where multiple associations were found, for indications of epistasis. Several examples of two and three locus genetic interactions were found to involve variance-controlling loci, with reports from the literature corroborating the functional connections between the loci. By using a new analytical approach to re-analyze a powerful existing dataset, we are thus able to both provide novel insights to the genetic mechanisms involved in the regulation of gene-expression in budding yeast and experimentally validate epistasis as an important mechanism underlying genetic variance-heterogeneity between genotypes.

  1. Spectral-element simulation of two-dimensional elastic wave propagation in fully heterogeneous media on a GPU cluster

    Science.gov (United States)

    Rudianto, Indra; Sudarmaji

    2018-04-01

    We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.

  2. Seismic modeling of multidimensional heterogeneity scales of Mallik gas hydrate reservoirs, Northwest Territories of Canada

    Science.gov (United States)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2009-07-01

    In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.

  3. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies

    Science.gov (United States)

    Stewart, Heather A.; Jamieson, Alan J.

    2018-02-01

    The hadal zone largely comprises a series of subduction trenches that do not form part of the continental shelf-slope rise to abyssal plain continuum. Instead they form geographically isolated clusters of deep-sea (6000-11,000 m water depth) environments. There is a growing realization in hadal science that ecological patterns and processes are not driven solely by responses to hydrostatic pressure, with comparable levels of habitat heterogeneity as observed in other marine biozones. Furthermore, this heterogeneity can be expressed at multiple scales from inter-trench levels (degrees of geographical isolation, and biochemical province), to intra-trench levels (variation between trench flanks and axis), topographical features within the trench interior (sedimentary basins, ridges, escarpments, 'deeps', seamounts) to the substrate of the trench floor (seabed-sediment composition, mass movement deposits, bedrock outcrop). Using best available bathymetry data combined with the largest lander-derived imaging dataset that spans the full depth range of three hadal trenches (including adjacent slopes); the Mariana, Kermadec and New Hebrides trenches, the topographic variability, fine-scale habitat heterogeneity and distribution of seabed sediments of these three trenches have been assessed for the first time. As well as serving as the first descriptive study of habitat heterogeneity at hadal depths, this study also provides guidance for future hadal sampling campaigns taking into account geographic isolation, total trench particulate organic matter flux, maximum water depth and area.

  4. Pinning of Josephson vortex chain in periodically heterogeneous junctions: theory and experiment

    International Nuclear Information System (INIS)

    Malomed, B.A.; Ustinov, A.V.

    1989-01-01

    Critical values of the density of extrinsic current of rigid Josephson vortex chain depinning in a long Josephson junction are calculated in terms of the perturbation theory. The dynamics of the chain is considered. In particular, a minimum value of the current density is estimated which permits the chain free motion through the transition on dissipation. The dependence of critical current, Jc, on external magnetic field H is measured for long Josephson junctions Nb-NbO x -Pb with artificial spatially periodic heterogeneities of dielectric barrier. For multiple values of H, the curve Jc(H) is found to display some peaks which, by the theory, are responsible for by an increase in the force of Josephson vortex chain and the heterogeneity lattice are commensurate

  5. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  6. Robustness Assessment of Urban Road Network with Consideration of Multiple Hazard Events.

    Science.gov (United States)

    Zhou, Yaoming; Sheu, Jiuh-Biing; Wang, Junwei

    2017-08-01

    Robustness measures a system's ability of being insensitive to disturbances. Previous studies assessed the robustness of transportation networks to a single disturbance without considering simultaneously happening multiple events. The purpose of this article is to address this problem and propose a new framework to assess the robustness of an urban transportation network. The framework consists of two layers. The upper layer is to define the robustness index based on the impact evaluation in different scenarios obtained from the lower layer, whereas the lower layer is to evaluate the performance of each hypothetical disrupted road network given by the upper layer. The upper layer has two varieties, that is, robustness against random failure and robustness against intentional attacks. This robustness measurement framework is validated by application to a real-world urban road network in Hong Kong. The results show that the robustness of a transport network with consideration of multiple events is quite different from and more comprehensive than that with consideration of only a single disruption. We also propose a Monte Carlo method and a heuristic algorithm to handle different scenarios with multiple hazard events, which is proved to be quite efficient. This methodology can also be applied to conduct risk analysis of other systems where multiple failures or disruptions exist. © 2017 Society for Risk Analysis.

  7. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  8. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert; Agersted, Mette Dalgaard; Kaartvedt, Stein; Mø hl, Malene; Mø ller, Eva Friis; Enghoff-Poulsen, Sø ren; Paulsen, Maria Lund; Solberg, Ingrid; Tang, Kam W.; Tonnesson, Kajsa; Raitsos, Dionysios E.; Nielsen, Torkel Gissel

    2015-01-01

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  9. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert

    2015-06-11

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  10. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    DEFF Research Database (Denmark)

    Calbet, Albert; Agersted, Mette Dalgaard; Kaartvedt, Stein

    2015-01-01

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform...... upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment...... of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation...

  11. A Bio-Inspired QoS-Oriented Handover Model in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2014-01-01

    Full Text Available We propose a bio-inspired model for making handover decision in heterogeneous wireless networks. It is based on an extended attractor selection model, which is biologically inspired by the self-adaptability and robustness of cellular response to the changes in dynamic environments. The goal of the proposed model is to guarantee multiple terminals’ satisfaction by meeting the QoS requirements of those terminals’ applications, and this model also attempts to ensure the fairness of network resources allocation, in the meanwhile, to enable the QoS-oriented handover decision adaptive to dynamic wireless environments. Some numerical simulations are preformed to validate our proposed bio-inspired model in terms of adaptive attractor selection in different noisy environments. And the results of some other simulations prove that the proposed handover scheme can adapt terminals’ network selection to the varying wireless environment and benefits the QoS of multiple terminal applications simultaneously and automatically. Furthermore, the comparative analysis also shows that the bio-inspired model outperforms the utility function based handover decision scheme in terms of ensuring a better QoS satisfaction and a better fairness of network resources allocation in dynamic heterogeneous wireless networks.

  12. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2010-08-01

    that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.

  13. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  14. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun; Ratnarajah, Tharm; Wong, Kaikit; Alouini, Mohamed-Slim

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single

  15. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  16. Deciphering cancer heterogeneity: the biological space

    Directory of Open Access Journals (Sweden)

    Stephanie eRoessler

    2014-04-01

    Full Text Available Most lethal solid tumors including hepatocellular carcinoma (HCC are considered incurable due to extensive heterogeneity in clinical presentation and tumor biology. Tumor heterogeneity may result from different cells of origin, patient ethnicity, etiology, underlying disease and diversity of genomic and epigenomic changes which drive tumor development. Cancer genomic heterogeneity thereby impedes treatment options and poses a significant challenge to cancer management. Studies of the HCC genome have revealed that although various genomic signatures identified in different HCC subgroups share a common prognosis, each carries unique molecular changes which are linked to different sets of cancer hallmarks whose misregulation has been proposed by Hanahan and Weinberg to be essential for tumorigenesis. We hypothesize that these specific sets of cancer hallmarks collectively occupy different tumor biological space representing the misregulation of different biological processes. In principle, a combination of different cancer hallmarks can result in new convergent molecular networks that are unique to each tumor subgroup and represent ideal druggable targets. Due to the ability of the tumor to adapt to external factors such as treatment or changes in the tumor microenvironment, the tumor biological space is elastic. Our ability to identify distinct groups of cancer patients with similar tumor biology who are most likely to respond to a specific therapy would have a significant impact on improving patient outcome. It is currently a challenge to identify a particular hallmark or a newly emerged convergent molecular network for a particular tumor. Thus, it is anticipated that the integration of multiple levels of data such as genomic mutations, somatic copy number aberration, gene expression, proteomics, and metabolomics, may help us grasp the tumor biological space occupied by each individual, leading to improved therapeutic intervention and outcome.

  17. Executive Functioning Heterogeneity in Pediatric ADHD.

    Science.gov (United States)

    Kofler, Michael J; Irwin, Lauren N; Soto, Elia F; Groves, Nicole B; Harmon, Sherelle L; Sarver, Dustin E

    2018-04-28

    Neurocognitive heterogeneity is increasingly recognized as a valid phenomenon in ADHD, with most estimates suggesting that executive dysfunction is present in only about 33%-50% of these children. However, recent critiques question the veracity of these estimates because our understanding of executive functioning in ADHD is based, in large part, on data from single tasks developed to detect gross neurological impairment rather than the specific executive processes hypothesized to underlie the ADHD phenotype. The current study is the first to comprehensively assess heterogeneity in all three primary executive functions in ADHD using a criterion battery that includes multiple tests per construct (working memory, inhibitory control, set shifting). Children ages 8-13 (M = 10.37, SD = 1.39) with and without ADHD (N = 136; 64 girls; 62% Caucasian/Non-Hispanic) completed a counterbalanced series of executive function tests. Accounting for task unreliability, results indicated significantly improved sensitivity and specificity relative to prior estimates, with 89% of children with ADHD demonstrating objectively-defined impairment on at least one executive function (62% impaired working memory, 27% impaired inhibitory control, 38% impaired set shifting; 54% impaired on one executive function, 35% impaired on two or all three executive functions). Children with working memory deficits showed higher parent- and teacher-reported ADHD inattentive and hyperactive/impulsive symptoms (BF 10  = 5.23 × 10 4 ), and were slightly younger (BF 10  = 11.35) than children without working memory deficits. Children with vs. without set shifting or inhibitory control deficits did not differ on ADHD symptoms, age, gender, IQ, SES, or medication status. Taken together, these findings confirm that ADHD is characterized by neurocognitive heterogeneity, while suggesting that contemporary, cognitively-informed criteria may provide improved precision for identifying a

  18. Multiplicity: An Explorative Interview Study on Personal Experiences of People with Multiple Selves

    Directory of Open Access Journals (Sweden)

    Gergő Ribáry

    2017-06-01

    Full Text Available Background and aims: Personality psychology research relies on the notion that humans have a single self that is the result of the individual's thoughts, feelings, and behaviors that can be reliably described (i.e., through traits. People who identify themselves as “multiple” have a system of multiple or alternative, selves, that share the same physical body. This is the first study to explore the phenomenon of multiplicity by assessing the experiences of people who identify themselves as “multiple.”Methods: First, an Internet forum search was performed using the terms “multiplicity” and “multiple system.” Based on that search, people who identified themselves as multiple were contacted. Interviews were conducted by a consultant psychiatrist, which produced six case vignettes.Results: Multiplicity is discussed on Twitter, Tumblr, Google+ and several other personal websites, blogs, and forums maintained by multiples. According to the study's estimates, there are 200–300 individuals who participate in these forums and believe they are multiple. Based on the six interviews, it appears that multiples have several selves who are relatively independent of each other and constitute the personality's system. Each “resident person” or self, has their own unique behavioral pattern, which is triggered by different situations. However, multiples are a heterogeneous group in terms of their system organization, memory functions, and control over switching between selves.Conclusions: Multiplicity can be placed along a continuum between identity disturbance and dissociative identity disorder (DID, although most systems function relatively well in everyday life. Further research is needed to explore this phenomenon, especially in terms of the extent to which multiplicity can be regarded as a healthy way of coping.

  19. Heterogeneous reactions of dioctahedral smectites in illite-smectite and kaolinite-smectite mixed-layers: applications to clay materials for engineered barriers

    International Nuclear Information System (INIS)

    Meunier, A.; Proust, D.; Beaufort, D.; Lajudie, A.; Petit, J.-C.

    1992-01-01

    The clay materials selected for use in the engineered barriers of the French nuclear waste isolation programme are mainly composed of dioctahedral smectite, either bentonite of Wyoming type or kaolinite-smectites most often consist of randomly stacked layers with low and high charges. In the case of the Wyoming-type bentonite, these two differently charged layers do not react in the same way when subjected to hydrothermal alteration. Overall, the low-charge smectite layers react to form high-charge smectite layers + quartz + kaolinite. Then, fixing K ions, the high-charge smectite layers are transformed into illite-smectite mixed-layers (I/S) when the temperature conditions increase. A symmetrical process is observed in natural or experimental hydrothermal conditions when the high-charge smectite layers of I/S minerals react with quartz and/or kaolinite to produce low-charge smectite layers. The chemical properties of the bentonite-engineered barriers clearly depend on the low charge/high charge smectite layer proportion, which is in turn controlled by the temperature-dependent reactions in the vicinity of the waste disposal. Although there are fewer published data on the kaolinite-smectite mixed-layered minerals (K/S), a similar low charge-high charge reaction appears to affect their smectite component. The experimental alteration of K/S leads to the formation of a low-charge beidellite with an increase in the cation-exchange capacity and in the expandability of the clay material. Thus, the properties of the engineered barrier seems to be improved after hydrothermal alteration. (Author)

  20. Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets

    Science.gov (United States)

    Zhang, Bo; Wang, Jianjun; Liu, Zhiping; Zhang, Xianren

    2014-01-01

    The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width. PMID:25059292

  1. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  2. Luminance mechanisms in green organic light-emitting devices fabricated utilizing tris(8-hydroxyquinoline)aluminum/4,7-diphenyl-1, 10-phenanthroline multiple heterostructures acting as an electron transport layer.

    Science.gov (United States)

    Choo, Dong Chul; Seo, Su Yul; Kim, Tae Whan; Jin, You Young; Seo, Ji Hyun; Kim, Young Kwan

    2010-05-01

    The electrical and the optical properties in green organic light-emitting devices (OLEDs) fabricated utilizing tris(8-hydroxyquinoline)aluminum (Alq3)/4,7-diphenyl-1,10-phenanthroline (BPhen) multiple heterostructures acting as an electron transport layer (ETL) were investigated. The operating voltage of the OLEDs with a multiple heterostructure ETL increased with increasing the number of the Alq3/BPhen heterostructures because more electrons were accumulated at the Alq3/BPhen heterointerfaces. The number of the leakage holes existing in the multiple heterostructure ETL of the OLEDs at a low voltage range slightly increased due to an increase of the internal electric field generated from the accumulated electrons at the Alq3/BPhen heterointerface. The luminance efficiency of the OLEDs with a multiple heterostructure ETL at a high voltage range became stabilized because the increase of the number of the heterointerface decreased the quantity of electrons accumulated at each heterointerface.

  3. Operating System Abstraction Layer (OSAL)

    Science.gov (United States)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  4. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    Science.gov (United States)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  5. Heterogeneous reconfigurable processors for real-time baseband processing from algorithm to architecture

    CERN Document Server

    Zhang, Chenxin; Öwall, Viktor

    2016-01-01

    This book focuses on domain-specific heterogeneous reconfigurable architectures, demonstrating for readers a computing platform which is flexible enough to support multiple standards, multiple modes, and multiple algorithms. The content is multi-disciplinary, covering areas of wireless communication, computing architecture, and circuit design. The platform described provides real-time processing capability with reasonable implementation cost, achieving balanced trade-offs among flexibility, performance, and hardware costs. The authors discuss efficient design methods for wireless communication processing platforms, from both an algorithm and architecture design perspective. Coverage also includes computing platforms for different wireless technologies and standards, including MIMO, OFDM, Massive MIMO, DVB, WLAN, LTE/LTE-A, and 5G. •Discusses reconfigurable architectures, including hardware building blocks such as processing elements, memory sub-systems, Network-on-Chip (NoC), and dynamic hardware reconfigur...

  6. WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI

    International Nuclear Information System (INIS)

    Gensheimer, M; Trister, A; Ermoian, R; Hawkins, D

    2014-01-01

    Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segments at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was

  7. The human in multiple, hybrid topologies

    DEFF Research Database (Denmark)

    Svabo, Connie

    hybrid associations with a museum exhibition, fellow visitors and portable, mediating technologies such as exercise pamphlets, mobile phone cameras and animal costumes. Museum visitors couple up with various entities and participate in multiple enactments; they associate and dissociate, and thus......Based on ethnographic fieldwork at a modern Danish museum of natural history, and inspired by the philosophical work of Michel Serres and STS scholars Bruno Latour, John Law, Annemarie Mol and Mike Michael, this paper explores the shifting and morphing of museum visitors as they engage in multiple...... constitute shifting fluid and flickering human hybrid topologies. The ethnography of hybrid, morphing museum visitors is related to literature on the relations between people and places. Multiplicity-oriented and heterogeneous ways of conceptualizing the human subject are considered for their implications...

  8. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  9. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T

    1996-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  10. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    Science.gov (United States)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water

  11. Coexistence of equilibria in a New Keynesian model with heterogeneous beliefs

    International Nuclear Information System (INIS)

    Agliari, Anna; Pecora, Nicolò; Spelta, Alessandro

    2015-01-01

    The recent macroeconomic literature has been stressing the importance of considering heterogeneous expectations while addressing monetary policy. In this paper we consider a standard New Keynesian model, described by a two-dimensional nonlinear map, to analyze the bifurcation structure when agents have heterogeneous expectations and update their beliefs based on past performance. Depending on the degree of reactivity of the monetary policy to inflation and output deviations from the target equilibrium, different kind of dynamics may occur. We find that multiple equilibria and complicated dynamics, associated to codimension-2 bifurcations, may arise even if the monetary policy is set to respond more than point for point to inflation, as the Taylor principle prescribes. We show that if the monetary policy accommodates for a sufficient degree of output stabilization, complicated dynamics can be avoided and the number of coexisting equilibria reduces.

  12. Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia

    Science.gov (United States)

    Putzig, N. E.; Mellon, M. T.

    2005-12-01

    Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.

  13. Genetic heterogeneity of retinitis pigmentosa

    OpenAIRE

    Hartono, Hartono

    2015-01-01

    Genetic heterogeneity is a phenomenon in which a genetic disease can be transmitted by several modes of inheritance. The understanding of genetic heterogeneity is important in giving genetic counselling.The presence of genetic heterogeneity can be explained by the existence of:1.different mutant alleles at a single locus, and2.mutant alleles at different loci affecting the same enzyme or protein, or affecting different enzymes or proteins.To have an overall understanding of genetic heterogene...

  14. Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN).

    Science.gov (United States)

    Kirschner, Andreas; Frishman, Dmitrij

    2008-10-01

    Prediction of beta-turns from amino acid sequences has long been recognized as an important problem in structural bioinformatics due to their frequent occurrence as well as their structural and functional significance. Because various structural features of proteins are intercorrelated, secondary structure information has been often employed as an additional input for machine learning algorithms while predicting beta-turns. Here we present a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN) capable of predicting multiple mutually dependent structural motifs and demonstrate its efficiency in recognizing three aspects of protein structure: beta-turns, beta-turn types, and secondary structure. The advantage of our method compared to other predictors is that it does not require any external input except for sequence profiles because interdependencies between different structural features are taken into account implicitly during the learning process. In a sevenfold cross-validation experiment on a standard test dataset our method exhibits the total prediction accuracy of 77.9% and the Mathew's Correlation Coefficient of 0.45, the highest performance reported so far. It also outperforms other known methods in delineating individual turn types. We demonstrate how simultaneous prediction of multiple targets influences prediction performance on single targets. The MOLEBRNN presented here is a generic method applicable in a variety of research fields where multiple mutually depending target classes need to be predicted. http://webclu.bio.wzw.tum.de/predator-web/.

  15. Hyper-cooling in the nocturnal boundary layer: the Ramdas paradox

    International Nuclear Information System (INIS)

    Mukund, V; Ponnulakshmi, V K; Singh, D K; Subramanian, G; Sreenivas, K R

    2010-01-01

    Characterizing the interaction between turbulence and radiative processes is necessary for understanding the nocturnal atmospheric boundary layer. The subtle nature of the interaction is exemplified in a phenomenon called the 'Ramdas paradox' or the 'lifted temperature minimum' (LTM), involving preferential cooling near the Earth's surface. The prevailing explanation for the LTM (the VSN model, Vasudeva Murthy et al (1993 Phil. Trans. R. Soc. A 344 183-206)) invokes radiative exchange in a homogeneous nocturnal atmosphere to predict a large cooling of the near-surface air layers. It is shown here that the cooling predicted by the VSN model is spurious, and that any preferential cooling can occur only in a heterogeneous atmosphere. The underlying error is fundamental, and occurs to varying degrees in a wide class of radiative models, in a flux-emissivity formulation, the VSN model being a prominent example. We, for the first time, propose the correct flux-emissivity formulation that eliminates spurious cooling. Results from field observations and laboratory experiments presented here, however, show that the near-surface radiative cooling is real; near-surface cooling rates can be orders of magnitude higher than values elsewhere in the boundary layer. The results presented include the dependence of the LTM on turbulence, the surface emissivity and the thermal inertia of the ground. It is proposed that aerosols provide the heterogeneity needed for the preferential cooling mechanism. Turbulence, by determining the aerosol concentration distribution over the relevant length scales, plays a key role in the phenomenon. Experimental evidence is presented to support this hypothesis.

  16. Hyper-cooling in the nocturnal boundary layer: the Ramdas paradox

    Energy Technology Data Exchange (ETDEWEB)

    Mukund, V; Ponnulakshmi, V K; Singh, D K; Subramanian, G; Sreenivas, K R, E-mail: krs@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore (India)

    2010-12-15

    Characterizing the interaction between turbulence and radiative processes is necessary for understanding the nocturnal atmospheric boundary layer. The subtle nature of the interaction is exemplified in a phenomenon called the 'Ramdas paradox' or the 'lifted temperature minimum' (LTM), involving preferential cooling near the Earth's surface. The prevailing explanation for the LTM (the VSN model, Vasudeva Murthy et al (1993 Phil. Trans. R. Soc. A 344 183-206)) invokes radiative exchange in a homogeneous nocturnal atmosphere to predict a large cooling of the near-surface air layers. It is shown here that the cooling predicted by the VSN model is spurious, and that any preferential cooling can occur only in a heterogeneous atmosphere. The underlying error is fundamental, and occurs to varying degrees in a wide class of radiative models, in a flux-emissivity formulation, the VSN model being a prominent example. We, for the first time, propose the correct flux-emissivity formulation that eliminates spurious cooling. Results from field observations and laboratory experiments presented here, however, show that the near-surface radiative cooling is real; near-surface cooling rates can be orders of magnitude higher than values elsewhere in the boundary layer. The results presented include the dependence of the LTM on turbulence, the surface emissivity and the thermal inertia of the ground. It is proposed that aerosols provide the heterogeneity needed for the preferential cooling mechanism. Turbulence, by determining the aerosol concentration distribution over the relevant length scales, plays a key role in the phenomenon. Experimental evidence is presented to support this hypothesis.

  17. Hyper-cooling in the nocturnal boundary layer: the Ramdas paradox

    Science.gov (United States)

    Mukund, V.; Ponnulakshmi, V. K.; Singh, D. K.; Subramanian, G.; Sreenivas, K. R.

    2010-12-01

    Characterizing the interaction between turbulence and radiative processes is necessary for understanding the nocturnal atmospheric boundary layer. The subtle nature of the interaction is exemplified in a phenomenon called the 'Ramdas paradox' or the 'lifted temperature minimum' (LTM), involving preferential cooling near the Earth's surface. The prevailing explanation for the LTM (the VSN model, Vasudeva Murthy et al (1993 Phil. Trans. R. Soc. A 344 183-206)) invokes radiative exchange in a homogeneous nocturnal atmosphere to predict a large cooling of the near-surface air layers. It is shown here that the cooling predicted by the VSN model is spurious, and that any preferential cooling can occur only in a heterogeneous atmosphere. The underlying error is fundamental, and occurs to varying degrees in a wide class of radiative models, in a flux-emissivity formulation, the VSN model being a prominent example. We, for the first time, propose the correct flux-emissivity formulation that eliminates spurious cooling. Results from field observations and laboratory experiments presented here, however, show that the near-surface radiative cooling is real; near-surface cooling rates can be orders of magnitude higher than values elsewhere in the boundary layer. The results presented include the dependence of the LTM on turbulence, the surface emissivity and the thermal inertia of the ground. It is proposed that aerosols provide the heterogeneity needed for the preferential cooling mechanism. Turbulence, by determining the aerosol concentration distribution over the relevant length scales, plays a key role in the phenomenon. Experimental evidence is presented to support this hypothesis.

  18. AC magnetic transport on heterogeneous ferromagnetic wires and tubes

    International Nuclear Information System (INIS)

    Sinnecker, J.P.; Pirota, K.R.; Knobel, M.; Kraus, L.

    2002-01-01

    The AC current density radial distribution is calculated on heterogeneous composite materials with cylindrical geometry. The composites have an inner core and thin outer shell that can be either from the same material (homogenous material like simple wires) or from different materials with different physical properties. The case in which a non-magnetic inner core is surrounded by a magnetic layer, like electrodeposited wires, is mainly studied. The effect of frequency and applied magnetic field is simulated. The current density distribution as a function of frequency and applied field, as well as the total current over the inner core and outer shells are calculated. The results agree substantially well with the experimentally observed data for simple electrodeposited wires

  19. An open, object-based modeling approach for simulating subsurface heterogeneity

    Science.gov (United States)

    Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.

    2017-12-01

    Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.

  20. Multi-layer structure of mid-latitude sporadic-E observed during the SEEK-2 campaign

    Directory of Open Access Journals (Sweden)

    T. Ono

    2005-10-01

    Full Text Available In the mid-latitude ionospheric region, sporadic-E layers (Es layers have often been observed, revealing multiple layers. The Es layers observed during the SEEK-2 rocket campaign showed double electron density peaks; namely, there are stable lower peaks and relatively unstable upper peaks. We examined the effects of wind shear and the electric fields on the generation of the multiple layer structure, in comparison with the electron density profile, the neutral wind, and the DC electric field observed by the S310 rocket experiments. The results showed that the neutral wind shear is mainly responsible for the generation of the lower layer, while the DC electric field makes a significant contribution to the formation of the upper layer. The difference between the lower and upper layers was also explained by the enhanced AC electric field observed at about 103–105 km altitude. The external DC electric field intensity is expected to be ~5 mV/m, which is enough to contribute to generate the Es layers in the ionosphere. Keywords. Ionosphere (Electric fields; Ionospheric irregularities, Mid-latitude ionosphere