WorldWideScience

Sample records for heterogeneous lignocellulosic feedstocks

  1. Lignocellulosic feedstock resource assessment

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  2. Process for purifying lignocellulosic feedstocks

    Gray, Matthew; Matthes, Megan; Nelson, Thomas; Held, Andrew

    2018-01-09

    The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.

  3. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  4. Novel Biocatalytic Platform for Ethanol Production from Lignocellulosic Feedstock

    Chen, Chyi-Shin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tachea, Firehiwot [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gregg, Allison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rolison-Welch, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shirazi, Fatemeh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); He, Qian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sun, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-23

    The goals of the CRADA were achieved by illustrating the scalability of immobilized yeast technology, demonstrating lignocellulosic feedstock consumption by the immobilized cells, and confirming Microvi’s proprietary polymer matrix ethanol toxicity tolerance. We conducted fermentations at 2L and 300L scales. For carbon source, we performed pretreatment and saccharification at 100L scale to produce lignocellulosic sugars with glucose and xylose.

  5. Comparative environmental performance of lignocellulosic ethanol from different feedstocks

    Gonzalez-Garcia, Sara; Moreira, M. Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-09-15

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic raw materials is considered the most potential next generation automotive fuel. In this paper, a Life Cycle Assessment model was developed to evaluate the environmental implications of the production of ethanol from five lignocellulosic materials: alfalfa stems, poplar, Ethiopian mustard, flax shives and hemp hurds and its use in passenger cars. Two ethanol-based fuel applications, E10 (a mixture of 10% ethanol and 90% gasoline by volume) and E85 (85% ethanol and 15% gasoline by volume) were assessed and the results were compared to those of conventional gasoline (CG) in an equivalent car. The environmental performance was assessed in terms of fossil fuels requirements, global warming, photochemical oxidant formation, acidification and eutrophication by means of the Life Cycle Assessment (LCA) methodology in order to identify the best environmental friendly lignocellulosic source. The results show that, compared to CG, life cycle greenhouse gases emissions are lower for etanol blends, specifically up to 145% lower for E85-fueled car derived from Ethiopian mustard. This crop is also the best option in terms of eutrophying emissions regardless the ratio of ethanol in the blend. In the remaining impact categories, other feedstocks are considered beneficial, that is, poplar in the case of photochemical oxidants formation and flax shives for acidification. Concerning fossil fuels requirements, decreases up to 10% and 63% for E10 and E85 derived from hemp hurds and Ethiopian mustard, respectively, were obtained. According to the results, the study clearly demonstrates the importance of using low intensive energy and high biomass yield crops. LCA procedure helps to identify the key areas in the ethanol production life cycle where the researchers and technicians need to work

  6. Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment

    Uihlein, Andreas; Schebek, Liselotte

    2009-01-01

    Biomass is a sustainable alternative to fossil energy carriers which are used to produce fuels, electricity, chemicals, and other goods. At the moment, the main biobased products are obtained by the conversion of biomass to basic products like starch, oil, and cellulose. In addition, some single chemicals and fuels are produced. Presently, concepts of biorefineries which will produce a multitude of biomass-derived products are discussed. Biorefineries are supposed to contribute to a more sustainable resource supply and to a reduction in greenhouse gas emissions. However, biobased products and fuels may also be associated with environmental disadvantages due to, e.g. land use or eutrophication of water. We performed a Life Cycle Assessment of a lignocellulose feedstock biorefinery system and compared it to conventional product alternatives. The biorefinery was found to have the greatest environmental impacts in the three categories: fossil fuel use, respiratory effects, and carcinogenics. The environmental impacts predominantly result from the provision of hydrochloric acid and to a smaller extent also from the provision of process heat. As the final configuration of the biorefinery cannot be determined yet, various variants of the biorefinery system were analysed. The optimum variant (acid and heat recoveries) yields better results than the fossil alternatives, with the total environmental impacts being approx. 41% lower than those of the fossil counterparts. For most biorefinery variants analysed, the environmental performance in some impact categories is better than that of the fossil counterparts while disadvantages can be seen in other categories.

  7. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse.

    In this PhD

  8. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  9. Process Simulation of Biobutanol Production from Lignocellulosic Feedstocks

    Procentese, A.; Guida, T.; Raganati, F.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2014-01-01

    A potential flowsheet to produce butanol production by conversion of a lignocellulosic biomass has been simulated by means of the software Aspen Plus®. The flowsheet has included upstream, fermentation, and downstream sections and the attention has been focused on the upstream section. The proposed

  10. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, d...... methane potential of switchgrass. Transactions of the ASABE. 53, 1921-1927 (2010) [3] Jurado, E., Gavala., H.N., Skiadas, I.V., :Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking. Environmental Tecnology. 34(13-14), 2069-2075 (2013)...

  11. Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

    Shi, Jian; George, Kevin W.; Sun, Ning; He, Wei; Li, Chenlin; Stavila, Vitalie; Keasling, Jay D.; Simmons, Blake A.; Lee, Taek Soon; Singh, Seema

    2015-02-28

    In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.

  12. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  13. Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks

    McAloon, A.; Taylor, F.; Yee, W.; Ibsen, K.; Wooley, R.

    2000-10-25

    The mature corn-to-ethanol industry has many similarities to the emerging lignocellulose-to-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the USDA-ARS and DOE/NREL looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood. Ass umptions about yield and design improvements possible from continued research were made for the emerging lignocellulose process. In order to compare the lignocellulose-to-ethanol process costs with the commercial corn-to-ethanol costs, it was assumed that the lignocellulose plant was an Nth generation plant, built after the industry had been sufficiently established to eliminate first-of-a-kind costs. This places the lignocellulose plant costs on a similar level with the current, established corn ethanol industry, whose costs are well known. The resulting costs of producing 25 million annual gallons of fuel ethanol from each process were determined. The figure below shows the production cost breakdown for each process. The largest cost contributor in the corn starch process is the feedstock; for the lignocellulosic process it is the capital cost, which is represented by depreciation cost on an annual basis.

  14. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  15. Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties

    Osmani, Atif; Zhang, Jun

    2013-01-01

    An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. - Highlights: • Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain. • Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price. • Proposed stochastic model outperforms the traditional deterministic model under uncertainties. • Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production. • Location of biorefineries is found to be insensitive to the stochastic environment

  16. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks

    d'Espaux, Leo; Ghosh, Amit; Runguphan, Weerawat

    2017-01-01

    to similar to 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7 g/L in shake flasks......Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2......% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four...

  17. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing.

    Chang, Chen-Wei; Webb, Colin

    2017-03-01

    Lignocellulosic materials, mostly from agricultural and forestry residues, provide a potential renewable resource for sustainable biorefineries. Reducing sugars can be produced only after a pre-treatment stage, which normally involves chemicals but can be biological. In this case, two steps are usually necessary: solid-state cultivation of fungi for deconstruction, followed by enzymatic hydrolysis using cellulolytic enzymes. In this research, the utilisation of solid-state bioprocessing using the fungus Trichoderma longibrachiatum was implemented as a simultaneous microbial pretreatment and in-situ enzyme production method for fungal autolysis and further enzyme hydrolysis of fermented solids. Suspending the fermented solids in water at 50°C led to the highest hydrolysis yields of 226mg/g reducing sugar and 7.7mg/g free amino nitrogen (FAN). The resultant feedstock was shown to be suitable for the production of various products including ethanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks

    Bertilsson Magnus

    2008-05-01

    Full Text Available Abstract Simultaneous saccharification and fermentation (SSF is one process option for production of ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below 37°C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast concentration and at a high solid loading. In this review, we make a brief overview of recent experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has been made with respect to increasing the substrate loading, decreasing the yeast concentration and co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield based on total hexoses and pentoses higher than 70%.

  19. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (Pdetergent fiber (NDF) as a cell-wall isolation procedure, and (iii) elimination of the fermentation organism in the SSCF procedures used to determine biochemically available carbohydrates. The original and the HTP assay methods were compared using corn cobs, hybrid poplar, kenaf, and switchgrass. Biochemically available carbohydrates increased with the HTP methods in the corn cobs, hybrid poplar, and switchgrass, but remained the same in the kenaf. Total available carbohydrates increased and unavailable carbohydrates decreased with the HTP methods in the corn cobs and switchgrass and remained the same in the hybrid poplar and kenaf. There were no differences in total carbohydrates (CT) between the two methods. The final study evaluated the variability of biomass quality parameters in a set of corn stover samples, and developed calibration equations for determining parameter values using near

  20. Availability of lignocellulosic feedstocks for lactic acid production - Feedstock availability, lactic acid production potential and selection criteria

    Bakker, R.R.C.

    2013-01-01

    The overall objective of this study is to assess the worldwide availability and suitability of agricultural residues for lactic acid production, based on fermentation of carbohydrates. The study focuses on lignocellulosic biomass that is produced as a by-product of agricultural production. The

  1. Catalytic Upgrading of Thermochemical Intermediates to Hydrocarbons: Conversion of Lignocellulosic Feedstocks to Aromatic Fuels and High Value Chemicals

    Cortright, Randy [Virent, Inc., Madison, WI (United States); Rozmiarek, Bob [Virent, Inc., Madison, WI (United States); Van Straten, Matt [Virent, Inc., Madison, WI (United States)

    2017-11-28

    The principal objective of this project was to develop a fully integrated catalytic process that efficiently converts lignocellulosic feedstocks (e.g. bagasse, corn stover, and loblolly pine) into aromatic-rich fuels and chemicals. Virent led this effort with key feedstock support from Iowa State University. Within this project, Virent leveraged knowledge of catalytic processing of sugars and biomass to investigate two liquefaction technologies (Reductive Catalytic Liquefaction (USA Patent No. 9,212,320, 2015) and Solvolysis (USA Patent No. 9,157,030, 2015) (USA Patent No. 9,157,031, 2015)) that take advantage of proprietary catalysts at temperatures less than 300°C in the presence of unique solvent molecules generated in-situ within the liquefaction processes.

  2. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  3. Saccharification of Agricultural Lignocellulose Feedstocks and Protein-Level Responses by a Termite Gut-Microbe Bioreactor

    Rajarapu, Swapna Priya; Scharf, Michael E.

    2017-01-01

    This study investigated saccharification and protein-level responses to the candidate biofuel feedstocks corn stover (CS) and soybean residue (SR) by the gut of a lower termite. The focus termite was Reticulitermes flavipes, which is a highly efficient digester of wood lignocellulose that houses a mixture of prokaryotic and eukaryotic microbes in its gut. Our specific objectives were to (i) measure saccharification potential of the CS and SR feedstocks by termite gut protein extracts, (ii) identify specific proteins in the termite gut responding to feeding on CS and SR diets, and (iii) evaluate gut lignocellulase and accessory enzyme activity responses to CS and SR feeding. Cellulose paper was the control diet. Although CS was saccharified at higher levels, termite gut protein extracts saccharified both CS and SR irrespective of feedstock loading. Consumption of the CS and SR feedstocks by termites resulted in surprisingly few differences in gut protein profiles, with the main exception being elevated myosin abundance with SR feeding. Activity of potential lignocellulases and accessory enzymes was generally similar between CS and SR fed guts as well; however, cellobiohydrolase/exoglucanase activity was higher with CS feeding and glutathione peroxidase activity with SR feeding. These findings have significance from two perspectives. First, SR feeding/digestion appears to cause physiological stress in the termite gut that likely would extend to other types of microbial environments including those within industrial bioreactors. Second, because termites can survive on exclusive CS and SR diets and their guts exhibit clear CS and SR saccharification activity, this validates the R. flavipes system as a potential source for CS and SR degrading enzymes; in particular, cellobiohydrolases/exoglucanases and glutathione peroxidases from this system may play roles in CS and SR breakdown.

  4. Saccharification of Agricultural Lignocellulose Feedstocks and Protein-Level Responses by a Termite Gut-Microbe Bioreactor

    Rajarapu, Swapna Priya; Scharf, Michael E., E-mail: mscharf@purdue.edu [Department of Entomology, Purdue University, West Lafayette, IN (United States)

    2017-04-07

    This study investigated saccharification and protein-level responses to the candidate biofuel feedstocks corn stover (CS) and soybean residue (SR) by the gut of a lower termite. The focus termite was Reticulitermes flavipes, which is a highly efficient digester of wood lignocellulose that houses a mixture of prokaryotic and eukaryotic microbes in its gut. Our specific objectives were to (i) measure saccharification potential of the CS and SR feedstocks by termite gut protein extracts, (ii) identify specific proteins in the termite gut responding to feeding on CS and SR diets, and (iii) evaluate gut lignocellulase and accessory enzyme activity responses to CS and SR feeding. Cellulose paper was the control diet. Although CS was saccharified at higher levels, termite gut protein extracts saccharified both CS and SR irrespective of feedstock loading. Consumption of the CS and SR feedstocks by termites resulted in surprisingly few differences in gut protein profiles, with the main exception being elevated myosin abundance with SR feeding. Activity of potential lignocellulases and accessory enzymes was generally similar between CS and SR fed guts as well; however, cellobiohydrolase/exoglucanase activity was higher with CS feeding and glutathione peroxidase activity with SR feeding. These findings have significance from two perspectives. First, SR feeding/digestion appears to cause physiological stress in the termite gut that likely would extend to other types of microbial environments including those within industrial bioreactors. Second, because termites can survive on exclusive CS and SR diets and their guts exhibit clear CS and SR saccharification activity, this validates the R. flavipes system as a potential source for CS and SR degrading enzymes; in particular, cellobiohydrolases/exoglucanases and glutathione peroxidases from this system may play roles in CS and SR breakdown.

  5. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  6. Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks

    McAloon, Andrew [U.S. Department of Agriculture, Washington D.C. (United States); Taylor, Frank [U.S. Department of Agriculture, Washington D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington D.C. (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wooley, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2000-10-01

    This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood.

  7. Weedy lignocellulosic feedstock and microbial metabolic engineering. Advancing the generation of 'Biofuel'

    Chandel, Anuj K. [Jawaharlal Nehru Technological Univ., Hyderabad (India). Centre of Biotechnology; Singh, Om V. [Pittsburgh Univ., Bradford, PA (United States). Div. of Biological and Health Sciences

    2011-03-15

    Lignocellulosic materials are the most abundant renewable organic resources ({proportional_to}200 billion tons annually) on earth that are readily available for conversion to ethanol and other value-added products, but they have not yet been tapped for the commercial production of fuel ethanol. The lignocellulosic substrates include woody substrates such as hardwood (birch and aspen, etc.) and softwood (spruce and pine, etc.), agro residues (wheat straw, sugarcane bagasse, corn stover, etc.), dedicated energy crops (switch grass, and Miscanthus etc.), weedy materials (Eicchornia crassipes, Lantana camara etc.), and municipal solid waste (food and kitchen waste, etc.). Despite the success achieved in the laboratory, there are limitations to success with lignocellulosic substrates on a commercial scale. The future of lignocellulosics is expected to lie in improvements of plant biomass, metabolic engineering of ethanol, and cellulolytic enzyme-producing microorganisms, fullest exploitation of weed materials, and process integration of the individual steps involved in bioethanol production. Issues related to the chemical composition of various weedy raw substrates for bioethanol formation, including chemical composition-based structural hydrolysis of the substrate, need special attention. This area could be opened up further by exploring genetically modified metabolic engineering routes in weedy materials and in biocatalysts that would make the production of bioethanol more efficient. (orig.)

  8. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: : towards complete biomass valorisation

    Lancefield, Christopher S.; Panovic, Isabella; Deuss, Peter J.; Barta, Katalin; Westwood, Nicholas J.

    2017-01-01

    Here, we report on the ability of the biomass derived solvents ethanol and, in particular, n-butanol to fractionate lignocellulose into its main components. An organosolv system consisting of n-butanol containing 5% water and 0.2 M HCl at reflux was found to remove effectively the lignin and

  9. The Chemistry and Technology of Furfural Production in Modern Lignocellulose-Feedstock Biorefineries

    Marcotullio, G.

    2011-01-01

    This dissertation deals with biorefinery technology development, i.e. with the development of sustainable industrial methods aimed at the production of chemicals, fuels, heat and power from lignocellulosic biomass. This work is particularly focused on the production of furfural from

  10. Identification and overexpression of a Knotted1-like transcription factor in switchgrass (Panicum virgatum L. for lignocellulosic feedstock improvement

    Wegi eWuddineh

    2016-04-01

    Full Text Available High biomass production and wide adaptation has made switchgrass (Panicum virgatum L. an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signalling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.

  11. Valorization of guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment

    Natural rubber latex extraction from guayule leaves behind greater than 80% (by weight) of agricultural residue as a feedstock suitable for conversion to biofuels via a thermochemical or biochemical route. Untreated guayule shrub and bagasse (after latex extraction) has shown to be very recalcitrant...

  12. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  13. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products

    Hosseini, Seyed Ali; Shah, Nilay

    2011-01-01

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032

  15. Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks

    Panisko, Ellen; Wietsma, Thomas; Lemmon, Teresa; Albrecht, Karl; Howe, Daniel

    2015-01-01

    In this study the aqueous phases resulting from the hydrothermal liquefaction (HTL) of biomass and the hydrotreatment (HT) of fast pyrolysis bio-oils were analyzed via TC, COD, GC-MS, GC-FID, HPLC, and ICP-OES to determine the organic and inorganic species present and the quantitative amounts of each. This work is necessary to address a significant knowledge gap in the literature related to the aqueous phases from thermochemical processes. Results showed that water from the hydrotreatment of eight different bio-oils contained less than 1 wt% total carbon, in many cases less than 0.2%. Negligible organic carbon was observed. HTL samples contained between 1 and 2 wt% carbon. Due to the large volume of water added to the HTL feedstock and the dilute samples generated, this accounts for 34–45% of the total carbon sent to the reactor. The majority of this carbon was present as acids, with glycolic acid and acetic acid having the highest concentrations. Alcohols, specifically methanol and ethanol, were also present. Numerous ketones were observed, consisting of mainly acetone and cyclopenta-ones. The amount of the total carbon identified and quantified in the HTL samples ranged from 64 to 82%. Inorganic species present in the HT samples were sodium, silicon, and sulfur. The highest levels of sulfur were observed in the grasses and agricultural residue (corn stover). The HTL samples exhibited much higher inorganic content, with very high levels of sodium and potassium. Alkali and alkali earth metals, as well as sulfur, were also present at levels high enough to raise concerns for the use of catalysts in downstream upgrading or reforming processes. - Highlights: • Hydrotreatment samples are less than 1 wt% total carbon with negligible organic C. • 64–82% of the total carbon in HTL samples was identified and quantified. • Organic species in HTL samples were mainly acids, alcohols, and ketones. • Inorganic species in HT samples were mainly Na, Si, and S.

  16. Process Design Report for Stover Feedstock: Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jechura, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Neeves, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheehan, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallace, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Montague, L. [Harris Group, Seattle, WA (United States); Slayton, A. [Harris Group, Seattle, WA (United States); Lukas, J. [Harris Group, Seattle, WA (United States)

    2002-06-01

    The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

  17. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    Wallace, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); McAloon, Andrew [U.S. Department of Agriculture, Washington, D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington, D.C. (United States)

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  18. Upgrading Lignocellulosic Biomasses: Hydrogenolysis of Platform Derived Molecules Promoted by Heterogeneous Pd-Fe Catalysts

    Claudia Espro

    2017-03-01

    Full Text Available This review provides an overview of heterogeneous bimetallic Pd-Fe catalysts in the C–C and C–O cleavage of platform molecules such as C2–C6 polyols, furfural, phenol derivatives and aromatic ethers that are all easily obtainable from renewable cellulose, hemicellulose and lignin (the major components of lignocellulosic biomasses. The interaction between palladium and iron affords bimetallic Pd-Fe sites (ensemble or alloy that were found to be very active in several sustainable reactions including hydrogenolysis, catalytic transfer hydrogenolysis (CTH and aqueous phase reforming (APR that will be highlighted. This contribution concentrates also on the different synthetic strategies (incipient wetness impregnation, deposition-precipitaion, co-precipitaion adopted for the preparation of heterogeneous Pd-Fe systems as well as on the main characterization techniques used (XRD, TEM, H2-TPR, XPS and EXAFS in order to elucidate the key factors that influence the unique catalytic performances observed.

  19. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  20. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks

    Boguta, Anna Monika; Bringel, Francoise; Martinussen, Jan

    2014-01-01

    Background: The use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic ...

  1. Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks (Revised)

    Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W.

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation. Although none of the scenarios identified could produce ethanol at lower cost than a straight grain ethanol plant, several were lower cost than a straight cellulosic ethanol plant.

  2. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  3. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  4. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  5. IMPROVING SPECIFIC POWER CONSUMPTION FOR MECHANICAL MIXING OF THE FEEDSTOCK IN A BIOGAS FERMENTER BY MECHANICAL DISINTEGRATION OF LIGNOCELLULOSE BIOMASS

    Lukas Kratky

    2014-10-01

    Full Text Available Lignocellulosic biomass particles in biogas fermenter batch either sediment towards vessel bottom or rise towards batch surface, where they float and form a compact thick scum. These processes have primarily the negative influence on batch homogeneity, on evenness of batch temperature field, on removal of produced biogas bubbles out of liquid batch and also on mass transfer among microorganisms. These facts result in non-effective usage of biomass energy-potential that entails in low biogas yields. Therefore, good mixing of bioreactor batch is very important in order to stabilize anaerobic digestion process. The aims of the present study were to evaluate the impact of wheat straw disintegration and its hydration on hydrodynamic behaviour and on specific power consumption for mechanical mixing of wheat straw-water suspension. Based on experimental results, it was concluded that both hydration and mechanical disintegration of lignocellulosic biomass significantly improve homogeneity and pump-ability of biomass-water batches. Wheat straw hydration itself decreases specific power consumption for batch mixing by 60 % towards untreated straw. Moreover, mechanical disintegration itself decreases specific power consumption by 50 % at least towards untreated hydrated straw.

  6. Assessment of hazelnut husk as a lignocellulosic feedstock for the production of fermentable sugars and lignocellulolytic enzymes.

    Pinar, Orkun; Karaosmanoğlu, Kübra; Sayar, Nihat Alpagu; Kula, Ceyda; Kazan, Dilek; Sayar, Ahmet Alp

    2017-12-01

    The present work focuses firstly on the evaluation of the effect of laccase on enzymatic hydrolysis of hazelnut husk which is one of the most abundant lignocellulosic agricultural residues generated in Turkey. In this respect, the co-enzymatic treatment of hazelnut husk by cellulase and laccase, without a conventional pretreatment step is evaluated. Using 2.75 FPU/g substrate (40 g/L substrate) and a ratio of 131 laccase U/FPU achieved the highest reducing sugars concentration. Gas chromatography mass spectrometry confirmed that the hydrolysate was composed of glucose, xylose, mannose, arabinose and galactose. The inclusion of laccase in the enzyme mixture [carboxymethyl cellulase (CMCase) and β-glucosidase] increased the final glucose content of the reducing sugars from 20 to 50%. Therefore, a very significant increase in glucose content of the final reducing sugars concentration was obtained by laccase addition. Furthermore, the production of cellulases and laccase by Pycnoporus sanguineus DSM 3024 using hazelnut husk as substrate was also investigated. Among the hazelnut husk concentrations tested (1.5, 6, 12, 18 g/L), the highest CMCase concentration was obtained using 12 g/L husk concentration on the 10th day of fermentation. Besides CMCase, P. sanguineus DSM 3024 produced β-glucosidase and laccase using hazelnut husk as carbon source. In addition to CMCase and β-glucosidase, the highest laccase activity measured was 2240 ± 98 U/L (8.89 ± 0.39 U/mg). To the best of our knowledge, this is the first study to report hazelnut husk hydrolysis in the absence of pretreatment procedures.

  7. Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment

    Osmani, Atif; Zhang, Jun

    2014-01-01

    Highlights: • 2-Stage stochastic MILP model for optimizing the performance of a sustainable lignocellulosic-based biofuel supply chain. • Multiple uncertainties in biomass supply, purchase price of biomass, bioethanol demand, and sale price of bioethanol. • Stochastic parameters significantly impact the allocation of biomass processing capacities of biorefineries. • Location of biorefineries and choice of conversion technology is found to be insensitive to the stochastic environment. • Use of Sample Average Approximation (SAA) algorithm as a decomposition technique. - Abstract: This work proposes a two-stage stochastic optimization model to maximize the expected profit and simultaneously minimize carbon emissions of a dual-feedstock lignocellulosic-based bioethanol supply chain (LBSC) under uncertainties in supply, demand and prices. The model decides the optimal first-stage decisions and the expected values of the second-stage decisions. A case study based on a 4-state Midwestern region in the US demonstrates the effectiveness of the proposed stochastic model over a deterministic model under uncertainties. Two regional modes are considered for the geographic scale of the LBSC. Under co-operation mode the 4 states are considered as a combined region while under stand-alone mode each of the 4 states is considered as an individual region. Each state under co-operation mode gives better financial and environmental outcomes when compared to stand-alone mode. Uncertainty has a significant impact on the biomass processing capacity of biorefineries. While the location and the choice of conversion technology for biorefineries i.e. biochemical vs. thermochemical, are insensitive to the stochastic environment. As variability of the stochastic parameters increases, the financial and environmental performance is degraded. Sensitivity analysis shows that levels of tax credit and carbon price have a major impact on the choice of conversion technology for a selected

  8. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.

    Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R

    2015-03-01

    The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks for Fast Pyrolysis and Upgrading: Techno-economic Analysis and Greenhouse Gas Life Cycle Analysis

    Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.; Jones, Susanne B.; Westover, Tyler L.; Cafferty, Kara G.

    2016-11-17

    This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yield and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.

  11. Economically viable production of biodiesel from a rural feedstock from eastern India, P. pinnata oil using a recyclable laboratory synthesized heterogeneous catalyst

    Singh, Veena; Hameed, Bassim H.; Sharma, Yogesh Chandra

    2016-01-01

    Graphical abstract: Barium zirconate was synthesized by co-precipitation method using nitrates of barium and zirconia and was applied for biodiesel production using karanja oil as feedstock through transesterification reaction. - Highlights: • Barium zirconate have been used as a heterogeneous catalyst for biodiesel production. • Effect of calcination time on stability of catalyst was studied. • 98.79 ± 0.5% of FAME conversion from karanja oil was attained. • Catalyst is stable and can be reused up to nine cycles with conversion up to >65%. • Glycerol obtained as a byproduct was easily purified for better use. - Abstract: Barium zirconate was synthesized by co-precipitation method and its feasibility as a heterogeneous catalyst for production of biodiesel (fatty acid methyl ester) was assessed. Fatty acid methyl ester (FAME) was synthesized through transesterification of karanja oil with methanol. Synthesized barium zirconate was characterized by Thermogravimetric analysis (TGA), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometry (XRD), Energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM). Specific surface area and basicity of the catalyst were also deliberated. Catalyst characterization indicated formation of single phase of barium zirconate which was capable of catalyzing the transesterification of esterified karanja oil with methanol. Feedstock was characterized by Gas Chromatography Mass Spectrometry (GC–MS). Reaction conditions such as molar ratio (oil:methanol), catalyst concentration, temperature, time, stirring speed and catalyst reusability were optimized. Calcination temperature and time significantly affected the catalytic activity of the catalyst because of variation in availability of basic sites. FAME conversion of 98.79 ± 0.5% was obtained at catalyst concentration of 1.0 wt%, 1:27 M ratio (oil:methanol), 65 °C for a 3 h contact time. The catalyst could be

  12. Deconstruction of ionic liquid pretreated lignocellulosic biomass using mono-component cellulases and hemicellulases and commercial mixtures

    Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Lignocellulose requires pretreatment before biochemical conversion to its monomeric sugars which can provide a renewable carbon based feedstock for...

  13. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion

    Lizbeth M. Nieves

    2015-02-01

    Full Text Available Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and optimization of synthetic biological parts used to enhance the utilization of lignocellulose-derived sugars and to increase the biocatalyst tolerance for lignocellulose-derived fermentation inhibitors. We will also discuss the ongoing efforts and future applications of synthetic integrated biological systems used to improve lignocellulose conversion.

  14. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  15. Evolution and Development of Effective Feedstock Specifications

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  16. Biogas from lignocellulosic biomass

    Berglund Odhner, Peter; Schabbauer, Anna [Grontmij AB, Stockholm (Sweden); Sarvari Horvath, Ilona; Mohseni Kabir, Maryam [Hoegskolan i Boraas, Boraas (Sweden)

    2012-01-15

    Grontmij AB has cooperated with the University of Boraas to evaluate the technological and economical possibilities for biogas production from substrates containing lignocellulose, such as forest residues, straw and paper. The state of knowledge regarding biogas production from cellulosic biomass has been summarized. The research in the field has been described, especially focusing on pretreatment methods and their results on increased gas yields. An investigation concerning commercially available pretreatment methods and the cost of these technologies has been performed. An economic evaluation of biogas production from lignocellulosic materials has provided answers to questions regarding the profitability of these processes. Pretreatment with steam explosion was economically evaluated for three feedstocks - wood, straw and paper - and a combination of steam explosion and addition of NaOH for paper. The presented costs pertain to costs for the pretreatment step as it, in this study, was assumed that the pretreatment would be added to an existing plant and the lignocellulosic substrates would be part of a co-digestion process. The results of the investigation indicate that it is difficult to provide a positive net result when comparing the cost of pretreatment versus the gas yield (value) for two of the feedstocks - forest residues and straw. This is mainly due to the high cost of the raw material. For forest residues the steam pretreatment cost exceeded the gas yield by over 50 %, mainly due to the high cost of the raw material. For straw, the production cost was similar to the value of the gas. Paper showed the best economic result. The gas yield (value) for paper exceeded the pretreatment cost by 15 %, which makes it interesting to study paper further.

  17. The impact of stress-response related transcription factors on lignocellulosic hydrolysate inhibitor tolerance of Saccharomyces strains

    Plant biomass is a desirable feedstock for the production of renewable fuels and chemicals. Unfortunately, pretreatment processes to release sugars locked in plant biomass, or lignocellulosic feedstocks, lead to the production of fermentation inhibitors, such as furfural and hydroxymethyl furfural, ...

  18. Dilute acid/metal salt hydrolysis of lignocellulosics

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  19. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Rumbold, K.; Buijsen, H.J.J. van; Overkamp, K.M.; Groenestijn, J.W. van; Punt, P.J.; Werf, M.J.V.D.

    2009-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of

  20. Enzyme Characterization of Cellulase and Hemicellulases Component Enzymes and Saccharification of Ionic Liquid Pretreated Lignocellulosic Biomass

    Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Terrestrial biomass can provide a renewable carbon based feedstock for fuel and chemical production. However, recalcitrance of biomass to deconstru...

  1. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  2. Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions

    Ashraf, Muhammad Tahir; Thomsen, Mette Hedegaard; Schmidt, Jens Ejbye

    2017-01-01

    Utilization of multi-specie feedstocks is imperative for application of lignocellulosic biorefineries in arid regions. Different lignocellulosic residues vary in composition and anatomical features. Pretreatment and enzymatic hydrolysis are two processes at the front end of any lignocellulosics...... biorefinery applying biochemical pathway, and have to efficiently deal with the variance in the feedstock composition and properties. However, there is limited knowledge about effect of mixing different lignocellulosics on pretreatment and enzymatic hydrolysis yields. In this study effect of mixing...... on the yields from hydrothermal pretreatment and enzymatic hydrolysis was analyzed by mixing three different lignocellulosic residues — Bermuda grass, Jasmine hedges, and date palm fronds. Results showed that the individual and the mixed lignocellulosics gave same yields when treated under similar conditions...

  3. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review

    Krystian Miazek

    2014-07-01

    Full Text Available Microalgae contain valuable compounds that can be harnessed for industrial applications. Lignocellulose biomass is a plant material containing in abundance organic substances such as carbohydrates, phenolics, organic acids and other secondary compounds. As growth of microalgae on organic substances was confirmed during heterotrophic and mixotrophic cultivation, lignocellulose derived compounds can become a feedstock to cultivate microalgae and produce target compounds. In this review, different treatment methods to hydrolyse lignocellulose into organic substrates are presented first. Secondly, the effect of lignocellulosic hydrolysates, organic substances typically present in lignocellulosic hydrolysates, as well as minor co-products, on growth and accumulation of target compounds in microalgae cultures is described. Finally, the possibilities of using lignocellulose hydrolysates as a common feedstock for microalgae cultures are evaluated.

  4. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy feedstocks in Iowa, USA

    The positive association between habitat heterogeneity and species diversity has been well-documented for many taxa at various spatial and temporal scales, and the maintenance of habitat heterogeneity in agricultural landscapes has been promoted as a key strategy in efforts to conserve biodiversity....

  5. Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks.

    Thomas, John Meurig

    2014-07-01

    This article reviews, first, the prospects, practices and principles of generating solar fuels. It does so with an analysis of recent progress in the light-driven emission of H2 (and other fuels) as well as O2 from water. To place this challenge in perspective, some current practices entailing the use of well-proven solid catalysts developed for fossil-based feedstocks, are described. The massive differences between proven methods of generating fuel and chemicals from non-renewable and from solar radiation are emphasized with the aid of numerous quantitative examples. Whilst it is acknowledged that a key action in reducing the liberation of greenhouse gases (GHG) is to tackle the challenge of decreasing their evolution in power generation and in the production of steel, aluminium and other bulk commodities (metals, alloys, concrete and ceramics), nevertheless much can be done to diminish the emission of CO2 (and to use it as feedstock) through the agency of new, designed solid catalysts and microalgae. Solar-thermal converters are also attractive alternatives, even though they are more likely to be used centrally rather than in small modular units like 'artificial leaves,' some of which are promising for the purposes of generating energy (and perhaps fuel) in a delocalized, modular manner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  7. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives.

    Shrestha, Shilva; Fonoll, Xavier; Khanal, Samir Kumar; Raskin, Lutgarde

    2017-12-01

    Lignocellulosic biomass is the most abundant renewable bioresource on earth. In lignocellulosic biomass, the cellulose and hemicellulose are bound with lignin and other molecules to form a complex structure not easily accessible to microbial degradation. Anaerobic digestion (AD) of lignocellulosic biomass with a focus on improving hydrolysis, the rate limiting step in AD of lignocellulosic feedstocks, has received considerable attention. This review highlights challenges with AD of lignocellulosic biomass, factors contributing to its recalcitrance, and natural microbial ecosystems, such as the gastrointestinal tracts of herbivorous animals, capable of performing hydrolysis efficiently. Biological strategies that have been evaluated to enhance hydrolysis of lignocellulosic biomass include biological pretreatment, co-digestion, and inoculum selection. Strategies to further improve these approaches along with future research directions are outlined with a focus on linking studies of microbial communities involved in hydrolysis of lignocellulosics to process engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review

    Soltani, Soroush; Rashid, Umer; Al-Resayes, Saud Ibrahim; Nehdi, Imededdine Arbi

    2017-01-01

    Highlights: • Mesoporous catalysts have potential to esterify the wastes feedstocks. • Surface area of mesoporous catalysts depends on materials synthesis methods. • Hydrophobic surface of sulfonated catalyst causes adsorption on FFA particles. • Mesoporous catalysts have large active sites to trap free fatty acids particles. • Recyclability of mesoporous catalyst is a key feature for biodiesel production. - Abstract: Biodiesel is considered as a sulfur free, non-toxic and biodegradable source of energy and its burning provide less pollution than petroleum based fuels. In case of using fried waste oils, animal’s fats and waste cultivated oil which contain high free fatty acid (FFA), esterification is taking place. Through esterification reaction, catalyst is an integral part which accelerates the FFA conversion to the methyl ester (ME) in shorter reaction time. Although, most of the current catalysts have some defect such as poor recyclability, less surface area and poor porosity. Mesoporous materials have been recently attracted remarkable interests because of its desirable properties, such as large and harmonized surface area, tuneable mesoporous channels with flexible pore size, excellent thermal stability, and post-functionalization surface characteristics. The combination of remarkable physico-chemical and textural properties as well as high activity has proposed them as advanced materials. In this review, it has been attempted to present the details of fundamental properties of mesoporous catalysts, various synthetic methods and formation mechanisms, and surface functionalization methodologies. The effects of various factors (such as surface area, porosity, acidity, post-calcination temperature, and reaction parameters) on esterification of different feedstocks are discussed in detail. Furthermore, the kinetic study of esterification reaction in the presence of mesoporous catalysts is also elaborated. At the end, remarkable challenges and outlooks

  9. Articulating feedstock delivery device

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  10. Biogas Production from Lignocellulosic Biomass : Impact of pre-treatment, co-digestion, harvest time and inoculation

    LI, Chao

    2017-01-01

    Biogas or methane production through anaerobic digestion (AD) is gaining increasing attention worldwide due to concerns over global warming, energy security and the need for sustainable waste management. AD of lignocellulosic biomass is one facet that is highly appreciated since the conflict over biomass for food/feed or energy can be avoided. As a result the need for non-food based lignocellulosic biomass feedstock has emerged as (co-) feedstock of choice for the AD process. Despite these ad...

  11. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels

    Pol, van der E.C.; Bakker, R.R.; Baets, P.; Eggink, G.

    2014-01-01

    Lignocellulose might become an important feedstock for the future development of the biobased economy. Although up to 75 % of the lignocellulose dry weight consists of sugar, it is present in a polymerized state and cannot be used directly in most fermentation processes for the production of

  12. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.

    Zhang, Y-H Percival

    2008-05-01

    Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term.

  13. Sustainable Process Design of Lignocellulose based Biofuel

    Mangnimit, Saranya; Malakul, Pomthong; Gani, Rafiqul

    the production and use of alternative and sustainable energy sources as rapidly as possible. Biofuel is a type of alternative energy that can be produced from many sources including sugar substances (such as sugarcane juice and molasses), starchy materials (such as corn and cassava), and lignocellulosic...... materials such as agricultural residual, straw and wood chips, the residual from wood industry. However, those sugar and starchy materials can be used not only to make biofuels but they are also food sources. Thus, lignocellulosic materials are interesting feed-stocls as they are inexpensive, abundantly...... available, and are also non-food crops. In this respect, Cassava rhizome has several characteristics that make it a potential feedstock for fuel ethanol production. It has high content of cellulose and hemicelluloses . The objective of this paper is to present a study focused on the sustainable process...

  14. Development of a heterogeneous catalyst for lignocellulosic biomass conversion : glucose dehydration by metal chlorides in a silica-supported ionic liquid layer

    Degirmenci, V.; Hensen, E.J.M.

    2014-01-01

    An attempt is made to immobilize the homogeneous metal chloride/EMIMCl catalyst for glucose dehydration to 5-hydroxymethylfurfural. To this end, ionic liquid fragments were grafted to the surface of SBA-15 to generate a heterogenized mimick of the homogeneous reaction medium. Despite a decrease in

  15. Bioethanol from lignocellulosics: Status and perspectives in Canada.

    Mabee, W E; Saddler, J N

    2010-07-01

    Canada has invested significantly in the development of a domestic bioethanol industry, and it is expected that bioethanol from lignocellulosics will become more desirable to the industry as it expands. Development of the Canadian industry to date is described in this paper, as are examples of domestic research programs focused on both bioconversion and thermochemical conversion to generate biofuels from lignocellulosic biomass. The availability of lignocellulosic residues from agricultural and forestry operations, and the potential biofuel production associated with these residues, is described. The policy tools used to develop the domestic bioethanol industry are explored. A residue-based process could greatly extend the potential of the bioethanol industry in Canada. It is estimated that bioethanol production from residual lignocellulosic feedstocks could provide up to 50% of Canada's 2006 transportation fuel demand, given ideal conversion and full access to these feedstocks. Utilizing lignocellulosic biomass will extend the geographic range of the bioethanol industry, and increase the stability and security of this sector by reducing the impact of localized disruptions in supply. Use of disturbance crops could add 9% to this figure, but not in a sustainable fashion. If pursued aggressively, energy crops ultimately could contribute bioethanol at a volume double that of Canada's gasoline consumption in 2006. This would move Canada towards greater transportation fuel independence and a larger role in the export of bioethanol to the global market. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Biomass Feedstocks | Bioenergy | NREL

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  17. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  18. Perspectives for the production of bioethanol from lignocellulosic materials

    Petrova, Petia; Ivanova, Viara

    2010-01-01

    The most common renewable fuel today and suitable alternative to replace fossil fuels is ethanol that can be blended with petrol or used as neat alcohol in engines. Ethanol is currently produced from sugar (Brazil) or grain (starch, USA). However, this raw material base will not be sufficient because the increasing demand for fuel ethanol and the lower than expected reduction of greenhouse gases. An alternative is the production of bioethanol from agroindustrial wastes containing abundant cellulose fibers and carbohydrates such as grape pomace, sugar beet pomace, barley and rice straw, corncobs, sunflower stalks and heads, cotton waste, brewer's spent grain, forest residues etc. Lignocellulosic raw materials and agroindustrial wastes minimize the potential conflict between land use for food (and feed) production and energy feedstock production. This review summarizes recent developments in the bioconversion processes, the new technologies required and the advances achieved in recent years to bring agricultural feedstock and lignocellulosic ethanol towards industrial production.

  19. Example of feedstock optimization

    Boustros, E.

    1991-01-01

    An example of feedstock optimization at an olefins plant which has the flexibility to process different kinds of raw materials while maintaining the same product slate, is presented. Product demand and prices, and the number of units in service as well as the required resources to operate these units are considered to be fixed. The plant profitability is a function of feedstock choice, plus constant costs which are the non-volume related costs. The objective is to find a set or combination of feedstocks that could match the client product demands and fall within the unit's design and capacity, while maximizing the financial operating results

  20. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  1. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.

    Bhalla, Aditya; Bansal, Namita; Kumar, Sudhir; Bischoff, Kenneth M; Sani, Rajesh K

    2013-01-01

    Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Method for pretreating lignocellulosic biomass

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  3. Microbial production host selection for converting second-generation feedstocks into bioproducts

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  4. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

    None

    2011-05-02

    The U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.

  5. Biomass Feedstock National User Facility

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  6. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  7. Lignocellulosic ethanol production from woody biomass: The impact of facility siting on competitiveness

    Stephen, James D.; Mabee, Warren E.; Saddler, Jack N.

    2013-01-01

    Just as temperate region pulp and paper companies need to compete with Brazilian eucalyptus pulp producers, lignocellulosic biofuel producers in North America and Europe, in the absence of protectionist trade policies, will need to be competitive with tropical and sub-tropical biofuel producers. This work sought to determine the impact of lignocellulosic ethanol biorefinery siting on economic performance and minimum ethanol selling price (MESP) for both east and west coast North American fuel markets. Facility sites included the pine-dominated Pacific Northwest Interior, the mixed deciduous forest of Ontario and New York, and the Brazilian state of Espírito Santo. Feedstock scenarios included both plantation (poplar, willow, and eucalyptus, respectively) and managed forest harvest. Site specific variables in the techno-economic model included delivered feedstock cost, ethanol delivery cost, cost of capital, construction cost, labour cost, electricity revenues (and co-product credits), and taxes, insurance, and permits. Despite the long shipping distance from Brazil to North American east and west coast markets, the MESP for Brazilian-produced eucalyptus lignocellulosic ethanol, modelled at $0.74 L −1 , was notably lower than that of all North American-produced cases at $0.83–1.02 L −1 . - Highlights: • Lignocellulosic ethanol production costs vary notably by region. • Feedstock cost is the primary site-specific production cost variable. • Woody feedstocks in North America have a higher cost than those in Brazil. • Use of Brazilian eucalyptus resulted in the lowest MESP for considered feedstocks. • MESP ranged from −1 to >$1.00 L −1

  8. Biofuels feedstock development program

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  9. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Vrije, de G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M.

    2009-01-01

    The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Batch cultures of

  10. Toward Narrowing Fermentation Endproduct Distribution in Undefined Mixed Culture Anaerobic Conversion of Lignocellulosic Corn Fiber to Butyrate

    Conversion of second-generation renewable energy sources to useful products is gaining attention as an alternative to traditional conversion of sugar and starch-based renewable energy crops. The natural recalcitrance of second-generation energy resources, such as (ligno)cellulosic feedstock, makes ...

  11. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  12. Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review

    Úrsula Fillat

    2017-05-01

    Full Text Available The continuous increase in the world energy and chemicals demand requires the development of sustainable alternatives to non-renewable sources of energy. Biomass facilities and biorefineries represent interesting options to gradually replace the present industry based on fossil fuels. Lignocellulose is the most promising feedstock to be used in biorefineries. From a sugar platform perspective, a wide range of fuels and chemicals can be obtained via microbial fermentation processes, being ethanol the most significant lignocellulose-derived fuel. Before fermentation, lignocellulose must be pretreated to overcome its inherent recalcitrant structure and obtain the fermentable sugars. Usually, harsh conditions are required for pretreatment of lignocellulose, producing biomass degradation and releasing different compounds that are inhibitors of the hydrolytic enzymes and fermenting microorganisms. Moreover, the lignin polymer that remains in pretreated materials also affects biomass conversion by limiting the enzymatic hydrolysis. The use of laccases has been considered as a very powerful tool for delignification and detoxification of pretreated lignocellulosic materials, boosting subsequent saccharification and fermentation processes. This review compiles the latest studies about the application of laccases as useful and environmentally friendly delignification and detoxification technology, highlighting the main challenges and possible ways to make possible the integration of these enzymes in future lignocellulose-based industries.

  13. Progress in the production of bioethanol on starch-based feedstocks

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  14. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum.

    Wen, Jingbai; Xiao, Yanqiu; Liu, Ting; Gao, Qiuqiang; Bao, Jie

    2018-01-01

    Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum . Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients

  15. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.

    Bilal, Muhammad; Nawaz, Muhammad Zohaib; Iqbal, Hafiz M N; Hou, Jialin; Mahboob, Shahid; Al-Ghanim, Khalid A; Cheng, Hairong

    2018-01-01

    Rising environmental concerns and recent global scenario of cleaner production and consumption are leading to the design of green industrial processes to produce alternative fuels and chemicals. Although bioethanol is one of the most promising and eco-friendly alternatives to fossil fuels yet its production from food and feed has received much negative criticism. The main objective of this study was to present the noteworthy potentialities of lignocellulosic biomass as an enormous and renewable biological resource. The particular focus was also given on engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals on sustainable and environmentally basis. Herein, an effort has been made to extensively review, analyze and compile salient information related to the topic of interest. Several authentic bibliographic databases including PubMed, Scopus, Elsevier, Springer, Bentham Science and other scientific databases were searched with utmost care, and inclusion/ exclusion criterion was adopted to appraise the quality of retrieved peer-reviewed research literature. Bioethanol production from lignocellulosic biomass can largely satisfy the possible inconsistency of first-generation ethanol since it utilizes inedible lignocellulosic feedstocks, primarily sourced from agriculture and forestry wastes. Two major polysaccharides in lignocellulosic biomass namely, cellulose and hemicellulose constitute a complex lignocellulosic network by connecting with lignin, which is highly recalcitrant to depolymerization. Several attempts have been made to reduce the cost involved in the process through improving the pretreatment process. While, the ligninolytic enzymes of white rot fungi (WRF) including laccase, lignin peroxidase (LiP), and manganese peroxidase (MnP) have appeared as versatile biocatalysts for delignification of several lignocellulosic residues. The first part of the review is mainly focused on engineering ligninolytic consortium

  16. Liquid fuels from alternative feedstocks

    Andrew, S

    1984-01-01

    The problem of fuels and feedstocks is not technological but political and financial. Methanol is discussed as the lowest cost gasoline substitute to produce. There are two possibilities included for production of methanol: from coal or lignite - either in the US or in Europe, or from natural gas. Biologically produced fuels and feedstocks have the advantage of being renewable. The use of agricultural feedstocks are discussed but only sugar, starch and cellulose are suitable. In the microbiological field, only the metabolic waste product ethanol is cheap enough for use.

  17. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review

    Balat, Mustafa

    2011-01-01

    Bioethanol is by far the most widely used biofuel for transportation worldwide. Production of bioethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Bioethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. The price of the raw materials is highly volatile, which can highly affect the production costs of the bioethanol. One major problem with bioethanol production is the availability of raw materials for the production. Lignocellulosic biomass is the most promising feedstock considering its great availability and low cost, but the large-scale commercial production of fuel bioethanol from lignocellulosic materials has still not been implemented.

  18. Catalytic Gasification of Lignocellulosic Biomass

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  19. Methods for treating lignocellulosic materials

    Jansen, Robert; Travisano, Philip; Madsen, Lee; Matis, Neta; Lawson, James Alan; Lapidot, Noa; Eyal, Aharon M.; Bauer, Timothy Allen; Belman, Ziv-Vladimir; Hallac, Bassem; Zviely, Michael

    2017-10-10

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  20. Methods for treating lignocellulosic materials

    Jansen, Robert; Gregoire, Claire; Travisano, Philip; Madsen, Lee; Matis, Neta; Har-Tal, Yael Miriam; Eliahu, Shay; Lawson, James Alan; Lapidot, Noa; Eyal, Aharon M.; Bauer, Timothy Allen; McWilliams, Paul; Zviely, Michael; Carden, Adam

    2017-05-16

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  1. Methods for treating lignocellulosic materials

    Jansen, Robert; Gregoire, Claire; Travisano, Philip; Madsen, Lee; Matis, Neta; Har-Tal, Yael Miriam; Eliahu, Shay; Lawson, James Alan; Lapidot, Noa; Burke, Luke; Eyal, Aharon M.; Bauer, Timothy Allen; Sade, Hagit; McWilliams, Paul; Zviely, Michael; Carden, Adam

    2017-04-25

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  2. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  3. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products.

    De Bhowmick, Goldy; Sarmah, Ajit K; Sen, Ramkrishna

    2018-01-01

    A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea. Combination of integrated conversion techniques along with process integration is suggested as a sustainable approach. Introducing 'series concept' accompanying intermittent dark/photo fermentation with co-cultivation of microalgae is conceptualised. While the cost of downstream processing for a single type of feedstock would be high, combining different feedstocks and integrating them in a bio-refinery model would lessen the production cost and reduce CO 2 emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation

    Wang Wei

    2010-11-01

    Full Text Available Abstract Background Degradation of the toxic compounds generated in the harsh pretreatment of lignocellulose is an inevitable step in reducing the toxin level for conducting practical enzymatic hydrolysis and ethanol fermentation processes. Various detoxification methods have been tried and many negative outcomes were found using these methods, such as the massive freshwater usage and wastewater generation, loss of the fine lignocellulose particles and fermentative sugars and incomplete removal of inhibitors. An alternate method, biodetoxification, which degrades the toxins as part of their normal metabolism, was considered a promising option for the removal of toxins without causing the above problems. Results A kerosene fungus strain, Amorphotheca resinae ZN1, was isolated from the microbial community growing on the pretreated corn stover material. The degradation of the toxins as well as the lignocelluloses-derived sugars was characterized in different ways, and the results show that A. resinae ZN1 utilized each of these toxins and sugars as the sole carbon sources efficiently and grew quickly on the toxins. It was found that the solid-state culture of A. resinae ZN1 on various pretreated lignocellulose feedstocks such as corn stover, wheat straw, rice straw, cotton stalk and rape straw degraded all kinds of toxins quickly and efficiently. The consequent simultaneous saccharification and ethanol fermentation was performed at the 30% (wt/wt solid loading of the detoxified lignocellulosic feedstocks without a sterilization step, and the ethanol titer in the fermentation broth reached above 40 g/L using food crop residues as feedstocks. Conclusions The advantages of the present biodetoxification by A. resinae ZN1 over the known detoxification methods include zero energy input, zero wastewater generation, complete toxin degradation, processing on solid pretreated material, no need for sterilization and a wide lignocellulose feedstock spectrum

  5. Thermophilic lignocellulose deconstruction.

    Blumer-Schuette, Sara E; Brown, Steven D; Sander, Kyle B; Bayer, Edward A; Kataeva, Irina; Zurawski, Jeffrey V; Conway, Jonathan M; Adams, Michael W W; Kelly, Robert M

    2014-05-01

    Thermophilic microorganisms are attractive candidates for conversion of lignocellulose to biofuels because they produce robust, effective, carbohydrate-degrading enzymes and survive under harsh bioprocessing conditions that reflect their natural biotopes. However, no naturally occurring thermophile is known that can convert plant biomass into a liquid biofuel at rates, yields and titers that meet current bioprocessing and economic targets. Meeting those targets requires either metabolically engineering solventogenic thermophiles with additional biomass-deconstruction enzymes or engineering plant biomass degraders to produce a liquid biofuel. Thermostable enzymes from microorganisms isolated from diverse environments can serve as genetic reservoirs for both efforts. Because of the sheer number of enzymes that are required to hydrolyze plant biomass to fermentable oligosaccharides, the latter strategy appears to be the preferred route and thus has received the most attention to date. Thermophilic plant biomass degraders fall into one of two categories: cellulosomal (i.e. multienzyme complexes) and noncellulosomal (i.e. 'free' enzyme systems). Plant-biomass-deconstructing thermophilic bacteria from the genera Clostridium (cellulosomal) and Caldicellulosiruptor (noncellulosomal), which have potential as metabolic engineering platforms for producing biofuels, are compared and contrasted from a systems biology perspective. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Feedstock characterization and recommended procedures

    Chum, H.L.; Milne, T.A.; Johnson, D.K.; Agblevor, F.A.

    1993-01-01

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  7. 2009 Feedstocks Platform Review Report

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  8. Lignocellulosic ethanol: Technology design and its impact on process efficiency.

    Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel

    2015-11-01

    This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use

  9. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    Pasha, Chand; Rao, L. Venkateswar

    No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to

  10. Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

    Lin Luo

    2010-01-01

    Full Text Available Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline.

  11. The potential of lignocellulosic ethanol production in the Mediterranean Basin

    Faraco, Vincenza [Department of Organic Chemistry and Biochemistry, University of Naples ' ' Federico II' ' , Naples (Italy); School of Biotechnological Sciences, University of Naples ' ' Federico II' ' , Naples (Italy); Hadar, Yitzhak [Department of Microbiology and Plant Pathology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot (Israel)

    2011-01-15

    This review provides an overview of the potential of bioethanol fuel production from lignocellulosic residues in the Mediterranean Basin. Residues from cereal crops, olive trees, and tomato and grape processing are abundant lignocellulosic wastes in France, Italy, Spain, Turkey and Egypt, where their use as raw materials for ethanol production could give rise to a potential production capacity of 13 Mtoe of ethanol. Due to the lack of sufficient amounts of agricultural residues in all of the other Mediterranean countries, use of the cellulosic content of municipal solid waste (MSW) as feedstock for ethanol fuel production is also proposed. A maximum potential production capacity of 30 Mtoe of ethanol could be achieved from 50% of the 180 million tons of waste currently produced annually in the Mediterranean Basin, the management of which has become a subject of serious concern. However, to make large-scale ethanol production from agricultural residues and MSW a medium-term feasible goal in the Mediterranean Basin, huge efforts are needed to achieve the required progress in cellulose ethanol technologies and to overcome several foreseeable constraints. (author)

  12. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

    Jianchun JIANG,Junming XU,Zhanqian SONG

    2015-03-01

    Full Text Available Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

  15. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea; Johnsson, Filip

    2010-01-01

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO 2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  16. Process for desulfurizing petroleum feedstocks

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  17. Proceedings. Feedstock preparation and quality 1997 workshop

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  18. Synthesis of fuels and feedstocks

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  19. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  20. Methods for treating a metathesis feedstock with metal alkoxides

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  1. Enzyme recycling in lignocellulosic biorefineries

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  2. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  3. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  4. Agave: a biofuel feedstock for arid and semi-arid environments

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  5. Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks

    Hendroko Setyobudi Roy

    2018-01-01

    Full Text Available The huge amount of coffee pulp waste is an environmental problem. Anaerobic fermentation is one of the alternative solutions. However, availability of coffee pulp does not appear for year-round, whereas biogas needs continuous feedstocks for digester stability. This research uses coffee pulp from Arabica Coffee Factory at Mengani, Kintamani, Bali–Indonesia. The coffee pulp was transformed into coffee pulp-hay product by sun drying for preservations to extend the raw materials through the year. Characterization of coffee pulp-hay was conducted after to keep for 15 mo for review the prospect as biogas feedstocks. Several parameters were analyzed such as C/N ratio, volatile solids, carbohydrate, protein, fat, lignocellulose content, macro-micro nutrients, and density. The review results indicated that coffee pulp-hay is prospective raw material for biogas feedstock. This well-proven preservation technology was able to fulfill the continuous supply. Furthermore, some problems were found in the recent preliminary experiment related to the density and fungi growth in the conventional laboratory digester. Further investigation was needed to implement the coffee pulp – hay as biogas feedstocks.

  6. More valuable as petrochemical feedstock

    Ramachandran, R.

    2005-01-01

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  7. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  8. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  9. Enzymatic conversion of lignocellulose into fermentable sugars

    Jørgensen, Henning; Kristensen, Jan Bach; Felby, Claus

    2007-01-01

    and hemicelluloses but these are not readily accessible to enzymatic hydrolysis and require a pretreatment, which causes an extensive modification of the lignocellulosic structure. A number of pretreatment technologies are under development and being tested in pilot scale. Hydrolysis of lignocellulose carbohydrates...

  10. Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

    Tristan Djajadi, Demi; Hansen, Aleksander R.; Jensen, Anders

    2017-01-01

    physical and chemical features of the biomass surfaces, specifically contact angle measurements (wettability) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (surfacebiopolymer composition) produced data correlating pretreatment severity and enzymatic digestibility......, and they also revealed differences that correlated to enzymatic glucose yield responses among the three different biomass types. Conclusion: The study revealed that to a large extent, factors related to physico-chemical surface properties, namely surface wettability as assessed by contact angle measurements...

  11. Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production

    Clark, Timothy C. [Antares Group Inc., Lanham, MD (United States); Comer, Kevin S. [Antares Group Inc., Lanham, MD (United States); Belden, Jr., William S. [Antares Group Inc., Lanham, MD (United States)

    2016-04-30

    This three-year project developed and demonstrated four innovative, first-of-their-kind pieces of equipment that are aimed at significantly reducing the cost of delivered herbaceous biomass. This equipment included a Self-Propelled Baler (SPB), a Bale Picking Truck (BPT), a Self-Loading Trailer (SLT), and a Heavy Crop Header for harvesting high yielding energy crops. This equipment was designed and fabricated during the first two years of the project and demonstrated on available crops (corn stover, wheat straw, and warm season grasses) across the nation, as available. Operational performance and cost data was collected and analyzed throughout the project to measure the costs of baseline harvesting (using conventional harvesting equipment) and advanced harvesting with the newly developed equipment. This data revealed that the project met its original goal of developing equipment that is realistically capable of reducing the cost of delivered biomass by $13 per dry ton. Each machine was tested after fabrication and put to the test in one or more commercial harvesting seasons. During these tests, operational flaws were found and fixed through upgrades and improvements. The first new SPB, BPT, and two new SLTs were ready for use during the 2013 harvest season. Since then, over 40 SLTs have been ordered and are currently under fabrication. All of the equipment will be commercially available to the industry as demand increases.

  12. Conversion of Indigenous Agricultural Waste Feedstocks to Fuel Ethanol. Cooperative Research and Development Final Report, CRADA Number CRD-13-504

    Elander, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-27

    This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.

  13. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  14. How does technology pathway choice influence economic viability and environmental impacts of lignocellulosic biorefineries?

    Rajendran, Karthik; Murthy, Ganti S

    2017-01-01

    The need for liquid fuels in the transportation sector is increasing, and it is essential to develop industrially sustainable processes that simultaneously address the tri-fold sustainability metrics of technological feasibility, economic viability, and environmental impacts. Biorefineries based on lignocellulosic feedstocks could yield high-value products such as ethyl acetate, dodecane, ethylene, and hexane. This work focuses on assessing biochemical and biomass to electricity platforms for conversion of Banagrass and Energycane into valuable fuels and chemicals using the tri-fold sustainability metrics. The production cost of various products produced from Banagrass was $1.19/kg ethanol, $1.00/kg ethyl acetate, $3.01/kg dodecane (jet fuel equivalent), $2.34/kg ethylene and $0.32/kW-h electricity. The production cost of different products using Energycane as a feedstock was $1.31/kg ethanol, $1.11/kg ethyl acetate, $3.35/kg dodecane, and $2.62/kg ethylene. The sensitivity analysis revealed that the price of the main product, feedstock cost and cost of ethanol affected the profitability the overall process. Banagrass yielded 11% higher ethanol compared to Energycane, which could be attributed to the differences in the composition of these lignocellulosic biomass sources. Acidification potential was highest when ethylene was produced at the rate of 2.56 × 10 -2 and 1.71 × 10 -2 kg SO 2 eq. for Banagrass and Energycane, respectively. Ethanol production from Banagrass and Energycane resulted in a global warming potential of - 12.3 and - 40.0 g CO 2  eq./kg ethanol. Utilizing hexoses and pentoses from Banagrass to produce ethyl acetate was the most economical scenario with a payback period of 11.2 years and an ROI of 8.93%, respectively. Electricity production was the most unprofitable scenario with an ROI of - 29.6% using Banagrass/Energycane as a feedstock that could be attributed to high feedstock moisture content. Producing ethylene or dodecane from

  15. Efficient eucalypt cell wall deconstruction and conversion for sustainable lignocellulosic biofuels

    Adam L. Healey

    2015-11-01

    Full Text Available In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. First generation biofuels, derived from starches of edible feedstocks such as corn, creates competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose generated on marginal agricultural land, will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia and Angophora, are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lends itself towards natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  16. Practicability of Lignocellulosic Waste Composite in Controlling Air Pollution from Leaves Litter through Bioethanol Production

    Tarrsini, Mahadevan; Teoh, Yi Peng; Ng, Qi Hwa; Kunasundari, Balakrishnan; Xian Ooi, Zhong; Siew Shuit, Hoong; Hoo, Peng Yong

    2018-03-01

    Environmental degradation through greenhouse emission have spurred nation’s interest on feedstock-based fuel. Yet, development of this clean biofuel is obstructed by the expensive feedstock which takes up most of the production cost. Therefore, as an alternative, utilization of widely available lignocellulosic residues with relatively no commercial significance has been considered. This present work emphasizes on mango (Mangifera indica) leaves one of the most abundant lignocellulosic waste in Malaysia. Through implementation of this biomass for bioethanol production, continuous allowance of air pollution with a deleterious impact to the country’s environment could be reduced. The high concentration of sugar (16-18%w/v) in the form of cellulose and hemicellulose is ultimately the reason behind the selection of these leaves as a substrate for bioethanol production. Hence, in this study, a comparison of biomass composition in Harum Manis, Sunshine and Chokanan mango leaves were conducted to detect the most suitable substrate source to produce biofuel. At the end of the biomass evaluation, Harum Manis mango leaves turned out to be the most competitive bioethanol crop as these leaves reported to be made up of 34.71% cellulose and 44.02% hemicellulose which summed up to give highest fermentable sugar source with a lignin content of 19.45%.

  17. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  18. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy's sugar process (CLE Sugar).

    Gao, Johnway; Anderson, Dwight; Levie, Benjamin

    2013-01-28

    Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy's Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has

  19. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals

    Walter Den

    2018-04-01

    Full Text Available Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass

  20. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals

    Den, Walter; Sharma, Virender K.; Lee, Mengshan; Nadadur, Govind; Varma, Rajender S.

    2018-01-01

    Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the

  1. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals.

    Den, Walter; Sharma, Virender K; Lee, Mengshan; Nadadur, Govind; Varma, Rajender S

    2018-01-01

    Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the

  2. Potential of feedstock and catalysts from waste in biodiesel preparation: A review

    Nurfitri, Irma; Maniam, Gaanty Pragas; Hindryawati, Noor; Yusoff, Mashitah M.; Ganesan, Shangeetha

    2013-01-01

    Highlights: • Oils/lipids from waste sources are the suitable candidates for transesterification. • Catalyst derived from waste materials proven its role in transesterification. • The use of materials from waste should be intensify for sustainability. - Abstract: For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success

  3. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    Cardona Alzate, C.A.; Sanchez Toro, O.J.

    2006-01-01

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol

  4. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    Cardona Alzate, C.A. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia)]. E-mail: ccardonaal@unal.edu.co; Sanchez Toro, O.J. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia); Department of Engineering, University of Caldas, Calle 65 No. 26-10, Manizales (Colombia)

    2006-10-15

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol.

  5. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  6. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    Petersen, Pia; Lau, Jane; Ebert, Berit

    2012-01-01

    Background: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross......-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production...... in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels....

  7. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  8. Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol

    Anderson, William F.; Dien, Bruce S.; Brandon, Sarah K.; Peterson, Joy Doran

    Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g-1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g-1) and two giant reed clones (109 and 85 mg g-1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g-1) being superior to Coastal (247 mg g-1) and Tifton 44 (245 mg g-1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.

  9. Engineered plant biomass feedstock particles

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  10. Developing symbiotic consortia for lignocellulosic biofuel production

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  11. Bacterial synergism in lignocellulose biomass degradation : Complementary roles of degraders as influenced by complexity of the carbon source

    Cortes Tolalpa, Larisa; Falcao Salles, Joana; van Elsas, Jan

    2017-01-01

    Lignocellulosic biomass (LCB) is an attractive source of carbon for the production of sugars and other chemicals. Due to its inherent complexity and heterogeneity, efficient biodegradation requires the actions of different types of hydrolytic enzymes. In nature, complex microbial communities that

  12. 2011 Biomass Program Platform Peer Review: Feedstock

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  13. Rheological properties of alumina injection feedstocks

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  14. Upgrading of solid biofuels and feedstock quality

    Burvall, Jan [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    1998-06-01

    This paper treats upgrading of biomass to pellets, briquettes and powder and the quality needed of the initial feedstock. The main raw materials are wood and reed canary grass (Phalaris arundinacea L.) 5 refs, 6 figs, 2 tabs

  15. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  16. Prediction of the FCC feedstocks crackability

    Martinez Cruz, Francy L; Navas Guzman, Gustavo; Osorio Suarez, Juan Pablo

    2009-01-01

    This paper presents a statistical model for prediction of feed stock's crackability (potential to generate valuable products on catalytic cracking process), based on experimental reactivity data by micro activity test (MAT - Microscale Fixed Bed Reactor) and detailed physicochemical characterization. A minimum amount of experimental tests corresponding to feed properties (typically available at refinery) is used to build a more complete description of feedstocks including chemical composition and hydrocarbon distribution. Both measured and calculated physicochemical properties are used to predict the yields of main products at several MAT reaction severities. Different well known functions correlating yields and conversion (previously tested with experimental data MAT) allows the evaluation of maximum point of gasoline yield. This point is used like a crackability index and qualitative point comparison of feed stock's potential. Extensive feedstocks data base from Instituto Colombiano del Petroleo (ICP) with a wide range of composition were used to build the model, including the following feeds: 1. Light feedstocks - Ga soils of refinery and laboratory cuts from different types of Colombian crude oils and 2. Heavy feedstocks - Residues or feedstocks combined (blending of ga soil [GO], atmospheric tower bottom [ATB], demetallized oil [DMO] and demetallized oil hydrotreated [DMOH] in several proportions) from the four fluid catalytic cracking units (FCCU) at Ecopetrol S.A. refinery in Barrancabermeja - Colombia. The results of model show the prediction of valuable products such as gasoline for different refinery feedstocks within acceptable accuracy, thus obtaining a reliable ranking of crackability.

  17. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates

    Saddler Jack N

    2011-02-01

    Full Text Available Abstract A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine. Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic

  18. Lignocellulosic Biomass Pretreatment Using AFEX

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  19. Lignocellulose deconstruction in the biosphere

    Bomble, Yannick J.; Lin, Chien-Yuan; Amore, Antonella; Wei, Hui; Holwerda, Evert K.; Ciesielski, Peter N.; Donohoe, Bryon S.; Decker, Stephen R.; Lynd, Lee R.; Himmel, Michael E.

    2017-12-01

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy.

  20. Lignocellulose deconstruction in the biosphere.

    Bomble, Yannick J; Lin, Chien-Yuan; Amore, Antonella; Wei, Hui; Holwerda, Evert K; Ciesielski, Peter N; Donohoe, Bryon S; Decker, Stephen R; Lynd, Lee R; Himmel, Michael E

    2017-12-01

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy. Copyright © 2017. Published by Elsevier Ltd.

  1. Acetylation of woody lignocellulose: significance and regulation

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  2. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  3. Pretreatments to enhance the digestibility of lignocellulosic biomass

    Hendriks, A.T.W.M.; Zeeman, G.

    2009-01-01

    Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a

  4. 2G ethanol from the whole sugarcane lignocellulosic biomass

    Pereira, Sandra Cerqueira; Maehara, Larissa; Machado, Cristina Maria Monteiro; Farinas, Cristiane Sanchez

    2015-01-01

    Background In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and to...

  5. Dairy Manure as a Potential Feedstock for Cost-Effective Cellulosic Bioethanol

    Qiang Yang

    2015-12-01

    Full Text Available This study investigated sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL pretreatment and subsequent enzymatic digestibility of undigested dairy manure to preliminarily assess its potential use as an inexpensive feedstock for cellulosic bioethanol production. The sulfite pretreatment was carried out in a factorial analysis using 163 to 197 °C for 3 to 37 min with 0.8% to 4.2% sulfuric acid combined with 2.6% to 9.4% sodium sulfite. These treatments were compared with other standard pretreatments of dilute acid, and hot and cold alkali pretreatments. This comparative study showed that the sulfite pretreatment, through its combined effects of hemicellulose and lignin removal and lignin sulfonation, is more effective than the diluted acid and alkali pretreatments to improve the enzymatic digestibility of dairy manure.

  6. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  7. An efficient Azorean thermophilic consortium for lignocellulosic biomass degradation

    Martins, Rita; Teixeira, Mário; Toubarro, Duarte; Simões, Nelson; Domingues, Lucília; Teixeira, J. A.

    2015-01-01

    [Excerpt] Lignocellulosic plant biomass is being envisioned by biorefinery industry as an alternative to current petroleum platform because of the large scale availability, low cost and environmentally benign production. The industrial bioprocessing designed to transform lignocellulosic biomass into biofuels are harsh and the enzymatic reactions may be severely compromised reducing the production of fermentable sugars from lignocellulosic biomass. Thermophilic bacteria consortium are a potent...

  8. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  9. Biofuel Feedstock Assessment for Selected Countries

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  10. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  11. Engineering cyanobacteria as photosynthetic feedstock factories.

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  12. High quality transportation fuels from renewable feedstock

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  13. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  14. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis.

    Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T

    2015-04-01

    The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Study of the conversion of lignocellulosic (aspen) materials to liquid fuels and chemicals

    Pepper, J M; Eager, R L; Mathews, J F

    1979-01-01

    Studies were completed on the use of the small-scale semi-continuous reactor whereby lignocellulosic materials may be converted into a fuel oil. Changes in design and operation were made and further data obtained as a result of studies of the following parameters: pretreatment with sulfuric acid, operating pressure, presence or absence of CO, and nature of feedstock. The major study has centered around the design, construction and testing of a small-scale continuous reactor whose operation was based upon the use of a newly designed screw unit to compress and deliver the wood meal to the reactor site. Chemical studies on oils were obtained from both wood and cellulose. Semi-continuous reactor experiments were run to demonstrate that proto oil could be made continuously under conditions similar to batch runs, and to outline the ranges of the process variable in which satisfactory operation can be maintained for extended periods of time. 7 refs., 4 figs., 5 tabs.

  16. Bioethanol production from residual lignocellulosic materials: A review – Part 2

    CRISTIAN-TEODOR BURUIANA

    2013-08-01

    Full Text Available Lignocellulosic material (LCM can be employed as feedstock for biorefineries, a concept related to industries designed to process biomass for producing chemicals, fuels and/or electrical power. According to this philosophy, LCM can be fractionated and the resulting fractions employed for specific applications. Bioethanol production from cellulosic fraction of LCM involves: hydrolysis of polysaccharides and fermentation of the monomers into bioethanol. Enzymatic hydrolysis is catalyzed by cellulolytic enzymes and fermentation is carried out by bacteria, yeasts or fungi. The main objective of this article is to review different process integration technologies for bioethanol production from LCM. This paper include: separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, and simultaneous saccharification and co-fermentation (SSCF methods. Furthermore, the fermentation process and a comparative data of cellulases, hemicellulases and ethanol producing-microorganisms were presented.

  17. Covalent Immobilization of β-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis

    Alftrén, Johan; Hobley, Timothy John

    2013-01-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found...... that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead......-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter...

  18. Lignin pyrolysis for profitable lignocellulosic biorefineries

    Wild, de P.J.; Gosselink, R.J.A.; Huijgen, W.J.J.

    2014-01-01

    Bio-based industries (pulp and paper and biorefineries) produce > 50 Mt/yr of lignin that results from fractionation of lignocellulosic biomass. Lignin is world's second biopolymer and a major potential source for production of performance materials and aromatic chemicals. Lignin valorization is

  19. Pretreatment of lignocellulosic biomass using Fenton chemistry

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  20. Catalytic hydroprocessing of heavy oil feedstocks

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  1. Catalytic hydroprocessing of heavy oil feedstocks

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  2. Heavy gas oils as feedstock for petrochemicals

    Clark, P.D. [Nova Chemicals Ltd., Calgary, AB (Canada); Du Plessis, D. [Alberta Energy Research Inst., Edmonton, AB (Canada)]|[Alberta Economic Development and Trade, Edmonton, AB (Canada)

    2004-07-01

    This presentation reviewed the possibilities for converting heavy aromatic compounds and gas oils obtained from Alberta bitumen into competitively priced feedstock for high value refined products and petrochemicals. Upgrading bitumen beyond synthetic crude oil to refined products and petrochemicals would add value to bitumen in Alberta by expanding the petrochemical industry by providing a secure market for co-products derived from the integration of bitumen upgrading and refining. This presentation also reviewed conventional feedstocks and processes; by-products from bitumen upgrading and refining; production of light olefins by the fluid catalytic cracking (FCC) and hydrocracking process; deep catalytic cracking, catalytic pyrolysis and PetroFCC processes; technical and economic evaluations; and opportunities and challenges. Conventional feeds for steam cracking were listed along with comparative yields on feedstock. The use of synthetic gas liquids from oil sands plants was also reviewed. Current FCC type processes for paraffinic feedstocks are not suitable for Alberta's bitumen, which require better technologies based on hydrotreating and new ring opening catalysts. tabs., figs.

  3. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  4. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  5. A novel biorefinery integration concept for lignocellulosic biomass

    Özdenkçi, Karhan; De Blasio, Cataldo; Muddassar, Hassan R.; Melin, Kristian; Oinas, Pekka; Koskinen, Jukka; Sarwar, Golam; Järvinen, Mika

    2017-01-01

    Highlights: • Wide review is provided on supply chain and biomass conversion processes. • The requirements for sustainable biorefinery are listed. • An enhanced version distributed-centralized network is proposed. • A novel hydrothermal process is proposed for biomass conversion. - Abstract: The concept of an integrated biorefinery has increasing importance regarding sustainability aspects. However, the typical concepts have techno-economic issues: limited replacement in co-processing with fossil sources and high investment costs in integration to a specific plant. These issues have directed the current investigations to supply-chain network systems. On the other hand, these studies have the scope of a specific product and/or a feedstock type. This paper proposes a novel biorefinery concept for lignocellulosic biomass: sectoral integration network and a new hydrothermal process for biomass conversion. The sectoral integration concept has the potential for sustainable production from biomass: pre-treatment at the biomass sites, regional distributed conversion of biomass from various sectors (e.g. black liquor, sawdust, straw) and centralized upgrading/separation of crude biofuels. On the other hand, the conversion processes compose the vital part of such a concept. The new conversion involves partial wet oxidation - or simultaneous dissolution with partial wet oxidation for solid biomass- followed by lignin recovery with acidification and a reactor that can perform either hydrothermal liquefaction or supercritical water gasification. The process can intake both liquid and solid biomass to produce lignin as biomaterial and syngas or bio-oil. The new concept can contribute social development of rural areas by utilizing waste as valuable raw material for the production of multiple products and reduce the net greenhouse gas emissions by replacing fossil-based production.

  6. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics.

    Gupta, Rishi; Mehta, Girija; Khasa, Yogender Pal; Kuhad, Ramesh Chander

    2011-07-01

    The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69-10.08% lignin in P. juliflora and 6.89-7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90-3.97 and 4.25-4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0-33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1-25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.

  7. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals.

  8. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment.

    Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C

    2015-09-23

    Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.

  9. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

    Chandel, Anuj K; Gonçalves, Bruna C M; Strap, Janice L; da Silva, Silvio S

    2015-01-01

    Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.

  10. Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis

    Velasquez-Arredondo, H.I. [Grupo de Investigacion Bioprocesos y Flujos Reactivos, Universidad Nacional de Colombia, Sede Medellin, Calle 59 A N 63-20 (Colombia); Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Avenida Professor Mello Moraes 2231 (Brazil); Ruiz-Colorado, A.A. [Grupo de Investigacion Bioprocesos y Flujos Reactivos, Universidad Nacional de Colombia, Sede Medellin, Calle 59 A N 63-20 (Colombia); De Oliveira, S. Jr. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Avenida Professor Mello Moraes 2231 (Brazil)

    2010-07-15

    Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable; mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 to 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (author)

  11. Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis.

    Alftrén, Johan; Hobley, Timothy John

    2013-04-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter. The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65 %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis.

  12. 2nd generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment?

    Chiaramonti, David; Rizzo, Andrea Maria; Prussi, Matteo [University of Florence, CREAR - Research Centre for Renewable Energy and RE-CORD, Florence (Italy); Tedeschi, Silvana; Zimbardi, Francesco; Braccio, Giacobbe; Viola, Egidio [ENEA - Laboratory of Technology and Equipment for Bioenergy and Solar Thermal, Rotondella (Italy); Pardelli, Paolo Taddei [Spike Renewables s.r.l., Florence (Italy)

    2011-03-15

    Biomass pretreatement is a key and energy-consuming step for lignocellulosic ethanol production; it is largely responsible for the energy efficiency and economic sustainability of the process. A new approach to biomass pretreatment for the lignocellulosic bioethanol chain could be mild torrefaction. Among other effects, biomass torrefaction improves the grindability of fibrous materials, thus reducing energy demand for grinding the feedstock before hydrolysis, and opens the biomass structure, making this more accessible to enzymes for hydrolysis. The aim of the preliminary experiments carried out was to achieve a first understanding of the possibility to combine torrefaction and hydrolysis for lignocellulosic bioethanol processes, and to evaluate it in terms of sugar and ethanol yields. In addition, the possibility of hydrolyzing the torrefied biomass has not yet been proven. Biomass from olive pruning has been torrefied at different conditions, namely 180-280 C for 60-120 min, grinded and then used as substrate in hydrolysis experiments. The bioconversion has been carried out at flask scale using a mixture of cellulosolytic, hemicellulosolitic, {beta}-glucosidase enzymes, and a commercial strain of Saccharomyces cerevisiae. The experiments demonstrated that torrefied biomass can be enzymatically hydrolyzed and fermented into ethanol, with yields comparable with grinded untreated biomass and saving electrical energy. The comparison between the bioconversion yields achieved using only raw grinded biomass or torrefied and grinded biomass highlighted that: (1) mild torrefaction conditions limit sugar degradation to 5-10%; and (2) torrefied biomass does not lead to enzymatic and fermentation inhibition. Energy consumption for ethanol production has been preliminary estimated, and three different pretreatment steps, i.e., raw biomass grinding, biomass-torrefaction grinding, and steam explosion were compared. Based on preliminary results, steam explosion still has a

  13. Novel heat–integrated and intensified biorefinery process for cellulosic ethanol production from lignocellulosic biomass

    Nhien, Le Cao; Long, Nguyen Van Duc; Lee, Moonyong

    2017-01-01

    Highlights: • A compact biorefinery design was proposed for cellulosic ethanol purification. • Actual fermentation broth from lignocellulosic biomass was considered. • Process integration and intensification achieves competitive biorefinery context. • The response surface method optimizes the complex column structure effectively. • The proposed process could save up to 47.6% of total annual cost. - Abstract: Biofuels have the most potential as an alternative to fossil fuels and overcoming global warming, which has become one of the most serious environmental issues over the past few decades. As the world confronts food shortages due to an increase in world population, the development of biofuels from inedible lignocellulosic feedstock may be more sustainable in the long term. Inspired by the NREL conventional process, this paper proposes a novel heat–integrated and intensified biorefinery design for cellulosic ethanol production from lignocellulosic biomass. For the preconcentration section, heat pump assisted distillation and double–effect heat integration were evaluated, while a combination of heat–integrated technique and intensified technique, extractive dividing wall column (EDWC), was applied to enhance the process energy and cost efficiency for the purification section. A biosolvent, glycerol, which can be produced from biodiesel production, was used as the extracting solvent in an EDWC to obtain a high degree of integration in a biorefinery context. All configuration alternatives were simulated rigorously using Aspen Plus were based on the energy requirements, total annual costs (TAC), and total carbon dioxide emissions (TCE). In addition, the structure of the EDWC was optimized using the reliable response surface method, which was carried out using Minitab statistical software. The simulation results showed that the proposed heat–integrated and intensified process can save up to 47.6% and 56.9% of the TAC and TCE for the purification

  14. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  15. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  16. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  17. Biofuel Feedstock Assessment For Selected Countries

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  18. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Conversion of industrial (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon

    Op de Beeck, B.; Van Lishout, J.; Jacobs, P.A.; Sels, B.F. [Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Geboers, J. [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim an der Ruhr (Germany); Van de Vyver, S. [Massachusetts Institute of Technology MIT, Massachusetts Avenue 77, Cambridge, MA 02139-4307 (United States); Snelders, J.; Courtin, C.M. [Centre for Food and Microbial Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee (Belgium); Huijgen, W.J.J. [Biomass and Energy Efficiency BEE, Energy research Centre of the Netherlands ECN, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2013-01-11

    The catalytic valorization of cellulose is currently subject of intense research. Isosorbide is among the most interesting products that can be formed from cellulose as it is a potential platform molecule and can be used for the synthesis of a wide range of pharmaceuticals, chemicals, and polymers. A promising direct route from cellulose to isosorbide is presented in this work. The strategy relies on a one-pot bifunctional catalytic concept, combining heteropoly acids, viz. H4SiW12O40, and redox catalysts, viz. commercial Ru on carbon, under H2 pressure. Starting from pure microcrystalline cellulose, a rapid conversion was observed, resulting in over 50% isosorbide yield. The robustness of the developed system is evidenced by the conversion of a range of impure cellulose pulps obtained by organosolv fractionation, with isosorbide yields up to 63%. Results were compared with other (ligno)cellulose feedstocks, highlighting the importance of fractionation and purification to increase reactivity and convertibility of the cellulose feedstock.

  20. Processing Cost Analysis for Biomass Feedstocks

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  1. Lignocellulosic Biobutanol as Fuel for Diesel Engines

    Martin Pexa

    2016-05-01

    Full Text Available Energy recovery of lignocellulosic waste material in the form of liquid fractions can yield alcohol-based fuels such as bioethanol or biobutanol. This study examined biobutanol derived from lignocellulosic material that was then used as an additive for diesel engines. Biobutanol was used in fuel mixtures with fatty acid methyl ester (FAME obtained by esterification of animal fat (also a waste material in the amounts of 10%, 30%, and 50% butanol. 100% diesel and 100% FAME were used as reference fuels. The evaluation concerned the fuel’s effect on the external speed characteristics, harmful exhaust emissions, and fuel consumption while using the Non-Road Steady Cycle test. When the percentage of butanol was increased, the torque and the power decreased and the brake specific fuel consumption increased. The main advantage of using biobutanol in fuel was its positive effect on reducing the fuel’s viscosity.

  2. Stabilization of wood and lignocellulose materials

    Pesek, M.; Dedek, V.; Plander, E.; Jarkovsky, J.

    1973-01-01

    A method is described consisting in impregnation of wood or of lignocellulose materials with a mixture containing the unsaturated monomers styrene and acrylnitrile, organic solvents and swelling agents, and 1,3-butadiene and/or 2-chloro-1,3-butadiene and/or 1,3-cyclopentadiene at an amount of 40 volume per cent in the initial mixture. Polymerization is effected by ionizing radiation. (B.S.)

  3. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies.

    Rosnow, Joshua J; Anderson, Lindsey N; Nair, Reji N; Baker, Erin S; Wright, Aaron T

    2017-08-01

    The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.

  4. Markets for Canadian bitumen-based feedstock

    Lauerman, V.

    2001-01-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs

  5. Bioenergy Feedstock Development Program Status Report

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  6. Can lignocellulosic hydrocarbon liquids rival lignocellulose-derived ethanol as a future transport fuel?

    Yao Ding

    2012-11-01

    Full Text Available Although transport fuels are currently obtained mainly from petroleum, alternative fuels derived from lignocellulosic biomass (LB have drawn much attention in recent years in light of the limited reserves of crude oil and the associated environmental issues. Lignocellulosic ethanol (LE and lignocellulosic hydrocarbons (LH are two typical representatives of the LB-derived transport fuels. This editorial systematically compares LE and LB from production to their application in transport fuels. It can be demonstrated that LH has many advantages over LE relative to such uses. However, most recent studies on the production of the LB-derived transport fuels have focused on LE production. Hence, it is strongly recommended that more research should be aimed at developing an efficient and economically viable process for industrial LH production.

  7. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    Cristhian Carrasco

    2011-07-01

    Full Text Available Abstract Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF of lignocellulosic residues from commercial furfural production (furfural residue, FR and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch

  8. Markets for Canadian bitumen-based feedstock

    Marshall, R.; Lauerman, V.; Yamaguchi, N.

    2001-02-01

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  9. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  10. Rational use of fossil-fuel feedstocks and problems in catalysis

    Kalechits, I V

    1977-09-01

    A discussion of trends in the availability and cost of petrochemical feedstocks emhasizes the advances in catalyst technology that will be required to offset global shortages of petroleum and natural gas, including the development of more efficient cracking, hydrocracking, hydrotreating, and reforming catalysts for residue refining; the use of catalysts with 2 to 10 times the activity of existing systems, close to 100% selectivity, and high resistance to feedstock poisons to lower energy consumption in, and increase the efficiency of, petrochemical processes; the advantages of metal complex catalysts and possible heterogeneous homogeneous hybrids capable of operating at moderate or low temperatures and pressures; the need for high-temperature catalysts in coal liquefaction and gasification processes; the catalytic recovery of hydrocarbons from coal tar and shale; catalytic energy conversion and storage, fuel cells, etc. 23 references.

  11. Value-added Chemicals from Biomass by Heterogeneous Catalysis

    Voss, Bodil

    feedstock, having retained one C-C bond originating from the biomass precursor, the aspects of utilising heterogeneous catalysis for its conversion to value added chemicals is investigated. Through a simple analysis of known, but not industrialised catalytic routes, the direct conversion of ethanol....... The results of the thesis, taking one example of biomass conversion, show that the utilisation of biomass in the production of chemicals by heterogeneous catalysis is promising from a technical point of view. But risks of market price excursions dominated by fossil based chemicals further set a criterion...... been implemented. The subject on chemical production has received less attention. This thesis describes and evaluates the quest for an alternative conversion route, based on a biomass feedstock and employing a heterogeneous catalyst capable of converting the feedstock, to a value-added chemical...

  12. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  13. Alternative coke production from unconventional feedstocks

    Smoot, D.; Eatough, C.N.; Heaton, J.S.; Eatough, S.R.; Miller, A.B. [Combustion Resources, Provo, UT (US)

    2004-07-01

    This presentation reports on US Department of Energy and company sponsored research and development to develop a technology and process for making metallurgical-quality coke from alternate feedstocks, including by-product and waste carbonaceous materials. The basic patent-pending process blends and presses these carbon-containing materials into briquettes of specified size. This product is referred to as CR Clean Coke because pollutant emission levels are carefully controlled to low levels with little or no vagrant emissions during processing. A wide range of feedstock materials has been investigated in over 600 tests for run-of-mine and waste coal fines of various rank with blends of coal tars and pitches, coal and biomass chars, met-coke breeze or petroleum coke. For various coal/pet-coke/tar feedstocks, CR has produced uniform-sized briquettes in commercial-scale briquettes in three nominal sizes: one inch, two inch, and three inch. These products have been successfully qualified according to stringent requirements for conventional met-coke use in a blast furnace. Several formulation have met and frequently exceeded these established met-coke specifications. One specific product containing coal, tar and pet-coke was selected as a base formulation for which preliminary process design and cost estimates have been completed for construction and operation of a demonstration plant capable of producing 120,000 tons per year of CR Clean Coke. Plant design elements and blast furnace test plans are presented. Tailoring of CR Clean Coke products to other prospective end users including foundry, sugar, soda ash, and ferrometals industries presents additional opportunities. The text is accompanied by 30 slides/overheads. 14 refs., 3 figs., 9 tabs.

  14. Biomass will grow as a chemical feedstock

    Coombs, J

    1979-11-30

    This article discusses the possibility of biomass replacing a large fraction of oil use both as a fuel and a chemical feedstock. Problems arise from the low density, calorific value and diffuse nature of plant material which makes collection and processing expensive on both a financial and an energy cost basis. Two distinct sources of biomass are identified: (a) wastes and residues and (b) purpose grown crops. In the same way it is possible to distinguish thermal and biological conversion technologies. Finally, worldwide biomass energy programmes are reviewed.

  15. Invasive plants as feedstock for biochar and bioenergy production.

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Laccase Enzymology in Relation to Lignocellulose Processing

    Sitarz, Anna Katarzyna

    ) and investigated for production of enzymes under such conditions (Paper I). G. lucidum was found to produce high amounts of laccase which corresponded to its exceptional growth on lignocellulosic substrate and lignin. This observation led to a hypothesis that this particular laccase might act in a synergistic way...... cocktail preparation. This discovery is significant considering the fact that the cellulase cocktail preparations, namely Cellic®CTec1 and Cellic®CTec2, are improved in respect to phenolic-derived, and end-substrate inhibitors. Additionally, the molecular dynamics simulations (MD) of the obtained amino...

  18. Enhancing biogas production from recalcitrant lignocellulosic residue

    Tsapekos, Panagiotis

    Lignocellulosic substrates are abundant in agricultural areas around the world and lately, are utilized for biogas production in full-scale anaerobic digesters. However, the anaerobic digestion (AD) of these substrates is associated with specific difficulties due to their recalcitrant nature which...... protects them from enzymatic attack. Hence, the main purpose of this work was to define diverse ways to improve the performance of AD systems using these unconventional biomasses. Thus, mechanical and thermal alkaline pretreatments, microaeration and bioaugmentation with hydrolytic microbes were examined...... conductivity, soluble chemical oxygen demand and enzymatic hydrolysis) as a rapid way to predict the methane production. However, the precision of methane yield prediction was not high (R2

  19. Method of stabilizing wood or lignocellulose materials

    Pesek, M.; Dedek, V.; Plander, E.; Jarkovsky, J.

    1973-01-01

    Stabilization is effected by impregnating wood or lignocellulose materials with unsaturated monomers in a solution of organic solvents in the presence of swelling agents containing at least one organic halo compound with halogen content exceeding 30 wt. % and not exce--eding the amount corresponding to a saturated solution in the impregnation mixture. Polymerization is effected by ionizing radiation and is completed by the action of temperature in a range of 40 to 150 degC; at the same time, the solvents and the swelling agents should be removed. (B.S.)

  20. Shorea robusta: A sustainable biomass feedstock

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  1. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production.

    Cheng, Chieh-Lun; Chang, Jo-Shu

    2011-09-01

    A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridium pasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

    Domene, X; Enders, A; Hanley, K; Lehmann, J

    2015-04-15

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; pmanagement recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering

    Mehanathan eMuthamilarasan

    2015-11-01

    Full Text Available Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl, callose (Gsl and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2 and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.

  4. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering.

    Muthamilarasan, Mehanathan; Khan, Yusuf; Jaishankar, Jananee; Shweta, Shweta; Lata, Charu; Prasad, Manoj

    2015-01-01

    Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si) is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl), callose (Gsl) and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD) and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2, and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.

  5. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Enzymology of lignocellulose bioconversion by Streptomyces viridosporus

    Ramachandra, M.

    1989-01-01

    Significant progress has been made in lignin biodegradation research since 1983, when lignin peroxidases were discovered in fungi. A similar breakthrough in bacterial lignin biodegradation research is anticipated. Several laboratories have successfully demonstrated the ability of bacteria to mineralize [ 14 C]-lignin lignocelluloses as well as 14 C-labelled synthetic lignins. Attempts are being made to identify the key enzymes involved. In this dissertation, two studies are presented which address the enzymology of lignin biodegradation by Streptomyces viridosporus. The first study compares selected extracellular enzyme of wild-type and genetically manipulated strains with enhanced abilities to produced a water soluble lignin degradation intermediate, designated acid-precipitable polymeric lignin (APPL). UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10 had higher and longer persisting peroxidase, esterase, and endoglucanase activity than did the wild type strain T7A. An extracellular lignocellulose-induced peroxidase with some similarities to fungal ligninases was described for the first time in Streptomyces. The second study describes purification and characterization of an extracellular lignin peroxidase produced by S. viridosporus T7A. This is the first report of a lignin peroxidase in any bacterium

  7. Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Lignin-First Approach.

    Huang, Xiaoming; Zhu, Jiadong; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2016-12-08

    Adding value to lignin, the most complex and recalcitrant fraction in lignocellulosic biomass, is highly relevant to costefficient operation of biorefineries. We report the use of homogeneous metal triflates to rapidly release lignin from biomass. Combined with metal-catalyzed hydrogenolysis, the process separates woody biomass into few lignin-derived alkylmethoxyphenols and cellulose under mild conditions. Model compound studies show the unique catalytic properties of metal triflates in cleaving lignin-carbohydrate interlinkages. The lignin fragments can then be disassembled by hydrogenolysis. The tandem process is flexible and allows obtaining good aromatic monomer yields from different woods (36-48 wt %, lignin base). The cellulose-rich residue is an ideal feedstock for established biorefining processes. The highly productive strategy is characterized by short reaction times, low metal triflate catalyst requirement, and leaving cellulose largely untouched. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bio-production of a polyalcohol (xylitol) from lignocellulosic resources : a review

    Soleimani, M.; Tabil, L.; Panigrahi, S. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering

    2006-07-01

    Lignocellulosic materials that are supplied from several sources at a low price can be utilized as feedstock for chemicals and bio-products. Xylitol is a high value polyalcohol produced by the reduction of D-xylose. It has many advantageous properties, such as low-calorie sweetening power. Due to its higher yield and because downstream processing is expected to be less costly, biotechnological production of xylitol is often more attractive than the chemical method of catalytic hydrogenation. Studies about the bio-production of xylitol, have been mostly focused on establishing the operational parameters and the process options that maximize its yield and productivity in free cell systems. However, some gaps in knowledge exist regarding this bioconversion process in immobilized cell systems and choosing an appropriate carrier for biocatalysts in a fermentation medium. This paper reviewed the metabolism of xylose by microorganisms, variables and process parameters affecting bioconversion of xylose to xylitol in defined media and complex media of lignocellulosic hydrolysates using free and immobilized cell systems. It discussed the natural occurrence, chemical structure, and physical properties of xylitol. Methods of production were discussed, including solid-liquid extraction; chemical production of xylitol; microbial production of xylitol; production of xylitol by bacteria; production of xylitol by molds; and production of xylitol by yeasts. The paper also discussed the parameters of fermentation, including xylose concentration; carbon source; nitrogen source; inoculum age and concentration; aeration rate; and temperature and pH. The production of xylitol from hemicellulose hydrolysate was also discussed along with immobilized-cell fermentation and xylitol recovery from fermented hydrolysate. It was concluded that purification and recovery of xylitol are the primary challenges related to this process, and a successful fermentation using immobilized cell system could

  9. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  10. Interfacing feedstock logistics with bioenergy conversion

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  11. Graphene growth with ‘no’ feedstock

    Qing, Fangzhu; Jia, Ruitao; Li, Bao-Wen; Liu, Chunlin; Li, Congzhou; Peng, Bo; Deng, Longjiang; Zhang, Wanli; Li, Yanrong; Ruoff, Rodney S.; Li, Xuesong

    2017-06-01

    Synthesis of graphene by chemical vapor deposition (CVD) from hydrocarbons on Cu foil substrates can yield high quality and large area graphene films. In a typical CVD process, a hydrocarbon in the gas phase is introduced for graphene growth and hydrogen is usually required to achieve high quality graphene. We have found that in a low pressure CVD system equipped with an oil mechanical vacuum pump located downstream, graphene can be grown without deliberate introduction of a carbon feedstock but with only trace amounts of C present in the system, the origin of which we attribute to the vapor of the pump oil. This finding may help to rationalize the differences in graphene growth reported by different research groups. It should also help to gain an in-depth understanding of graphene growth mechanisms with the aim to improve the reproducibility and structure control in graphene synthesis, e.g. the formation of large area single crystal graphene and uniform bilayer graphene.

  12. Thermal characterization of tropical biomass feedstocks

    Wilson, Lugano; Yang Weihong; Blasiak, Wlodzimierz; John, Geoffrey R.; Mhilu, Cuthbert F.

    2011-01-01

    The processing of agricultural crops results in waste, which is a potential energy resource for alleviating commercial energy supply problems to agricultural-led economies like Tanzania. The energy content of the individual agricultural waste is largely dependent on its chemical composition (C, H and O) and it is negatively affected by the inclusion of inorganic elements and moisture. In this work, fifteen tropical agricultural wastes emanating from export crops for Tanzania were analyzed. The methods used to analyze involved performing proximate and ultimate analysis for determining the biomass composition. Thermal degradation characteristic was established to five selected wastes (coffee husks, sisal bole, cashew nut shells, palm stem, and bagasse) using a thermogravimetric analyzer type NETZSCH STA 409 PC Luxx at a heating rate of 10 K/min. On the basis of elemental composition, the palm fibre and cashew nut shells exhibited high energy content due to their higher H:C ratio with relatively low O:C ratio. Results of the thermal degradation characteristic study showed that the cashew nut shells were the most reactive feedstocks due to their highest overall mass loss and lowest burnout temperatures of 364 o C. Further, kinetic studies done to the five tropical biomass feedstocks under the pseudo single-component overall model established the activation energy for the bagasse, palm stem, and cashew nut shells to be 460 kJ/mole, 542 kJ/mole, and 293 kJ/mole, respectively. The respective activation energies for coffee husks and sisal bole were 370 kJ/mole and 239 kJ/mole. With the exception of the sisal bole, which exhibited zero order reaction mechanism, the remaining materials' reaction mechanism was of first order. These experimental findings form a basis for ranking these materials for energy generation and provide necessary input to equipment and process designers.

  13. Biodiesel from non-food alternative feed-stock

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  14. Best practices guidelines for managing water in bioenergy feedstock production

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  15. Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Lili Zhao

    2015-05-01

    Full Text Available Lignocellulosic biomass-based ethanol is categorized as 2nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price (PGP. Two models were developed for the research, including the Bioethanol PGP Assessment Model (BPAM and the Feedstock Cost Estimation Model (FCEM. Results show that the PGP of the bioethanol ranges $4.68–$6.05/gal (9,550–12,356 yuan/t. The key components that contribute most to bioethanol PGP include the conversion rate of cellulose to glucose, the ratio of five-carbon sugars converted to ethanol, feedstock cost, and enzyme loading, etc. Lignocellulosic ethanol is currently unable to compete with fossil gasoline, therefore incentive policies are necessary to promote its development. It is suggested that the consumption tax be exempted, the value added tax (VAT be refunded upon collection, and feed-in tariff for excess electricity (byproduct be implemented to facilitate the industrialization of the technology. A minimum direct subsidy of $1.20/gal EtOH (2,500 yuan/t EtOH is also proposed for consideration.

  16. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  17. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol

    2014-01-01

    Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion. All these factors are important to maximise industrial efficiency, productivity and profit margins in order to make second-generation bioethanol an economically viable alternative to fossil fuels for future transport needs. Results The aim of the current study was to assess Saccharomyces yeasts for their capacity to tolerate osmotic, temperature and ethanol stresses and inhibitors that might typically be released during steam explosion of wheat straw. Phenotypic microarray analysis was used to measure tolerance as a function of growth and metabolic activity. Saccharomyces strains analysed in this study displayed natural variation to each stress condition common in bioethanol fermentations. In addition, many strains displayed tolerance to more than one stress, such as inhibitor tolerance combined with fermentation stresses. Conclusions Our results suggest that this study could identify a potential candidate strain or strains for efficient second generation bioethanol production. Knowledge of the Saccharomyces spp. strains grown in these conditions will aid the development of breeding programmes in order to generate more efficient strains for industrial fermentations. PMID:24670111

  19. Life cycle analysis of multi-crop lignocellulosic material (perennial grasses) for bioethanol production in western Canada : a review.

    Tripathy, A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering; Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK (Canada). Bioproducts and Bioprocessing; Panigrahi, S. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering; Mupondwa, E.K. [Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK (Canada). Bioproducts and Bioprocessing

    2009-07-01

    This paper presented a life cycle assessment of multi-crop lignocellulosic biomass to determine the environmental performance of a bioethanol biorefinery in western Canada. The study investigated the economic aspects of the ethanol fuel system such as biorefinery operating costs and possible improvements in biorefinery economics resulting from pretreatment, hydrolysis, and fermentation processes. The eco-efficiency was determined by comparing economic parameters with selected environmental parameters. The study also compared the efficiency of the lignoce lulosic biorefinery with grain-based dry milling ethanol plants that produce ethanol as well as dried grains and solubles used as animal feed. The study showed that the choice of feedstock and location of the biorefinery is very important. The location should be carefully chosen where there is no water shortage. Various low valued lignocellulosic energy crops such as switch grass, alfalfa, and other perennial grasses can grow in marginal or pasture land and can decrease production costs considerably, thus improving the economic viability of biorefineries. The use of co-products can also add value to the process and can decrease the cost of ethanol production. tabs., figs.

  20. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  1. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  2. Renewable biofuels bioconversion of lignocellulosic biomass by microbial community

    Rana, Vandana

    2017-01-01

    This book offers a complete introduction for novices to understand key concepts of biocatalysis and how to produce in-house enzymes that can be used for low-cost biofuels production. The authors discuss the challenges involved in the commercialization of the biofuel industry, given the expense of commercial enzymes used for lignocellulose conversion. They describe the limitations in the process, such as complexity of lignocellulose structure, different microbial communities’ actions and interactions for degrading the recalcitrant structure of lignocellulosic materials, hydrolysis mechanism and potential for bio refinery. Readers will gain understanding of the key concepts of microbial catalysis of lignocellulosic biomass, process complexities and selection of microbes for catalysis or genetic engineering to improve the production of bioethanol or biofuel.

  3. Molecular microbial ecology of lignocellulose mobilisation as a ...

    The community structure of complex microbial consortia which develop in lignocellulose packed passive treatment systems for acid mine drainage remediation were investigated. An understanding of interactions between these populations is important in determining mechanisms by which such systems operate.

  4. Lignocellulosic enzymes from Flavodon flavus, a fungus isolated ...

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... es have been shown to degrade not only lignocellulose, but also recalcitrant .... Decolorization of the supernatant was detected by UV spectropho- ... cia, Sweden) packed with polystyrene matrix with quaternary ammonium ...

  5. Pretreatments employed in lignocellulosic materials for bioethanol production: an overview

    Danay Carrillo-Nieves; Lourdes Zumalacárregui-de Cárdenas; Olga Sánchez-Collazo; Georgina Michelena-Alvarez; Hector Yznaga-Blanco; José Luis Martínez-Hernández; Cristóbal Noé-Aguilar

    2014-01-01

    Lignocellulosic materials are raw materials with high cellulose content and they constitute the most abun- dant sources of biomass on planet. They are attractive for their low cost and high availability in diverse climates and places for the bioethanol production, however, the main impediment for its use is the appro- priate selection from the technological and economic point of view of the stages of pretreatments and hydrolysis, that allow the breaking down of the lignocellulosic matrix to o...

  6. ASSERT FY16 Analysis of Feedstock Companion Markets

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  7. ASSERT FY16 Analysis of Feedstock Companion Markets

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.; Nguyen, Thuy; Nair, Shyam; Searcy, Erin; Hess, J. Richard

    2016-01-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  8. The availability of second generation feedstocks for the treatment of acid mine drainage and to improve South Africa's bio-based economy.

    Westensee, Dirk Karl; Rumbold, Karl; Harding, Kevin G; Sheridan, Craig M; van Dyk, Lizelle D; Simate, Geoffrey S; Postma, Ferdinand

    2018-10-01

    South Africa has a wide range of mining activities making mineral resources important economic commodities. However, the industry is responsible for several environmental impacts; one of which is acid mine drainage (AMD). Despite several years of research, attempts to prevent AMD generation have proven to be difficult. Therefore, treatment of the resulting drainage has been common practice over the years. One of the recommended treatment methods is the use of second generation feedstocks (lignocellulosic biomass). This biomass is also acknowledged to be an important feedstock for bio-refineries as it is abundant, has a high carbon content and is available at minimal cost. It can also potentially be converted to fermentable sugars (e.g. glucose) through different treatment steps, which could further yield other valuable commodities (cellulase, poly-β-hydroxybutyric acid (PHB) and penicillin V). It is estimated by a generic flowsheet model that 7 tons of grass biomass can produce 1400 kg of glucose which can subsequently produce 205 kg, 438 kg and 270 kg of cellulase, PHB and Penicillin V, respectively. In this paper we investigate the feasibility of grass as feedstock for AMD treatment and the subsequent conversion of this acid pre-treated grass into valuable bio-products. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Techno-economic Assessment of Integrated Hydrothermal Liquefaction and Combined Heat and Power Production from Lignocellulose Residues

    Mohamed Magdeldin

    2018-03-01

    Full Text Available Waste biomass as a mean for global carbon dioxide emissions mitigation remains under-utilized. This is mainly due to the low calorific value of virgin feedstock, characterized generally with high moisture content. Aqueous processing, namely hydrothermal liquefaction in subcritical water conditions, has been demonstrated experimentally to thermally densify solid lignocellulose into liquid fuels without the pre-requisite and energy consuming drying step. This study presents a techno-economic evaluation of an integrated hydrothermal liquefaction system with downstream combined heat and power production from forest residues. The utilization of the liquefaction by-products and waste heat from the elevated processing conditions, coupled with the chemical upgrading of the feedstock enables the poly-generation of biocrude, electricity and district heat. The plant thermal efficiency increases by 3.5 to 4.6% compared to the conventional direct combustion case. The economic assessment showed that the minimum selling price of biocrude, based on present co-products market prices, hinders commercialization and ranges between 138 EUR to 178 EUR per MWh. A sensitivity analysis and detailed discussion on the techno-economic assessment results are presented for the different process integration and market case scenarios.

  11. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  12. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  13. Waste paper as a biomass feedstock

    1993-09-01

    A study was undertaken to evaluate the availability and suitability of waste paper for conversion to biofuel in Canada and to examine the environmental impacts of waste paper processing. The total quantity of waste paper available in 1991 for each province and territory was determined and broken down into seven paper types. The total quantity across Canada was estimated at between 5.7 million and 7.6 million tonnes, of which old corrugated containers made up 23-26%. The variation in prices by waste paper type was also examined on a regional basis and a detailed analysis was made of the recent history of prices for several paper types. Waste paper prices have generally decreased, but since mid-1992, prices for certain types such as writing paper, computer output paper, and newsprint have increased steadily, partly due to increasing demand for recycled content in new paper. Utilization and disposal practices by region for waste paper generated in 1991, including recycling, conversion, and landfilling, were studied. National quantities of waste paper recycled, landfilled, and unavailable for recycling are estimated. The feasibility of using each type of waste paper as feedstock for each of three conversion processes (pyrolysis, incineration, fermentation) was examined. Scenarios were then developed for evaluating environmental impacts of each conversion technology. The environmental impacts of recycling, conversion, and landfilling practices are discussed qualitatively. 92 refs., 16 figs., 53 tabs

  14. Biomass Feedstock and Conversion Supply System Design and Analysis

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  15. Qualitative and kinetic analysis of torrefaction of lignocellulosic biomass using DSC-TGA-FTIR

    Bimal Acharya

    2015-11-01

    Full Text Available Torrefaction is a thermochemical conversion technique to improve the fuel properties of lignocellulosic biomass by treating at temperature 200 ℃-300 ℃ in the minimum oxygen environment for a reasonable residence time. In this study, thermal decomposition and thermal activities of miscanthus and wheat straw during the torrefaction at 200 ℃, 275 ℃, and 300 ℃ in a nitrogen environment for 45 minutes of residence time are analyzed in a simultaneous thermogravimetric analyzer (micro TGA with a differential scanning calorimetry (DSC, and a macro-TGA. The output of the micro TGA is fed into the Fourier transform infrared spectrometry (FTIR and qualitative analysis of the gaseous product is carried out. The composition of different gas products during the torrefaction of biomass are compared critically and kinetics were analyzed. It is found that the weight loss due to degradation of initial biomass in second stage (torrefaction process is a much faster conversion process than the weight loss process in the first stage (drying process. The weight loss of biomass increases with increase in the residence time and torrefaction treatment temperatures. The yield after torrefaction is a solid bio-coal product. The torrefied product were less reactive and has nearly 25% better heating value than the raw biomass. Between the two feedstocks studied, torrefied miscanthus proved to be a more stable fuel than the torrefied wheat straw. The major gaseous components observed during torrefaction are water, carbon dioxide, carbon monoxide, 1,2-Dibromethylene.

  16. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    Donya Ramimoghadam

    2014-01-01

    Full Text Available Anatase titanium dioxide nanoparticles (TiO2-NPs were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, thermogravimetric analysis (TGA, ultraviolet visible spectra (UV-Vis, and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.

  17. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively. PMID:23118515

  19. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.

    Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean

    2015-08-24

    Life-cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop-in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio- or petroleum-based feedstocks. As a key innovation, we developed recyclable transition-metal-free hydrotalcite catalysts to promote the dehydrogenative cross-coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation-aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53-79% reduction in life-cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis of casein biopolymers adsorption to lignocellulosic biomass as a potential cellulase stabilizer.

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  2. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Anahita Dehkhoda Eckard

    2012-01-01

    Full Text Available Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM, fourier transform infrared spectroscopy (FT-IR, capillary electrophoresis (CE, and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  3. Enhanced Ethanol Production with Mixed Lignocellulosic Substrates from Commercial Furfural and Cassava Residues

    Li Ji

    2015-01-01

    Full Text Available Simultaneous saccharification and fermentation (SSF is an attractive process configuration for bio-ethanol production. Further reductions in process cost of SSF are expected with the use of waste agricultural or industrial materials as feedstock. In the current study, two industrial lignocellulosic wastes, cassava residues (CR and furfural residues (FR, were combined during SSF for ethanol production due to their value-added applications and positive environmental impacts. After CR were liquefied and saccharified, saccharification liquid was added to SSF of FR. The effect of substrate fractions was investigated in terms of ethanol yield, byproduct concentration and the number of yeast cells. Besides, a natural surfactant, Gleditsia saponin, was added to investigate the effect of FR lignin on SSF with 20% substrate concentration. The results showed that increasing the ratio of CR/FR improved the ethanol yield and that the ethanol yield was also increased gradually by increasing the substrate concentration from 6% to 12%. A high ethanol concentration of 36.0 g/L was obtained under the condition of CR:FR = 2:1 with 12% substrate concentration, reaching 71.1% of the theoretical yield. However, Gleditsia saponin did not affect the ethanol yield, indicating the insignificant effect of lignin in SSF with low lignin content in the reaction system.

  4. Reclaimable Thermally Reversible Polymers for AM Feedstock, Phase II

    National Aeronautics and Space Administration — CRG proposes to continue efforts from the 2016 NASA SBIR Phase I topic H5.04 Reclaimable Thermally Reversible Polymers for AM Feedstock. In Phase II, CRG will refine...

  5. Properties of various plants and animals feedstocks for biodiesel production.

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Bibliography on Biomass Feedstock Research: 1978-2002

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  7. Feedstock and Conversion Supply System Design and Analysis

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  8. Innovative technological paradigm-based approach towards biofuel feedstock

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  9. Horse manure as feedstock for anaerobic digestion.

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. Copyright © 2016. Published by Elsevier Ltd.

  10. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.

    Fatma, Shabih; Hameed, Amir; Noman, Muhammad; Ahmed, Temoor; Shahid, Muhammad; Tariq, Mohsin; Sohail, Imran; Tabassum, Romana

    2018-01-01

    Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of

  11. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Klose Holger

    2012-08-01

    Full Text Available Abstract Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354 isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

  12. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate.

    Aulitto, Martina; Fusco, Salvatore; Bartolucci, Simonetta; Franzén, Carl Johan; Contursi, Patrizia

    2017-01-01

    The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans , named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto

  13. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes

    Coignac, Julien

    2013-01-01

    Process chains of thermo chemical conversion of lignocellulosic biomass through gasification and Fischer-Tropsch synthesis (known as BTL) represent promising alternatives for biofuels production. Since biomass is heterogeneous and not homogeneously spread over territories, one of the major technological stakes of the project is to develop a flexible industrial chain capable of co-treating the widest possible range of biomass and fossil fuel feedstock. The present study aims at characterizing biomass diversity (availability and potentials by area, cost and mineral composition) by carrying out a state of the art, as a preliminary step in order to define a series of biomass to be tested in the demonstration plant and therefore define specifications for the process. Fifty different biomass were considered for their bio-energy application potential and were finally classified into four categories: agricultural by-products, dedicated energy crops, (Very) Short Rotation Coppice ((V)SRC) and forestry biomass. Biomass availability and potentials were investigated by the mean of a literature review of past and current projects (e.g. RENEW project, Biomass Energy Europe Project, etc.) and scientific articles. Most collected data are technical potentials, meaning that they take into account biophysical limits of crops and forests, technological possibilities, competition with other land uses and ecological constraints (e.g. natural reserves). Results show various emerging markets: North and South America have considerable amounts of agricultural by-products, forest residues, and large land areas which could be dedicated to energy crops; Africa shows relevant possibilities to grow Short Rotation Forestry (SRF) and energy crops; Russia has large available quantities of agricultural by-products and forest residues, as well as little valuable land where energy crops and SRC could be grown, and Asia shows relevant amounts of forest residues and possibilities of growing SRC, as well

  14. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J.

    2002-06-01

    This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design

  15. Heterogeneous reactors

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  16. Destroying lignocellulosic matters for enhancing methane production from excess sludge.

    Hao, Xiaodi; Hu, Yuansheng; Cao, Daqi

    2016-01-01

    A lot of lignocellulosic matters are usually present in excess sludge, which are hardly degraded in anaerobic digestion (AD) and thus remains mostly in digested sludge. This is a reason why the conversion rate of sludge organics into energy (CH4) is often low. Obviously, the hydrolysis of AD cannot destruct the structure of lignocellulosic matters. Structural destruction of lignocellulosic matters has to be performed in AD. In this study, pretreatments with the same principles as cell disintegration of sludge were applied to destruct lignocellulosic matters so that these materials could be converted to CH4 via AD. Acid, alkali, thermal treatment and ultrasonic were used in the experiments to observe the destructed/degraded efficiency of lignocellulosic matters. Thermal treatment was found to be the most effective pretreatment. Under optimized conditions (T = 150 °C and t = 30  min), pretreated sludge had a degraded rate of 52.6% in AD, due to easy destruction and/or degradation of hemicelluloses and celluloses in pretreatment. The sludge pretreated by thermal treatment could enhance the CH4 yield (mL CH4 g(-1) VSS) by 53.6% compared to raw sludge. Economically, the thermal treatment can balance the input energy with the produced energy (steam and electricity).

  17. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    Zha, Y.; Westerhuis, J.A.; Muilwijk, B.; Overkamp, K.M.; Nijmeijer, B.M.; Coulier, L.; Smilde, A.K.; Punt, P.J.

    2014-01-01

    Background: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates.Results: We studied the

  18. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    Zha, Y.; Westerhuis, J.A.; Muilwijk, B.; Overkamp, K.M.; Nijmeijer, B.M.; Coulier, L.; Smilde, A.K.; Punt, P.J.

    2014-01-01

    BACKGROUND: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. RESULTS: We studied the

  19. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysatembt

    Wierckx, N.; Koopman, F.; Bandounas, L.; Winde, J.H.de; Ruijssenaars, H.J.

    2010-01-01

    The formation of toxic fermentation inhibitors such as furfural and 5-hydroxy-2-methylfurfural (HMF) during acid (pre-)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that

  20. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  1. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol

    Maurya, Devendra Prasad; Singla, Ankit; Negi, Sangeeta

    2015-01-01

    Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. P...

  2. Bioconversion of lignocellulosic biomass to xylitol: An overview.

    Venkateswar Rao, Linga; Goli, Jyosthna Khanna; Gentela, Jahnavi; Koti, Sravanthi

    2016-08-01

    Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  4. A systematic review on the composting of green waste: Feedstock quality and optimization strategies.

    Reyes-Torres, M; Oviedo-Ocaña, E R; Dominguez, I; Komilis, D; Sánchez, A

    2018-04-27

    Green waste (GW) is an important fraction of municipal solid waste (MSW). The composting of lignocellulosic GW is challenging due to its low decomposition rate. Recently, an increasing number of studies that include strategies to optimize GW composting appeared in the literature. This literature review focuses on the physicochemical quality of GW and on the effect of strategies used to improve the process and product quality. A systematic search was carried out, using keywords, and 447 papers published between 2002 and 2018 were identified. After a screening process, 41 papers addressing feedstock quality and 32 papers on optimization strategies were selected to be reviewed and analyzed in detail. The GW composition is highly variable due to the diversity of the source materials, the type of vegetation, and climatic conditions. This variability limits a strict categorization of the GW physicochemical characteristics. However, this research established that the predominant features of GW are a C/N ratio higher than 25, a deficit in important nutrients, namely nitrogen (0.5-1.5% db), phosphorous (0.1-0.2% db) and potassium (0.4-0.8% db) and a high content of recalcitrant organic compounds (e.g. lignin). The promising strategies to improve composting of GW were: i) GW particle size reduction (e.g. shredding and separation of GW fractions); ii) addition of energy amendments (e.g. non-refined sugar, phosphate rock, food waste, volatile ashes), bulking materials (e.g. biocarbon, wood chips), or microbial inoculum (e.g. fungal consortia); and iii) variations in operating parameters (aeration, temperature, and two-phase composting). These alternatives have successfully led to the reduction of process length and have managed to transform recalcitrant substances to a high-quality end-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Heterogeneous Gossip

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  7. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  8. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  9. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  10. Lignocellulose pretreatment in a fungus-cultivating termite

    Hongjie Li; Daniel J. Yelle; Chang Li; Mengyi Yang; Jing Ke; Ruijuan Zhang; Yu Liu; Na Zhu; Shiyou Liang; Xiaochang Mo; John Ralph; Cameron R. Currie; Jianchu Mo

    2017-01-01

    Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether– and carbon–carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating...

  11. Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentation Processes

    Zha, Y.; Muilwijk, B.; Coulier, L.C.; Punt, P.J.

    2012-01-01

    To compare the composition and performance of various lignocellulosic biomass hydrolysates as fermentation media, 8 hydrolysates were generated from a grass-like and a wood biomass. The hydrolysate preparation methods used were 1) dilute acid, 2) mild alkaline, 3) alkaline/peracetic acid, and 4)

  12. Simple and enhanced production of lignocellulosic ethanol by ...

    Ethanol can be produced from a fermentation process using raw materials obtained from highly economically important plants such as corn, cassava and sugarcane, and used as an alternative energy source. These economical plants are being used less because their initial cost is still increasing. However, lignocellulosic ...

  13. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  14. Lignocellulosic biomass utilization toward biorefinery using meshophilic Clostridial species

    Tamaru, Yutaka; Lopez Contreras, A.M.

    2013-01-01

    Lignocellulosic biomass such as agricultural, industrial, and forestry residues as well as
    dedicated crops constitute renewable and abundant resources with great potential for a lowcost
    and uniquely sustainable bioconversion to value-added bioproducts. Thus, many
    organic fuels and

  15. Rapid and Complete Enzyme Hydrolysis of Lignocellulosic Nanofibrils

    Raquel Martin-Sampedro; Ilari Filpponen; Ingrid C. Hoeger; J.Y. Zhu; Janne Laine; Orlando J. Rojas

    2012-01-01

    Rapid enzymatic saccharification of lignocellulosic nanofibrils (LCNF) was investigated by monitoring nanoscale changes in mass via quartz crystal microgravimetry and also by measuring reducing sugar yields. In only a few minutes LCNF thin films were completely hydrolyzed upon incubation in multicomponent enzyme systems. Conversion to sugars and oligosaccharides of...

  16. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass,

  17. Ionic liquid-facilitated preparation of lignocellulosic composites

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  18. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation

    Martin, C.; Manzanares, P.

    1994-01-01

    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs

  19. Comparison of lignocellulose composition in four major species of ...

    By principal component analysis (PCA), the components ADF and cellulose were the PC1 that were considered the foremost for the evaluation and selection of resource in the four species. The conclusions show that lignocellulose composition contents of Miscanthus culms were different. M. floridulus was more fit to ethanol ...

  20. Recent advances in pretreatment of lignocellulosic wastes and ...

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... The barrier to the production and recovery of valuable materials from LCW is the structure of lignocellulose which has evolved to resist degradation due to cross- linking between the polysaccharides (cellulose and hemi- cellulose) and the lignin via ester and ether linkages (Yan and Shuya, 2006; Xiao et al., ...

  1. LIGNOCELLULOSIC BIOMASS AFTER EXPLOSIVE AUTOHYDROLYSIS AS SUBSTRATE TO BUTANOL OBTAINING

    Tigunova

    2016-08-01

    Full Text Available The aim of the work was investigation of the effect of the explosive autohydrolysis on lignocellulosic biomass (saving, switchgrass biomass for consequent use as a substrate to produce biofuels such as butanol. Butanol-producing strains, switchgrass Panicum virgatum L. biomass and its components after autohydrolysis were used in study. The thermobaric pressure pretreatment of lignocellulosic biomass was carried out using specially designed equipment. The effect of explosive autohydrolysis on lignocellulosic biomass for further use in producing biofuels using microbial conversion was studied. Components of lignocellulosic biomass were fractionated after undergoing thermobaric treatment. The possibility of using different raw material components after using explosive autohydrolysis processing to produce biobutanol was found. Products of switchgrass biomass autohydrolysis were shown to need further purification before fermentation from furfural formed by thermobaric pretreatment and inhibiting the growth of microorganisms. The ability of strains of the genus Clostridium to use cellulose as a substrate for fermentation was proved. It was found that using explosive autohydrolysis pretreatment to savings allowed boosting the butanol accumulation by 2 times.

  2. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  3. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  4. Lignocellulosics to ethanol: The future of the chemical and energy ...

    Energy and environmental issues are among the major concerns facing the global community today. Biofuel technology is now globally embraced as the promising technology to replace fossil fuels. Lignocellulosic waste biomass from forestry, agriculture and municipal sources are abundant, inexpensive and potential ...

  5. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes

    Benner, R.; Moran, M.A.; Hodson, R.E.

    1986-01-01

    The relative contributions of procaryotes and eucaryotes to the degradation of the lignin and polysaccharide components of lignocellulosic detritus in two marine and two freshwater wetland ecosystems were determined. Two independent methods - physical separation of bacteria from fungi and other eucaryotes by size fractionation, and antibiotic treatments - were used to estimate procaryotic and eucaryotic contributions to the degradation of [ 14 C-lignin]lignocelluloses and [ 13 C-polysaccharide]lignocelluloses in samples of water and decaying plant material from each environment. Both methods yielded similar results; bacteria were the predominant degraders of lignocellulose in each of the aquatic ecosystems. These results indicate a basic difference between the microbial degradation of lignocellulosic material in terrestrial and aquatic environments. Fungi have long been considered the predominant degraders of lignocellulose in terrestrial systems; our results indicate that in aquatic systems bacteria are the predominant degraders of lignocellulose

  6. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  7. The impact of silicon feedstock on the PV module cost

    del Coso, G.; del Cañizo, C.; Sinke, W.C.

    2010-01-01

    The impact of the use of new (solar grade) silicon feedstock materials on the manufacturing cost of wafer-based crystalline silicon photovoltaic modules is analyzed considering effects of material cost, efficiency of utilisation, and quality. Calculations based on data provided by European industry

  8. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  9. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

    Elena Shimanskaya

    2018-01-01

    How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 74-81 (doi:10.9767/bcrec.13.1.969.74-81

  10. Assessing hydrological impacts of tree-based bioenergy feedstock

    Gush, Mark B

    2010-01-01

    Full Text Available This chapter provides a methodology for assessing the hydrological impacts of tree-based bioenergy feedstock. Based on experience gained in South Africa, it discusses the tasks required to reach an understanding of the likely water resource impacts...

  11. A bioenergy feedstock/vegetable double-cropping system

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  12. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  13. Renewable feedstocks: the problem of catalyst deactivation and its mitigation

    Lange, Jean Paul

    2015-01-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in

  14. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method

    Chiaramonti, David; Prussi, Matteo; Ferrero, Simone; Oriani, Luis; Ottonello, Piero; Torre, Paolo; Cherchi, Francesco

    2012-01-01

    Biomass pretreatment aims at separating and providing easier access to the main biomass components (cellulose, hemicellulose and lignin), eventually removing lignin, preserving the hemicellulose, reducing the cellulose crystallinity and increasing the porosity of the material. Pretreatment is an essential step towards the development and industrialization of efficient 2nd generation lignocellulosic ethanol processes. The present work reviewed the main options available in pretreatment. Autohydrolysis and steam explosion were then selected for further investigation. Experimental work was carried out on batch scale reactors, using Miscanthus as biomass feedstock: the effects on sugar solubilization and degradation products generation have been examined for each of these two pretreatment systems. A new process using only water and steam as reacting media was then developed, experimentally tested, and results compared to those achieved by the autohydrolysis and steam explosion processes. Products obtained with the new pretreatment contained a lower amount of usual fermentation inhibitor compounds compared to that typically obtained in steam explosion. This result was achieved under operating conditions that at the same time allowed a good xylan yield, preventing degradation of hemicelluloses. The new pretreatment process was also able to act as an equalization step, as the solid material from the pretreatment phase had a similar composition even under different operating conditions. As regards the effect of pretreatment on enzymatic hydrolysis, the new process achieved yields similar to steam explosion on glucans: however, this was obtained reducing the formation of degradation products from sugars, mainly from C5 sugars. These results made the proposed pretreatment system suitable for further development and industrialization on pilot and industrial scale.

  15. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment

    Varanasi Patanjali

    2013-01-01

    Full Text Available Abstract Background Lignin is often overlooked in the valorization of lignocellulosic biomass, but lignin-based materials and chemicals represent potential value-added products for biorefineries that could significantly improve the economics of a biorefinery. Fluctuating crude oil prices and changing fuel specifications are some of the driving factors to develop new technologies that could be used to convert polymeric lignin into low molecular weight lignin and or monomeric aromatic feedstocks to assist in the displacement of the current products associated with the conversion of a whole barrel of oil. We present an approach to produce these chemicals based on the selective breakdown of lignin during ionic liquid pretreatment. Results The lignin breakdown products generated are found to be dependent on the starting biomass, and significant levels were generated on dissolution at 160°C for 6 hrs. Guaiacol was produced on dissolution of biomass and technical lignins. Vanillin was produced on dissolution of kraft lignin and eucalytpus. Syringol and allyl guaiacol were the major products observed on dissolution of switchgrass and pine, respectively, whereas syringol and allyl syringol were obtained by dissolution of eucalyptus. Furthermore, it was observed that different lignin-derived products could be generated by tuning the process conditions. Conclusions We have developed an ionic liquid based process that depolymerizes lignin and converts the low molecular weight lignin fractions into a variety of renewable chemicals from biomass. The generated chemicals (phenols, guaiacols, syringols, eugenol, catechols, their oxidized products (vanillin, vanillic acid, syringaldehyde and their easily derivatized hydrocarbons (benzene, toluene, xylene, styrene, biphenyls and cyclohexane already have relatively high market value as commodity and specialty chemicals, green building materials, nylons, and resins.

  16. New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock

    Claudia Antonetti

    2016-12-01

    Full Text Available Levulinic acid (LA is one of the top bio-based platform molecules that can be converted into many valuable chemicals. It can be produced by acid catalysis from renewable resources, such as sugars, lignocellulosic biomass and waste materials, attractive candidates due to their abundance and environmentally benign nature. The LA transition from niche product to mass-produced chemical, however, requires its production from sustainable biomass feedstocks at low costs, adopting environment-friendly techniques. This review is an up-to-date discussion of the literature on the several catalytic systems that have been developed to produce LA from the different substrates. Special attention has been paid to the recent advancements on starting materials, moving from simple sugars to raw and waste biomasses. This aspect is of paramount importance from a sustainability point of view, transforming wastes needing to be disposed into starting materials for value-added products. This review also discusses the strategies to exploit the solid residues always obtained in the LA production processes, in order to attain a circular economy approach.

  17. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  18. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample

  19. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock.

    Macrelli, Stefano; Galbe, Mats; Wallberg, Ola

    2014-02-21

    Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol

  20. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  1. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  2. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses.

    Nieder-Heitmann, Mieke; Haigh, Kathleen F; Görgens, Johann F

    2018-08-01

    Itaconic acid has economic potential as a commodity biochemical for the sugar industry, but its production is limited due to high production costs. Using cheaper and alternative lignocellulosic feedstocks together with achieving higher product titres have been identified as potential strategies for viable IA production. Consequently the use of sugarcane bagasse and trash for the production of itaconic acid (IA) and electricity have been investigated for an integrated biorefinery, where the production facility is annexed to an existing sugar mill and new combined heat and power (CHP) plant. Three IA biorefinery scenarios were designed and simulated in Aspen Plus®. Subsequent economic analyses indicated that cheaper feedstocks reduced the IA production cost from 1565.5 US$/t for glucose to 616.5 US$/t, but coal supplementation was required to sufficiently lower the production cost to 604.3 US$/t for a competitive IA selling price of 1740 US$/t, compared to the market price of 1800 US$/t. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hensley, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schaidle, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  4. Biodegradation of lignocellulosic materials: Present status and future prospects

    Morrison, I.M.; Brice, R.E.; Mousdale, S.A.

    1989-01-01

    The biodegradation of lignocellulosic material depends on the source and prior treatment of the substrate. As the composition of the substrate influences the mode of degradation, a resume of the structure of cell wall components is given. This shows the relationship between cellulose, hemicelluloses, lignin and the other non-carbohydrate components and how they are arranged within the wall architecture. A summary is given of the different types of enzymes which can attack lignocellulosics, some limitations on their use, and how they can be influenced by other methods of pretreatment. The role of different types of microorganisms is discussed and the paper concludes with some results from work by the authors. (author). 37 refs, 4 figs

  5. Flow-through biological conversion of lignocellulosic biomass

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  6. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes

    Thiago de Paula Protásio

    2012-09-01

    Full Text Available Canonical correlation analysis is a statistical multivariate procedure that allows analyzing linear correlation that may exist between two groups or sets of variables (X and Y. This paper aimed to provide canonical correlation analysis between a group comprised of lignin and total extractives contents and higher heating value (HHV with a group of elemental components (carbon, hydrogen, nitrogen and sulfur for lignocellulosic wastes. The following wastes were used: eucalyptus shavings; pine shavings; red cedar shavings; sugar cane bagasse; residual bamboo cellulose pulp; coffee husk and parchment; maize harvesting wastes; and rice husk. Only the first canonical function was significant, but it presented a low canonical R². High carbon, hydrogen and sulfur contents and low nitrogen contents seem to be related to high total extractives contents of the lignocellulosic wastes. The preliminary results found in this paper indicate that the canonical correlations were not efficient to explain the correlations between the chemical elemental components and lignin contents and higher heating values.

  7. Pretreatment Technologies of Lignocellulosic Materials in Bioethanol Production Process

    Mohamad Rusdi Hidayat

    2013-06-01

    Full Text Available Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising  pretreatment technology available.

  8. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review

    Brodeur, Gary; Yau, Elizabeth; Badal, Kimberly; Collier, John; Ramachandran, K. B.; Ramakrishnan, Subramanian

    2011-01-01

    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have sh...

  9. High performance maleated lignocellulose epicarp fibers for copper ion removal

    Vieira,A. P.; Santana,S. A. A.; Bezerra,C. W. B.; Silva,H. A. S.; Santos,K. C. A.; Melo,J. C. P.; Silva Filho,E. C.; Airoldi,C.

    2014-01-01

    Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa) was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g(-1) of carboxylic acid groups into the biopolymer structure. The success of this reaction was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm(-1) in the infrared spectrum. Identically, the same group is observed through C-13 NMR CP/MAS in the solid state,...

  10. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  11. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review.

    Barakat, Abdellatif; de Vries, Hugo; Rouau, Xavier

    2013-04-01

    The use of lignocellulosic biomass is promising for biofuels and materials and new technologies for the conversion need to be developed. However, the inherent properties of native lignocellulosic materials make them resistant to enzymatic and chemical degradation. Lignocellulosic biomass requires being pretreated to change the physical and chemical properties of lignocellulosic matrix in order to increase cell wall polymers accessibility and bioavailability. Mechanical size reduction may be chemical free intensive operation thanks to decreasing particles size and cellulose crystallinity, and increasing accessible surface area. Changes in these parameters improve the digestibility and the bioconversion of lignocellulosic biomass. However, mechanical size reduction requires cost-effective approaches from an energy input point of view. Therefore, the energy consumption in relation to physicochemical properties of lignocellulosic biomass was discussed. Even more, chemical treatments combined with physicochemical size reduction approaches are proposed to reduce energy consumption in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Thermophysical properties of lignocellulose: a cell-scale study down to 41 K.

    Cheng, Zhe; Xu, Zaoli; Zhang, Lei; Wang, Xinwei

    2014-01-01

    Thermal energy transport is of great importance in lignocellulose pyrolysis for biofuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells) is prepared to characterize their thermal properties from room temperature down to ∼ 40 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly depends on the heat capacity's change.

  13. Thermophysical properties of lignocellulose: a cell-scale study down to 41 K.

    Zhe Cheng

    Full Text Available Thermal energy transport is of great importance in lignocellulose pyrolysis for biofuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells is prepared to characterize their thermal properties from room temperature down to ∼ 40 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly depends on the heat capacity's change.

  14. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  15. 1-Butyl-3-Methylimidazolium Chloride Pretreatment on Malaysia Lignocellulose Wastes

    Lee, L.P.; Nur Hasyareeda Hassan; Muhammad Rahimi Yusop

    2015-01-01

    Ionic liquids (ILs) are of great interest as potential solvents for the production of fuels from lignocellulose biomass which is a potential source of bio fuels. To study the effects of pretreatment, 1-butyl-3-methylimidazolium chloride ([B mim]Cl) was used to pretreat woody plants, kempas (Koompassia malaccensis) and jelutong (Dyera costulata), and non-woody plants, kenaf (Hibiscus cannabinus) and rice husk (Oryza sativa) at 120 degree Celsius for 24 h. Cellulose was regenerated by the addition of water. The cell wall composition and structure of the lignocellulose bio masses before and after the ILs pretreatment were observed and characterized using field emission scanning electron microscopy (FESEM), attenuated total reflectance fourier transform infrared (ATR FT-IR) spectroscopy, and X-ray diffraction (XRD). After the pretreatment, enzymatic hydrolysis was carried out to identify the total reducing sugars (TRS) yields using dinitrosalicylic acid (DNS) method. Regenerated lignocellulose bio masses resulted in high TRS yields compared to their counter-parts which are in agreement with the findings of FESEM, ATR FT-IR and XRD that exhibited regenerated cellulose were less crystalline and more amorphous upon IL pretreatment. Therefore, kempas and jelutong can be alternate sources for the bio fuels production. (author)

  16. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.

    Laity, Peter R; Holland, Chris

    2016-08-08

    Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations.

  17. Microbial Production of l-Serine from Renewable Feedstocks.

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Demand and supply of hydrogen as chemical feedstock in USA

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  19. Hydrogen production via catalytic processing of renewable feedstocks

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  20. Potential feedstock sources for ethanol production in Florida

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  1. Characterization of Various Biomass Feedstocks for Energy Production

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  2. Processes for liquefying carbonaceous feedstocks and related compositions

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  3. Kurdistan crude oils as feedstock for production of aromatics

    Abdulsalam R. Karim

    2017-05-01

    Full Text Available Crude oils from various locations in Iraqi Kurdistan were fully evaluated, so that enables refiners to improve their operation by selecting the best crude oil that yields high naphtha content to be used as a catalytic reforming feedstock after determination of total sulfur content and then de sulfurizing them, then cyclizing or reforming these sweet naphtha cuts to produce aromatic fractions which can be split into benzene, toluene, and xylenes.

  4. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  5. Targets and tools for optimizing lignocellulosic biomass quality of miscanthus

    Weijde, van der R.T.

    2016-01-01

    Miscanthus is a perennial energy grass characterized by a high productivity and resource-use efficiency, making it an ideal biomass feedstock for the production of cellulosic biofuels and a wide range of other biobased value-chains. However, the large-scale commercialization of converting biomass

  6. How non-conventional feedstocks will affect aromatics technologies

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  7. Process for paraffin isomerization of a distillate range hydrocarbon feedstock

    Chen, N.Y.; Garwood, W.E.; McCullen, S.B.

    1993-01-19

    Various catalytic processes have been proposed to isomerize n-paraffins so as to lower the pour point of distillate range hydrocarbon feedstocks. However, many available feedstocks contain nitrogen impurities which tend to poison conventional paraffin isomerization catalysts. A process has been developed to obviate or alleviate this problem. According to the invention, the paraffin-containing feedstock is contacted with a crystalline aluminosilicate zeolite catalyst having pore openings defined by a ratio of sorption of n-hexane to o-xylene of over 3 vol % and the ability to crack 3-methylpentane in preference to 2,3 dimethylbutane under defined conditions. The zeolite catalyst includes a Group VIII metal and has a zeolite SiO[sub 2]/Al[sub 2]O[sub 3] ratio of at least 20:1. The contacting is carried out at 199-454 C and a pressure of 100-1,000 psig, preferably 250-600 psig. The group of medium pore zeolites which can be used in the process of the invention includes ZSM-22, ZSM-23, and ZSM-35. The Group VIII metals used in the catalyst are preferably selected from Pt, Pd, Ir, Os, Rh, and Ru and the metal is preferably incorporated into the zeolite by ion exchange up to a metal content of preferably 0.1-3 wt %. Experiments are described to illustrate the invention. 1 tab.

  8. Expected international demand for woody and herbaceous feedstock

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  9. Impact of feedstock quality on clean diesel fuel production

    Marafi, A.; Stanislaus, A.; Rana, M. [Kuwait Institute for Scientific Research (KISR), Safat (Kuwait)

    2013-06-01

    High sulfur level in diesel fuel has been identified as a major contributor to harmful emissions (sulfur oxides, particulates, etc.) as a result, recent environmental regulations limit the sulfur content of diesel to ultra-low levels in many countries. The diesel fuel specifications are expected to become extremely severe in the coming years. Problem faced by the refiners is the difficulty in meeting the increasing market demand for Ultra-Low Sulfur Diesel (ULSD). Global market for middle distillates is increasing steadily and this trend is expected to continue for the next few years. At the same time, the quality of feed streams is declining. The refiners are, thus, required to produce a ULSD from poor feedstocks such as light cycle oil (LCO) and coker gas oil (CGO). The key to achieving deep desulfurization in gas-oil hydrotreater is in understanding the factors that influence the reactivity of the different types of sulfur compounds present in the feed, namely, feedstock quality, catalyst, process parameters, and chemistry of ULSD production. Among those parameters, feedstock quality is most critical. (orig.)

  10. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Dale, Bruce E

    2017-09-21

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  11. 2G ethanol from the whole sugarcane lignocellulosic biomass.

    Pereira, Sandra Cerqueira; Maehara, Larissa; Machado, Cristina Maria Monteiro; Farinas, Cristiane Sanchez

    2015-01-01

    In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and tops) from commercial sugarcane varieties for the production of 2G ethanol. In addition, the feasibility of using a mixture of these residues from a selected variety was also investigated. The materials were pretreated with dilute acid and hydrolyzed with a commercial enzymatic preparation, after which the hydrolysates were fermented using an industrial strain of Saccharomyces cerevisiae. The susceptibility to enzymatic saccharification was higher for the tops, followed by straw and bagasse. Interestingly, the fermentability of the hydrolysates showed a different profile, with straw achieving the highest ethanol yields, followed by tops and bagasse. Using a mixture of the different sugarcane parts (bagasse-straw-tops, 1:1:1, in a dry-weight basis), it was possible to achieve a 55% higher enzymatic conversion and a 25% higher ethanol yield, compared to use of the bagasse alone. For the four commercial sugarcane varieties evaluated using the same experimental set of conditions, it was found that the variety of sugarcane was not a significant factor in the 2G ethanol production process. Assessment of use of the whole lignocellulosic sugarcane biomass clearly showed that 2G ethanol production could be significantly improved by the combined use of bagasse, straw, and tops, when compared to the use of bagasse alone. The lower susceptibility to saccharification of sugarcane bagasse, as well as the lower fermentability of its hydrolysates, can be compensated by using it in combination with straw

  12. Surface characterization of lignocellulosics for composite manufacture

    Iyer, Ananth V.

    The objectives of this research were to form moisture resistant wheat strawboards, either by altering the straw surface characteristics or by changing the chemistry of the polymeric 4, 4' diphenylmethane diisocyanate (PMDI)-based matrix and interface. Part I compared the surface characteristics of wheat, barley, oat, rice, kenaf, hemp and softwood particles. All cereal straws had two surfaces: epidermis and brittle-pith unlike one heterogeneous type observed for bast fibers and softwood particles. The epidermis of cereal straws was not wet by water or aqueous binders, whereas the pith surface allowed the penetration of water, but was not readily wetted by aqueous binders. Between the different surface treatments evaluated for wheat straw in Part II, NaOH selectively peeled-off the epidermis and pith layers. The treated straw particles were formable into strawboards using aqueous phenol-formaldehyde, urea-formaldehyde, and duroplastic acrylic acid binders with good internal bond strength (IBS) and adequate water resistance. In Part III it was shown that, decreasing straw particle sizes and bleaching worsened the mechanical properties of strawboards, but the moisture absorption properties of bleached strawboards were lower than the unbleached ones. Layering of straw particles in strawboards did not seem to affect their mechanical or moisture absorption properties. Part IV showed that the pith surface of wheat straw was fractured on curing with PMDI, providing hollow microcrevices for water accumulation. Furthermore, the cured PMDI formed a network polyurea/polyuretonimine/polycarbodiimide/polyisocyanurate polymer on straw surfaces whose properties dictated the properties of strawboards. Among the different mono-, bi-, and tri-functional alcohols, amines and carboxylic acids evaluated in Part V as H-donor substitutes to moisture for reaction with PMDI on straw surfaces, ethylene glycol, resorcinol, glycerin and citric acid provided IBS values greater than the ANSI

  13. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations

    Walton Jonathan D

    2010-10-01

    Full Text Available Abstract Background Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]. A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP at the same protein loadings. Results When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3 and a lower proportion of endo-β1,4-glucanase (EG1 compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase,

  14. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    Petersen Pia Damm

    2012-11-01

    Full Text Available Abstract Background Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. Results Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. Conclusions Spatial and temporal deposition of xylan in the secondary cell wall of

  15. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    The basic concept of the REFABB project was that by genetically engineering the biomass crop switchgrass to produce a natural polymer PHB, which is readily broken down by heating (thermolysis) into the chemical building block crotonic acid, sufficient additional economic value would be added for the grower and processor to make it an attractive business at small scale. Processes for using thermolysis to upgrade biomass to densified pellets (char) or bio-oil are well known and require low capital investment similar to a corn ethanol facility. Several smaller thermolysis plants would then supply the densified biomass, which is easier to handle and transport to a centralized biorefinery where it would be used as the feedstock. Crotonic acid is not by itself a large volume commodity chemical, however, the project demonstrated that it can be used as a feedstock to produce a number of large volume chemicals including butanol which itself is a biofuel target. In effect the project would try to address three key technology barriers, feedstock logistics, feedstock supply and cost effective biomass conversion. This project adds to our understanding of the potential for future biomass biorefineries in two main areas. The first addressed in Task A was the importance and potential of developing an advanced value added biomass feedstock crop. In this Task several novel genetic engineering technologies were demonstrated for the first time. One important outcome was the identification of three novel genes which when re-introduced into the switchgrass plants had a remarkable impact on increasing the biomass yield based on dramatically increasing photosynthesis. These genes also turned out to be critical to increasing the levels of PHB in switchgrass by enabling the plants to fix carbon fast enough to support both plant growth and higher levels of the polymer. Challenges in the critical objective of Task B, demonstrating conversion of the PHB in biomass to crotonic acid at over 90

  16. Lignosulfonate To Enhance Enzymatic Saccharification of Lignocelluloses: Role of Molecular Weight and Substrate Lignin

    Haifeng Zhou; Hongming Lou; Dongjie Yang; J.Y. Zhu; Xueqing Qiu

    2013-01-01

    This study conducted an investigation of the effect of lignosulfonate (LS) on enzymatic saccharification of lignocelluloses. Two commercial LSs and one laboratory sulfonated kraft lignin were applied to Whatman paper, dilute acid and SPORL (sulfite pretreatment to overcome recalcitrance of lignocelluloses) pretreated aspen, and kraft alkaline and SPORL pretreated...

  17. Effects of gamma irradiation on the decomposition and biodegradability of lignocellulose

    Gas, G.; Bono, J.J.; Boudet, A.M.; Jaureguy, L.; Torres, L.; Mathieu, J.

    1984-01-01

    The study of effects of a pretreatment by gamma radiation on radioactive lignocellulose from poplar-tree and on subsequent biodegradation by fungi is realized for residues and soluble products. Measurement before and after treatment, of cellulose accessibility to an exogen cellulase shows the interest of irradiation in transformation processes of lignocellulosic products [fr

  18. Improved process for producing a fermentation product from a lignocellulose-containing material

    2017-01-01

    The present invention relates to the production of hydrolyzates from a lignocellulose-containing material, and to fermentation of the hydrolyzates. More specifically, the present invention relates to the detoxification of phenolic inhibitors and toxins formed during the processing of lignocellulose...

  19. A process for producing a fermentation product from a lignocellulose-containing material

    2016-01-01

    The present invention relates to the production of hydrolyzates from a lignocellulose-containing material, and to fermentation of the hydrolyzates. More specifically, the present invention relates to the detoxification of phenolic inhibitors and toxins formed during the processing of lignocellulose...

  20. Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

    X.L. Luo; Junyong Zhu; Roland Gleisner; H.Y. Zhan

    2011-01-01

    This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing...

  1. A fundamental review of the relationships between nanotechnology and lignocellulosic biomass

    Theodore Wegner; E. Philip Jones

    2009-01-01

    At first glance, the relationship between nanotechnology and lignocellulosic biomass may seem to be unconnected or at best tenuously connected. It is important to recognize that. at a fundamental level, lignocellulosic biomass is made up of nanometer-size constitutive building block units that provide valuable properties to wood and other types of renewable...

  2. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    ZJ Wang; TQ Lan; JY Zhu

    2013-01-01

    Nonspecific (nonproductive) binding (adsorption) of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) is a relatively new process, but demonstrated robust performance for sugar and biofuel...

  3. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin

    Zhaojiang Wang; JY Zhu; Yingjuan Fu; Menghua Qin; Zhiyong Shao; Jungang Jiang; Fang Yang

    2013-01-01

    Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively...

  4. Tools and methodologies to support more sustainable biofuel feedstock production.

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  5. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  6. Quality of feedstock in production of lubricating oils

    Martynenko, A.G.; Kalenik, G.S.; Bayburskaya, E.L.; Ledyashova, G.Ye.; Okhrimenko, N.V.; Potashnikov, G.L.; Shiryayeva, G.P.

    1980-01-01

    Data are obtained under industrial conditions concerning production of lubricating oils from the mixture of crudes distinguished in terms of major properties: viscosity, content of light petroleum products, resin, sulfur. The difference in main properties and hydrocarbon composition of the original feedstock caused a change in conditions of selective purification of output of target and intermediate products. It is demonstrated that selection and grading of Eastern Ukrainian petroleum (separation of gas condensate) can achieve a continued increase of production of oils, approximately 30 percent.

  7. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  8. Biofuels Feedstock Development Program annual progress report for 1991

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  9. Biofuels Feedstock Development Program annual progress report for 1991

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  10. Recent updates on lignocellulosic biomass derived ethanol - A review

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  11. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  12. Enhancing Cellulase Commercial Performance for the Lignocellulosic Biomass Industry

    Jarnigan, Alisha [Danisco, US Inc., Copenhagen (Denmark)

    2016-06-07

    Cellulase enzyme loading (Bt-G) for the economic conversion of lignocellulosic biomass to ethanol is on of the key challenges identified in the Biomass Program of DOE/EERE. The goal of Danisco’s project which ran from 2008 to 2012, was to address the technical challenge by creating more efficient enzyme that could be used at lower doses, thus reducing the enzymes’ cost contribution to the conversio process. We took the approach of protein engineering of cellulase enzymes to overcome the enzymati limitations in the system of cellulosic-hydrolyzing enzymes to improve performance in conversion o biomass, thereby creating a more effective enzyme mix.

  13. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment.

    Widsten, Petri; Kandelbauer, Andreas

    2008-01-01

    Enzymatic bonding methods, based on laccase or peroxidase enzymes, for lignocellulosic products such as medium-density fiberboard and particleboard are discussed with reference to the increasing costs of presently used petroleum-based adhesives and the health concerns associated with formaldehyde emissions from current composite products. One approach is to improve the self-bonding properties of the particles by oxidation of their surface lignin before they are fabricated into boards. Another method involves using enzymatically pre-treated lignins as adhesives for boards and laminates. The application of this technology to achieve wet strength characteristics in paper is also reviewed.

  14. A comparative study of the hydrolysis of gamma irradiated lignocelluloses

    E. Betiku

    2009-06-01

    Full Text Available The effect of high-dose irradiation as a pretreatment method on two common lignocellulosic materials; hardwood (Khaya senegalensis and softwood (Triplochiton scleroxylon were investigated by assessing the potential of cellulase enzyme derived from Aspergillus flavus Linn isolate NSPR 101 to hydrolyse the materials. The irradiation strongly affected the materials, causing the enzymatic hydrolysis to increase by more than 3 fold. Maximum digestibility occurred in softwood at 40kGy dosage of irradiation, while in hardwood it was at 90kGy dosage. The results also showed that, at the same dosage levels (p < 0.05, hardwood was hydrolysed significantly better compared to the softwood.

  15. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

    Khot Mahesh

    2012-05-01

    Full Text Available Abstract Background Single cell oils (SCOs accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. Results In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w of their dry cell mass (4.14 - 6.44 g L-1 as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0, stearic (C18:0 and oleic (C18:1 acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass

  16. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel.

    Khot, Mahesh; Kamat, Srijay; Zinjarde, Smita; Pant, Aditi; Chopade, Balu; Ravikumar, Ameeta

    2012-05-30

    Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1

  17. Detailed kinetic and heat transport model for the hydrolysis of lignocellulose by anhydrous hydrogen fluoride vapor

    Rorrer, G.L.; Mohring, W.R.; Lamport, D.T.A.; Hawley, M.C.

    1988-01-01

    Anhydrous Hydrogen Fluoride (HF) vapor at ambient conditions efficiently and rapidly hydrolyzed lignocellulose to glucose and lignin. The unsteady-state reaction of HF vapor with a single lignocellulose chip was mathematically modeled under conditions where external and internal mass-transfer resistances were minimized. The model incorporated physical adsorption of HF vapor onto the lignocellulosic matrix and solvolysis of cellulose to glucosyl fluoride by adsorbed HF into the differential material and energy balance expressions. Model predictions for the temperature distribution and global glucose yield in the HF-reacting lignocellulose chip as a function of reaction time and HF vapor stream temperature agreed reasonably with the complimentary experimental data. The model correctly predicted that even when mass-transfer resistances for the reaction of HF vapor with a single lignocellulose chip are minimized, external and internal heat-transfer resistances are still significant.

  18. Hydration properties of briquetted wheat straw biomass feedstock

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  19. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  20. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora

    Benner, R.; Maccubbin, A.E.; Hodson, R.E.

    1984-05-01

    Specifically radiolabeled (/sup 14/C-lignin)lignocelluloses and (/sup 14/C-polysaccharide)lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These (/sup 14/C)lignocellulose preparations and synthetic (/sup 14/C)lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to /sup 14/CO/sub 2/ and /sup 14/CH/sub 4/. Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic (/sup 14/C) lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers. 31 references.

  1. Process Design Report for Wood Feedstock: Lignocellulosic Biomass to Ethanol Process Desing and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios

    Wooley, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheehan, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Majdeski, Henry [Delta-T Corporation, Lexington, KY (United States); Galves, Adrian [Delta-T Corporation, Lexington, KY (United States)

    1999-07-01

    The National Renewable Energy Laboratory (NREL) has undertaken a complete review and update of the process design and economic model for the biomass-to-ethanol process based on co-current dilute acid prehydrolysis, along with simultaneous saccharification (enzymatic) and co-fermentation. The process design includes the core technologies being researched by the U.S. Department of Energy (DOE): prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production.

  2. Implementing an energetic life cycle analysis to prove the benefits of lignocellulosic feedstocks with protein separation for the chemical industry from the existing bioethanol industry

    Brehmer, B.; Sanders, J.P.M.

    2009-01-01

    The biofuel ethanol is currently being produced in large quantities from corn in the US and from wheat in the EU and further capacity expansion is expected. Relying on the so-called 1st generation technology, only the starch contained in the edible portion of the crops (ears/grains) is subjected to

  3. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  4. Why did the price of solar PV Si feedstock fluctuate so wildly in 2004–2009?

    Yu Yang; Song Yuhua; Bao Haibo

    2012-01-01

    Great attention has been paid to the origin of observed wild price fluctuations of solar PV Si feedstock in both contract and spot markets during 2004–2009. This paper sheds light on this issue and tries to resolve it by addressing the following questions: what kind of structural shock is underlying the price fluctuations of PV Si feedstock? How can we quantify the magnitude, timing and relative importance of these shocks? What are their dynamic effects on the real price of PV Si feedstock? By carefully studying development conditions, the structural decomposition of the real price of PV Si feedstock is proposed: exchange rate shocks, production cost shocks, aggregate demand shocks and demand shocks specific to feedstock markets. With a Structural Vector Autoregression model, the paper quantifies and verifies the impact of structural shocks on PV Si feedstock real price changes. Based on national data, an analysis is further taken to confirm the essential role of demand shocks specific to feedstock markets in determining sharper price fluctuations during 2004–2009. The results of this study have important implications for national solar PV development, which can be better promoted and administrated if structural shocks in feedstock markets can be carefully evaluated and understood. - Highlights: ► The determination of solar PV Si feedstock price fluctuation is identified and quantified. ► Systematic structural shocks well explain 2004–2009 price fluctuations of PV Si feedstock. ► Production cost and aggregated demand shocks take longer effects on feedstock price. ► Exchange rate and feedstock specific demand shocks explain sharper price fluctuations. ► Development of national PV power should consider effects of structure shocks.

  5. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  6. Conversion of non-nuclear grade feedstock to UF4

    Ponelis, A.A.; Slabber, M.N.; Zimmer, C.H.E.

    1987-01-01

    The South African Conversion route is based on the direct feed of ammonium di-uranate produced by any one of a number of different mines. The physical and chemical characteristics of the feedstock can thus vary considerably and influence the conversion rate as well as the final UF 6 product purity. The UF 4 conversion reactor is a Moving Bed Reactor (MBR) with countercurrent flow of the reacting gas phases. Initial problems to continuously operate the MBR were mostly concerned with the physical nature of the UO 3 feed particles. Different approaches to eventually obtain a successful MBR are discussed. Besides obtaining UO 3 feed particles with certain physical attributes, the chemical impurities also have an effect on the operability of the MBR. The influence of the feedstock variables on the reduction and hydrofluorination rates after calcining has largely been determined from laboratory and pilot studies. The effect of chemical impurities such as sodium and potassium on the sinterability of the reacting particles and therefore the optimum temperature range in the MBR is also discussed. Confirmation of the effect of sodium and potassium impurities on the conversion rate has been obtained from large scale reactor operation. (author)

  7. Gasification : converting low value feedstocks to high value products

    Koppel, P.; Lorden, D.

    2009-01-01

    This presentation provided a historic overview of the gasification process and described the process chemistry of its two primary reactions, notably partial oxidation and steam reforming. The gasification process involves converting low value carbonaceous solid or liquid feeds to a synthetic gas by reacting the feed with oxygen and steam under high pressure and temperature conditions. Since the gasifier operates under a reducing environment instead of an oxidizing environment, mist sulphur is converted to hydrogen sulphide instead of sulphur dioxide. The gasification process also involves cleaning up synthetic gas and acid gas removal; recovery of conventional sulphur; and combustion or further processing of clean synthetic gas. This presentation also outlined secondary reactions such as methanation, water shift, and carbon formation. The negative effects of gasification were also discussed, with particular reference to syngas; metal carbonyls; soot; and slag. Other topics that were presented included world syngas production capacity by primary feedstock; operating IGCC projects; natural gas demand by oil sands supply and demand considerations; reasons for using the gasification process; gasifier feedstocks; and gasification products. The presentation concluded with a discussion of gasification licensors; gasification technologies; gasification experience; and the regulatory situation for greenhouse gas. Gasification has demonstrated excellent environmental performance with sulphur recovery greater than 99 per cent, depending on the the recovery process chosen. The opportunity also exists for carbon dioxide recovery. tabs., figs.

  8. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  9. Feedstock quality : an important consideration in forest biomass supply

    Ryans, M. [FP Innovations, Vancouver, BC (Canada). FERIC

    2009-07-01

    The move to forest-based sources of biomass requires an emphasis on the quality of forest residues. Customers set the feedstock requirements, and demand homogeneous and predictable quality. The top quality factors are appropriate moisture content, consistent particle size, chlorine content, and clean material. The seasonal variability of the resource means that suppliers must determine how to deliver a year-round supply with appropriate moisture content. Methods such as pre-piling and covering with a tarp are being tested. Although mills tailored for biomass deliveries have modernized boilers capable of burning a variety of biomass feedstocks at varying moisture contents, a 10 per cent reduction in moisture content can offer a good return on investment because suppliers could transports more energy content and less water per tonne of biomass. This presentation also discussed the range of equipment choices available for delivering the right-sized biomass, and outlined the right and wrong practices that influence biomass quality along the supply chain. figs.

  10. Vapour cloud explosion hazard greater with light feedstocks

    Windebank, C.S.

    1980-03-03

    Because lighter chemical feedstocks such as propylene and butylenes are more reactive than LPG's they pose a greater risk of vapor cloud explosion, particularly during their transport. According to C.S. Windebank (Insurance Tech. Bur.), percussive unconfined vapor cloud explosions (PUVCE's) do not usually occur below the ten-ton threshold for saturated hydrocarbons but can occur well below this threshold in the case of unsaturated hydrocarbons such as propylene and butylenes. Boiling liquid expanding vapor explosions (BLEVE's) are more likely to be ''hot'' (i.e., the original explosion is associated with fire) than ''cold'' in the case of unsaturated hydrocarbons. No PUVCE or BLEVE incident has been reported in the UK. In the US, 16 out of 20 incidents recorded between 1970 and 1975 were related to chemical feedstocks, including propylene and butylenes, and only 4 were LPG-related. The average losses were $20 million per explosion. Between 1968 and 1978, 8% of LPG pipeline spillages led to explosions.

  11. A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential

    Shah Nilay

    2008-07-01

    Full Text Available Abstract Background Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities. Results Ethanol production costs for current technologies decrease significantly from $0.71 to $0.58 per litre with increasing economies of scale, up to a maximum single-plant capacity of 550 × 106 l year-1. The development of high-yielding energy crops and consolidated bio-processing realises significant cost reductions, with production costs ranging from $0.33 to $0.36 per litre. Increased feedstock yields result in systems of eight fully integrated plants operating within a 500 × 500 km2 region, each producing between 1.24 and 2.38 × 109 l year-1 of pure ethanol. A limited potential for distributed processing and centralised purification systems is identified, requiring developments in modular, ambient pretreatment and fermentation technologies and the pipeline transport of pure ethanol. Conclusion The conceptual and mathematical modelling framework developed provides a valuable tool for the assessment and optimisation of the lignocellulosic bioethanol supply chain. In particular, it can provide insight into the optimal configuration of multiple plant systems. This information is invaluable in ensuring (near-cost-optimal strategic development within the sector at the regional and national scale. The framework

  12. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  13. Utilizing thermophilic microbe in lignocelluloses based bioethanol production: Review

    Sriharti, Agustina, Wawan; Ratnawati, Lia; Rahman, Taufik; Salim, Takiyah

    2017-01-01

    The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn't bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.

  14. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ethanol Production from Lignocellulose by the Dimorphic Fungus Mucor Indicus

    Lennartsson, P.R.; Taherzadeh, M.J. (School of Engineering, Univ. of Boraas, SE-50190, Boraas (Sweden)). e-mail: Patrik.Lennartsson@hb.se; Karimi, K. (Dept. of Chemical Engineering, Isfahan Univ. of Technology, 84156-83111, Isfahan (IR)); Edebo, L. (Dept. of Clinical Bacteriology, Univ. of Goeteborg, SE-41346, Goeteborg (Sweden))

    2008-10-15

    Ethanol production from dilute-acid lignocellulosic hydrolyzate by the dimorphic fungus Mucor indicus was investigated. A mixture of different forest wood chips dominated by spruce was hydrolyzed with 0.5 g/L sulfuric acid at 15 bar for 10 min, yielding different sugars including galactose, glucose, mannose, and xylose, but also different fermentation inhibitors such as acetic acid, furfural, hydroxymethyl furfural (HMF), and phenolic compounds. We induced different morphological growth of M. indicus from purely filamentous, mostly filamentous, mostly yeast-like to purely yeast-like. The different forms were then used to ferment the hydrolyzate. They tolerated the presence of the inhibitors under anaerobic batch cultivation well and the ethanol yield was 430-440 g/kg consumed sugars. The ethanol productivity depended on the morphology. Judging from these results, we conclude that M. indicus, is useful for ethanol production from toxic substrates independent of its morphology. Keywords: bio-ethanol, lignocellulosic materials, dilute acid hydrolysis, Mucor indicus, dimorphic fungi

  16. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling

    Balch, Michael L.; Holwerda, Evert K.; Davis, Mark F.; Sykes, Robert W.; Happs, Renee M.; Kumar, Rajeev; Wyman, Charles E.; Lynd, Lee R.

    2017-04-12

    Milling during lignocellulosic fermentation, henceforth referred to as cotreatment, is investigated as an alternative to thermochemical pretreatment as a means of enhancing biological solubilization of lignocellulose. We investigate the impact of milling on soluble substrate fermentation by Clostridium thermocellum with comparison to yeast, document solubilization for fermentation of senescent switchgrass with and without ball milling, and characterize residual solids. Soluble substrate fermentation by C. thermocellum proceeded readily in the presence of continuous ball milling but was completely arrested for yeast. Total fractional carbohydrate solubilization achieved after fermentation of senescent switchgrass by C. thermocellum for 5 days was 0.45 without cotreatment or pretreatment, 0.81 with hydrothermal pretreatment (200 degrees C, 15 minutes, severity 4.2), and 0.88 with cotreatment. Acetate and ethanol were the main fermentation products, and were produced at similar ratios with and without cotreatment. Analysis of solid residues was undertaken using molecular beam mass spectrometry (PyMBMS) and solid-state nuclear magnetic resonance spectroscopy (NMR) in order to provide insight into changes in plant cell walls during processing via various modes. The structure of lignin present in residual solids remaining after fermentation with cotreatment appeared to change little, with substantially greater changes observed for hydrothermal pretreatment - particularly with respect to formation of C-C bonds. The observation of high solubilization with little apparent modification of the residue is consistent with cotreatment enhancing solubilization primarily by increasing the access of saccharolytic enzymes to the feedstock, and C. thermocellum being able to attack all the major linkages in cellulosic biomass provided that these linkages are accessible.

  17. Security of feedstocks supply for future bio-ethanol production in Thailand

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  18. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  19. Organic waste as a sustainable feedstock for platform chemicals.

    Coma, M; Martinez-Hernandez, E; Abeln, F; Raikova, S; Donnelly, J; Arnot, T C; Allen, M J; Hong, D D; Chuck, C J

    2017-09-21

    Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept.

  20. New Zealand Coals - A Potential Feedstock for Deep Microbial Life

    Glombitza, Clemens

    2010-01-01

    into the surrounding. Previous studies showed that especially oxygen containing compounds are lost from the macromolecular matrix during diagenesis and early catagenesis. Oxygen containing low molecular weight organic acids (LMWOAs) such as formate, acetate and oxalate represent important substrates for microbial...... reactions. Formate, acetate and oxalate were found to decrease continously from early diagenesis to early catagenesis. This suggests a constant release of these compounds during this maturation interval providing a suitable feedstock for microbial ecosystems in geological time spans. Investigation...... of kerogen-bound high molecular weight fatty acids show for the long chain fatty acids (C20-C30), representing a terrestrial plant material signal, a constant decrease during diagenesis and early catagenesis. In contrast the short chain fatty acids (mainly C16 and C18) show an increase again during early...

  1. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste.

    Wei, Suzhen

    2016-12-01

    Anaerobic digestion of lignocellulosic waste is considered to be an efficient way to answer present-day energy crisis and environmental challenges. However, the recalcitrance of lignocellulosic material forms a major obstacle for obtaining maximum biogas production. The use of biological pretreatment and bioaugmentation for enhancing the performance of anaerobic digestion is quite recent and still needs to be investigated. This paper reviews the status and perspectives of recent studies on biotechnology concept and investigates its possible use for enhancing biogas production from lignocellulosic waste with main emphases on biological pretreatment and bioaugmentation techniques.

  2. Methods for determination of biomethane potential of feedstocks: a review

    Raphael Muzondiwa Jingura

    2017-06-01

    Full Text Available Biogas produced during anaerobic digestion (AD of biodegradable organic materials. AD is a series of biochemical reactions in which microorganisms degrade organic matter under anaerobic conditions. There are many biomass resources that can be degraded by AD to produce biogas. Biogas consists of methane, carbon dioxide, and trace amounts of other gases. The gamut of feedstocks used in AD includes animal manure, municipal solid waste, sewage sludge, and various crops. Several factors affect the potential of feedstocks for biomethane production. The factors include nutrient content, total and volatile solids (VS content, chemical and biological oxygen demand, carbon/nitrogen ratio, and presence of inhibitory substances. The biochemical methane potential (BMP, often defined as the maximum volume of methane produced per g of VS substrate provides an indication of the biodegradability of a substrate and its potential to produce methane via AD. The BMP test is a method of establishing a baseline for performance of AD. BMP data are useful for designing AD parameters in order to optimise methane production. Several methods which include experimental and theoretical methods can be used to determine BMP. The objective of this paper is to review several methods with a special focus on their advantages and disadvantages. The review shows that experimental methods, mainly the BMP test are widely used. The BMP test is credited for its reliability and validity. There are variants of BMP assays as well. Theoretical models are alternative methods to estimate BMP. They are credited for being fast and easy to use. Spectroscopy has emerged as a new experimental tool to determine BMP. Each method has its own advantages and disadvantages with reference to efficacy, time, and ease of use. Choosing a method to use depends on various exigencies. More work needs to be continuously done in order to improve the various methods used to determine BMP.

  3. Wood biomass : fuel for wildfires or feedstock for bioenergy ?

    Miller, C.S. [Miller Dewulf Corp., Studio City, CA (United States)

    2007-07-01

    The clean conversion of woody biomass-to-energy has been touted as an alternative to fossil fuel energy and as a solution to environmental challenges. This presentation discussed the state of forest health in North America with particular reference to the higher incidence of megafires, such as recent fires in Colorado, San Diego, Lake Arrowhead, Lake Tahoe, Zaca, and Okefenokee. Federal authorities have an increased responsibility to preserve old forest stands; sustain and increase biodiversity; protect habitats; fight fires to protect real estate; and, contain and suppress wildfires. It was noted that while healthy forests absorb greenhouse gases (GHGs), burning forests release them. The Colorado Hayman fire alone emitted more carbon dioxide in one day than all the cars in the United States in one week. It was cautioned that unharvested fire residues contribute 300 per cent more GHG during decay. The problem of forest density was also discussed, noting that many forests on public lands have grown dangerously overcrowded due to a century of fire suppression and decades of restricted timber harvesting. A sustainable solution was proposed in which decaying biomass can be harvested in order to pay for forest management. Other solutions involve reforesting to historic models and mechanically thinning vulnerable forests for bioenergy. In California's Eagle Lake Ranger District, there are 8 stand-alone wood fired power plants with 171 MWh generating capacity. In addition, there are 5 small log sawmills with cogeneration facilities. A review of feedstock for bioenergy was also included in this presentation, along with an ethanol feedstock comparison of corn and woody biomass. Technologies to produce biofuels from biomass were also reviewed with reference to traditional conversion using sugar fermentation as well as biochemical enzymatic acid hydrolysis. It was concluded that woody biomass stores abundant energy that can be used to create heat, produce steam and

  4. Hydrothermal carbonization - 1. Influence of lignin in lignocelluloses

    Dinjus, E.; Kruse, A.; Troeger, N. [Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany)

    2011-12-15

    Hydrothermal carbonization is an attractive process for converting biomass with high water content into different products. The requirements on the products, which may be soil improvement or substitution of lignite or carbon black, are opposed to biomass as a feedstock that has a very complex and variable composition. The goal of this work was to study the influence of an ingredient, here lignin, on carbonization, with the focus being not only on the composition but also on the structure of the product formed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Enzymatic pre-treatment of high content cellulosic feedstock improves biogas production

    Animal wastes with high lignin and cellulosic contents can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. However, these high lignin and cellulosic feedstocks are quite recalcitrant to be readily utilized by methanogens to produce ben...

  6. Introduced cool-season grasses in diversified systems of forage and feedstock production

    Interest in producing biomass feedstock for biorefineries has increased in the southern Great Plains, though research has largely focused on the potential function of biorefineries. This study examined feedstock production from the producers’ viewpoint, and how this activity might function within di...

  7. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  8. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  9. Technology for biomass feedstock production in southern forests and GHG implications

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  10. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  11. Evaluation of relationships between growth rate, tree size, lignocellulose composition and enzymatic saccharification in interspecific Corymbia hybrids and parental taxa.

    Adam L Healey

    2016-11-01

    Full Text Available In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF and parental species C. torelliana (CT and C. citriodora subspecies variegata (CCV and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3% among parental and hybrid populations, whereas glucan content was clearly distinguished within CCV (52% and HF148 (60% as compared to other populations (28-38%. Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH (+0.12% per cm DBH increase, and glucan and xylan typically decreasing per DBH cm increase (-0.7% and -0.3%, respectively. Polysaccharide content within CCV and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental CT and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively, with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%. Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.

  12. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa.

    Healey, Adam L; Lee, David J; Lupoi, Jason S; Papa, Gabriella; Guenther, Joel M; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.

  13. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production

    Tsapekos, P.; Kougias, P.G.; Treu, L.; Campanaro, S.; Angelidaki, I.

    2017-01-01

    Highlights: • Pig manure and ensiled meadow grass were examined in co-digestion process. • Mechanical pretreatment increased the methane yield by 6.4%. • Coprothermobacter proteolyticus was firmly bounded to the digested grass. • Clostridium thermocellum was enriched in the firmly attached grass samples. • The abundance of methanogens was higher in the liquid fraction of digestate. - Abstract: Mechanical pretreatment is considered to be a fast and easily applicable method to prepare the biomass for anaerobic digestion. In the present study, the effect of mechanical pretreatment on lignocellulosic silages biodegradability was elucidated in batch reactors. Moreover, co-digestion of the silages with pig manure in continuously fed biogas reactors was examined. Metagenomic analysis for determining the microbial communities in the pig manure digestion system was performed by analysing unassembled shotgun genomic sequences. A comparative analysis allowed to identify the microbial species firmly attached to the digested grass particles and to distinguish them from the planktonic microbes floating in the liquid medium. It was shown that the methane yield of ensiled grass was significantly increased by 12.3% due to mechanical pretreatment in batch experiments. Similarly, the increment of the methane yield in the co-digestion system reached 6.4%. Regarding the metagenomic study, species similar to Coprothermobacter proteolyticus and to Clostridium thermocellum, known for high proteolytic and cellulolytic activity respectively, were found firmly attached to the solid fraction of digested feedstock. Results from liquid samples revealed clear differences in microbial community composition, mainly dominated by Proteobacteria. The archaeal community was found in higher relative abundance in the liquid fraction of co-digestion experiment compared to the solid fraction. Finally, an unclassified Alkaliphilus sp. was found in high relative abundance in all samples.

  14. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  15. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  16. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review

    Gary Brodeur

    2011-01-01

    Full Text Available Overcoming the recalcitrance (resistance of plant cell walls to deconstruction of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility.

  17. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review.

    Brodeur, Gary; Yau, Elizabeth; Badal, Kimberly; Collier, John; Ramachandran, K B; Ramakrishnan, Subramanian

    2011-01-01

    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin) are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility.

  18. LIGNOCELLULOSE AS AN ALTERNATIVE SOURCE FOR OBTAINING OF BIOBUTANOL

    S. M. Shulga

    2013-04-01

    Full Text Available Energy and environmental crisis facing the world force us to reconsider the effectiveness or find an alternative use of renewable natural resources, especially organic «waste» by using environmentally friendly technologies. Microbial conversion of renewable resources of biosphere to produce useful products, including biofuels, currently is an actual biotech problem. Anaerobic bacteria of Clostridiaceae family are known as butanol producers, but unfortunately, the microbiological synthesis is currently not economical one. In order to make cost-effective aceton-butanol-ethanol fermentation, solventproducing strains using available cheap raw materials, such as agricultural waste or plant biomass, are required. Opportunities and ways to obtaine economic and ecological processing of lignocellulosic wastes for biobutanol creation are described in the review .

  19. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges.

    Taha, Mohamed; Foda, Mohamed; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Adetutu, Eric; Ball, Andrew

    2016-04-01

    The main source of energy supply worldwide is generated from fossil fuels, which undoubtedly are finite and non-environmental friendly resources. Bioethanol generated from edible resources also has economic and environmental concerns. Despite the immense attention to find an alternative (inedible) source of energy in the last two decades, the total commercial production of 1st generation biofuels is limited and equivalent only to approximately 3% of the total road transport fuel consumption. Lignocellulosic waste represents the most abundant biomass on earth and could be a suitable candidate for producing valuable products including biofuels. However, cellulosic bioethanol has not been produced on a large scale due to the technical barriers involved that make the commercial production of cellulosic bioethanol not economically feasible. This review examines some of the current barriers to commercialization of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  1. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  2. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...

  3. Improving Aspergillus carbonarius crude enzymes for lignocellulose hydrolysis

    Hansen, Gustav Hammerich

    and single enzyme supplementation. Fungal strains were screened in order to determine crude enzyme extracts that could be supplemented as boosters of A. carbonarius own crude enzyme extract, when applied in lignocellulose hydrolysis. The fungi originated from different environmental niches, which all had...... for their potential in hydrolysis of wheat straw both by application of monocultures and by supplementing to crude enzymes of A. carbonarius. For the crude enzymes from solid cultivations there were eight isolates that showed synergistic interaction resulting in doubling and tripling of the glucose release in wheat...... straw hydrolysis. A completely different profile of synergy was observed for crude enzymes from liquid cultivations, as there were only three isolates that enhanced glucose release. Only one of these three isolates had shown synergistic effects when cultivated in a solid medium. The screening...

  4. Effect of microaerobic fermentation in preprocessing fibrous lignocellulosic materials.

    Alattar, Manar Arica; Green, Terrence R; Henry, Jordan; Gulca, Vitalie; Tizazu, Mikias; Bergstrom, Robby; Popa, Radu

    2012-06-01

    Amending soil with organic matter is common in agricultural and logging practices. Such amendments have benefits to soil fertility and crop yields. These benefits may be increased if material is preprocessed before introduction into soil. We analyzed the efficiency of microaerobic fermentation (MF), also referred to as Bokashi, in preprocessing fibrous lignocellulosic (FLC) organic materials using varying produce amendments and leachate treatments. Adding produce amendments increased leachate production and fermentation rates and decreased the biological oxygen demand of the leachate. Continuously draining leachate without returning it to the fermentors led to acidification and decreased concentrations of polysaccharides (PS) in leachates. PS fragmentation and the production of soluble metabolites and gases stabilized in fermentors in about 2-4 weeks. About 2 % of the carbon content was lost as CO(2). PS degradation rates, upon introduction of processed materials into soil, were similar to unfermented FLC. Our results indicate that MF is insufficient for adequate preprocessing of FLC material.

  5. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    Georgieva, Tania I.

    2006-01-01

    and xylose and to tolerate the inhibitory compounds present in lignocellulosic hydrolysates is therefore apparent. Several thermophilic anaerobic xylan degrading bacteria from our culture collection (EMB group at BioCentrum-DTU) have been screened for a potential ethanol producer from hemicellulose...... hydrolysates, and out of the screening test, one particular strain (A10) was selected for the best performance. The strain was morphologically and physiologically characterized as Thermoanaerobacter mathranii strain A10. Unlike other thermophilic anaerobic bacteria, the wild-type strain Thermoanaerobacter...... Thermoanaerobacter BG1L1 was further studied. The experiments were carried out in a continuous immobilized reactor system (a fluidized bed reactor), which is likely to be the process design configuration for xylose fermentation in a Danish biorefinery concept for production of fuel ethanol. The immobilization...

  6. Ranking of lignocellulosic biomass pellets through multicriteria modeling

    Sultana, A.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A study was conducted in which pellets from different lignocellulosic biomass sources were ranked using a multicriteria assessment model. Five different pellet alternatives were compared based on 10 criteria. The pair-wise comparison was done in order to develop preference indices for various alternatives. The methodology used in this study was the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). The biomass included wood pellets, straw pellets, switchgrass pellets, alfalfa pellets and poultry pellets. The study considered both quantitative and qualitative criteria such as energy consumption to produce the pellets, production cost, bulk density, NOx emissions, SOx emissions, deposit formation, net calorific value, moisture content, maturity of technology, and quality of material. A sensitivity analysis was performed by changing weights of criteria and threshold values of the criteria. Different scenarios were developed for ranking cost and environmental impacts. According to preliminary results, the wood pellet is the best energy source, followed by switchgrass pellets, straw pellets, alfalfa pellets and poultry pellets.

  7. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  8. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  9. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  10. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  11. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  12. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  13. Environmental and energy system analysis of bio-methane production pathways : A comparison between feedstocks and process optimizations

    Pierie, F.; van Someren, C. E. J.; Benders, R. M. J.; Bekkering, J.; van Gemert, W. J. Th; Moll, H. C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks.

  14. Environmental and energy system analysis of bio-methane production pathways : a comparison between feedstocks and process optimizations

    Pierie, Frank; van Someren, Christian; Benders, René M.J.; Bekkering, Jan; van Gemert, Wim; Moll, Henri C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks.

  15. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass.

    Bozan, Mahir; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2017-09-01

    The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.

  16. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans.

    Yao, Ruimiao; Hou, Weiliang; Bao, Jie

    2017-11-01

    Non-glucose sugars derived from lignocellulose cover approximately 40% of the total carbohydrates of lignocellulose biomass. The conversion of the non-glucose sugars to the target products is an important task of lignocellulose biorefining research. Here we report a fast and complete conversion of the total non-glucose sugars from corn stover into the corresponding sugar acids by whole cell catalysis and aerobic fermentation of Gluconobacter oxydans. The conversions include xylose to xylonate, arabinose to arabonate, mannose to mannonate, and galactose to galactonate, as well as with glucose into gluconate. These cellulosic non-glucose sugar acids showed the excellent cement retard setting property. The mixed cellulosic sugar acids could be used as cement retard additives without separation. The conversion of the non-glucose sugars not only makes full use of lignocellulose derived sugars, but also effectively reduces the wastewater treatment burden by removal of residual sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Study of the formation of polyethylene composites and lignocellulose materials by means of irradiation and extrusion

    Azevedo, Marcos Bertrand de; Romero, Guillermo R.; Gonzalez, Maria Elisa; Smolko, Eduardo E.

    2000-01-01

    One of the greatest opportunities for using of biomass as a precursor in the production of polymeric materials is the lignocellulose composites that can combine high performance with low costs. This work is a initial study on the production of a lignocellulose reinforced polyethylene composite. A compatibilization made by a induced gamma radiation grafting reaction was used to increase the adhesion between the matrix and the reinforced or filled fibers. The lignocellulose materials were exposed to gamma radiation in order to promote a molecular degradation and increase its reactivity. The polymer, the lignocellulose material and the compatibilization were processed by extrusion and the composite produced by this process were characterized by mechanical tests. (author)

  18. Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks

    Frommhagen, Matthias; Mutte, Sumanth Kumar; Westphal, Adrie H.; Koetsier, Martijn J.; Hinz, Sandra W.A.; Visser, Jaap; Vincken, Jean Paul; Weijers, Dolf; Berkel, Van Willem J.H.; Gruppen, Harry; Kabel, Mirjam A.

    2017-01-01

    Background: Many fungi boost the deconstruction of lignocellulosic plant biomass via oxidation using lytic polysaccharide monooxygenases (LPMOs). The application of LPMOs is expected to contribute to ecologically friendly conversion of biomass into fuels and chemicals. Moreover, applications of

  19. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  20. Investigation of adsorption kinetics and isotherm of cellulase and B-Glucosidase on lignocellulosic substrates

    Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...

  1. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass

    Panagiotopoulos, I.; Bakker, R.; Vrije, de G.J.; Niel, van E.W.J.; Koukios, E.; Claassen, P.A.M.

    2011-01-01

    Four dilute-acid pretreated and hydrolysed lignocellulosic raw materials were evaluated as substrates for fermentative hydrogen production by Caldicellulosiruptor saccharolyticus. Their fermentability was ranked in the order: barley straw > wheat straw > corn stalk > corn cob. The content

  2. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.

    Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M

    2016-04-01

    The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.

  3. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments.

    Evangelia Gontikaki

    Full Text Available More than 50% of terrestrially-derived organic carbon (terrOC flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7 and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14-28. Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited.

  4. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments.

    Gontikaki, Evangelia; Thornton, Barry; Cornulier, Thomas; Witte, Ursula

    2015-01-01

    More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7) and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14-28). Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited.

  5. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  6. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  7. Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries.

    Jiang, Yetao; Zeng, Xianhai; Luque, Rafael; Tang, Xing; Sun, Yong; Lei, Tingzhou; Liu, Shijie; Lin, Lu

    2017-10-23

    Lignocellulosic biomass, a matrix of biopolymers including cellulose, hemicellulose, and lignin, has gathered increasing attention in recent years for the production of chemicals, fuels, and materials through biorefinery processes owing to its renewability and availability. The fractionation of lignocellulose is considered to be the fundamental step to establish an economical and sustainable lignocellulosic biorefinery. In this Minireview, we summarize a newly developed oxygen delignification for lignocellulose fractionation called cooking with active oxygen and solid alkali (CAOSA), which can fractionate lignocellulose into its constituents and maintain its processable form. In the CAOSA approach, environmentally friendly chemicals are applied instead of undesirable chemicals such as strong alkalis and sulfides. Notably, the alkali recovery for this process promises to be relatively simple and does not require causticizing or sintering. These features make the CAOSA process an alternative for both lignocellulose fractionation and biomass pretreatment. The advantages and challenges of CAOSA are also discussed to provide a comprehensive perspective with respect to existing strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Decomposition of [14C]lignocelluloses of Spartina alterniflora and a comparison with field experiments

    Wilson, J.O.

    1985-01-01

    Decomposition of lignocelluloses from Spartina alterniflora in salt-marsh sediments was measured by using 14 C-labeled compounds. Rates of decomposition were fastest in the first 4 days of incubation and declined later. Lignins labeled in side chains were mineralized slightly faster than uniformly labeled lignins; 12% of the [side chain- 14 C]lignin-labeled lignocellulose was mineralized after 816 h of incubation, whereas only 8% of the [U- 14 C]lignin-labeled lignocelluloses were degraded during this period. The carbohydrate moiety within the lignocellulose complex was degraded about four times faster than the lignin moiety; after 816 h of incubation, 29 to 37% of the carbohydrate moiety had been mineralized. Changes in concentration of lignin and cellulose in litter of S. alterniflora were followed over 2 years of decay. Cellulose disappeared from litter more rapidly than lignin; 50% of the initial content of cellulose was lost after 130 days, whereas lignin required 330 to 380 days for 50% loss. The slow loss of lignin compared with other litter components resulted in a progressive enrichment of litter in lignin content. The rates of mineralization of [ 14 C]lignocelluloses in marsh sediments were similar to the rates of lignocellulose decomposition in litter on the marsh

  11. Influence of reaction conditions and feedstock on hydrochar properties

    Guo, Shuqing; Dong, Xiangyuan; Wu, Tingting; Zhu, Caixia

    2016-01-01

    variation regions of hydrochar yields for corn stalk and longan shell shift to lower severities. The chemical composition of the feedstock has also a significant effect on the hydrochar properties. However, the maximum decrease rates and the variation regions of hydrochar properties (determined by the first and the second derivative methods) show similar profiles for different feedstock. The maximum variation rate of the hydrochar properties for six biomass samples can be found at severity of 5.8–6.4.

  12. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  13. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  14. The potential of restaurant trap grease as biodiesel feedstock

    Parichart Hasuntree

    2011-10-01

    Full Text Available The possibility of using restaurant trap grease as feedstock in the production of biodiesel via acid catalyzed esterificationis explored in this study. Sulfuric acid was used as a catalyst for the esterification reaction of free fatty acid (FFA andmethanol. The FFA levels of restaurant trap greases were reduced from 60.38±2.22 mg KOH/g to 11.60±1.60 mgKOH/g whenconditions for biodiesel production are as follow: methanol-to-FFA ratio of 5:1, 5 wt.% H2SO4, and a reaction temperature at60°C with a reaction time of 60 min. During the acid-catalyzed esterification, the percentage of methyl esters resulting fromconversion of FFA in the obtained product was 83.59±1.51% based on the result of 1H NMR analysis. Data obtained from the23 full factorial designs revealed that methanol-to-FFA ratio term had the most significant effect on the percentage of methylesters, followed by the H2SO4 concentration. Conversely, reaction time between 1 and 3 hours had no significant effect on theesterification of trap greases.

  15. Low-cost feedstock conversion to biodiesel via ultrasound technology

    Babajide, O.; Petrik, L.; Amigun, B.; Ameer, F. [Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Amigun, B. [Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa)

    2010-10-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock - in this case waste cooking oil - in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 {sup o}C, a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration were obtained for the transesterification of the waste oil via the use of ultrasound. (authors)

  16. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Babajide, Omotola [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Petrik, Leslie [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Amigun, Bamikole [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa) and Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa); Ameer, Faraouk [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa)

    2010-09-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 deg C and a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  17. Design, modeling, and analysis of a feedstock logistics system.

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Assessing Pinyon Juniper Feedstock Properties and Utilization Options

    Gresham, Garold Linn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, Kevin Louis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvement in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.

  19. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  20. Analysis of ethanol production potential from cellulosic feedstocks

    Stone, J E

    1982-03-01

    This report provides a comprehensive and scientific overview of results emerging from research on ethanol producton from cellulosic materials and indicates those areas which appear to warrant additional support. Many published economic analyses of production costs are examined, but the emphasis of the report is on research and on its potential for reducing the cost of ethanol production. The author concludes that the uncertainty surrounding the cost of producing ethanol from cellulosic feedstocks via enzymatic hydrolysis will not be resolved until a pilot plant has been built of sufficient size to produce realistic engineering data. He gives five reasons why Canada should build such a pilot plant: Canada's apparent leadership in developing a steam pre-treatment process, the desirability of encouraging developments and building a cadre of experts in biotechnology, the absence of a pilot plant in Canada where the various organisms and biochemical processes involved in ethanol production and by-product utilization can be developed on a reasonably large scale, Canadian expertise in lignin chemistry which might be used to capitalize upon the reactive lignin residue, and research in progress at National Research Council and elsewhere on the conversion of C/sub 5/ sugars to ethanol. 37 refs., 2 figs., 4 tabs.

  1. Grain sorghum is a viable feedstock for ethanol production.

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  2. Decoloring hemoglobin as a feedstock for second-generation bioplastics.

    Low, Aaron; Lay, Mark; Verbeek, Johan; Swan, Janis

    2012-01-01

    The color of red blood cell concentrate (RBCC) limits its application in human food, but there is potential to use it for second-generation bioplastics. Several methods have been developed to remove color from RBCC, but they are expensive or may produce difficult-to-remove toxic residues. Hydrogen peroxide treatment is a cheaper alternative. The effects of RBCC concentration, pH, and reaction temperature were the most important factors influencing the decolorizing process. They were investigated with the aim of developing a method that could be scaled to commercial level for producing a bioplastic feedstock. Initial trials showed pH was an important factor for decolorization and foaming. At pH 15 there was a 96% reduction in solution color and 8.4% solids were lost due to foaming. There was a 76% reduction in solution color at pH 2 and only 2.6% solids were lost due to foaming. The optimal reaction conditions were to centrifuge 9% w/w, pH 2 aqueous RBCC solution to remove aggregates. The solution was reacted at 30°C with 7.5 g of 30% (w/w) hydrogen peroxide. These conditions achieved a 93% reduction in solution color after 3 hr and the molecular weight of the decolored protein was not significantly reduced.

  3. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    Sarin, Amit; Singh, Meetu; Sharma, Neerja; Singh, N. P.

    2017-01-01

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  4. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    Sarin, Amit, E-mail: amit.sarin@yahoo.com [Department of Physical Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Singh, Meetu [Department of Applied Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Sharma, Neerja [PG Department of Physics and Electronics, DAV College, Amritsar (India); Singh, N. P. [Department of Planning and External Development, I.K. Gujral Punjab Technical University, Kapurthala (India)

    2017-10-26

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  5. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  7. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.

    Yen, Hong-Wei; Chang, Jung-Tzu

    2015-05-01

    The conversion of abundant lignocellulosic biomass (LCB) to valuable compounds has become a very attractive idea recently. This study successfully used LCB (rice straw) hydrolysate as a carbon source for the cultivation of oleaginous yeast-Rhodotorula glutinis in an airlift bioreactor. The lipid content of 34.3 ± 0.6% was obtained in an airlift batch with 60 g reducing sugars/L of LCB hydrolysate at a 2 vvm aeration rate. While using LCB hydrolysate as the carbon source, oleic acid (C18:1) and linoleic acid (C18:2) were the predominant fatty acids of the microbial lipids. Using LCB hydrolysate in the airlift bioreactor at 2 vvm achieved the highest cell mass growth as compared to the agitation tank. Despite the low lipid content of the batch using LCB hydrolysate, this low cost feedstock has the potential of being adopted for the production of β-carotene instead of lipid accumulation in the airlift bioreactor for the cultivation of R. glutinis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone

    Han, Jeehoon

    2016-01-01

    Highlights: • A bio-based ‘green’ process for catalytic conversion of corn stover to adipic acid (ADA) is studied. • New separations for effective recovery of biomass derivatives are developed. • Separations are integrated with cellulose/hemicellulose-to-ADA conversions. • Proposed process can compete economically with the current petro-based process. - Abstract: A bio-based ‘green’ process is presented for the catalytic conversion of corn stover to adipic acid (ADA) based on experimental studies. ADA is used for biobased nylon 6.6 manufacturing from lignocellulosics as carbon and energy source. In this process, the cellulose and hemicellulose fractions are catalytically converted to γ-valerolactone (GVL), using cellulose and hemicellulose-derived GVL as a solvent, and subsequently upgrading to ADA. Experimental studies showed maximal carbon yields (biomass-to-GVL: 41% and GVL-to-ADA: 46%) at low concentrations (below 16 wt% solids) using large volumes of GVL solvents while requiring efficient interstage separations and product recovery. This work presents an integrated process, including catalytic conversion and separation subsystems for GVL and ADA production and recovery, and designs a heat exchanger network to satisfy the total energy requirements of the integrated process via combustion of biomass residues (lignin and humins). Finally, an economic analysis shows that 2000 metric tonnes (Mt) per day of corn stover feedstock processing results in a minimum selling price of $633 per Mt if using the best possible parameters.

  9. Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography.

    Lodi, Gabriele; Pellegrini, Laura Annamaria; Aliverti, Alessandro; Rivas Torres, Beatriz; Bernardi, Marco; Morbidelli, Massimo; Storti, Giuseppe

    2017-05-05

    The production of sugars from lignocellulosic biomass is the key to a sustainable, renewable chemical industry. Glucose, xylose and other monosaccharides can be easily produced by hydrolyzing cellulose and hemicellulose, the primary polysaccharides in biomass. However, the hydrolysis of biomass generates byproducts that, together with the mineral acid normally added in the hydrolysis step, have to be removed before the downstream conversion processes. In this work, the recovery of monosaccharides from lignocellulosic hydrolysates by means of Ion Exclusion Chromatography (IEC) has been studied. The analyzed process relies on new pretreatment and hydrolysis steps, involving the neutralization of the hydrolysate with sodium hydroxide. The adsorption behavior of the main components involved in the separation has been experimentally investigated. Pulse tests at the high loading encountered in preparative conditions have been performed for a selected group of model components found in the hydrolysates. For all the electrolytes, the retention volume fraction was always between the interparticle porosity and the total column porosity, confirming that ion exclusion was the dominant retention mechanism. On the other hand, sugars eluted before the total column porosity, indicating partial steric exclusion from the resin pores. This observation was then confirmed by size-exclusion experiments with polyethylene glycol standards, from which the distribution coefficient of the studied sugars has been determined. The comparison between the elution profiles of the same sugars in pure form and as a mixture present in the hydrolysate showed differences in both peak shape and retention times. Therefore, an investigation of the influence of the main electrolytes contained in the hydrolysates on sugars adsorption has been performed through the pulse on a plateau method. The electrolytes were found to enhance the sugars retention by promoting their adsorption onto the resin. However

  10. Cellulase Production from Spent Lignocellulose Hydrolysates by Recombinant Aspergillus niger▿

    Alriksson, Björn; Rose, Shaunita H.; van Zyl, Willem H.; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    2009-01-01

    A recombinant Aspergillus niger strain expressing the Hypocrea jecorina endoglucanase Cel7B was grown on spent hydrolysates (stillage) from sugarcane bagasse and spruce wood. The spent hydrolysates served as excellent growth media for the Cel7B-producing strain, A. niger D15[egI], which displayed higher endoglucanase activities in the spent hydrolysates than in standard medium with a comparable monosaccharide content (e.g., 2,100 nkat/ml in spent bagasse hydrolysate compared to 480 nkat/ml in standard glucose-based medium). In addition, A. niger D15[egI] was also able to consume or convert other lignocellulose-derived compounds, such as acetic acid, furan aldehydes, and phenolic compounds, which are recognized as inhibitors of yeast during ethanolic fermentation. The results indicate that enzymes can be produced from the stillage stream as a high-value coproduct in second-generation bioethanol plants in a way that also facilitates recirculation of process water. PMID:19251882

  11. Pinch analysis for bioethanol production process from lignocellulosic biomass

    Fujimoto, S.; Yanagida, T.; Nakaiwa, M.; Tatsumi, H.; Minowa, T.

    2011-01-01

    Bioethanol produced from carbon neutral and renewable biomass resources is an attractive process for the mitigation of greenhouse gases from vehicle exhaust. This study investigated energy utilization during bioethanol production from lignocellulose while avoiding competition with food production from corn and considering the potential mitigation of greenhouse gases. Process design and simulations were performed for bioethanol production using concentrated sulfuric acid. Mass and heat balances were obtained by process simulations, and the heat recovery ratio was determined by pinch analysis. An energy saving of 38% was achieved. However, energy supply and demand were not effectively utilized in the temperature range from 95 to 100 o C. Therefore, a heat pump was used to improve the temperature range of efficient energy supply and demand. Results showed that the energy required for the process could be supplied by heat released during the process. Additionally, the power required was supplied by surplus power generated during the process. Thus, pinch analysis was used to improve the energy efficiency of the process. - Highlights: → Effective energy utilization of bioethanol production was studied by using pinch analysis. → It was found that energy was not effectively utilized in the temperature range from 95 to 100 o C. → Use of a heat pump was considered to improve the ineffective utilization. → Then, remarkable energy savings could be achieved by it. → Pinch analysis effectively improved the energy efficiency of the bioethanol production.

  12. High performance maleated lignocellulose epicarp fibers for copper ion removal

    A. P. Vieira

    2014-03-01

    Full Text Available Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g-1 of carboxylic acid groups into the biopolymer structure. The success of this reaction was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm-1 in the infrared spectrum. Identically, the same group is observed through 13C NMR CP/MAS in the solid state, via high field signals in the 167 pm region. Both the precursor and the immobilized maleated biopolymers presented nearly the same thermal stability and similar crystallinity to cellulose. However, the pendant carboxylic groups have the ability to remove copper with maximum sorption through a batchwise process at pH 6.0, as expected from the point of zero charge, determined to be 6.45. The sorption kinetic data were fitted to pseudo-first order, pseudo-second order, Elovich-chemisorption and intra-particle diffusion models and the equilibrium data were fitted to the Langmuir, the Freundlich and Tenkim isotherm models. Taking into account a statistical error function and determination coefficients, the data were fit to the pseudo-first and pseudo-second order kinetic and Langmuir isotherm models, with a maximum sorption capacity of copper ions of 55.09 mg g-1. This value suggests the application of this biopolymer with incorporated carboxylate groups as a favorable agent for copper removal from appropriate systems.

  13. New products made with lignocellulosic nanofibers from Brazilian amazon forest

    Bufalino, L; Mendes, L M; Tonoli, G H D; Fonseca, A; Rodrigues, A; Cunha, P I; Marconcini, J M

    2014-01-01

    The biodiversity of the Amazon forest is undoubtedly rich; hence there is considerable variety of plant fibers regarding their morphological, chemical and structural properties. The legal exploration of the Brazilian Amazon is based on sustainable management techniques, but the generation of a relevant amount of plant wastes still cant be avoided. The correct destination of such materials is a challenge that Brazilian companies have to face. In this context, the National Council of Science and Technology (CNPq) promoted the creation of investigation nets on sustainability of Brazilian agribusiness. The Brazilian Net on Lignocellulosic Composites and Nanocomposites was then created, with partnership between several national and international research institutions. Until the moment, the results showed that Amazon plant fibers that are discarded as residues have great potential to nanofiber production. Nanopapers with considerable high mechanical and physical strength, proper opacity and great crystalline index were produced by using a clean and simple mechanical method. Those materials are candidates to several uses such as packaging, substrates transparent conductive films, gas barrier films, solar cells and e-papers

  14. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. CONVERSION OF LIGNOCELLULOSIC MATERIAL TO CHEMICALS AND FUELS; TOPICAL

    Edwin S. Olson

    2001-01-01

    A direct conversion of cellulosic wastes, including resin-bonded furniture and building waste, to levulinate esters is being investigated with the view to producing fuels, solvents, and chemical intermediates as well as other useful by-products in an inexpensive process. The acid-catalyzed reaction of cellulosic materials with ethanol or methanol at 200 C gives good yields of levulinate and formate esters, as well as useful by-products, such as a solid residue (charcoal) and a resinous lignin residue. An initial plant design showed reasonable rates of return for production of purified ethyl levulinate and by-products. In this project, investigations have been performed to identify and develop reactions that utilize esters of levulinic acid produced during the acid-catalyzed ethanolysis reaction. We wish to develop uses for levulinate esters that allow their marketing at prices comparable to inexpensive polymer intermediates. These prices will allow a sufficient rate of return to justify building plants for utilizing the waste lignocellulosics. If need is demonstrated for purified levulinate, the initial plant design work may be adequate, at least until further pilot-scale work on the process is performed

  16. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  17. New products made with lignocellulosic nanofibers from Brazilian amazon forest

    Bufalino, L.; Mendes, L. M.; Tonoli, G. H. D.; Rodrigues, A.; Fonseca, A.; Cunha, P. I.; Marconcini, J. M.

    2014-08-01

    The biodiversity of the Amazon forest is undoubtedly rich; hence there is considerable variety of plant fibers regarding their morphological, chemical and structural properties. The legal exploration of the Brazilian Amazon is based on sustainable management techniques, but the generation of a relevant amount of plant wastes still cant be avoided. The correct destination of such materials is a challenge that Brazilian companies have to face. In this context, the National Council of Science and Technology (CNPq) promoted the creation of investigation nets on sustainability of Brazilian agribusiness. The Brazilian Net on Lignocellulosic Composites and Nanocomposites was then created, with partnership between several national and international research institutions. Until the moment, the results showed that Amazon plant fibers that are discarded as residues have great potential to nanofiber production. Nanopapers with considerable high mechanical and physical strength, proper opacity and great crystalline index were produced by using a clean and simple mechanical method. Those materials are candidates to several uses such as packaging, substrates transparent conductive films, gas barrier films, solar cells and e-papers.

  18. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies.

    Spatari, Sabrina; Bagley, David M; MacLean, Heather L

    2010-01-01

    Lignocellulosic ethanol holds promise for addressing climate change and energy security issues associated with personal transportation through lowering the fuel mixes' carbon intensity and petroleum demand. We compare the technological features and life cycle environmental impacts of near- and mid-term ethanol bioconversion technologies in the United States. Key uncertainties in the major processes: pre-treatment, hydrolysis, and fermentation are evaluated. The potential to reduce fossil energy use and greenhouse gas (GHG) emissions varies among bioconversion processes, although all options studied are considerably more attractive than gasoline. Anticipated future performance is found to be considerably more attractive than that published in the literature as being achieved to date. Electricity co-product credits are important in characterizing the GHG impacts of different ethanol production pathways; however, in the absence of near-term liquid transportation fuel alternatives to gasoline, optimizing ethanol facilities to produce ethanol (as opposed to co-products) is important for reducing the carbon intensity of the road transportation sector and for energy security.

  19. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Manufacture of furfural by hydrolytic treatment of lignocellulose

    Maciejewski, Z.

    1977-01-04

    High yields of furfural (1) were obtained from lignocellulosic plant waste by hydrolysis at 200 to 300/sup 0/ in steam in the presence of acid catalysts and the hydrolyzed residue was carbonized at less than or equal to 600/sup 0/ to give active C and gaseous products. Straw from the rape plant was saturated with 0.7% by wt. H/sub 2/SO/sub 4/ and 4.5 kg of this material was hydrolyzed at 230/sup 0/ by steam at 300/sup 0/ under 12 atm pressure. After 0.5 h a condensate was obtained which yielded 23% 1 based on dry solids. Hydrolysis at 185/sup 0/ for 1 h produced only 6% 1. The hydrolyzed residue was carbonized 3 h at 500 to 600/sup 0/ to give 358.0 g C and 400 L of a gas containing CO 19, CO/sub 2/ 28, CH/sub 4/ 40, ethylene 4.5, ethane 7.4, propylene 0.9 and propane 1.2 vol %.

  1. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  2. Maize feedstocks with improved digestibility reduce the costs and environmental impacts of biomass pretreatment and saccharification

    Torres Salvador, A.F.; Slegers, Ellen; Noordam-Boot, C.M.M.; Dolstra, O.; Vlaswinkel, L.; Boxtel, van A.J.B.; Visser, R.G.F.; Trindade, L.M.

    2016-01-01

    Background - Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the

  3. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  4. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    Bandana Biswas; Stephen H. Kazakoff; Qunyi Jiang; Sharon Samuel; Peter M. Gresshoff; Paul T. Scott

    2013-01-01

    The tree legume Pongamia { (L.) Pierre [syn. (L.) Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v), of which approximately 50% is oleic acid (C). The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part...

  5. Prediction of physicochemical properties of FCC feedstock by Chemometric analysis of their ultraviolet spectrum

    Baldrich Ferrer, Carlos A

    2008-01-01

    Chemometric analysis by Partial Least Squares (PLS) has been applied in this work to correlate the ultraviolet spectrum of combined Fluid Catalytic Cracking (FCC) feedstock with their physicochemical properties. The prediction errors obtained in the validation process using refinery samples demonstrate the accuracy of the predicted properties. This new analytical methodology allows obtaining in one analysis detailed information about the most important physicochemical properties of FCC feedstock and could be used as a valuable tool for operational analysis

  6. Pectin-rich biomass as feedstock for fuel ethanol production.

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  7. Pectin-rich biomass as feedstock for fuel ethanol production

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  8. High-throughput heterogeneous catalyst research

    Turner, Howard W.; Volpe, Anthony F., Jr.; Weinberg, W. H.

    2009-06-01

    With the discovery of abundant and low cost crude oil in the early 1900's came the need to create efficient conversion processes to produce low cost fuels and basic chemicals. Enormous investment over the last century has led to the development of a set of highly efficient catalytic processes which define the modern oil refinery and which produce most of the raw materials and fuels used in modern society. Process evolution and development has led to a refining infrastructure that is both dominated and enabled by modern heterogeneous catalyst technologies. Refineries and chemical manufacturers are currently under intense pressure to improve efficiency, adapt to increasingly disadvantaged feedstocks including biomass, lower their environmental footprint, and continue to deliver their products at low cost. This pressure creates a demand for new and more robust catalyst systems and processes that can accommodate them. Traditional methods of catalyst synthesis and testing are slow and inefficient, particularly in heterogeneous systems where the structure of the active sites is typically complex and the reaction mechanism is at best ill-defined. While theoretical modeling and a growing understanding of fundamental surface science help guide the chemist in designing and synthesizing targets, even in the most well understood areas of catalysis, the parameter space that one needs to explore experimentally is vast. The result is that the chemist using traditional methods must navigate a complex and unpredictable diversity space with a limited data set to make discoveries or to optimize known systems. We describe here a mature set of synthesis and screening technologies that together form a workflow that breaks this traditional paradigm and allows for rapid and efficient heterogeneous catalyst discovery and optimization. We exemplify the power of these new technologies by describing their use in the development and commercialization of a novel catalyst for the

  9. Heterogeneous network architectures

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  10. Heterogeneous acid-catalyzed biodiesel production from crude tall oil: a low-grade and less expensive feedstock

    Mkhize, NM

    2015-06-01

    Full Text Available was selected and WO3 activity was best at a loading mass fraction of 5% to ZrO2 support and activation at 500 C for five hours under air at atmospheric pressure. Optimal reaction conditions were reaction temperature at 250 C; methanol to CTO molar ratio at 10...

  11. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  12. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    Mohd Huzairi Mohd Zainudin

    2013-11-01

    Full Text Available Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB and palm oil mill effluent (POME anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content from 44% to 27% towards the end of the 40-day composting period were observed. The C/N ratio also decreased. A drastic change in the bacterial community structure and diversity throughout the composting process was clearly observed using PCR-DGGE banding patterns. The bacterial community drastically shifted between the thermophilic and maturing stages. 16s rRNA clones belonging to the genera Bacillus, Exiguobacterium, Desemzia, and Planococcus were the dominant groups throughout composting. The species closely related to Solibacillus silvestris were found to be major contributors to changes in the lignocellulosic component. Clones identified as Thermobacillus xylanilyticus, Brachybacterium faecium, Cellulosimicrobium cellulans, Cellulomonas sp., and Thermobifida fusca, which are known to be lignocellulosic-degrading bacteria, were also detected and are believed to support the lignocellulose degradation.

  14. Preprints of the DGMK-Conference - Future feedstocks for fuels and chemicals. Author's manuscripts

    Ernst, S.; Jess, A.; Nees, F.; Peters, U.; Ricci, M.; Santacesaria, E. (eds.)

    2008-07-01

    Within the conference,Future Feedstocks for Fuels and Chemicals, of the German Society for Petroleum and Coal Science and Technology at 29th Spetember to 1st October, 2008, in Berlin (Federal Republic of Germany), the following lectures were held: (a) New technologies in Biodiesel production (E. Santacessari, M. Di Serio, R. Tesser, L. Casale); (b) A new heterogeneous process catalyst for the Biodiesel production (O. Meyer, F. Roessner, R.A. Rakoczy, R.W. Fischer); (c) Vegetable oil hydrotreating for production of high quality diesel Components (M. Endisch, U. Balfanz, M. Olschar, Th. Kuchling); (d) Hydrocracking of vegetable oil using bifunctional, porous catalyst systems (O. Busse, K. Raeuchle, H. Toufar, W. Reschetilowski); (e) Raw material change in the chemical industry (R. Diercks); (f) Fundamentals of the oxidative conversion of methane to ethylene, methanol and formaldehyde (E. Kondratenko); (g) The dehydroalkylation of toluene with ethane - an example for the non-oxidative activation of light alkanes (Y. Traa); (h) Isoprene - Applications beyond polymers (S. Reyer, A. Behr); (i) The gas-phase ammocidation of n-hexane to unsaturated 1,6-C{sub 6} dinitriles, intermediates for 1,6-hexamethylenediamine synthesis (N. Ballarini, A. Battisti, A. Castelli, F. Cavani, C. Lucarelli, P. Marion, P. Righi, A. Turrini); (j) Chemicals from Biomass (T. Tacke); (k) Coal Processing and Fuels from Coal - State of the Art (R. Abraham); (l) Energy from aquatic biomass: an integrated approach to biodiesel and hydrogen production (M. Aresta, A. Dibenedetto); (m) High throughput catalyst optimization program for the gas-to-liquids (GTL) technologies Methanol-to-Gasoline (MTG), higher alcohol synthesis (HAS) and Fischer-Tropsch-Synthesis (FTS) (H. Dathe, K.-F. Finger, A. Haas, P. Kolb, A. Sundermann, G. Wasserschaff); (n) Diesel yield according to Fischer-Tropsch process conditions (M.-C. Marion, F. Hugues); (o) Glycerol derivatives as fuel components (D. Bianchi, E. Batistelle

  15. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Heterogeneous cellular networks

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  17. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical

  18. Renewable chemical feedstocks from integrated liquefaction processing of lingocellulosic materials using microwave energy

    Junming Xu; Jianchun Jiang; Chung-Yun Hse; Todd F. Shupe

    2012-01-01

    The objective of this investigation was to find a simple method for the production of phenolic rich products and sugar derivatives (biopolyols) via separation of liquefied lingocellulosic materials. Liquefaction of lignocellulosic materials was conducted in methanol at 180 °C for 15 min with the conversion of raw materials at about 75%. After liquefaction, the...

  19. Discovering the desirable alleles contributing to the lignocellulosic biomass traits in Saccharum germplasm collections for energy cane improvement

    Wang, Jianping [Univ. of Florida, Gainesville, FL (United States); Sandhu, Hardev [Univ. of Florida, Gainesville, FL (United States)

    2017-03-23

    were tested on marginal soils in Florida and showed very promising yield potential that is important for the successful use of energy cane as a dedicated feedstock for lignocellulosic ethanol production. 2) Multiple techniques at different project progress stages were utilized. For example, for the whole world germplasm accession genotyping, a cheap widely used SSR marker genotyping platform was utilized due to the large number of samples (over thousand). But the throughput of this technique is low in generating data points. However, the purpose the genotyping is to form a core collection for further high throughput genotyping. Thus the results from the SSR genotyping was quite good enough to generated the core collection. To genotype the few hundred core collection accessions, an target enrichment sequencing technology was used, which is not only high throughput in generating large number of genotyping data, but also has the candidate genes targeted to genotyping. The data generated would be sufficient in identifying the alleles contributing to the traits of interests. All the techniques used in this project are effective though extensive time was invested specifically for establish the pipeline in the experimental design, data analysis, and different approach comparison. 3) the research can benefit to the public in polyploid genotyping and new and cost efficient genotyping platform development

  20. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    The aim of this study is to evaluate fungal treatments to improve in vitro rumen degradability of lignocellulosic biomass. In this study four selective lignin degrading fungi, Ganoderma lucidum, Lentinula edodes, Pleurotus eryngii and Pleurotus ostreatus, were used to pre-treat lignocellulosic