Program LATTICE for Calculation of Parameters of Targets with Heterogeneous (Lattice) Structure
Bznuni, S A; Soloviev, A G; Sosnin, A N
2002-01-01
Program LATTICE, with which help it is possible to describe lattice structure for the program complex CASCAD, is created in the C++ language. It is shown that for model-based electronuclear system on a basis of molten salt reactor with graphite moderator at transition from homogeneous structure to heterogeneous at preservation of a chemical compound there is a growth of k_{eff} by approximately 6 %.
Diffusion in heterogeneous lattices
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2010-01-01
Roč. 256, č. 17 (2010), s. 5137-5144 ISSN 0169-4332 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice- gas systems * diffusion * Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010
Nonlinear lattice waves in heterogeneous media
International Nuclear Information System (INIS)
Laptyeva, T V; Ivanchenko, M V; Flach, S
2014-01-01
We discuss recent advances in the understanding of the dynamics of nonlinear lattice waves in heterogeneous media, which enforce complete wave localization in the linear wave equation limit, especially Anderson localization for random potentials, and Aubry–André localization for quasiperiodic potentials. Additional nonlinear terms in the wave equations can either preserve the phase-coherent localization of waves, or destroy it through nonintegrability and deterministic chaos. Spreading wave packets are observed to show universal features in their dynamics which are related to properties of nonlinear diffusion equations. (topical review)
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
Lattice stretching bistability and dynamic heterogeneity
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.
2012-01-01
A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....
Analytical approach for collective diffusion: one-dimensional heterogeneous lattice
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander
2016-01-01
Roč. 144, č. 14 (2016), 1-11, č. článku 144105. ISSN 0021-9606 Institutional support: RVO:68378271 Keywords : diffusion * Monte Carlo simulations * one-dimensional heterogeneous lattice Subject RIV: BE - Theoretical Physics Impact factor: 2.965, year: 2016
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
Nucleon Structure from Lattice QCD
International Nuclear Information System (INIS)
Zanotti, J. M.
2011-01-01
Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes.By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of parton distribution functions, show some indication of approaching their phenomenological values.
A heterogeneous lattice gas model for simulating pedestrian evacuation
Guo, Xiwei; Chen, Jianqiao; Zheng, Yaochen; Wei, Junhong
2012-02-01
Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.
Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth.
Stahl, Evi; Praetorius, Florian; de Oliveira Mann, Carina C; Hopfner, Karl-Peter; Dietz, Hendrik
2016-09-07
One key goal of DNA nanotechnology is the bottom-up construction of macroscopic crystalline materials. Beyond applications in fields such as photonics or plasmonics, DNA-based crystal matrices could possibly facilitate the diffraction-based structural analysis of guest molecules. Seeman and co-workers reported in 2009 the first designed crystal matrices based on a 38 kDa DNA triangle that was composed of seven chains. The crystal lattice was stabilized, unprecedentedly, by Watson-Crick base pairing. However, 3D crystallization of larger designed DNA objects that include more chains such as DNA origami remains an unsolved problem. Larger objects would offer more degrees of freedom and design options with respect to tailoring lattice geometry and for positioning other objects within a crystal lattice. The greater rigidity of multilayer DNA origami could also positively influence the diffractive properties of crystals composed of such particles. Here, we rationally explore the role of heterogeneity and Watson-Crick interaction strengths in crystal growth using 40 variants of the original DNA triangle as model multichain objects. Crystal growth of the triangle was remarkably robust despite massive chemical, geometrical, and thermodynamical sample heterogeneity that we introduced, but the crystal growth sensitively depended on the sequences of base pairs next to the Watson-Crick sticky ends of the triangle. Our results point to weak lattice interactions and high concentrations as decisive factors for achieving productive crystallization, while sample heterogeneity and impurities played a minor role.
Heterogeneous dissipative composite structures
Ryabov, Victor; Yartsev, Boris; Parshina, Ludmila
2018-05-01
The paper suggests mathematical models of decaying vibrations in layered anisotropic plates and orthotropic rods based on Hamilton variation principle, first-order shear deformation laminated plate theory (FSDT), as well as on the viscous-elastic correspondence principle of the linear viscoelasticity theory. In the description of the physical relationships between the materials of the layers forming stiff polymeric composites, the effect of vibration frequency and ambient temperature is assumed as negligible, whereas for the viscous-elastic polymer layer, temperature-frequency relationship of elastic dissipation and stiffness properties is considered by means of the experimentally determined generalized curves. Mitigation of Hamilton functional makes it possible to describe decaying vibration of anisotropic structures by an algebraic problem of complex eigenvalues. The system of algebraic equation is generated through Ritz method using Legendre polynomials as coordinate functions. First, real solutions are found. To find complex natural frequencies of the system, the obtained real natural frequencies are taken as input values, and then, by means of the 3rd order iteration method, complex natural frequencies are calculated. The paper provides convergence estimates for the numerical procedures. Reliability of the obtained results is confirmed by a good correlation between analytical and experimental values of natural frequencies and loss factors in the lower vibration tones for the two series of unsupported orthotropic rods formed by stiff GRP and CRP layers and a viscoelastic polymer layer. Analysis of the numerical test data has shown the dissipation & stiffness properties of heterogeneous composite plates and rods to considerably depend on relative thickness of the viscoelastic polymer layer, orientation of stiff composite layers, vibration frequency and ambient temperature.
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Synthesizing lattice structures in phase space
International Nuclear Information System (INIS)
Guo, Lingzhen; Marthaler, Michael
2016-01-01
In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)
WANG, Qingrong; ZHU, Changfeng
2017-06-01
Integration of distributed heterogeneous data sources is the key issues under the big data applications. In this paper the strategy of variable precision is introduced to the concept lattice, and the one-to-one mapping mode of variable precision concept lattice and ontology concept lattice is constructed to produce the local ontology by constructing the variable precision concept lattice for each subsystem, and the distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database is proposed to draw support from the special relationship between concept lattice and ontology construction. Finally, based on the standard of main concept lattice of the existing heterogeneous database generated, a case study has been carried out in order to testify the feasibility and validity of this algorithm, and the differences between the main concept lattice and the standard concept lattice are compared. Analysis results show that this algorithm above-mentioned can automatically process the construction process of distributed concept lattice under the heterogeneous data sources.
Baryon structure from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.
2009-01-01
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Boháč, Petr; Jastrabík, Lubomír
2015-01-01
Roč. 74, Nov (2015), s. 556-560 ISSN 1386-9477 R&D Projects: GA MŠk LO1409; GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : surface diffusion * heterogeneous lattices * lattice-gas models * kinetic Monte Carlo simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.904, year: 2015
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Extension theorems for homogenization on lattice structures
Miller, Robert E.
1992-01-01
When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.
Modelling heterogeneity of concrete using 2D lattice network for ...
Indian Academy of Sciences (India)
present work brings out certain finer details which are not available explicitly in the earlier works. Keywords. Concrete fracture; lattice model; Fuller distribution; ... examples are cement mortar and concrete in civil engineering. ..... Although acoustic emission technique is a well established non destructive testing (NDT).
Effective Wettability of Heterogenous Fracture Surfaces Using the Lattice-Boltzmann Method
E Santos, J.; Prodanovic, M.; Landry, C. J.
2017-12-01
Fracture walls in the subsurface are often structured by minerals of different composition (potentially further altered in contact with fluids during hydrocarbon extraction or CO2 sequestration), this yields in a heterogeneous wettability of the surface in contact with the fluids. The focus of our work is to study how surfaces presenting different mineralogy and roughness affect multiphase flow in fractures. Using the Shan-Chen model of the lattice-Boltzmann method (LBM) we define fluid interaction and surface attraction parameters to simulate a system of a wetting and a non-wetting fluid. In this work, we use synthetically created fractures presenting different arrangements of wetting and non-wetting patches, and with or without roughness; representative of different mineralogy, similar workflow can be applied to fractures extracted from X-ray microtomography images of fractures porous media. The results from the LBM simulations provide an insight on how the distribution of mineralogy and surface roughness are related with the observed macroscopic contact angle. We present a comparison between the published analytical models, and our results based on surface areas, spatial distribution and local fracture aperture. The understanding of the variables that affect the contact angle is useful for the comprehension of multiphase processes in naturally fractured reservoirs like primary oil production, enhanced oil recovery and CO2 sequestration. The macroscopic contact angle analytical equations for heterogeneous surfaces with variable roughness are no longer valid in highly heterogeneous systems; we quantify the difference thus offering an alternative to analytical models.
DFT computations of the lattice constant, stable atomic structure and ...
African Journals Online (AJOL)
This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...
Lattice QCD Calculation of Nucleon Structure
International Nuclear Information System (INIS)
Liu, Keh-Fei; Draper, Terrence
2016-01-01
It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
International Nuclear Information System (INIS)
Hong, Ser Gi; Kim, Kang-Seog
2011-01-01
This paper describes the iteration methods using resonance integral tables to estimate the effective resonance cross sections in heterogeneous transport lattice calculations. Basically, these methods have been devised to reduce an effort to convert resonance integral table into subgroup data to be used in the physical subgroup method. Since these methods do not use subgroup data but only use resonance integral tables directly, these methods do not include an error in converting resonance integral into subgroup data. The effective resonance cross sections are estimated iteratively for each resonance nuclide through the heterogeneous fixed source calculations for the whole problem domain to obtain the background cross sections. These methods have been implemented in the transport lattice code KARMA which uses the method of characteristics (MOC) to solve the transport equation. The computational results show that these iteration methods are quite promising in the practical transport lattice calculations.
Thin-walled reinforcement lattice structure for hollow CMC buckets
de Diego, Peter
2017-06-27
A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.
Determining the Mechanical Properties of Lattice Block Structures
Wilmoth, Nathan
2013-01-01
Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.
Implementation of the Lattice Boltzmann Method on Heterogeneous Hardware and Platforms using OpenCL
Directory of Open Access Journals (Sweden)
TEKIC, P. M.
2012-02-01
Full Text Available The Lattice Boltzmann method (LBM has become an alternative method for computational fluid dynamics with a wide range of applications. Besides its numerical stability and accuracy, one of the major advantages of LBM is its relatively easy parallelization and, hence, it is especially well fitted to many-core hardware as graphics processing units (GPU. The majority of work concerning LBM implementation on GPU's has used the CUDA programming model, supported exclusively by NVIDIA. Recently, the open standard for parallel programming of heterogeneous systems (OpenCL has been introduced. OpenCL standard matures and is supported on processors from most vendors. In this paper, we make use of the OpenCL framework for the lattice Boltzmann method simulation, using hardware accelerators - AMD ATI Radeon GPU, AMD Dual-Core CPU and NVIDIA GeForce GPU's. Application has been developed using a combination of Java and OpenCL programming languages. Java bindings for OpenCL have been utilized. This approach offers the benefits of hardware and operating system independence, as well as speeding up of lattice Boltzmann algorithm. It has been showed that the developed lattice Boltzmann source code can be executed without modification on all of the used hardware accelerators. Performance results have been presented and compared for the hardware accelerators that have been utilized.
Pawlak algebra and approximate structure on fuzzy lattice.
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.
Directory of Open Access Journals (Sweden)
Martin Gregory T
2004-11-01
Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the
Detection of structural heterogeneity of glass melts
DEFF Research Database (Denmark)
Yue, Yuanzheng
2004-01-01
The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is the hyperquench-anneal-calorimetric scan approach, by which the structural information of a basaltic supercooled liquid and three binary silicate liquids is acquired. Another is the calorimetrically repeated up- and downscanning approach, by which the structural heterogeneity, the intermediate range order...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....
EXPANDA-75: one-dimensional diffusion code for multi-region plate lattice heterogeneous system
International Nuclear Information System (INIS)
Kikuchi, Yasuyuki; Katsuragi, Satoru; Suzuki, Tomoo; Ogitsu, Makoto.
1975-08-01
An advanced treatment has been developed for analyzing a multi-region plate lattice heterogeneous system using the coarse group constants set provided for a homogeneous system. The essential points of this treatment are modification of effective admixture cross sections and improvement of effective elastic removal cross sections. By this treatment the heterogeneity effects for flux distributions and effective cross sections in the unit cell can be reproduced accurately in comparison with the ultra fine group treatment which consumes huge amounts of computing time. Based on the present treatment and using the JAERI-Fast set, a one-dimensional diffusion code, EXPANDA-75, was developed for extensive use for analyses of fast critical experiments. The user's guide is also presented in this report. (auth.)
The Developement of A Lattice Structured Database
DEFF Research Database (Denmark)
Bruun, Hans
In this project we have investigated the possibilities to make a system based on the concept algebra described in [3], [4] and [5]. The concept algebra is used for ontology specification and knowledge representation. It is a distributive lattice extended with attribution operations. One of the main...... ideas in this work is to use Birkhoff's representation theorem, so we represent distributive lattices using its dual representation: the partial order of join irreducibles. We show how to construct a concept algebra satisfying a given set of equations. The universal/initial algebra is usually too big...
Lattice Modeling of Early-Age Behavior of Structural Concrete
Pan, Yaming; Prado, Armando; Porras, Roc?o; Hafez, Omar M.; Bolander, John E.
2017-01-01
The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based ap...
Designing lattice structures with maximal nearest-neighbor entanglement
Energy Technology Data Exchange (ETDEWEB)
Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)
2009-08-07
In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.
International Nuclear Information System (INIS)
Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.
2015-01-01
Injection of anthropogenic carbon dioxide (CO 2 ) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO 2 that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S nw ) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S nw . In either pore networks, the specific interfacial length is linearly proportional to S nw during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S nw for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement
Multiscale Lattice Boltzmann method for flow simulations in highly heterogenous porous media
Li, Jun
2013-01-01
A lattice Boltzmann method (LBM) for flow simulations in highly heterogeneous porous media at both pore and Darcy scales is proposed in the paper. In the pore scale simulations, flow of two phases (e.g., oil and gas) or two immiscible fluids (e.g., water and oil) are modeled using cohesive or repulsive forces, respectively. The relative permeability can be computed using pore-scale simulations and seamlessly applied for intermediate and Darcy-scale simulations. A multiscale LBM that can reduce the computational complexity of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with the averaged results obtained using fine grid.
Energy Technology Data Exchange (ETDEWEB)
Xu Xixiang, E-mail: xu_xixiang@hotmail.co [College of Science, Shandong University of Science and Technology, Qingdao, 266510 (China)
2010-01-04
An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.
International Nuclear Information System (INIS)
Xu Xixiang
2010-01-01
An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.
Energy Technology Data Exchange (ETDEWEB)
Liu, Haihu, E-mail: haihu.liu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhang, Yonghao [James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Valocchi, Albert J. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2015-05-15
Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.
Vortex lattice structures in YNi2B2C
International Nuclear Information System (INIS)
Yethiraj, M.; Paul, D.M.; Tomy, C.V.; Forgan, E.M.
1997-01-01
The authors observe a flux lattice with square symmetry in the superconductor YNi 2 B 2 C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi 2 B 2 C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, they show that the flux lines have a square cross-section when the applied field is parallel to the c-axis of the crystal, since the measured penetration depth along the 100 crystal direction is larger than the penetration depth along the 110 by approximately 60%. This is the likely reason for the square symmetry of the lattice. Although they find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed
Capturing Structural Heterogeneity in Chromatin Fibers.
Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas
2017-10-13
Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nucleon structure functions from lattice operator product expansion
Energy Technology Data Exchange (ETDEWEB)
Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-03-15
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted
Krause, David L.; Whittenberger, J. Daniel
2002-01-01
The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction
Modeling of Triangular Lattice Space Structures with Curved Battens
Chen, Tzikang; Wang, John T.
2005-01-01
Techniques for simulating an assembly process of lattice structures with curved battens were developed. The shape of the curved battens, the tension in the diagonals, and the compression in the battens were predicted for the assembled model. To be able to perform the assembly simulation, a cable-pulley element was implemented, and geometrically nonlinear finite element analyses were performed. Three types of finite element models were created from assembled lattice structures for studying the effects of design and modeling variations on the load carrying capability. Discrepancies in the predictions from these models were discussed. The effects of diagonal constraint failure were also studied.
Nucleon structure functions from lattice operator product expansion
International Nuclear Information System (INIS)
Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M.; Perlt, H.; Schiller, A.
2017-03-01
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Nucleon Structure Functions from Operator Product Expansion on the Lattice.
Chambers, A J; Horsley, R; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Somfleth, K; Young, R D; Zanotti, J M
2017-06-16
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
A conceivable lattice structure of the Coulomb law
International Nuclear Information System (INIS)
Papp, E.; Santilli, R.M.
1983-01-01
A few heuristic remarks on recent extensions of the Coulomb law via effective potentials and other means, which appear to admit a lattice structure in time and space whose spacing are given by the characteristic period of the elctron and its Compton wave-length, respectively, are presented
Some recent work on lattice structures for digital signal processing
Indian Academy of Sciences (India)
Digital signal processing (DSP); lattice structures; finite impulse ... fascinated this author for a long time, and for the known non-canonical ...... where M
Upscaled Lattice Boltzmann Method for Simulations of Flows in Heterogeneous Porous Media
Directory of Open Access Journals (Sweden)
Jun Li
2017-01-01
Full Text Available An upscaled Lattice Boltzmann Method (LBM for flow simulations in heterogeneous porous media at the Darcy scale is proposed in this paper. In the Darcy-scale simulations, the Shan-Chen force model is used to simplify the algorithm. The proposed upscaled LBM uses coarser grids to represent the average effects of the fine-grid simulations. In the upscaled LBM, each coarse grid represents a subdomain of the fine-grid discretization and the effective permeability with the reduced-order models is proposed as we coarsen the grid. The effective permeability is computed using solutions of local problems (e.g., by performing local LBM simulations on the fine grids using the original permeability distribution and used on the coarse grids in the upscaled simulations. The upscaled LBM that can reduce the computational cost of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with averaged results obtained using a fine grid.
Upscaled Lattice Boltzmann Method for Simulations of Flows in Heterogeneous Porous Media
Li, Jun
2017-02-16
An upscaled Lattice Boltzmann Method (LBM) for flow simulations in heterogeneous porous media at the Darcy scale is proposed in this paper. In the Darcy-scale simulations, the Shan-Chen force model is used to simplify the algorithm. The proposed upscaled LBM uses coarser grids to represent the average effects of the fine-grid simulations. In the upscaled LBM, each coarse grid represents a subdomain of the fine-grid discretization and the effective permeability with the reduced-order models is proposed as we coarsen the grid. The effective permeability is computed using solutions of local problems (e.g., by performing local LBM simulations on the fine grids using the original permeability distribution) and used on the coarse grids in the upscaled simulations. The upscaled LBM that can reduce the computational cost of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with averaged results obtained using a fine grid.
International Nuclear Information System (INIS)
Gray S. Chang
2005-01-01
The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble/block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code--ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis
The fixed point structure of lattice field theories
International Nuclear Information System (INIS)
Baier, R.; Reusch, H.J.; Lang, C.B.
1989-01-01
Monte-Carlo renormalization group methods allow to analyze lattice regularized quantum field theories. The properties of the quantized field theory in the continuum may be recovered at a critical point of the lattice model. This requires a study of the phase diagram and the renormalization flow structure of the coupling constants. As an example the authors discuss the results of a recent MCRG investigation of the SU(2) adjoint Higgs model, where they find evidence for the existence of a tricritical point at finite values of the inverse gauge coupling β
Polarized and unpolarized nucleon structure functions from lattice QCD
International Nuclear Information System (INIS)
Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Humboldt-Universitaet, Berlin; Ilgenfritz, E.M.; Perlt, H.; Rakow, P.; Schierholz, G.; Forschungszentrum Juelich GmbH; Schiller, A.
1995-06-01
We report on a high statistics quenched lattice QCD calculation of the deep-inelastic structure functions F 1 , F 2 , g 1 and g 2 of the proton and neutron. The theoretical basis for the calculation is the operator product expansion. We consider the moments of the leading twist operators up to spin four. Using Wilson fermions the calculation is done for three values of K, and we perform the extrapolation to the chiral limit. The renormalization constants, which lead us from lattice to continuum operators, are calculated in perturbation theory to one loop order. (orig.)
Effective thermal conductivity estimate of heterogenous media by a lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Arab, M.R.; Pateyron, B.; El Ganaoui, M.; Labbe, J.C. [Limoges Univ., Limoges (France). Science des Procedes Ceramiques et de Traitements de Surface
2009-07-01
Statistical lattice Boltzmann methods (LBM) are often used to simulate isothermal fluid flow for problems with complex geometry or porous structures. This study used an LBM algorithm to evaluate the effective thermal conductivity (ETC) of simple 2-D configurations. The LBM algorithm was also used to estimate the ECT of a porous structure. The Bhatnagar-Gross-Krook approximation was used to determine the discrete form of the Boltzmann equation for a single phase flow. A comparison with the finite element method (FEM) was also conducted. Results of the study demonstrated that the LBM algorithm accurately simulates the phenomena of heat and mass transfer for both the simple 2-D configurations as well as the porous media. The tool will be used to determine the influence of thermal contact resistance on heat transfer. 6 refs., 1 tab., 7 figs.
Lattice shear distortions in fluorite structure oxides
International Nuclear Information System (INIS)
Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.
1979-01-01
Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion
On the structure of Lattice code WIMSD-5B
International Nuclear Information System (INIS)
Kim, Won Young; Min, Byung Joo
2004-03-01
The WIMS-D code is a freely available thermal reactor physics lattice code used widely for thermal research and power reactor calculation. Now the code WIMS-AECL, developed on the basis of WIMS-D, has been used as one of lattice codes for the cell calculation in Canada and also, in 1998, the latest version WIMSD-5B is released for OECD/NEA Data Bank. While WIMS-KAERI was developed and has been used, originated from WIMS-D, in Korea, it was adjusted for the cell calculation of research reactor HANARO and so it has no confirmaty to CANDU reactor. Therefore, the code development applicable to cell calculation of CANDU reactor is necessary not only for technological independence and but also for the establishment of CANDU safety analysis system. A lattice code WIMSD-5B was analyzed in order to set the system of reactor physics computer codes, to be used in the assessment of void reactivity effect. In order to improve and validate WIMSD-5B code, the analysis of the structure of WIMSD-5B lattice code was made and so its structure, algorithm and the subroutines of WIMSD-5B were presented for the cluster type and the pij method modelling the CANDU-6 fuel
Investigation of hadronic structure by solving QCD on a lattice
International Nuclear Information System (INIS)
Grandy, J.M.
1992-01-01
Various aspects of hadronic structure are investigated by means of lattice calculations. The measurements focus on equal-time quark wavefunctions, correlations of density operators, and vacuum correlators of hadronic currents, with additional measurements of Wilson loops and hadron masses as a consistency check. The wavefunctions are shown to be consistent with a confinement model prediction. The effect of hyperfine splitting on the wavefunctions is shown to agree closely with the quark model prediction. The computed quark density correlations for the pion, rho, and proton at long range are compared with the expected asymptotic behavior. The density correlation also provides a basis for comparing the spatial extent of quark pairs surrounding the hadron with the extent of the valence quark wavefunction. Vacuum correlation functions of hadronic currents are compared with phenomenological fits to experimental data and sum rule calculations. Hadronic observable calculations are performed by evaluating path integrals in imaginary time using a Monte Carlo technique. Lattices with 16 points in the time direction and spatial volume of 12 3 and 16 3 points are used. The physical lattice spacing is 0.2 fm, and the physical volume of the lattice is large enough that the effect of spatial boundary conditions on the long range structure of the particles can be corrected in a linear fashion
Fractional vortex lattice structures in spin-triplet superconductors
International Nuclear Information System (INIS)
Chung, Suk Bum; Agterberg, Daniel F; Kim, Eun-A
2009-01-01
Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice structures for this class of unconventional superconductors. We discuss how the order parameter symmetry can give rise to U(1)xU(1) symmetry in the same sense as in spinor condensates, making half-quantum vortices (HQVs) topologically stable. We then calculate the vortex lattice structure of HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and Meissner screening, all absent in spinor condensates. Finally, we consider how spin-orbit coupling leads to a breakdown of the U(1)xU(1) symmetry in free energy and whether the HQV lattice survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in the context of Na x CoO 2 ·yH 2 O and Bechgaard salts, as well as the better known and more complex model for Sr 2 RuO 4 .
Nucleon structure by Lattice QCD computations with twisted mass fermions
International Nuclear Information System (INIS)
Harraud, P.A.
2010-11-01
Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)
The gluon structure of hadrons and nuclei from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Shanahan, Phiala A. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2018-04-01
I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.
The gluon structure of hadrons and nuclei from lattice QCD
Shanahan, Phiala
2018-03-01
I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.
Hornfeck, W.; Harbrecht, B.
2009-11-01
An analysis of certain types of multiplicative congruential generators - otherwise known for their application to the sequential generation of pseudo-random numbers - reveals their relation to lattice-sublattice transformations and the coordinate description of crystal structures.
Quark structure from the lattice operator product expansion
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.; Goeckeler, M.
2009-11-01
We have reported elsewhere in this conference on our continuing project to determine nonperturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative determination of the nucleon structure. In this talk we discuss how these Wilson coefficients can be used to extract Nachtmann moments of structure functions, using the case of off-shell Landau-gauge quarks as a first simple example. This work is done using overlap fermions, because their improved chiral properties reduce the difficulties due to operator mixing. (orig.)
From lattice Hamiltonians to tunable band structures by lithographic design
Tadjine, Athmane; Allan, Guy; Delerue, Christophe
2016-08-01
Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.
Nucleon Structure and Hyperon Form Factors from Lattice QCD.
Energy Technology Data Exchange (ETDEWEB)
Lin,H.W.
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).
Nucleon Structure and hyperon form factors from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lin, Huey-Wen
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).
Structure and lattice dynamics in non-centrosymmetric borates
International Nuclear Information System (INIS)
Stein, W.D.R.
2007-01-01
This thesis deals with a study of structural and lattice dynamical properties of some noncentrosymmetric borates with outstanding non-linear optical properties. The focus was on the compound bismuth triborate (BiB 3 O 6 ). The structure of the tetraborates MB 4 O 7 (M=Pb,Sr,Ba) was also investigated. The structural investigations in bismuth triborate include powder and single crystal diffraction experiments on X-ray and neutron sources. The crystal structure was under examination in the temperature range from 100 K to room temperature and the lattice constants in the temperature range from 20 K to 800 K. The lattice constants show a nearly linear dependency from temperature. Our observations are in good agreement with investigations of the thermal expansion, which shows a strong anisotropy within the layer-like structure of bismuth triborate. Within the borate layers, along the polar axis a strong positive and in the orthogonal direction a negative thermal expansion is observed. This effect can be explained by a zig-zag effect within the borate layers. The lone electron pair at the bismuth atom is discussed to be possibly the origin of the temperature dependency of the coordination environment of the bismuth atom. The influence of the lone electron pair on the crystal structure is raising by lowering the temperature. At the bismuth atom distinct anharmonic effects are observed, where the maximum points along the direction of the polar axis and therefore along the direction of the lone electron pair. The phonon dispersion of bismuth triborate has been investigated by inelastic neutron scattering. The low symmetry of the crystal structure depicts to be a special challenge. The dispersion was observed along the three reciprocal lattice constants. Along the polar axis the dispersion could be characterized to a maximum energy of 20 THz. The low energy acoustic branch along the polar axis shows a softening at the zone boundary. In the orthogonal directions the dispersion
Lattice investigation of nucleon structure at light quark masses
International Nuclear Information System (INIS)
Zanotti, James M.
2010-01-01
Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes at, e.g. Jefferson Lab, COMPASS/CERN and FAIR/GSI. By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this exciting area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of ordinary parton distribution functions, show some indication of approaching their phenomenological values.
One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures
DEFF Research Database (Denmark)
Belykh, Vladimir N.; Mosekilde, Erik
1996-01-01
The paper presents a qualitative analysis of coupled map lattices (CMLs) for the case of arbitrary nonlinearity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where, independently of the initial conditions, all elements of a CML acquire uniform...... dynamics is investigated and stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of CMLs with specific symmetries are discussed....
Trade, Industry Structure and Different Sources of Firm-heterogeneity
DEFF Research Database (Denmark)
Schröder, Philipp J.H.; Jørgensen, Jan Guldager
Recently the workhorse model of intra-industry trade has been augmented with heterogeneous cost structures at the firm level. In principle there exist various sources of heterogeneity, yet the literature appears -- for convenience or other reasons -- to settle on marginal cost heterogeneity...... as the preferred modelling device. The present paper develops a unified model framework allowing a systematic comparison of marginal and fixed cost heterogeneity. We find that both types of heterogeneity are in fact able to capture the central stylized facts of international trade. For example can either source...
Band structure engineering for ultracold quantum gases in optical lattices
International Nuclear Information System (INIS)
Weinberg, Malte
2014-01-01
The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions
The ambivalent effect of lattice structure on a spatial game
Zhang, Hui; Gao, Meng; Li, Zizhen; Maa, Zhihui; Wang, Hailong
2011-06-01
The evolution of cooperation is studied in lattice-structured populations, in which each individual who adopts one of the following strategies ‘always defect' (ALLD), ‘tit-for-tat' (TFT), and ‘always cooperate' (ALLC) plays the repeated Prisoner's Dilemma game with its neighbors according to an asynchronous update rule. Computer simulations are applied to analyse the dynamics depending on major parameters. Mathematical analyses based on invasion probability analysis, mean-field approximation, as well as pair approximation are also used. We find that the lattice structure promotes the evolution of cooperation compared with a non-spatial population, this is also confirmed by invasion probability analysis in one dimension. Meanwhile, it also inhibits the evolution of cooperation due to the advantage of being spiteful, which indicates the key role of specific life-history assumptions. Mean-field approximation fails to predict the outcome of computer simulations. Pair approximation is accurate in two dimensions but fails in one dimension.
Zhang, Bo; Wang, Jianjun; Liu, Zhiping; Zhang, Xianren
2014-01-01
The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width. PMID:25059292
Xia, Cheng-Yi; Meng, Xiao-Kun; Wang, Zhen
2015-01-01
In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner's dilemma game with two types of coupling schemes (symmetric and asymmetric ones). Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems.
Nucleon Structure on a Lattice at the Physical Point
International Nuclear Information System (INIS)
Syritsyn, Sergey
2015-01-01
We report initial nucleon structure results computed on lattices with 2+1 dynamical Mobius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of g A and 〈x〉 u-d to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method for choosing optimal AMA parameters. (paper)
International Nuclear Information System (INIS)
Huang Feng; Wang Xue-Jin; Liu Yan-Hong; Ye Mao-Fu; Wang Long
2010-01-01
Structures and dynamics of two-dimensional dust lattices with and without Coulomb molecules in plasmas are investigated. The experimental results show that the lattices have the crystal-like hexagonal structures, i.e. most particles have six nearest-neighboring particles. However, the lattice points can be occupied by the individual particles or by a pair of particles called Coulomb molecules. The pair correlation function is used to compare the structures between the lattices with or without the Coulomb molecules. In the experiments, the Coulomb molecules can also decompose and recombine with another individual particle to form a new molecule. (physics of gases, plasmas, and electric discharges)
Directory of Open Access Journals (Sweden)
Cheng-Yi Xia
Full Text Available In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner's dilemma game with two types of coupling schemes (symmetric and asymmetric ones. Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems.
Thresholds of surface codes on the general lattice structures suffering biased error and loss
International Nuclear Information System (INIS)
Tokunaga, Yuuki; Fujii, Keisuke
2014-01-01
A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries
Thresholds of surface codes on the general lattice structures suffering biased error and loss
Energy Technology Data Exchange (ETDEWEB)
Tokunaga, Yuuki [NTT Secure Platform Laboratories, NTT Corporation, 3-9-11 Midori-cho, Musashino, Tokyo 180-8585, Japan and Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Fujii, Keisuke [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)
2014-12-04
A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries.
Phase structure of lattice QCD for general number of flavors
International Nuclear Information System (INIS)
Iwasaki, Y.; Kanaya, K.; Yoshie, T.; Kaya, S.; Sakai, S.
2004-01-01
We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors N F =6-360 with degenerate-mass quarks, we find that when N F ≥7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λ d which is the physical scale characterizing the phase transition in the weak coupling region: When N F ≥17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥N F ≥7, there is a nontrivial IR fixed point and therefore the theory is nontrivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for N F ≤6
International Nuclear Information System (INIS)
Schroers, W.
2007-01-01
This review focuses on the discussion of three key results of nucleon structure calculations on the lattice. These three results are the quark contribution to the nucleon spin, J q , the nucleon-Δ transition form factors, and the nucleon axial coupling, g A . The importance for phenomenology and experiment is discussed and the requirements for future simulations are pointed out. (orig.)
Dynamic structure factor for liquid He4 and quantum lattice model
International Nuclear Information System (INIS)
Lee, M.H.
1975-01-01
It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.
2018-03-01
Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.
Electron-lattice Interaction and Nonlinear Excitations in Cuprate Structures
International Nuclear Information System (INIS)
Paulsen, J.; Eschrig, H.; Drechsler, S.L.; Malek, J.
1995-01-01
A low temperature lattice modulation of the chains of the YBa 2 Cu 3 O 7 is considered by deriving a Hamiltonian of electron-lattice interaction from density-functional calculations for deformed lattice and solving it for the groundstate. Hubbard-type Coulomb interaction is included. The obtained groundstate is a charge-density-wave state with a pereodicity of four lattice constants and a gap for one-electron excitations of about 1eV, sensitively depending on parameters of the Hamiltonian. There are lots of polaronic and solitonic excitations with formation energies deep in the gap, which can pin the Fermi level and thus produce again metallicity of the chain. They might also contribute to pairing of holes in adjacent CuO 2 -planes. (author)
Vortex structure in abelian-projected lattice gauge theory
International Nuclear Information System (INIS)
Ambjoern, J.; Giedt, J.; Greensite, J.
2000-01-01
We report on a breakdown of both monopole dominance and positivity in abelian-projected lattice Yang-Mills theory. The breakdown is associated with observables involving two units of the abelian charge. We find that the projected lattice has at most a global Z 2 symmetry in the confined phase, rather than the global U(1) symmetry that might be expected in a dual superconductor or monopole Coulomb gas picture. Implications for monopole and center vortex theories of confinement are discussed
DEFF Research Database (Denmark)
Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus
2016-01-01
in injection molding tools and lattice structures. This research examines the effect of cellular lattice structures on the strength of workpieces additively manufactured from ultra high-strength steel powder. Two commercial SLM machines are used to fabricate cellular samples based on four architectures— solid...... with experimental data and it is shown that they agree well. The results from this research show that using lattice structures significantly reduces the strength of material with respect to solid samples while indicating no serious increase of strength compared to hollow structures. In combination with an analysis...
Local structure theory: calculation on hexagonal arrays, and interaction of rule and lattice
International Nuclear Information System (INIS)
Gutowitz, H.A.; Victor, J.D.
1989-01-01
Local structure theory calculations are applied to the study of cellular automata on the two-dimensional hexagonal lattice. A particular hexagonal lattice rule denoted (3422) is considered in detail. This rule has many features in common with Conway's Life. The local structure theory captures many of the statistical properties of this rule; this supports hypotheses raised by a study of Life itself. As in Life, the state of a cell under (3422) depends only on the state of the cell itself and the sum of states in its neighborhood at the previous time step. This property implies that evolution rules which operate in the same way can be studied on different lattices. The differences between the behavior of these rules on different lattices are dramatic. The mean field theory cannot reflect these differences. However, a generalization of the mean field theory, the local structure theory, does account for the rule-lattice interaction
Mechanical properties of regular hexahedral lattice structure formed by selective laser melting
International Nuclear Information System (INIS)
Sun, Jianfeng; Yang, Yongqiang; Wang, Di
2013-01-01
The Ti–6Al–4V lattice structure is widely used in the aerospace field. This research first designs a regular hexahedral unit, processes the lattice structure composed of the Ti–6Al–4V units by selective laser melting technology, obtains the experimental fracture load and the compression deformation of them through compression tests, then conducts a simulation of the unit and the lattice structure through ANSYS to analyze the failure point. Later, according to the force condition of the point, the model of maximum load is built, through which the analytical formula of the fracture load of the unit and the lattice structure are obtained. The results of groups of experiments demonstrate that there exists an exponential relationship between the practical fracture load and the porosity of the lattice structure. There also exists a trigonometric function relationship between the compression deformation and the porosity of the lattice structure. The fracture analysis indicates that fracture of the units and lattice structure is brittle fracture due to cleavage fracture. (paper)
Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers
Directory of Open Access Journals (Sweden)
J. Y. Xie
2013-01-01
Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai
2018-02-01
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.
DEFF Research Database (Denmark)
Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus
2016-01-01
Additive manufacturing is rapidly developing and gaining popularity for direct metal fabrication systems like selective laser melting (SLM). The technology has shown significant improvement for high-quality fabrication of lightweight design-efficient structures such as conformal cooling channels...... in injection molding tools and lattice structures. This research examines the effect of cellular lattice structures on the strength of workpieces additively manufactured from ultra high-strength steel powder. Two commercial SLM machines are used to fabricate cellular samples based on four architectures— solid......, hollow, lattice structure and rotated lattice structure. Compression test is applied to the specimens while they are deformed. The analytical approach includes finite element (FE), geometrical and mathematical models for prediction of collapse strength. The results from the the models are verified...
Directory of Open Access Journals (Sweden)
Jing Chenchen
2017-01-01
Full Text Available Lattice structure with high strength and low mass using selective laser melting (SLM has been a hot topic. However, there are some problems in the fabrication of lattice structure by SLM. Rod unit is the basic component of lattice structure and its performance affects the whole structure. It is necessary to investigate the influence of selective laser melting on rod unit’s mechanical properties. A series of rod units with different inclination angle and diameter were fabricated by SLM in this research. And the mechanical properties of these units were measured by tensile test. The results show that the rod units with different diameters and inclination angles have good mechanical properties and show no difference. It is a good news for lattice structure designing for there is no necessary to consider the mechanical properties’ anisotropy of rod units.
Quasi-linear score for capturing heterogeneous structure in biomarkers.
Omae, Katsuhiro; Komori, Osamu; Eguchi, Shinto
2017-06-19
Linear scores are widely used to predict dichotomous outcomes in biomedical studies because of their learnability and understandability. Such approaches, however, cannot be used to elucidate biodiversity when there is heterogeneous structure in target population. Our study was focused on describing intrinsic heterogeneity in predictions. Because heterogeneity can be captured by a clustering method, integrating different information from different clusters should yield better predictions. Accordingly, we developed a quasi-linear score, which effectively combines the linear scores of clustered markers. We extended the linear score to the quasi-linear score by a generalized average form, the Kolmogorov-Nagumo average. We observed that two shrinkage methods worked well: ridge shrinkage for estimating the quasi-linear score, and lasso shrinkage for selecting markers within each cluster. Simulation studies and applications to real data show that the proposed method has good predictive performance compared with existing methods. Heterogeneous structure is captured by a clustering method. Quasi-linear scores combine such heterogeneity and have a better predictive ability compared with linear scores.
Atomic structure of graphene supported heterogeneous model catalysts
International Nuclear Information System (INIS)
Franz, Dirk
2017-04-01
Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp"2 → sp"3) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure, whereupon
Chen, Yuntian; Zhang, Yan; Femius Koenderink, A
2017-09-04
We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.
Moments of unpolarized nucleon structure functions in chirally improved lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, Meinulf; Maurer, Thilo; Schaefer, Andreas [University of Regensburg (Germany); Lang, Christian B.; Limmer, Markus [University of Graz (Austria)
2008-07-01
We present our results for the lowest moments of unpolarized nucleon structure functions at leading twist. We employ lattice quantum chromodynamics using chirally improved fermions in quenched as well as dynamical simulations.
Piezoelectricity and pyroelectricity in polyvinylidene fluoride - Influence of the lattice structure
Purvis, C. K.; Taylor, P. L.
1983-01-01
Piezoelectric and pyroelectric responses of beta-phase (Phase I) polyvinylidene fluoride are predicted for a model system of polarizable point dipoles. The model incorporates the influence of the orthorhombic crystal structure by including the dependence of the internal electric field on the lattice parameters. Strong anisotropy in the piezoelectric response under uniaxial stress is predicted as a consequence of the orthorhombic lattice structure. Predictions are found to be in reasonable agreement with room-temperature experimental data.
Ignatenko, A. N.; Irkhin, V. Yu.
2016-01-01
We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...
Status and prospects for the calculation of hadron structure from lattice QCD
International Nuclear Information System (INIS)
Renner, Dru B.
2010-02-01
Lattice QCD calculations of hadron structure are a valuable complement to many experimental programs as well as an indispensable tool to understand the dynamics of QCD. I present a focused review of a few representative topics chosen to illustrate both the challenges and advances of our community: the momentum fraction, axial charge and charge radius of the nucleon. I will discuss the current status of these calculations and speculate on the prospects for accurate calculations of hadron structure from lattice QCD. (orig.)
Dynamical Heterogeneity in Granular Fluids and Structural Glasses
Avila, Karina E.
Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than
Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing
Challapalli, Adithya
Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.
Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure
Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter
2016-01-01
A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.
Probing the structure of heterogeneous diluted materials by diffraction tomography.
Bleuet, Pierre; Welcomme, Eléonore; Dooryhée, Eric; Susini, Jean; Hodeau, Jean-Louis; Walter, Philippe
2008-06-01
The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.
Magnetic structure and resonance properties of hexagonal antidot lattice
International Nuclear Information System (INIS)
Marchenko, A.I.; Krivoruchko, V.N.
2012-01-01
Static and resonance properties of ferromagnetic films with an antidot lattice (pores in the film) are studied. The description of the system is based on micromagnetic modeling and analytical solution of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters are investigated. The dependences of a dynamic system response on frequency at fixed magnetic field and on field at fixed frequency, when the field changes cause the static magnetic order to change are explored. It is found that the specific peculiarities of the system dynamics leave unchange for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown the angular field dependences of each mode are characterized by a twofold symmetry and the related easy axes are mutually rotated by 60 degrees. As the result, a hexagonal symmetry of the system static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for working elements of magnonic devices.
Complete flexural vibration band gaps in membrane-like lattice structures
International Nuclear Information System (INIS)
Yu Dianlong; Liu Yaozong; Qiu Jing; Wang Gang; Zhao Honggang
2006-01-01
The propagation of flexural vibration in the periodical membrane-like lattice structure is studied. The band structure calculated with the plane wave expansion method indicates the existence of complete gaps. The frequency response function of a finite periodic structure is simulated with finite element method. Frequency ranges with vibration attenuation are in good agreement with the gaps found in the band structure. Much larger attenuations are found in the complete gaps comparing to those directional ones. The existence of complete flexural vibration gaps in such a lattice structure provides a new idea for vibration control of thin plates
Directory of Open Access Journals (Sweden)
A-F. Obaton
2017-08-01
Full Text Available Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 μm were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conformed to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 μm lattice cell size is more favourable to bone penetration than the 1200 μm lattice cell size, as the bone penetration is 84% for 900 μm against 54% for 1200 μm cell structures. The lower bone penetration value for the 1200 μm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration.
Azimzade, Youness; Mashaghi, Alireza
2017-12-01
Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.
On the topological structure of the vacuum in SU(2) and SU(3) lattice gauge theories
International Nuclear Information System (INIS)
Ishikawa, K.; Schierholz, G.; Schneider, H.; Teper, M.
1983-01-01
We present Monte Carlo measurements of the net topological charge of the vacuum in SU(2) and SU(3) lattice gauge theories. In both cases there is no evidence of any topological structure, and the values obtained are a factor of 0(100) smaller than expectations based on analyses of the U(1) problem. Moreover we find a strong sensitivity to the lattice size and to the boundary conditions imposed on the lattice. We comment on the physical significance of these results, establish criteria for the reliable performance of such calculations, and remark on the possibly detrimental impact of these findings on the calculation of hadron spectra
Physical content of preparation-question structures and Brouwer-Zadeh lattices
Cattaneo, Gianpiero; Nisticó, Giuseppe
1992-10-01
We give a criterion to compare the physical content of different mathematical structures derived from a preparation-question structure. Then this criterion is used in order to compare the physical content of the (Jauch-Piron's) property lattice with the physical content of the poset of testable properties. We prove that for complete preparation-question structures these two structures carry the same physical content; moreover the set of testable properties has the algebraic structure of the Brouwer-Zadeh lattice. For more general preparation-question structures the physical content of the poset of testable property can be larger than that of the property lattice. Physically relevant examples of the possible cases are given.
Emergent dynamic structures and statistical law in spherical lattice gas automata
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Emergent dynamic structures and statistical law in spherical lattice gas automata.
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
The structural heterogeneity and optical properties in chalcogenide glass films
International Nuclear Information System (INIS)
Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G
2005-01-01
The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses
Directory of Open Access Journals (Sweden)
Shinji Miyata
2018-02-01
Full Text Available Aggrecan, a chondroitin sulfate (CS proteoglycan, forms lattice-like extracellular matrix structures called perineuronal nets (PNNs. Neocortical PNNs primarily ensheath parvalbumin-expressing inhibitory neurons (parvalbumin, PV cells late in brain development. Emerging evidence indicates that PNNs promote the maturation of PV cells by enhancing the incorporation of homeobox protein Otx2 and regulating experience-dependent neural plasticity. Wisteria floribunda agglutinin (WFA, an N-acetylgalactosamine-specific plant lectin, binds to the CS chains of aggrecan and has been widely used to visualize PNNs. Although PNNs show substantial molecular heterogeneity, the importance of this heterogeneity in neural plasticity remains unknown. Here, in addition to WFA lectin, we used the two monoclonal antibodies Cat315 and Cat316, both of which recognize the glycan structures of aggrecan, to investigate the molecular heterogeneity of PNNs. WFA detected the highest number of PNNs in all cortical layers, whereas Cat315 and Cat316 labeled only a subset of PNNs. WFA+, Cat315+, and Cat316+ PNNs showed different laminar distributions in the adult visual cortex. WFA, Cat315 and Cat316 detected distinct, but partially overlapping, populations of PNNs. Based on the reactivities of these probes, we categorized PNNs into four groups. We found that two subpopulation of PNNs, one with higher and one with lower WFA-staining are differentially labeled by Cat316 and Cat315, respectively. CS chains recognized by Cat316 were diminished in mice deficient in an enzyme involved in the initiation of CS-biosynthesis. Furthermore, WFA+ and Cat316+ aggrecan were spatially segregated and formed microdomains in a single PNN. Otx2 co-localized with Cat316+ but not with WFA+ aggrecan in PNNs. Our results suggest that the heterogeneity of PNNs around PV cells may affect the functional maturation of these cells.
Additive-manufactured sandwich lattice structures: A numerical and experimental investigation
Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut
2017-10-01
The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.
Vacuum structure of pure gauge theories on the lattice
International Nuclear Information System (INIS)
Haymaker, R.W.; Singh, V.; Browne, D.; Wosiek, J.; Max-Planck-Institut fuer Physik und Astrophysik, Muenchen
1992-01-01
Results from simulations on two aspects of quark confinement in the pure gauge sector are presented. First is the calculation of the profile of the flux tube connecting a static q bar q pair in SU(2). By use of the Michael sum rules as a constraint, evidence is set forth that the energy density at the center of the flux tube goes to a constant as a function of quark- separation. Slow variation of the width and energy density is not ruled out. Secondly in the confined phase of lattice U(l), the curl of the magnetic monopole current is calculated, and it is shown that the dual London equation is satisfied and that the electric fluxoid is quantized
Rapid characterization of a nanomaterial structure using X-ray reciprocal-lattice-space imaging
International Nuclear Information System (INIS)
Sakata, Osami; Yoshimoto, Mamoru; Miki, Kazushi
2006-01-01
The X-ray reciprocal-lattice-space imaging method is able to record the reciprocal-lattice-space of nanostructure by sample-and-detector fixed geometry. This method was developed by the surface structure analysis beam line BL13XU of SPring-8. Outline of the X-ray diffraction method and basic principles of the X-ray reciprocal-lattice-space imaging method, and application examples are stated. The method is able to find out the Bragg conditions of nanostructure of surface in the atmosphere. The reciprocal-lattice of the embedded trace atomic wires was observed. The trace atoms of Bi atomic wires embedded in silicone showed the diffraction signal and image by a short exposure time. This method is useful at rapid non-destructive measurement of nanostructure. (S.Y.)
Coustaty, M; Bertet, K; Visani, M; Ogier, J
2011-08-01
In this paper, we propose a new approach for symbol recognition using structural signatures and a Galois lattice as a classifier. The structural signatures are based on topological graphs computed from segments which are extracted from the symbol images by using an adapted Hough transform. These structural signatures-that can be seen as dynamic paths which carry high-level information-are robust toward various transformations. They are classified by using a Galois lattice as a classifier. The performance of the proposed approach is evaluated based on the GREC'03 symbol database, and the experimental results we obtain are encouraging.
DEFF Research Database (Denmark)
Yue, Yuanzheng; Zhang, Yanfei
Structural heterogeneity plays a crucial role in determining functionality of glasses. In this work we have found that the sub-Tg enthalpy relaxation pattern in a hyperquenched glass is highly sensitive to structural heterogeneity. As a consequence, the former can be used as an effective approach...... to detect and quantify the structural heterogeneity in glass-forming liquids. However, the chemical nature of structural heterogeneity should be revealed by other means such as high resolution microscopic and spectroscopic methods. To study the impact of the structural heterogeneity on the sub-Tg relaxation...... chemical features and degrees of structural heterogeneity in glass-forming liquids. This finding contributes to the microscopic origin of both the primary and secondary relaxation in terms of structural heterogeneity. Finally the results provide insights into the relation between structural heterogeneity...
Atomic structure of graphene supported heterogeneous model catalysts
Energy Technology Data Exchange (ETDEWEB)
Franz, Dirk
2017-04-15
Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp{sup 2} → sp{sup 3}) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure
Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures
Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.
2003-01-01
Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available Lattice composite fuselage structures are developed as an alternative to conventional composite structures based on laminated skin and stiffeners. Structure layout of lattice structures allows to realize advantages of current composite materials to a maximal extent, at the same time minimizing their main shortcomings, that allows to provide higher weight efficiency for these structures in comparison with conventional analogues.Development and creation of lattice composite structures requires development of novel methods of strength anal- ysis, as conventional methods, as a rule, are aiming to strength analysis of thin-walled elements and do not allow to get confident estimation of local strength of high-loaded unidirectional composite ribs.In the present work the method of operative strength analysis of lattice composite structure is presented, based onspecialized FE-models of unidirectional composite ribs and their intersections. In the frames of the method, every rib is modeled by a caisson structure, consisting of arbitrary number of flanges and webs, modeled by membrane finite elements. Parameters of flanges and webs are calculated automatically from the condition of stiffness characteristics equality of real rib and the model. This method allows to perform local strength analysis of high-loaded ribs of lattice structure without use of here-dimensional finite elements, that allows to shorten time of calculations and sufficiently simplify the procedure of analysis of results of calculations.For validation of the suggested method, the results of experimental investigations of full-scale prototype of shell of lattice composite fuselage section have been used. The prototype of the lattice section was manufactured in CRISM and tested in TsAGI within the frames of a number of Russian and International scientific projects. The results of validation have shown that the suggested method allows to provide high operability of strength analysis, keeping
Structures of single vortex and vortex lattice in a d-wave superconductor
International Nuclear Information System (INIS)
Xu, J.; Ren, Y.; Ting, C.
1996-01-01
The structures of a single vortex and vortex lattice in a superconductor with d x 2 -y 2 symmetry are studied self-consistently employing a recently developed Ginzburg-Landau theory. Near a single vortex, we found that an s-wave component of the order parameter is always induced, and it causes the local magnetic-field distribution and the d-wave order parameter to have a fourfold anisotropy. It is shown that there is a strong correlation between the structure of a single vortex and the shape of the vortex lattice. Our numerical calculation indicates that the structure of the vortex lattice is always oblique except for temperatures very close to T c where it becomes triangular. The possible connection of the result with experiment is also discussed. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Pietsch, U.; Borchard, W.
1987-01-01
The sensitivity of measurements of the lattice-parameter difference in monocrystalline heterostructures can be enhanced by use of an extremely asymmetrical diffraction geometry. If the angle of incidence is somewhat higher than the critical angle for total external reflection, the Bragg peak is shifted from the position calculated by kinematic theory. The amount of shift depends on the angle of incidence as well as on the mass density of the material used. For heteroepitaxial structures both the layer and the substrate peaks are shifted but by different amounts. Therefore it becomes possible to characterize layers of totally lattice-matched structures also. (orig.)
Large-Scale, Exhaustive Lattice-Based Structural Auditing of SNOMED CT
Zhang, Guo-Qiang
One criterion for the well-formedness of ontologies is that their hierarchical structure form a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT. We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the 518K non-lattice pairs, among over 34 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA computational pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links. This work is based on collaboration with Olivier Bodenreider from the National Library of Medicine, Bethesda, USA.
Band structures of phononic crystal composed of lattices with different periodic constants
International Nuclear Information System (INIS)
Hu, Jia-Guang; Xu, Wen
2014-01-01
With a square lattice mercury and water system being as the model, the band structures of nesting and compound phononic crystals with two different lattice constants were investigated using the method of the supercell plane wave expansion. It was observed that large band gaps can be achieved in low frequency regions by adjusting one of the lattice constants. Meanwhile, effects similar to interstitial impurity defects can be achieved with the increase of lattice constant of the phononic crystal. The corresponding defect modes can be stimulated in band gaps. The larger the lattice constant, the stronger the localization effect of defect modes on the wave. In addition, the change of the filling fraction of impurity exerts great influence on the frequency and localization of defect modes. Furthermore, the change of the position of impurity has notable influence on the frequency of defect modes and their localization. However, the geometry structure and orientation of impurity have little effect on the frequency of defect modes and their localization in the band gap.
Calorimetric signature of structural heterogeneity in a ternary silicate glass
DEFF Research Database (Denmark)
Zhang, Yanfei; Yang, G.; Yue, Yuanzheng
2013-01-01
We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two...... distinct structural domains of higher and lower potential energies, respectively. The higher energy domains in nanoscale are so unstable that they become ordered during hyperquenching. This is verified by the high-resolution transmission electron microscopy image exhibiting nanoordered domains in the glass...... matrix. The higher energy domains relax similar to a strong glass phase, whereas the lower energy domains do similar to a fragile one....
Lattice instabilities and structural phase transformations in La2CuO4 superconductors and insulators
International Nuclear Information System (INIS)
Axe, J.D.
1991-01-01
Soft-mode structural phase transformations, common in many perovskite-based materials, are also found in La 2 CuO 4 and structurally related oxides. The resulting phase behavior is rather complex, but is a natural consequence of the degeneracy of the soft phonon order parameters. This paper reviews the structural and lattice-dynamical results and their interpretation based upon mean-field statistical mechanical models
Towards a lattice calculation of the nucleon structure functions
International Nuclear Information System (INIS)
Goeckeler, M.; Ilgenfritz, M.; Perlt, H.; Rakow, P.; Schierholz, G.; Forschungszentrum Juelich GmbH; Schiller, A.
1994-12-01
We have initiated a programme to compute the lower moments of the unpolarised and polarised deep inelastic structure functions of the nucleon in the quenched approxiation. We review our progress to date. (orig.)
q-deformed phase-space and its lattice structure
International Nuclear Information System (INIS)
Wess, J.
1998-01-01
Quantum groups lead to an algebraic structure that can be realized on quantum spaces. These are non-commutative spaces that inherit a well-defined mathematical structure from the quantum group symmetry. In turn, such quantum spaces can be interpreted as non-commutative configuration spaces for physical systems. We study the non-commutative Euclidean space that is based on the quantum group SO q (3)
Phase structure of lattice gauge theories for non-abelian subgroups of SU(3)
International Nuclear Information System (INIS)
Grosse, H.; Kuehnelt, H.
1981-01-01
The authors study the phase structure of Euclidean lattice gauge theories in four dimensions for certain non-abelian subgroups of SU(3) by using Monte-Carlo simulations and strong coupling expansions. As the order of the group increases a splitting of one phase transition into two is observed. (Auth.)
The equivalent thermal conductivity of lattice core sandwich structure: A predictive model
International Nuclear Information System (INIS)
Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining
2016-01-01
Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.
Directory of Open Access Journals (Sweden)
J. Piątkowski
2009-07-01
Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.
Phase structure of thermal lattice QCD with N{sub f} = 2 twisted mass Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M. P. [INFN, Laboratori Nazionali di Frascati (Italy); Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Philipsen, O.; Zeidlewicz, L. [Inst. fuer Theoretische Physik, Wilhelms-Univ. Muenster (Germany)
2009-09-15
We present numerical results for the phase diagram of lattice QCD at finite temperature in the formulation with twisted mass Wilson fermions and a tree-level Symanzik-improved gauge action. Our simulations are performed on lattices with temporal extent N{sub {tau}}=8, and lattice coupling {beta} ranging from strong coupling to the scaling domain. Covering a wide range in the space spanned by the lattice coupling {beta} and the hopping and twisted mass parameters {kappa} and {mu}, respectively, we obtain a comprehensive picture of the rich phase structure of the lattice theory. In particular, we verify the existence of an Aoki phase in the strong coupling region and the realisation of the Sharpe-Singleton scenario at intermediate couplings. In the weak coupling region we identify the phase boundary for the physical finite temperature phase transition/crossover. Its shape in the three-dimensional parameter space is consistent with Creutz's conjecture of a cone-shaped thermal transition surface. (orig.)
Study of the tunneling effect within lattices with cubic structure on varying temperature
International Nuclear Information System (INIS)
Frisone, F.
2008-01-01
In this theoretical study, it is underlined that the presence of micro-cracks in the lattice structure increases the probability of tunneling effect between two deuterons by some orders of magnitude with respect to non-deformed lattices. We have derived an expression to compute the tunneling probability within a micro-crack, and hypothesized a D + 2 -D + 2 binding mechanism. Finally, the overall indications provided by these theoretical simulations appear to suggest that the deformation of the crystalline lattice, at varying temperature, seems able to influence the process of tunneling between the deuterons in the metal, while the forced loading with D 2 has, in general, no evident positive effects in pure metals, but in some cases could, on the contrary, condition the phenomenon negatively. (authors)
International Nuclear Information System (INIS)
Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.
1997-01-01
The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society
Systematic study of the lattice dynamics of the uranium rocksalt-structure compounds
International Nuclear Information System (INIS)
Jackman, J.A.; Holden, T.M.; Buyers, W.J.L.; DuPlessis, P. de V.; Vogt, O.; Genossar, J.
1986-01-01
The phonon-dispersion relations of USe and UTe have been determined by the inelastic scattering of thermal neutrons. All existing phonon measurements for the UX series, viz., UC, UN, UAs, USb, US, USe, and UTe, have been fitted to the rigid-ion and shell models and dispersion relations have been predicted for UP. The U-X force constants dominate the lattice dynamics and are nearly constant for the series, whereas the U-U force constants vary systematically from being large and positive for the compounds with the smallest lattice parameter to being negative for the chalcogenide series. The negative U-U force constant is identified with destabilizing f-d interactions. Elastic constants, derived from the slopes of the dispersion relations and from ultrasound velocity measurements, have been determined. The bulk modulus decreases unusually rapidly as the lattice parameter increases and is in fair agreement with band-structure calculations
Magnetic structure and lattice deformation in UO/sub 2/
Energy Technology Data Exchange (ETDEWEB)
Aksenov, V L; Frauenheim, T; Sikora, V [Joint Inst. for Nuclear Research, Dubna (USSR)
1981-12-21
The magnetic phase transition in UO/sub 2/ is studied by means of a group theoretical analysis and the admitted symmetry groups in the low temperature phase are determined. With the help of the neutron diffraction data of Faber and Lander a three-arm magnetic and crystallographic structure with two types of translational domains is found and a new interpretation of the experiment of Faber and Lander is given.
Spin and lattice structures of single-crystalline SrFe2As2
Zhao, Jun; Ratcliff, W., II; Lynn, J. W.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Hu, Jiangping; Dai, Pengcheng
2008-10-01
We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2 , the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2 . We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b . At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO ( R=rare earth) families of materials and on BaFe2As2 , and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors.
Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications
International Nuclear Information System (INIS)
Yánez, A.; Herrera, A.; Martel, O.; Monopoli, D.; Afonso, H.
2016-01-01
Electron beam melting (EBM) was used to fabricate porous titanium alloy structures. The elastic modulus of these porous structures was similar to the elastic modulus of the cancellous human bone. Two types of cellular lattice structures were manufactured and tested: gyroids and diamonds. The design of the gyroid structures was determined by the main angle of the struts with respect to the axial direction. Thus, structures with angles of between 19 and 68.5° were manufactured. The aim of the design was to reduce the amount of material needed to fabricate a structure with the desired angles to increase the range of stiffness of the scaffolds. Compression tests were conducted to obtain the elastic modulus and the strength. Both parameters increased as the angle decreased. Finally, the specific strength of the gyroid structures was compared with that of the diamond structures and other types of structures. It is shown that, for angles lower than 35°, the gyroid structures had a high strength to weight ratios. - Highlights: • Gyroid and diamond lattice structures were fabricated by electron beam melting. • Compression tests were conducted to obtain the elastic modulus and the strength. • Some gyroid structures show a higher specific strength than other types of structures.
Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications
Energy Technology Data Exchange (ETDEWEB)
Yánez, A., E-mail: alejandro.yanez@ulpgc.es [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria (Spain); Herrera, A. [Julius Wolff Institute, Berlin (Germany); Martel, O. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria (Spain); Monopoli, D.; Afonso, H. [Department of Mechanical Engineering, Instituto Tecnológico de Canarias (Spain)
2016-11-01
Electron beam melting (EBM) was used to fabricate porous titanium alloy structures. The elastic modulus of these porous structures was similar to the elastic modulus of the cancellous human bone. Two types of cellular lattice structures were manufactured and tested: gyroids and diamonds. The design of the gyroid structures was determined by the main angle of the struts with respect to the axial direction. Thus, structures with angles of between 19 and 68.5° were manufactured. The aim of the design was to reduce the amount of material needed to fabricate a structure with the desired angles to increase the range of stiffness of the scaffolds. Compression tests were conducted to obtain the elastic modulus and the strength. Both parameters increased as the angle decreased. Finally, the specific strength of the gyroid structures was compared with that of the diamond structures and other types of structures. It is shown that, for angles lower than 35°, the gyroid structures had a high strength to weight ratios. - Highlights: • Gyroid and diamond lattice structures were fabricated by electron beam melting. • Compression tests were conducted to obtain the elastic modulus and the strength. • Some gyroid structures show a higher specific strength than other types of structures.
Detailed design of a lattice composite fuselage structure by a mixed optimization method
Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.
2016-10-01
In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.
Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea
2015-01-01
This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.
Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder
Energy Technology Data Exchange (ETDEWEB)
Ponnusamy, Rajesh [Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal); Lebedev, Andrey A. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Pahlow, Steffen [University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg (Germany); Lohkamp, Bernhard, E-mail: bernhard.lohkamp@ki.se [Karolinska Institutet, Tomtebodavägen 6, 4tr, 17177 Stockholm (Sweden); Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal)
2014-06-01
Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.
Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder
International Nuclear Information System (INIS)
Ponnusamy, Rajesh; Lebedev, Andrey A.; Pahlow, Steffen; Lohkamp, Bernhard
2014-01-01
Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs
Ariono, D.; Khoiruddin; Subagjo; Wenten, I. G.
2017-02-01
Generally, commercially available ion-exchange membrane (IEM) can be classified into homogeneous and heterogeneous membranes. The classification is based on degree of heterogeneity in membrane structure. It is well known that the heterogeneity greatly affects the properties of IEM, such as conductivity, permselectivity, chemical and mechanical stability. The heterogeneity also influences ionic and electrical current transfer behavior of IEM-based processes during their operation. Therefore, understanding the role of heterogeneity in IEM properties is important to provide preliminary information on their operability and applicability. In this paper, the heterogeneity and its effect on IEM properties are reviewed. Some models for describing the heterogeneity of IEM and methods for characterizing the degree of heterogeneity are discussed. In addition, the influence of heterogeneity on the performance of IEM-based processes and their electrochemical behavior are described.
Directory of Open Access Journals (Sweden)
Kessler Julia
2017-01-01
Full Text Available This scientific survey is about periodic lattice structures which are made by Selective Laser Melting (SLM. Selective laser melting is based on Additive Manufacturing. The increased use and increasing demand of lattice structures in different fields of applications forms the necessity of a closer look on complex structures. Lattice structures can be found in different fields of applications for example in lightweight applications, filters and heat exchangers. Because of the expanding of application areas and thus arising requirements, the quality improvement is indispensable. Additive manufacturing and especially the SLM process enable the manufacturing of highly complex shapes and structures. Further it allows the integration of lightweight structures within to be manufactured applications. These high performance structures and applications need specific boundary and process conditions [1-3]. The main aim of this survey is an extraction of important parameters concerning the shape of lattices. A first focus will be on mechanical properties and the therefore necessary tensile tests.
Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks
International Nuclear Information System (INIS)
Huey-Wen Lin; Shigemi Ohta
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δ u-Δ d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu - Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS
International Nuclear Information System (INIS)
LIN, H.W.; OHTA, S.
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a -1 ∼ 1.7GeV and the spatial volume is about (1.9fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δu-Δd are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a -1 ∼ 1.6GeV and the spatial volume is about (3.0fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu-Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-05-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-04-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
Electronic structure of disordered binary alloys with short range correlation in Bethe lattice
International Nuclear Information System (INIS)
Moreno, I.F.
1987-01-01
The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt
Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area
Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.
2010-12-01
Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more
X-ray Tomography Characterisation of Lattice Structures Processed by Selective Electron Beam Melting
Directory of Open Access Journals (Sweden)
Everth Hernández-Nava
2017-08-01
Full Text Available Metallic lattice structures intentionally contain open porosity; however, they can also contain unwanted closed porosity within the structural members. The entrained porosity and defects within three different geometries of Ti-6Al-4V lattices, fabricated by Selective Electron Beam Melting (SEBM, is assessed from X-ray computed tomography (CT scans. The results suggest that horizontal struts that are built upon loose powder show particularly high (~20 × 10−3 vol % levels of pores, as do nodes at which many (in our case 24 struts meet. On the other hand, for struts more closely aligned (0° to 54° to the build direction, the fraction of porosity appears to be much lower (~0.17 × 10−3% arising mainly from pores contained within the original atomised powder particles.
A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP)
International Nuclear Information System (INIS)
Tsuruta, Osamu; Yokoyama, Hideshi; Fujii, Satoshi
2012-01-01
A new crystal lattice structure of H. pylori neutrophil-activating protein has been determined. Iron loading causes a series of conformational changes at the ferroxidase centre. A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP) has been determined in two forms: the native state (Apo) at 2.20 Å resolution and an iron-loaded form (Fe-load) at 2.50 Å resolution. The highly solvated packing of the dodecameric shell is suitable for crystallographic study of the metal ion-uptake pathway. Like other bacterioferritins, HP-NAP forms a spherical dodecamer with 23 symmetry including two kinds of channels. Iron loading causes a series of conformational changes of amino-acid residues (Trp26, Asp52 and Glu56) at the ferroxidase centre
Investigation of the vacuum structure of the Georgi-Glashow model on the lattice
International Nuclear Information System (INIS)
Bornyakov, V.G.; Ilgenfritz, E.M.; Mitrjushkin, V.K.; Zadorozhny, A.M.; Mueller-Preussker, M.
1988-08-01
Distributions and correlations of magnetic fluxes as well as correlations between magnetic fluxes and other local observables are calculated numerically in order to explain the phase structure of the 4D Georgi-Glashow model on the lattice. We use and compare different definitions of magnetic fluxes. The data suggest a simple picture characterizing typical magnetic fluctuations in different regions of the phase space. A relaxation procedure exposes Abelian monopole-loop configurations in one of the phases. (author). 21 refs, 12 figs
Traveling waves and spreading speed on a lattice model with age structure
Directory of Open Access Journals (Sweden)
Zongyi Wang
2012-09-01
Full Text Available In this article, we study a lattice differential model for a single species with distributed age-structure in an infinite patchy environment. Using method of approaches by Diekmann and Thieme, we develop a comparison principle and construct a suitable sub-solution to the given model, and show that there exists a spreading speed of the system which in fact coincides with the minimal wave speed.
Interpreting heterogeneity in intestinal tuft cell structure and function.
Banerjee, Amrita; McKinley, Eliot T; von Moltke, Jakob; Coffey, Robert J; Lau, Ken S
2018-05-01
Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.
Priyadarshini, Lakshmi
Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.
Fission gas release of MOX with heterogeneous structure
International Nuclear Information System (INIS)
Nakae, N.; Akiyama, H.; Kamimura, K; Delville, R.; Jutier, F.; Verwerft, M.; Miura, H.; Baba, T.
2015-01-01
It is very useful for fuel integrity evaluation to accumulate knowledge base on fuel behavior of uranium and plutonium mixed oxide (MOX) fuel used in light water reactors (LWRs). Fission gas release is one of fuel behaviors which have an impact on fuel integrity evaluation. Fission gas release behavior of MOX fuels having heterogeneous structure is focused in this study. MOX fuel rods with a heterogeneous fuel microstructure were irradiated in Halden reactor (IFA-702) and the BR-3/BR-2 CALLISTO Loop (CHIPS program). The 85 Kr gamma spectrometry measurements were carried out in specific cycles in order to examine the concerned LHR (Linear Heat Rate) for fission gas release in the CHIPS program. The concerned LHR is defined in this paper to be the LHR at which a certain additional fission gas release thermally occurs. Post-irradiation examination was performed to understand the fission gas release behavior in connection with the pellet microstructure. The followings conclusions can be made from this study. First, the concerned LHR for fission gas release is estimated to be in the range of 20-23 kW/m with burnup over 37 GWd/tM. It is moreover guessed that the concerned LHR for fission gas release tends to decrease with increasing burnup. Secondly It is observed that FGR (fission gas release rate) is positively correlated with LHR when the LHR exceeds the concerned value. Thirdly, when burnup dependence of fission gas release is discussed, effective burnup should be taken into account. The effective burnup is defined as the burnup at which the LHR should be exceed the concerned value at the last time during all the irradiation period. And fourthly, it appears that FGR inside Pu spots is higher than outside and that retained (not released) fission gases mainly exist in the fission gas bubbles. Since fission gases in bubbles are considered to be easily released during fuel temperature increase, this information is very important to estimate fission gas release behavior
Monte Carlo-narrow resonance calculational techniques for treating double-heterogeneity effects
International Nuclear Information System (INIS)
Gelbard, E.M.; Chen, I.J.
1986-01-01
Reliable methods already exist for computing resonance integrals (RI's) in regular lattices. But lattice structures always contain irregularities. Such effects have been called ''double-heterogeneity'' effects. Two methods for computing double heterogeneity effects on RI's are reviewed and evaluated. 2 refs., 1 tab
The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice
International Nuclear Information System (INIS)
Queiroz, S.L.A. de.
1977-07-01
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt
Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition
Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang
2014-01-01
Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences
Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids.
Wang, Lijin; Xu, Ning; Wang, W H; Guan, Pengfei
2018-03-23
Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.
Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids
Wang, Lijin; Xu, Ning; Wang, W. H.; Guan, Pengfei
2018-03-01
Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.
Gluon structure function of a color dipole in the light-cone limit of lattice QCD
International Nuclear Information System (INIS)
Gruenewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.
2009-01-01
We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of x B . The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the 'experimental value' in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q 2 =1.5 GeV 2 . Within the systematic uncertainty we find rather good agreement. We also discuss the low x B behavior of the gluon structure function in our model calculation.
International Nuclear Information System (INIS)
Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio
2001-01-01
It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)
Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure
International Nuclear Information System (INIS)
Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen
2016-01-01
A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits. (paper)
International Nuclear Information System (INIS)
Mourou, G.; Williamson, S.
1985-01-01
The authors have directly observed the laser-induced melt metamorphosis of thin aluminum films. The time required for the melt to evolve is dependent on the degree to which the Al specimen is superheated. The temperature of this superheated state can also be monitored on the picosecond time scale. The picosecond electron probe not only reveals information about the structure of a material but also about the lattice temperature. The change in lattice parameter that is observed as a shift in diffracted ring diameter is directly related to the thermal expansion coefficient. Also, based on the Debye-Waller effect, a reduction in the intensity of the diffraction rings can be observed due to increased lattice vibration. Presently, a 1-kHz-1-mJ/pulse Nd:YAG laser is being used to measure the temperature overshoot of laser-induced Al films. The high repetition rate permits signal averaging to be employed thereby increasing the sensitivity of the thermometric technique
Li, Z Y; Lam, W M; Yang, C; Xu, B; Ni, G X; Abbah, S A; Cheung, K M C; Luk, K D K; Lu, W W
2007-03-01
Recently, strontium (Sr) as ranelate compound has become increasingly popular in the treatment of osteoporosis. However, the lattice structure of bone crystal after Sr incorporation is yet to be extensively reported. In this study, we synthesized strontium-substituted hydroxyapatite (Sr-HA) with different Sr content (0.3%, 1.5% and 15% Sr-HA in mole ratio) to simulate bone crystals incorporated with Sr. The changes in chemical composition and lattice structure of apetite after synthetic incorporation of Sr were evaluated to gain insight into bone crystal changes after incorporation of Sr. X-ray diffraction (XRD) patterns revealed that 0.3% and 1.5% Sr-HA exhibited single phase spectrum, which was similar to that of HA. However, 15% Sr-HA induced the incorporation of HPO4(2-) and more CO3(2-), the crystallinity reduced dramatically. Transmission electron microscopy (TEM) images showed that the crystal length and width of 0.3% and 1.5% Sr-HA increased slightly. Meanwhile, the length and width distribution were broadened and the aspect ratio decreased from 10.68+/-4.00 to 7.28+/-2.80. The crystal size and crystallinity of 15% Sr-HA dropped rapidly, which may suggest that the fundamental crystal structure is changed. The findings from this work indicate that current clinical dosage which usually results in Sr incorporation of below 1.5% may not change chemical composition and lattice structure of bone, while it will broaden the bone crystal size distribution and strengthen the bone.
Zhang, David Z.; Zhang, Peng; Zhao, Miao; Jafar, Salman
2018-01-01
Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress–strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength. PMID:29510492
Liu, Fei; Zhang, David Z; Zhang, Peng; Zhao, Miao; Jafar, Salman
2018-03-03
Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress-strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength.
International Nuclear Information System (INIS)
Brink, Tobias
2017-01-01
The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the
Energy Technology Data Exchange (ETDEWEB)
Brink, Tobias
2017-07-01
The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the
Energy Technology Data Exchange (ETDEWEB)
Stein, W.D.R.
2007-04-23
This thesis deals with a study of structural and lattice dynamical properties of some noncentrosymmetric borates with outstanding non-linear optical properties. The focus was on the compound bismuth triborate (BiB{sub 3}O{sub 6}). The structure of the tetraborates MB{sub 4}O{sub 7} (M=Pb,Sr,Ba) was also investigated. The structural investigations in bismuth triborate include powder and single crystal diffraction experiments on X-ray and neutron sources. The crystal structure was under examination in the temperature range from 100 K to room temperature and the lattice constants in the temperature range from 20 K to 800 K. The lattice constants show a nearly linear dependency from temperature. Our observations are in good agreement with investigations of the thermal expansion, which shows a strong anisotropy within the layer-like structure of bismuth triborate. Within the borate layers, along the polar axis a strong positive and in the orthogonal direction a negative thermal expansion is observed. This effect can be explained by a zig-zag effect within the borate layers. The lone electron pair at the bismuth atom is discussed to be possibly the origin of the temperature dependency of the coordination environment of the bismuth atom. The influence of the lone electron pair on the crystal structure is raising by lowering the temperature. At the bismuth atom distinct anharmonic effects are observed, where the maximum points along the direction of the polar axis and therefore along the direction of the lone electron pair. The phonon dispersion of bismuth triborate has been investigated by inelastic neutron scattering. The low symmetry of the crystal structure depicts to be a special challenge. The dispersion was observed along the three reciprocal lattice constants. Along the polar axis the dispersion could be characterized to a maximum energy of 20 THz. The low energy acoustic branch along the polar axis shows a softening at the zone boundary. In the orthogonal
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.
De Novo generation of molecular structures using optimization to select graphs on a given lattice
DEFF Research Database (Denmark)
Bywater, R.P.; Poulsen, Thomas Agersten; Røgen, Peter
2004-01-01
A recurrent problem in organic chemistry is the generation of new molecular structures that conform to some predetermined set of structural constraints that are imposed in an endeavor to build certain required properties into the newly generated structure. An example of this is the pharmacophore...... model, used in medicinal chemistry to guide de novo design or selection of suitable structures from compound databases. We propose here a method that efficiently links up a selected number of required atom positions while at the same time directing the emergent molecular skeleton to avoid forbidden...... positions. The linkage process takes place on a lattice whose unit step length and overall geometry is designed to match typical architectures of organic molecules. We use an optimization method to select from the many different graphs possible. The approach is demonstrated in an example where crystal...
International Nuclear Information System (INIS)
Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte
2012-01-01
This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)
Bose-Einstein condensates in optical lattices: Band-gap structure and solitons
International Nuclear Information System (INIS)
Louis, Pearl J. Y.; Kivshar, Yuri S.; Ostrovskaya, Elena A.; Savage, Craig M.
2003-01-01
We analyze the existence and stability of spatially extended (Bloch-type) and localized states of a Bose-Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and nonlinear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and analyze their stability in different band gaps, for both repulsive and attractive atomic interactions
Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E
2002-01-01
The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case
International Nuclear Information System (INIS)
Julien, C.M.; Camacho-Lopez, M.A.
2004-01-01
Lithiated spinel manganese oxides with various amounts of lithium have been prepared through solid-state reaction and electrochemical intercalation and deintercalation. Local structure of the samples are studied using Raman scattering and Fourier transform infrared spectroscopy. We report vibrational spectra of lithiated manganese oxides Li x Mn 2 O 4 as a function of lithium concentration in the range 0.1≤x≤2.0. Raman and Fourier transform infrared (FTIR) spectral results indicated multiple-phase reactions when the lithium content is modified in the spinel lattice. Lattice dynamics of lithiated spinel manganese oxides have been interpreted using either a classical factor-group analysis or a local environment model. The structural modifications have been studied on the basis of vibrations of LiO 4 tetrahedral and MnO 6 octahedral units when Li/Mn≤0.5, and LiO 4 , LiO 6 , and MnO 6 structural units when Li/Mn>0.5
Measurement of deforming mode of lattice truss structures under impact loading
Directory of Open Access Journals (Sweden)
Zhao H.
2012-08-01
Full Text Available Lattice truss structures, which are used as a core material in sandwich panels, were widely investigated experimentally and theoretically. However, explanation of the deforming mechanism using reliable experimental results is almost rarely reported, particularly for the dynamic deforming mechanism. The present work aimed at the measurement of the deforming mode of lattice truss structures. Indeed, quasi-static and Split Hopkinson Pressure Bar (SHPB tests have been performed on the tetrahedral truss cores structures made of Aluminum 3003-O. Global values such as crushing forces and displacements between the loading platens are obtained. However, in order to understand the deforming mechanism and to explain the observed impact strength enhancement observed in the experiments, images of the truss core element during the tests are recorded. A method based on the edge detection algorithm is developed and applied to these images. The deforming profiles of one beam are extracted and it allows for calculating the length of beam. It is found that these lengths diminish to a critical value (due to compression and remain constant afterwards (because of significant bending. The comparison between quasi-static and impact tests shows that the beam were much more compressed under impact loading, which could be understood as the lateral inertia effect in dynamic bucking. Therefore, the impact strength enhancement of tetrahedral truss core sandwich panel can be explained by the delayed buckling of beam under impact (more compression reached, together with the strain hardening of base material.
International Nuclear Information System (INIS)
Li Yingwai; Landau, David P; Wüst, Thomas
2012-01-01
Wang-Landau sampling has been applied to investigate the thermodynamics and structural properties of a lattice hydrophobic-polar heteropolymer (the HP protein model) interacting with an attractive substrate. For simplicity, we consider a short HP sequence consisting of only 36 monomers interacting with a substrate which attracts all monomers in the sequence. The conformational “phase transitions” have been identified by a canonical analysis of the specific heat and suitable structural observables. Three major “transitions”, namely, adsorption, hydrophobic core formation and “flattening” of adsorbed structures, are observed. Depending on the surface attractive strength relative to the intra-protein attraction among the H monomers, these processes take place in different sequences upon cooling.
SFM-FDTD analysis of triangular-lattice AAA structure: Parametric study of the TEM mode
Hamidi, M.; Chemrouk, C.; Belkhir, A.; Kebci, Z.; Ndao, A.; Lamrous, O.; Baida, F. I.
2014-05-01
This theoretical work reports a parametric study of enhanced transmission through annular aperture array (AAA) structure arranged in a triangular lattice. The effect of the incidence angle in addition to the inner and outer radii values on the evolution of the transmission spectra is carried out. To this end, a 3D Finite-Difference Time-Domain code based on the Split Field Method (SFM) is used to calculate the spectral response of the structure for any angle of incidence. In order to work through an orthogonal unit cell which presents the advantage to reduce time and space of computation, special periodic boundary conditions are implemented. This study provides a new modeling of AAA structures useful for producing tunable ultra-compact devices.
Pressure-induced structural change from hexagonal to fcc metal lattice in scandium trihydride
International Nuclear Information System (INIS)
Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Nakano, S.; Takemura, K.
2007-01-01
We synthesized scandium hydrides by hydrogenation of a scandium foil with hydrogen fluid under high pressure at ambient temperature. Scandium dihydride (ScH 2 ) and trihydride (ScH 3 ) were prepared near 4 and 5 GPa, respectively. The hydrogenation process and pressure-induced structural changes in ScH 3 were investigated by synchrotron radiation X-ray diffraction measurements up to 54.7 GPa. A structural transition from hexagonal to the fcc lattice began at 30 GPa and was completed at 46 GPa via an intermediate state similar to those reported for other hexagonal trihydrides. The intermediate state was not interpreted in terms of a coexisting state for the low-pressure hexagonal and the high-pressure fcc structures. The onset transition pressure of ScH 3 supported the previously proposed relation that the hexagonal-fcc transition pressure is inversely proportional to the ionic radius of the trihydride
Space-time reactor kinetics for heterogeneous reactor structure
Energy Technology Data Exchange (ETDEWEB)
Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1969-11-15
An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.
SIR dynamics in structured populations with heterogeneous connectivity
Volz, Erik
2005-01-01
Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...
Investigation of electronic lattice structure by positron annihilation in some insulators
International Nuclear Information System (INIS)
Coussot, Gerard
1970-01-01
The angular distribution of gamma quanta resulting from positron annihilation in single insulator crystals was measured with long slit geometry apparatus for intense positron sources ( 64 Cu ≅ 1 Ci). Two new phenomena were observed in the angular correlation curves. In the f. c. c. MgO, UO 2 , CaF 2 crystals, modulations appeared at angles corresponding to the limit of the first Brillouin zone in relation to the crystallographic direction studied. In SiO 2 , F 2 Mg, F 2 Mn crystals, a narrow peak at 0 mrad and a fine structure superimposed on the broad distribution, were resolved. The fine structure which is correlated with the narrow component is characterized by modulations appearing at angles corresponding to the projection of reciprocal lattice vectors along the crystallographic direction investigated. The narrow peak at p ≅ 0 suggests the formation of a bound state (positron-electron). If this bound state is described by a Bloch wave, the modulations observed correspond to the Fourier components which contribute to every reciprocal lattice vector p = G ('Umklapp' process). This model predicts that the 'Umklapp' process in polycrystals must produce a change in slope which can be experimentally observed. A systematic research of optimal observation conditions shows that the intensity of the narrow component is closely correlated with the purity and the perfection of the crystal where p-Ps is presumably formed as suggested by magnetic experiments. (author) [fr
Ground state structure of U2Mo: static and lattice dynamics study
International Nuclear Information System (INIS)
Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.
2016-01-01
According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)
Chimera-like states in structured heterogeneous networks
Li, Bo; Saad, David
2017-04-01
Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.
Directory of Open Access Journals (Sweden)
Xun Zhang
2014-01-01
Full Text Available Optimal sensor placement is a key issue in the structural health monitoring of large-scale structures. However, some aspects in existing approaches require improvement, such as the empirical and unreliable selection of mode and sensor numbers and time-consuming computation. A novel improved particle swarm optimization (IPSO algorithm is proposed to address these problems. The approach firstly employs the cumulative effective modal mass participation ratio to select mode number. Three strategies are then adopted to improve the PSO algorithm. Finally, the IPSO algorithm is utilized to determine the optimal sensors number and configurations. A case study of a latticed shell model is implemented to verify the feasibility of the proposed algorithm and four different PSO algorithms. The effective independence method is also taken as a contrast experiment. The comparison results show that the optimal placement schemes obtained by the PSO algorithms are valid, and the proposed IPSO algorithm has better enhancement in convergence speed and precision.
A lattice calculation of the nucleon's spin-dependent structure function g2 revisited
International Nuclear Information System (INIS)
Goeckeler, M.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.
2000-11-01
Our previous calculation of the spin-dependent structure function g 2 is revisited. The interest in this structure function is to a great extent motivated by the fact that it receives contributions from twist-two as well as from twist-three operators already in leading order of 1/Q 2 thus offering the unique possibility of directly assessing higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mixing with lower-dimensional operators was ignored. However, the twist-three operator which gives rise to the matrix element d 2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into account leads to a considerably smaller value of d 2 , which is consistent with the experimental data. (orig.)
International Nuclear Information System (INIS)
Guo Fengyun; Lue Qiang; Sun Liang; Li Hongtao; Zhen Xihe; Xu Yuheng; Zhao Liancheng
2006-01-01
A series of the double doped lithium niobate (LiNbO 3 , LN) single crystals had been grown by Czochralski method. The Curie temperatures of various concentrations doped or [Li]/[Nb] ratio LN crystals measured by differential thermal analysis (DTA) were discussed to investigate their defect structures with Safaryan et al. new approach about LN lattice defect structure using Curie temperatures calculated. Infrared transmission spectra of various concentrations doped were used to compare the investigation above. The results show that the lithium vacancy model is the more probable to describe the lattice defect structure of the doped LN single crystal
International Nuclear Information System (INIS)
Pasternak, M.
1978-05-01
Moessbauer studies on 129 I, 57 Fe and 119 Sn were conducted in several disordered and microscopic systems in order to investigate properties of lattice dynamics, chemical bonding and phase transitions. The project included the following studies: (1) Granular crystals of Sn embedded in tin-oxide matrix; the nature of the superconductivity transition of very small grains of tin was investigated. (2) Lattice dynamics and characterization of amorphous tin oxide obtained by condensing atoms of Sn and O 2 gas on a 77 K substrate. The hyperfine interaction and the temperature dependence of the Debye-Waller factor were essential to determine the structure of the amorphous tin oxide. (3) The nature of the chemical bond of the alkaly halides ionic crystals and molecules; molecules of Li, Na, K, Rb and Cs iodides were trapped in agron matrices, and the isomer-shift values were obtained from absorption spectra. (4) Binding of single iron and tin atoms to CH 4 , NH 3 , H 2 and C 6 H 6 molecules, with samples at low temperatures between 2 and 77 K; conclusions were derived regarding the cryochemistry of these systems, as related to fundamental problems of catalysis, chemisorption and ''cracking'' of organic molecules
Energy Technology Data Exchange (ETDEWEB)
BLUM, T.; BOER, D.; CREUTZ, M.; OHTA, S.; ORGINOS, K.
2002-03-18
The RIKEN BNL Research Center workshop on ''Hadron Structure from Lattice QCD'' was held at BNL during March 11-15, 2002. Hadron structure has been the subject of many theoretical and experimental investigations, with significant success in understanding the building blocks of matter. The nonperturbative nature of QCD, however, has always been an obstacle to deepening our understanding of hadronic physics. Lattice QCD provides the tool to overcome these difficulties and hence a link can be established between the fundamental theory of QCD and hadron phenomenology. Due to the steady progress in improving lattice calculations over the years, comparison with experimentally measured hadronic quantities has become important. In this respect the workshop was especially timely. By providing an opportunity for experts from the lattice and hadron structure communities to present their latest results, the workshop enhanced the exchange of knowledge and ideas. With a total of 32 registered participants and 26 talks, the interest of a growing community is clearly exemplified. At the workshop Schierholz and Negele presented the current status of lattice computations of hadron structure. Substantial progress has been made during recent years now that the quenched results are well under control and the first dynamical results have appeared. In both the dynamical and the quenched simulations the lattice results, extrapolated to lighter quark masses, seem to disagree with experiment. Melnitchouk presented a possible explanation (chiral logs) for this disagreement. It became clear from these discussions that lattice computations at significantly lighter quark masses need to be performed.
MONTE CARLO SIMULATIONS OF THE ADSORPTION OF DIMERS ON STRUCTURED HETEROGENEOUS SURFACES
Directory of Open Access Journals (Sweden)
Abreu C.R.A.
2001-01-01
Full Text Available The effect of surface topography upon the adsorption of dimer molecules is analyzed by means of grand canonical ensemble Monte Carlo simulations. Heterogeneous surfaces were assumed to consist of a square lattice containing active sites with two different energies. These were distributed in three different configurations: a random distribution of isolated sites; a random distribution of grains with four high-energy sites; and a random distribution of grains with nine high-energy sites. For the random distribution of isolated sites, the results are in good agreement with the molecular simulations performed by Nitta et al. (1997. In general, the comparison with theoretical models shows that the Nitta et al. (1984 isotherm presents good predictions of dimer adsorption both on homogeneous and heterogeneous surfaces with sites having small differences in characteristic energies. The molecular simulation results also show that the energy topology of the solid surfaces plays an important role in the adsorption of dimers on solids with large differences in site energies. For these cases, the Nitta et al. model does not describe well the data on dimer adsorption on random heterogeneous surfaces (grains with one acid site, but does describe reasonably well the adsorption of dimers on more patchwise heterogeneous surfaces (grains with nine acid sites.
Directory of Open Access Journals (Sweden)
K. Ben Messaoud
2014-01-01
Full Text Available This study concerns structural and optothermal properties of iron ditelluride layered structures which were fabricated via a low-cost protocol. The main precursors were FeCl3 · 6H2O and Fe2O3. After a heat treatment within a tellurium-rich medium at various temperatures (470°C, 500°C, and 530°C during 24 h, classical analyses have been applied to the iron ditelluride layered structures. A good crystalline state with a preferential orientation of the crystallites along (111 direction has been recorded. Moreover, additional opto-thermal investigation and analyses within the framework of the Lattice Compatibility Theory gave plausible explanation for prompt temperature-dependent incorporation of tellurium element inside hematite elaborated matrices.
Solid state proton spin-lattice relaxation in four structurally related organic molecules
International Nuclear Information System (INIS)
Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.
2003-01-01
We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure
International Nuclear Information System (INIS)
Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar
2015-01-01
Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field
Stochastic inflation lattice simulations: Ultra-large scale structure of the universe
International Nuclear Information System (INIS)
Salopek, D.S.
1990-11-01
Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients α -1 triangledown small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a ''toy model'' with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Guassian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits. 21 refs., 3 figs
International Nuclear Information System (INIS)
Hernandez, Laura; Pinettes, Claire
2005-01-01
We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics
Energy Technology Data Exchange (ETDEWEB)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Laura [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)]. E-mail: Laura.Hernandez@ptm.u-cergy.fr; Pinettes, Claire [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)
2005-08-15
We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics.
Flavor structure of Λ baryons from lattice QCD: From strange to charm quarks
Gubler, Philipp; Takahashi, Toru T.; Oka, Makoto
2016-12-01
We study Λ baryons of spin-parity 1/2± with either a strange or charm valence quark in full 2 +1 flavor lattice QCD. Multiple S U (3 ) singlet and octet operators are employed to generate the desired single baryon states on the lattice. Via the variational method, the couplings of these states to the different operators provide information about the flavor structure of the Λ baryons. We make use of the gauge configurations of the PACS-CS Collaboration and chirally extrapolate the results for the masses and S U (3 ) flavor components to the physical point. We furthermore gradually change the hopping parameter of the heaviest quark from strange to charm to study how the properties of the Λ baryons evolve as a function of the heavy quark mass. It is found that the baryon energy levels increase almost linearly with the quark mass. Meanwhile, the flavor structure of most of the states remains stable, with the exception of the lowest 1/2- state, which changes from a flavor singlet Λ to a Λc state with singlet and octet components of comparable size. Finally, we discuss whether our findings can be interpreted with the help of a simple quark model and find that the negative-parity Λc states can be naturally explained as diquark excitations of the light u and d quarks. On the other hand, the quark-model picture does not appear to be adequate for the negative-parity Λ states, suggesting the importance of other degrees of freedom to describe them.
Extension of love wave transformation theory to laterally heterogeneous structures
International Nuclear Information System (INIS)
Romanelli, F.; Panza, G.F.
1993-08-01
By means of the spherical-to-flat transformations for torsional waves, all the flat-transformed components of motion (two for displacement and five for stress) have been derived. This provides the formal basis necessary to treat the propagation of torsional waves in spherical 3-D structures, by using the existing flat-structure computational techniques. (author). 8 refs, 1 fig., 1 tab
Mechanical properties and structural of metal-ceramic tungsten heterogeneity
International Nuclear Information System (INIS)
Gnuchev, V.S.; Zasimchuk, E.Eh.; Kas'yan, K.N.; Kravchenko, V.S.; Rabinovich, E.M.; Kharchenko, V.K.; Sheina, I.V.
1978-01-01
The influence of the grain size and the structure nonuniformity of cermet tungsten has been studied on its stre--ngth properties at temperatures of 500, 1000, and 1500 deg C. It has been shown that at a high temperature, the samples having a coarse-grained structure (about 50/m) preserve a high level of strength with an elevated plasticity. In the samples having the fine-grained (about 16/m) and the coarse-grained (about 114/m) structure, an abrupt decrease in the plasticity is observed along with a decrease in the strength. By investigating the influence of the annealing conditions on the structure of tungsten, the temperature range of the secondary recrystallization (about 2000 to 2200 deg C) has been established. The rolling temperature of sintered tungsten does not exceed 1700 deg C; thus a supposition is made that the structural nonuniformity of the material is attributable to the process of primary recrystallization and the amount of admixtures present
Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity
Ford, R. M.; Wang, M.; Liu, J.; Long, T.
2008-12-01
Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.
Electronic transport on the spatial structure of the protein: Three-dimensional lattice model
International Nuclear Information System (INIS)
Sarmento, R.G.; Frazão, N.F.; Macedo-Filho, A.
2017-01-01
Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.
HAIM OMLET: An Expert System For Research In Orthomodular Lattices And Related Structures
Dankel, D. D.; Rodriguez, R. V.; Anger, F. D.
1986-03-01
This paper describes research towards the construction of an expert system combining the brute force power of algorithmic computation and the inductive reasoning power of a rule-based inference engine in the mathematical area of discrete structures. Little research has been conducted on extending existing expert systems' technology to computationally complex areas. This research addresses the extension of expert systems into areas such as these, where the process of inference by itself will not produce the proper results. Additionally, the research will demonstrate the benefits of combining inference engines and mathematical algorithms to attack computationally complex problems. The specific aim is to produce an expert system which embodies expert level knowledge of orthomodular lattices, graphs, structure spaces, boolean algebras, incidence relations, and projective configurations. The resulting system, implemented on a micro-computer, will provide researchers a powerful and accessible tool for exploring these discrete structures. The system's "shell" will provide a structure for developing other expert systems with similar capabilities in such related areas as coding theory, categories, monoids, automata theory, and non-standard logics.
Front propagation in a regular vortex lattice: Dependence on the vortex structure.
Beauvier, E; Bodea, S; Pocheau, A
2017-11-01
We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.
Electronic transport on the spatial structure of the protein: Three-dimensional lattice model
Energy Technology Data Exchange (ETDEWEB)
Sarmento, R.G. [Departamento de Ciências Biológicas, Universidade Federal do Piauí, 64800-000 Floriano, PI (Brazil); Frazão, N.F. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, 581750-000 Cuité, PB (Brazil); Macedo-Filho, A., E-mail: amfilho@gmail.com [Campus Prof. Antonio Geovanne Alves de Sousa, Universidade Estadual do Piauí, 64260-000 Piripiri, PI (Brazil)
2017-01-30
Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.
Electronic structure and lattice dynamics of rhombohedral BiAlO_3 from first-principles
International Nuclear Information System (INIS)
Kaczkowski, J.
2016-01-01
The structural, elastic, electronic, dynamical (zone-center phonon modes and Born effective charge tensors), and ferroelectric properties of the rhombohedral BiAlO_3 were calculated within various exchange-correlation functionals. The standard local-density (LDA) and generalized gradient (GGA) approximations, and nonlocal hybrid Heyd-Scuseria-Ernzerhof (HSE) were used. We have also performed the electronic structure calculations with meta-GGA Tran-Blaha functional. BiAlO_3 is indirect band gap semiconductor with the value of band gap: 2.87 eV (GGA), 4.14 eV (HSE), and 3.78 eV (TB-mBJ). The calculated spontaneous polarization is 81 μC/cm"2 (87 μC/cm"2) for GGA (HSE). The vibrational spectrum including LO-TO splitting was calculated within GGA. The zone-center phonon modes with LO-TO splitting for BiAlO_3 were compared with those in isostructural BiFeO_3. - Highlights: • Electronic structure of the rhombohedral phase of BiAlO_3 were calculated. • Structural, elastic, dynamical, and ferroelectric properties were investigated. • Calculations were done within GGA, hybrid HSE, and TB-mBJ functionals. • The lattice dynamics with LO-TO splitting were investigated within GGA functional.
2018-01-01
The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138
Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity
Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.
2016-04-01
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
The Investigation of Structure Heterogeneous Joint Welds in Pipelines
Directory of Open Access Journals (Sweden)
Lyubimova Lyudmila
2016-01-01
Full Text Available Welding joints of dissimilar steels don’t withstand design life. One of the important causes of premature destructions can be the acceleration of steel structural degradation due to cyclic mechanical and thermal gradients. Two zones of tube from steel 12H18N9T, exhibiting the structural instability at early stages of the decomposition of a supersaturated solid austenite solution, were subjected to investigation. Methods of x-ray spectral and structure analysis, micro hardnessmetry were applied for the research. Made the following conclusions, inside and outside tube wall surfaces of hazardous zones in welding joint have different technological and resource characteristics. The microhardness very sensitive to changes of metal structure and can be regarded as integral characteristic of strength and ductility. The welding processes are responsible for the further fibering of tube wall structure, they impact to the characteristics of hot-resistance and long-term strength due to development of ring cracks in the welding joint of pipeline. The monitoring of microhardness and structural phase conversions can be used for control by changes of mechanical properties in result of post welding and reductive heat treatment of welding joints.
Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication.
Kang, Donggu; Ahn, Geunseon; Kim, Donghwan; Kang, Hyun-Wook; Yun, Seokhwan; Yun, Won-Soo; Shim, Jin-Hyung; Jin, Songwan
2018-06-06
Recent advances in three-dimensional bioprinting technology have led to various attempts in fabricating human tissue-like structures. However, current bioprinting technologies have limitations for creating native tissue-like structures. To resolve these issues, we developed a new pre-set extrusion bioprinting technique that can create heterogeneous, multicellular, and multimaterial structures simultaneously. The key to this ability lies in the use of a precursor cartridge that can stably preserve a multimaterial with a pre-defined configuration that can be simply embedded in a syringe-based printer head. The multimaterial can be printed and miniaturized through a micro-nozzle without conspicuous deformation according to the pre-defined configuration of the precursor cartridge. Using this system, we fabricated heterogeneous tissue-like structures such as spinal cords, hepatic lobule, blood vessels, and capillaries. We further obtained a heterogeneous patterned model that embeds HepG2 cells with endothelial cells in a hepatic lobule-like structure. In comparison with homogeneous and heterogeneous cell printing, the heterogeneous patterned model showed a well-organized hepatic lobule structure and higher enzyme activity of CYP3A4. Therefore, this pre-set extrusion bioprinting method could be widely used in the fabrication of a variety of artificial and functional tissues or organs.
Martin Martin, Miguel Angel; Reyes Castro, Miguel E.; Taguas Coejo, Fco. Javier
2014-01-01
In a large number of physical, biological and environmental processes interfaces with high irregular geometry appear separating media (phases) in which the heterogeneity of constituents is present. In this work the quantification of the interplay between irregular structures and surrounding heterogeneous distributions in the plane is made For a geometric set image and a mass distribution (measure) image supported in image, being image, the mass image gives account of the interplay between th...
Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.
Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E
2006-12-28
Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.
Calculation of coupling factor for the heterogeneous accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2006-01-01
The converging part of electron accelerator is designed to converge the phase of injecting electrons, improving the beam quality of the accelerator. It is very crucial to calculate the coupling factor between cavities and to design the geometry structure of the coupling irises. By the E module of code MAFIA, the authors calculate the frequency of every single resonant cavity and the two eigenfrequencies of two-cavitiy line. Then we get the coupling factor between the two cavities. This method can be used to design the geometry structure of the coupling isises between every two cavities. Compared to experiment, the results of the method is very accurate. (authors)
Reversal of lattice, electronic structure, and magnetism in epitaxial SrCoOx thin films
Jeen, H.; Choi, W. S.; Lee, J. H.; Cooper, V. R.; Lee, H. N.; Seo, S. S. A.; Rabe, K. M.
2014-03-01
SrCoOx (x = 2.5 - 3.0, SCO) is an ideal material to study the role of oxygen content for electronic structure and magnetism, since SCO has two distinct topotactic phases: the antiferromagnetic insulating brownmillerite SrCoO2.5 and the ferromagnetic metallic perovskite SrCoO3. In this presentation, we report direct observation of a reversible lattice and electronic structure evolution in SrCoOx epitaxial thin films as well as different magnetic and electronic ground states between the topotactic phases.[2] By magnetization measurements, optical absorption, and transport measurements drastically different electronic and magnetic ground states are found in the epitaxially grown SrCoO2.5 and SrCoO3 thin films by pulsed laser epitaxy. First-principles calculations confirm substantial, which originate from the modification in the Co valence states and crystallographic structures. By real-time spectroscopic ellipsometry, the two electronically and magnetically different phases can be reversibly changed by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides. The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
DEFF Research Database (Denmark)
Laver, M.; Bowell, C.J.; Forgan, E.M.
2009-01-01
High-purity niobium exhibits a surprisingly rich assortment of vortex lattice (VL) structures for fields applied parallel to a fourfold symmetry axis, with all observed VL phases made up of degenerate domains that spontaneously break some crystal symmetry. Yet a single regular hexagonal VL domain...
Fang, C.M.; Wijs, G.A. de
2004-01-01
The phonon spectrum Of C3N4 with defect zincblende-type structure (deltaC(3)N(4)) was calculated by density functional theory (DFT) techniques. The results permit an assessment of important mechanical and thermodynamical properties such as the bulk modulus, lattice specific heat, vibration energy,
Energy Technology Data Exchange (ETDEWEB)
Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn
2009-10-02
Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.
Random lattice structures. Modelling, manufacture and FEA of their mechanical response
Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.
2016-11-01
The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.
A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures
Sauls, Barbara Lynn
Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to
Oxygen transport as a structure probe for heterogeneous polymeric systems
Hu, Yushan
Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation
Effects of moiré lattice structure on electronic properties of graphene
Huang, Lunan; Wu, Yun; Hershberger, M. T.; Mou, Daixiang; Schrunk, Benjamin; Tringides, Michael C.; Hupalo, Myron; Kaminski, Adam
2017-07-01
We study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6 √{3 }×6 √{3 } reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that is then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.
A lattice Boltzmann model for substrates with regularly structured surface roughness
Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.
2015-11-01
Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.
New integrable lattice hierarchies
International Nuclear Information System (INIS)
Pickering, Andrew; Zhu Zuonong
2006-01-01
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula
Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting
International Nuclear Information System (INIS)
Cansizoglu, O.; Harrysson, O.; Cormier, D.; West, H.; Mahale, T.
2008-01-01
This paper addresses foams which are known as non-stochastic foams, lattice structures, or repeating open cell structure foams. The paper reports on preliminary research involving the design and fabrication of non-stochastic Ti-6Al-4V alloy structures using the electron beam melting (EBM) process. Non-stochastic structures of different cell sizes and densities were investigated. The structures were tested in compression and bending, and the results were compared to results from finite element analysis simulations. It was shown that the build angle and the build orientation affect the properties of the lattice structures. The average compressive strength of the lattice structures with a 10% relative density was 10 MPa, the flexural modulus was 200 MPa and the strength to density ration was 17. All the specimens were fabricated on the EBM A2 machine using a melt speed of 180 mm/s and a beam current of 2 mA. Future applications and FEA modeling were discussed in the paper
Heterogeneous seeding of HET-s(218–289) and the mutability of prion structures
Energy Technology Data Exchange (ETDEWEB)
Wan, William; Stubbs, Gerald
2014-02-18
One fundamental property of prions is the formation of strains—prions that have distinct biological effects, despite a common amino acid sequence. The strain phenomenon is thought to be caused by the formation of different molecular structures, each encoding for a particular biological activity. While the precise mechanism of the formation of strains is unknown, they tend to arise following environmental changes, such as passage between different species. One possible mechanism discussed here is heterogeneous seeding; the formation of a prion nucleated by a different molecular structure. While heterogeneous seeding is not the only mechanism of prion mutation, it is consistent with some observations on species adaptation and drug resistance. Heterogeneous seeding provides a useful framework to understand how prions can adapt to new environmental conditions and change biological phenotypes.
Lattice Boltzmann study of slip flow over structured surface with transverse slots
Chen, Wei; Wang, Kai; Wang, Lei; Hou, Guoxiang; Leng, Wenjun
2018-04-01
Slip flow over structured superhydrophobic surface with transverse slots is investigated by the lattice Boltzmann method. The Shan-Chen multiphase model is employed to simulate the flow over gas bubbles in the slots. The Carnahan-Starling equation of state is applied to obtain large density ratio. The interface thickness of the multiphase model is discussed. We find that the Cahn number Cn should be smaller than 0.02 when the temperature T = 0.5T c to restrict the influence of interface thickness on slip length. Influences of slot fraction on slip length is then studied, and the result is compared with single LB simulation of which the interface is treated as free-slip boundary. The slip length obtained by the multiphase model is a little smaller. After that, the shape of the liquid-gas interface is considered, and simulations with different initial protrusion angles and capillary numbers are performed. Effective slip length as a function of initial protrusion angle is obtained. The result is in qualitative agreement with a previous study and main features are reproduced. Furthermore, the influence of Capillary number Ca is studied. Larger Ca causes larger interface deformation and smaller slip length. But when the interface is concaving into the slot, this influence is less obvious.
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2016-03-01
In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.
The quantum group, Harper equation and structure of Bloch eigenstates on a honeycomb lattice
International Nuclear Information System (INIS)
Eliashvili, M; Tsitsishvili, G; Japaridze, G I
2012-01-01
The tight-binding model of quantum particles on a honeycomb lattice is investigated in the presence of a homogeneous magnetic field. Provided the magnetic flux per unit hexagon is a rational of the elementary flux, the one-particle Hamiltonian is expressed in terms of the generators of the quantum group U q (sl 2 ). Employing the functional representation of the quantum group U q (sl 2 ), the Harper equation is rewritten as a system of two coupled functional equations in the complex plane. For the special values of quasi-momentum, the entangled system admits solutions in terms of polynomials. The system is shown to exhibit a certain symmetry allowing us to resolve the entanglement, and a basic single equation determining the eigenvalues and eigenstates (polynomials) is obtained. Equations specifying the locations of the roots of polynomials in the complex plane are found. Employing numerical analysis, the roots of polynomials corresponding to different eigenstates are solved and diagrams exhibiting the ordered structure of one-particle eigenstates are depicted. (paper)
Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition
Yang, Yang
2014-11-01
Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.
International Nuclear Information System (INIS)
Ravari, M R Karamooz; Kadkhodaei, M; Ghaei, A; Esfahani, S Nasr; Andani, M Taheri; Elahinia, M; Karaca, H
2016-01-01
Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress–strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure. (paper)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education
2016-11-01
Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.
Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo
2015-09-01
Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.
International Nuclear Information System (INIS)
Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun
2009-01-01
An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)
Kumar, Dablu; Ranjan, Rakesh
2018-03-01
12-Core 5-LP mode homogeneous multicore fibers have been proposed for analysis of inter-core crosstalk and dispersion, with four different lattice structures (circular, 2-ring, square lattice, and triangular lattice) having cladding diameter of 200 μm and a fixed cladding thickness of 35 μm. The core-to-core crosstalk impact has been studied numerically with respect to bending radius, core pitch, transmission distance, wavelength, and core diameter for all 5-LP modes. In anticipation of further reduction in crosstalk levels, the trench-assisted cores have been incorporated for all respective designs. Ultra-low crosstalk (-138 dB/100 km) has been achieved through the triangular lattice arrangement, with trench depth Δ2 = -1.40% for fundamental (LP01) mode. It has been noted that the impact of mode polarization on crosstalk behavior is minor, with difference in crosstalk levels between two polarized spatial modes as ≤0.2 dB. Moreover, the optimized cladding diameter has been obtained for all 5-LP modes for a target value of crosstalk of -50 dB/100 km, with all the core arrangements. The dispersion characteristic has also been analyzed with respect to wavelength, which is nearly 2.5 ps/nm km at operating wavelength 1550 nm. The relative core multiplicity factor (RCMF) for the proposed design is obtained as 64.
A key heterogeneous structure of fractal networks based on inverse renormalization scheme
Bai, Yanan; Huang, Ning; Sun, Lina
2018-06-01
Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.
On the effect of the lattice asymmetry parameter on the phase structure of SU(N) pure gauge theories
International Nuclear Information System (INIS)
Averchenkova, L.A.; Petrov, K.V.; Petrov, V.K.; Zinovjev, G.M.
1998-01-01
The role of the lattice asymmetry parameter ξ in the phase structure description of the SU(2) and SU(3) gluodynamics at finite temperature has been studied analytically in the SU(N)∼Z(N) approach. The properties of thermodynamic quantities have been investigated near the physical border. The effective action which includes the first non-trivial order from the space-like part allows estimates to be made of the phase structure not only close to the physical border but in the whole area of couplings. We find that thermodynamic quantities depend on ξ and this dependence may be strong enough, up to discontinuity over this parameter for some of them. The Hamiltonian formulation of the SU(2) gauge theory on the asymmetric lattice is presented. (orig.)
International Nuclear Information System (INIS)
Peng Juan; Li Shu-Shen
2012-01-01
We study the electronic spectrum of coupled quantum dots (QDs) arranged as a graphene hexagonal lattice in the presence of an external perpendicular magnetic field. In our tight-binding model, the effect of the magnetic field is included in both the Peierls phase of the Hamiltonian and the tight-binding basis Wannier function. The energy of the system is analyzed when the magnetic flux through the lattice unit cell is a rational fraction of the quantum flux. The calculated spectrum has recursive properties, similar to those of the classical Hofstadter butterfly. However, unlike the ideal Hofstadter butterfly structure, our result is asymmetric since the impacts of the specific material and the magnetic field on the wavefunctions are included, making the results more realistic. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun
2016-11-01
Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.
The effect of material heterogeneity in curved composite beams for use in aircraft structures
Otoole, Brendan J.; Santare, Michael H.
1992-01-01
A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced during processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing a gradient in material properties in both the radial and tangential directions. The analysis procedure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web sections of the beam. The separate solutions are coupled by requiring the forces and displacements match at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary results show that geometry of the beam dictates the effect of heterogeneity on performance. Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radius. Results of the analysis are in the form of stresses and displacements, and they are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.
Generalized isothermic lattices
International Nuclear Information System (INIS)
Doliwa, Adam
2007-01-01
We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem
Zakharov, Boris A; Michalchuk, Adam A L; Morrison, Carole A; Boldyreva, Elena V
2018-03-28
The thermosalient effect (crystal jumping on heating) attracts much attention as both an intriguing academic phenomenon and in relation to its potential for the development of molecular actuators but its mechanism remains unclear. 1,2,4,5-Tetrabromobenzene (TBB) is one of the most extensively studied thermosalient compounds that has been shown previously to undergo a phase transition on heating, accompanied by crystal jumping and cracking. The difference in the crystal structures and intermolecular interaction energies of the low- and high-temperature phases is, however, too small to account for the large stress that arises over the course of the transformation. The energy is released spontaneously, and crystals jump across distances that exceed the crystal size by orders of magnitude. In the present work, the anisotropy of lattice strain is followed across the phase transition by single-crystal X-ray diffraction, focusing on the structural evolution from 273 to 343 K. A pronounced lattice softening is observed close to the transition point, with the structure becoming more rigid immediately after the phase transition. The diffraction studies are further supported by theoretical analysis of pairwise intermolecular energies and zone-centre lattice vibrations. Only three modes are found to monotonically soften up to the phase transition, with complex behaviour exhibited by the remaining lattice modes. The thermosalient effect is delayed with respect to the structural transformation itself. This can originate from the martensitic mechanism of the transformation, and the accumulation of stress associated with vibrational switching across the phase transition. The finding of this study sheds more light on the nature of the thermosalient effect in 1,2,4,5-tetrabromobenzene and can be applicable also to other thermosalient compounds.
Energy Technology Data Exchange (ETDEWEB)
Zargarian, A.; Esfahanian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kadkhodapour, J., E-mail: j.kad@srttu.edu [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany); Ziaei-Rad, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2016-03-01
In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1–0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. - Highlights: • Numerical simulation was used to predict fatigue behavior of titanium scaffolds. • Good agreement between numerical and experimental results • S–N curves obeyed the power law. • Fatigue strength of scaffolds was proportional to their Young's modulus. • Failure surface of scaffolds was inclined at an angle of 45° to loading.
International Nuclear Information System (INIS)
Ressler, T.; Jentoft, R.E.; Wienold, J.; Girgsdies, F.; Neisius, T.; Timpe, O.
2003-01-01
Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO 3 in propene and in propene and oxygen
Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai
2005-12-01
This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.
Directory of Open Access Journals (Sweden)
Limei Tian
2015-11-01
Full Text Available Studies have shown that the structure of dolphin skin controls fluid media dynamically. Gaining inspiration from this phenomenon, a kind of bionic structural heterogeneous composite material was designed. The bionic structural heterogeneous composite material is composed of two materials: a rigid metal base layer with bionic structures and an elastic polymer surface layer with the corresponding mirror structures. The fluid control mechanism of the bionic structural heterogeneous composite material was investigated using a fluid–solid interaction method in ANSYS Workbench. The results indicated that the bionic structural heterogeneous composite material’s fluid control mechanism is its elastic deformation, which is caused by the coupling action between the elastic surface material and the bionic structure. This deformation can decrease the velocity gradient of the fluid boundary layer through changing the fluid–solid actual contact surface and reduce the frictional force. The bionic structural heterogeneous composite material can also absorb some energy through elastic deformation and avoid energy loss. The bionic structural heterogeneous composite material was applied to the impeller of a centrifugal pump in a contrast experiment, increasing the pump efficiency by 5% without changing the hydraulic model of the impeller. The development of this bionic structural heterogeneous composite material will be straightforward from an engineering point of view, and it will have valuable practical applications.
Optimizing structure of complex technical system by heterogeneous vector criterion in interval form
Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.
2018-05-01
The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.
Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Wu, Zhenkun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2015-12-15
In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.
Dhaneswara, D.; Fatriansyah, J. F.; Putranto, D. A.; Utami, S. A. A.; Delayori, F.
2018-01-01
The analysis of structure heterogeneity factor of silica mesoporous SBA-15 has been conducted. The structure factor has been found to be different for low and high concentration of Pluronic-123 template. The structure heterogeneity of high concentration of Pluronic-123 has been found less than 1 while for low concentration, the structure heterogeneity was found to be larger than 1. This indicates the dissimilarity of the structure and can be used as a probe to detect the formation of large mesopores. It also was found that the system exhibits type IV and H1 adsorption type which indicates the capillary condensation and interconnected pores.
Directory of Open Access Journals (Sweden)
M. AKBARI
2013-12-01
Full Text Available Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that UO2–PUO2 (MOX is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the UO2 fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of H2O moderated UO2–PuO2 (MOX lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities
International Nuclear Information System (INIS)
Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.
2009-01-01
Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics
Atomic and electronic structures of lattice mismatched Cu{sub 2}O/TiO{sub 2} interfaces
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuzhi [Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 66, Berkeley, California 94720 (United States); Kavaipatti, Balasubramaniam; Ramesh, Ramamoorthy [Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720 (United States); Kim, Sung-Joo; Pan, Xiaoqing [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Ager, Joel W.; Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 66, Berkeley, California 94720 (United States); Joint Center of Artificial Photosynthesis, Berkeley, California 94720 (United States)
2014-05-26
Heterojunction interfaces between metal oxides are often highly lattice mismatched. The atomic and electronic structures of such interfaces, however, are not well understood. We have synthesized Cu{sub 2}O/TiO{sub 2} heterojunction thin films with 13% lattice mismatch and studied the interface via experimental methods and large-scale density function theory calculations of supercells containing ∼1300 atoms. We find that an interface of epitaxial quality is formed via a coincidence site lattice of 8 Cu{sub 2}O unit cells matching 9 TiO{sub 2} unit cells. Calculations reveal the existence of a dislocation core of the O sublattices at the interface and a random arrangement of one layer of interfacial Cu atoms. The interfacial electronic structure is found to be mostly determined by the interfacial Cu distribution, rather than by the O dislocation core. The conduction band minimum and valence band maximum states are spatially separated, and there is no strongly localized state near the core.
International Nuclear Information System (INIS)
Piil, Rune; Moelmer, Klaus
2007-01-01
By adjusting the tunneling couplings over longer than nearest-neighbor distances, it is possible in discrete lattice models to reproduce the properties of the lowest energy band of a real, continuous periodic potential. We propose to include such terms in problems with interacting particles, and we show that they have significant consequences for scattering and bound states of atom pairs in periodic potentials
Slezak, H
1975-12-04
The clinical examination of the vitreous in the extreme fundus periphery is difficult; therefore only very little was known up to now about the relations of the posterior limiting membrane of the vitreous and the preretinal tract to retinal lattice degenerations arranged parallel to the ora serrata in several rows. There will be reports of new findings gained by depression biomicroscopy.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Jablonski, Piotr; Poe, Gina; Zochowski, Michal
2007-03-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.
Greenfield, Alan Barry
Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.
Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid
Puosi, F.; Jakse, N.; Pasturel, A.
2018-04-01
As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.
DEFF Research Database (Denmark)
Fenger, Mogens; Linneberg, A.; Werge, Thomas Mears
2008-01-01
and genetic variations of such networks. METHODS: In this study on type 2 diabetes mellitus, heterogeneity was resolved in a latent class framework combined with structural equation modelling using phenotypic indicators of distinct physiological processes. We modelled the clinical condition "the metabolic......BACKGROUND: Biological systems are interacting, molecular networks in which genetic variation contributes to phenotypic heterogeneity. This heterogeneity is traditionally modelled as a dichotomous trait (e.g. affected vs. non-affected). This is far too simplistic considering the complexity...
Directory of Open Access Journals (Sweden)
Patrick Terriault
2017-01-01
Full Text Available Emergent additive manufacturing processes allow the use of metallic porous structures in various industrial applications. Because these structures comprise a large number of ordered unit cells, their design using conventional modeling approaches, such as finite elements, becomes a real challenge. A homogenization technique, in which the lattice structure is simulated as a fully dense volume having equivalent material properties, can then be employed. To determine these equivalent material properties, numerical simulations can be performed on a single unit cell of the lattice structure. However, a critical aspect to consider is the boundary conditions applied to the external faces of the unit cell. In the literature, different types of boundary conditions are used, but a comparative study is definitely lacking. In this publication, a diamond-type unit cell is studied in compression by applying different boundary conditions. If the porous structure’s boundaries are free to deform, then the periodic boundary condition is found to be the most representative, but constraint equations must be introduced in the model. If, instead, the porous structure is inserted in a rigid enclosure, it is then better to use frictionless boundary conditions. These preliminary results remain to be validated for other types of unit cells loaded beyond the yield limit of the material.
Energy Technology Data Exchange (ETDEWEB)
Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Struve, Achim [University of Applied Sciences Flensburg; Faber, Torsten [University of Applied Sciences Flensburg; Ummenhofer, Thomas [Karlsruhe Institute of Technology
2017-11-07
The call for more cost-effective and environmentally friendly tower concepts is motivated by tower costs [1] and tower CO2-emission contributions [2], which are high relative to the whole wind turbine system. The proposed rotatable tower concept with yaw bearing at the bottom instead of the top of the tower will provide beneficial economic and environmental impacts to the turbine system. This wind alignment capability indicates a load-direction-derived tower design. By combining this approach with a lattice concept, large material and cost savings for the tower can be achieved. This paper presents a way to analyze and verify the proposed design through aero-servo-elastic simulations, which make future certifications of rotatable tower concepts viable. For this reason, the state-of-the-art, open-source lattice-tower finite-element-method (FEM) module SubDyn [10], developed by the National Renewable Energy Laboratory, has been modified to account for arbitrary member cross-sections. Required changes in the beam element stiffness and mass matrix formulation took place according to an energy method [13]. All validated adaptions will be usable within the aero-servo-elastic simulation framework FAST and are also beneficial for other nonrotatable lattice structures.
Phase structure of the O(n) model on a random lattice for n > 2
DEFF Research Database (Denmark)
Durhuus, B.; Kristjansen, C.
1997-01-01
We show that coarse graining arguments invented for the analysis of multi-spin systems on a randomly triangulated surface apply also to the O(n) model on a random lattice. These arguments imply that if the model has a critical point with diverging string susceptibility, then either γ = +1....../2 or there exists a dual critical point with negative string susceptibility exponent, γ̃, related to γ by γ = γ̃/γ̃-1. Exploiting the exact solution of the O(n) model on a random lattice we show that both situations are realized for n > 2 and that the possible dual pairs of string susceptibility exponents are given...... by (γ̃, γ) = (-1/m, 1/m+1), m = 2, 3, . . . We also show that at the critical points with positive string susceptibility exponent the average number of loops on the surface diverges while the average length of a single loop stays finite....
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Lattice theory for nonspecialists
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-01-01
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
Effect of pressure and doping on lattice structure of zinc oxide
Energy Technology Data Exchange (ETDEWEB)
Zolfaghari, Mahmoud, E-mail: mzolfaghari@phys.usb.ac.ir
2017-01-15
The semiconductor ZnO belongs to the IIb-VI binary compound. It has a high exciton binding energy of 60 meV. The bonding in these materials is covalent with some ionic character. Induced changes on the physical properties of Mn doped ZnO samples due to different dopant concentrations and pressure were evaluated. The results obtained showed higher solubility limit for Mn doped ZnO due to pressure. The trend of XRD results for higher Mn concentration (9 at%) as pressure increases, was towards doping improvement. The XRD, SEM and UV–vis study of the samples also revealed that there were variations in the lattice parameters, nanoparticle size and bandgap energy of the doped and pressurized doped samples. Further, the directions of variation of bandgap energy values and calculated particle size, as well as SEM values of the doped samples due to pressure variation were found to be the same i.e. all of them together either increase or decrease as pressure varies. However, these variations were found to be opposite to that of lattice constants (all a and most c values) variation for both Mn dopant concentrations (3 at% and 9 at%). These physical variations of unpressurized doped samples can be attributed to the change in the polar bonding of the elemental constitutions in the lattice. While for the pressurized doped samples, the variations attributed to repulsion of lone pairs as well as change in the electronegativity of the system.
International Nuclear Information System (INIS)
Kakinoki, J.
1974-01-01
Methods for obtaining the intensity of X-ray diffraction by one-dimensional by disordered lattices have been studied, and matrix method was developed. The method has been applied for structural analysis. Several problems concerning neutron diffraction were shown in the course of analysis. Large single crystals should be used for measurement. It is hard to grasp the local variation of structure. The technique of topography is still in development. Measurement of weak intensity diffraction is not sufficient. Technique of photography to observe overall feature is not good. General remarks concerning the one-dimensionally disordered lattices are as follows. A large number of parameters for analysis are not practical, and the disorder parameters are preferably two. In case of the disorder between two kinds of layers having same frequency and different structure, peak shift is not caused, and Laue term remains at the position. Reliability of the structural analysis of liquid and amorphous solid is discussed. The analysis is basically the analysis two atom molecule of same kind of atoms. The intensity of diffraction can be obtained from radial distribution function (RDF). Since practical observation is limited to a finite region, termination effect should be taken into consideration. Accuracy of analysis is not good in case of X-ray diffraction. The analysis by neutron diffraction is preferable. (Kato, T.)
Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping
2017-10-01
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)
International Nuclear Information System (INIS)
Deus, P.; Schneider, H.A.; Voland, U.
1980-01-01
A general method of determination of the mean square amplitudes of lattice oscillations (MSA) for crystals with sphalerite structure is described and applied to InP. The linearity of suitable functions of the measured integral BRAGG intensities of sin 2 theta/lambda 2 is used for the verification of the parameters selected for the correction of extinction and DTS. In this way the accuracy of the results is increased. The MSAs of the InP-sublattices are evaluated. According to theoretical expectations the MSAs of the P-sublattice are larger because of the greater contributions of optical phonons. (author)
Holland, Greg J; Clarke, Michael F; Bennett, Andrew F
2017-04-01
Prescribed burning to achieve management objectives is a common practice in fire-prone regions worldwide. Structural components of habitat that are combustible and slow to develop are particularly susceptible to change associated with prescribed burning. We used an experimental, "whole-landscape" approach to investigate the effect of differing patterns of prescribed burning on key habitat components (logs, stumps, dead trees, litter cover, litter depth, and understorey vegetation). Twenty-two landscapes (each ~100 ha) were selected in a dry forest ecosystem in southeast Australia. Experimental burns were conducted in 16 landscapes (stratified by burn extent) while six served as untreated controls. We measured habitat components prior to and after burning. Landscape burn extent ranged from 22% to 89% across the 16 burn treatments. With the exception of dead standing trees (no change), all measures of habitat components declined as a consequence of burning. The degree of loss increased as the extent to which a landscape was burned also increased. Prescribed burning had complex effects on the spatial heterogeneity (beta diversity) of structural components within landscapes. Landscapes that were more heterogeneous pre-fire were homogenized by burning, while those that were more homogenous pre-fire tended to display greater differentiation post-burning. Thus, the notion that patch mosaic burning enhances heterogeneity at the landscape-scale depends on prior conditions. These findings have important management implications. Where prescribed burns must be undertaken, effects on important resources can be moderated via control of burn characteristics (e.g., burn extent). Longer-term impacts of prescribed burning will be strongly influenced by the return interval, given the slow rate at which some structural components accumulate (decades to centuries). Management of habitat structural components is important given the critical role they play in (1) provision of habitat
Directory of Open Access Journals (Sweden)
Willemien Anaf
2010-11-01
Full Text Available Le verre, corrodé dans des conditions naturelles, montre souvent des hétérogénéités dans la couche lixiviée, comme une structure lamellaire ou des inclusions de MnO2 ou Ca3(PO42. La formation de ces hétérogénéités n’est pas encore bien comprise. Des structures de ce type ont été produites artificiellement en laboratoire en immergeant des échantillons de verre dans des solutions riches en métaux. Les résultats expérimentaux ont été comparés avec des théories décrivant la corrosion du verre.Glass that corrodes under natural conditions often shows heterogeneities in the leached layer, such as a lamellar structure or inclusions of MnO2 or Ca3(PO42. The formation of these heterogeneities is still not well understood. By means of experiments under laboratory conditions, our aim was to artificially generate specific structures. Therefore, glass samples were immersed in metal-rich solutions. The experimental results were compared with theories describing glass corrosion from a molecular point of view.
Atomic-scale structural signature of dynamic heterogeneities in metallic liquids
Pasturel, Alain; Jakse, Noel
2017-08-01
With sufficiently high cooling rates, liquids will cross their equilibrium melting temperatures and can be maintained in a metastable undercooled state before solidifying. Studies of undercooled liquids reveal several intriguing dynamic phenomena and because explicit connections between liquid structure and liquids dynamics are difficult to identify, it remains a major challenge to capture the underlying structural link to these phenomena. Ab initio molecular dynamics (AIMD) simulations are yet especially powerful in providing atomic-scale details otherwise not accessible in experiments. Through the AIMD-based study of Cr additions in Al-based liquids, we evidence for the first time a close relationship between the decoupling of component diffusion and the emergence of dynamic heterogeneities in the undercooling regime. In addition, we demonstrate that the origin of both phenomena is related to a structural heterogeneity caused by a strong interplay between chemical short-range order (CSRO) and local fivefold topology (ISRO) at the short-range scale in the liquid phase that develops into an icosahedral-based medium-range order (IMRO) upon undercooling. Finally, our findings reveal that this structural signature is also captured in the temperature dependence of partial pair-distribution functions which opens up the route to more elaborated experimental studies.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yanhui, E-mail: yanhui.z@hotmail.com [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Franke, Peter; Li, Dajian; Seifert, Hans Jürgen [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2016-12-01
Reliable lattice stability of cubic AlN with rock-salt structure (rs-AlN) is the prerequisite of accurate thermodynamic modeling of cubic (M, Al)N solid solutions (M = Ti, Zr, Cr etc.). In order to derive the Gibbs energy of metastable rs-AlN, and then its lattice stability, we did the pressure-temperature (P-T) assessment of AlN phases by equations-of-state modeling. Meanwhile, the molar volumes and the heat capacities of wurtzite and rock-salt AlN, as well as the wurtzite-to-rock-salt structural transition at high P&T were successfully incorporated in CALPHAD-type database by integrating thermodynamic data from experiments and ab-initio calculations. These results promise subsequent investigations on phase stabilities and transitions of solid solutions with AlN component and the development of novel multicomponent coatings. - Highlights: • Phase stability investigation for novel multi-component metastable coatings. • Structural transition at high temperature and high pressure. • Integrating thermodynamic data from ab-initio calculations and experiments. • Thermal expansion, isothermal compressibility and heat capacity of w-AlN and rs-AlN.
Phase structure, magnetic monopoles and vortices in the lattice Abelian Higgs model
International Nuclear Information System (INIS)
Ranft, J.; Kripfganz, J.; Ranft, G.
1982-04-01
We present Monte Carlo calculations of lattice Abelian Higgs models in 4 dimensions and with charges of the Higgs particles equal to q = 1, 2 and 6. The phase transitions are studied in the plane of the two coupling constants considering separately average plaquette and average link expectation values. The density of topological excitations is studied. In the confinement phase we find finite densities of magnetic monopole currents, electric currents and vortex currents. The magnetic monopole currents vanish exponentially in the Coulomb phase. The density of electric currents and vortex currents is finite in the Coulomb phase and vanishes exponentially in the Higgs phase. (author)
Finite-temperature phase structure of lattice QCD with Wilson quark action
International Nuclear Information System (INIS)
Aoki, S.; Ukawa, A.; Umemura, T.
1996-01-01
The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society
Phase structure of 3DZ(N) lattice gauge theories at finite temperature
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.
2013-01-01
We perform a numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. Using the dual formulation of the models and a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the average action and the specific heat. Our results are consistent with the two transitions being of infinite order. Furthermore, they belong to the universality class of two-dimensional Z(N) vector spin models
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
International Nuclear Information System (INIS)
Li Zhiwei; Ma Xiaoming; Pang Hua; Li Fashen
2011-01-01
In this paper we present a detailed Moessbauer spectroscopy study of the structural and magnetic properties of the undoped parent compound CaFe 2 As 2 single crystal. By fitting the temperature dependence of the hyperfine magnetic field we show that the magneto-structural phase transition is clearly first order in nature and we also deduce the compressibility of our sample to be 1.67 x 10 -2 GPa -1 . Within Landau's theory of phase transition, we further argue that the observed phase transition may stem from the strong magneto-structural coupling effect. The temperature dependence of the Lamb-Moessbauer factor shows that the paramagnetic phase and the antiferromagnetic phase exhibit similar lattice dynamics in high-frequency modes with very close Debye temperatures, Θ D ∼ 270 K.
Non destructive testing of heterogeneous structures with a step frequency radar
International Nuclear Information System (INIS)
Cattin, V.; Chaillout, J.J.
1998-01-01
Ground penetrating radar have shown increasing potential in diagnostic of soils or concrete, but the realisation of such a system and the interpretation of data produced by this technique require a clear understanding of the physical electromagnetic processes that appear between media and waves. In this paper are studied the performances of a step frequency radar as a nondestructive technique to evaluate different heterogeneous laboratory size structures. Some critical points are studied like material properties, antenna effect and image reconstruction algorithm, to determine its viability to distinguish smallest region of interest
A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory
DEFF Research Database (Denmark)
Nonejad, Nima
We propose a flexible model to describe nonlinearities and long-range dependence in time series dynamics. Our model is an extension of the heterogeneous autoregressive model. Structural breaks occur through mixture distributions in state innovations of linear Gaussian state space models. Monte...... Carlo simulations evaluate the properties of the estimation procedures. Results show that the proposed model is viable and flexible for purposes of forecasting volatility. Model uncertainty is accounted for by employing Bayesian model averaging. Bayesian model averaging provides very competitive...... forecasts compared to any single model specification. It provides further improvements when we average over nonlinear specifications....
Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.
Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng
2013-09-03
Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.
Structure optimization by heuristic algorithm in a coarse-grained off-lattice model
International Nuclear Information System (INIS)
Jing-Fa, Liu
2009-01-01
A heuristic algorithm is presented for a three-dimensional off-lattice AB model consisting of hydrophobic (A) and hydrophilic (B) residues in Fibonacci sequences. By incorporating extra energy contributions into the original potential function, we convert the constrained optimization problem of AB model into an unconstrained optimization problem which can be solved by the gradient method. After the gradient minimization leads to the basins of the local energy minima, the heuristic off-trap strategy and subsequent neighborhood search mechanism are then proposed to get out of local minima and search for the lower-energy configurations. Furthermore, in order to improve the efficiency of the proposed algorithm, we apply the improved version called the new PERM with importance sampling (nPERMis) of the chain-growth algorithm, pruned-enriched-Rosenbluth method (PERM), to face-centered-cubic (FCC)-lattice to produce the initial configurations. The numerical results show that the proposed methods are very promising for finding the ground states of proteins. In several cases, we found the ground state energies are lower than the best values reported in the present literature
Simplicial lattices in classical and quantum gravity: Mathematical structure and application
International Nuclear Information System (INIS)
LaFave, N.J.
1989-01-01
Geometrodynamics can be understood more clearly in the language of geometry than in the language of differential equations. This is the primary motivation for the development of calculational schemes based on Regge Calculus as an alternative to those schemes based on Ricci Calculus. The author develops the mathematics of simplicial lattices to the same level of sophistication as the mathematics of pseudo-Riemannian geometry for continuum manifolds. This involves the definition of the simplicial analogues of several concepts from differential topology and differential geometry-the concept of a point, tangent spaces, forms, tensors, parallel transport, covariant derivatives, connections, and curvature. These simplicial analogues are used to define the Einstein tensor and the extrinsic curvature on a simplicial geometry. He applies this mathematical formalism to the solution of several outstanding problems in the development of a Regge Calculus based computational scheme for general geometrodynamic problems. This scheme is based on a 3 + 1 splitting of spacetime within the Regge Calculus prescription known as Null-Strut Calculus (NSC). NSC, developed by Warner Miller, describes the foliation of spacetime into spacelike hypersurfaces built of tetrahedra. The outstanding problems discussed include (a) the rigidification of the 3-layered sandwich and the evolution problem; (b) the formulation of initial data; and (c) in inclusion of matter on the lattice. The resulting calculational scheme is applied to two test problems, the Friedmann model and the second-order Doppler effect. Finally, he describes avenues of investigation for NSC in quantum gravity
A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data.
Directory of Open Access Journals (Sweden)
Giovanni Delussu
Full Text Available This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR's formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called "Constant Load" and "Constant Number of Records", with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes.
A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data
Lianas, Luca; Frexia, Francesca; Zanetti, Gianluigi
2016-01-01
This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR’s formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called “Constant Load” and “Constant Number of Records”, with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes. PMID:27936191
A Scalable Data Access Layer to Manage Structured Heterogeneous Biomedical Data.
Delussu, Giovanni; Lianas, Luca; Frexia, Francesca; Zanetti, Gianluigi
2016-01-01
This work presents a scalable data access layer, called PyEHR, designed to support the implementation of data management systems for secondary use of structured heterogeneous biomedical and clinical data. PyEHR adopts the openEHR's formalisms to guarantee the decoupling of data descriptions from implementation details and exploits structure indexing to accelerate searches. Data persistence is guaranteed by a driver layer with a common driver interface. Interfaces for two NoSQL Database Management Systems are already implemented: MongoDB and Elasticsearch. We evaluated the scalability of PyEHR experimentally through two types of tests, called "Constant Load" and "Constant Number of Records", with queries of increasing complexity on synthetic datasets of ten million records each, containing very complex openEHR archetype structures, distributed on up to ten computing nodes.
Platis, Andreas; Martinez, Daniel; Bange, Jens
2014-05-01
Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the
Superspace approach to lattice supersymmetry
International Nuclear Information System (INIS)
Kostelecky, V.A.; Rabin, J.M.
1984-01-01
We construct a cubic lattice of discrete points in superspace, as well as a discrete subgroup of the supersymmetry group which maps this ''superlattice'' into itself. We discuss the connection between this structure and previous versions of lattice supersymmetry. Our approach clarifies the mathematical problems of formulating supersymmetric lattice field theories and suggests new methods for attacking them
The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus
Gu, Changgui; Yang, Huijie
2016-05-01
In mammals, the master clock is located in the suprachiasmatic nucleus (SCN), which is composed of about 20 000 nonidentical neuronal oscillators expressing different intrinsic periods. These neurons are coupled through neurotransmitters to form a network consisting of two subgroups, i.e., a ventrolateral (VL) subgroup and a dorsomedial (DM) subgroup. The VL contains about 25% SCN neurons that receive photic input from the retina, and the DM comprises the remaining 75% SCN neurons which are coupled to the VL. The synapses from the VL to the DM are evidently denser than that from the DM to the VL, in which the VL dominates the DM. Therefore, the SCN is a heterogeneous network where the neurons of the VL are linked with a large number of SCN neurons. In the present study, we mimicked the SCN network based on Goodwin model considering four types of networks including an all-to-all network, a Newman-Watts (NW) small world network, an Erdös-Rényi (ER) random network, and a Barabási-Albert (BA) scale free network. We found that the circadian rhythm was induced in the BA, ER, and NW networks, while the circadian rhythm was absent in the all-to-all network with weak cellular coupling, where the amplitude of the circadian rhythm is largest in the BA network which is most heterogeneous in the network structure. Our finding provides an alternative explanation for the induction or enhancement of circadian rhythm by the heterogeneity of the network structure.
Ozer, Ekin; Feng, Maria Q.
2017-04-01
Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system
Lattice dynamics of alkali hydrides and deuterides with the NaCl type structure
International Nuclear Information System (INIS)
Dyck, W.; Jex, H.
1981-01-01
The deformation dipole model, the shell model, and also extended versions of these models have been investigated for the lattice dynamics of LiH and LiD. A deformation dipole model with 13 adjustable parameters gave the best fit to the phonon dispersion of LiD known from neutron and Raman experiments. The model has been used to compute elastic and dielectric constants, Szigeti effective charges, phonon densities of states, Debye temperatures and second-order Raman spectra of LiD and LiH. Good agreement with the experimental data was obtained. The contributions of short-range three- and four-body forces to the model force constants are discussed. First calculations of the phonon dispersion curves of the hydrides and deuterides of Na, K, Rb and Cs, which are based on shell models, are presented. (author)
Directory of Open Access Journals (Sweden)
Danilo Sergi
2016-01-01
Full Text Available This study uses the lattice Boltzmann method (LBM to simulate in 2D the capillary infiltration into porous structures obtained from the packing of particles. The experimental problem motivating the work is the densification of carbon preforms by reactive melt infiltration. The aim is to determine the optimization principles for the manufacturing of high-performance ceramics. Simulations are performed for packings with varying structural properties. The results suggest that the observed slow infiltrations can be ascribed to interface dynamics. Pinning represents the primary factor retarding fluid penetration. The mechanism responsible for this phenomenon is analyzed in detail. When surface growth is allowed, it is found that the phenomenon of pinning becomes stronger. Systems trying to reproduce typical experimental conditions are also investigated. It turns out that the standard for accurate simulations is challenging. The primary obstacle to overcome for enhanced accuracy seems to be the over-occurrence of pinning.
Directory of Open Access Journals (Sweden)
Martina Temunović
Full Text Available Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM. We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.
Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.
Yang, Ye; Christensen, Ole F; Sorensen, Daniel
2011-02-01
Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.
Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell
Vakhnenko, Oleksiy O.
2018-05-01
Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.
Geological heterogeneity: Goal-oriented simplification of structure and characterization needs
Savoy, Heather; Kalbacher, Thomas; Dietrich, Peter; Rubin, Yoram
2017-11-01
Geological heterogeneity, i.e. the spatial variability of discrete hydrogeological units, is investigated in an aquifer analog of glacio-fluvial sediments to determine how such a geological structure can be simplified for characterization needs. The aquifer analog consists of ten hydrofacies whereas the scarcity of measurements in typical field studies precludes such detailed spatial models of hydraulic properties. Of particular interest is the role of connectivity of the hydrofacies structure, along with its effect on the connectivity of mass transport, in site characterization for predicting early arrival times. Transport through three realizations of the aquifer analog is modeled with numerical particle tracking to ascertain the fast flow channel through which early arriving particles travel. Three simplification schemes of two-facies models are considered to represent the aquifer analogs, and the velocity within the fast flow channel is used to estimate the apparent hydraulic conductivity of the new facies. The facies models in which the discontinuous patches of high hydraulic conductivity are separated from the rest of the domain yield the closest match in early arrival times compared to the aquifer analog, but assuming a continuous high hydraulic conductivity channel connecting these patches yields underestimated early arrivals times within the range of variability between the realizations, which implies that the three simplification schemes could be advised but pose different implications for field measurement campaigns. Overall, the results suggest that the result of transport connectivity, i.e. early arrival times, within realistic geological heterogeneity can be conserved even when the underlying structural connectivity is modified.
Cox, William T L; Devine, Patricia G
2015-01-01
We advance a theory-driven approach to stereotype structure, informed by connectionist theories of cognition. Whereas traditional models define or tacitly assume that stereotypes possess inherently Group → Attribute activation directionality (e.g., Black activates criminal), our model predicts heterogeneous stereotype directionality. Alongside the classically studied Group → Attribute stereotypes, some stereotypes should be bidirectional (i.e., Group ⇄ Attribute) and others should have Attribute → Group unidirectionality (e.g., fashionable activates gay). We tested this prediction in several large-scale studies with human participants (NCombined = 4,817), assessing stereotypic inferences among various groups and attributes. Supporting predictions, we found heterogeneous directionality both among the stereotype links related to a given social group and also between the links of different social groups. These efforts yield rich datasets that map the networks of stereotype links related to several social groups. We make these datasets publicly available, enabling other researchers to explore a number of questions related to stereotypes and stereotyping. Stereotype directionality is an understudied feature of stereotypes and stereotyping with widespread implications for the development, measurement, maintenance, expression, and change of stereotypes, stereotyping, prejudice, and discrimination.
Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.
Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A; Greenbaum, Steve; Wang, Chunsheng; Xu, Kang
2017-10-24
Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.
Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods
International Nuclear Information System (INIS)
Music, Denis; Ahuja, Rajeev; Schneider, Jochen M.
2006-01-01
Using first-principles methods, we have studied the electronic structure and lattice dynamics of CaPd 3 B and compared them to isostructural MgNi 3 C. CaPd 3 B possesses less electronic states at the Fermi level, but more phonon modes at low frequencies, than MgNi 3 C. According to the phonon density of states, low frequency acoustic modes are dominated by Pd states, corresponding to Ni in MgNi 3 C. Furthermore, these Pd modes show soft phonons, which may be significant for second-order phase transitions. Based on the comparison to MgNi 3 C, we suggest that the properties of these two compounds may be similar
Directory of Open Access Journals (Sweden)
Zbisław Tabor
2011-05-01
Full Text Available In the study an algorithm based on a lattice gas model is proposed as a tool for enhancing quality of lowresolution images of binary structures. Analyzed low-resolution gray-level images are replaced with binary images, in which pixel size is decreased. The intensity in the pixels of these new images is determined by corresponding gray-level intensities in the original low-resolution images. Then the white phase pixels in the binary images are assumed to be particles interacting with one another, interacting with properly defined external field and allowed to diffuse. The evolution is driven towards a state with maximal energy by Metropolis algorithm. This state is used to estimate the imaged object. The performance of the proposed algorithm and local and global thresholding methods are compared.
Yumak, A.; Boubaker, K.; Petkova, P.; Yahsi, U.
2015-10-01
In is known that short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with single chlorine content. Due to their physical properties (viscosity, flame resistance) they are used in many different applications, such as lubricant additives, metal processing, leather fat-liquoring, plastics softening, PVC plasticizing and flame retardants in paints, adhesives and sealants. SCCPs are studied here in terms of processing-linked molecular structure stability, under Simha and Somcynsky-EOS theory calculations and elements from Simha-Somcynsky-related Lattice Compatibility Theory. Analyses were carried out on 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro 2-methylane, and 2-chloro 2-methylane as (SCCPs) universal representatives. This paper gives evidence to this stability and reviews the current state of knowledge and highlights the need for further research in order to improve future (SCCPs) monitoring efforts.
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
International Nuclear Information System (INIS)
Ishikawa, K.; Schierholz, G.; Teper, M.; Schneider, H.
1982-12-01
We present some techniques for elucidating hadronic structure via lattice Monte Carlo calculations. Applying these techniques, we measure the fluctuations of colour magnetic and electric fields as well as the topological charge density inside and outside the lowest lying 0 + and 2 + glueballs in the SU(2) non-abelian lattice gauge theory. This gives us a detailed picture of the glueball structure. We also obtain, as a by-product, a reliable estimate of the gluon condensate sup(αs)/sub(π) and an estimate of the O - glueball mass which agrees with our previous estimates. (orig.)
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
Energy Technology Data Exchange (ETDEWEB)
Coste, M.
1994-01-01
This note gives in detailed way the self-shielding formalism which is used in the multigroup transport code APOLLO2. The self-shielded cross-sections are performed with the same scheme as in APOLLO1. We use two equivalencies, first an heterogeneous/homogeneous equivalence which gives the reaction rates and then a multigroup equivalence in order to obtain the cross-sections which preserve these reaction rates. However, numerous improvements were implemented, specially in the homogenization step. Homogenization can be performed group per group with different modelizations of the heavy slowing-down operator (statistical, intermediary and ``wide resonance`` models), which allows us to fit correctly the resonance shapes. Moreover, we can take exactly into account the spatial interferences between resonant isotopes with the background matrix model. Consequently, we are now able to perform, for instance, the radial distribution of the resonant absorption inside a fuel pin. (author). 7 refs., 3 figs.
Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation
DEFF Research Database (Denmark)
Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel
2011-01-01
of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box–Cox transformations. Litter size data in rabbits and pigs that had previously been analysed...... in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box–Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis...... in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected...
GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing
Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal
2016-01-01
Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300
GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.
Directory of Open Access Journals (Sweden)
Ye Fang
Full Text Available Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU. First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.
International Nuclear Information System (INIS)
Sharifi, Hamid; Larouche, Daniel
2015-01-01
The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium–copper alloy (Al–5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie–Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected. (paper)
International Nuclear Information System (INIS)
Jo, Jong Chull; Roh, Kyung Wan; Jhung, Myung Jo
2006-12-01
During this work period, a preliminary research has been conducted in the three different and related areas as stated in the proposal: literature survey, preliminary feasibility study of LBM and FEM coupling for FSI problems, and benchmark problems. As far as the literature review was concerned, approximately one hundred articles were found for the LBM techniques and critical review has been performed. The reviewed articles were classified into several topics that are useful for a subsequent development of the proposed computer program. Those topics included immiscible multicomponent flows, flow with energy transport, coupled multi-physics applications, application of the boundary conditions, irregular lattices, and turbulence. Furthermore, some fundamental review of the LBM was also included in this report. Secondly, a description of the LBM and FEM coupling program, which has been developed so far, was described here along with some demonstration examples. The preliminary study showed a great potential of the proposed technique for FSI application. A sample computer program list is also attached as Appendix A. As a future benchmark study, a set of test cases were proposed so that experimental data would be obtained in the next phase of the study. These data would be beneficial to understand the fundamental physics of the FSI nature under different basic conditions, and also provide benchmark results against which the developed program at a later stage could be validated. Finally, the future research direction as the extension of the present work is provided with emphasis on its goal, as well as merits and benefits resulting from the proposed research for the regulatory evaluation activities of KINS and the associated technical activities of industries such as design, manufacturing, fabrication, operation and maintenance
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Kroonblawd, Matthew P.; Goldman, Nir
2018-05-01
We predict mechanochemical formation of heterogeneous diamond structures from rapid uniaxial compression in graphite using quantum molecular dynamics simulations. Ensembles of simulations reveal the formation of different diamondlike products starting from thermal graphite crystal configurations. We identify distinct classes of final products with characteristic probabilities of formation, stress states, and electrical properties and show through simulations of rapid quenching that these products are nominally stable and can be recovered at room temperature and pressure. Some of the diamond products exhibit significant disorder and partial closure of the energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (i.e., the HOMO-LUMO gap). Seeding atomic vacancies in graphite significantly biases toward forming products with small HOMO-LUMO gap. We show that a strong correlation between the HOMO-LUMO gap and disorder in tetrahedral bonding configurations informs which kinds of structural defects are associated with gap closure. The rapid diffusionless transformation of graphite is found to lock vacancy defects into the final diamond structure, resulting in configurations that prevent s p3 bonding and lead to localized HOMO and LUMO states with a small gap.
Chin, Wen Cheong; Lee, Min Cherng; Yap, Grace Lee Ching
2016-01-01
High frequency financial data modelling has become one of the important research areas in the field of financial econometrics. However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. In this study, we propose a structural break heavy-tailed heterogeneous autoregressive (HAR) volatility econometric model with the enhancement of jump-robust estimators. The breakpoints in the volatility are captured by dummy variables after the detection by Bai-Perron sequential multi breakpoints procedure. In order to further deal with possible abrupt jump in the volatility, the jump-robust volatility estimators are composed by using the nearest neighbor truncation approach, namely the minimum and median realized volatility. Under the structural break improvements in both the models and volatility estimators, the empirical findings show that the modified HAR model provides the best performing in-sample and out-of-sample forecast evaluations as compared with the standard HAR models. Accurate volatility forecasts have direct influential to the application of risk management and investment portfolio analysis.
Phase-structure of SU(3) lattice gauge-higgs model
International Nuclear Information System (INIS)
Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.
1985-01-01
Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
Henri, C.; Fernandez-Garcia, D.; de Barros, F.
2013-12-01
The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and to the need to develop and employ models that can predict the impact of groundwater contamination in human health under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases and represents an attractive decontamination method. However, natural attenuation can lead to the production of subspecies of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health and ecosystems greatly depends on the interplay between the complexity of the geological system and the toxicity of the pollutants and their byproducts. In this work, we examine the interplay between multispecies reactive transport and the heterogeneous structure of the contaminated aquifer on human health risk predictions. The structure and organization of hydraulic properties of the aquifer can lead to preferential flow channels and fast contamination pathways. Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in the case of multi-species systems, early travel times may also lead a limited production of daughter species that may contain higher toxicity as in the case of chlorinated compounds. In this work, we model a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport for two distinct three-dimensional aquifer structures. First, a multi-Gaussian hydraulic conductivity field and secondly, a geostatistically equivalent connected field. These two heterogeneity structures will provide two distinct ranges of mean travel
Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong
2017-07-03
Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.
Ecrepont, Stephane; Cudennec, Christophe; Jaffrezic, Anne; de Lavenne, Alban
2017-04-01
Towards hydrochemical PUB - stable vs. heterogeneous NO3 and DOC signatures across hydrographic structure and size Ecrepont, S.1Cudennec, C.1 Jaffrézic, A.1 de Lavenne, A.2 1UMR SAS, Agrocampus Ouest, Rennes, France 2 HBAN, Irstea, Antony, France Intensive agriculture is a major disturbing factor for water quality in Brittany, France. Observations of chemical data from 350 catchments over a 15 year period show that the high variability of hydrochemical dynamics between catchments in relation to geographic characteristics and farming practices, decreases with an increase in the catchment size. A stable signature of nitrate and DOC dynamics does emerge for bigger catchments, and was evidenced statistically. We adapted a modified version of the standard deviation formula to calculate an index on mean inter-annual winter nitrate and dissolved organic carbon concentrations to characterize each catchment. The method was applied to the whole sample of catchments, some of them nested, to investigate variation of our new index across scales and regions. Results show an increasing and non-linear relationship between the criterion and the surface, with threshold effects. The stability of the thresholds across river basins in Brittany, and across seasons and years is explored. This emergence relates to the progressive connection of streams with heterogeneous characteristic chemical signatures into a mixing dominant effect. The better assessment of this relationship opens two major perspectives: i) to define a geomorphology-based PUB (Prediction in Ungauged Basins) approach for hydrochemistry; ii) to identify the most critical sub-catchments for mitigating actions in terms of farming and landscape practices towards water quality recovery.
Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2018-05-01
Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.
Multiscale Modeling of Point and Line Defects in Cubic Lattices
National Research Council Canada - National Science Library
Chung, P. W; Clayton, J. D
2007-01-01
.... This multiscale theory explicitly captures heterogeneity in microscopic atomic motion in crystalline materials, attributed, for example, to the presence of various point and line lattice defects...
Energy Technology Data Exchange (ETDEWEB)
Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)
2015-06-28
In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible
International Nuclear Information System (INIS)
Maruno, Ken-ichi; Biondini, Gino
2004-01-01
We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)
Chao, Ming; Wei, Jie; Narayanasamy, Ganesh; Yuan, Yading; Lo, Yeh-Chi; Peñagarícano, José A
2018-05-01
To investigate three-dimensional cluster structure and its correlation to clinical endpoint in heterogeneous dose distributions from intensity modulated radiation therapy. Twenty-five clinical plans from twenty-one head and neck (HN) patients were used for a phenomenological study of the cluster structure formed from the dose distributions of organs at risks (OARs) close to the planning target volumes (PTVs). Initially, OAR clusters were searched to examine the pattern consistence among ten HN patients and five clinically similar plans from another HN patient. Second, clusters of the esophagus from another ten HN patients were scrutinized to correlate their sizes to radiobiological parameters. Finally, an extensive Monte Carlo (MC) procedure was implemented to gain deeper insights into the behavioral properties of the cluster formation. Clinical studies showed that OAR clusters had drastic differences despite similar PTV coverage among different patients, and the radiobiological parameters failed to positively correlate with the cluster sizes. MC study demonstrated the inverse relationship between the cluster size and the cluster connectivity, and the nonlinear changes in cluster size with dose thresholds. In addition, the clusters were insensitive to the shape of OARs. The results demonstrated that the cluster size could serve as an insightful index of normal tissue damage. The clinical outcome of the same dose-volume might be potentially different. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Dohoon; McLanahan, Sara
2015-08-01
A growing literature documents the importance of family instability for child wellbeing. In this article, we use longitudinal data from the Fragile Families and Child Wellbeing Study to examine the impacts of family instability on children's cognitive and socioemotional development in early and middle childhood. We extend existing research in several ways: (1) by distinguishing between the number and types of family structure changes; (2) by accounting for time-varying as well as time-constant confounding; and (3) by assessing racial/ethnic and gender differences in family instability effects. Our results indicate that family instability has a causal effect on children's development, but the effect depends on the type of change, the outcome assessed, and the population examined. Generally speaking, transitions out of a two-parent family are more negative for children's development than transitions into a two-parent family. The effect of family instability is stronger for children's socioemotional development than for their cognitive achievement. For socioemotional development, transitions out of a two-parent family are more negative for white children, whereas transitions into a two-parent family are more negative for Hispanic children. These findings suggest that future research should pay more attention to the type of family structure transition and to population heterogeneity.
Mixing Energy Models in Genetic Algorithms for On-Lattice Protein Structure Prediction
Directory of Open Access Journals (Sweden)
Mahmood A. Rashid
2013-01-01
Full Text Available Protein structure prediction (PSP is computationally a very challenging problem. The challenge largely comes from the fact that the energy function that needs to be minimised in order to obtain the native structure of a given protein is not clearly known. A high resolution 20×20 energy model could better capture the behaviour of the actual energy function than a low resolution energy model such as hydrophobic polar. However, the fine grained details of the high resolution interaction energy matrix are often not very informative for guiding the search. In contrast, a low resolution energy model could effectively bias the search towards certain promising directions. In this paper, we develop a genetic algorithm that mainly uses a high resolution energy model for protein structure evaluation but uses a low resolution HP energy model in focussing the search towards exploring structures that have hydrophobic cores. We experimentally show that this mixing of energy models leads to significant lower energy structures compared to the state-of-the-art results.
International Nuclear Information System (INIS)
Smith, L.
1975-01-01
An analysis is given of a number of variants of the basic lattice of the planned ISABELLE storage rings. The variants were formed by removing cells from the normal part of the lattice and juggling the lengths of magnets, cells, and insertions in order to maintain a rational relation of circumference to that of the AGS and approximately the same dispersion. Special insertions, correction windings, and the working line with nonlinear resonances are discussed
Magnetophonon resonance in multimode lattices and two-dimensional structures (DQW)
Ploch, D.; Sheregii, E.; Marchewka, M.; Tomaka, G.
2007-12-01
The experimental results obtained for the magneto-transport in the InGaAs/InAlAs double quantum wells (DQW) structures of two different shapes of wells are reported. The Magnetophonon Resonance (MPR) o was observed for both types of the structures at 77-125K temperatures in the pulsed magnetic field. Four kinds of LO-phonons are taken into account to interpret the MPR oscillations in DQW. The particularity of MPR in DQW is the great number Landau levels caused by SAS-splitting all electron states.
Magnetophonon resonance in multimode lattices and two-dimensional structures (DQW)
Energy Technology Data Exchange (ETDEWEB)
Ploch, D; Sheregii, E; Marchewka, M; Tomaka, G [Institute of Physics University of Rzeszow, 35-310 Rzeszow, Rejtana 16 (Poland)
2007-12-15
The experimental results obtained for the magneto-transport in the InGaAs/InAlAs double quantum wells (DQW) structures of two different shapes of wells are reported. The Magnetophonon Resonance (MPR) o was observed for both types of the structures at 77-125K temperatures in the pulsed magnetic field. Four kinds of LO-phonons are taken into account to interpret the MPR oscillations in DQW. The particularity of MPR in DQW is the great number Landau levels caused by SAS-splitting all electron states.
Energy Technology Data Exchange (ETDEWEB)
Uslar, Mathias
2010-07-01
Today, utilities face a constant change to their business which is mainly driven by two factors. On the one hand, resources like oil and charcoal which deliver most of the energy for producing electricity become more and more scarce and, therefore, more expensive. This forces utilities to look for alternatives to those resources in order to avoid the price pressure. New renewable energy resources like wind turbines, photovoltaic, bio mass or geothermals become more and more popular. On the other hand, the regulation done by the European Commission has a strong impact on the utilities because of the liberalization of the energy markets. The market was opened by the so called unbundling which is, in fact, the separation of the distribution grid from the capability of producing energy which was common before leading to the fact, that the producers of energy also were the only ones which could sell and distribute the energy which lead to monopolistic structures on the market. Nowadays, we have a market where the customers can choose between the offers from different utilities. Those changes to the utility domain have a direct impact on the IT-landscape of the utility who has to deal with new processes which have to be supported by changes like new systems or services and new interfaces between the existing systems in order to support the new requirements. In general, the utility has to deal with standards and norms for the domain in this described setting in order to exchange data with other market participants or in order to integrate their own systems in an appropriate manner. In the electric utility domain, the Common Information Model CIM has spread for the scope of SCADA (supervisory Control and Data Acquisition) and market communications. It is standardized by the IEC (International Electrotechnical Commission) as the IEC 61970 family of standards. The second important family is the IEC 61850 family which deals with communication networks and systems in
Electronic band structure calculations for GaxIn1−xASyP1−y alloys lattice matched to InP
International Nuclear Information System (INIS)
Bechiri, A; Benmakhlouf, F; Allouache, H; Bacha, S; Bouarissa, N
2012-01-01
A pseudopotential formalism coupled with the virtual crystal approximation are applied to study the effect of compositional disorder upon electronic band structure of cubic Ga x In 1−x As y P 1−y quarternary alloys lattice matched to InP. The effects of compositional variations are properly included in the calculations. Very good agreement is obtained between the calculated values and the available experimental data for the lattice–matched alloy to InP. The absorption at the fundamental optical gaps is found to be direct within a whole range of the y composition whatever the lattice-matching to the substrate of interest. The alloy system Ga x In 1−x As y P 1−y lattice matched to InP is suggested to be suitable for an efficient light emitting device (ELED) material.
Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.
2008-12-01
methods to study such naturally occurring nanomaterials, both at the molecular- and nm-scale. This work provides structural information at the short-, medium- and long- range, as well as evidence of compositional heterogeneity, and mineral/organic matter associations.
On the phase structure of lattice SU(2) Gauge-Higgs theory
International Nuclear Information System (INIS)
Gerdt, V.P.; Mitryushkin, V.K.; Zadorozhnyj, A.M.; Ilchev, A.S.
1985-01-01
The results on the phase structure of SU(2) gauge theory coupled with radially active Higgs fields are iscussed. It is shown that obtained results are not in contradiction with the known ones. The first order phase transitions observed are confirmed by the Monte Carlo calcUlations and by the analysis of an approximate effective potential
Energy Technology Data Exchange (ETDEWEB)
Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian [Shangrao Normal University, Jiangxi (China). School of Physics and Electronic Information
2016-07-01
The electron paramagnetic resonance (EPR) parameters [i.e. g factors g{sub i} (i=x, y, z) and hyperfine structure constants A{sub i}] and the local lattice structure for the Cu{sup 2+} centre in Tl{sub 2}Zn(SO{sub 4}){sub 2}.6H{sub 2}O (TZSH) crystal were theoretically investigated by utilising the perturbation formulae of these parameters for a 3d{sup 9} ion under rhombically elongated octahedra. In the calculations, the admixture of d orbitals in the ground state and the ligand orbital and spin-orbit coupling interactions are taken into account based on the cluster approach. The theoretical EPR parameters show good agreement with the observed values, and the Cu{sup 2+}-H{sub 2}O bond lengths are obtained as follows: R{sub x}∼1.98 Aa, R{sub y}∼2.09 Aa, R{sub z}∼2.32 Aa. The results are discussed.
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min
2015-02-01
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.
Risteiu, M.; Dobra, R.; Andras, I.; Roventa, M.; Lorincz, A.
2017-06-01
The paper shows the results of a lab model for strain gauges based measuring system for multiple measuring heads of the mechanical stress in lattice structures of the bucket wheel excavator for open pit mines-harsh environment. The system is designed around a microcontroller system. Because of specific working conditions, the measuring system sends data to a processing system (a PC with Matlab software), we have implemented a secure communication solution based on ISM standard, by using NRF24L01 module. The transceiver contains a fully integrated frequency synthesizer based on crystal oscillator, and a Enhanced ShockBurst™ protocol engine. The proposed solution has a current consumption around 9.0 mA at an output power of -6dBm and 12.3mA in RX mode. Built-in Power Down and Standby modes makes power saving easily realizable for our solution battery powered. The stress from structures is taken by specific strain gauges adapted to low frequency vibrations. We are using a precision 24-bit analog-to-digital converter (ADC) designed for weigh scales and industrial control applications to interface directly with a bridge sensor-instrumentation device, with low drift voltage, low noise, common mode rejection signal, frequency and temperature stability. As backup implementation for measurements a high speed storage implementation is used.
Energy Technology Data Exchange (ETDEWEB)
Cogne, F; Journet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
The experiments described in this report have been carried out for the most part in the critical facility MARIUS, and a few during the start up of the EDF-1 power reactor. The first part deals with the fine structure measurements made in various lattices and with their analysis. Integration over the neutron spectrum of the mono-kinetic disadvantage factor derived by the A.B.H method yields results in good agreement with the experiments. The second part deals with spectral indexes measurements (Pu/U, In/Mn) made at room temperature in MARIUS. Comparison are made of experiments with calculations using various thermalization models. Experiments carried out at higher temperatures in EDF-1 are also described. (authors) [French] Les mesures decrites dans ce rapport ont ete faites pour la plupart dans l'empilement critique MARIUS sur des reseaux a graphite-uranium naturel. Une premiere partie traite des mesures de structure fine faites dans differents reseaux et de leur interpretation. On montre en particulier qu'une integration sur le spectre d'un calcul monocinetique type A.B.H. rend bien compte des experiences. Dans une deuxieme partie, on donne les resultats de mesures d'indices de spectre Pu/U et In/Mn faites sur des reseaux froids a MARIUS et leur comparaison avec les differents modeles de calculs de thermalisation. On donne egalement les resultats de quelques mesures en temperature effectuees lors du demarrage du reacteur EDF-1. (auteurs)
Electronic structure and lattice dynamics at the interface of single layer FeSe and SrTiO3
Ahmed, Towfiq; Balatsky, Alexander; Zhu, Jian-Xin
Recent discovery of high-temperature superconductivity with the superconducting energy gap opening at temperatures close to or above the liquid nitrogen boiling point in the single-layer FeSe grown on SrTiO3 has attracted significant interest. It suggests that the interface effects can be utilized to enhance the superconductivity. It has been shown recently that the coupling between the electrons in FeSe and vibrational modes at the interface play an important role. Here we report on a detailed study of electronic structure and lattice dynamics in the single-layer FeSe/SrTiO3 interface by using the state-of-art electronic structure method within the density functional theory. The nature of the vibrational modes at the interface and their coupling to the electronic degrees of freedom are analyzed. In addition, the effect of hole and electron doping in SrTiO3 on the electron-mode coupling strength is also considered. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and was supported by the DOE Office of Basic Energy Sciences.
Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.
2018-03-01
The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.
First principles study on structural, lattice dynamical and thermal properties of BaCeO3
Zhang, Qingping; Ding, Jinwen; He, Min
2017-09-01
BaCeO3 exhibits impressive application potentials on solid oxide fuel cell electrolyte, hydrogen separation membrane and photocatalyst, owing to its unique ionic and electronic properties. In this article, the electronic structures, phonon spectra and thermal properties of BaCeO3 in orthorhombic, rhombohedral and cubic phases are investigated based on density functional theory. Comparisons with reported experimental results are also presented. The calculation shows that orthorhombic structure is both energetically and dynamically stable under ground state, which is supported by the experiment. Moreover, charge transfer between cations and anions accompanied with phase transition is observed, which is responsible for the softened phonon modes in rhombohedral and cubic phases. Besides, thermal properties are discussed. Oxygen atoms contribute most to the specific heat. The calculated entropy and specific heat at constant pressure fit well with the experimental ones within the measured temperature range.
Zhang, Guo-Qiang; Xing, Guangming; Cui, Licong
2018-04-01
One of the basic challenges in developing structural methods for systematic audition on the quality of biomedical ontologies is the computational cost usually involved in exhaustive sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial lowest common ancestors (LCA) of each pair of concepts in the hierarchical order induced by an ontology. The computation of LCA is a fundamental step for non-lattice approach for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-LCA employs a simple but innovative algorithmic strategy combining topological order and dynamic programming to keep track of non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA achieved an average computation time of 30 and 3 sec per version for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best known approaches. Our algorithm overcomes a fundamental computational barrier in sub-graph based structural analysis of large ontological systems. It enables the implementation of a new breed of structural auditing methods that not only identifies potential problematic areas, but also automatically suggests changes to fix the issues. Such structural auditing methods can lead to more effective tools supporting ontology quality assurance work. Copyright © 2018 Elsevier Inc. All rights reserved.
Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.
2017-11-01
Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.
First principle calculation of structure and lattice dynamics of Lu2Si2O7
Directory of Open Access Journals (Sweden)
Nazipov D.V.
2017-01-01
Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.
Interplay of structural instability and lattice dynamics in Ni{sub 2}MnAl shape memory alloys
Energy Technology Data Exchange (ETDEWEB)
Mehaddene, T.
2007-02-12
The work presented here is devoted to investigate the interplay of lattice dynamics and structural instability in Ni{sub 2}MnAl shape memory alloys. Inelastic neutron scattering is used to get more insight on the dynamic precursors of structural instability in Ni{sub 2}MnAl. Differential Scanning Calorimetry was used to characterise the martensitic transition in Ni{sub 2}MnAl alloys. Effects of composition and heat treatments have been investigated. The measured martensitic transition temperature in Ni-Mn-Al alloys depends linearly on the valence electron concentration. Two single crystals with different compositions have been succesfully grown using the Czochralski technique. Acoustic and optical phonon modes have been measured at room temperature in the high symmetry directions of the cubic B2 phase. The force constants have been fitted to the measured data using the Born-von Karman model. The character of the phonon softening measured in Ni{sub 2}MnAl corresponds to the pattern of atomic displacements of the modulations 2M, 10M, 12M and 14M observed in bulk and thin-films of Ni{sub 2}MnAl. The effect of the composition on the lattice instability has been investigated by measuring normal modes of vibration in two different crystals, Ni{sub 51}Mn{sub 18}Al{sub 31} and Ni{sub 53}Mn{sub 22}Al{sub 25}, with e/a ratios of 7.29 and 7.59 respectively. The stabilisation of a single L2{sub 1} phase in Ni{sub 2}MnAl by annealing a Ni{sub 51}Mn{sub 18}Al{sub 31} single crystal at 673 K during 45 days has been attempted. Despite of the long-time annealing, a single L2{sub 1} phase could not be stabilised because of either a slow diffusion kinetics or the establishment of an equilibrium between the L2{sub 1} and the B2 phases. Phonon measurements of the TA{sub 2}[{xi}{xi}0] branch in the annealed sample revealed a substantial effect. The wiggle, associated with the anomalous softening, is still present but the degree of softening is smaller below 673 K and changes
Directory of Open Access Journals (Sweden)
Jin Cheng
2018-01-01
Full Text Available In order to achieve high punching precision, good operational reliability and low manufacturing cost, the structural optimization of a high-speed press in the presence of a set of available alternatives comprises a heterogeneous multiple-attribute decision-making (HMADM problem involving deviation, fixation, cost and benefit attributes that can be described in various mathematical forms due to the existence of multi-source uncertainties. Such a HMADM problem cannot be easily resolved by existing methods. To overcome this difficulty, a new heterogeneous technique for order preference by similarity to an ideal solution (HTOPSIS is proposed. A new approach to normalization of heterogeneous attributes is proposed by integrating the possibility degree method, relative preference relation and the attribute transformation technique. Expressions for determining positive and negative ideal solutions corresponding to heterogeneous attributes are also developed. Finally, alternative structural configurations are ranked according to their relative closeness coefficients, and the optimal structural configuration can be determined. The validity and effectiveness of the proposed HTOPSIS are demonstrated by a numerical example. The proposed HTOPSIS can also be applied to structural optimization of other complex equipment, because there is no prerequisite of independency among various attributes for its application.
Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon
Energy Technology Data Exchange (ETDEWEB)
Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)
2013-12-04
We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.
Hsiung, Huan-Yi; Huang, Bing-Hong; Chang, Jui-Tse; Huang, Yao-Moan; Huang, Chih-Wei; Liao, Pei-Chun
2017-01-01
Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis , which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of "early divergence with secondary contact" and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level.
Moradi, Saber; Qiao, Ning; Stefanini, Fabio; Indiveri, Giacomo
2018-02-01
Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multicore neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.
Directory of Open Access Journals (Sweden)
Seok-Hyoung Lee
2012-06-01
Full Text Available While science and technology information service portals and heterogeneous databases produced in Korea and other countries are integrated, methods of connecting the unique classification systems applied to each database have been studied. Results of technologists' research, such as, journal articles, patent specifications, and research reports, are organically related to each other. In this case, if the most basic and meaningful classification systems are not connected, it is difficult to achieve interoperability of the information and thus not easy to implement meaningful science technology information services through information convergence. This study aims to address the aforementioned issue by analyzing mapping systems between classification systems in order to design a structure to connect a variety of classification systems used in the academic information database of the Korea Institute of Science and Technology Information, which provides science and technology information portal service. This study also aims to design a mapping system for the classification systems to be applied to actual science and technology information services and information management systems.
Schmitz, Alexander; Fischer, Sabine C; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H K
2017-03-03
Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10 5 to 1 × 10 6 cells/mm 3 . Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.
Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple
West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N
2014-07-01
The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of
Zarei, Vahhab; Liu, Chao J; Claeson, Amy A; Akkin, Taner; Barocas, Victor H
2017-08-01
The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.
Evolution of Cooperation in Evolutionary Games for Heterogeneous Interactions
International Nuclear Information System (INIS)
Qian Xiaolan; Yang Junzhong
2012-01-01
When a population structure is modelled as a square lattice, the cooperation may be improved for an evolutionary prisoner dilemma game or be inhibited for an evolutionary snowdrift game. In this work, we investigate cooperation in a population on a square lattice where the interaction among players contains both prisoner dilemma game and snowdrift game. The heterogeneity in interaction is introduced to the population in two different ways: the heterogenous character of interaction assigned to every player (HCP) or the heterogenous character of interaction assigned to every link between any two players (HCL). The resonant enhancement of cooperation in the case of HCP is observed while the resonant inhibition of cooperation in the case of HCL is prominent. The explanations on the enhancement or inhibition of cooperation are presented for these two cases. (general)
Jinuntuya, Fontip; Whiteley, Michael; Chen, Rui; Fly, Ashley
2018-02-01
The Gas Diffusion Layer (GDL) of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) plays a crucial role in overall cell performance. It is responsible for the dissemination of reactant gasses from the gas supply channels to the reactant sites at the Catalyst Layer (CL), and the adequate removal of product water from reactant sites back to the gas channels. Existing research into water transport in GDLs has been simplified to 2D estimations of GDL structures or use virtual stochastic models. This work uses X-ray computed tomography (XCT) to reconstruct three types of GDL in a model. These models are then analysed via Lattice Boltzmann methods to understand the water transport behaviours under differing contact angles and pressure differences. In this study, the three GDL samples were tested over the contact angles of 60°, 80°, 90°, 100°, 120° and 140° under applied pressure differences of 5 kPa, 10 kPa and 15 kPa. By varying the contact angle and pressure difference, it was found that the transition between stable displacement and capillary fingering is not a gradual process. Hydrophilic contact angles in the region of 60°<θ < 90° showed stable displacement properties, whereas contact angles in the region of 100°<θ < 140° displayed capillary fingering characteristics.
Zhang, Li-Zhi; Yuan, Wu-Zhi
2018-04-01
The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Energy Technology Data Exchange (ETDEWEB)
Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Gravina, M., E-mail: gravina@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy)
2014-11-15
We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N{sub t}=2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures.
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Gravina, M.; Papa, A.
2014-01-01
We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N t =2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures
Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.
2017-07-01
We present results of a detailed theoretical study of the electronic, magnetic, and structural properties of the chalcogenide parent system FeSe using a fully charge-self-consistent implementation of the density functional theory plus dynamical mean-field theory (DFT+DMFT) method. In particular, we predict a remarkable change of the electronic structure of FeSe which is accompanied by a complete reconstruction of the Fermi surface topology (Lifshitz transition) upon a moderate expansion of the lattice volume. The phase transition results in a change of the in-plane magnetic nesting wave vector from (π ,π ) to (π ,0 ) and is associated with a transition from itinerant to orbital-selective localized magnetic moments. We attribute this behavior to a correlation-induced shift of the Van Hove singularity of the Fe t2 bands at the M point across the Fermi level. Our results reveal a strong orbital-selective renormalization of the effective mass m*/m of the Fe 3 d electrons upon expansion. The largest effect occurs in the Fe x y orbital, which gives rise to a non-Fermi-liquid-like behavior above the transition. The behavior of the momentum-resolved magnetic susceptibility χ (q ) demonstrates that magnetic correlations are also characterized by a pronounced orbital selectivity, suggesting a spin-fluctuation origin of the nematic phase of paramagnetic FeSe. We conjecture that the anomalous behavior of FeSe upon expansion is associated with the proximity of the Fe t2 Van Hove singularity to the Fermi level and the sensitive dependence of its position on external conditions.
Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés
2017-07-01
There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.
Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo
2007-09-01
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together
MACS, Lattice Vibrations Structure Factors for Thermal Neutron Scattering in Moderators
International Nuclear Information System (INIS)
McMurry, H.L.; Suitt, W.J.; Worlton, T.G.; Martin, R.M.
1974-01-01
1 - Description of problem or function: This package of seven related codes is basically aimed at giving maximum capability for calculating slow-neutron scattering by moderators. MACS-C computes crystal vibrations when the potential energy is a sum of parts arising from short-range forces and long-range Coulomb interactions. It also obtains Jacobian matrices for determining adjustments in force constants and ionic charge which can lead to improved agreement with data. Structure factors for neutron inelastic scattering can also be calculated. MACS-J computes the dynamical matrix for the harmonic oscillations of a crystal, its eigenvalues and eigenvectors, the corresponding structure factors for coherent single-phonon scattering of neutrons, and Jacobian matrices for use in adjusting force constants to fit calculated to observed dispersion curves. REVISED-D calculates valance coordinates in terms of mass adjusted atom displacements, together with coordinates which define rigid group rotations. REVISED-MVFC constructs force constant matrices for use in valance force potential functions which are used in other programs dealing with molecular and crystal vibrations. ADJUSTER is a force adjuster program to obtain a least squares fit to observed frequencies of molecules and crystals. DIPOLE-SUM calculates dipole sums for an arbitrary crystal. MODEL-PI calculates crystal vibrations when the potential energy is a sum of short-range and long- or intermediate-range terms in the dipole coordinate approximation. It also obtains Jacobian matrices for use in adjusting input parameters. 2 - Method of solution: In MACS-C, ADJUSTER, and REVISED-D, matrix manipulations are applied to matrices which describe physical conditions. In MACS-J, first-order difference equations are substituted for partial differential equations for Jacobian elements. In MVFC the user employs a set of criteria for defining different types of interactions to prepare by hand the input to the program. For
Bidirectional Fano Algorithm for Lattice Coded MIMO Channels
Al-Quwaiee, Hessa
2013-01-01
channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered
STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004
International Nuclear Information System (INIS)
Pollard, David; Aydin, Atilla
2005-01-01
Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical
Coffey, G. L.; Savage, H. M.; Polissar, P. J.; Rowe, C. D.
2017-12-01
Faults are generally heterogeneous along-strike, with changes in thickness and structural complexity that should influence coseismic slip. However, observational limitations (e.g. limited outcrop or borehole samples) can obscure this complexity. Here we investigate the heterogeneity of frictional heating determined from biomarker thermal maturity and microstructural observations along a well-exposed fault to understand whether coseismic stress and frictional heating are related to structural complexity. We focus on the Muddy Mountain thrust, Nevada, a Sevier-age structure that has continuous exposure of its fault core and considerable structural variability for up to 50 m, to explore the distribution of earthquake slip and temperature rise along strike. We present new biomarker thermal maturity results that capture the heating history of fault rocks. Biomarkers are organic molecules produced by living organisms and preserved in the rock record. During heating, their structure is altered systematically with increasing time and temperature. Preliminary results show significant variability in thermal maturity along-strike at the Muddy Mountain thrust, suggesting differences in coseismic temperature rise on the meter- scale. Temperatures upwards of 500°C were generated in the principal slip zone at some locations, while in others, no significant temperature rise occurred. These results demonstrate that stress or slip heterogeneity occurred along the Muddy Mountain thrust at the meter-scale and considerable along-strike complexity existed, highlighting the importance of careful interpretation of whole-fault behavior from observations at a single point on a fault.
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)
Heavy nucleus resonance absorption in heterogeneous lattices
International Nuclear Information System (INIS)
Coste, M.; Tellier, H.; Brienne-Raepsaet, C.; Van Der Gucht, C.
1992-01-01
To compute easily the neutron reaction rates in the resonance energy range, the reactor physicists use the self-shielding formalism and the effective cross-section concept. Usually, for these calculations, and equivalence process is used, in such a way that the absorption rate is correctly computed for the whole fuel pin. This procedure does not allow to preserve the spatial absorption rate distribution inside the pin. It is an important handicap if we want to reproduce the plutonium distribution in a spent fuel. To avoid this inconvenience, new improvements of the self-shielding formalism have been recently introduced in the new assembly calculation code of the French Atomic Energy Commission, APOLLO 2. With this improved formalism, it is now possible to represent the spatial and energetic dependence of the heavy nucleus absorption inside the fuel pin and to use a fine energy dependent equivalence process. As it does not exist clean experimental results for the spatial and energetic dependence of the absorption, the authors used reference calculations to qualify the self-shielding formalism. For the strongly self-shielded nuclei of interest in reactor physics, U238, Pu240 and Th232, the agreement between the self-shielding calculation and the reference ones is fairly good for the spatial and energetic dependence of the absorption rate
Heavy nucleus resonant absorption in heterogeneous lattices
International Nuclear Information System (INIS)
Tellier, H.; Coste, M.; Raepsaet, C.; Van der Gucht, C.
1992-11-01
The new self shielding formalism which is implemented in the transport code APPOLO 2 allows to compute the space and the energy dependence of the resonant absorption rate inside a fuel rod. As it does not exist any experimental result to check such a computation, we used very sophisticated reference calculations to check the self shielding formalism. Two kinds of reference calculation were used: a multi-group slowing down calculation with a very detailed energy mesh and a MONTE CARLO computation with point wise cross sections. The purpose of this study is a comparison of the self-shielding result with the ones of the two reference calculations. The geometry of the fuel element is the one of a light water-reactor and the resonant nuclei are the most important self-shielded nuclei: 238U, 232Th or 240Pu. The reactor agreement between the three kinds of calculations is very satisfactory for the nominal water density and for a reduced water density which simulates incidental operating conditions
Spin structures of S = 5/2 antiferromagnetic triangular lattices: AAg{sub 2}M[VO{sub 4}]{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Moeller, Angela; Amuneke, Ngozi E.; Tapp, Joshua [Department of Chemistry and TcSUH, University of Houston (United States); Cruz, Clarina R. de la [Quantum Condensed Matter Division, ORNL, Oak Ridge (United States)
2015-07-01
The AAg{sub 2}M[VO{sub 4}]{sub 2} compounds present a unique series for studying structure-property relationships. The size of the A cation (Ba{sup 2+}, K{sup +}, Rb{sup +}, or Ag{sup +}) controls (i) the inter-layer distances between the magnetic triangular lattices (M, here Mn{sup 2+} or Fe{sup 3+}) and (ii) the distortion of the non-magnetic vanadate units. The crystal and magnetic structures were refined from neutron diffraction data under applied fields (ORNL, HB2A) and reveal the complex magnetic phase diagrams of frustrated S=5/2 triangular lattices with axial and XY-anisotropy, respectively.
International Nuclear Information System (INIS)
Bali, G.S.
2005-01-01
I comment on progress of lattice QCD techniques and calculations. Recent results on pentaquark masses as well as of the spectrum of excited baryons are summarized and interpreted. The present state of calculations of quantities related to the nucleon structure and of electromagnetic transition form factors is surveyed
International Nuclear Information System (INIS)
Autin, B.
1984-01-01
After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)
International Nuclear Information System (INIS)
Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang
2014-01-01
We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.
International Nuclear Information System (INIS)
Deligoz, E.; Colakoglu, K.; Ciftci, Y. O.
2012-01-01
Structural and lattice dynamical properties of ReB 2 , RuB 2 , and OsB 2 in the ReB 2 structure are studied in the framework of density functional theory within the generalized gradient approximation. The present results show that these compounds are dynamically stable for the considered structure. The temperature-dependent behaviors of thermodynamical properties such as internal energy, free energy, entropy, and heat capacity are also presented. The obtained results are in good agreement with the available experimental and theoretical data
Minary-Jolandan, Majid; Yu, Min-Feng
2009-07-28
Understanding piezoelectricity, the linear electromechanical transduction, in bone and tendon and its potential role in mechanoelectric transduction leading to their growth and remodeling remains a challenging subject. With high-resolution piezoresponse force microscopy, we probed piezoelectric behavior in relevant biological samples at different scale levels: from the subfibrillar structures of single isolated collagen fibrils to bone. We revealed that, beyond the general understanding of collagen fibril being a piezoelectric material, there existed an intrinsic piezoelectric heterogeneity within a collagen fibril coinciding with the periodic variation of its gap and overlap regions. This piezoelectric heterogeneity persisted even for the collagen fibrils embedded in bone, bringing about new implications for its possible roles in structural formation and remodeling of bone.
Murali K. Mantrala; Prabhakant Sinha; Andris A. Zoltners
1994-01-01
This paper presents an agency theoretic model-based approach that assists sales managers in determining the profit-maximizing structure of a common multiproduct sales quota-bonus plan for a geographically specialized heterogeneous sales force operating in a repetitive buying environment. This approach involves estimating each salesperson's utility function for income and effort and using these models to predict individual sales achievements and the associated aggregate profit for the firm und...
International Nuclear Information System (INIS)
Boulatov, D.V.; Kazakov, V.A.
1987-01-01
We investigate the critical properties of a recently proposed exactly soluble Ising model on a planar random dynamical lattice representing a regularization of the zero-dimensional string with internal fermions. The sum over all lattices gives rise to a new quantum degree of freedom - fluctuation of the metric. The whole system of critical exponents is found: α = -1, β = 1/2, γ = 2, δ = 5, v . D = 3. To test the universality we have used the planar graphs with the coordination number equal to 4 (Φ 4 theory graphs) as well as with the equal to 3 (Φ 3 theory graphs or triangulations). The critical exponents coincide for both cases. (orig.)
International Nuclear Information System (INIS)
He, L.; Chu, J.P.; Li, C.-L.; Lee, C.-M.; Chen, Y.-C.; Liaw, P.K.; Voyles, P.M.
2014-01-01
In-situ heating fluctuation electron microscopy and scanning transmission electron microscopy have been utilized to study compositional and structural heterogeneities in Zr 51 Cu 32 Al 9 Ni 8 thin films upon annealing. Composition fluctuations are present in the as-deposited thin films. Well below the glass transition temperature, the composition fluctuations increase with annealing time. Short- and medium-range order also change with annealing temperature. The observed heterogeneities in the glass structure persist until annealing causes crystallization. The 20 nm thick Zr 51 Cu 32 Al 9 Ni 8 films contain oxide layers both at the surface and the film/substrate interface with the total thickness of 7–8 nm. In-situ annealing increased the oxygen content of the whole films to about 24 wt.% after 2 h at 400 °C. - Highlights: • Zr 51 Cu 32 Al 9 Ni 8 thin films were studied with in-situ heating electron microscopy. • Annealing at 400 °C increases the Zr and Cu compositional fluctuations. • Short-range order in Zr 51 Cu 32 Al 9 Ni 8 becomes less homogeneous above 350 °C. • Medium-range order changes in degree and types at 400 °C, well below T g . • Annealing increases composition and structure heterogeneities until crystallization
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hongkyu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.
2017-09-01
The purpose of the project was to perform multiscale characterization of low permeability rocks to determine the effect of physical and chemical heterogeneity on the poromechanical and flow responses of shales and carbonate rocks with a broad range of physical and chemical heterogeneity . An integrated multiscale imaging of shale and carbonate rocks from nanometer to centimeter scales include s dual focused ion beam - scanning electron microscopy (FIB - SEM) , micro computed tomography (micro - CT) , optical and confocal microscopy, and 2D and 3D energy dispersive spectroscopy (EDS). In addition, mineralogical mapping and backscattered imaging with nanoindentation testing advanced the quantitative evaluat ion of the relationship between material heterogeneity and mechanical behavior. T he spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy were employed as inputs for brittle fracture simulations using a phase field model . Comparison of experimental and numerical simulations reveal ed that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, can yield improvements on the numerical prediction of the mesoscale fracture patterns and hence the macroscopic effective toughness. Overall, a comprehensive framework to evaluate the relationship between mechanical response and micro-lithofacial features can allow us to make more accurate prediction of reservoir performance by developing a multi - scale understanding of poromechanical response to coupled chemical and mechanical interactions for subsurface energy related activities.
Structural imitation and lattice vibration of R{sub 2}Co{sub 17-x}Mn{sub x} (R=Dy, Ho)
Energy Technology Data Exchange (ETDEWEB)
Qian Ping [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China)]. E-mail: qianpinghu@sohu.com; Chen Nanxian [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Department of Physics, Tsinghua University, Beijing 100084 (China); Shen Jiang [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China)
2005-02-21
The intermetallics R{sub 2}Co{sub 17-x}Mn{sub x} (R=Dy, Ho) have been studied to ascertain the effect of partial replacement of Co by Mn on their phase stability and site preference. Calculation is based on a series of interatomic pair potentials related to the rare earth and transition metals, which are obtained by a strict lattice inversion method. Our results indicate that the Mn atom can stabilize R{sub 2}Co{sub 17-x}Mn{sub x} with Th{sub 2}Zn{sub 17}-type structure. And Mn atom preferentially substitutes for Co in the 6c site and randomly substitutes in the 18f and 18h site. The differences of lattice constants between the calculated and the experimental values are about or even smaller than 2%. The properties related to lattice vibration, such as phonon density of states and Debye temperature, are also evaluated for these materials. The method utilized in the present investigation offers a rather easy and direct way to study the structural and vibrational properties of R{sub 2}Co{sub 17-x}Mn{sub x}.
Hoang, Khang
2017-12-01
We report a detailed first-principles study of doping in Li2MnO3 , in both the dilute doping limit and heavy doping, using hybrid density-functional calculations. We find that Al, Fe, Mo, and Ru impurities are energetically most favorable when incorporated into Li2MnO3 at the Mn site, whereas Mg is most favorable when doped at the Li sites. Nickel, on the other hand, can be incorporated at the Li site and/or the Mn site, and the distribution of Ni over the lattice sites can be tuned by tuning the material preparation conditions. There is a strong interplay among the lattice site preference and charge and spin states of the dopant, the electronic structure of the doped material, and the delithiation mechanism. The calculated electronic structure and voltage profile indicate that in Ni-, Mo-, or Ru-doped Li2MnO3 , oxidation occurs on the electrochemically active transition-metal ion(s) before it does on oxygen during the delithiation process. The role of the dopants is to provide charge compensation and bulk electronic conduction mechanisms in the initial stages of delithiation, hence enabling the oxidation of the lattice oxygen in the later stages. This work thus illustrates how the oxygen-oxidation mechanism can be used in combination with the conventional mechanism involving transition-metal cations in design of high-capacity battery cathode materials.
Sagar, Vatsala; Chaturvedi, Sumit K; Schuck, Peter; Wistow, Graeme
2017-07-05
Previous attempts to crystallize mammalian γS-crystallin were unsuccessful. Native L16 chicken γS crystallized avidly while the Q16 mutant did not. The X-ray structure for chicken γS at 2.3 Å resolution shows the canonical structure of the superfamily plus a well-ordered N arm aligned with a β sheet of a neighboring N domain. L16 is also in a lattice contact, partially shielded from solvent. Unexpectedly, the major lattice contact matches a conserved interface (QR) in the multimeric β-crystallins. QR shows little conservation of residue contacts, except for one between symmetry-related tyrosines, but molecular dipoles for the proteins with QR show striking similarities while other γ-crystallins differ. In γS, QR has few hydrophobic contacts and features a thin layer of tightly bound water. The free energy of QR is slightly repulsive and analytical ultracentrifugation confirms no dimerization in solution. The lattice contacts suggest how γ-crystallins allow close packing without aggregation in the crowded environment of the lens. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun
2015-01-01
Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting
International Nuclear Information System (INIS)
Liu, Z.L.; Cui, Z.L.; Zhang, Z.K.
2005-01-01
Titania nanoparticles doped with Cr 3+ (2% relative to molar quantity of titania) were prepared and examined by EDS, HRTEM, XRD, and UV-VIS analysis. HRTEM images showed the detailed atomic arrays and vacancy defects of the doped Titania nanocrystals and revealed that the implanted Cr element existed in titania mainly as Cr 3+ ions which located at the lattice positions of Ti 4+ ions. Compared with pure titania, the UV-VIS spectra of the Cr 3+ doped titania show significantly increased absorbance in visible light region. This indicated that the presence of the Cr 3+ ions affected the lattice structure of titania nanocrystals and plays an reformative role in spectral feature of titania
Lattice defects in LPE InP-InGaAsP-InGaAs structure epitaxial layers on InP substrates
International Nuclear Information System (INIS)
Ishida, K.; Matsumoto, Y.; Taguchi, K.
1982-01-01
Lattice defects generated during LPE growth of InP-InGaAsP-InGaAs structure epitaxial layers on InP substrates are studied. Two different kinds of dislocations are observed at the two interfaces of the epitaxial layers; at the InP-InGaAsP interface, misfit dislocations are generated in the InP layer by carry over of InGaAsP melt into the InP one and at the InGaAs-InP interface, V-shaped dislocations are generated in the InGaAs layer. It is shown that the critical amount of lattice mismatch to suppress generation of misfit dislocations in InP is about two times smaller than that of other III-V compound semiconductors. Conditions to suppress the generation of these dislocations are clarified. (author)
Simplified nonplanar wafer bonding for heterogeneous device integration
Geske, Jon; Bowers, John E.; Riley, Anton
2004-07-01
We demonstrate a simplified nonplanar wafer bonding technique for heterogeneous device integration. The improved technique can be used to laterally integrate dissimilar semiconductor device structures on a lattice-mismatched substrate. Using the technique, two different InP-based vertical-cavity surface-emitting laser active regions have been integrated onto GaAs without compromising the quality of the photoluminescence. Experimental and numerical simulation results are presented.
Energy Technology Data Exchange (ETDEWEB)
Baraneedharan, P. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Alternative Energy and Nanotechnology Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Imran Hussain, S. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Dinesh, V.P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Siva, C. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203 (India); Biji, P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Sivakumar, M., E-mail: muthusiva@gmail.com [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India)
2015-12-01
Graphical abstract: - Highlights: • A simple, novel and surfactant free hydrothermal route to prepare SnO{sub 2} nanospheres. • A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images. • Incorporation of Zn ions into SnO{sub 2} lattices clearly elucidated with XRD and XPS spectrums. • Three fold time increased response in Zn–SnO{sub 2} nanospheres when compared to undoped SnO{sub 2}. - Abstract: A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn{sup 2+}) doped SnO{sub 2} nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn{sup 2+} ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn{sup 2+} ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn{sup 2+} ions has a significant effect on the electrical conductivity of SnO{sub 2} nanospheres. Comparative tests for gas sensors based on Zn doped SnO{sub 2} nanospheres and SnO{sub 2} nanospheres clearly show that the former exhibited excellent NO{sub 2} sensing performance. The responses of Zn{sup 2+} ions incorporated SnO{sub 2} nanospheres sensor were increased 3 fold at trace level NO{sub 2} gas concentrations ranging from 1 to 5 ppm. The excellent sensitivity, selectivity and fast response make the Zn{sup 2+} doped SnO{sub 2} nanospheres ideal for NO{sub 2} sensing.
Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung
2013-01-01
Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x = 2.5 - 3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases, i.e. the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator tran...
Statistical hydrodynamics of lattice-gas automata
Grosfils, Patrick; Boon, Jean-Pierre; Brito López, Ricardo; Ernst, M. H.
1993-01-01
We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the density correlation function. A comparative analysis of the theoretical predictions with our lattice gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctuation...
Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît
2015-01-01
Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.
International Nuclear Information System (INIS)
Jung, Haesung; Lee, Byeongdu; Jun, Young-Shin
2016-01-01
The early nucleation stage of Mn (hydr)oxide on mineral surfaces is crucial to understand its occurrence and the cycling of nutrients in environmental systems. However, there are only limited studies on the heterogeneous nucleation of Mn(OH)_2(s) as the initial stage of Mn (hydr)oxide precipitation. Here, we investigated the effect of pH on the initial nucleation of Mn(OH)_2(s) on quartz. Under various pH conditions of 9.8, 9.9, and 10.1, we analyzed the structural matches between quartz and heterogeneously nucleated Mn(OH)_2(s). The structural matches were calculated by measuring lateral and vertical dimensions using grazing incidence small angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), respectively. We found that a poorer structural match occurred at a higher pH than at a lower pH. The faster nucleation at a higher pH condition accounted for the observed poorer structural match. By fitting the structural match using classical nucleation theory, we also calculated the interfacial energy between Mn(OH)_2(s) and water (γ_n_f = 71 ± 7 mJ/m"2). The calculated m values and γ_n_f provided the variance of interfacial energy between quartz and Mn(OH)_2(s): γ_s_n = 262–272 mJ/m"2. As a result, this study provides new qualitative and quantitative information about heterogeneous nucleation on environmentally an abundant mineral surface, quartz, and it offers important underpinnings for understanding the fate and transport of trace ions in environmental systems.
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Seok-Hyoung Lee; Hwan-Min Kim; Ho-Seop Choe
2012-01-01
While science and technology information service portals and heterogeneous databases produced in Korea and other countries are integrated, methods of connecting the unique classification systems applied to each database have been studied. Results of technologists' research, such as, journal articles, patent specifications, and research reports, are organically related to each other. In this case, if the most basic and meaningful classification systems are not connected, it is difficult to ach...
Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition
2014-11-18
cture heterogeneity in MoS2 atomiclayers grown by chemical vapour deposition 6. AUTHORS Zheng Liu, Matin Amani, Sina Najmaei, Quan Xu, Xiaolong Zou...deposition Zheng Liu1•2•3·*, Matin Amani4·*, Sina Najmaei5·*, Quan Xu6•7, Xiaolong Zou5, Wu Zhou8, Ting Yu9, Caiyu Qiu9, A Glen Birdwell4, Frank J. Crowne4
Directory of Open Access Journals (Sweden)
Shuai Li
Full Text Available Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L. Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
DEFF Research Database (Denmark)
Zhang, Yanfei; Hu, L.N.; Liu, S.J.
2013-01-01
We study the sub-Tg relaxation in an extremely unstable glass former, i.e., 65SiO2-35Al2O3, and its relation to structural heterogeneity (e.g., structurally ordered domains in glass matrix). This is done by hyperquenching (~106 K/s) the liquid, then annealing the hyperquenched glass below Tg...... and subsequently scanning the annealed hyperquenched glass in a differential scanning calorimeter. The results show that structural ordering can take place even below Tg. An endothermic pre-peak is observed when the hyperquenched sample is annealed at 0.75Tg for sufficiently long time, which is, however, much...... weaker compared to that of stable glass formers subjected to same annealing conditions. We also investigate the effect of the sub-Tg annealing on crystallization above Tg. The results imply that some structurally ordered domains exist already in the liquid state. The ordered domains lower the activation...
Directory of Open Access Journals (Sweden)
A. Colantoni
2014-01-01
Full Text Available CuxAg1−xInS2 solid thin films were fabricated through a low-cost process. Particular process-related enhanced properties lead to reaching a minimum of lattice mismatch between absorber and buffer layers within particular solar cell devices. First, copper-less samples X-ray diffraction analysis depicts the presence of AgInS2 ternary compound in chalcopyrite tetragonal phase with privileged (112 peak (d112=1.70 Å according to JCPDS 75-0118 card. Second, when x content increases, we note a shift of the same preferential orientation (112 and its value reaches 1.63 Å corresponding to CuInS2 chalcopyrite tetragonal material according to JCPDS 89-6095 file. Finally, the formation and stability of these quaternaries have been discussed in terms of the lattice compatibility in relation with silver-copper duality within indium disulfide lattice structure. Plausible explanations for the extent and dynamics of copper incorporation inside AgInS2 elaborated ternary matrices have been proposed.
International Nuclear Information System (INIS)
Feng Shi-Quan; Li Jun-Yu; Cheng Xin-Lu
2015-01-01
The structural, dielectric, lattice dynamical and thermodynamic properties of zinc-blende CdX (X=S, Se, Te) are studied by using a plane-wave pseudopotential method within the density-functional theory. Our calculated lattice constants and bulk modulus are compared with the published experimental and theoretical data. In addition, the Born effective charges, electronic dielectric tensors, phonon frequencies, and longitudinal optical-transverse optical splitting are calculated by the linear-response approach. Some of the characteristics of the phonon-dispersion curves for zinc-blende CdX (X=S, Se, Te) are summarized. What is more, based on the lattice dynamical properties, we investigate the thermodynamic properties of CdX (X=S, Se, Te) and analyze the temperature dependences of the Helmholtz free energy F, the internal energy E, the entropy S and the constant-volume specific heat C_v. The results show that the heat capacities for CdTe, CdSe, and CdS approach approximately to the Petit-Dulong limit 6R. (paper)
Hyper-lattice algebraic model for data warehousing
Sen, Soumya; Chaki, Nabendu
2016-01-01
This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.
Phase structure of lattice QCD at finite temperature for 2+1 flavors of Kogut-Susskind quarks
International Nuclear Information System (INIS)
Aoki, S.; Fukugita, M.; Hashimoto, S.; Ishikawa, K-I.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kaneda, T.; Kaya, S.; Kuramashi, Y.; Okawa, M.; Onogi, T.; Tominaga, S.; Tsutsui, N.; Ukawa, A.; Yamada, N.; Yoshie, T.
1999-01-01
We report on a study of the finite-temperature chiral transition on an N t = 4 lattice for 2 + 1 flavors of Kogut-Susskind quarks. We find the point of physical quark masses to lie in the region of crossover, in agreement with results of previous studies. Results of a detailed examination of the m u,d = m s case indicate vanishing of the screening mass of σ meson at the end point of the first-order transition
International Nuclear Information System (INIS)
Grewe, H.
1976-01-01
After theoretical considerations about evaluation of degree of dislocation concentration in crystal lattices two tungsten-carbide-powders are characterized by chemical reaction behaviour. The hard metal grades produced from the two carbide powders are tested by material and tool life investigation. The tungsten carbide powder with lower level of dislocation-concentration leads to a hardmetall-alloy with an equal microstructure and with favourable properties, especially with a good toughness and with an interesting tool life. (orig.) [de
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
Role of structural factors in formation of chiral magnetic soliton lattice in Cr{sub 1/3}NbS₂
Energy Technology Data Exchange (ETDEWEB)
Volkova, L. M.; Marinin, D. V. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)
2014-10-07
The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr{sub 1/3}NbS₂ intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr{sub 1/3}NbS₂ are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr³⁺ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr³⁺ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M{sub 1/3}NbX{sub 2} and M{sub 1/3}TaX₂ (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.
International Nuclear Information System (INIS)
Huo, L.S.; Zeng, J.F.; Wang, W.H.; Liu, C.T.; Yang, Y.
2013-01-01
Starting from the nanoscale structural heterogeneities intrinsic to metallic glasses (MGs), here we show that there are two concurrent contributions to their microscale quasi-static shear modulus G I : one (μ) is related to the atomic bonding strength of solid-like regions and the other (G II ) to the change in the possible configurations of liquid-like regions (dynamic relaxation). Through carefully designed high-rate nanoscale indentation tests, a simple constitutive relation (μ = G I + G II ) is experimentally verified. On a fundamental level, our current work provides a structure–property correlation that may be applicable to a wide range of glassy materials
International Nuclear Information System (INIS)
Wang, Y.D.; Ren, Y.Q.; Hu, T.; Deng, B.; Xiao, T.Q.; Liu, K.Y.; Yang, Y.S.
2016-01-01
Three dimensional (3D) characterization of shales has recently attracted wide attentions in relation to the growing importance of shale oil and gas. Obtaining a complete 3D compositional distribution of shale has proven to be challenging due to its multi-scale characteristics. A combined multi-energy X-ray micro-CT technique and data-constrained modelling (DCM) approach has been used to quantitatively investigate the multi-scale mineral and porosity distributions of a heterogeneous shale from the Junger Basin, northwestern China by sub-sampling. The 3D sub-resolution structures of minerals and pores in the samples are quantitatively obtained as the partial volume fraction distributions, with colours representing compositions. The shale sub-samples from two areas have different physical structures for minerals and pores, with the dominant minerals being feldspar and dolomite, respectively. Significant heterogeneities have been observed in the analysis. The sub-voxel sized pores form large interconnected clusters with fractal structures. The fractal dimensions of the largest clusters for both sub-samples were quantitatively calculated and found to be 2.34 and 2.86, respectively. The results are relevant in quantitative modelling of gas transport in shale reservoirs
Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan
2016-01-01
Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538
Alhijjaj, Muqdad; Reading, Mike; Belton, Peter; Qi, Sheng
2015-11-03
Characterizing inter- and intrasample heterogeneity of solid and semisolid pharmaceutical products is important both for rational design of dosage forms and subsequent quality control during manufacture; however, most pharmaceutical products are multicomponent formulations that are challenging in this regard. Thermal analysis, in particular differential scanning calorimetry, is commonly used to obtain structural information, such as degree of crystallinity, or identify the presence of a particular polymorph, but the results are an average over the whole sample; it cannot directly provide information about the spatial distribution of phases. This study demonstrates the use of a new thermo-optical technique, thermal analysis by structural characterization (TASC), that can provide spatially resolved information on thermal transitions by applying a novel algorithm to images acquired by hot stage microscopy. We determined that TASC can be a low cost, relatively rapid method of characterizing heterogeneity and other aspects of structure. In the examples studied, it was found that high heating rates enabled screening times of 3-5 min per sample. In addition, this study demonstrated the higher sensitivity of TASC for detecting the metastable form of polyethylene glycol (PEG) compared to conventional differential scanning calorimetry (DSC). This preliminary work suggests that TASC will be a worthwhile additional tool for characterizing a broad range of materials.
Kawasaki, Takeshi; Tanaka, Hajime
2010-06-16
The physical understanding of glass transition remains a major challenge of physics and materials science. Among various glass-forming liquids, a colloidal liquid interacting with hard-core repulsion is now regarded as one of the most ideal model systems. Here we study the structure and dynamics of three-dimensional polydisperse colloidal liquids by Brownian dynamics simulations. We reveal that medium-range crystalline bond orientational order of the hexagonal close packed structure grows in size and lifetime with increasing packing fraction. We show that dynamic heterogeneity may be a direct consequence of this transient structural ordering, which suggests its origin is thermodynamic rather than kinetic. We also reveal that nucleation of crystals preferentially occurs in regions of high medium-range order, reflecting the low crystal-liquid interfacial energy there. These findings may shed new light not only on the fundamental nature of the glass transition, but also the mechanism of crystal nucleation.
Lattice of quantum predictions
Drieschner, Michael
1993-10-01
What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.
Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.
2013-06-01
Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.
Energy Technology Data Exchange (ETDEWEB)
Calamiotou, M., E-mail: mcalam@phys.uoa.gr [Solid State Physics Department, Faculty of Physics, National and Kapodistrian University of Athens, GR-15784 Athens (Greece); Liarokapis, E. [Department of Physics, National Technical University of Athens, GR15780, Athens (Greece)
2017-01-15
Highlights: • A reply to comment by A. Martinelli (PHYSC-D-15-00255) on: “Local lattice distortions vs. structural phase transition in NdFeAsO{sub 1-x}F{sub x}” is presented. • The main conclusions drawn in the commented paper are based on the distinct different temperature evolution for T < 150 K among the superconducting and non-superconducting NdFeAsO{sub 1-x}F{sub x} compounds of both, atomic displacement parameters and Raman mode widths, rather than only on line broadening analysis or the detection of any symmetry breaking in the Raman spectra.
Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force
Goswami, Partha
2016-05-01
We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic
Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh
2016-04-01
The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.
Campbell, Malcolm G; Kohane, Isaac S; Kong, Sek Won
2013-09-24
Decades of research strongly suggest that the genetic etiology of autism spectrum disorders (ASDs) is heterogeneous. However, most published studies focus on group differences between cases and controls. In contrast, we hypothesized that the heterogeneity of the disorder could be characterized by identifying pathways for which individuals are outliers rather than pathways representative of shared group differences of the ASD diagnosis. Two previously published blood gene expression data sets--the Translational Genetics Research Institute (TGen) dataset (70 cases and 60 unrelated controls) and the Simons Simplex Consortium (Simons) dataset (221 probands and 191 unaffected family members)--were analyzed. All individuals of each dataset were projected to biological pathways, and each sample's Mahalanobis distance from a pooled centroid was calculated to compare the number of case and control outliers for each pathway. Analysis of a set of blood gene expression profiles from 70 ASD and 60 unrelated controls revealed three pathways whose outliers were significantly overrepresented in the ASD cases: neuron development including axonogenesis and neurite development (29% of ASD, 3% of control), nitric oxide signaling (29%, 3%), and skeletal development (27%, 3%). Overall, 50% of cases and 8% of controls were outliers in one of these three pathways, which could not be identified using group comparison or gene-level outlier methods. In an independently collected data set consisting of 221 ASD and 191 unaffected family members, outliers in the neurogenesis pathway were heavily biased towards cases (20.8% of ASD, 12.0% of control). Interestingly, neurogenesis outliers were more common among unaffected family members (Simons) than unrelated controls (TGen), but the statistical significance of this effect was marginal (Chi squared P < 0.09). Unlike group difference approaches, our analysis identified the samples within the case and control groups that manifested each expression
Results of investigations in a fast reactor configuration with a strong heterogeneous cell structure
International Nuclear Information System (INIS)
Lehmann, E.; Albert, D.; Dietze, K.; Faehrmann, K.; Hansen, W.; Huettel, G.; Wand, H.; Osmera, B.
1984-11-01
Investigations of the neutron flux spectrum, of the energy dependent importance function and of sample reactivities were performed in a fast reactor configuration characterized by a marked neutronic microstructure which is produced by the insertion of pellets of polyethylene and cadmium. Contrary to results of calculations with a homogenized composition, values obtained by means of the tree programs CARMEN, YARAB and P1X, developed in Rossendorf, agree well with measurements. Furthermore it could be shown that an adjoint weighting for the determination of cell-averaged values of the importance function is justified. In a configuration with larger heterogeneity induced by the aggregation of four uranium pellets significant spectral differences between uranium and material zones, respectively, show up in activation measurements as well as in sample reactivity determinations. (author)
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Directory of Open Access Journals (Sweden)
Hui Wei
2009-09-01
Full Text Available Bacteriophage phi12 is a member of the Cystoviridae, a unique group of lipid containing membrane enveloped bacteriophages that infect the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. The genomes of the virus species contain three double-stranded (dsRNA segments, and the virus capsid itself is organized in multiple protein shells. The segmented dsRNA genome, the multi-layered arrangement of the capsid and the overall viral replication scheme make the Cystoviridae similar to the Reoviridae.We present structural studies of cystovirus phi12 obtained using cryo-electron microscopy and image processing techniques. We have collected images of isolated phi12 virions and generated reconstructions of both the entire particles and the polymerase complex (PC. We find that in the nucleocapsid (NC, the phi12 P8 protein is organized on an incomplete T = 13 icosahedral lattice where the symmetry axes of the T = 13 layer and the enclosed T = 1 layer of the PC superpose. This is the same general protein-component organization found in phi6 NC's but the detailed structure of the entire phi12 P8 layer is distinct from that found in the best classified cystovirus species phi6. In the reconstruction of the NC, the P8 layer includes protein density surrounding the hexamers of P4 that sit at the 5-fold vertices of the icosahedral lattice. We believe these novel features correspond to dimers of protein P7.In conclusion, we have determined that the phi12 NC surface is composed of an incomplete T = 13 P8 layer forming a net-like configuration. The significance of this finding in regard to cystovirus assembly is that vacancies in the lattice could have the potential to accommodate additional viral proteins that are required for RNA packaging and synthesis.
Energy Technology Data Exchange (ETDEWEB)
Fujie, G; Kasahara, J; Sato, T; Mochizuki, K [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute
1996-05-01
Methods were studied for determining the initial travel time and ray paths with stability when an non-linear travel time inversion is performed in an inhomogeneous structure. The travel time calculation was based on Faria and Stoffa`s method. First, the 2-dimension space was sectioned by grids, and `slowness` was assigned to all the lattice points. Starting from the vibration source, travel time at each lattice point is sequentially calculated. This method calculates travel time for any structure without breakup. In this study, an algorithm more sophisticated than the method of Faria, et al., was developed, and the improvement of travel time calculation accuracy led to the accurate determination of the direction of incidence into the lattice points during the initial motion. The calculation of ray paths was effected by tracing back from the receiving points the incidence into the lattice points or by following back the ray paths to the vibration source. This method performs stable calculation for a heavily inhomogeneous structure and, with the algorithm being simple, do the parallel programming as well. 1 ref., 6 figs., 1 tab.
Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung
2013-08-01
Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.
Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S S Ambrose; Cooper, Valentino R; Rabe, Karin M; Lee, Ho Nyung
2013-08-30
Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoO(x) (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.
Lattices for laymen: a non-specialist's introduction to lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.
1985-01-01
The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)
Li, Bing; Dong, Yongchun; Ding, Zhizhong
2013-07-01
The amidoximated polyacrylonitrile (PAN) fiber Fe complexes were prepared and used as the heterogeneous Fenton catalysts for the degradation of 28 anionic water soluble azo dyes in water under visible irradiation. The multiple linear regression (MLR) method was employed to develop the quantitative structure property relationship (QSPR) model equations for the decoloration and mineralization of azo dyes. Moreover, the predictive ability of the QSPR model equations was assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride in water on QSPR model equations were also investigated. The results indicated that the heterogeneous photo-Fenton degradation of the azo dyes with different structures was conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for the dye decoloration and mineralization were successfully developed using MLR technique. MW/S (molecular weight divided by the number of sulphonate groups) and NN=N (the number of azo linkage) are considered as the most important determining factor for the dye degradation and mineralization, and there is a significant negative correlation between MW/S or NN=N and degradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloride did not alter the nature of the QSPR model equations.
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
International Nuclear Information System (INIS)
Lutz, H.D.; Willich, P.
1977-01-01
The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Non-Enzymatic biopolymerization reactions supported by heterogeneous media
DEFF Research Database (Denmark)
Monnard, Pierre-Alain
2011-01-01
Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... compartments and lipid-bilayer lattices. Another kind of media is represented by co-existing, self-assembled phases in the reaction medium, e.g., in water-ice matrices. These media have the capacity to assemble chemical molecules or complex catalytic assemblies into unique configurations that are unstable...
The formation of a core-periphery structure in heterogeneous financial networks
van der Leij, M.; in 't Veld, D.; Hommes, C.
2016-01-01
Recent empirical evidence suggests that financial networks exhibit a core-periphery network structure. This paper aims at giving an explanation for the emergence of such a structure using network formation theory. We propose a simple model of the overnight interbank lending market, in which banks
Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D
2017-03-01
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.
Tallarita, Gianni; Peterson, Adam
2018-04-01
We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.
International Nuclear Information System (INIS)
Green, B.A.
1997-01-01
The quasiparticle state defined by the low temperature polar mobility is a large, quantized positive energy shift that is identical to the constant pairing energy (pseudogap and 2Λ) in the multi-plane high-T c superconductors, showing the lattice polarization produces the single-particle shift and pairing which then transfer to the superconducting state. The coupling-independence and state transfer follow from the nonlocality and action length of the polarization interaction, and the multiple plane requirement from the location of the polar mode. 2Δ is thereby obtained directly, without scaling, from the strong interaction on the plane. The interaction accordingly produces a dynamic, highly stable state, in contrast to BCS superconductors, and the zero-order state is the quantized energy shift. (orig.)
Graphene on graphene antidot lattices
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Directory of Open Access Journals (Sweden)
Syed Waqar Hasan
2013-01-01
Full Text Available We herein report the electronic and thermal transport properties of p-type Bi0.5Sb1.5Te3 polycrystalline bulks with dense pore structure. Dense pore structure was fabricated by vaporization of residual Te during the pressureless annealing of spark plasma sintered bulks of Te coated Bi0.5Sb1.5Te3 powders. The lattice thermal conductivity was effectively reduced to the value of 0.35 W m−1 K−1 at 300 K mainly due to the phonon scattering by pores, while the power factor was not significantly affected. An enhanced ZT of 1.24 at 300 K was obtained in spark plasma sintered and annealed bulks of 3 wt.% Te coated Bi0.5Sb1.5Te3 by these synergetic effects.
2015-11-04
particularly for higher frequencies, being evident for all structures with a positive gradient in the 1D flat earth structure. Comparison of the...reflected from the underside of the Moho discontinuity. Sereno and Given [1990] studied Pn waves in flat and spherical earth models and found that Earth’s...The earth flattening transform (EFT) is used to convert the spherical earth into a flat earth . A factor of 1/sqrt(r) is used to transfer the
Energy Technology Data Exchange (ETDEWEB)
Qi, Yu; Wang, Li; Wang, Shenghai, E-mail: shenghaiw@163.com; Li, Xuelian; Cui, Wenchao
2014-12-05
Highlights: • We simulate the undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap at atomic level. • Fe{sub 75}Cu{sub 25} melts separate into Cu-rich and Fe-rich liquid upon relaxation. • The process is controlled by the nucleation and grows mechanism. • Both PPCFs and CN confirm that L–L phase separation is a successive process. - Abstract: Molecular dynamics simulation (MD) based upon the developed embedded atom method (EAM) has been performed to explore the structural and dynamical heterogeneity of Fe{sub 75}Cu{sub 25} melts. The results show that the melts separate into Cu-rich droplets surround by the Fe-rich matrix controlled by nucleation and growth mechanism. The larger undercoolings suggest the higher nucleation rate and growth rate of droplets. The growth of droplet is achieved by the aggregation and coagulation of neighbor droplet with the characteristics of collective movement for homogeneous atoms. A sharp increase of S{sub CC} (q = 0) is found at all simulated temperature, which means concentration fluctuation on large length scales are much pronounced. Both partial pair correlation functions (PPCFs) and coordination number (CN) confirm that liquid–liquid (L–L) phase separation is a successive process with a stronger interaction of homogeneous pairs than that of heterogeneous pairs in Fe{sub 75}Cu{sub 25} melts. The studies above characterize the phase separation of metal melts on the atomic scale.
Structural and metabolic heterogeneity of plasma low density lipoproteins in nonhuman primates
International Nuclear Information System (INIS)
Marzetta, C.A.
1986-01-01
To test the hypothesis that a variety of precursor particles secreted by the liver could result in heterogeneity of LDL products in plasma, the metabolic fate of selected radiolabeled hepatic lipoproteins evaluated was determined in vivo. The hepatic lipoproteins evaluated were isolated from liver perfusate and were triglyceride-rich VLDL (d < 1.006 or d < 1.017) and phospholipid-rich LDL (1.017 < d < 1.049 or 1.030 < d < 1.063). Radiolabeled autologous plasma LDL were injected into recipient animals together with the radiolabeled hepatic lipoproteins. Density gradient ultracentrifugation and gel filtration were used to characterize the distribution of radiolabeled lipoproteins in the plasma at selected times after injection. A variety of hepatic lipoproteins were precursors to lipoproteins that resembled plasma LDL. Between 22 to 80% of the injected dose of radiolabeled hepatic lipoprotein apo B-100 was converted to plasma LDL-like particles, regardless of the type of hepatic lipoprotein injected. A kinetic model was generated to describe the metabolic behavior of hepatic VLDL-derived and plasma LDL-derived apo B-100 radioactivity. Both models required multiple metabolic pools to fit the data. Hepatic VLDL-derived apo B-100 radioactivity was metabolized rapidly into various kinds of LDL subfractions. This rapid conversion of hepatic VLDL apo B-100 to LDL apo B-100 may be analogous to the portion of plasma VLDL that gets converted to LDL without passing through the delipidation cascade that has been described in humans and has been termed direct LDL production
DNA-linked NanoParticle Lattices with Diamond Symmetry: Stability, Shape and Optical Properties
Emamy, Hamed; Tkachenko, Alexei; Gang, Oleg; Starr, Francis
The linking of nanoparticles (NP) by DNA has been proven to be an effective means to create NP lattices with specific order. Lattices with diamond symmetry are predicted to offer novel photonic properties, but self-assembly of such lattices has proven to be challenging due to the low packing fraction, sensitivity to bond orientation, and local heterogeneity. Recently, we reported an approach to create diamond NP lattices based on the association between anisotropic particles with well-defined tetravalent DNA binding topology and isotropically functionalized NP. Here, we use molecular dynamics simulations to evaluate the Gibbs free energy of these lattices, and thereby determine the stability of these lattices as a function of NP size and DNA stiffness. We also predict the equilibrium shape for the cubic diamond crystallite using the Wulff construction method. Specifically, we predict the equilibrium shape using the surface energy for different crystallographic planes. We evaluate surface energy directly form molecular dynamics simulation, which we correlate with theoretical estimates from the expected number of broken DNA bonds along a facet. Furthermore we study the optical properties of this structure, e.g optical bandgap.
International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
Kinetics of heterogeneous systems; La cinetique des milieux heterogenes
Energy Technology Data Exchange (ETDEWEB)
Deniz, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
In this report, a general transport theory treatment is presented for the kinetics study as applied to finite heterogeneous systems. The theory is applicable to experiments near the critical point as well as to pulsed neutron experiments on multiplying or non-multiplying lattices. The general method is also applied to exponential experiments on infinite non-diverging lattices. The particularity of the present study is the explicit introduction of heterogeneity in the formulation and the search for the dependence of the parameters on the buckling of the finite medium. As a result of this, the finite medium parameters are in the first place expressed in terms of the corresponding infinite medium ones through the buckling and the anisotropic migration areas, and in the second place all the parameters are expressed as integrals only over an unit cell instead of over the whole pile. A preliminary less detailed study is first made in order to distinguish clearly between what are called 'dynamic parameters' and 'static parameters', and to define the meanings given in this report to these two terms. In the appendices are given approximate one-group treatments for the study of the dynamic fine structure, the time constant in infinite lattices, and the anisotropic diffusion coefficients in non-multiplying lattices. (author) [French] On presente dans ce rapport une methode generale, utilisant la theorie du transport pour l'etude de la cinetique des milieux finis heterogenes. La theorie est applicable aussi bien aux experiences pres de la criticite qu'aux experiences par sources pulsees de neutrons sur des reseaux multiplicateurs ou non-multiplicateurs. La methode generale est aussi appliquee aux experiences exponentielles sur des reseaux infinis non-divergents. La particularite de l'etude est l'introduction explicite de l'heterogeneite dans la formulation et la recherche de la dependance des parametres par rapport au laplacien du reseau fini. Il en resulte d'une part que les
Directory of Open Access Journals (Sweden)
M. Maj
2009-07-01
Full Text Available The article outlines the possibilities to evaluate by a modified low-cycle fatigue test the quality of materials characterised by different structures and the resulting mechanical properties. The method was described by computer program (MLCF, adjusted to the operating parameters of a versatile testing machine.
Lattices with unique complements
Saliĭ, V N
1988-01-01
The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.
Willemien Anaf
2010-01-01
Le verre, corrodé dans des conditions naturelles, montre souvent des hétérogénéités dans la couche lixiviée, comme une structure lamellaire ou des inclusions de MnO2 ou Ca3(PO4)2. La formation de ces hétérogénéités n’est pas encore bien comprise. Des structures de ce type ont été produites artificiellement en laboratoire en immergeant des échantillons de verre dans des solutions riches en métaux. Les résultats expérimentaux ont été comparés avec des théories décrivant la corrosion du verre.Gl...
Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn
International Nuclear Information System (INIS)
Douglas, Jason E.; Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram
2014-01-01
The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi 1+x Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.
Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs
Directory of Open Access Journals (Sweden)
Theis Fabian J
2010-10-01
Full Text Available Abstract Background Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type. Results Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2. Conclusions In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy k-partite graph partitioning
Lee, Dohoon; McLanahan, Sara
2015-01-01
A growing literature documents the importance of family instability for child wellbeing. In this article, we use longitudinal data from the Fragile Families and Child Wellbeing Study to examine the impacts of family instability on children’s cognitive and socioemotional development in early and middle childhood. We extend existing research in several ways: (1) by distinguishing between the number and types of family structure changes; (2) by accounting for time-varying as well as time-constan...
International Nuclear Information System (INIS)
Richter, W.
1976-01-01
α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)
Franklin, Rima B.; Mills, Aaron L.
2003-01-01
To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance. Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to spatial heterogeneity associated with soil properties. c2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Fukuchi, N.; Okada, K. [Kyushu University, Fukuoka (Japan); Fujii, M. [Namura Shipbuilding Co. Ltd., Osaka (Japan); Shiraki, M. [Toyota Motor Corp., Aichi (Japan)
1998-09-04
The deformation mechanisms of submerged shell-like lattice structures with membrane are in principle of a non-conservative nature since the follower type hydrostatic pressure. In the region of large deformations, especially in the case of geometrically deep shell-like lattice structures, the system could be much more accurately defined in a mono-clinically convected coordinate description than the conventional spatial description. Also, a complete analysis of a non-conservative system requires a criterion since the system can have multiple ranges of stability and instability involving buckling and snapping. This paper presents the development of the governing equations for the finite deformations of shell-like lattices defined in a mono-clincally convected coordinate description and applies the same to different cases of lattice deformations. The validity of the formulations is verified for finite deformation. The examples of some geometrically special shell-like lattice structures are presented as well to show the feasibility of the present formulation. 5 refs., 11 figs.
Mohan, G.; Rai, S. S.; Panza, G. F.
1997-08-01
The shear velocity structure of the Indian lithosphere is mapped by inverting regionalized Rayleigh wave group velocities in time periods of 15-60 s. The regionalized maps are used to subdivide the Indian plate into several geologic units and determine the variation of velocity with depth in each unit. The Hedgehog Monte Carlo technique is used to obtain the shear wave velocity structure for each geologic unit, revealing distinct velocity variations in the lower crust and uppermost mantle. The Indian shield has a high-velocity (4.4-4.6 km/s) upper mantle which, however, is slower than other shields in the world. The central Indian platform comprised of Proterozoic basins and cratons is marked by a distinct low-velocity (4.0-4.2 km/s) upper mantle. Lower crustal velocities in the Indian lithosphere generally range between 3.8 and 4.0 km/s with the oceanic segments and the sedimentary basins marked by marginally higher and lower velocities, respectively. A remarkable contrast is observed in upper mantle velocities between the northern and eastern convergence fronts of the Indian plate. The South Bruma region along the eastern subduction front of the Indian oceanic lithosphere shows significant velocity enhancement in the lower crust and upper mantle. High velocities (≈4.8 km/s) are also observed in the upper mantle beneath the Ninetyeast ridge in the northeastern Indian Ocean.
Berger, Lawrence M.
2018-01-01
A vast amount of literature has documented negative associations between family instability and child development, with the largest associations being in the socioemotional (behavioral) domain. Yet, prior work has paid limited attention to differentiating the role of the number, types, and sequencing of family transitions that children experience, as well as to understanding potential heterogeneity in these associations by family structure at birth. We use data from the Fragile Families and Child Wellbeing Study and hierarchical linear models to examine associations of family structure states and transitions with children’s socioemotional development during the first nine years of life. We pay close attention to the type and number of family structure transitions experienced and examine whether associations differ depending on family structure at birth. For children born to cohabiting or noncoresident parents, we find little evidence that subsequent family structure experiences are associated with socioemotional development. For children born to married parents, we find associations between family instability and poorer socioemotional development. However, this largely reflects the influence of parental breakup; we find little evidence that socioemotional trajectories differ for children with various family structure experiences subsequent to their parents’ breakup. PMID:28299560
Bzostek, Sharon H; Berger, Lawrence M
2017-04-01
A vast amount of literature has documented negative associations between family instability and child development, with the largest associations being in the socioemotional (behavioral) domain. Yet, prior work has paid limited attention to differentiating the role of the number, types, and sequencing of family transitions that children experience, as well as to understanding potential heterogeneity in these associations by family structure at birth. We use data from the Fragile Families and Child Wellbeing Study and hierarchical linear models to examine associations of family structure states and transitions with children's socioemotional development during the first nine years of life. We pay close attention to the type and number of family structure transitions experienced and examine whether associations differ depending on family structure at birth. For children born to cohabiting or noncoresident parents, we find little evidence that subsequent family structure experiences are associated with socioemotional development. For children born to married parents, we find associations between family instability and poorer socioemotional development. However, this largely reflects the influence of parental breakup; we find little evidence that socioemotional trajectories differ for children with various family structure experiences subsequent to their parents' breakup.
Energy Technology Data Exchange (ETDEWEB)
Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D. (Scripps)
2012-03-27
RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.
Rosciano, Fabio; Pescarmona, Paolo P; Houthoofd, Kristof; Persoons, Andre; Bottke, Patrick; Wilkening, Martin
2013-04-28
Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.
Beyond network structure: How heterogeneous susceptibility modulates the spread of epidemics.
Smilkov, Daniel; Hidalgo, Cesar A; Kocarev, Ljupco
2014-04-25
The compartmental models used to study epidemic spreading often assume the same susceptibility for all individuals, and are therefore, agnostic about the effects that differences in susceptibility can have on epidemic spreading. Here we show that-for the SIS model-differential susceptibility can make networks more vulnerable to the spread of diseases when the correlation between a node's degree and susceptibility are positive, and less vulnerable when this correlation is negative. Moreover, we show that networks become more likely to contain a pocket of infection when individuals are more likely to connect with others that have similar susceptibility (the network is segregated). These results show that the failure to include differential susceptibility to epidemic models can lead to a systematic over/under estimation of fundamental epidemic parameters when the structure of the networks is not independent from the susceptibility of the nodes or when there are correlations between the susceptibility of connected individuals.
Ulrich, R. N.; Mergelsberg, S. T.; Dove, P. M.
2016-12-01
Crustacean exoskeletons are a complex biocomposite of organic macromolecules and calcium carbonate minerals. The highly divergent functions and diverse morphologies of these biominerals across taxa raise the question of whether these differences are systematically reflected in exoskeleton composition and structure. Previous studies that investigated element concentrations in exoskeletons used spectroscopic methods. However, the findings were largely inconclusive because of analytical limitations and most studies concluded that magnesium, phosphorus, and other trace elements are mostly contained in the mineral fraction because concentrations in the organic framework could not be resolved. This experimental study was designed to quantify the distributions of Ca, P, Mg, and Sr in the mineral versus organic fractions of exoskeletons from the American Lobster (H. americanus), Dungeness Crab (M. magister), and Red Rock Crab (M. productus). Samples of exoskeleton from 10 body parts were collected in triplicate and dissolved using three procedures specific to extracting the 1) mineral, 2) protein, and 3) chitin phases separately. Chemical analyses of the resulting effluents using ICP-OES show the mineral fraction of the skeleton can contain significant amounts of mineralized Mg and P particularly for body parts associated with a significant difference in mineral structural ordering. The protein fraction contains more Mg and P than expected based on estimates from previous studies (Hild et al., 2008). While the element distributions vary greatly depending on the location, in body parts with thicker cuticle (e.g. claw) the mineral component appears to control overall composition. The findings have implications for paleoenvironmental reconstructions based upon exoskeleton composition. First, the chemical composition of an exoskeleton cannot be assumed constant across the different body parts of an entire organism. This is particularly true when the exoskeleton of the claw is
Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E
2016-08-10
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
Frustrated lattices of Ising chains
International Nuclear Information System (INIS)
Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A
2012-01-01
The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Maurya, A.; Thamizhavel, A.; Dhar, S.K. [Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Provino, A.; Pani, M.; Costa, G.A. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)
2017-03-15
Single crystals of the new compound CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi{sub 2} (tetragonal α-ThSi{sub 2}-type, Pearson symbol tI12, space group I4{sub 1}/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi{sub 2} is a well-known valence-fluctuating paramagnetic compound, the CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} phase orders ferromagnetically at T{sub C}=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K{sup 2}) show that CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of T{sub C} in CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58}.
Lattice thermal conductivity in layered BiCuSeO
Kumar, S.; Schwingenschlö gl, Udo
2016-01-01
structure of the phonon dispersion. For example, at room temperature the optical phonons account for an enormous 42% of the lattice thermal conductivity. We also quantify the anisotropy of the lattice thermal conductivity and determine the distribution
Group lattices with applications to the molecule C60
International Nuclear Information System (INIS)
Stuart, S.
1993-01-01
A brief introduction to group lattices and their application to the electronic structure of C 6 0 is presented. Group lattice methods with experimental results yield a fairly clear picture of the electronic energy levels. (Author) 7 refs
Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Arni; Räsänen, Katja
2013-09-01
Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments - favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.
International Nuclear Information System (INIS)
Ji, V.
2003-09-01
The analysis of internal stresses through X-ray diffraction (DRX) has been used to study the micro-structure of various heterogenous materials: two-phase materials, composite materials, coated materials and alloys such as Ti-Al, Inconel-600 and 20CDV5-08 steel. In the case of the Ti-Al alloy we have achieved for the first time the experimental assessment of the compliance constant, of the level of internal stresses, and of the behaviour law of each phase as a function of the changes in duplex micro-structures. Local, direct and accurate information given by DRX have been used to feed micro-mechanical simulations and the results of the simulation are consistent with macroscopic mechanical testing. Accurate DRX analyses on CMC (ceramic matrix composite) have allowed us to confirm the thermal origin of internal stresses. As for thick copper layers made through thermal projection, DRX method combined to in-situ tensile testing has permitted us to measure the elasticity modulus and the distribution of macroscopic stresses inside the coating and the substrate. We have also determined the elastic limit of a TiN layer on a steel substrate. (A.C.)
Directory of Open Access Journals (Sweden)
P R Renosh
Full Text Available Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a, and the Sea Surface Temperature (SST, rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.
Structural heterogeneities in the source area of the Mw 7.9 2008 Wenchuan Earthquake, China
Wang, Z.; Fukao, Y.; Pei, S.
2008-12-01
The Mw 7.9 Wenchuan Earthquake occurred on May 12, 2008 (06:28:01 UTC) in the Longmen-Shan fault zone at the eastern margin of Tibet and adjacent to the Sichuan foreland basin, where as much as 9 m of coseismic slip was observed. This is the most significant earthquake to have struck China since the 1976 Tangshan Earthquake (Mw 7.6). Chinese authorities estimated more than 69,000 people were killed and 374,176 injured. About 1,485,000 people were forced into temporary shelters (http://www.gov.cn). The coseismic faulting zone coincides roughly with this aftershock distribution. The extent of the great damage may have resulted from the variation of crustal structures along the tectonic thrust faulting and strike slipping zone, causing significant coseismic displacement and acceleration on a regional scale. For a better understanding of what may have triggered this earthquake and how the rupture proceeded after the initiation, we conducted an investigation of the seismic structure in the Wenchuan earthquake source area. A large number of arrival time data of P and Pn, S and Sn phases from local earthquakes were collected and inverted jointly for the three-dimensional P- and S-wave velocity (Vp and Vs) models. The Poisson's ratio model was then calculated from these velocity models. The overall patterns of Vp and Vs anomalies are similar to each other at any of these three depths. The Sichuan Basin is a distinct entity in tomographic images, anomalously slow at 13 km depth and anomalously fast at 20 km depth, in sharp contrast to the anomalies on the mountain side across the Longmen-Shan fault zone. The area of the fault zone is characterized in general by high Vp and Vs anomalies at a depth of 13 km, although a low Vp and Vs anomaly patch is present in the middle of a total fault length of 300 km. At depths around 20 km, low Vp and Vs anomalies dominate on the mountain side including its eastern margin, where the shallower (˜13 km) and deeper (˜30 km) depths are
Transmission Electron Microscope Measures Lattice Parameters
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Energy Technology Data Exchange (ETDEWEB)
Gherouel, D. [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Yumak, A. [Physics Department, The Faculty of Arts and Science,Marmara University, 34722 Göztepe, Istanbul (Turkey); Znaidi, M. [Institut Préparatoire Aux Etudes d’Ingénieurs de Nabeul, Merazka, 8000 Nabeul (Tunisia); Bouzidi, A. [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Boubaker, K., E-mail: mmbb11112000@yahoo.fr [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Yacoubi, N. [Institut Préparatoire Aux Etudes d’Ingénieurs de Nabeul, Merazka, 8000 Nabeul (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs à Semi-conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia)
2015-08-15
Highlights: • Cu{sub x}Ag{sub 1−x}InS{sub 2} with a minimal lattice mismatch between absorbers and buffers. • The lattice compatibility for understanding silver–copper kinetics. • Controlled and enhanced spray pyrolisis method as a low-cost synthesis protocol. - Abstract: This work deals with some structural and optical investigations about Cu{sub x}Ag{sub 1−x}InS{sub 2} alloys sprayed films and the beneficial effect of copper incorporation in AgInS{sub 2} ternary matrices. The main purpose of this work is to obtain the band gap energy E{sub g} as well as different lattice parameters. The studied properties led to reaching minimum of lattice mismatch between absorber and buffer layers within solar cell devices. As a principal and original finding, the lattice compatibility between both silver and copper indium disulfide structures has been proposed as a guide for understanding kinetics of these materials crystallization.
Heterogeneous subduction structure within the Pacific plate beneath the Izu-Bonin arc
Gong, Wei; Xing, Junhui; Jiang, Xiaodian
2018-05-01
The Izu-Bonin subduction zone is a subduction system formed in early Eocene. The structure of the subduction zone becomes complicated with the evolution of the surrounding plate motion, and many aspects are still unkown or ambiguous. The geodynamic implications are further investigated in related to published seismic observations and geochemical characters of the Izu-Bonin subduction zone. As indicated by seismic tomography and epicentral distributions, the dip angle of the plate beneath the segment to the south of 29°-30°N (the southern Izu-Bonin) is much steeper than the northern one (the northern Izu-Bonin). Deep focus events in the southern segment extend to the depth of ∼600 km, whereas in the northern section deep events just terminate at 420-450 km. Particularly, tomographic images show an obvious boundary between the northern and southern Izu-Bonin at depths of 150-600 km neglected in the previous studies. The northern and southern segments are even separated by a wide range of low-velocity anomaly in P and S wave tomography at 380 km and 450 km depths. In this depth range, three events near 30°N are characterized by strike-slip mechanisms with slab parallel σ1 and horizontally north-south trending σ3, which differ with the typical down-dip compression mechanisms for neighboring events. These events could be attributed to an abrupt change of the morphology and movement of the slab in the transition segment between the northern and southern Izu-Bonin. Indicated by the focal mechanisms, the northern and southern Izu-Bonin exhibits an inhomogeneous stress field, which is closely related to age differences of the downgoing slab. Because of the reheating process, the thermal age of the Pacific plate entering the Izu-Bonin trench in the past 10 Ma, is only 60-90 ± 20 Ma, along with the younger plate subducting in the northern segment. The seismic anisotropy implies that mantle wedge flow orientation is between the motion direction of the Pacific plate and
Compact lattice QED with Wilson fermions
International Nuclear Information System (INIS)
Hoferichter, A.
1994-08-01
We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)
Directory of Open Access Journals (Sweden)
Engelke C.
2017-06-01
Full Text Available Structural change towards services becomes exigent when the sales do not meet operational direction anymore. Thus, the a priori strong heterogeneity in German retail horticulture (GRH requires knowledge in the interaction of relevant internal parameters to find the best individual combination. On this account, the present paper has two goals: First, to systematise relevant, internal characteristics (contingency, considering previous research, by running a confirmatory factor analysis. Second, we investigate the impact of the service variety on the organizational structure and economic parameters, in order to find the right combination for GRH by running regression analysis. Based on a previous exploratory study, 283 retail nurseries were asked questions in an online survey and their answers were interpreted in a quantitative way. Part 1: We gave proof that relevant situational characteristics on GRH include size, level of controlling, experience and service variety as internal factor variables, showing high eigenvalues. Part 2: We found causal relationships between the service variety and the number of hierarchy, span of control and hierarchy configuration (H1. The size is also of significant importance but on a minor level. Size faces positive correlation on delegation (H2, and the size and the level of controlling also have adequate impact on the sales volume. Meanwhile the configuration variables have no impact on the sales volume. This means that sales volume is related to the size and the level of controlling but independent of the configuration. Accordingly, there is no coordinated interaction of contingency, structure and delegation variables with impact on the sales volumes (H3. Structural delegations on sales volume are significantly acquisition/ marketing and planning as operational performance-variables, which are mostly done by the owner/CEO himself. These tasks show negative coefficients, which lead to the proposal that with growing
[Lattice degeneration of the retina].
Boĭko, E V; Suetov, A A; Mal'tsev, D S
2014-01-01
Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Overview: Understanding nucleation phenomena from simulations of lattice gas models
International Nuclear Information System (INIS)
Binder, Kurt; Virnau, Peter
2016-01-01
Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xianlong, E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 4 North Jianshe Rd., 2nd Section, Chengdu 610054 (China); Mallory, Frank B. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Mallory, Clelia W. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Odhner, Hosanna R.; Beckmann, Peter A., E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Department of Physics, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States)
2014-05-21
We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.
Energy Technology Data Exchange (ETDEWEB)
Cortes, P.; Petit, J.P. [Montpellier-2 Univ., Lab. de Geophysique, Tectonique et Sedimentologie, UMR CNRS 5573, 34 (France); Guy, L. [ELF Aquitaine Production, 64 - Pau (France); Thiry-Bastien, Ph. [Lyon-1 Univ., 69 (France)
1999-07-01
The characterization of structural heterogeneities of reservoirs is of prime importance for hydrocarbons recovery. A methodology is presented which allows to compare the dynamic behaviour of fractured reservoirs and the observation of microstructures on drilled cores or surface reservoir analogues. (J.S.)
Schaling, E.; Eijffinger, S.C.W.; Tesfaselassie, M.F.
2004-01-01
In this paper we incorporate the term structure of interest rates in a standard inflation forecast targeting framework.Learning about the transmission process of monetary policy is introduced by having heterogeneous agents - i.e. the central bank and private agents - who have different information
Investigating the thermal dissociation of viral capsid by lattice model
Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume
2017-11-01
The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.
Heterogeneity in magnetic complex oxides
Arenholz, Elke
Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by
Structural and textural study of Ni and/or Co in a common molybdate lattice as catalysts
Directory of Open Access Journals (Sweden)
Boukhlouf H.
2013-09-01
Full Text Available This work deals with the search for new molybdate catalyst formulations, which are known to be active in light alkane oxidative dehydrogenation, a process which could be replace in the near future the common steam cracking and pure dehydrogenation processes currently used for the production of alkenes. Co, Ni and mixed Ni-Co molybdates of various compositions are prepared by a modified coprecipitation procedure from metal nitrates and ammonium heptamolybdate. Their structural and textural properties were studied by XRD, Raman, B.E.T and XPS. Textural and structural properties of the materials are correlated to the composition.
Structural and magnetic properties of (NdBa)MnO_{3} films on lattice-matched substrates
DEFF Research Database (Denmark)
Khoryushin, Alexey V.; Mozhaeva, Julia E.; Mozhaev, Peter B.
2013-01-01
Structural and magnetic properties of (NdBa)MnO3 thin films grown on several perovskite substrates by pulsed laser deposition are presented. A high crystal quality epitaxial film with smooth surface and low level of internal strain may be grown up to thicknesses of 70 nm. The in-plane distortion ...
Nelson, Peter N.; Ellis, Henry A.; Taylor, Richard A.
2014-01-01
Lattice structures and thermal behaviours for some long chain potassium carboxylates (nc = 8-18, inclusive) are investigated using Fourier Transform Infrared spectroscopy, X-ray Powder Diffraction, Solid State spin decoupled 13C NMR spectroscopy, Differential Scanning Calorimetry and Thermogravimetry. The measurements show that the carboxyl groups are coordinated to potassium atoms via asymmetric chelating bidentate bonding, with extensive carboxyl intermolecular interactions to yield tetrahedral metal centers, irrespective of chain length. Furthermore, the hydrocarbon chains are crystallized in the fully extended all-trans configuration and are arranged as non-overlapping lamellar bilayer structures with closely packed methyl groups from opposite layers. Additionally, odd-even alternation, observed in density and methyl group chemical shift, is ascribed to the relative vertical distances between layers in the bilayer, that are not in the same plane. Therefore, for even chain homologues, where this distances is less than for odd chain adducts, more intimate packing is indicated. The phase sequences for all compounds show several reversible crystal-crystal transition associated with kinetically controlled gauche-trans isomerism of the polymethylene chains which undergo incomplete fusion when heated to the melt. The compounds degrade above 785 K to yield carbon dioxide, water, potassium oxide and an alkene.
Energy Technology Data Exchange (ETDEWEB)
Shen Jiang [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China)]. E-mail: shenj@sas.ustb.edu.cn; Qian Ping [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China); Chen Nanxian [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China); Department of Physics, Tsinghua University, Beijing 100084 (China)
2005-03-15
We have investigated the structural properties of Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} compounds by using quasi-ab initio pair potentials {phi} {sub Fe-Fe}(r), {phi} {sub Pr-Fe}(r), {phi} {sub Pr-Pr}(r), {phi} {sub Pr-Mn}(r), {phi} {sub Fe-Mn}(r) and {phi} {sub Mn-Mn}(r). In Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} , the ternary elements Mn substitute for Fe atoms without changing the crystal structure. The calculated cohesive energy curves show that for all values of x, Mn preferentially substitutes for Fe in the 6c site and randomly substitutes for Fe in the 18f and 18h site. The calculated lattice constants coincide quite well with experimental values. Furthermore, the phonon density, specific heat and vibrational entropy of these compounds are also calculated. It is interesting that simple pair potentials can describe these extremely anisotropic materials.
International Nuclear Information System (INIS)
Gamble, F.R.; Silbernagel, B.G.
1975-01-01
The nature of the interaction responsible for the formation of molecular intercalation complexes between Lewis bases and layered transition metal dichalcogenides is not well understood. To some extent this is due to a lack of structural information. A prototype of these complexes is TaS 2 (NH 3 ), in which monolayers of ammonia are inserted between the metallic, superconducting layers of TaS 2 . The compound is crystalline and stoichiometric. Measurement of the anisotropy of the proton spin--lattice relaxation time at 300 degreeK indicates that the molecular threefold symmetry axis is not perpendicular to the disulfide layers as suggested by other workers, but is parallel to the layers. This orientation precludes direct interaction between the molecular lone pair orbital and the transition metal atoms. The interactions governing the structure of this complex may be similar to those obtaining in the intercalation complexes between TaS 2 and a number of substituted pyridines, in which complexes the axis of the lone pair orbital is also parallel to the layers
Lattice Transparency of Graphene.
Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O
2017-03-08
Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.
Manipulation and quantification of microtubule lattice integrity
Directory of Open Access Journals (Sweden)
Taylor A. Reid
2017-08-01
Full Text Available Microtubules are structural polymers that participate in a wide range of cellular functions. The addition and loss of tubulin subunits allows the microtubule to grow and shorten, as well as to develop and repair defects and gaps in its cylindrical lattice. These lattice defects act to modulate the interactions of microtubules with molecular motors and other microtubule-associated proteins. Therefore, tools to control and measure microtubule lattice structure will be invaluable for developing a quantitative understanding of how the structural state of the microtubule lattice may regulate its interactions with other proteins. In this work, we manipulated the lattice integrity of in vitro microtubules to create pools of microtubules with common nucleotide states, but with variations in structural states. We then developed a series of novel semi-automated analysis tools for both fluorescence and electron microscopy experiments to quantify the type and severity of alterations in microtubule lattice integrity. These techniques will enable new investigations that explore the role of microtubule lattice structure in interactions with microtubule-associated proteins.
International Nuclear Information System (INIS)
Masson, R.
2010-01-01
The modelling of the mechanical behaviour of structural materials is increasingly based on microstructural parameters. Within this framework, homogenisation methods have the advantage of providing deductive methods which, starting from the properties and space distribution of each constituent, deduce the effective properties of the heterogeneous material. Nevertheless, many applications make still difficult the use of homogenisation methods. It is in particular the case of structural materials presenting elastic-viscoplastic behaviours and subjected to both non-monotone and ageing loadings. To progress on the treatment by homogenisation of these useful situations constitutes precisely the main idea of the various contributions presented in this work.For linear elasticity, new expressions for the computation of the Eshelby tensor are first of all established in order to improve the efficiency of homogenisation methods usually used. Always for linear behaviours but now viscoelastic, various approximations associated with the use of the theorem of correspondence are studied and compared. The equivalence of one of these approximations (the so-called 'collocation method') with an internal variables formulation of the effective behaviour is shown. This internal variables formulation leads to exact results in some situations and strongly simplifies the treatment of ageing linear viscoelastic behaviours. In the case of elastic-viscoplastic behaviours, is added to the previous difficulty (viscoelastic coupling) that of the treatment of nonlinear behaviour. Comparisons made between various families of estimates make it possible to determine the effects of the various approximations needed to deal with these nonlinearities. An improvement is also proposed and implemented in a particular case while the extension of this internal variable formulation to nonlinear behaviours is discussed. Finally, full-field computations of microstructures are also tackled by considering the
Institute of Scientific and Technical Information of China (English)
庄鹏; 薛素铎
2011-01-01
将摩擦摆(FPS)引入到网壳结构的隔震控制中.文中首先阐明了FPS的工作机理和本构关系,建立了FPS隔震网壳结构的振动方程.通过双层球面网壳结构的数值算例考察了隔震和无控结构在单向和三向地震作用下的振动响应以及FPS的控制效果.研究结果表明,FPS具有良好的隔震和耗能效果,可有效地应用于球面网壳结构的振动控制.%The application of friction pendulum system (FPS) to seismic isolation of lattice shell structures is presented. Theoretical model of the FPS is first introduced. Motion equations of the lattice shell with FPS bearings are established. Then, seismic isolation studies are performed for double-layer spherical lattice shell structures subjected to both single and three-component seismic excitations. Meantime, seismic isolation performance of the FPS is investigated under different earthquake inputs. The results show that the isolation bearins provide the excellent properties of seismic isolation and energy dissipation. Therefore, the FPS can be effectively utilized to control the seismic response of the spherical lattice shell structures.
Risteiu, M.; Lorincz, A.; Dobra, R.; Dasic, P.; Andras, I.; Roventa, M.
2017-06-01
The proposed paper shows some experimental results of a research in metallic structures inspection by using a high definition camera controller by high processing capabilities. The dedicated ARM Cortex-M4 initializes the ARM Cortex-M0 system for image acquiring. Then, by programming options, we are action for patterns (abnormal situations like metal cracks, or discontinuities) types and tuning, for enabling overexposure highlighting and adjusting camera brightness/exposure, to adjust minimum brightness, and to adjust the pattern’s teach threshold. The proposed system has been tested in normal lighting conditions from the typical site.
Cooperative Dynamics in Lattice-Embedded Scale-Free Networks
International Nuclear Information System (INIS)
Shang Lihui; Zhang Mingji; Yang Yanqing
2009-01-01
We investigate cooperative behaviors of lattice-embedded scale-free networking agents in the prisoner's dilemma game model by employing two initial strategy distribution mechanisms, which are specific distribution to the most connected sites (hubs) and random distribution. Our study indicates that the game dynamics crucially depends on the underlying spatial network structure with different strategy distribution mechanism. The cooperators' specific distribution contributes to an enhanced level of cooperation in the system compared with random one, and cooperation is robust to cooperators' specific distribution but fragile to defectors' specific distribution. Especially, unlike the specific case, increasing heterogeneity of network does not always favor the emergence of cooperation under random mechanism. Furthermore, we study the geographical effects and find that the graphically constrained network structure tends to improve the evolution of cooperation in random case and in specific one for a large temptation to defect.