WorldWideScience

Sample records for heterogeneous karstic aquifer

  1. Characterization of aquifer heterogeneity using Cyclostratigraphy and geophysical methods in the upper part of the Karstic Biscayne Aquifer, Southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Carlson, Janine L.; Wingard, G. Lynn; Robinson, Edward; Wacker, Michael A.

    2004-01-01

    This report identifies and characterizes candidate ground-water flow zones in the upper part of the shallow, eogenetic karst limestone of the Biscayne aquifer in the Lake Belt area of north-central Miami-Dade County using cyclostratigraphy, ground-penetrating radar (GPR), borehole geophysical logs, and continuously drilled cores. About 60 miles of GPR profiles were used to calculate depths to shallow geologic contacts and hydrogeologic units, image karst features, and produce qualitative views of the porosity distribution. Descriptions of the lithology, rock fabrics, and cyclostratigraphy, and interpretation of depositional environments of 50 test coreholes were linked to the geophysical interpretations to provide an accurate hydrogeologic framework. Molluscan and benthic foraminiferal paleontologic constraints guided interpretation of depositional environments represented by rockfabric facies. Digital borehole images were used to characterize and quantify large-scale vuggy porosity. Preliminary heat-pulse flowmeter data were coupled with the digital borehole image data to identify candidate ground-water flow zones. Combined results show that the porosity and permeability of the karst limestone of the Biscayne aquifer have a highly heterogeneous and anisotropic distribution that is mostly related to secondary porosity overprinting vertical stacking of rock-fabric facies within high-frequency cycles (HFCs). This distribution of porosity produces a dual-porosity system consisting of diffuse-carbonate and conduit flow zones. The nonuniform ground-water flow in the upper part of the Biscayne aquifer is mostly localized through secondary permeability, the result of solution-enlarged carbonate grains, depositional textures, bedding planes, cracks, root molds, and paleokarst surfaces. Many of the resulting pore types are classified as touching vugs. GPR, borehole geophysical logs, and whole-core analyses show that there is an empirical relation between formation porosity

  2. VULNERABILITY AND RISK OF CONTAMINATION KARSTIC AQUIFERS

    Directory of Open Access Journals (Sweden)

    Yameli Aguilar

    2013-08-01

    Full Text Available Karstic systems occupy nearly 20% of the surface of the earth and are inhabited by numerous human communities. Karstic aquifers are the most exposed to pollution from human activities. Pollution of karstic aquifers is a severe environmental problem worldwide.  In order to face the vulnerability of karstic aquifers to pollution, researchers have created a diversity of study approaches and models, each one having their own strengths and weaknesses depending on the discipline from which they were originated, thus requiring a thorough discussion within the required multidisciplinary character. The objective of this article was to analyze the theoretical and methodological approaches applied to the pollution of karstic aquifers. The European hydrogeological, land evaluation, hydropedological and a geographic approach were analyzed. The relevance of a geomorphological analysis as a cartographic basis for the analysis of vulnerability and risks were emphasized. From the analysis of models, approaches and methodologies discussed the following recommendation is made: to form an interdisciplinary work team, to elaborate a conceptual model according to the site and the working scale and to e, apply and validate the model.

  3. Evaluation of karstic aquifers contribution to streams by the statistical ...

    Indian Academy of Sciences (India)

    and water budget balance, have been applied to assess ... Keywords. Recession curve; karstic aquifer; western Mediterranean Basin–Turkey; data analysis; hydrology; modelling. .... on the solution of the general differential equa- tion of the ...

  4. Denitrification in the karstic Floridan Aquifer

    Science.gov (United States)

    Fork, M.; Albertin, A. R.; Heffernan, J. B.; Katz, B. G.; Cohen, M. J.

    2010-12-01

    Nitrate concentrations in the karstic Floridan Aquifer have increased dramatically over the past 50 years, owing to agricultural intensification and urbanization. Due to low concentrations of organic matter and moderately oxic conditions in the Floridan Aquifer, groundwater denitrification has been assumed to be negligible. In this study, we evaluate that assumption using both existing and new data describing dissolved gases (Ne, N2, O2, Ar) and NO3- concentration and isotopic composition (δ18O- and δ15N-NO3) in the aquifer’s artesian springs. For new data, we collected samples from 33 spring vents representing a gradient of both DO and NO3- concentrations in northern Florida and used Membrane Inlet Mass Spectrometry (MIMS) to directly measure dissolved N2 and Ar. We modeled the physical processes (recharge temperature, dissolution of excess air) driving super-saturation of N2 gas using Ne and Ar where data describing Ne were available. Ar concentrations were correlated closely with recharge temperature, which ranged from 15.7 - 22.2°C, while Ne was closely correlated with excess air, which ranged from 1.05 to 2.66 mg L-1 and averaged 1.83 mg L-1. Estimates of physical mechanisms allowed calculation of expected N2 concentrations that were compared to observed N2 concentrations. Where Ne data were unavailable, we assumed excess air equal to the empirical average. Overall, observed N2 exceeded expectations based on physical processes in 33 of 47 cases; average excess N2 was 0.48 mg L-1 across all sites. In addition, excess N2 was negatively correlated with DO (r2 = 0.46); springs with low DO (Aquifer. Low DOC concentrations indicate that alternative electron donors may fuel nitrate reduction. Scaling to regional estimates of N2 production based on springs discharge and DO concentrations indicates that subsurface denitrification may account for some of the imbalance in springshed nutrient budgets. In addition, we conclude that use of δ15N-NO3- to diagnose

  5. Estimating preferential flow in karstic aquifers using statistical mixed models.

    Science.gov (United States)

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  6. Hydrogeology of the Besparmak (Pentadactilos) Mountains (TRNC) Karstic Aquifer

    International Nuclear Information System (INIS)

    Erduran, B.; Goekmenoglu, O.; Keskin, E.

    2002-01-01

    The Besparmak Mountains are located on the Nothern part of North Cyprus and lay paralel to the sea, 160 km 2 in length 10 km in width. Karstification, potential constituent and the hydro-dynamic structure of the Mesosoic aged carbonate rocks, located at high altitudes of the Besparmak Mountains have been investigated in this study. The Mesosoic aged carbonate rocks; dolomite, dolomitic limestones and recrytallized limestones are yhe units suitable for karstification in the exploration area. Surface area of the carbonate rocks is 84 km 2 . Chemical and isotopic samples have been collected, groundwater fluctuations have been observed and investigation wells have been openned for the definition of the karst aquifer. As the result of the geological, hydrogeological, drilling and geophysical investigations it was found that the Besparmak Mountains Karst Aquifer was formed of independent karstic systems and a total dynamic groundwater potential of aproximately 9 x 10 6 m 3 /year for these systems has been determined

  7. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico

    Science.gov (United States)

    González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José

    2002-09-01

    The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet

  8. Action COST 621 »Groundwater management of coastal karstic aquifers«

    Directory of Open Access Journals (Sweden)

    Metka Petrič

    2002-12-01

    Full Text Available COST 621 »Groundwater management of coastal karstic aquifers” is an international project in the frame of the European Union in which 12 European countries, including Slovenia, took an active part in the years 1997-2002. The main objective of the Action is to increase the knowledge necessary to establish criteria for improving groundwaterresource utilisation in karstic coastal aquifers and for recovering groundwater resource in aquifers over-exploited and salinised due to sea water intrusion. Based on gathered results “Guidelines for the groundwater management of coastal karstic aquifers” were compiled and will be published as a special booklet. In this way the dissemination of the results will be provided.

  9. Natural dissolved organic matter dynamics in karstic aquifer: O'Leno Sink-Rise system, Florida, USA

    Science.gov (United States)

    Jin, J.; Zimmerman, A. R.

    2010-12-01

    Natural dissolved organic matter (NDOM) dynamics in karstic aquifer remain poorly understood due to the inaccessibility and heterogeneity of the subsurface. Because the Santa Fe River sinks into the Floridan Aquifer and emerges 6 km down gradient, the O'Leno Sink-Rise system in Northern Florida provides an ideal setting to study NDOM transformation in groundwater. Water samples were collected at both high and low temporal resolutions over 3 years from the River Sink, Rise, and a series of shallow and deep wells. Analyses of dissolved organic and inorganic carbon, stable isotopic, and spectrophotometry (excitation-emission matrix or EEM) show that reversals of hydrologic head gradient in the conduit and matrix are closely related to the delivery of NDOM to the aquifer. In addition, the relative influence of biotic and abiotic processes varies along spatiotemporal gradients; regions of the aquifer with greatest connectivity to surface water (new NDOM and terminal electron acceptor supply) see the most microbial transformation of NDOM, while those with least connectivity see relatively greater abiotic transformation of NDOM. A source water mixing model was established for the Sink-Rise system using Mg2+ and SO42- concentrations from three end-members identified as allogenic recharge, upwelling deep water, and shallow groundwater of the Upper Floridan Aquifer. Biogeochemical processes were quantified after accounting for changes that occurred due to source water mixing, according to the model. In addition to NDOM remineralization by subsurface microbes which occurred mostly during wet periods, adsorption of NDOM onto aquifer materials as well as release of NDOM from aquifer materials was also observed. During wet periods when DOC-rich conduit water entered the matrix, progressive NDOM remineralization was found along the preferential flow paths from the conduits into the matrices. Both biotic and abiotic NDOM transformation processes were found to control channel

  10. Groundwater vulnerability assessment in karstic aquifers using COP method.

    Science.gov (United States)

    Bagherzadeh, Somayeh; Kalantari, Nasrollah; Nobandegani, Amir Fadaei; Derakhshan, Zahra; Conti, Gea Oliveri; Ferrante, Margherita; Malekahmadi, Roya

    2018-05-02

    Access to safe and reliable drinking water is amongst the important indicators of development in each society, and water scarcity is one of the challenges and limitations affecting development at national and regional levels and social life and economic activity areas. Generally, there are two types of drinking water sources: the first type is surface waters, including lakes, rivers, and streams and the second type is groundwaters existing in aquifers. Amongst aquifers, karst aquifers play an important role in supplying water sources of the world. Therefore, protecting these aquifers from pollution sources is of paramount importance. COP method is amongst the methods to investigate the intrinsic vulnerability of this type of aquifers, so that areas susceptible to contamination can be determined before being contaminated and these sources can be protected. In the present study, COP method was employed in order to spot the regions that are prone to contamination in the region. This method uses the properties of overlying geological layers above the water table (O factor), the concentration of flow (C factor), and precipitation (P factor) over the aquifer, as the parameters to assess the intrinsic vulnerability of groundwater resources. In this regard, geographical information system (GIS) and remote sensing (RS) were utilized to prepare the mentioned factors and the intrinsic vulnerability map was obtained. The results of COP method indicated that the northwest and the west of the region are highly and very vulnerable. This study indicated that regions with low vulnerability were observed in eastern areas, which accounted for 15.6% of the area. Moderate vulnerability was 40% and related to the northeast and southeast of the area. High vulnerability was 38.2% and related to western and southwestern regions. Very high vulnerability was 6.2% and related to the northwest of the area. By means of the analysis of sensitivity of the model, it was determined that the focus

  11. Geodesic and hydrogeophysic long term observations in the Durzon karstic aquifer (Larzac, France)

    Science.gov (United States)

    Le Moigne, Nicolas; Bayer, Roger; Boudin, Frederick; Champollion, Cedric; Chery, Jean; Collard, Philippe; Daignières, Marc; Deville, Sabrina; Doerflinger, Erik; Vernant, Philippe

    2010-05-01

    Karsts are generally characterized by high heterogeneity at all scales for both the water storage properties and the mode of water transport. The Durzon karst system is located in south of France and is characterized by a unsaturated zone of 100-150 m width. The water input is exclusively rainfall and draining occurs at the Durzon perennial spring in a karstic valley. The Durzon aquifer has been monitored by our group by different geophysical methods (gravimetry, tiltmetry, more details below) for several years. The present-day stage of the project is to setup long term observations to assess hydrological properties of the karst in a small area of 500m*500m with numerous caves (up to 100 m deep and more than 2 km of development). The observations are of four major types: - Continuous high frequency and high accuracy gravimetry: Gravimetric observations can be directly linked to the variations of water masses in the unsaturated zone. The iGrav™ Superconducting Gravity Meter from GWR (San Diego, USA) will be used to record continuous gravity variations and track water mass variations at a few millimeters level. The iGrav™ is a new SG model from GWR that has been simplified for portable and field operation, but retains the stability and precision of previous SGs. With a drift rate of less than 0.5 microGal/month and a virtually constant scale factory, the iGrav™ will provide a much higher stability and precision than can be achieved with mechanical spring-type gravity meters. - Water flux measurements (atmospheric and in-situ): A flux tower provides evapo-transpiration measurements (output) allowing complete budget calculation with the help of gravity (storage variations) and rainfall (input). An original measurement corresponds to the measure of the in-situ flow inside karstic caves (stalactites and underground river). - Tiltmetry: In situ (in caves) measurements are completed by long base silica tiltmeters. Tiltmeters are sensible to water storage in fractures

  12. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  13. Baseline geochemical characterisation of a vulnerable tropical karstic aquifer; Lifou, New Caledonia

    Directory of Open Access Journals (Sweden)

    Eric Nicolini

    2016-03-01

    Full Text Available Study region: Lifou Island, near the main island of New Caledonia. Study focus: Stable oxygen and hydrogen isotopes of groundwater and rainfall were used to characterise baseline values for the main fresh water aquifer of Lifou Island and describe its recharge. Other stable isotope parameters (nitrates and DIC were used to investigate the interaction between surface water (rainfall and groundwater, including anthropogenic effects from human activities. New hydrological insights for the region: This study represents the first baseline isotopic characterisation of Lifou Island’s groundwater aquifer composition and provides a reference for future investigative studies on groundwater quality and security. Groundwater sampled in June and October 2012 had nearly identical isotopic composition. Tap water sampled monthly between February 2012 and January 2014 also had a constant isotopic composition similar to the groundwater. Groundwater recharge was found to occur when monthly precipitation exceeded 140 mm, with the recharge cycle representing 20–30% of the annual rainfall. Relationships between HCO32− content, pH, soil δ13C DIC and satellite photo interpretation suggests a variance of soil pCO2, which is explained by different vegetation cover and higher water use efficiencies in forested areas (high pCO2, more negative δ13C isotope values. The δ15NNO3 values for most groundwater indicate they are uncontaminated with anthropogenic nitrates, although some samples taken in October (dry season showed a slight denitrification, possibly of natural origin. Keywords: Reef islands, Precipitation, Karstic aquifer, Hydrogeology, Stable isotopes, Nitrates

  14. Vulnerability of a public supply well in a karstic aquifer to contamination.

    Science.gov (United States)

    Katz, B G; McBride, W S; Hunt, A G; Crandall, C A; Metz, P A; Eberts, S M; Berndt, M P

    2009-01-01

    To assess the vulnerability of ground water to contamination in the karstic Upper Floridan aquifer (UFA), age-dating tracers and selected anthropogenic and naturally occurring compounds were analyzed in multiple water samples from a public supply well (PSW) near Tampa, Florida. Samples also were collected from 28 monitoring wells in the UFA and the overlying surficial aquifer system (SAS) and intermediate confining unit located within the contributing recharge area to the PSW. Age tracer and geochemical data from the earlier stage of the study (2003 through 2005) were combined with new data (2006) on concentrations of sulfur hexafluoride (SF(6)), tritium ((3)H), and helium-3, which were consistent with binary mixtures of water for the PSW dominated by young water (less than 7 years). Water samples from the SAS also indicated mostly young water (less than 7 years); however, most water samples from monitoring wells in the UFA had lower SF(6) and (3)H concentrations than the PSW and SAS, indicating mixtures containing high proportions of older water (more than 60 years). Vulnerability of the PSW to contamination was indicated by predominantly young water and elevated nitrate-N and volatile organic compound concentrations that were similar to those in the SAS. Elevated arsenic (As) concentrations (3 to 19 microg/L) and higher As(V)/As(III) ratios in the PSW than in water from UFA monitoring wells indicate that oxic water from the SAS likely mobilizes As from pyrite in the UFA matrix. Young water found in the PSW also was present in UFA monitoring wells that tap a highly transmissive zone (43- to 53-m depth) in the UFA.

  15. Use of microbial analysis to evaluate denitrification in the karstic aquifer of Okinawa, Japan

    Science.gov (United States)

    Yasumoto, J.

    2014-12-01

    Denitrification, a microbial process in the nitrogen cycle, is a facultative respiratory pathway in which nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), successively, are reduced to nitrogen gas (N2). This study explores the use of microbial analysis to evaluate the processes involved in nitrate attenuation in groundwater. Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) is used to identify denitrifiers based only on their 16SrRNA gene sequences, and Real-Time PCR analysis is used to quantify nitrite reducing genes (nirK and nirS), this suggest that a new methods for detecting denitrification activity by comparing the gene dosage that has been detected by RT-PCR and the value of the δ15NNO3- and δ18ONO3-. This study focuses on a zone of significant NO3- attenuation occurring at underground dam catchment area in the karstic Ryukyu limestone aquifer, which is located southern part of Okinawa, Japan. As a result of microbial analysis, the bacteria were detected at all observation points which have been reported to have denitrification ability. And it has been confirmed that the bacteria has a gene nirS which is related to denitrification. In addition, many bacteria related to denitrification have been extracted from suspended solids more than from groundwater in the aquifer. And, the correlation was high between nirK /nirS gene dosage that has been detected by RT-PCR and the value of the δ15N and δ18O; therefore, this study demonstrates the effectiveness of using Real-Time PCR analysis for providing insights into the processes affecting nitrate attenuation in ground water.

  16. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  17. HYDROGEOLOGY AND CONCEPTUAL MODEL OF THE KARSTIC COASTAL AQUIFER IN NORTHERN YUCATAN STATE, MEXICO

    Directory of Open Access Journals (Sweden)

    Miguel J Villasuso-Pino

    2011-04-01

    Full Text Available The coastal zone of northern Yucatan Peninsula (YP is mainly constituted by Tertiary limestones, covered by Pleistocen limestones, where there exist swamps and estuary systems, locally called “rías”, with mouths connecting them to the sea and hence being a way for an important amount of groundwater to discharge, like in Ría Lagartos and Celestún. These limestones have karstic layers located at depths from 8 to 16 meters below terrain surface.  It is in these layers where groundwater mainly flows toward coast, passing below the sand dune and discharging in the sea in the form of submarine springs which in many cases manifest themselves on the marine surface depending on the hydraulic or piezometric fresh water head. The width of the superficial limestone within this coastal fringe, called “caliche”, varies from 5 to 10 kilometers in the study zone (Chuburna-Progreso-Chicxulub.  Its permeability is extremely low, so it constitutes a confining layer that impedes superficial waters to percolate toward groundwater.  The hydraulic head of the groundwater below this confining layer is over the mean sea level and also over the swamp water level, coastal lagoons and estuaries. There are two important hydrological phenomena that occur in this coastal fringe: 1 There is no recharge to the aquifer (groundwater due to limestone rock outcrops is impermeable or semipermeable; and 2 groundwater pressure is not lost, nor saline interfase is rised if the superficial layer is broken.  The groundwater pollution vulnerability within this coastal fringe is less than that for the superficial saline waters of swamps and estuaries, because of caliche’s low intrinsic permeability that impedes percolation.

  18. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    Science.gov (United States)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources

  19. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.; Fan, X.; Wei, W.; Kou, J.

    2011-01-01

    distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  20. Seawater intrusion in karstic, coastal aquifers: Current challenges and future scenarios in the Taranto area (southern Italy).

    Science.gov (United States)

    De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio Luigi

    2016-12-15

    Mediterranean areas are characterized by complex hydrogeological systems, where management of freshwater resources, mostly stored in karstic, coastal aquifers, is necessary and requires the application of numerical tools to detect and prevent deterioration of groundwater, mostly caused by overexploitation. In the Taranto area (southern Italy), the deep, karstic aquifer is the only source of freshwater and satisfies the main human activities. Preserving quantity and quality of this system through management policies is so necessary and such task can be addressed through modeling tools which take into account human impacts and the effects of climate changes. A variable-density flow model was developed with SEAWAT to depict the "current" status of the saltwater intrusion, namely the status simulated over an average hydrogeological year. Considering the goals of this analysis and the scale at which the model was built, the equivalent porous medium approach was adopted to represent the deep aquifer. The effects that different flow boundary conditions along the coast have on the transport model were assessed. Furthermore, salinity stratification occurs within a strip spreading between 4km and 7km from the coast in the deep aquifer. The model predicts a similar phenomenon for some submarine freshwater springs and modeling outcomes were positively compared with measurements found in the literature. Two scenarios were simulated to assess the effects of decreased rainfall and increased pumping on saline intrusion. Major differences in the concentration field with respect to the "current" status were found where the hydraulic conductivity of the deep aquifer is higher and such differences are higher when Dirichlet flow boundary conditions are assigned. Furthermore, the Dirichlet boundary condition along the coast for transport modeling influences the concentration field in different scenarios at shallow depths; as such, concentration values simulated under stressed conditions

  1. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  2. Transient well flow in vertically heterogeneous aquifers.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The

  3. Hydraulic analysis of harmonic pumping tests in frequency and time domains for identifying the conduits networks in a karstic aquifer

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Cardiff, M.; Lecoq, N.; Jourde, H.

    2018-04-01

    In a karstic field, the flow paths are very complex as they globally follow the conduit network. The responses generated from an investigation in this type of aquifer can be spatially highly variable. Therefore, the aim of the investigation in this case is to define a degree of connectivity between points of the field, in order to understand these flow paths. Harmonic pumping tests represent a possible investigation method for characterizing the subsurface flow of groundwater. They have several advantages compared to a constant-rate pumping (more signal possibilities, ease of extracting the signal in the responses and possibility of closed loop investigation). We show in this work that interpreting the responses from a harmonic pumping test is very useful for delineating a degree of connectivity between measurement points. We have firstly studied the amplitude and phase offset of responses from a harmonic pumping test in a theoretical synthetic modeling case in order to define a qualitative interpretation method in the time and frequency domains. Three different type of responses have been separated: a conduit connectivity response, a matrix connectivity, and a dual connectivity (response of a point in the matrix, but close to a conduit). We have then applied this method to measured responses at a field research site. Our interpretation method permits a quick and easy reconstruction of the main flow paths, and the whole set of field responses appear to give a similar range of responses to those seen in the theoretical synthetic case.

  4. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.

    2011-01-01

    This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP). Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE) method and finite volume method (FVM), both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE) method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  5. Numerical Simulation of Pollutant Transport in Fractured Vuggy Porous Karstic Aquifers

    Directory of Open Access Journals (Sweden)

    Xiaolin Fan

    2011-01-01

    Full Text Available This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP. Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE method and finite volume method (FVM, both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  6. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    Directory of Open Access Journals (Sweden)

    J. B. Heffernan

    2012-05-01

    Full Text Available Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived N2 is highly variable in space and inversely correlated with dissolved oxygen (O2. Negative relationships between O2 and δ15NNO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15NNO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3 in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs.

  7. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 ( 3 H/ 3 He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3 H/ 3 He age is independent of the extent of dilution with older ( 3 H-free and 3 He trit -free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl - and δ 18 O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO 4 -reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg -1 ) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the 3 H concentration of the groundwater. Because of uncertainties associated with very low 3 H and 3 He content in dilute mixtures, 3 H/ 3 He dating is

  8. Flow of river water into a karstic limestone aquifer - 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Science.gov (United States)

    Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river

  9. Simulation of the interaction of karstic lakes Magnolia and Brooklyn with the upper Floridan Aquifer, southwestern Clay County, Florida

    Science.gov (United States)

    Merritt, M.L.

    2001-01-01

    The stage of Lake Brooklyn, in southwestern Clay County, Florida, has varied over a range of 27 feet since measurements by the U.S. Geological Survey began in July 1957. The large stage changes have been attributed to the relation between highly transient surface-water inflow to the lake and subsurface conduits of karstic origin that permit a high rate of leakage from the lake to the Upper Floridan aquifer. After the most recent and severe stage decline (1990-1994), the U.S. Geological Survey began a study that entailed the use of numerical ground-water flow models to simulate the interaction of the lake with the Upper Floridan aquifer and the large fluctuations of stage that were a part of that process. A package (set of computer programs) designed to represent lake/aquifer interaction in the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model (MODFLOW-96) and the Three-Dimensional Method-of-Characteristics Solute-Transport Model (MOC3D) simulators was prepared as part of this study, and a demonstration of its capability was a primary objective of the study. (Although the official names are Brooklyn Lake and Magnolia Lake (Florida Geographic Names), in this report the local names, Lake Brooklyn and Lake Magnolia, are used.) In the simulator of lake/aquifer interaction used in this investigation, the stage of each lake in a simulation is updated in successive time steps by a budget process that takes into account ground-water seepage, precipitation upon and evaporation from the lake surface, stream inflows and outflows, overland runoff inflows, and augmentation or depletion by artificial means. The simulator was given the capability to simulate both the division of a lake into separate pools as lake stage falls and the coalescence of several pools into a single lake as the stage rises. This representational capability was required to simulate Lake Brooklyn, which can divide into as many as 10 separate pools at sufficiently low stage. In the

  10. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    Tritium/helium-3 ({sup 3}H/{sup 3}He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The {sup 3}H/{sup 3}He age is independent of the extent of dilution with older ({sup 3}H-free and {sup 3}He{sub trit}-free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl{sup -} and {delta}{sup 18}O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO{sub 4}-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg{sup -1}) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the {sup 3}H concentration of the groundwater. Because of uncertainties associated with very low {sup 3}H

  11. Controls of evaporative irrigation return flows in comparison to seawater intrusion in coastal karstic aquifers in northern Sri Lanka: Evidence from solutes and stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chandrajith, Rohana, E-mail: rohanac@pdn.ac.lk [Department of Geology, Faculty of Science, University of Peradeniya (Sri Lanka); Diyabalanage, Saranga [Department of Geology, Faculty of Science, University of Peradeniya (Sri Lanka); Premathilake, K.M. [Water Supply and Drainage Board, Telewala Road, Ratmalana (Sri Lanka); Hanke, Christian; Geldern, Robert van; Barth, Johannes A.C. [Friedrich-Alexander University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2016-04-01

    Groundwater in Miocene karstic aquifers in the Jaffna Peninsula of Sri Lanka is an important resource since no other fresh water sources are available in the region. The subsurface is characterized by highly productive limestone aquifers that are used for drinking and agriculture purposes. A comprehensive hydrogeochemical study was carried out to reveal the processes affecting the groundwater quality in this region. Major and trace element composition and environmental isotope ratios of oxygen and hydrogen (δ{sup 18}O{sub H2O} and δ{sup 2}H{sub H2O}) were determined in 35 groundwater samples for this investigation. The ion abundance of groundwater in the region was characterized by an anion sequence order with HCO{sub 3}¯ > Cl¯ > SO{sub 4}¯ > NO{sub 3}¯. For cations, average Na{sup +}+K{sup +} contents in groundwater exceeded those of Ca{sup 2+} + Mg{sup 2+} in most cases. Ionic relationships of major solutes indicated open system calcite dissolution while seawater intrusions are also evident but only close to the coast. The solute contents are enriched by agricultural irrigation returns and associated evaporation. This was confirmed by the stable isotope composition of groundwater that deviated from the local meteoric water line (LMWL) and formed its own regression line denoted as the local evaporation line (LEL). The latter can be described by δ{sup 2}H{sub H2O} = 5.8 × δ{sup 18}O{sub H2O-–} 2.9. Increased contents of nitrate-N (up to 5 mg/L), sulfate (up to 430 mg/L) and fluoride (up to 1.5 mg/L) provided evidences for anthropogenic inputs of solutes, most likely from agriculture activities. Among trace elements Ba, Sr, As and Se levels in the Jaffna groundwater were higher compared to that of the dry zone metamorphic aquifers in Sri Lanka. Solute geochemistry and stable isotope evidences from the region indicates that groundwater in the area is mainly derived from local modern precipitation but modified heavily by progressive evaporative

  12. An interesting use of 222 Rn in the study of the flow velocities in the coastal karstic aquifers

    International Nuclear Information System (INIS)

    Cesario, G.; Tinelli, R.

    2001-01-01

    Pollution phenomena which are more and more affecting groundwater, do require recovery actions which cannot fail to take into account the knowledge of filtration velocity, V f . Science literature, by now, includes a great deal of hydrogeological studies which stressed 222 Rn reliability as groundwater mobility indicator. In general, and not considering the nature of the aquifer, it was found that a higher mobility of waters corresponds to a higher radon content. Starting from such considerations and firmly considering experiences gathered so far within the coastal aquifer study, a swift method correlating groundwater filtration velocity to their radon content was implemented. This, later made it possible to obtain, by means of the 222 Rn isochores, isoradon map, valuable information on groundwater velocity even on far-reaching areas by only effecting few V f direct measurements. This method, then, was tested on the field in the Salento coastal area Torre S. Isidoro, where the aquifer presents hydraulic, chemical-physical parameters such eto be macroscopically considered as homogeneous. The validity of the method not only was it fully supported by this check, but also evidenced the reliability of information provided by the radon isochore maps with respect to the ones obtainable from the classical isothermal and isohaline map. Suggested method, then, offers a double advantage: to reduce to the minimum V f direct measurements, which are costly owing to the use of radioactive tracers, and to complete and/or confirm information collected from other maps. Finally, this study has also pointed out the presence of high 222 Rn in practically still groundwater, but subject to sea level continuous oscillations. Of course this work also relates to mechanisms this phenomenon is based on, as well as 222 Rn ratio [it

  13. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; McConnell, J.B.; Drenkard, S.; Schlosser, P.; Michel, R.L.

    1998-01-01

    The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl - , 3 H, tritiogenic helium-3 ( 3 He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O 2 (DO), H 2 S, CH 4 , δ 18 O, δD, and 14 C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl - , δ 18 O, δD, CFC-12, and the quantity ( 3 H+ 3 He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H 2 S, CH 4 , 14 C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl - and δ 18 O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ 18 O=-2.5±0.3per thousand, Cl - =12.2±2 mg/l), (2) regional infiltration water (δ 18 O=-4.2±0.1per thousand, Cl - =2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ 18 O=-3.4±0.1per thousand, Cl - =2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Drenkard, S.; Schlosser, P. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    he quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl{sup -}, {sup 3}H, tritiogenic helium-3 ({sup 3}He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O{sub 2} (DO), H{sub 2}S, CH{sub 4}, {delta}{sup 18}O, {delta}D, and {sup 14}C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl{sup -}, {delta}{sup 18}O, {delta}D, CFC-12, and the quantity ({sup 3}H+{sup 3}He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H{sub 2}S, CH{sub 4}, {sup 14}C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl{sup -} and {delta}{sup 18}O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water ({delta}{sup 18}O=-2.5{+-}0.3per thousand, Cl{sup -}=12.2{+-}2 mg/l), (2) regional infiltration water ({delta}{sup 18}O=-4.2{+-}0.1per thousand, Cl{sup -}=2.3{+-}0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer ({delta}{sup 18}O=-3.4{+-}0.1per thousand, Cl{sup -}=2.6{+-}0.1 mg/l) (uncertainties are {+-}1{sigma}). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to theN and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining

  15. The usefulness of multi-well aquifer tests in heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.; Benton, D.J.; Herweijer, J.C.; Sims, P.

    1990-01-01

    Three large-scale (100 m) and seven small-scale (3-7 m) multi-well aquifer tests were conducted in a heterogeneous aquifer to determine the transmissivity distribution across a one-hectare test site. Two of the large-scale tests had constant but different rates of discharge; the remaining large-scale test had a discharge that was pulsed at regulated intervals. The small-scale tests were conducted at two well clusters 20 m apart. The program WELTEST was written to analyze the data. By using the methods of non-linear least squares regression analysis and Broyden's method to solve for non-linear extrema, WELTEST automatically determines the best values of transmissivity and the storage coefficient. The test results show that order of magnitude differences in the calculated transmissivities at a well location can be realized by varying the discharge rate at the pumping well, the duration of the aquifer test, and/or the location of the pumping well. The calculated storage coefficients for the tests cover a five-order magnitude range. The data show a definite trend for the storage coefficient to increase with the distance between the pumping and the observation wells. This trend is shown to be related to the orientation of high hydraulic conductivity zones between the pumping and the observation wells. A comparison among single-well aquifer tests, geological investigations and multi-well aquifer tests indicate that the multi-well tests are poorly suited for characterizing a transmissivity field. (Author) (11 refs., 14 figs.)

  16. Changing the scale of hydrogeophysical aquifer heterogeneity characterization

    Science.gov (United States)

    Paradis, Daniel; Tremblay, Laurie; Ruggeri, Paolo; Brunet, Patrick; Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Holliger, Klaus; Irving, James; Molson, John; Lefebvre, Rene

    2015-04-01

    Contaminant remediation and management require the quantitative predictive capabilities of groundwater flow and mass transport numerical models. Such models have to encompass source zones and receptors, and thus typically cover several square kilometers. To predict the path and fate of contaminant plumes, these models have to represent the heterogeneous distribution of hydraulic conductivity (K). However, hydrogeophysics has generally been used to image relatively restricted areas of the subsurface (small fractions of km2), so there is a need for approaches defining heterogeneity at larger scales and providing data to constrain conceptual and numerical models of aquifer systems. This communication describes a workflow defining aquifer heterogeneity that was applied over a 12 km2 sub-watershed surrounding a decommissioned landfill emitting landfill leachate. The aquifer is a shallow, 10 to 20 m thick, highly heterogeneous and anisotropic assemblage of littoral sand and silt. Field work involved the acquisition of a broad range of data: geological, hydraulic, geophysical, and geochemical. The emphasis was put on high resolution and continuous hydrogeophysical data, the use of direct-push fully-screened wells and the acquisition of targeted high-resolution hydraulic data covering the range of observed aquifer materials. The main methods were: 1) surface geophysics (ground-penetrating radar and electrical resistivity); 2) direct-push operations with a geotechnical drilling rig (cone penetration tests with soil moisture resistivity CPT/SMR; full-screen well installation); and 3) borehole operations, including high-resolution hydraulic tests and geochemical sampling. New methods were developed to acquire high vertical resolution hydraulic data in direct-push wells, including both vertical and horizontal K (Kv and Kh). Various data integration approaches were used to represent aquifer properties in 1D, 2D and 3D. Using relevant vector machines (RVM), the mechanical and

  17. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    Science.gov (United States)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  18. Field study of macrodispersion in a heterogeneous aquifer. I

    International Nuclear Information System (INIS)

    Boggs, J.M.; Young, S.C.; Waldrop, W.R.; Gelhar, L.W.; Adams, E.E.; Rehfeldt, K.R.

    1990-01-01

    A large-scale natural gradient tracer experiment has been conducted at a field site located at Columbus Air Force Base in northeastern Mississippi. The alluvial aquifer at the test site is composed of lenticular deposits of sand, gravel, silt and clay, and is quite heterogeneous with respect to its hydraulic properties. Ten cubic meters of a solution containing bromide and three organic tracers (pentafluorobenzoic acid, o-trifluoromethylbenzoic acid, and 2,6-difluorobenzoic acid) were injected into the aquifer at a uniform rate over a period of two days. The tracer plume was subsequently monitored in three dimensions over a 20-month period using a network of 258 multilevel sampling wells. The tracer concentration distribution of the plume at the conclusion of the experiment was highly asymmetric in the longitudinal direction. The peak tracer concentration was located only 7 m from the injection point, while the advancing side of the plume extended downgradient a distance of more than 260 m. The extreme skewness of the plume was caused by large scale spatial variations in the mean groundwater velocity along the plume travel path produced by the approximate two order-of-magnitude increase in the mean hydraulic conductivity between the near-field and far-field regions of the experimental site. The tracer mass balance during the experiment showed a declining trend between sampling events with approximately 50 percent of the injected tracer mass unaccounted for at the end of the experiment. Laboratory column experiments indicated that approximately 20 percent of the tracer mass was adsorbed to the aquifer matrix. The remaining 30 percent of the missing tracer mass was attributed to incomplete sampling coverage of the plume, particularly on the advancing side, and to a sampling bias produced by the multilevel samplers. (Author) (17 refs., 3 tabs., 11 figs.)

  19. Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.

    Science.gov (United States)

    Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary

    2016-11-01

    Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2  = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.

  20. Using solute and heat tracers for aquifer characterization in a strongly heterogeneous alluvial aquifer

    Science.gov (United States)

    Sarris, Theo S.; Close, Murray; Abraham, Phillip

    2018-03-01

    A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.

  1. Field study of macrodispersion in a heterogeneous aquifer. 2

    International Nuclear Information System (INIS)

    Boggs, J.M.; Rehfeldt, K.R.

    1990-01-01

    Observations of the spatial variability of the hydraulic conductivity field at the site of a large-scale natural gradient tracer experiment located at Columbus Air Force Base in Mississippi are presented. Direct measurements of hydraulic conductivity of the heterogeneous alluvial aquifer at the site were made using a variety of methods including aquifer tests, borehole flowmeter logging, double-packer tests, slug tests, and a newly developed laboratory permeameter to test undisturbed soil cores. The borehole flowmeter method was shown to be the most effective method for measuring conductivity variability. Estimates of the log hydraulic conductivity variance (σ 2 lnL ) and the horizontal and vertical correlation sales, (λ h and λ v ) of 4.5, 12 m, and 1.5 m, respectively, were calculated assuming second order stationarity of the conductivity field. Large-scale spatial variations in the mean groundwater velocity indicated by the natural gradient tracer experiment, which were shown to be a direct result of contrasts in the mean hydraulic conductivity along the plume pathway, strongly suggested the presence of a conductivity trend. The measured hydraulic conductivity data were subsequently detrended using least-squares regression to remove three-dimensional polynomials. The third-order polynomial was judged the best representation of the conductivity drift based on its overall compatibility with the groundwater flow field inferred from the tracer plume observations. Significantly lower estimates for σ 2 lnK , λ h , and λ v of 2.8, 5.3 m, and 0.7 m, respectively, were obtained from the third-order log conductivity residuals. The experience with the borehole flowmeter technique shows the feasibility of observing the statistical parameters of the hydraulic conductivity variability required for stochastic models of macrodispersion. (Author) (20 refs., 3 figs., 10 tabs.)

  2. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    Abstract

    Aquifer

  3. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  4. Karstic water storage response to the recent droughts in Southwest China estimated from satellite gravimetry

    Science.gov (United States)

    Yao, Chaolong; Luo, Zhicai

    2015-12-01

    The water resources crisis is intensifying in Southwest China (SWC), which includes the world's largest continuous coverage of karst landforms, due to recent severe drought events. However, because of the special properties of karstic water system, such as strong heterogeneity, monitoring the variation of karstic water resources at large scales remains still difficult. Satellite gravimetry has emerged as an effective tool for investigating the global and regional water cycles. In this study, we used GRACE (Gravity Recovery and Climate Experiment) data from January 2003 to January 2013 to investigate karstic water storage variability over the karst region of SWC. We assessed the impacts of the recent severe droughts on karst water resources, including two heavy droughts in September 2010 to May 2010 and August 2011 to January 2012. Results show a slightly water increase tend during the studied period, but these two severe droughts have resulted in significant water depletion in the studied karst region. The latter drought during 2011 and 2012 caused more water deficits than that of the drought in 2010. Strong correlation between the variations of GRACE-based total water storage and precipitation suggests that climate change is the main driving force for the significant water absent over the studied karst region. As the world's largest continuous coverage karst aquifer, the karst region of SWC offers an example of GRACE applications to a karst system incisively and will benefit for water management from a long-term perspective in karst systems throughout the world.

  5. Multiple recharge processes to heterogeneous Mediterranean coastal aquifers and implications on recharge rates evolution in time

    Science.gov (United States)

    Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H.

    2018-04-01

    Climate change is nowadays widely considered to have major effects on groundwater resources. Climatic projections suggest a global increase in evaporation and higher frequency of strong rainfall events especially in Mediterranean context. Since evaporation is synonym of low recharge conditions whereas strong rainfall events are more favourable to recharge in heterogeneous subsurface contexts, a lack of knowledge remains then on the real ongoing and future drinking groundwater supply availability at aquifers scale. Due to low recharge potential and high inter-annual climate variability, this issue is strategic for the Mediterranean hydrosystems. This is especially the case for coastal aquifers because they are exposed to seawater intrusion, sea-level rise and overpumping risks. In this context, recharge processes and rates were investigated in a Mediterranean coastal aquifer with subsurface heterogeneity located in Southern Corsica (France). Aquifer recharge rates from combining ten physical and chemical methods were computed. In addition, hydrochemical and isotopic investigations were carried out through a monthly two years monitoring combining major ions and stable isotopes of water in rain, runoff and groundwater. Diffuse, focused, lateral mountain system and irrigation recharge processes were identified and characterized. A predominant focused recharge conditioned by subsurface heterogeneity is evidenced in agreement with variable but highly favourable recharge rates. The fast water transfer from the surface to the aquifer implied by this recharge process suggests less evaporation, which means higher groundwater renewal and availability in such Mediterranean coastal aquifers.

  6. A newly developed borehole flowmeter technology for heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.

    1990-01-01

    Extensive borehole flowmeter tests were performed at 37 fully-screened wells on a one-hectare test site to characterize the three-dimensional hydraulic conductivity field of an alluvial aquifer with a σ lnK of 4.7. During the site investigations, several major advancements with respect to borehole flowmeter technology were developed. The milestones included: (1) the development of a field-durable electromagnetic borehole flowmeter with a lower detection limit of 0.1 l/min; (2) the realization of the importance of the pumping rate with respect to the calculated value for the depth-averaged hydraulic conductivity; and (3) an evaluation of alternative methods for calculating the depth-averaged hydraulic conductivity. The predicted three-dimensional hydraulic conductivity field was compared to the results of 10 small-scale (3 to 7 m) tracer tests, information about the depositional history of the aquifer, and the results of three large-scale aquifer tests. The hydraulic conductivity data predict the major features of the tracer breakthrough curves, maps the outline of a former river meander in an aerial photograph, and leads to a geometric mean consistent with the average hydraulic conductivity of the aquifer. (Author) (14 refs., 15 figs., 2 tabs.)

  7. PRESENCE OF PESTICIDES IN THE KARSTIC AQUIFER BETWEEN THE MUNICIPALITIES OF MÉRIDA TO PROGRESO, YUCATÁN, MÉXICO

    Directory of Open Access Journals (Sweden)

    Germán Giácoman Vallejos

    2017-07-01

    Full Text Available Pollution by pesticides has become relevant worldwide due to its serious effects on living organisms. Pesticides act as endocrine disrupters, affect the immune system, decrease the reproductive capacity and some are potentially carcinogenic for human beings. For the characteristicsmentioned, their high environmental persistence and bioacumulation potential in fat tissues,since 1970, some of the organochlorade pesticides have been restricted in many countries, and it is necessary their monitoring. In the Yucatan State, the predominant karstic nature of soil enables the infiltration of a wide range of substances to the underground hydric resources, polluting them. Particularly, it can be observed the north occidental state region, which is characterized by the presence of human settlements, agricultural activity and ground water flows oriented towards the north coast. The present study presents the results of a research carried outin the north occidental region of the Yucatan State (between the municipalities of Merida and Progreso about the groundwater pollution by the presence of4,4´-DDT, 4,4´-DDD, 4,4´-DDE, lindane, endosulphan I and endosulphansulfate. The DDT concentrations and its derivatives as well as the endosulphan found in the area represent a risk for human water consumption, according to the mexican regulatory NOM-127-SSA1-1994.

  8. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  9. Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential

    Science.gov (United States)

    Cardiff, M.; Bakhos, T.; Kitanidis, P. K.; Barrash, W.

    2013-09-01

    Periodic pumping tests, in which a fluid is extracted during half a period, then reinjected, have been used historically to estimate effective aquifer properties. In this work, we suggest a modified approach to periodic pumping test analysis in which one uses several periodic pumping signals of different frequencies as stimulation, and responses are analyzed through inverse modeling using a "steady-periodic" model formulation. We refer to this strategy as multifrequency oscillatory hydraulic imaging. Oscillating pumping tests have several advantages that have been noted, including no net water extraction during testing and robust signal measurement through signal processing. Through numerical experiments, we demonstrate additional distinct advantages that multifrequency stimulations have, including: (1) drastically reduced computational cost through use of a steady-periodic numerical model and (2) full utilization of the aquifer heterogeneity information provided by responses at different frequencies. We first perform fully transient numerical modeling for heterogeneous aquifers and show that equivalent results are obtained using a faster steady-periodic heterogeneous numerical model of the wave phasor. The sensitivities of observed signal response to aquifer heterogeneities are derived using an adjoint state-based approach, which shows that different frequency stimulations provide complementary information. Finally, we present an example 2-D application in which sinusoidal signals at multiple frequencies are used as a data source and are inverted to obtain estimates of aquifer heterogeneity. These analyses show the different heterogeneity information that can be obtained from different stimulation frequencies, and that data from several sinusoidal pumping tests can be rapidly inverted using the steady-periodic framework.

  10. Field study of macrodispersion in a heterogeneous aquifer. 3

    International Nuclear Information System (INIS)

    Beard, L.M.; Stauffer, T.B.; MacIntyre, W.G.

    1990-01-01

    The Tennessee Valley Authority is conducting a second large-scale groundwater research study. In this experiment, dissolved tracers are being injected into a shallow alluvium aquifer. This study will support groundwater protection by making possible more effective design of waste storage facilities, improving monitoring systems, and designing better mitigation programs. The objectives of this study are to better understand the dominant physical and chemical factors affecting contaminant movement in groundwater. A data set will be provided for evaluating transport models and for assessing the reliability of laboratory measure parameters to predict transport. Tritiated water was used as the conservative, nonreactive tracer to overcome problems experienced with the use of bromide in the first experiment. Four non-conservative tracers (naphthalene, carbon 14-labeled para-xylene, benzene, and ortho-dichlorobenzene) were also injected. This paper describes initial laboratory tests and the design and implementation of the second natural gradient injection experiment. (Author) (13 refs., 5 figs., 4 tabs.)

  11. Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.

    2018-04-01

    Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.

  12. Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework

    Science.gov (United States)

    Engdahl, N.B.; Vogler, E.T.; Weissmann, G.S.

    2010-01-01

    River-aquifer exchange is considered within a transition probability framework along the Rio Grande in Albuquerque, New Mexico, to provide a stochastic estimate of aquifer heterogeneity and river loss. Six plausible hydrofacies configurations were determined using categorized drill core and wetland survey data processed through the TPROGS geostatistical package. A base case homogeneous model was also constructed for comparison. River loss was simulated for low, moderate, and high Rio Grande stages and several different riverside drain stage configurations. Heterogeneity effects were quantified by determining the mean and variance of the K field for each realization compared to the root-mean-square (RMS) error of the observed groundwater head data. Simulation results showed that the heterogeneous models produced smaller estimates of loss than the homogeneous approximation. Differences between heterogeneous and homogeneous model results indicate that the use of a homogeneous K in a regional-scale model may result in an overestimation of loss but comparable RMS error. We find that the simulated river loss is dependent on the aquifer structure and is most sensitive to the volumetric proportion of fines within the river channel. Copyright 2010 by the American Geophysical Union.

  13. Some new hydraulic and tracer measurement techniques for heterogeneous aquifer formations

    International Nuclear Information System (INIS)

    Ptak, T.; Teutsch, G.

    1990-01-01

    Groundwater contamination assessment and remediation activities demand reliable techniques for the determination of the governing aquifer parameters and their spatial distribution. In order to define guidelines and recommendations, some existing underground investigation techniques were tested and new methods have been developed as a part of the research program at the Horkheimer Insel experimental field site. In this paper, some new developed field and laboratory techniques are introduced and the results compared for two example monitoring wells located in the northern part of the field site. It is shown that highly conductive and highly heterogeneous aquifers demand high resolution investigation techniques. For transport predictions, new methods are needed that are able to detect preferential flow paths. Results from multilevel tracer tests show that simple analytical interpretations are not valid for this type of aquifer. (Author) (8 refs., 12 figs., tab.)

  14. Geochemical And Hydrodynamic Behavior Of The Karstic Aquifer System In The Portion Between Akumal And Boca Paila, In The South Eastern Coast Of The Yucatan Peninsula.

    Science.gov (United States)

    Velazquez Oliman, G.; Leal Bautista, R. M.; Perry, E. C.; Carrol, M.; Wagner, N.; Castillo Oliman, P.

    2008-12-01

    We report here aspects of the geochemistry and hydrodynamics of a nearly 450 km2 area that constitutes part of the rapidly developing tourist corridor between Akumal and Boca Paila, Quintana Roo, Mexico. Some of the largest explored submerged cave systems in the world, including Nohoch Nah Chic and Dos Ojos, are within the study area. The presence of these and other highly permeable conduits highlights the importance of a better understanding of the aquifer system both to assess its vulnerability and to facilitate sustainable water management. This study focuses on major ion, trace element, and stable isotope geochemistry of groundwater and on monitoring system hydrodynamics through water levels measurements. Sampling along approximately 30 km of coast was accomplished by means of a network of 29 sampling sites arranged along three NW-SE transverse lines running approximately perpendicular to the coast and each extending about 16 km inland. To date 52 samples have been taken. In addition, vertical specific conductivity profiles have helped delineate the thickness of the freshwater lens, which has a maximum thickness of 33.5 m in the southwestern part of the study area, approximately 13.5 km from the coast. In the northeastern corner of the study area, 7.5 m of brackish water overlies sea water near the coast. Water level monitoring is by means of Schlumberger pressure transducers installed at 11 sites. Water table changes record tidal oscillation, confirming the interconnectedness of the system, an observation supported by conductivity measurements that indicate oscillatory vertical movement of the saline interface. (SO4/Cl) ratios, expressed as 1000(SO4/Cl) in meq/kg, are useful tracers of groundwater provenance. The ratio is approximately 100 for seawater and is much greater for groundwater in southern Quintana Roo that has dissolved evaporite (Perry et al, 2002). Ratios in the study area, which are 100 or less, indicate no contact with evaporite. Background

  15. Stochastic Management of Non-Point Source Contamination: Joint Impact of Aquifer Heterogeneity and Well Characteristics

    Science.gov (United States)

    Henri, C. V.; Harter, T.

    2017-12-01

    Agricultural activities are recognized as the preeminent origin of non-point source (NPS) contamination of water bodies through the leakage of nitrate, salt and agrochemicals. A large fraction of world agricultural activities and therefore NPS contamination occurs over unconsolidated alluvial deposit basins offering soil composition and topography favorable to productive farming. These basins represent also important groundwater reservoirs. The over-exploitation of aquifers coupled with groundwater pollution by agriculture-related NPS contaminant has led to a rapid deterioration of the quality of these groundwater basins. The management of groundwater contamination from NPS is challenged by the inherent complexity of aquifers systems. Contaminant transport dynamics are highly uncertain due to the heterogeneity of hydraulic parameters controlling groundwater flow. Well characteristics are also key uncertain elements affecting pollutant transport and NPS management but quantifying uncertainty in NPS management under these conditions is not well documented. Our work focuses on better understanding the joint impact of aquifer heterogeneity and pumping well characteristics (extraction rate and depth) on (1) the transport of contaminants from NPS and (2) the spatio-temporal extension of the capture zone. To do so, we generate a series of geostatistically equivalent 3D heterogeneous aquifers and simulate the flow and non-reactive solute transport from NPS to extraction wells within a stochastic framework. The propagation of the uncertainty on the hydraulic conductivity field is systematically analyzed. A sensitivity analysis of the impact of extraction well characteristics (pumping rate and screen depth) is also conducted. Results highlight the significant role that heterogeneity and well characteristics plays on management metrics. We finally show that, in case of NPS contamination, the joint impact of regional longitudinal and transverse vertical hydraulic gradients and

  16. A Review of the Multilevel Slug Test for Characterizing Aquifer Heterogeneity

    Directory of Open Access Journals (Sweden)

    Chia-Shyun Chen

    2012-01-01

    Full Text Available All aquifers are heterogeneous to a certain degree. The spatial distribution of hydraulic conductivity K(x, y, z, or aquifer heterogeneity, significantly influences the groundwater flow movement and associated solute transport. Of particular importance in designing an in-situ remediation plan is a knowledge of low-K layers because they are less accessible to remedial agents and form a bottleneck in remediation. The characterization of aquifer heterogeneity is essential to the solution of many practical and scientific groundwater problems. This article reviews the field technique using the multilevel slug test (MLST, which determines a series of K estimates at depths of interest in a well by making use of a double-packer system. The K(z obtained manifests the vertical variation of hydraulic conductivity in the vicinity of the test well, and the combination of K(z from different wells gives rise to a three-dimensional description of K(x, y, z. The MLST response is rather sensitive to hydraulic conductivity variation; e.g., it is oscillatory for highly permeable conditions (K > 5 × 10-4 m s-1 and a nonoscillatory for K < 5 × 10-4 m s-1. In this article we discuss the instrumentation of the double-packer system, the implementation of the depth-specific slug test, the data analysis methods for a spectrum of response characteristics usually observed in the field, and field applications of the MLST.

  17. A two-phase model of aquifer heterogeneity

    International Nuclear Information System (INIS)

    Moltyaner, G.L.

    1994-11-01

    A two-phase model of a fluid-saturated geologic medium is developed with groundwater velocity (rather than the hydraulic conductivity) as the primary model parameter. The model describes the groundwater flow, contaminant transport processes, and geologic medium structure at the local-scale of a continuum representation and relates structure to processes quantitatively. In this model, the heterogeneity of a geologic medium is characterized either in terms of the spatial variability in the bulk (local-scale) fluid density and sediment density, or in terms of variability in the local-scale porosity and effective grain diameter. The local-scale continuity equations resulting from these properties are derived for both phases. The effective grain diameter is employed to quantify the geologic structure. Velocity is employed to quantify the transport process. Since structure controls process, a high correlation is observed between the effective grain diameter and velocity. The observed correlation leads to a new formulation of Darcy's law without invoking the concept of a fictitious (Darcy's) velocity. The local-scale groundwater flow equation is developed on the basis of the new formulation. (author). 16 refs., 4 figs

  18. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  19. A Semianalytical Model for Pumping Tests in Finite Heterogeneous Confined Aquifers With Arbitrarily Shaped Boundary

    Science.gov (United States)

    Wang, Lei; Dai, Cheng; Xue, Liang

    2018-04-01

    This study presents a Laplace-transform-based boundary element method to model the groundwater flow in a heterogeneous confined finite aquifer with arbitrarily shaped boundaries. The boundary condition can be Dirichlet, Neumann or Robin-type. The derived solution is analytical since it is obtained through the Green's function method within the domain. However, the numerical approximation is required on the boundaries, which essentially renders it a semi-analytical solution. The proposed method can provide a general framework to derive solutions for zoned heterogeneous confined aquifers with arbitrarily shaped boundary. The requirement of the boundary element method presented here is that the Green function must exist for a specific PDE equation. In this study, the linear equations for the two-zone and three-zone confined aquifers with arbitrarily shaped boundary is established in Laplace space, and the solution can be obtained by using any linear solver. Stehfest inversion algorithm can be used to transform it back into time domain to obtain the transient solution. The presented solution is validated in the two-zone cases by reducing the arbitrarily shaped boundaries to circular ones and comparing it with the solution in Lin et al. (2016, https://doi.org/10.1016/j.jhydrol.2016.07.028). The effect of boundary shape and well location on dimensionless drawdown in two-zone aquifers is investigated. Finally the drawdown distribution in three-zone aquifers with arbitrarily shaped boundary for constant-rate tests (CRT) and flow rate distribution for constant-head tests (CHT) are analyzed.

  20. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    Science.gov (United States)

    Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.

  1. Nominal Range Sensitivity Analysis of peak radionuclide concentrations in randomly heterogeneous aquifers

    International Nuclear Information System (INIS)

    Cadini, F.; De Sanctis, J.; Cherubini, A.; Zio, E.; Riva, M.; Guadagnini, A.

    2012-01-01

    Highlights: ► Uncertainty quantification problem associated with the radionuclide migration. ► Groundwater transport processes simulated within a randomly heterogeneous aquifer. ► Development of an automatic sensitivity analysis for flow and transport parameters. ► Proposal of a Nominal Range Sensitivity Analysis approach. ► Analysis applied to the performance assessment of a nuclear waste repository. - Abstract: We consider the problem of quantification of uncertainty associated with radionuclide transport processes within a randomly heterogeneous aquifer system in the context of performance assessment of a near-surface radioactive waste repository. Radionuclide migration is simulated at the repository scale through a Monte Carlo scheme. The saturated groundwater flow and transport equations are then solved at the aquifer scale for the assessment of the expected radionuclide peak concentration at a location of interest. A procedure is presented to perform the sensitivity analysis of this target environmental variable to key parameters that characterize flow and transport processes in the subsurface. The proposed procedure is exemplified through an application to a realistic case study.

  2. Geostatistical Simulation of Hydrofacies Heterogeneity of the West Thessaly Aquifer Systems in Greece

    International Nuclear Information System (INIS)

    Modis, K.; Sideri, D.

    2013-01-01

    Integrating geological properties, such as relative positions and proportions of different hydrofacies, is of highest importance in order to render realistic geological patterns. Sequential indicator simulation (SIS) and Plurigaussian simulation (PS) are alternative methods for conceptual and deterministic modeling for the characterization of hydrofacies distribution. In this work, we studied the spatial differentiation of hydrofacies in the alluvial aquifer system of West Thessaly basin in Greece. For this, we applied both SIS and PS techniques to an extensive set of borehole data from that basin. Histograms of model versus experimental hydrofacies proportions and indicative cross sections were plotted in order to validate the results. The PS technique was shown to be more effective in reproducing the spatial characteristics of the different hydrofacies and their distribution across the study area. In addition, the permeability differentiations reflected in the PS model are in accordance to known heterogeneities of the aquifer capacity.

  3. Geostatistical Simulation of Hydrofacies Heterogeneity of the West Thessaly Aquifer Systems in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Modis, K., E-mail: kmodis@mail.ntua.gr; Sideri, D. [National Technical University of Athens, School of Mining and Metallurgical Engineering (Greece)

    2013-06-15

    Integrating geological properties, such as relative positions and proportions of different hydrofacies, is of highest importance in order to render realistic geological patterns. Sequential indicator simulation (SIS) and Plurigaussian simulation (PS) are alternative methods for conceptual and deterministic modeling for the characterization of hydrofacies distribution. In this work, we studied the spatial differentiation of hydrofacies in the alluvial aquifer system of West Thessaly basin in Greece. For this, we applied both SIS and PS techniques to an extensive set of borehole data from that basin. Histograms of model versus experimental hydrofacies proportions and indicative cross sections were plotted in order to validate the results. The PS technique was shown to be more effective in reproducing the spatial characteristics of the different hydrofacies and their distribution across the study area. In addition, the permeability differentiations reflected in the PS model are in accordance to known heterogeneities of the aquifer capacity.

  4. Integration of crosswell seismic data for simulating porosity in a heterogeneous carbonate aquifer

    Science.gov (United States)

    Emery, Xavier; Parra, Jorge

    2013-11-01

    A challenge for the geostatistical simulation of subsurface properties in mining, petroleum and groundwater applications is the integration of well logs and seismic measurements, which can provide information on geological heterogeneities at a wide range of scales. This paper presents a case study conducted at the Port Mayaca aquifer, located in western Martin County, Florida, in which it is of interest to simulate porosity, based on porosity logs at two wells and high-resolution crosswell seismic measurements of P-wave impedance. To this end, porosity and impedance are transformed into cross-correlated Gaussian random fields, using local transformations. The model parameters (transformation functions, mean values and correlation structure of the transformed fields) are inferred and checked against the data. Multiple realizations of porosity can then be constructed conditionally to the impedance information in the interwell region, which allow identifying one low-porosity structure and two to three flow units that connect the two wells, mapping heterogeneities within these units and visually assessing fluid paths in the aquifer. In particular, the results suggest that the paths in the lower flow units, formed by a network of heterogeneous conduits, are not as smooth as in the upper flow unit.

  5. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  6. Hydrogeophysics and geochemistry reveal heterogeneity and water quality improvements in aquifer recharge and recovery (ARR) (Invited)

    Science.gov (United States)

    Parsekian, A.; Regnery, J.; Wing, A.; Knight, R. J.; Drewes, J. E.

    2013-12-01

    Aquifer recharge and recover (ARR) is the process of infiltrating water into the ground for storage and withdrawal through wells at a later time. Two significant challenges faced during the design of ARR systems are 1) evaluating aquifer heterogeneity and 2) understanding the rock fluid interactions; these knowledge gaps may have profound impacts on the volume of recoverable water and the improvement in water quality in comparison with the source-water. Our objective in this research is to leverage the advantages of hydrogeophysical measurements and geochemical sampling to reveal the properties of an aquifer through which ARR water travels with the goal of informing current operations and future design decisions. Combined geophysical and geochemical investigations reveal subsurface heterogeneity, indicate possible flow paths though the aquifer and quantify specific reductions in contaminant concentrations. Ground penetrating radar (GPR), electromagnetic induction (EMI) and electrical resistivity tomography (ERT) were used to image the subsurface throughout two key infiltration/extraction areas of an ARR site in Colorado, USA. The most valuable results came from 2.5D ERT revealing the structural patterns and suggesting the distribution of textural composition of unconsolidated sediments. Geochemical measurements on transects intersecting the geophysical measurements resolved bulk parameters (i.e. total organic carbon, cations, anions) and trace organic contaminants (e.g. trace organic compounds) and were also used to estimate mixing and water travel times and assess the performance of the ARR site regarding water quality and quantity. Our results indicate that the subsurface is highly heterogeneous at our study site and that the coarse-grained sedimentary units, acting as the best conduit for transporting water, are likely discontinuous. The electrical resistivity measurements indicate certain areas of the infiltration basins may have good hydraulic connections to

  7. Identifying functional zones of denitrification in heterogeneous aquifer systems by numerical simulations - a case study

    Science.gov (United States)

    Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.

    2014-12-01

    Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from

  8. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer

    Science.gov (United States)

    Cohen, Grégory J. V.; Jousse, Florie; Luze, Nicolas; Höhener, Patrick; Atteia, Olivier

    2016-09-01

    Source delineation of hydrocarbon contaminated sites is of high importance for remediation work. However, traditional methods like soil core extraction and analysis or recent Membrane Interface Probe methods are time consuming and costly. Therefore, the development of an in situ method based on soil gas analysis can be interesting. This includes the direct measurement of volatile organic compounds (VOCs) in soil gas taken from gas probes using a PID (Photo Ionization Detector) and the analysis of other soil gases related to VOC degradation distribution (CH4, O2, CO2) or related to presence of Light Non-Aqueous Phase Liquid (LNAPL) as 222Rn. However, in widespread heterogeneous formations, delineation by gas measurements becomes more challenging. The objective of this study is twofold: (i) to analyse the potential of several in situ gas measurement techniques in comparison to soil coring for LNAPL source delineation at a heterogeneous contaminated site where the techniques might be limited by a low diffusion potential linked to the presence of fine sands and silts, and (ii) to analyse the effect of vertical sediment heterogeneities on the performance of these gas measurement methods. Thus, five types of gases were analysed: VOCs, their three related degradation products O2, CO2 and CH4 and 222Rn. Gas measurements were compared to independent LNAPL analysis by coring. This work was conducted at an old industrial site frequently contaminated by a Diesel-Fuel mixture located in a heterogeneous fine-grained aquifer. Results show that in such heterogeneous media migration of reactive gases like VOCs occurs only across small distances and the VOC concentrations sampled with gas probes are mainly related to local conditions rather than the presence of LNAPL below the gas probe. 222Rn is not well correlated with LNAPL because of sediment heterogeneity. Oxygen, CO2, and especially CH4, have larger lengths of diffusion and give the clearest picture for LNAPL presence at this

  9. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  10. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    Science.gov (United States)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range

  11. Modelling of Pesticide Transport During An Injection Experiment In A Physical and Geochemical Heterogeneous Aquifer

    Science.gov (United States)

    Hojberg, A. L.; Engesgaard, P.; Bjerg, P. L.

    The fate of selected pesticides under natural groundwater conditions was studied by natural gradient short and long term injection experiments in a shallow uncon- fined aerobic aquifer. Bentazone, DNOC, MCPP, dichlorprop, isoproturon, and BAM (dichlobenil metabolite) were injected in aqueous solution with bromide as a nonre- active tracer. The Bromide and pesticide plumes were sampled during the initial 25 m of migration in a dense monitoring net of multilevel samplers. The aquifer was physical and geochemical heterogeneous, which affected transport of several of the pesticides. A 3D reactive transport code was developed including one- and two-site linear/nonlinear equilibrium/nonequilibrium sorption and first-order as well as single Monod degradation kinetic coupled to microbial growth. Model simulations demon- strated that microbial growth was likely supported by the phenoxy acids MCPP and dichlorprop, while degradation of DNOC was adequately described by first-order degradation with no initial lag time. An observed vertical increase in pH was observed at the site and implemented in the transport code. The numerical analysis indicated that degradation of the three degradable pesticides may have been affected by vertical pH variations. Spatial variability in observed DNOC sorption was similarly suspected to be an effect of varying pH. pH dependency on DNOC sorption was confirmed by the model recognized by a match to observed breakthrough at the individual sampling points, when pH variation was included in the simulations.

  12. Use of time series and harmonic constituents of tidal propagation to enhance estimation of coastal aquifer heterogeneity

    Science.gov (United States)

    Hughes, Joseph D.; White, Jeremy T.; Langevin, Christian D.

    2010-01-01

    A synthetic two‐dimensional model of a horizontally and vertically heterogeneous confined coastal aquifer system, based on the Upper Floridan aquifer in south Florida, USA, subjected to constant recharge and a complex tidal signal was used to generate 15‐minute water‐level data at select locations over a 7‐day simulation period.   “Observed” water‐level data were generated by adding noise, representative of typical barometric pressure variations and measurement errors, to 15‐minute data from the synthetic model. Permeability was calibrated using a non‐linear gradient‐based parameter inversion approach with preferred‐value Tikhonov regularization and 1) “observed” water‐level data, 2) harmonic constituent data, or 3) a combination of “observed” water‐level and harmonic constituent data.    In all cases, high‐frequency data used in the parameter inversion process were able to characterize broad‐scale heterogeneities; the ability to discern fine‐scale heterogeneity was greater when harmonic constituent data were used.  These results suggest that the combined use of highly parameterized‐inversion techniques and high frequency time and/or processed‐harmonic constituent water‐level data could be a useful approach to better characterize aquifer heterogeneities in coastal aquifers influenced by ocean tides.

  13. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer

    Science.gov (United States)

    Seibert, Simone; Descourvieres, Carlos; Skrzypek, Grzegorz; Deng, Hailin; Prommer, Henning

    2017-05-01

    The oxidation of pyrite is often one of the main drivers affecting groundwater quality during managed aquifer recharge in deep aquifers. Data and techniques that allow detailed identification and quantification of pyrite oxidation are therefore crucial for assessing and predicting the adverse water quality changes that may be associated with this process. In this study, we explore the benefits of combining stable sulphur isotope analysis with reactive transport modelling to improve the identification and characterisation of pyrite oxidation during an aquifer storage and recovery experiment in a chemically and physically heterogeneous aquifer. We characterise the stable sulphur isotope signal (δ34S) in both the ambient groundwater and the injectant as well as its spatial distribution within the sedimentary sulphur species. The identified stable sulphur isotope signal for pyrite was found to vary between -32 and +34‰, while the signal of the injectant ranged between +9.06 and +14.45‰ during the injection phase of the experiment. Both isotope and hydrochemical data together suggest a substantial contribution of pyrite oxidation to the observed, temporally variable δ34S signals. The variability of the δ34S signal in pyrite and the injectant were both found to complicate the analysis of the stable isotope data. However, the incorporation of the data into a numerical modelling approach allowed to successfully employ the δ34S signatures as a valuable additional constraint for identifying and quantifying the contribution of pyrite oxidation to the redox transformations that occur in response to the injection of oxygenated water.

  14. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    Science.gov (United States)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick

  15. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2......, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been...... quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test...

  16. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  17. Application of multiple-point geostatistics to simulate the effect of small-scale aquifer heterogeneity on the efficiency of aquifer thermal energy storage

    Science.gov (United States)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-08-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for aquifer thermal energy storage (ATES) systems and wells. Recent model studies indicate that meter-scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In a study site in Bierbeek, Belgium, the influence of centimeter-scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3-3.6 %) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6-10.2 %) on the energy output of the ATES system. It is concluded that it is important to incorporate small-scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  18. Application of multiple-point geostatistics to simulate the effect of small scale aquifer heterogeneity on the efficiency of Aquifer Thermal Energy Storage (ATES)

    Science.gov (United States)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for Aquifer Thermal Energy Storage (ATES) systems and wells. Recent model studies indicate that meter scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In this paper, the influence of centimeter scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3 - 3.6%) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6 - 10.2%) on the energy output of the ATES system. It is concluded that it is important to incorporate small scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  19. The limited role of aquifer heterogeneity on metal reduction in an Atlantic coastal plain determined by push-pull tests

    International Nuclear Information System (INIS)

    Mailloux, Brian J.; Devlin, Stephanie; Fuller, Mark E.; Onstott, T.C.; De Flaun, Mary F.; Choi, K.-H.; Green-Blum, Maria; Swift, Donald J.P.; McCarthy, John; Dong Hailiang

    2007-01-01

    Sixty push-pull experiments were conducted to determine the factors controlling Fe(III) and Mn(IV) reduction in a well-characterized, shallow, coastal plain aquifer near Oyster, VA, USA. The five multi-level samplers each equipped with 12 ports sampled a heterogeneous portion of the aquifer from 4.4 to 8m-bgs. Each multi-level sampler (MLS) was injected with groundwater that contained NO 3 - and Br - along with: (1) just groundwater (control treatment), (2) humics, (3) lactate (conducted twice) and (4) lactate plus humics. Microbially mediated Fe(III) reduction caused the aqueous Fe Tot concentrations to increase at every depth in the lactate treatment with significant increases within 1 day even while NO 3 - was present. Little change in the Fe Tot concentrations were observed in the control and humics treatment. Humics may have acted as an electron shuttle to increase Fe(III) reduction in the lactate plus humics treatment. The amount of Mn(IV) reduction was significantly lower than that of Fe(III) reduction. Geochemical modeling indicated that gas formation, sorption on reactive surfaces, and mineral precipitation were important processes and that Fe(III) and SO 4 2- reduction were co-occurring. Conditions were favorable for the precipitation of Fe-carbonates, Fe-sulfides and Fe-silicates. In the lactate treatment protist concentrations increased then decreased and planktonic cell concentrations steadily increased, whereas no change was observed in the control treatment. Correlations of Fe(III) reduction with physical and chemical heterogeneity were weak, probably as a result of the abundance of Fe(III) bearing minerals relative to electron donor abundance and that the push-pull test sampled a representative elemental volume that encompassed the microbial diversity within the aquifer. This work indicates that stimulating metal reduction in aquifer systems is a feasible method for remediating heterogeneous subsurface sites contaminated with metals and

  20. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    Science.gov (United States)

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.

    2011-01-01

    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  1. Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers

    Directory of Open Access Journals (Sweden)

    B. Hubinger

    2011-12-01

    Full Text Available Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean μ0 = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be

  2. Stochastic analysis of the efficiency of coupled hydraulic-physical barriers to contain solute plumes in highly heterogeneous aquifers

    Science.gov (United States)

    Pedretti, Daniele; Masetti, Marco; Beretta, Giovanni Pietro

    2017-10-01

    The expected long-term efficiency of vertical cutoff walls coupled to pump-and-treat technologies to contain solute plumes in highly heterogeneous aquifers was analyzed. A well-characterized case study in Italy, with a hydrogeological database of 471 results from hydraulic tests performed on the aquifer and the surrounding 2-km-long cement-bentonite (CB) walls, was used to build a conceptual model and assess a representative remediation site adopting coupled technologies. In the studied area, the aquifer hydraulic conductivity Ka [m/d] is log-normally distributed with mean E (Ya) = 0.32 , variance σYa2 = 6.36 (Ya = lnKa) and spatial correlation well described by an exponential isotropic variogram with integral scale less than 1/12 the domain size. The hardened CB wall's hydraulic conductivity, Kw [m/d], displayed strong scaling effects and a lognormal distribution with mean E (Yw) = - 3.43 and σYw2 = 0.53 (Yw =log10Kw). No spatial correlation of Kw was detected. Using this information, conservative transport was simulated across a CB wall in spatially correlated 1-D random Ya fields within a numerical Monte Carlo framework. Multiple scenarios representing different Kw values were tested. A continuous solute source with known concentration and deterministic drains' discharge rates were assumed. The efficiency of the confining system was measured by the probability of exceedance of concentration over a threshold (C∗) at a control section 10 years after the initial solute release. It was found that the stronger the aquifer heterogeneity, the higher the expected efficiency of the confinement system and the lower the likelihood of aquifer pollution. This behavior can be explained because, for the analyzed aquifer conditions, a lower Ka generates more pronounced drawdown in the water table in the proximity of the drain and consequently a higher advective flux towards the confined area, which counteracts diffusive fluxes across the walls. Thus, a higher σYa2 results

  3. Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida

    Science.gov (United States)

    Cunningham, K.J.; Sukop, M.C.

    2011-01-01

    Research is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished without causing urban flooding in adjacent populated areas and diminishing coastal freshwater flow needed in the restoration of the ecologic systems. Predictive simulation of groundwater flow is a prudent approach to understanding hydrologic change and potential ecologic impacts. A fundamental problem to simulation of karst groundwater flow is how best to represent aquifer heterogeneity. Currently, U.S. Geological Survey (USGS) researchers and academic partners are applying multiple innovative technologies to characterize the spatial distribution of porosity and permeability within the Biscayne aquifer.

  4. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    Science.gov (United States)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  5. Apparent directional mass-transfer capacity coefficients in three-dimensional anisotropic heterogeneous aquifers under radial convergent transport

    Science.gov (United States)

    Pedretti, D.; Fernàndez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Benson, D. A.

    2014-02-01

    Aquifer hydraulic properties such as hydraulic conductivity (K) are ubiquitously heterogeneous and typically only a statistical characterization can be sought. Additionally, statistical anisotropy at typical characterization scales is the rule. Thus, regardless of the processes governing solute transport at the local (pore) scale, transport becomes non-Fickian. Mass-transfer models provide an efficient tool that reproduces observed anomalous transport; in some cases though, these models lack predictability as model parameters cannot readily be connected to the physical properties of aquifers. In this study, we focus on a multirate mass-transfer model (MRMT), and in particular the apparent capacity coefficient (β), which is a strong indicator of the potential of immobile zones to capture moving solute. We aim to find if the choice of an apparent β can be phenomenologically related to measures of statistical anisotropy. We analyzed an ensemble of random simulations of three-dimensional log-transformed multi-Gaussian permeability fields with stationary anisotropic correlation under convergent flow conditions. It was found that apparent β also displays an anisotropic behavior, physically controlled by the aquifer directional connectivity, which in turn is controlled by the anisotropic correlation model. A high hydraulic connectivity results in large β values. These results provide new insights into the practical use of mass-transfer models for predictive purposes.

  6. Characterizing Structural and Stratigraphic Heterogeneities in a Faulted Aquifer Using Pump Tests with an Array of Westbay Multilevel Monitoring Wells

    Science.gov (United States)

    Johnson, B.; Zhurina, E. N.

    2001-12-01

    We are developing and assessing field testing and analysis methodologies for quantitative characterization of aquifer heterogenities using data measured in an array of multilevel monitoring wells (MLW) during pumping and recovery well tests. We have developed a unique field laboratory to determine the permeability field in a 20m by 40m by 70m volume in the fault partitioned, siliciclastic Hickory aquifer system in central Texas. The site incorporates both stratigraphic variations and a normal fault system that partially offsets the aquifer and impedes cross-fault flow. We constructed a high-resolution geologic model of the site based upon 1050 m of core and a suite of geophysical logs from eleven, closely spaced (3-10m), continuously cored boreholes to depths of 125 m. Westbay multilevel monitoring systems installed in eight holes provide 94 hydraulically isolated measurement zones and 25 injection zones. A good geologic model is critical to proper installation of the MLW. Packers are positioned at all significant fault piercements and selected, laterally extensive, clay-rich strata. Packers in adjacent MLW bracket selected hydrostratigraphic intervals. Pump tests utilized two, uncased, fully penetrating irrigation wells that straddle the fault system and are in close proximity (7 to 65 m) to the MLW. Pumping and recovery transient pressure histories were measured in 85 zones using pressure transducers with a resolution of 55 Pa (0.008 psi). The hydraulic response is that of an anisotropic, unconfined aquifer. The transient pressure histories vary significantly from zone to zone in a single MLW as well as between adjacent MLW. Derivative plots are especially useful for differentiating details of pressure histories. Based on the geologic model, the derivative curve of a zone reflects its absolute vertical position, vertical stratigraphic position, and proximity to either a fault or significant stratigraphic heterogeneity. Additional forward modeling is needed to

  7. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  8. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    Science.gov (United States)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  10. Hydraulic Tomography for Estimating the Diffusivity of Heterogeneous Aquifers Based on Groundwater Response to Tidal Fluctuation in an Artificial Island in Taiwan

    Directory of Open Access Journals (Sweden)

    Jet-Chau Wen

    2018-01-01

    Full Text Available This study investigated the hydraulic properties of the heterogeneous aquifers of an artificial island (Yunlin Offshore Industrial Park in Taiwan. The research was based on the groundwater level response affected by tidal fluctuation using the hydraulic tomography (HT to analyze the hydraulic diffusivity (α. Specifically, the power spectrum ratio of groundwater and tidal fluctuations derived from the Gelhar solution was used to estimate α in homogeneous aquifers; this, however, could not be applied in the artificial island. Next, the spatial distribution of the groundwater level response affected by tidal fluctuation was analyzed and found to be irregular, proving the existence of hydrogeological heterogeneity in the artificial island. Furthermore, the results of the estimated α using the HT showed low error and high correlation, 0.41 m2/hr and 0.83, respectively, between the optimal estimated heterogeneous and reference α fields in the synthetic aquifer. Last, the HT was used in the real tested scenario. By comparing the predicted groundwater levels of the optimal estimated heterogeneous α field and the observed groundwater levels of the real aquifer, it was found that the correlation was higher than 0.99. Therefore, the HT can be used to obtain the optimal estimated heterogeneous α field in the artificial island.

  11. MRF-based Stochastic Joint Inversion of Hydrological and Geophysical Datasets to Evaluate Aquifer Heterogeneities.

    Science.gov (United States)

    Oware, E. K.

    2016-12-01

    Hydrogeophysical assessment of aquifer parameters typically involve sparse noisy measurements coupled with incomplete understanding of the underlying physical process. Thus, recovering a single deterministic solution in light of the largely uncertain inputs is unrealistic. Stochastic imaging (SI) allows the retrieval of multiple equiprobable outcomes that facilitate probabilistic assessment of aquifer properties in a realistic fashion. Representation of prior models is a key aspect of the formulation of SI frameworks. However, higher-order (HO) statistics for representing complex priors in SI are usually borrowed from training images (TIs), which may bias outcomes if the prior hypotheses are inaccurate. A data-driven HO simulation alternative based on Markov random field (MRF) modeling is presented. Here, the modeling of spatial features is guided by potential (Gibbs) energy (PE) minimization. The estimation of the PE encompasses local neighborhood configuration (LNC) and prior statistical constraints. The lower the estimated PE the higher the likelihood of that particular local structure and vice versa. Hence, the LNC component of the PE estimation is designed to promote the recovery of some desired structures while penalizing the retrieval of patterns that are inconsistent with prior expectation. The statistical structure is adaptively inferred from the joint conditional datasets. The reconstruction proceeds in two-steps with the estimation of the lithological structure of the aquifer followed by the simulation of attributes within the identified lithologies. This two-step approach permits the delineation of physically realistic crisp lithological boundaries. The algorithm is demonstrated with a joint inversion of time-lapse concentration and electrical resistivity measurements, in a hypothetical trinary hydrofacies aquifer characterization problem.

  12. Flow to partially penetrating wells in unconfined heterogeneous aquifers: Mean head and interpretation of pumping tests

    Science.gov (United States)

    Dagan, G.; Lessoff, S. C.

    2011-06-01

    A partially penetrating well of length Lw and radius Rw starts to pump at constant discharge Qw at t = 0 from an unconfined aquifer of thickness D. The aquifer is of random and stationary conductivity characterized by KG (geometric mean), σY2 (log conductivity variance), and I and Iv (the horizontal and vertical integral scales). The flow problem is solved under a few simplifying assumptions commonly adopted in the literature for homogeneous media: Rw/Lw ≪ 1, linearization of the free surface condition, and constant drainable porosity n. Additionally, it is assumed that Rw/I well boundary conditions) and that a first-order approximation in σY2 (extended to finite σY2 on a conjectural basis) is adopted. The solution is obtained for the mean head field and the associated water table equation. The main result of the analysis is that the flow domain can be divided into three zones for : (1) the neighborhood of the well R ≪ I, where = (Qw/LwKA)h0(R, z, tKefuv/nD), with h0 being the zero-order solution pertaining to a homogeneous and isotropic aquifer, KA being the conductivity arithmetic mean, and Kefuv being the effective vertical conductivity in mean uniform flow, (2) an exterior zone R ⪆ I in which ?H? = (Qw/LwKefuh)h0(R?, z, tKefuv/nD), with Kefuh being the horizontal effective conductivity, and (3) an intermediate zone in which the solution requires a few numerical quadratures, not carried out here. The application to pumping tests reveals that identification of the aquifer parameters for homogeneous and anisotropic aquifers by commonly used methods can be applied for the drawdown measured in an observation well of length Low?Iv (to ensure exchange of space and ensemble head averages) in the second zone in order to identify Kefuh, Kefuv, and n. In contrast, the use of the drawdown in the well (first zone) leads to an overestimation of Kefuh by the factor KA/Kefuh.

  13. The dispersal of contaminants in heterogeneous aquifers: a review of methods of estimating scale dependent parameters

    International Nuclear Information System (INIS)

    Farmer, C.L.

    1986-02-01

    The design and assessment of underground waste disposal options requires modelling the dispersal of contaminants within aquifers. The logical structure of the development and application of disposal models is discussed. In particular we examine the validity and interpretation of the gradient diffusion model. The effective dispersion parameters in such a model seem to depend upon the scale on which they are measured. This phenomenon is analysed and methods for modelling scale dependent parameters are reviewed. Specific recommendations regarding the modelling of contaminant dispersal are provided. (author)

  14. Synergy of climate change and local pressures on saltwater intrusion in heterogeneous coastal aquifers

    Science.gov (United States)

    Abou Najm, M.; Safi, A.; El-Fadel, M.; Doummar, J.; Alameddine, I.

    2016-12-01

    The relative importance of climate change induced sea level rise on the salinization of a highly urbanized karstified coastal aquifers were compared with non-sustainable pumping. A 3D variable-density groundwater flow and solute transport model was used to predict the displacement of the saltwater-freshwater interface in a pilot aquifer located along the Eastern Mediterranean. The results showed that the influence of sea level rise was marginal when compared with the encroachment of salinity associated with anthropogenic abstraction. Model predictions of salinity mass and volumetric displacement of the interface corresponding to a long-term monthly transient model showed that the saltwater intrusion dynamic is highly sensitive to change in the abstraction rates which were estimated based on combinations of water consumption rates and population growth rates. Salinity encroachment, however, appeared to be more sensitive to water consumption rates in comparison to population growth rates, where a 50% increase in the rate of former led to four times more intrusion as compared to an equivalent increase in population growth rate over 20 years. Coupling both increase in population growth and increased consumption rates had a synergistic effect that aggravated the intrusion beyond the sum of the individual impacts. Adaptation strategies targeting a decrease in groundwater exploitation proved to be effective in retarding the intrusion.

  15. Improved Characterization of Groundwater Flow in Heterogeneous Aquifers Using Granular Polyacrylamide (PAM) Gel as Temporary Grout

    Science.gov (United States)

    Klepikova, Maria V.; Roques, Clement; Loew, Simon; Selker, John

    2018-02-01

    The range of options for investigation of hydraulic behavior of aquifers from boreholes has been limited to rigid, cumbersome packers, and inflatable sleeves. Here we show how a new temporary borehole sealing technique using soft grains of polyacrylamide (PAM) gel as a sealing material can be used to investigate natural groundwater flow dynamics and discuss other possible applications of the technology. If no compressive stress is applied, the gel packing, with a permeability similar to open gravel, suppresses free convection, allowing for local temperature measurements and chemical sampling through free-flowing gel packing. Active heating laboratory and field experiments combined with temperature measurements along fiber optic cables were conducted in water-filled boreholes and boreholes filled with soft grains of polyacrylamide gel. The gel packing is shown to minimize the effect of free convection within the well column and enable detection of thin zones of relatively high or low velocity in a highly transmissive alluvial aquifer, thus providing a significant improvement compared to temperature measurements in open boreholes. Laboratory experiments demonstrate that under modest compressive stress to the gel media the permeability transitions from highly permeable to nearly impermeable grouting. Under this configuration the gel packing could potentially allow for monitoring local response pressure from the formation with all other locations in the borehole hydraulically isolated.

  16. Anionic co-contaminants and the biogeochemical evolution of aquifer heterogeneity. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Fish, W.

    1997-07-01

    Adsorption heterogeneity of subsoils may depend on the sorbate and its concentration. Ligands in natural and contaminated subsoils may dissolve substantial metal oxides thereby altering the subsoil heterogeneity. We investigated these hypotheses on sands artificially and naturally coated with various amounts of metal oxides. The adsorbates Cu, oxalate, and mixtures of Cu and oxalate (Cu-Oxalate) were used as probes of the surface. For the concentration range studied, Binding Strength Analysis revealed that the naturally coated samples were heterogeneous at the microscale and the macroscale when oxalate was used as the probe of the surface. Cu revealed a smaller heterogeneity while Cu-Oxalate indicated an intermediate heterogeneity. Various elaborations of homogeneous-site Surface Complexation Models (SCM), calibrated to the surface protonation properties of goethite, modeled accurately the edges of oxalate, Cu, and mixtures of Cu and oxalate. The poorer fits for large concentrations was probably because of the site heterogeneity. The accuracy of SCMs was insensitive to the choice of surface protonation constants (pK{sub a}) and moderately sensitive to the choice of site density. The effective surface complexation constants (K{sup eff}) obtained from individual edges were somewhat different because of the concentration dependent heterogeneity. It was not always possible to use K{sup eff} values for one sorbate concentration to reproduce adsorption of other concentrations of the same sorbate. A modified version of the discrete pK{sub a} spectrum model closely reproduced the acid-base titration curve with two adsorption sites (four pK{sub a}`s). The adsorption of all concentrations of Cu, oxalate, and Cu-Oxalate was often reproduced with only one of those sites. The competition between the dissolved Al and the surface for the oxalate in solution was accurately reproduced with both sites. The dissolution of the oxide coating was often influenced by the pore velocity.

  17. Improving a Radioisotope Monitoring Network for the Hydrodynamic Characterization of a Karstic Basin

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Vital, J. L.; Gil Castillo, R.; Fleitas Esteveza, G. [Center of Radiation Protection and Hygiene (CPHR) (Cuba); Moleiro Leon, L. [Environmental Commercial Division (GAMMA) (Cuba); Dapena, C. [Institute of Isotope Geochronology and Geology (INGEIS) (Argentina); Olivera Acosta, J. [Institute of Geodesy and Astronomy (IGA) (Cuba)

    2013-07-15

    The paper shows the application of geomathematical tools for the design of a radioisotope monitoring network in order to characterize groundwater dynamics in a karstic basin, a very difficult task to acccomplish due to the complex physical, geographical, geologic and hydrogeological characteristics of karstic basins. The sampling frequency of the network has been optimized according to the analysis of the spectrum of variances. In order to evaluate this optimization, the geomathematical model is compared to the results of the mathematical model AQUIMPE. This model solves the flow equation of groundwater using the finite element method. The results validate the design in order to assess aquifer recharge, residence time of groundwater, vulnerability to pollution and groundwater-surface water interaction in this complex water resource. (author)

  18. Spatio-temporal variation in groundwater head affected by stratigraphic heterogeneity of the alluvial aquifer in Northwest India

    Science.gov (United States)

    van Dijk, W. M.; Joshi, S. K.; Densmore, A. L.; Jackson, C. R.; Sutanudjaja, E.; Lafare, A. E. A.; Gupta, S.; Mackay, J. D.; Mason, P. J.; Sinha, R.

    2017-12-01

    Groundwater is a primary source of freshwater in the alluvial aquifer system of northwestern India. Unsustainable exploitation of the groundwater resources has led to a regional hotspot in groundwater depletion. Rapid groundwater-level decline shows spatial variation, as the effects of various stresses, including precipitation, potential evapotranspiration and abstraction, are likely to be influenced by the stratigraphic and geomorphic heterogeneity between sediment fan and interfan areas (see Geomorphological map in Figure A). We used a transfer function-noise (TFN) time series approach to quantify the effect of the various stress components in the period 1974-2010, based on predefined impulse response functions (IRFs) of von Asmuth et al. (2008). The objective of this study was 1) to acquire the impulse response function of various stresses, 2) assess the spatial estimation parameter (the zeroth moment, M0) of the spatial development of the groundwater head and 3) relate the spatial M0 to the observed stratigraphic and geomorphic heterogeneity. We collected information on the groundwater head pre- and post-monsoon, the district-wise monthly precipitation and potential evapotranspiration, and we modeled the monthly abstraction rate using land-use information. The TFN identified the IRF of precipitation as well as abstraction. The IRF, summarized in the parameter M0, identified a hotspot for the abstraction stress (see M0 spatial map for abstraction in Figure B) at the margins of the Sutlej and Yamuna fans. No hotspot is observed for the precipitation stress, but the M0 for precipitation increases with distance from the Himalayan front. At larger distances from the Himalayan front, observed groundwater head rises cannot be explained by the IRFs for the abstraction and precipitation stresses. This is likely because the current TFN models do not account for other stresses, such as recharge by canal leakage, which are locally important. We conclude that the spatial

  19. Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site

    Science.gov (United States)

    Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.

    2017-12-01

    Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly

  20. A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities

    Science.gov (United States)

    Bohling, Geoffrey C.; Butler, James J.; Zhan, Xiaoyong; Knoll, Michael D.

    2007-01-01

    Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field‐scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape analysis methodology. The hydraulic conductivity (K) estimates from steady shape and transient analyses of the tomographic data compare well with those from a tracer test and direct‐push permeameter tests, providing a field validation of the method. Zonations based on equal‐thickness layers and cross‐hole radar surveys are used to regularize the inverse problem. The results indicate that the radar surveys provide some useful information regarding the geometry of the K field. The steady shape analysis provides results similar to the transient analysis at a fraction of the computational burden. This study clearly demonstrates the advantages of hydraulic tomography over conventional pumping tests, which provide only large‐scale averages, and small‐scale hydraulic tests (e.g., slug tests), which cannot assess strata connectivity and may fail to sample the most important pathways or barriers to flow.

  1. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  2. A Simple Model to Describe the Relationship among Rainfall, Groundwater and Land Subsidence under a Heterogeneous Aquifer

    Science.gov (United States)

    Zheng, Y. Y.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    Land subsidence is a very serious problem of Zhuoshui River alluvial fan, Taiwan. The main reason of land subsidence is a compression of soil, but the compression measured in the wide area is very extensive (Maryam et al., 2013; Linlin et al., 2014). Chen et al. [2010] studied the linear relationship between groundwater level and subsurface altitude variations from Global Positioning System (GPS) station in Zhuoshui River alluvial fan. But the subsurface altitude data were only from two GPS stations. Their distributions are spared and small, not enough to express the altitude variations of Zhuoshui River alluvial fan. Hung et al. [2011] used Interferometry Synthetic Aperture Radar (InSAR) to measure the surface subsidence in Zhuoshui River alluvial fan, but haven't compared with groundwater level. The study compares the correlation between rainfall events and groundwater level and compares the correlation between groundwater level and subsurface altitude, these two correlation affected by heterogeneous soil. From these relationships, a numerical model is built to simulate the land subsidence variations and estimate the coefficient of aquifer soil compressibility. Finally, the model can estimate the long-term land subsidence. Keywords: Land Subsidence, InSAR, Groundwater Level, Numerical Model, Correlation Analyses

  3. The fate of pesticides in soil and aquifers from a small-scale point of view: Does microbial and spatial heterogeneity have an impact?

    DEFF Research Database (Denmark)

    Aamand, J.; Badawi, N.; Rosenbom, Annette Elisabeth

    Millions of tonnes of pesticides are used each year worldwide in agricultural production resulting in pollution of groundwater aquifers. There is, however, a striking contrast between the input levels (up to several kg per hectare) and the contaminant concentrations detected in groundwater, which...... are normally in the microgram to nanogram per litre range. Resent research has revealed a large spatial variation in pesticide mineralisation potentials, but little is known about how these variations/heterogeneities affect the fate of contaminants. We analysed how mineralisation potentials of phenoxy acid...... herbicides (MCPA, 2,4-D) were spatially distributed in soil, subsoil, and groundwater aquifers using a 96-well microplate mineralisation assay. In the top soil, all samples showed rapid mineralisation following Monod mineralisation kinetics. In the subsoil sediments, a more heterogeneous distribution...

  4. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece

    KAUST Repository

    Tziritis, E.; Lombardo, Luigi

    2016-01-01

    as well as on geology and land use from thematic maps. This procedure allowed taking into account the topographic influences with respect to a deep system such as the local karstic aquifer of eastern Kopaida basin. Finally, results were validated

  5. A conceptual sedimentological-geostatistical model of aquifer heterogeneity based on outcrop studies

    International Nuclear Information System (INIS)

    Davis, J.M.

    1994-01-01

    Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico at an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing

  6. A conceptual sedimentological-geostatistical model of aquifer heterogeneity based on outcrop studies

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.M.

    1994-01-01

    Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico at an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing.

  7. Imaging the Flow Networks from a Harmonic Pumping in a Karstic Field with an Inversion Algorithm

    Science.gov (United States)

    Fischer, P.; Lecoq, N.; Jardani, A.; Jourde, H.; Wang, X.; Chedeville, S.; Cardiff, M. A.

    2017-12-01

    field in a geologically realistic pattern of conduits. This method is therefore of considerable value towards an enhanced imagery of karstic fields in a distributed model for a better water management in this type of aquifer.

  8. Reactive transport impacts on recovered freshwater quality during multiple partially penetrating wells (MPPW-)ASR in a brackish heterogeneous aquifer

    NARCIS (Netherlands)

    Zuurbier, Koen G.; Hartog, Niels; Stuyfzand, Pieter J.

    The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their

  9. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO2 in Heterogeneous Shallow Aquifers

    Science.gov (United States)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.

    2017-12-01

    To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.

  10. Comparison of stochastic and regression based methods for quantification of predictive uncertainty of model-simulated wellhead protection zones in heterogeneous aquifers

    DEFF Research Database (Denmark)

    Christensen, Steen; Moore, C.; Doherty, J.

    2006-01-01

    accurate and required a few hundred model calls to be computed. (b) The linearized regression-based interval (Cooley, 2004) required just over a hundred model calls and also appeared to be nearly correct. (c) The calibration-constrained Monte-Carlo interval (Doherty, 2003) was found to be narrower than......For a synthetic case we computed three types of individual prediction intervals for the location of the aquifer entry point of a particle that moves through a heterogeneous aquifer and ends up in a pumping well. (a) The nonlinear regression-based interval (Cooley, 2004) was found to be nearly...... the regression-based intervals but required about half a million model calls. It is unclear whether or not this type of prediction interval is accurate....

  11. Impacts of physical and chemical aquifer heterogeneity on basin-scale solute transport: Vulnerability of deep groundwater to arsenic contamination in Bangladesh

    Science.gov (United States)

    Michael, Holly A.; Khan, Mahfuzur R.

    2016-12-01

    Aquifer heterogeneity presents a primary challenge in predicting the movement of solutes in groundwater systems. The problem is particularly difficult on very large scales, across which permeability, chemical properties, and pumping rates may vary by many orders of magnitude and data are often sparse. An example is the fluvio-deltaic aquifer system of Bangladesh, where naturally-occurring arsenic (As) exists over tens of thousands of square kilometers in shallow groundwater. Millions of people in As-affected regions rely on deep (≥150 m) groundwater as a safe source of drinking water. The sustainability of this resource has been evaluated with models using effective properties appropriate for a basin-scale contamination problem, but the extent to which preferential flow affects the timescale of downward migration of As-contaminated shallow groundwater is unknown. Here we embed detailed, heterogeneous representations of hydraulic conductivity (K), pumping rates, and sorptive properties (Kd) within a basin-scale numerical groundwater flow and solute transport model to evaluate their effects on vulnerability and deviations from simulations with homogeneous representations in two areas with different flow systems. Advective particle tracking shows that heterogeneity in K does not affect average travel times from shallow zones to 150 m depth, but the travel times of the fastest 10% of particles decreases by a factor of ∼2. Pumping distributions do not strongly affect travel times if irrigation remains shallow, but increases in the deep pumping rate substantially reduce travel times. Simulation of advective-dispersive transport with sorption shows that deep groundwater is protected from contamination over a sustainable timeframe (>1000 y) if the spatial distribution of Kd is uniform. However, if only low-K sediments sorb As, 30% of the aquifer is not protected. Results indicate that sustainable management strategies in the Bengal Basin should consider impacts of both

  12. A consistent framework to predict mass fluxes and depletion times for DNAPL contaminations in heterogeneous aquifers under uncertainty

    Science.gov (United States)

    Koch, Jonas; Nowak, Wolfgang

    2013-04-01

    At many hazardous waste sites and accidental spills, dense non-aqueous phase liquids (DNAPLs) such as TCE, PCE, or TCA have been released into the subsurface. Once a DNAPL is released into the subsurface, it serves as persistent source of dissolved-phase contamination. In chronological order, the DNAPL migrates through the porous medium and penetrates the aquifer, it forms a complex pattern of immobile DNAPL saturation, it dissolves into the groundwater and forms a contaminant plume, and it slowly depletes and bio-degrades in the long-term. In industrial countries the number of such contaminated sites is tremendously high to the point that a ranking from most risky to least risky is advisable. Such a ranking helps to decide whether a site needs to be remediated or may be left to natural attenuation. Both the ranking and the designing of proper remediation or monitoring strategies require a good understanding of the relevant physical processes and their inherent uncertainty. To this end, we conceptualize a probabilistic simulation framework that estimates probability density functions of mass discharge, source depletion time, and critical concentration values at crucial target locations. Furthermore, it supports the inference of contaminant source architectures from arbitrary site data. As an essential novelty, the mutual dependencies of the key parameters and interacting physical processes are taken into account throughout the whole simulation. In an uncertain and heterogeneous subsurface setting, we identify three key parameter fields: the local velocities, the hydraulic permeabilities and the DNAPL phase saturations. Obviously, these parameters depend on each other during DNAPL infiltration, dissolution and depletion. In order to highlight the importance of these mutual dependencies and interactions, we present results of several model set ups where we vary the physical and stochastic dependencies of the input parameters and simulated processes. Under these

  13. Geological modeling and infiltration pattern of a karstic system based upon crossed geophysical methods and image-guided inversion

    Science.gov (United States)

    Duran, Lea; Jardani, Abderrahim; Fournier, Matthieu; Massei, Nicolas

    2015-04-01

    Karstic aquifers represent an important part of the water resources worldwide. Though they have been widely studied on many aspects, their geological and hydrogeological modeling is still complex. Geophysical methods can provide useful subsurface information for the characterization and mapping of karstic systems, especially when not accessible by speleology. The site investigated in this study is a sinkhole-spring system, with small diameter conduits that run within a chalk aquifer (Norville, in Upper Normandy, France). This site was investigated using several geophysical methods: electrical tomography, self-potential, mise-à-la-masse methods, and electromagnetic method (EM34). Coupling those results with boreholes data, a 3D geological model of the hydrogeological basin was established, including tectonic features as well as infiltration structures (sinkhole, covered dolines). The direction of the karstic conduits near the main sinkhole could be established, and the major fault was shown to be a hydraulic barrier. Also the average concentration of dolines on the basin could be estimated, as well as their depth. At last, several hypotheses could be made concerning the location of the main conduit network between the sinkhole and the spring, using previous hydrodynamic study of the site along with geophysical data. In order to validate the 3D geological model, an image-guided inversion of the apparent resistivity data was used. With this approach it is possible to use geological cross sections to constrain the inversion of apparent resistivity data, preserving both discontinuities and coherences in the inversion of the resistivity data. This method was used on the major fault, enabling to choose one geological interpretation over another (fault block structure near the fault, rather than important folding). The constrained inversion was also applied on covered dolines, to validate the interpretation of their shape and depth. Key words: Magnetic and electrical

  14. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels

    Science.gov (United States)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2015-06-01

    The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and the need to develop and employ models that can predict the impact of groundwater contamination on human health risk under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases. However, natural attenuation can lead to the production of daughter species of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health depends on the interplay between the complex structure of the geological media and the toxicity of each pollutant byproduct. This work addresses human health risk for chemical mixtures resulting from the sequential degradation of a contaminant (such as a chlorinated solvent) under uncertainty through high-resolution three-dimensional numerical simulations. We systematically investigate the interaction between aquifer heterogeneity, flow connectivity, contaminant injection model, and chemical toxicity in the probabilistic characterization of health risk. We illustrate how chemical-specific travel times control the regime of the expected risk and its corresponding uncertainties. Results indicate conditions where preferential flow paths can favor the reduction of the overall risk of the chemical mixture. The overall human risk response to aquifer connectivity is shown to be nontrivial for multispecies transport. This nontriviality is a result of the interaction between aquifer heterogeneity and chemical toxicity. To quantify the joint effect of connectivity and toxicity in health risk, we propose a toxicity-based Damköhler number. Furthermore, we provide a statistical characterization in terms of low-order moments and the probability density function of the individual and total risks.

  15. Recharge heterogeneity and high intensity rainfall events increase contamination risk for Mediterranean groundwater resources

    Science.gov (United States)

    Hartmann, Andreas; Jasechko, Scott; Gleeson, Tom; Wada, Yoshihide; Andreo, Bartolomé; Barberá, Juan Antonio; Brielmann, Heike; Charlier, Jean-Baptiste; Darling, George; Filippini, Maria; Garvelmann, Jakob; Goldscheider, Nico; Kralik, Martin; Kunstmann, Harald; Ladouche, Bernard; Lange, Jens; Mudarra, Matías; Francisco Martín, José; Rimmer, Alon; Sanchez, Damián; Stumpp, Christine; Wagener, Thorsten

    2017-04-01

    Karst develops through the dissolution of carbonate rock and results in pronounced spatiotemporal heterogeneity of hydrological processes. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries like Austria or Slovenia. Previous work showed that karstic recharge processes enhance and alter the sensitivity of recharge to climate variability. The enhanced preferential flow from the surface to the aquifer may be followed by enhanced risk of groundwater contamination. In this study we assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of karst hydraulic properties, we were able to simulate karstic groundwater recharge including its heterogeneous spatiotemporal dynamics. The model is driven by gridded daily climate data from the Global Land Data Assimilation System (GLDAS). Transit time distributions are calculated using virtual tracer experiments. We evaluated our simulations by independent information on transit times derived from observed time series of water isotopes of >70 karst springs over Europe. The simulations indicate that, compared to humid, mountain and desert regions, the Mediterranean region shows a stronger risk of contamination in Europe because preferential flow processes are most pronounced given thin soil layers and the seasonal abundance of high intensity rainfall events in autumn and winter. Our modelling approach includes strong simplifications and its results cannot easily be generalized but it still highlights that the combined effects of variable climate and heterogeneous catchment properties constitute a strong risk on water quality.

  16. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    Science.gov (United States)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  17. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  18. Transport of the reactive substances eosin, uranium and lithium in a heterogeneous aquifer; Transport der reaktiven Stoffe Eosin, Uranin und Lithium in einem heterogenen Grundwasserleiter

    Energy Technology Data Exchange (ETDEWEB)

    Doering, U.

    1997-02-01

    To predict the movement of a contaminant plume in an aquifer is still a task of great uncertainty. This uncertainty is generally attributed to an insufficient understanding of the chemical reaction processes and/or to the natural aquifer heterogeneities. In an integrated approach of field experiments, laboratory experiments and numerical simulations, the transport of the weakly reactive solutes eosin, uranin and lithium was investigated at a test site near the Research Center in Juelich. The field scale transport behavior of the solutes was studied by large scale tracer tests. To characterize aquifer heterogeneities, in-situ and laboratory measurements were performed. In-situ measurements covered about 1500 flowmeter measurements and 90 determinations of the groundwater flow velocity by the borehole method. The spatial variability of hydraulic and physico-chemical parameters was further determined on 400 sediment samples. These parameters included: Grain size distribution, calculated hydraulic conductivity, unconformity and as physico-chemical parameters the organic carbon content, specific surface and the cation exchange capacity. Furthermore sorption coefficients were measured on 75 sediment samples for uranium and lithium. The statistical evaluation of these data showed that the hydraulic heterogeneity was larger but in the same order of magnitude as the physico-chemical parameters. (orig./SR) [Deutsch] Eine Schadstoff-Ausbreitung im Grundwasser vorherzusagen, ist noch immer eine Aufgabe mit unsicherem Ergebnis. Diese Prognose-Unsicherheiten werden im Allgemeinen auf ein unzureichendes Verstaendnis der chemischen Reaktionsprozesse und/oder auf die natuerliche Heterogenitaet des Grundwasserleiters zurueckgefuehrt. In dem hier beschriebenen Forschungsprojekt, das Feldversuche, Laborversuche und numerische Simulationen integriert, wurde der Transport der schwach reaktiven Substanzen Eosin, Uranin und Lithium auf einem Versuchsgelaende nahe des Forschungszentrums

  19. Monitoring of water storage in karstic area (Larzac, France) with a iGrav continuous superconducting gravimeter

    Science.gov (United States)

    Le Moigne, N.; Champollion, C.; chery, J.; Deville, S.; Doerflinger, E.; Collard, P.; Flores, B.

    2013-12-01

    Quantitative knowledge of groundwater storage and transfer in karstic area is crucial for water resources management and protection. As the karst hydro-geological properties are highly heterogeneous and scale dependent, geophysical observations such as gravity are necessary to fill the gap between local (based on boreholes, moisture sensors, ...) and global (based on chemistry, river flow, ...) studies. Since almost 2 years, the iGrav #002 superconducting gravimeter is continuously operating in the French GEK (Géodésie des Eaux Karstiques) observatory in the Larzac karstic plateau (south of France). First the evaluation of the iGrav data (calibration, steps and drift) will be presented. Then a careful analyze of the topographic and building effects will be done. Finally the first interpretation of the hydrogeological signal and the integration an extensive observation dataset (borehole water level, evapotranspiration and electrical resistivity) are studied.

  20. Grouting of karstic arch dam foundation

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.; Rigbey, S. [Acres International, Niagara Falls, ON (Canada)

    2002-07-01

    A 200 m high arch dam and a 2000 MW underground power house complex is under development in the Middle East. The project is located in a highly seismic area in rugged, mountainous terrain. The arch dam is constructed on good quality limestone and dolomitic limestone rock mass, but it contains several zones of disturbed or sheared rock. The basement rock is slightly karstic with hydraulic conductivities in the order of 100 Lugeons. In order to get a satisfactory foundation surface for the dam, it will be necessary to excavate extensively and backfill with concrete. Because of the presence of many clay infilled cavities and fractures, geotechnicians are considering the installation of a multiple row grout curtain to a depth of 150 m below the dam foundation to ensure adequate seepage and uplift parameters when the reservoir is impounded. Initial grouting water pressure test results suggested that the grouting and drainage curtain should be extended to the left abutment beyond the current design. However, when horizontal slide models of the dam abutment were developed using the finite element program SEEPW, it was shown that there is no benefit to extending the length of grout curtains unless they are tied to an area of much lower hydraulic conductivity much deeper in the abutment. 1 tab., 5 figs.

  1. Natural and induced endoreic hydrological conditions in the Alta Murgia karstic region (Apulia, Southern Italy)

    Science.gov (United States)

    Canora, F.; Fidelibus, M. D.; Spilotro, G.

    2009-04-01

    A study aimed at understanding the hydrological processes in karst areas related to the presence of natural and artificial endoreic basins and their modification due to land use change, as well as the influence of above factors on the infiltration rate has been carried out in the Alta Murgia region (Apulia, Southern Italy). The region is a Cretaceous limestone plateau of the Apulian platform, characterized by a mature karstic landscape: due to its elevation, climatic conditions and lithology, the plateau constitutes the main recharge area of the Murgia aquifer. The typical karst topography is essentially related to the subterranean drainage (sinkholes, caves, conduit): surface and subsurface karst geomorphology is strictly interrelated with hydrology. The morphological features of the karstic plateau are defined by the high density of surface karstic forms (mainly dolines), the presence of exposed karst and karren fields, as well as by the extensive outcrop of fractured rocks. Karst surface shows, on the bottom of the morpho-structural depressions called "lame", natural distribution of modest deposits of "terra rossa" and regolith. The "lame" work as streams during and after intense rainfall events, often outlining a primordial ephemeral hydrographical network, frequently convergent towards dolines, poljes or endoreic basins. Alta Murgia shows many natural endoreic basin conditions in a quite flat morphology. In this environment, when intense rainfall events cover large areas and rainfall intensity exceeds the infiltration capacity of soils and/or sinkholes, significant runoff amounts are produced and stored in the basins causing floods. Most of the natural endoreic basins are small and independent: while the majority of them continue functioning as endoreic even in presence of extreme events of high return time, others (quasi-endoreic), under the same circumstances can start contributing to other basins, due to exceeding their water storage capability. This way

  2. Risk-Based Management of Contaminated Groundwater: The Role of Geologic Heterogeneity, Exposure and Cancer Risk in Determining the Performance of Aquifer Remediation

    International Nuclear Information System (INIS)

    Maxwell, R.M.; Carle, S.F.; Tompson, A.F.B.

    2000-01-01

    The effectiveness of aquifer remediation is typically expressed in terms of a reduction in contaminant concentrations relative to a regulated maximum contaminant level (MCL), and is usually confined by sparse monitoring data and/or simple model calculations. Here, the effectiveness of remediation is examined from a risk-based perspective that goes beyond the traditional MCL concept. A methodology is employed to evaluate the health risk to individuals exposed to contaminated household water that is produced from groundwater. This approach explicitly accounts for differences in risk arising from variability in individual physiology and water use, the uncertainty in estimating chemical carcinogenesis for different individuals, and the uncertainties and variability in contaminant concentrations within groundwater. A hypothetical contamination scenario is developed as a case study in a saturated, alluvial aquifer underlying a real Superfund site. A baseline (unremediated) human exposure and health risk scenario, as induced by contaminated groundwater pumped from this site, is predicted and compared with a similar estimate based upon pump-and-treat exposure intervention. The predicted reduction in risk in the remediation scenario is not an equitable one-that is, it is not uniform to all individuals within a population and varies according to the level of uncertainty in prediction. The importance of understanding the detailed hydrogeologic connections that are established in the heterogeneous geologic regime between the contaminated source, municipal receptors, and remediation wells, and its relationship to this uncertainty is demonstrated. Using two alternative pumping rates, we develop cost-benefit curves based upon reduced exposure and risk to different individuals within the population, under the presence of uncertainty

  3. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-06-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  4. How to Interpret the Responses of a Karstic Field to a Harmonic Pumping

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Cardiff, M. A.; Lecoq, N.

    2017-12-01

    In a karstic field, the flow paths are very complex as they globally follow the conduit network. The drawdown responses to a pumping test at constant rate in this type of aquifer are highly variable spatially and difficult to interpret. Furthermore, a constant-rate pumping tends to mobilize matrix diffusive flows and, thus, the conduit flows become `blurred'. Harmonic pumping tests represent a new investigation method for characterizing the subsurface groundwater flows. They have several advantages compared to a constant-rate pumping (i.e. more signal possibilities, extracting the signal in the responses, possibility of closed loop investigation). In the case of a karstic field investigation, several works have shown that a harmonic pumping test allows a better characterization of the local field hydraulic properties. We show in our recent works that interpreting the responses from a harmonic pumping test permit to go further in the conduit network characterization by delineating a connectivity degree between measurement points. We have studied the amplitude and phase offset values in the responses to a harmonic pumping test in a theoretical synthetic modeling case in order to define an interpretation method for the responses. According to the amplitude and phase offset values in a response, relative to the pumping signal, we have distinguished three different type of responses to be interpreted: a direct connectivity response (conduit flow), an indirect connectivity (conduit and short matrix flows), and an absence of connectivity. We have applied this interpretation method on a true field responses (from a karstic field in Southern France). Firstly we have stated that the whole set of field responses appears to be coherent toward the observation that have been made in the theoretical case. Then, by comparing the periodic responses between them and with the pumping signal, we could interpret and delineate easily and quickly the main flow paths, through the degree

  5. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems.

    Science.gov (United States)

    Flores Ribeiro, Angela; Bodilis, Josselin; Alonso, Lise; Buquet, Sylvaine; Feuilloley, Marc; Dupont, Jean-Paul; Pawlak, Barbara

    2014-08-15

    Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Land use in the karstic lands in the Mediterranean region.

    Directory of Open Access Journals (Sweden)

    Atalay Ibrahim

    1999-01-01

    Full Text Available Karstic lands have special importance in terms of soil formation and land-use. Soil appears only on the flat and slightly undulating karstic lands, while soils are found along the cracks and bedding surfaces between the layers on the hilly karst areas although these lands are rocky in appearance. Karstic lands in the hilly area are not conducive to cultivation. But rocky areas create a favourable habitat for the growth of forests except in an arid climate. Because the tree roots easily follow and develop along the cracks in the limestone. As a general rule soil erosion does not occur on sub-horizontal karst surfaces due to the fact that atmospheric waters easily infiltrate along the cracks. Natural generation of vegetation like the maquis-type occurs via the root suckers, but coniferous trees such as cedar, fir, pine through seed dispersal. The clearance of natural vegetation on the karstic lands leads to the formation of bare lands. That is why the slopes of the limestone hillsides have been converted into bare and/or rocky terrains in places where natural vegetation has been completely destroyed.

  7. CHROTRAN 1.0: A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers

    Science.gov (United States)

    Hansen, Scott K.; Pandey, Sachin; Karra, Satish; Vesselinov, Velimir V.

    2017-12-01

    Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a multi-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, chrotran, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling, and biomass death. Our software implementation handles heterogeneous flow fields, as well as arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.

  8. CHROTRAN 1.0. A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers

    International Nuclear Information System (INIS)

    Hansen, Scott K.; Pandey, Sachin; Karra, Satish; Vesselinov, Velimir V.

    2017-01-01

    Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a multi-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, chrotran, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling, and biomass death. Our software implementation handles heterogeneous flow fields, as well as arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.

  9. CHROTRAN 1.0: A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers

    Directory of Open Access Journals (Sweden)

    S. K. Hansen

    2017-12-01

    Full Text Available Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a multi-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, chrotran, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor–metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling, and biomass death. Our software implementation handles heterogeneous flow fields, as well as arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI contamination.

  10. CHROTRAN 1.0. A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Scott K.; Pandey, Sachin; Karra, Satish; Vesselinov, Velimir V. [Los Alamos National Laboratory, Los Alamos, NM (United States). Computational Earth Science Group (EES-16)

    2017-07-01

    Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a multi-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, chrotran, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling, and biomass death. Our software implementation handles heterogeneous flow fields, as well as arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.

  11. Urban waste landfill planning and karstic groundwater resources in developing countries: the example of Lusaka (Zambia)

    Science.gov (United States)

    De Waele, J.; Nyambe, I. A.; Di Gregorio, A.; Di Gregorio, F.; Simasiku, S.; Follesa, R.; Nkemba, S.

    2004-06-01

    Lusaka, the capital city of Zambia with more than two million inhabitants, derives approximately 70% of its water requirements from groundwater sourced in the underlying karstic Lusaka aquifer. This water resource is, therefore, extremely important for the future of the population. The characteristics of the aquifer and the shallow water table make the resource vulnerable and in need of protection and monitoring. A joint project between the Geology Departments of the University of Cagliari and the School of Mines of the University of Zambia, to investigate the "Anthropogenic and natural processes in the Lusaka area leading to environmental degradation and their possible mitigation" was carried out in July 2001. The main objective of the study was to evaluate the extent of the present environmental degradation, assessing the vulnerability of the carbonatic aquifer and the degree of pollution of the groundwater and to make proposals to mitigate adverse environmental effects. Analyses of water samples collected during project indicate some areas of concern, particularly with respect to the levels of ammonia, nitrates and some heavy metals. As groundwater quality and quantity are prerogatives for a healthy and sustainable society, the study offers guidelines for consideration by the local and national authorities. Uptake of these guidelines should result in a number of initiatives being taken, including: (a) closure or reclamation of existing waste dumps; (b) upgrading of existing waste dumps to controlled landfills; (c) establishing new urban waste landfills and plants in geo-environmentally suitable sites; (d) local waste management projects in all compounds (residential areas) to prevent and reduce haphazard waste dumping; (e) enlarging sewerage drainage systems to all compounds; (f) enforcing control on groundwater abstraction and pollution, and demarcation of zones of control at existing drill holes; (g) providing the city with new water supplies from outside the

  12. Isotopic hydrodynamic of the aquifer systems Jaruco and Aguacate, Cuba

    International Nuclear Information System (INIS)

    Moleiro Leon, L.F.; Guerra Oliva, M.G.; Maloszewski, P.; Arellano Acosta, D.M.

    2002-01-01

    An isotopic dispersive model is applied to the Jaruco and Aguacate karstic groundwater basins of Western Cuba. The best fit of the model was validated with stable ( 18 O and 2 H ) and radioactive ( 3 H) isotopes. Modeling showed an aquifer stratification in two basic levels with turnover times of three month to upper level and close to 100 years to the lower level. The last one mainly supplies the base flow of the Ojo de agua and Bello springs and therefore, controls the dry season exploitation yields of the aqueducts of El Gato and Bello. Model results introduces an important constraint in the exploitation of groundwater resource of both aquifer systems

  13. Hydrological controls on transient aquifer storage in a karst watershed

    Science.gov (United States)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  14. Monitoring and Management of Karstic Coastal Groundwater in a Changing Environment (Southern Italy: A Review of a Regional Experience

    Directory of Open Access Journals (Sweden)

    Maurizio Polemio

    2016-04-01

    Full Text Available The population concentration in coastal areas and the increase of groundwater discharge in combination with the peculiarities of karstic coastal aquifers constitute a huge worldwide problem, which is particularly relevant for coastal aquifers of the Mediterranean basin. This paper offers a review of scientific activities realized to pursue the optimal utilization of Apulian coastal groundwater. Apulia, with a coastline extending for over 800 km, is the Italian region with the largest coastal karst aquifers. Apulian aquifers have suffered both in terms of water quality and quantity. Some regional regulations were implemented from the 1970s with the purpose of controlling the number of wells, well locations, and well discharge. The practical effects of these management criteria, the temporal and spatial trend of recharge, groundwater quality, and seawater intrusion effects are discussed based on long-term monitoring. The efficacy of existing management tools and the development of predictive scenarios to identify the best way to reconcile irrigation and demands for high-quality drinking water have been pursued in a selected area. The Salento peninsula was selected as the Apulian aquifer portion exposed to the highest risk of quality degradation due to seawater intrusion. The capability of large-scale numerical models in groundwater management was tested, particularly for achieving forecast scenarios to evaluate the impacts of climate change on groundwater resources. The results show qualitative and quantitative groundwater trends from 1930 to 2060 and emphasize the substantial decrease of the piezometric level and a serious worsening of groundwater salinization due to seawater intrusion.

  15. Use of trace elements as indicators for underground fluid circulations in karstic environment

    International Nuclear Information System (INIS)

    Pane-Escribe, M.B.

    1995-01-01

    The geochemical study of the trace element behaviour in karstic groundwaters has been carried out over the experimental site of Lamalou (Herault, France). Routine measurements of the physico-chemical parameters and of the dissolved elements concentrations have been achieved during two hydrological cycles. Radon has been monitored by passive detectors and by automatic electronic probes. Trace elements (Sc, Ti, V, Cr, Ni, Cu, Zn, As Rb, Sr, Mo, Cd, Sb, Cs, Ba, Th, U) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The first part of this work presents the methodologies employed with in particular the improvement of the analytical performances of ICP-MS for water samples analysis. The detection limit for each considered element has been determined. The short and long term reproducibility for the samples analysis has also been tested. The second part of this study presents the treatment and interpretation of the results. This analysis has pointed our the influence of the aquifer structure on the chemical elements distribution. The trace and major elements concentrations are effectively related to the fracturing state of the reservoir and allow to individualize the high transmissivity zones from zones with a lower transmissivity in this mono-lithological context, trace elements appear to be particularly efficient tracers for determining the water origin and circulation their spatial and temporal behaviour leads to identify three different origins for the water mineralization over the studied area: limestones, clays and external sources (rainfalls and occasional pollutions). (author)

  16. Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model

    Science.gov (United States)

    De Rooij, R.; Graham, W. D.

    2016-12-01

    The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.

  17. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  18. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  19. Organic matter dynamics in a karstic watershed: Example from Santa Fe River, Florida, USA

    Science.gov (United States)

    Jin, J.; Khadka, M. B.; Martin, J. B.; Zimmerman, A. R.

    2011-12-01

    Organic matter (OM) dynamics in karstic watersheds can involve a range of interactions between organic and inorganic phases of carbon. These interactions include OM remineralization, which will changes its lability, increase dissolved inorganic carbon (DIC) concentrations, reduce pH, and enhance carbonate mineral dissolution. Dissolved organic carbon (DOC) concentrations are elevated in black-water rivers of northern Florida from both allochthonous and autochthonous sources and these rivers flow into and interact with the karstic Floridan Aquifer. One such river, the Santa Fe River, is split into upper confined and lower unconfined watersheds by the Cody Scarp, which represent the erosional edge of a regional confining unit. Water samples were collected from 8 sites across the entire Santa Fe River watershed (SFRW) during 9 sampling trips from December 2009 to May 2011 at flow conditions that ranged from 27 to 39 m3/s, with the highest flow about 45% higher than baseflow. At sites above the Cody Scarp, the river has elevated DOC concentrations, which decrease downstream, while dissolved inorganic carbon (DIC) and δ13C-DIC show opposite trends. At high flow, DOC concentrations progressively decrease downstream from dilution by low-DOC water discharging from the Floridan Aquifer. At low flow, the water chemistry varies little from upstream to downstream, largely because the composition of upstream water becomes similar to that of downstream water. DOC is inversely and linearly correlated with DIC and δ13C-DIC, but the slope of the correlations vary with discharge, with low flow having more negative slopes than high flow. The OM becomes more labile with distance downstream as assessed using two fluorescence indices, biological/autochthonous index (BIX) and humification index (HIX). This increase in lability suggests that DOC is produced in the river, and this production is reflected in a downstream increase in DOC flux regardless of dilution by the influx of low

  20. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    Science.gov (United States)

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  1. Unsteady resurgence flows in karstic media

    Science.gov (United States)

    Adler, Pierre; Drygas, Piotr; Mityushev, Vladimir

    2017-04-01

    Geological porous media are heterogeneous materials which in addition contain discontinuities such as fractures and conduits which facilitate fluid transport. Fractures are relatively plane objects which strongly interact with the surrounding porous medium because of their large contact surface. A different situation occurs in karsts where distant regions of the medium can be connected by relatively thin conduits which have little if any hydrodynamic interaction with the porous medium that they cross, except at their ends. This phenomenon is called resurgence because of the obvious analogy with rivers which suddenly disappear underground and go out at the ground surface again. Similar ideas have already been developed in other fields, such as Physics with random networks and Geophysics with electrical tomography. Media with resurgences are addressed in the following way. They consist of a double structure. The first one is the continuous porous medium described by the classical Darcy law. The second one is composed by the resurgences modeled by conduits with impermeable walls which relate distant points of the continuous medium. When non steady regimes are considered, it appears necessary to confer a capacity to these conduits in addition to their hydrodynamic resistance. Therefore, the conduits are able to store some quantity of fluid. In addition, two kinds of resurgence are addressed, namely punctual and extended; in the second case, the dimensions of the ends of the conduit are not negligible compared to the characteristic length scales of the embedding porous medium. Capacities and extended resurgences are new features which were not taken into account in our previous studies. The punctual resurgence is described by a spatial network with a finite number of conduits embedded in a continuous porous medium. The flow in the network is described by the classical Kirchhoff law (including capacities). The equations for flow in the network and in the continuous

  2. Using of hydrochemical and environmental isotopes water data for study of the Karst aquifers in the coastal area (Syria)

    International Nuclear Information System (INIS)

    Kassem, A.

    2001-12-01

    The isotopes and hydrogeological study are very importunate for limited Karstic aquifer our object was the determination of the movement and charging of groundwater and the type of karstics aquifer.. For realization this object we have analyzed 45 samples covered the most important karstic resources of water at the coast basin. The analyses involved the determination of major dissolved constituents (Ca, Mg, Na, K, HCO 3 , CO 3 , SO 4 , Cl and NO 3 , this analysis have determined by the El Fijeh society water laboratory) and isotopes constituents 3 H, 2 H, 18 O, this analysis was determined by the isotopes laboratory of Jordan) for 45 samples (44 of ground water and 1 of sea water) With the interpretation of hydro-geo-chemical data of all samples by H.Schoeller and Piper diagrams together with the evaluation of some factors (dph, pCO 2 , Is Dol, Mg/Ca and B.I), which had been determined by excel, Hydrowin and Solutaq programs (Used for karstic studies) were able to determine the natural of the aquifer rocks, the mechanisms of moving and transiting, the storing time or the transport time between all supplied sources and drainage, and the presence of surface contamination. (author)

  3. Using of hydrochemical and environmental isotopes water data for study of the Karst aquifers in the coastal area (Syria)

    International Nuclear Information System (INIS)

    Kassem, A.

    2002-01-01

    The isotopes and hydrogeological study are very importunate for limited Karstic aquifer our object was the determination of the movement and charging of groundwater and the type of karstics aquifer.. For realization this object we have analyzed 45 samples covered the most important karstic resources of water at the coast basin. The analyses involved the determination of major dissolved constituents (Ca, Mg, Na, K, HCO 3 , CO 3 , SO 4 , Cl and NO 3 , this analysis have determined by the El Fijeh society water laboratory) and isotopes constituents 3 H, 2 H, 18 O, this analysis was determined by the isotopes laboratory of Jordan) for 45 samples (44 of ground water and 1 of sea water) With the interpretation of hydro-geo-chemical data of all samples by H.Schoeller and Piper diagrams together with the evaluation of some factors (dph, pCO 2 , Is Dol, Mg/Ca and B.I), which had been determined by excel, Hydrowin and Solutaq programs (Used for karstic studies) were able to determine the natural of the aquifer rocks, the mechanisms of moving and transiting, the storing time or the transport time between all supplied sources and drainage, and the presence of surface contamination. (author)

  4. Stromatolites on the rise in peat-bound karstic wetlands.

    Science.gov (United States)

    Proemse, Bernadette C; Eberhard, Rolan S; Sharples, Chris; Bowman, John P; Richards, Karen; Comfort, Michael; Barmuta, Leon A

    2017-11-13

    Stromatolites are the oldest evidence for life on Earth, but modern living examples are rare and predominantly occur in shallow marine or (hyper-) saline lacustrine environments, subject to exotic physico-chemical conditions. Here we report the discovery of living freshwater stromatolites in cool-temperate karstic wetlands in the Giblin River catchment of the UNESCO-listed Tasmanian Wilderness World Heritage Area, Australia. These stromatolites colonize the slopes of karstic spring mounds which create mildly alkaline (pH of 7.0-7.9) enclaves within an otherwise uniformly acidic organosol terrain. The freshwater emerging from the springs is Ca-HCO 3 dominated and water temperatures show no evidence of geothermal heating. Using 16 S rRNA gene clone library analysis we revealed that the bacterial community is dominated by Cyanobacteria, Alphaproteobacteria and an unusually high proportion of Chloroflexi, followed by Armatimonadetes and Planctomycetes, and is therefore unique compared to other living examples. Macroinvertebrates are sparse and snails in particular are disadvantaged by the development of debilitating accumulations of carbonate on their shells, corroborating evidence that stromatolites flourish under conditions where predation by metazoans is suppressed. Our findings constitute a novel habitat for stromatolites because cool-temperate freshwater wetlands are not a conventional stromatolite niche, suggesting that stromatolites may be more common than previously thought.

  5. Erratum: Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-09-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  6. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  7. Future Availability of Water Supply from Karstic Springs under Probable Climate Change. The case of Aravissos, Central Macedonia, Greece.

    Science.gov (United States)

    Vafeiadis, M.; Spachos, Th.; Zampetoglou, K.; Soupilas, Th.

    2012-04-01

    The test site of Aravissos is located at 70 Km to the West (W-NW) of Thessaloniki at the south banks of mount Païko, in the north part of Central Macedonia The karstic Aravissos springs supply 40% of total volume needed for the water supply of Thessaloniki, Greece. As the water is of excellent quality, it is feed directly in the distribution network without any previous treatment. The availability of this source is therefore of high importance for the sustainable water supply of this area with almost 1000000 inhabitants. The water system of Aravissos is developed in a karstic limestone with an age of about Late Cretaceous that covers almost the entire western part of the big-anticline of Païko Mountain. The climate in this area and the water consumption area, Thessaloniki, is a typical Mediterranean climate with mild and humid winters and hot and dry summers. The total annual number of rainy days is around 110. The production of the Aravissos springs depends mostly from the annual precipitations. As the feeding catchement and the karst aquifer are not well defined, a practical empirical balance model, that contains only well known relevant terms, is applied for the simulation of the operation of the springs under normal water extraction for water supply in present time. The estimation of future weather conditions are based on GCM and RCM simulation data and the extension of trend lines of the actual data. The future evolution of the availability of adequate water quantities from the springs is finally estimated from the balance model and the simulated future climatic data. This study has been realised within the project CC-WaterS, funded by the SEE program of the European Regional Development Fund (http://www.ccwaters.eu/).

  8. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  9. Adapting existing experience with aquifer vulnerability and groundwater protection for Africa

    CSIR Research Space (South Africa)

    Robins, NS

    2007-01-01

    Full Text Available Africa today, and guidelines for risk assessment and groundwater protection (including protection zoning) exist, these are not always adhered to. For example, in Sep- tember 2005 an outbreak of typhoid in the town of Delmas in Mpumalanga killed... at least four people. Large parts of the town are supplied by boreholes drilled into a karstic dolomitic aquifer. The water is chlorinated before being made available for public supply. Following an earlier out- break of typhoid in 1993...

  10. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Ptak, Thomas

    2015-01-01

    Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify river discharge of the river Weser flowing into the German Bight, which will alter both pressure and salinity distributions in the river Weser estuary. To study the long-term interaction between sea level rise, discharge variations, a storm surge and coastal aquifer flow dynamics, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density flow, variably saturated flow, irregular boundary conditions, irregular land surface and anthropogenic structures (e.g., dyke, drainage canals, water gates). The simulated steady-state groundwater flow of the year 2009 is calibrated using PEST. In addition, four climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1m, (ii) the salinity of the seaside boundary increases by 4 PSU (Practical Salinity Units), (iii) the salinity of the seaside boundary decreases by 12 PSU, and (iv) a storm surge with partial dyke failure. Under scenarios (i) and (iv), the salinized area expands several kilometers further inland during several years. Natural remediation can take up to 20 years. However, sudden short-term salinity changes in the river Weser estuary do not influence the salinized area in the coastal aquifer. The obtained results are useful for coastal engineering practices and drinking water resource management. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  12. use of geophysical methods for the demonstration of karstic ...

    African Journals Online (AJOL)

    O. Melouah

    1 sept. 2016 ... geological environments, causing subsidence, sinkholes, cavitie the last five years, Guerrara area (southern Algeria) was the sub studies to characterize the geological formations and assess the imp on the movement of water surface and deep aquifers. taken in three sites from the Guerrara area aims at the ...

  13. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  14. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain)

    International Nuclear Information System (INIS)

    Kohfahl, Claus; Sprenger, Christoph; Herrera, Jose Benavente; Meyer, Hanno; Chacon, Franzisca Fernandez; Pekdeger, Asaf

    2008-01-01

    The objective of this study is to refine the understanding of recharge processes in watersheds representative for karstic semiarid areas by means of stable isotope analysis and hydrogeochemistry. The study focuses on the Granada aquifer system which is located in an intramontane basin bounded by high mountain ranges providing elevation differences of almost 2900 m. These altitude gradients lead to important temperature and precipitation gradients and provide excellent conditions for the application of stable isotopes of water whose composition depends mainly on temperature. Samples of rain, snow, surface water and groundwater were collected at 154 locations for stable isotope studies (δ 18 O, D) and, in the case of ground- and surface waters, also for major and minor ion analysis. Thirty-seven springs were sampled between 2 and 5 times from October 2004 to March 2005 along an altitudinal gradient from 552 masl in the Granada basin to 2156 masl in Sierra Nevada. Nine groundwater samples were taken from the discharge of operating wells in the Granada basin which are all located between 540 and 728 masl. The two main rivers were monitored every 2-3 weeks at three different altitudes. Rainfall being scarce during the sampling period, precipitation could only be sampled during four rainfall events. Calculated recharge altitudes of springs showed that source areas of mainly snowmelt recharge are generally located between 1600 and 2000 masl. The isotope compositions of spring water indicate water sources from the western Mediterranean as well as from the Atlantic without indicating a seasonal trend. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different sources of recharge which occur mainly by bankfiltration of the main rivers. Isotopic signatures in the southeastern part of the aquifer indicate a considerable recharge contribution by subsurface flow discharged from the adjacent carbonate aquifer. No evaporation effects due to

  15. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Kohfahl, Claus [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany)], E-mail: kohfahl@zedat.fu-berlin.de; Sprenger, Christoph [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany); Herrera, Jose Benavente [Instituto del Agua de la Universidad de Granada, Ramon y Cajal, 4, 18071 Granada (Spain); Meyer, Hanno [Isotope Laboratory of the Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A 43, 14473 Potsdam (Germany); Chacon, Franzisca Fernandez [Dpto. Hidrogeologia y Aguas Subterraneas, Instituto Geologico y Minero de Espana, Oficina de Proyectos, Urb. Alcazar del Genil 4, Edificio Zulema bajo, 18006 Granada (Spain); Pekdeger, Asaf [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany)

    2008-04-15

    The objective of this study is to refine the understanding of recharge processes in watersheds representative for karstic semiarid areas by means of stable isotope analysis and hydrogeochemistry. The study focuses on the Granada aquifer system which is located in an intramontane basin bounded by high mountain ranges providing elevation differences of almost 2900 m. These altitude gradients lead to important temperature and precipitation gradients and provide excellent conditions for the application of stable isotopes of water whose composition depends mainly on temperature. Samples of rain, snow, surface water and groundwater were collected at 154 locations for stable isotope studies ({delta}{sup 18}O, D) and, in the case of ground- and surface waters, also for major and minor ion analysis. Thirty-seven springs were sampled between 2 and 5 times from October 2004 to March 2005 along an altitudinal gradient from 552 masl in the Granada basin to 2156 masl in Sierra Nevada. Nine groundwater samples were taken from the discharge of operating wells in the Granada basin which are all located between 540 and 728 masl. The two main rivers were monitored every 2-3 weeks at three different altitudes. Rainfall being scarce during the sampling period, precipitation could only be sampled during four rainfall events. Calculated recharge altitudes of springs showed that source areas of mainly snowmelt recharge are generally located between 1600 and 2000 masl. The isotope compositions of spring water indicate water sources from the western Mediterranean as well as from the Atlantic without indicating a seasonal trend. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different sources of recharge which occur mainly by bankfiltration of the main rivers. Isotopic signatures in the southeastern part of the aquifer indicate a considerable recharge contribution by subsurface flow discharged from the adjacent carbonate aquifer. No evaporation effects due

  16. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, M., E-mail: mmusgrov@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Opsahl, S.P. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States); Mahler, B.J. [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Herrington, C. [City of Austin Watershed Protection Department, Austin, TX 78704 (United States); Sample, T.L. [U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385 (United States); Banta, J.R. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States)

    2016-10-15

    that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously unrecognized source of NO{sub 3}{sup −} to karst groundwater or other oxic groundwater systems. - Highlights: • Groundwater nitrate is increasing regionally in the karstic Edwards aquifer. • Sources of increased nitrate loading are likely anthropogenic. • Groundwater nitrate concentrations are elevated relative to surface water recharge. • Nitrification within the aquifer is potential source of nitrate in groundwater.

  17. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    International Nuclear Information System (INIS)

    Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R.

    2016-01-01

    previously unrecognized source of NO 3 − to karst groundwater or other oxic groundwater systems. - Highlights: • Groundwater nitrate is increasing regionally in the karstic Edwards aquifer. • Sources of increased nitrate loading are likely anthropogenic. • Groundwater nitrate concentrations are elevated relative to surface water recharge. • Nitrification within the aquifer is potential source of nitrate in groundwater.

  18. Automatic detection of karstic sinkholes in seismic 3D images using circular Hough transform

    International Nuclear Information System (INIS)

    Parchkoohi, Mostafa Heydari; Farajkhah, Nasser Keshavarz; Delshad, Meysam Salimi

    2015-01-01

    More than 30% of hydrocarbon reservoirs are reported in carbonates that mostly include evidence of fractures and karstification. Generally, the detection of karstic sinkholes prognosticate good quality hydrocarbon reservoirs where looser sediments fill the holes penetrating hard limestone and the overburden pressure on infill sediments is mostly tolerated by their sturdier surrounding structure. They are also useful for the detection of erosional surfaces in seismic stratigraphic studies and imply possible relative sea level fall at the time of establishment. Karstic sinkholes are identified straightforwardly by using seismic geometric attributes (e.g. coherency, curvature) in which lateral variations are much more emphasized with respect to the original 3D seismic image. Then, seismic interpreters rely on their visual skills and experience in detecting roughly round objects in seismic attribute maps. In this paper, we introduce an image processing workflow to enhance selective edges in seismic attribute volumes stemming from karstic sinkholes and finally locate them in a high quality 3D seismic image by using circular Hough transform. Afterwards, we present a case study from an on-shore oilfield in southwest Iran, in which the proposed algorithm is applied and karstic sinkholes are traced. (paper)

  19. Origin of water salinity in the coastal Sarafand aquifer (South-Lebanon)

    International Nuclear Information System (INIS)

    Hashash, Adnan; Aranyossy, J.F.

    1996-01-01

    Author.The geochemical and isotopic study, based on the analysis of twenty water samples from well in the coastal plain of Sarafand (South-Lebanon), permit to eliminate the hypothesis of marine intrusion in this aquifer. The increase of salinity observed in certain wells is due to the contamination of cretaceous aquifer water by the quaternary formations. The two poles of mixing are respectively characterized: by weak tritium contents (between 2 and 3 UT) and a value of stable isotopes (-5,9<0,18<-5,5) corresponding to the appearance of cretaceous formation area; by the high tritium contents and enrichment relative to heavy isotope in the mineralized water of superficial formations. On the other hand, the isotope contents permit the set a rapid renewal of the cretaceous aquifer water due to quick circulation in the Karstic system

  20. Isotope and Hydrochemical Study of Seawater Intrusion into the Aquifers of a Coastal Zone in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Dapena, C.; Panarello, H. O.; Ducos, E. I.; Marban, L. [Instituto de Geocronologia y Geologia Isotopica (INGEIS, CONICET -UBA), Buenos Aires (Argentina); Peralta Vital, J. L.; Gil Castillo, R.; Leyva Bombuse, D. [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba); Valdez, L. [Empresa de Investigaciones y Proyectos Hidraulicos Habana, La Habana (Cuba); Olivera Acosta, J. [Instituto de Geofisica y Astronomia. La Habana (Cuba)

    2013-07-15

    The Artemisa-Quivican Basin is located in the southern sector of the province of Havana, Cuba. This basin contains the most important aquifer of Havana province. It has a length of nearly 120 km and is 25 km in width. Recharge depends on the precipitation regime and rain infiltrates in a considerable proportion due to the intense development of karstic features. This aquifer is used for water supply to population, industry, and irrigation and is affected by over-exploitation and risk of contamination by saline sea intrusion. The main objective of this study is the isotope and chemical characterization of the aquifer and the delimitation of the area influenced by saline intrusion. Groundwater and river water are of the calcium bicarbonate type except those with evidence of mixture with saline water. Groundwater exhibits a variable proportion of mixture with seawater, indicating the presence of the saline intrusion. (author)

  1. Characterisation of the heterogeneity of karst using electrical geophysics - applications in SW China

    Science.gov (United States)

    Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.

    2017-12-01

    The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We

  2. Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)

    Science.gov (United States)

    Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent

    2012-06-01

    The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.

  3. Multidisciplinary work on barium contamination of the karstic upper Kupa River drainage basin (Croatia and Slovenia); calling for watershed management.

    Science.gov (United States)

    Francisković-Bilinski, S; Bilinski, H; Grbac, R; Zunić, J; Necemer, M; Hanzel, D

    2007-02-01

    as for bioremediation of contaminated gardens and for watershed management of vulnerable karstic aquifers.

  4. Tracing of karstic waters in the southern part of the Frankish Alb between the rivers Anlauter, Altmuehl and Danube

    International Nuclear Information System (INIS)

    Behrens, H.; Seiler, K.P.

    1982-01-01

    It is reported about tracing investigations carried out at present in order to detect the passages of waste waters in the Karst of the Southern Frankish Alb. Tracings of karstic waters in the area of karstic watersheds can be performed successfully if the volume of the karstic ground waters equals the small quantities existing in the area between Altmuehl and Anlauter. In this region the karstic watershed is shifted by a strip of about 1 km width. This shift depends on the recharge and volume of the groundwater. All tracings between Altmuehl and Danube, carried out in the area of the karstic water shed, led to negative results, because in this region the volume of the karstic water is particularly large and since consequently the fluorescent tracers are extremely diluted in the waster masses. The amount of tracer material to be recovered ranges below 10%, if the ''most frequent distance velocity'' is below approximately 500 m/d. With higher distance velocities it is sometimes possible to recover more than 50% and even up to 100% of the dyes. (orig.) [de

  5. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  6. Dissolved Inert Gases in Three Karstic Systems in Europe (France and Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Magro, G.; Cioni, R.; Guidi, M.; Gherardi, F. [CNR-Istituto di Geoscienze e Georisorse, Pisa (Italy)

    2013-07-15

    Dissolved noble gases (He, Ne, and Ar) and N{sub 2} were measured in spring waters from three karstic systems in Europe: Baget and Larzac in France, and Drama in Greece. The content of dissolved gases was higher than those expected for water equilibrated to air at the spring's temperature range (0-15{sup o}C) and was related to both the presence of air and He excess. The He isotopic composition reveals: a dominant air and air saturated water origin for the Baget samples, a slight mantle derived He excess for Larzac and a clear crustal He excess for Drama. Although the recording time was limited, the influence of deepest waters enriched in He was more evident during the dry season. Karstic waters are therefore the result of a complex hydrologic circulation of several reservoirs characterized by different water residence times exchanging water mainly during floods. (author)

  7. Prospectivity Modeling of Karstic Groundwater Using a Sequential Exploration Approach in Tepal Area, Iran

    Science.gov (United States)

    Sharifi, Fereydoun; Arab-Amiri, Ali Reza; Kamkar-Rouhani, Abolghasem; Yousefi, Mahyar; Davoodabadi-Farahani, Meysam

    2017-09-01

    The purpose of this study is water prospectivity modeling (WPM) for recognizing karstic water-bearing zones by using analyses of geo-exploration data in Kal-Qorno valley, located in Tepal area, north of Iran. For this, a sequential exploration method applied on geo-evidential data to delineate target areas for further exploration. In this regard, two major exploration phases including regional and local scales were performed. In the first phase, indicator geological features, structures and lithological units, were used to model groundwater prospectivity as a regional scale. In this phase, for karstic WPM, fuzzy lithological and structural evidence layers were generated and combined using fuzzy operators. After generating target areas using WPM, in the second phase geophysical surveys including gravimetry and geoelectrical resistivity were carried out on the recognized high potential zones as a local scale exploration. Finally the results of geophysical analyses in the second phase were used to select suitable drilling locations to access and extract karstic groundwater in the study area.

  8. Habitat characteristics and environmental parameters influencing fish assemblages of karstic pools in southern Mexico

    Directory of Open Access Journals (Sweden)

    María Eugenia Vega-Cendejas

    Full Text Available Fish assemblage structure was evaluated and compared among 36 karstic pools located within protected areas of the Calakmul Biosphere Reserve (southern Mexico and unprotected adjacent areas beyond the Reserve. Nonmetric multidimensional scaling (MDS, indicator species analysis (ISA, and canonical correspondence analysis (CCA were used to identify which environmental factors reflected local influences and to evaluate the correlation of these variables with fish assemblages structure. Thirty-one species were encountered in these karstic pools, some for the first time within the Reserve. These aquatic environments were separated into three groups based on physico-chemical characteristics. Although CCA identified significant associations between several fish species (based on their relative abundance and environmental variables (K, NH4, NO3, and conductivity, the most abundant species (Astyanax aeneus, Poecilia mexicana, and Gambusia sexradiata occur in most pools and under several environmental conditions. Baseline data on fish diversity along with a continued monitoring program are essential in order to evaluate the conservation status of fish assemblages and their habitats, as well as to measure the influence of anthropogenic impacts on pristine habitats such as the karstic pools of the Calakmul Biosphere Reserve.

  9. The problems of over exploitation of aquifers in semi-arid areas: characteristics and proposals for mitigation

    International Nuclear Information System (INIS)

    Rodriguez-Estrella, T.

    2014-01-01

    This article presents a general analysis of the problems arising from overexploited aquifers in semi-arid areas, based on research carried out in the Region of Murcia (one of the most over-exploited areas in Europe). Among the negative impacts of this over exploitation are: the drying up of springs, the continuous drawdown of water levels (up to 10 m/y), piezo metric drops (over 30 m in one year if it is a karstic aquifer), an increase in pumping costs (elevating water from a depth of more than 450 m), abandonment of wells, diminishing groundwater reserves, deteriorating water quality, presence of CO 2 , compartmentalizing of aquifers, etc. A series of internal measures is proposed to alleviate the over exploitation of the region. (Author)

  10. Visualization of conduit-matrix conductivity differences in a karst aquifer using time-lapse electrical resistivity

    Science.gov (United States)

    Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.

    2012-12-01

    In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.

  11. The problems of over exploitation of aquifers in semi-arid areas: characteristics and proposals for mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Estrella, T.

    2014-06-01

    This article presents a general analysis of the problems arising from overexploited aquifers in semi-arid areas, based on research carried out in the Region of Murcia (one of the most over-exploited areas in Europe). Among the negative impacts of this over exploitation are: the drying up of springs, the continuous drawdown of water levels (up to 10 m/y), piezo metric drops (over 30 m in one year if it is a karstic aquifer), an increase in pumping costs (elevating water from a depth of more than 450 m), abandonment of wells, diminishing groundwater reserves, deteriorating water quality, presence of CO{sub 2}, compartmentalizing of aquifers, etc. A series of internal measures is proposed to alleviate the over exploitation of the region. (Author)

  12. Contribution to the hydrogeological, geochemical and isotopic study of Ain El Beidha and Merguellil (Kairouan plain) aquifers: Implication for the dam-aquifer relationship

    International Nuclear Information System (INIS)

    Ben Ammar, Safouan

    2007-01-01

    In the semiarid central part of Tunisia the water resources are becoming increasingly rare because of the scarcity and irregularity of the precipitation and a steadily growing need for fresh water. This study addresses the use of geochemical and isotopic data to analyze the relationship between the El Haouareb dam and the Ain El Beidha and the Kairouan alluvial plain aquifers systems for durable groundwater management. In the Ain El Beidha basin the hydrogeological and geochemical investigations showed that: - The general direction of the groundwater flow is mainly from the SW to the NE, i.e. towards the hydraulic sill of El Haouareb which allows the connection between the Ain El Beidha basin and the Kairouan plain, - The salinity distribution displays a zonation in apparent relationship with the lithological variation of the aquifer formation, - Mineral exchange between groundwater and the aquifer matrix is the dominant process in determining groundwater salinity. The isotopic data confirm the flow directions of groundwater and shows that the recharge of Ain El Beidha aquifers takes place from the floods of the Khechem and Ben Zitoun wadies and also by preferential infiltration of runoff at the front of hill slopes area. Close to preferential recharge areas, groundwater 3H contents reflect a recent input of surface water, whereas the radiocarbon data indicate a longer residence time downstream. The isotopic characteristics of Ain El Beidha groundwater (small space and temporal changes) authorize the use of averaged values for the dam-aquifer water exchange. Under natural conditions, groundwater recharge of the alluvial aquifer of Kairouan plain occurs by infiltration of the Merguellil floods and from the Ain el Beidha groundwater flow close the karstic hydraulic sills. Since the construction of the El Haouareb dam, these natural mechanisms have been strongly modified: the dam waters infiltrate into the karst, mix with the Ain el Beidha groundwater, and feed the

  13. The presence of stygobitic macroinvertebrates in karstic aquifers: a case study in the cradle of humankind world heritage site

    OpenAIRE

    2008-01-01

    Subterranean ecosystems are regarded as the most extensive biome on earth, comprising terrestrial and aquatic systems - the latter constituting freshwater, anchialine and marine systems. This system plays a key role in the distribution and storage of freshwater, once it contains 97% of the world’s total liquid freshwater (Chapter 1), which has been progressively explored in quality and amount. Initial observation of the subterranean environment began with speleological studies by the recognit...

  14. Flood modelling with a distributed event-based parsimonious rainfall-runoff model: case of the karstic Lez river catchment

    Directory of Open Access Journals (Sweden)

    M. Coustau

    2012-04-01

    Full Text Available Rainfall-runoff models are crucial tools for the statistical prediction of flash floods and real-time forecasting. This paper focuses on a karstic basin in the South of France and proposes a distributed parsimonious event-based rainfall-runoff model, coherent with the poor knowledge of both evaporative and underground fluxes. The model combines a SCS runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The efficiency of the model is discussed not only to satisfactorily simulate floods but also to get powerful relationships between the initial condition of the model and various predictors of the initial wetness state of the basin, such as the base flow, the Hu2 index from the Meteo-France SIM model and the piezometric levels of the aquifer. The advantage of using meteorological radar rainfall in flood modelling is also assessed. Model calibration proved to be satisfactory by using an hourly time step with Nash criterion values, ranging between 0.66 and 0.94 for eighteen of the twenty-one selected events. The radar rainfall inputs significantly improved the simulations or the assessment of the initial condition of the model for 5 events at the beginning of autumn, mostly in September–October (mean improvement of Nash is 0.09; correction in the initial condition ranges from −205 to 124 mm, but were less efficient for the events at the end of autumn. In this period, the weak vertical extension of the precipitation system and the low altitude of the 0 °C isotherm could affect the efficiency of radar measurements due to the distance between the basin and the radar (~60 km. The model initial condition S is correlated with the three tested predictors (R2 > 0.6. The interpretation of the model suggests that groundwater does not affect the first peaks of the flood, but can strongly impact subsequent peaks in the case of a multi-storm event. Because this kind of model is based on a limited

  15. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece

    KAUST Repository

    Tziritis, E.

    2016-03-01

    The intrinsic vulnerability of a karstic aquifer system in central Greece was jointly assessed with the use of a statistical approach and PI method, as a function of topography, protective cover effectiveness and the degree to which this cover is bypassed due to flow conditions. The input data for the index-overlay PI method were derived from field works and 71 boreholes of the area; the information was obtained, subsequently its critical factors were compiled which included lithology, fissuring and karstification of bedrock, soil characteristics, hydrology, hydrogeology, topography and vegetation. The aforementioned parameters were processed jointly with the aid of a GIS and yielded the final estimation of intrinsic aquifer vulnerability to contamination. Results were compared with an equivalent spatially distributed probability map obtained through a stochastic approach. The calibration and test phase of the latter relied on morphometric conditions derived by terrain analyses of a digital elevation model as well as on geology and land use from thematic maps. This procedure allowed taking into account the topographic influences with respect to a deep system such as the local karstic aquifer of eastern Kopaida basin. Finally, results were validated with ground truth nitrate values obtained from 41 groundwater samples, highlighted the spatial delineation of susceptible areas to contamination in both cases and provided a robust tool for regional planning actions and water resources management schemes.

  16. Environmental vulnerability and agriculture in the karstic domain: landscape indicators and cases in the Atlas Highlands, Morocco.

    Directory of Open Access Journals (Sweden)

    Akdim Brahim

    1999-01-01

    Full Text Available After the brief presentation of the major karstic areas in Morocco, the article focused essentially on the Atlas mountains to investigate the impact of the agriculture on the natural systems equilibrium. Socio-economic changes (demographic pressure, escalation of the landscape use, utilisation of new techniques in water harvesting, etc... have sometimes fathered mechanisms of degradation. Many indicators seem to reflect these mechanisms. The pedologic indicators, soil erosion, the hydrologic and geomorphic indicators, are apprehended to demonstrate existent correlation between different variables and the often negative impacts of land over-use in the karstic domain of the Middle Atlas.

  17. Source and flux of POC in two subtropical karstic tributaries with contrasting land use practice in the Yangtze River Basin

    International Nuclear Information System (INIS)

    Tao, F.-X.; Liu, C.-Q.; Li, S.-L.

    2009-01-01

    Elemental (C/N ratio) and C isotope composition (δ 13 C) of particulate organic C (POC) and organic C content (OC) of total suspended solids (TSS) were determined for two subtropical karstic tributaries of the Yangtze River, the Wujiang (the eighth largest tributary) and Yuanjiang (the third largest tributary). For the latter, two headwaters, the karstic Wuyanghe and non-karstic Qingshuijiang were studied. The Wujiang catchment is subject to intensive land use, has low forest coverage and high soil erosion rate. The δ 13 C of POC covered a range from -30.6 per mille to -24.9 per mille, from -27.6 per mille to -24.7 per mille , and from -26.2 per mille to -23.3 per mille at the low-water stage, while at the high-water stage varied in a span between -28.6 per mille and -24.4 per mille , between -27.7 per mille and -24.5 per mille, and between -27.6 per mille and -24.2 per mille for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The combined application of C isotopes, C/N ratio, OC, and TSS analyses indicated that catchment soil was the predominant source of POC for the Wujiang while for the Wuyanghe and Qingshuijiang, in-stream processes supplied the main part of POC in winter and summer. A significant increase in δ 13 C value (1.4 per mille ) of POC was found in the Wujiang during summer, and was attributed to the enhanced soil erosion of the dry arable uplands close to the riverbanks of the main channel. Based on a conservative estimate, POC fluxes were 3.123 x 10 10 , 0.084 x 10 10 , and 0.372 x 10 10 g a -1 while export rates of POC were 466, 129, and 218 mg m -2 a -1 for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The POC export rate for the karstic Wujiang, with intensive land use, was 2-3 higher than that of the karstic Wuyanghe or of the non-karstic Qingshuijiang where soil erosion was minor. Such high values imply rapid degradation of related karstic ecosystems impacted by intensive land use activities, and pose a potential threat to

  18. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    International Nuclear Information System (INIS)

    Katz, Brian G.; Griffin, Dale W.; Davis, J. Hal

    2009-01-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1 mg/L (milligrams per liter) during the past 30 years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3 m 3 /s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64 million L/d (liters per day) of treated municipal wastewater applied at a 774 ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15 km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2 ppt). One other detection of carbamazepine was found in a distant well water

  19. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Brian G. [U.S. Geological Survey, 2010 Levy Avenue, Tallahassee, Florida 32310 (United States)], E-mail: bkatz@usgs.gov; Griffin, Dale W.; Davis, J. Hal [U.S. Geological Survey, 2010 Levy Avenue, Tallahassee, Florida 32310 (United States)

    2009-04-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1 mg/L (milligrams per liter) during the past 30 years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3 m{sup 3}/s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64 million L/d (liters per day) of treated municipal wastewater applied at a 774 ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15 km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2 ppt). One other detection of carbamazepine was found in a distant well water

  20. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Nitrate pollution of a karstic groundwater system in Svaty Jan Pod Skalou, Czech Republic

    International Nuclear Information System (INIS)

    Buzek, F.; Kadlecova, R.; Zak, K.

    1998-01-01

    Due to increasing agricultural activity after the 1960's both shallow and deep water resources in the Czech Republic including karstic systems have been contaminated by infiltrating nitrate. Nitrate content of one of the largest spring (19L/s) now varies from 50 to 60 mg/L. To specify the sources of nitrate pollution and collect sufficient data for the prediction of possible future development, flow dynamics, chemical and isotopic composition (δ 18 O in water, δ 15 N in nitrate) were monitored in the spring and precipitation together with potential sources of pollution (fertilizers, solutes in soil profile). Observed data were modelled by a simple mixing cell model to specify system parameters (volume and mean residence time). (author)

  2. Isotopic hydrodynamic of the aquifer systems Jaruco and Aguacate, Cuba; Hidrodinamica isotopica de los sistemas acuiferos Jaruco y Aguacate, Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Moleiro Leon, L F; Guerra Oliva, M G [Grupo de Aguas Terrestres, Instituto de Geofisica y Astronomia, La Habana (Cuba); Maloszewski, P [GSF, Institut fue Hydrologie, Munich (Germany); Arellano Acosta, D M [Agencia de Medio Ambiente, CITMA, La Habana (Cuba)

    2002-07-01

    An isotopic dispersive model is applied to the Jaruco and Aguacate karstic groundwater basins of Western Cuba. The best fit of the model was validated with stable ({sup 18}O and 2{sup H}) and radioactive ({sup 3}H) isotopes. Modeling showed an aquifer stratification in two basic levels with turnover times of three month to upper level and close to 100 years to the lower level. The last one mainly supplies the base flow of the Ojo de agua and Bello springs and therefore, controls the dry season exploitation yields of the aqueducts of El Gato and Bello. Model results introduces an important constraint in the exploitation of groundwater resource of both aquifer systems.

  3. Assessing acid rain and climate effects on the temporal variation of dissolved organic matter in the unsaturated zone of a karstic system from southern China

    Science.gov (United States)

    Liao, Jin; Hu, Chaoyong; Wang, Miao; Li, Xiuli; Ruan, Jiaoyang; Zhu, Ying; Fairchild, Ian J.; Hartland, Adam

    2018-01-01

    Acid rain has the potential to significantly impact the quantity and quality of dissolved organic matter (DOM) leached from soil to groundwater. Yet, to date, the effects of acid rain have not been investigated in karstic systems, which are expected to strongly buffer the pH of atmospheric rainfall. This study presents a nine-year DOM fluorescence dataset from a karst unsaturated zone collected from two drip sites (HS4, HS6) in Heshang Cave, southern China between 2005 and 2014. Cross-correlograms show that fluorescence intensity of both dripwaters lagged behind rainfall by ∼1 year (∼11 months lag for HS4, and ∼13 months for HS6), whereas drip rates responded quite quickly to rainfall (0 months lag for HS4, and ∼3 months for HS6), based on optimal correlation coefficients. The rapid response of drip rates to rainfall is related to the change of reservoir head pressure in summer, associated with higher rainfall. In winter, low rainfall has a limited effect on head pressure, and drip rates gradually slow to a constant value associated with base flow from the overlying reservoir- this effect being most evident on inter-annual timescales (R2 = 0.80 for HS4 and R2 = 0.86 for HS6, n = 9, p process on delaying water and solute transport. After eliminating the one year lag, the congruent seasonal pacing and amplitude between fluorescence intensity and rainfall observed suggests that the seasonality of fluorescence intensity was mainly controlled by the monsoonal rains which can govern the output of DOM from the soil, as well as the residence time of water in the unsaturated zone. On inter-annual timescales, a robust linear relationship between fluorescence intensity and annual (effective) precipitation amount (R2 = 0.86 for HS4 and R2 = 0.77 for HS6, n = 9, p < 0.01) was identified, implying that annual (effective) precipitation is the main determinant of DOM concentration in the aquifer. Conversely, the insensitivity of fluorescence intensity and fluorescence

  4. Near Surface Geophysical Investigations of Potential Direct Recharge Zones in the Biscayne Aquifer within Everglades National Park, Florida.

    Science.gov (United States)

    Mount, G.; Comas, X.

    2017-12-01

    The karstic Miami Limestone of the Biscayne aquifer is characterized as having water flow that is controlled by the presence of dissolution enhanced porosity and mega-porous features. The dissolution features and other high porosity areas create horizontal preferential flow paths and high rates of ground water velocity, which may not be accurately conceptualized in groundwater flow models. In addition, recent research suggests the presence of numerous vertical dissolution features across Everglades National Park at Long Pine Key Trail, that may act as areas of direct recharge to the aquifer. These vertical features have been identified through ground penetrating radar (GPR) surveys as areas of velocity pull-down which have been modeled to have porosity values higher than the surrounding Miami Limestone. As climate change may induce larger and longer temporal variability between wet and dry times in the Everglades, a more comprehensive understanding of preferential flow pathways from the surface to the aquifer would be a great benefit to modelers and planners. This research utilizes near surface geophysical techniques, such as GPR, to identify these vertical dissolution features and then estimate the spatial variability of porosity using petrophysical models. GPR transects that were collected for several kilometers along the Long Pine Key Trail, show numerous pull down areas that correspond to dissolution enhanced porosity zones within the Miami Limestone. Additional 3D GPR surveys have attempted to delineate the boundaries of these features to elucidate their geometry for future modelling studies. We demonstrate the ability of near surface geophysics and petrophysical models to identify dissolution enhanced porosity in shallow karstic limestones to better understand areas that may act as zones of direct recharge into the Biscayne Aquifer.

  5. Estimating the proportion of groundwater recharge from flood events in relation to total annual recharge in a karst aquifer

    Science.gov (United States)

    Dvory, N. Z.; Ronen, A.; Livshitz, Y.; Adar, E.; Kuznetsov, M.; Yakirevich, A.

    2017-12-01

    Sustainable groundwater production from karstic aquifers is primarily dictated by its recharge rate. Therefore, in order to limit over-exploitation, it is essential to accurately quantify groundwater recharge. Infiltration during erratic floods in karstic basins may contribute substantial amount to aquifer recharge. However, the complicated nature of karst systems, which are characterized in part by multiple springs, sinkholes, and losing/gaining streams, present a large obstacle to accurately assess the actual contribution of flood water to groundwater recharge. In this study, we aim to quantify the proportion of groundwater recharge during flood events in relation to the annual recharge for karst aquifers. The role of karst conduits on flash flood infiltration was examined during four flood and artificial runoff events in the Sorek creek near Jerusalem, Israel. The events were monitored in short time steps (four minutes). This high resolution analysis is essential to accurately estimating surface flow volumes, which are of particular importance in arid and semi-arid climate where ephemeral flows may provide a substantial contribution to the groundwater reservoirs. For the present investigation, we distinguished between direct infiltration, percolation through karst conduits and diffused infiltration, which is most affected by evapotranspiration. A water balance was then calculated for the 2014/15 hydrologic year using the Hydrologic Engineering Center - Hydrologic Modelling System (HEC-HMS). Simulations show that an additional 8% to 24% of the annual recharge volume is added from runoff losses along the creek that infiltrate through the karst system into the aquifer. The results improve the understanding of recharge processes and support the use of the proposed methodology for quantifying groundwater recharge.

  6. Bedrock geology and hydrostratigraphy of the Edwards and Trinity aquifers within the Driftwood and Wimberley 7.5-minute quadrangles, Hays and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2017-11-16

    The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that

  7. Sustainable management of transboundary water resources (Belgium/France): Characterization and modelling of the Carboniferous aquifer

    Science.gov (United States)

    Bastien, J.; Picot-Colbeaux, G.; Crastes de Paulet, F.; Rorive, A.; Bouvet, A.; Goderniaux, P.; Thiery, D.

    2016-12-01

    The Carboniferous Limestone groundwater extends from East to West across Belgium and the North of France (1420 km²). In a high population density and industrial activity region, it represents huge volumes of abstracted groundwater (98 Mm³). The aquifer thus constitutes a critical reserve for public distribution and industrial uses. This water reservoir is intensively exploited from both sides of the border since the end of the 19th century. Historically, this transboundary aquifer was overexploited, due to the massive requirements of the industry. As a consequence, a substantial piezometric level decrease was observed (up to 50 m). Due to the karstic nature of the aquifer, many sinkhole collapses were induced in the studied area. A reduction of the abstracted volumes was implemented in the 90s, which contributed to the relative stabilization of the piezometric levels, but the equilibrium remains uncertain. Due to complex political, urbanistic and industrial developments across this region, a reasonable and long-term management model was needed, involving all concerned countries and regions. Within the framework of the Interreg ScaldWIN Project, a belgo-french collaboration allowed the acquisition of new sets of geological and hydrogeological data. A new piezometric map was established and correlated with chemical and isotopic analyses. It enabled a more accurate knowledge on the main flow directions within the aquifer, and the relation between recharge area and the confined area, where groundwater is aged up to 10000 years. A new numerical model of the aquifer was implemented and calibrated by using the MARTHE code. This 4 layer-model includes a part of the French chalk aquifer and integrates all abstracted groundwater volumes (wells and quarries) from 1900 to 2010. Atmospheric and surface waters and potential evapotranspiration are included in relation to the groundwater. This model is used by the different partners to consider globally and locally the impact of

  8. Initial recommendations for protection of the environment, the conservation of the caverns and of other karstic phenomena, Rio Claro - Antioquia

    International Nuclear Information System (INIS)

    Szentes, George

    1994-01-01

    In the area of Rio Claro, Antioquia on the freeway Bogota Medellin, is a region of an extreme natural beauty, fauna and flora of great diversity, as well as interesting geologic phenomena, that which has generated an increase of the number of tourists. Therefore, it is required of an urgent of protection plant and control of the environment. For this complex work it is needed of the multidisciplinary cooperation of different experts and scientific. The following discussion tries to present some ideas about the results of the geologic and geomorphologic explorations carried out in order to defining a plan for the protection of the karstic area of Rio Claro as of other areas in Colombia. The author makes a general description of the geology and geomorphology of the area, of the karstic sources and caves and he gives limits about the protection and conservation of the caves

  9. Geomorphic Controls on Aquifer Geometry in Northwestern India

    Science.gov (United States)

    van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.

    2014-12-01

    The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.

  10. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  11. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  12. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  13. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    Science.gov (United States)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  14. Aquifer storage and recovery: recent hydrogeological advances and system performance.

    Science.gov (United States)

    Maliva, Robert G; Guo, Weixing; Missimer, Thomas M

    2006-12-01

    Aquifer storage and recovery (ASR) is part of the solution to the global problem of managing water resources to meet existing and future freshwater demands. However, the metaphoric "ASR bubble" has been burst with the realization that ASR systems are more physically and chemically complex than the general conceptualization. Aquifer heterogeneity and fluid-rock interactions can greatly affect ASR system performance. The results of modeling studies and field experiences indicate that more sophisticated data collection and solute-transport modeling are required to predict how stored water will migrate in heterogeneous aquifers and how fluid-rock interactions will affect the quality of stored water. It has been well-demonstrated, by historic experience, that ASR systems can provide very large volumes of storage at a lesser cost than other options. The challenges moving forward are to improve the success rate of ASR systems, optimize system performance, and set expectations appropriately.

  15. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  16. Regional Management of an Aquifer for Mining Under Fuzzy Environmental Objectives

    Science.gov (United States)

    BogáRdi, IstváN.; BáRdossy, AndráS.; Duckstein, Lucien

    1983-12-01

    A methodology is developed for the dynamic multiobjective management of a multipurpose regional aquifer. In a case study of bauxite mining in Western Hungary, ore deposits are often under the piezometric level of a karstic aquifer, while this same aquifer also provides recharge flows for thermal springs. N + 1 objectives are to be minimized, the first one being total discounted cost of control by dewatering or grouting; the other N objectives consist of the flow of thermal springs at N control points. However, there is no agreement among experts as to a set of numerical values that would constitute a "sound environment"; for this reason a fuzzy set analysis is used, and the N environmental objectives are combined into a single fuzzy membership function. The constraints include ore availability, various capacities, and the state transition function that describes the behavior of both piezometric head and underground flow. The model is linearized and solved as a biobjective dynamic program by using multiobjective compromise programming. A numerical example with N = 2 appears to lead to realistic control policies. Extension of the model to the nonlinear case is discussed.

  17. Use of trace elements as indicators for underground fluid circulations in karstic environment; Utilisation des elements en trace comme traceurs des circulations souterraines en milieu karstique (site du Lamalou, Herault)

    Energy Technology Data Exchange (ETDEWEB)

    Pane-Escribe, M B

    1995-06-29

    The geochemical study of the trace element behaviour in karstic groundwaters has been carried out over the experimental site of Lamalou (Herault, France). Routine measurements of the physico-chemical parameters and of the dissolved elements concentrations have been achieved during two hydrological cycles. Radon has been monitored by passive detectors and by automatic electronic probes. Trace elements (Sc, Ti, V, Cr, Ni, Cu, Zn, As Rb, Sr, Mo, Cd, Sb, Cs, Ba, Th, U) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The first part of this work presents the methodologies employed with in particular the improvement of the analytical performances of ICP-MS for water samples analysis. The detection limit for each considered element has been determined. The short and long term reproducibility for the samples analysis has also been tested. The second part of this study presents the treatment and interpretation of the results. This analysis has pointed our the influence of the aquifer structure on the chemical elements distribution. The trace and major elements concentrations are effectively related to the fracturing state of the reservoir and allow to individualize the high transmissivity zones from zones with a lower transmissivity in this mono-lithological context, trace elements appear to be particularly efficient tracers for determining the water origin and circulation their spatial and temporal behaviour leads to identify three different origins for the water mineralization over the studied area: limestones, clays and external sources (rainfalls and occasional pollutions). (author). 154 refs.

  18. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    Science.gov (United States)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  19. Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4

    Science.gov (United States)

    Han, Dongmei; Song, Xianfang; Currell, Matthew J.

    2016-05-01

    The hydrogeochemical processes controlling groundwater evolution in the Daweijia area of Dalian, northeast China, were characterised using hydrochemistry and isotopes of carbon and sulfur (δ13CDIC and δ34SSO4). The aim was to distinguish anthropogenic impacts as distinct from natural processes, with a particular focus on sulfate, which is found at elevated levels (range: 54.4 to 368.8 mg L-1; mean: 174.4 mg L-1) in fresh and brackish groundwater. The current investigation reveals minor seawater intrusion impact (not exceeding 5 % of the overall solute load), in contrast with extensive impacts observed in 1982 during the height of intensive abstraction. This indicates that measures to restrict groundwater abstraction have been effective. However, hydrochemical facies analysis shows that the groundwater remains in a state of ongoing hydrochemical evolution (towards Ca-Cl type water) and quality degradation (increasing nitrate and sulfate concentrations). The wide range of NO3 concentrations (74.7-579 mg L-1) in the Quaternary aquifer indicates considerable input of fertilisers and/or leakage from septic systems. Both δ13C (-14.5 to -5.9 permil) and δ34SSO4 (+5.4 to +13.1 permil) values in groundwater show increasing trends along groundwater flow paths. While carbonate minerals may contribute to increasing δ13CDIC and δ34SSO4 values in deep karstic groundwater, high loads of agricultural fertilisers reaching the aquifer via irrigation return flow are likely the main source of the dissolved sulfate in Quaternary groundwater, as shown by distinctive isotopic ratios and a lack of evidence for other sources in the major ion chemistry. According to isotope mass balance calculations, the fertiliser contribution to overall sulfate has reached an average of 62.1 % in the Quaternary aquifer, which has a strong hydraulic connection to the underlying carbonate aquifer. The results point to an alarming level of impact from the local intensive agriculture on the groundwater

  20. Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model

    Science.gov (United States)

    Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.

    2003-01-01

    In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.

  1. Fish community structure in freshwater karstic water bodies of the Sian Ka'an Reserve in the Yucatan peninsula, Mexico

    Science.gov (United States)

    Zambrano, L.; Vazquez-Dominguez, E.; Garcia-Bedoya, D.; Loftus, W.F.; Trexler, J.C.

    2006-01-01

    We evaluated the relationship between limnetic characteristics and fish community structure (based on species richness, abundance and individual size) in contrasting but interconnected inland aquatic habitats of freshwater karstic wetlands in the Yucatan peninsula, Mexico. In the western hemisphere, freshwater karstic wetlands are found in south-eastern Mexico, northern Belize, western Cuba, Andros Island, Bahamas and the Everglades of southern Florida. Only in the Everglades have fish communities been well described. Karstic wetlands are typically oligotrophic because calcium carbonate binds phosphorus, making it relatively unavailable for plants. Fourteen permanent and seasonally flooded water bodies were sampled in both wet and dry seasons in Sian Ka'an Biosphere Reserve, in the Mexican state of Quintana Roo. Water systems were divided by morphology in four groups: cenotes with vegetation (CWV), cenotes without vegetation (CNV), wetlands (WTL), and temporal cenotes (TPC). Discriminant analysis based on physical characteristics such as turbidity, temperature, depth and oxygen confirmed that these habitats differed in characteristics known to influence fish communities. A sample-based rarefaction test showed that species richness was significantly different between water systems groups, showing that WTL and CWV had higher richness values than CNV and TPC. The most abundant fish families, Poeciliidae, Cichlidae and Characidae, differed significantly in average size among habitats and seasons. Seasonal and inter-annual variation, reflecting temporal variation in rainfall, strongly influenced the environmental differences between shallow and deep habitats, which could be linked to fish size and life cycles. Five new records of species were found for the reserve, and one new record for Quintana Roo state. ?? 2006 by Verlag Dr. Friedrich Pfeil.

  2. War waste and pollution of karstic area of Bosnia and Herzegovina with PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Picer, N.; Hodak-Kobasic, V.; Kovac, T.; Calic, V. [Rudjer Boskovic Institute, Zagreb (Croatia); Miosic, N.; Hrvatovic, H. [Geological Survey, Sarajevo (Yugoslavia)

    2004-09-15

    During the recent war, the karst area of Bosnia and Herzegovina has been jeopardized by hazardous waste and deserves particular attention because of its exceptional ecological sensitivity and unfortunately unscrupulous destruction of natural resources, infrastructure, homes and enterprises. This was the reason for creation and planning of a joint three year Project - APOPSBAL, within which scientists from the jeopardized countries (Croatia, Bosnia and Herzegovina, and Serbia and Montenegro) with the help of scientists from other friendly countries (Czech Republic, Austria, Slovenia and Greece) would identify the real problems concerning the PCB and other POP's contamination of the environment. Objectives of this Project in Bosnia and Herzegovina are: To collect data about damaged facilities with oil with PCBs and also other even more dangerous POPs in Bosnia and Herzegovina. Much better determining the hydrogeological fate of PCBs and other POPs compounds in the most threatened areas of Bosnia and Herzegovina polluted with the POPs. Special emphasis will be paid for the sensitive karstic media of these areas. To recognize in the field directly the technical state of electrotransformers and capacitors with pyralene with special attention to spilling of this oil into the environment. To sample soil and sediments from the sites thought polluted with PCBs and to analyse themselves on its content. To choose several sites for atmospheric monitoring samples with POPs, which are in surroundings to the ground argumentative contaminated with POPs in Bosnia and Herzegovina to establish real data about level of contamination of this very important part of human ecosphere. In this paper it will be reported the results of investigation from the first to the fourth objectives.

  3. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Adame

    Full Text Available Coastal wetlands can have exceptionally large carbon (C stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes, and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N and phosphorus (P from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1 followed by medium mangroves (623±41 Mg ha(-1, dwarf mangroves (381±52 Mg ha(-1 and marshes (177±73 Mg ha(-1. At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%. Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  4. Planktonic cyanobacteria of the tropical karstic lake Lagartos from the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Valadez, Francisco; Rosiles-González, Gabriela; Almazán-Becerril, Antonio; Merino-Ibarra, Martin

    2013-06-01

    The tropical karstic lakes on the Mexican Caribbean Sea coast are numerous. However, there is an enormous gap of knowledge about their limnological conditions and micro-algae communities. In the present study, surface water samples were collected monthly from November 2007 to September 2008 to provide taxonomical composition and biovolume of planktonic cyanobacteria of the lake Lagartos from State of Quintana Roo, Mexico. Water temperature, pH, conductivity, salinity, soluble reactive phosphorus (SRP), dissolved inorganic nitrogen (DIN), and soluble reactive silica (SRSi) levels were also analyzed. A total of 22 species were identified. Chroococcales and Oscillatoriales dominated the phytoplankton assemblages during the study period. Chroococcus pulcherrimus, Coelosphaerium confertum, Cyanodyction iac, Phormidium pachydermaticum and Planktolyngbya contorta were recorded for the first time in Mexico. A surplus of DIN (mean value of 42.7 microM) and low concentrations of SRP (mean value of 1.0 microM) promoted the enhanced growth and bloom formation of cyanobacteria. The mean biovolume was 3.22 x 10(8) microm3/mL, and two biovolume peaks were observed; the first was dominated by Microcystis panniformis in November 2007 (7.40 x 10(8) microm3/mL), and the second was dominated by Oscillatoriaprinceps in April 2008 (6.55 x 10(8) microm3/mL). Water quality data, nitrates enrichment, and trophic state based on biovolume, indicated that Lagartos is a hyposaline, secondarily phosphorus-limited, and eutrophic lake, where the cyanobacteria flora was composed mainly by non-heterocystous groups.

  5. Planktonic Cyanobacteria of the tropical karstic lake Lagartos from the Yucatan Peninsula, Mexico

    Directory of Open Access Journals (Sweden)

    Francisco Valadez

    2013-06-01

    Full Text Available The tropical karstic lakes on the Mexican Caribbean Sea coast are numerous. However, there is an enormous gap of knowledge about their limnological conditions and micro-algae communities. In the present study, surface water samples were collected monthly from November 2007 to September 2008 to provide taxonomical composition and biovolume of planktonic cyanobacteria of the lake Lagartos from State of Quintana Roo, Mexico. Water temperature, pH, conductivity, salinity, soluble reactive phosphorus (SRP, dissolved inorganic nitrogen (DIN, and soluble reactive silica (SRSi levels were also analyzed. A total of 22 species were identified. Chroococcales and Oscillatoriales dominated the phytoplankton assemblages during the study period. Chroococcus pulcherrimus, Coelosphaerium confertum, Cyanodyction iac, Phormidium pachydermaticum and Planktolyngbya contorta were recorded for the first time in Mexico. A surplus of DIN (mean value of 42.7µM and low concentrations of SRP (mean value of 1.0µM promoted the enhanced growth and bloom formation of cyanobacteria. The mean biovolume was 3.22X10(8µm³/mL, and two biovolume peaks were observed; the first was dominated by Microcystis panniformis in November 2007 (7.40X10(8µm³/mL, and the second was dominated by Oscillatoria princeps in April 2008 (6.55X10(8µm³/mL. Water quality data, nitrates enrichment, and trophic state based on biovolume, indicated that Lagartos is a hyposaline, secondarily phosphorus-limited, and eutrophic lake, where the cyanobacteria flora was composed mainly by non-heterocystous groups.

  6. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    SOLVE, Inc. These best fit theoretical response curves are based on a transmissivity of 24,000 ft2/d or a hydraulic conductivity of about 600 ft/d, a storage coefficient of 0.05, a specific yield of 0.42, and vertical hydraulic conductivity equal to horizontal hydraulic conductivity. The theoretical type curves match the observed data fairly closely at Wells A and B until about 2,500 minutes and 1,000 minutes, respectively, after pumping began. The increasing rate of drawdown after these breaks is an indication that a no-flow boundary (an area with much lower hydraulic conductivity) likely was encountered and that Wells A and B may be completed in a part of the Elm aquifer with limited hydraulic connection to the rest of the aquifer. Additional analysis indicates that if different assumptions regarding the screened interval for Well B and aquifer anisotropy are used, type curves can be calculated that fit the observed data using a lower specific yield that is within the commonly accepted range. When the screened interval for Well B was reduced to 5 ft near the top of the aquifer and horizontal hydraulic conductivity was set to 20 times vertical hydraulic conductivity, the type curves calculated using a specific yield of 0.1 and a transmissivity of 30,200 ft2/d also matched the observed data from Wells A and B fairly well. A version of the Theim equilibrium equation was used to calculate the theoretical drawdown in an idealized unconfined aquifer when a perfectly efficient well is being pumped at a constant rate. These calculations were performed for a range of pumping rates, drawdowns at the wells, and distances between wells that might be found in a production well field in the Elm aquifer. Although the aquifer test indicates that hydraulic conductivity near the well may be adequate to support a production well, the comparison of drawdown and recovery curves indicates the possibility that heterogeneities may limit the productive capacity of specific loca

  7. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  8. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  9. A coupled groundwater-flow-modelling and vulnerability-mapping methodology for karstic terrain management

    Science.gov (United States)

    Kavouri, Konstantina P.; Karatzas, George P.; Plagnes, Valérie

    2017-08-01

    A coupled groundwater-flow-modelling and vulnerability-mapping methodology for the management of karst aquifers with spatial variability is developed. The methodology takes into consideration the duality of flow and recharge in karst and introduces a simple method to integrate the effect of temporal storage in the unsaturated zone. In order to investigate the applicability of the developed methodology, simulation results are validated against available field measurement data. The criteria maps from the PaPRIKa vulnerability-mapping method are used to document the groundwater flow model. The FEFLOW model is employed for the simulation of the saturated zone of Palaikastro-Chochlakies karst aquifer, in the island of Crete, Greece, for the hydrological years 2010-2012. The simulated water table reproduces typical karst characteristics, such as steep slopes and preferred drain axes, and is in good agreement with field observations. Selected calculated error indicators—Nash-Sutcliffe efficiency (NSE), root mean squared error (RMSE) and model efficiency (E')—are within acceptable value ranges. Results indicate that different storage processes take place in different parts of the aquifer. The north-central part seems to be more sensitive to diffuse recharge, while the southern part is affected primarily by precipitation events. Sensitivity analysis is performed on the parameters of hydraulic conductivity and specific yield. The methodology is used to estimate the feasibility of artificial aquifer recharge (AAR) at the study area. Based on the developed methodology, guidelines were provided for the selection of the appropriate AAR scenario that has positive impact on the water table.

  10. Interpretation of well hydrographs in the karstic Maynardville Limestone at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.; McMaster, B.W.

    1996-06-01

    The Maynardville Limestone in Oak Ridge, Tennessee underlies the southern portion of Bear Creek Valley (BCV), and is considered to be the primary pathway for groundwater leaving the Y-12 Plant boundaries. Sixty-seven percent of all wells drilled into the Maynardville Limestone have intersected at least one cavity, suggesting karst features may be encountered throughout the shallow (< 200 ft) portions of the Limestone. Because waste facilities at the Y-12 Plant are located adjacent to the Maynardville Limestone, contaminants could enter the karst aquifer and be transported in the conduit system. As part of an overall hydrologic characterization effort of this karst aquifer, 41 wells in the Maynardville Limestone were instrumented with pressure transducers to monitor water level changes (hydrographs) associated with rain events. Wells at depths between approximately 20 and 750 ft were monitored over the course of at least two storms in order that variations with depth could be identified. The wells selected were not exclusively completed in cavities but were selected to include the broad range of hydrologic conditions present in the Maynardville Limestone. Cavities, fractures and diffuse flow zones were measured at a variety of depths. The water level data from the storms are used to identify areas of quickflow versus slower flowing water zones. The data are also used to estimate specific yields and continuum transmissitives in different portions of the aquifer

  11. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Duvert, Clément; Raiber, Matthias; Owen, Daniel D.R.; Cendón, Dioni I.; Batiot-Guilhe, Christelle; Cox, Malcolm E.

    2015-01-01

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO 3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO 3 –Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  12. Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability

    Directory of Open Access Journals (Sweden)

    D. Finger

    2013-08-01

    Full Text Available Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.

  13. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns

    Science.gov (United States)

    Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.

    1996-08-01

    The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.

  14. Hazard connected to railway tunnel construction in karstic area: applied geomorphological and hydrogeological surveys

    Directory of Open Access Journals (Sweden)

    G. Casagrande

    2005-01-01

    Full Text Available In a mature karstic system, the realisation of galleries using the methodology of railway tunnel boring machine (TBM involves particular problems due to the high risk of interference with groundwater (often subject to remarkable level variations and with cavities and/or thick fill deposits. In order to define groundwater features it is necessary to investigate both hydrodynamic and karstification. To define and quantify the karst phenomenon in the epikarst of the Trieste Karst (Italy, an applied geomorphological approach has been experimented with surface and cavity surveys. The surface surveys have contributed to determining the potential karst versus the different outcropping lithologies and to define the structural setting of the rocky mass also through the realisation of geostructural stations and the survey of the main lines thanks to photo-interpretation. Moreover, all the dolines and the cavities present in the area interested by the gallery have been studied by analysing the probable extension of caves and/or of the secondary fill deposits and by evaluating the different genetic models. In an area 900m large and 27km long, which has been studied because of the underground karst, there are 41 dolines having diameters superior to 100m and 93 dolines whose diameters range between 100 and 50m; the dolines whose diameters are inferior to 50m are 282. The entrances of known and registered cavities in the cadastre records are 520. The hypogeal surveys have shown 5 typologies in which it has been possible to group all the cavities present in a hypothetical intersection with the excavation. The comparison between surface and hypogeal structural data and the direction of development of cavities has allowed for the definition of highly karstified discontinuity families, thus having a higher risk. The comparison of the collected data has enabled to identify the lithologies and areas having major risk and thus to quantify the probability of

  15. Hazard connected to railway tunnel construction in karstic area: applied geomorphological and hydrogeological surveys

    Science.gov (United States)

    Casagrande, G.; Cucchi, F.; Zini, L.

    2005-02-01

    In a mature karstic system, the realisation of galleries using the methodology of railway tunnel boring machine (TBM) involves particular problems due to the high risk of interference with groundwater (often subject to remarkable level variations) and with cavities and/or thick fill deposits. In order to define groundwater features it is necessary to investigate both hydrodynamic and karstification. To define and quantify the karst phenomenon in the epikarst of the Trieste Karst (Italy), an applied geomorphological approach has been experimented with surface and cavity surveys. The surface surveys have contributed to determining the potential karst versus the different outcropping lithologies and to define the structural setting of the rocky mass also through the realisation of geostructural stations and the survey of the main lines thanks to photo-interpretation. Moreover, all the dolines and the cavities present in the area interested by the gallery have been studied by analysing the probable extension of caves and/or of the secondary fill deposits and by evaluating the different genetic models. In an area 900m large and 27km long, which has been studied because of the underground karst, there are 41 dolines having diameters superior to 100m and 93 dolines whose diameters range between 100 and 50m; the dolines whose diameters are inferior to 50m are 282. The entrances of known and registered cavities in the cadastre records are 520. The hypogeal surveys have shown 5 typologies in which it has been possible to group all the cavities present in a hypothetical intersection with the excavation. The comparison between surface and hypogeal structural data and the direction of development of cavities has allowed for the definition of highly karstified discontinuity families, thus having a higher risk. The comparison of the collected data has enabled to identify the lithologies and areas having major risk and thus to quantify the probability of intersection with the

  16. Geomorphological approach in karstic domain: importance of underground water in the Jura mountains.

    Science.gov (United States)

    Rabin, Mickael; Sue, Christian; Champagnac, Jean Daniel; Bichet, Vincent; Carry, Nicolas; Eichenberger, Urs; Mudry, Jacques; Valla, Pierre

    2014-05-01

    Jura. The objective is to assess to what extent this powerful landscape analysis tool will be applicable to limestone bedrock settings where groundwater flow might be an important component of the hydrological system. First results show that river slopes and knickpoints are poorly controlled by lithological variation within the Jura mountains. Quantitative analyses reveal abnormal longitudinal profiles, which are controlled by either tectonic and/or karstic processes. Evaluating the contribution of both tectonics and karst influence in the destabilization of river profiles is challenging and appears still unresolved. However these morphometrics signals seem to be in accordance with the presence of active N-S to NW-SE strike-slip faults, controlling both surface runoff and groundwater flow.

  17. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  18. Sources of nitrate contamination and age of water in large karstic springs of Florida

    Science.gov (United States)

    Katz, B.G.

    2004-01-01

    In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Florida's first magnitude spring waters (discharge ???2.8 m3/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and ??15N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most ??15N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35 years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, 3H/3He) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and 3He data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix.

  19. Intensive exploitation of a karst aquifer leads to Cryptosporidium water supply contamination.

    Science.gov (United States)

    Khaldi, S; Ratajczak, M; Gargala, G; Fournier, M; Berthe, T; Favennec, L; Dupont, J P

    2011-04-01

    Groundwater from karst aquifers is an important source of drinking water worldwide. Outbreaks of cryptosporidiosis linked to surface water and treated public water are regularly reported. Cryptosporidium oocysts are resistant to conventional drinking water disinfectants and are a major concern for the water industry. Here, we examined conditions associated with oocyst transport along a karstic hydrosystem, and the impact of intensive exploitation on Cryptosporidium oocyst contamination of the water supply. We studied a well-characterized karstic hydrosystem composed of a sinkhole, a spring and a wellbore. Thirty-six surface water and groundwater samples were analyzed for suspended particulate matter, turbidity, electrical conductivity, and Cryptosporidium and Giardia (oo)cyst concentrations. (Oo)cysts were identified and counted by means of solid-phase cytometry (ChemScan RDI(®)), a highly sensitive method. Cryptosporidium oocysts were detected in 78% of both surface water and groundwater samples, while Giardia cysts were found in respectively 22% and 8% of surface water and groundwater samples. Mean Cryptosporidium oocyst concentrations were 29, 13 and 4/100 L at the sinkhole, spring and wellbore, respectively. Cryptosporidium oocysts were transported from the sinkhole to the spring and the wellbore, with respective release rates of 45% and 14%, suggesting that oocysts are subject to storage and remobilization in karst conduits. Principal components analysis showed that Cryptosporidium oocyst concentrations depended on variations in hydrological forcing factors. All water samples collected during intensive exploitation contained oocysts. Control of Cryptosporidium oocyst contamination during intensive exploitation is therefore necessary to ensure drinking water quality. Copyright © 2011. Published by Elsevier Ltd.

  20. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  1. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  2. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  3. IDENTIFIABILITY VERSUS HETEROGENEITY IN GROUNDWATER MODELING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A M BENALI

    2003-06-01

    Full Text Available Review of history matching of reservoirs parameters in groundwater flow raises the problem of identifiability of aquifer systems. Lack of identifiability means that there exists parameters to which the heads are insensitive. From the guidelines of the study of the homogeneous case, we inspect the identifiability of the distributed transmissivity field of heterogeneous groundwater aquifers. These are derived from multiple realizations of a random function Y = log T  whose probability distribution function is normal. We follow the identifiability of the autocorrelated block transmissivities through the measure of the sensitivity of the local derivatives DTh = (∂hi  ∕ ∂Tj computed for each sample of a population N (0; σY, αY. Results obtained from an analysis of Monte Carlo type suggest that the more a system is heterogeneous, the less it is identifiable.

  4. SAR interferometry monitoring of subsidence in a detritic basin related to water depletion in the underlying confined carbonate aquifer (Torremolinos, southern Spain).

    Science.gov (United States)

    Ruiz-Constán, A; Ruiz-Armenteros, A M; Martos-Rosillo, S; Galindo-Zaldívar, J; Lazecky, M; García, M; Sousa, J J; Sanz de Galdeano, C; Delgado-Blasco, J M; Jiménez-Gavilán, P; Caro-Cuenca, M; Luque-Espinar, J A

    2018-04-30

    This research underlines the need to improve water management policies for areas linked to confined karstic aquifers subjected to intensive exploitation, and to develop additional efforts towards monitoring their subsidence evolution. We analyze subsidence related to intensive use of groundwater in a confined karstic aquifer, through the use of the InSAR technique, by the southern coast of Spain (Costa del Sol). Carbonates are overlain by an unconfined detritic aquifer with interlayered high transmissivity rocks, in connection with the Mediterranean Sea, where the water level is rather stable. Despite this, an accumulated deformation in the line-of-sight (LOS) direction greater than -100 mm was observed by means of the ERS-1/2 (1992-2000) and Envisat (2003-2009) satellite SAR sensors. During this period, the Costa del Sol experienced a major population increase due to the expansion of the tourism industry, with the consequent increase in groundwater exploitation. The maximum LOS displacement rates recorded during both time spans are respectively -6 mm/yr and -11 mm/yr, respectively. During the entire period, there was an accumulated descent of the confined water level of 140 m, and several fluctuations of more than 80 m correlating with the subsidence trend observed for the whole area. Main sedimentary depocenters (up to 800 m), revealed by gravity prospecting, partly coincide with areas of subsidence maxima; yet ground deformation is also influenced by other factors, the main ones being the fine-grained facies distribution and rapid urbanization due to high touristic pressure. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Use of geophysical methods to characterize groundwater in karstic rocks near Puerto Morelos, Yucatan Peninsula, Mexico

    Science.gov (United States)

    cerda Garcia, C. G.; Carpenter, P. J.; Leal-Bautista, R. M.

    2017-12-01

    Geophysical surveys were used to determine the depth of the freshwater/saltwater interface and groundwater preferential flow pathways along the Ruta de los Cenotes, near Puerto Morelos (northeast part of the Yucatán peninsula). The Yucatán Peninsula is a limestone platform that allows quick recharge of the aquifer, the main supply of water for this region. The water in the aquifer is divided into freshwater and saltwater zones. A Schlumberger resistivity sounding along the road near one cenote suggests the water table is 5 meters deep and the freshwater/saltwater interface is 38 meters deep. A time-domain electromagnetic (TEM) sounding suggests the freshwater/saltwater interface is 45 meters deep. The depth of the interface determines the volume of fresh water available. Preferential flow pathways in the vadose and saturated zones are karst conduits where groundwater percolates downward in the vadose zone. These were identified using resistivity profiling and spontaneous self-potential (SP) geophysical methods. Interpretation of SP profile Line SP1, located 3 m south of the cenote, suggests two fractures, which appear to extend south as far as SP profile Line SP2, 15 m south of the cenote; both lines are parallel to each other. SP anomalies suggest water flow along these fractures. The use of noninvasive geophysical methods, specifically SP, resistivity and TEM are useful for exploring the karst system in the Yucatán peninsula.

  6. Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan

    Science.gov (United States)

    Xanke, Julian; Liesch, Tanja; Goeppert, Nadine; Klinger, Jochen; Gassen, Niklas; Goldscheider, Nico

    2017-09-01

    Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.

  7. The effect of soil heterogeneity on ATES performance

    Science.gov (United States)

    Sommer, W.; Rijnaarts, H.; Grotenhuis, T.; van Gaans, P.

    2012-04-01

    Due to an increasing demand for sustainable energy, application of Aquifer Thermal Energy Storage (ATES) is growing rapidly. Large-scale application of ATES is limited by the space that is available in the subsurface. Especially in urban areas, suboptimal performance is expected due to thermal interference between individual wells of a single system, or interference with other ATES systems or groundwater abstractions. To avoid thermal interference there are guidelines on well spacing. However, these guidelines, and also design calculations, are based on the assumption of a homogeneous subsurface, while studies report a standard deviation in logpermeability of 1 to 2 for unconsolidated aquifers (Gelhar, 1993). Such heterogeneity may create preferential pathways, reducing ATES performance due to increased advective heat loss or interference between ATES wells. The role of hydraulic heterogeneity of the subsurface related to ATES performance has received little attention in literature. Previous research shows that even small amounts of heterogeneity can result in considerable uncertainty in the distribution of thermal energy in the subsurface and an increased radius of influence (Ferguson, 2007). This is supported by subsurface temperature measurements around ATES wells, which suggest heterogeneity gives rise to preferential pathways and short-circuiting between ATES wells (Bridger and Allen, 2010). Using 3-dimensional stochastic heat transport modeling, we quantified the influence of heterogeneity on the performance of a doublet well energy storage system. The following key parameters are varied to study their influence on thermal recovery and thermal balance: 1) regional flow velocity, 2) distance between wells and 3) characteristics of the heterogeneity. Results show that heterogeneity at the scale of a doublet ATES system introduces an uncertainty up to 18% in expected thermal recovery. The uncertainty increases with decreasing distance between ATES wells. The

  8. Hydrologic response in karstic-ridge wetlands to rainfall and evapotranspiration, central Florida, 2001-2003

    Science.gov (United States)

    Knowles, Leel; Phelps, G.G.; Kinnaman, Sandra L.; German, Edward R.

    2005-01-01

    Two internally drained karstic wetlands in central Florida-Boggy Marsh at the Hilochee Wildlife Management Area and a large unnamed wetland at the Lyonia Preserve-were studied during 2001-03 to gain a better understanding of the net-recharge function that these wetlands provide, the significance of exchanges with ground water with regard to wetland water budgets, and the variability in wetland hydrologic response to a range of climate conditions. These natural, relatively remote and unaltered wetlands were selected to provide a baseline of natural wetland hydrologic variability to which anthropogenic influences on wetland hydrology could be compared. Large departures from normal rainfall during the study were fortuitous, and allowed monitoring of hydrologic processes over a wide range of climate conditions. Wetland responses varied greatly as a result of climate conditions that ranged from moderate drought to extremely moist. Anthropogenic activities influenced water levels at both study sites; however, because these activities were brief relative to the duration of the study, sufficient data were collected during unimpacted periods to allow for the following conclusions to be made. Water budgets developed for Boggy Marsh and the Lyonia large wetland showed strong similarity between the flux terms of rainfall, evaporation, net change in storage, and the net ground-water exchange residual. Runoff was assumed to be negligible. Of the total annual flux at Boggy Marsh, rainfall accounted for 45 percent; evaporation accounted for 25 percent; net change in storage accounted for 25 percent; and the net residual accounted for 5 percent. At the Lyonia large wetland, rainfall accounted for 44 percent; evaporation accounted for 29 percent; net change in storage accounted for 21 percent; and the net residual accounted for 6 percent of the total annual flux. Wetland storage and ground-water exchange were important when compared to the total water budget at both wetlands. Even

  9. Heterogeneous Gossip

    Science.gov (United States)

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  10. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  11. The contribution of environmental isotopes to studies of large aquifers in Morocco

    International Nuclear Information System (INIS)

    Kabbaj, A.; Zeryouhi, I.; Carlier, Ph.

    1979-01-01

    The geochemistry of environmental isotopes has been used for the study of various aquifers in Morocco, some of which are large, such as the Charf el Akab in the Tangiers area, the Oum er Rbia basin and the Turonian aquifer of the Tadla, the free groundwater of the Quaternary lacustrine limestones of the Sais Plain and the Lias limestone aquifer. These isotope studies take hydrogeochemical data into account and have made it possible to determine the conditions of recharge of the aquifers, to distinguish waters of different origin from the Atlas Mountains or from the Phosphate Plateau in the Tadla Basin and the Sais plain, to estimate the recharge of one aquifer by another - for example groundwater of the Lias limestones passing via the folds of the Sais Plain into the lacustrine limestone aquifer - and to test the homogeneity or heterogeneity of these aquifers and their tightness (e.g. the Turonian aquifer of the Tadla and the special case of the Charf el Akab in relation to the marine environment). Altogether, these results made it possible to test the value of the techniques used and to specify the general conditions in which they can profitably be used. (author)

  12. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    Science.gov (United States)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  13. Evaluating Monitoring Strategies to Detect Precipitation-Induced Microbial Contamination Events in Karstic Springs Used for Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-11-01

    Full Text Available Monitoring of microbial drinking water quality is a key component for ensuring safety and understanding risk, but conventional monitoring strategies are typically based on low sampling frequencies (e.g., quarterly or monthly. This is of concern because many drinking water sources, such as karstic springs are often subject to changes in bacterial concentrations on much shorter time scales (e.g., hours to days, for example after precipitation events. Microbial contamination events are crucial from a risk assessment perspective and should therefore be targeted by monitoring strategies to establish both the frequency of their occurrence and the magnitude of bacterial peak concentrations. In this study we used monitoring data from two specific karstic springs. We assessed the performance of conventional monitoring based on historical records and tested a number of alternative strategies based on a high-resolution data set of bacterial concentrations in spring water collected with online flow cytometry (FCM. We quantified the effect of increasing sampling frequency and found that for the specific case studied, at least bi-weekly sampling would be needed to detect precipitation events with a probability of >90%. We then proposed an optimized monitoring strategy with three targeted samples per event, triggered by precipitation measurements. This approach is more effective and efficient than simply increasing overall sampling frequency. It would enable the water utility to (1 analyze any relevant event and (2 limit median underestimation of peak concentrations to approximately 10%. We conclude with a generalized perspective on sampling optimization and argue that the assessment of short-term dynamics causing microbial peak loads initially requires increased sampling/analysis efforts, but can be optimized subsequently to account for limited resources. This offers water utilities and public health authorities systematic ways to evaluate and optimize their

  14. River Intrusion in Karst Springs in Eogenetic Aquifers: Implications for Speleogenesis

    Science.gov (United States)

    Martin, J. B.; Gulley, J.; Screaton, E. J.

    2008-12-01

    Conceptual models of speleogenesis generally assume uni-directional transport in integrated conduit systems from discrete recharge points to discharge at karst springs. Estavelles, however, are karst springs that function intermittently as discrete recharge points when river stage rises more rapidly than local aquifer heads. As river water chemistry changes between baseflow and floods, estavelles should influence mass transport through (e.g. organic carbon, nutrients, and oxygen) and speleogenesis within karst systems. Estavelles are common in our study area in north-central Florida, particularly along the lower reaches of the Santa Fe River, where it flows across the unconfined karstic Floridan aquifer. River stage in this unconfined region can rise much faster than aquifer heads when large amounts of rain fall on the confined regions in its upper reaches. Backflooding into the estavelles during elevated river stage drives river water into the ground, causing some springs to reverse and other springs to recirculate large volumes of river water. Floodwaters originating in the confined region are highly undersaturated with respect to calcite, and thus river water transitions from slightly supersaturated to highly undersaturated with respect to calcite during flood events. As a result, conduits connected to estavelles are continuously enlarged as springs reverse or recirculate calcite-undersaturated river water. It has been suggested that currently flooded caves (i.e. karst conduits) associated with springs in Florida formed entirely underwater because speleothems, which are prevalent in flooded caves in the Yucatan and Bahamas, have not been observed by cave divers. Results of this study indicate that the absence of speleothems does not necessarily provide evidence of a continuous phreatic history for underwater caves. Instead speleothems that formed in caves while dry could have been dissolved by backflooding of estavelles with undersaturated water

  15. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  16. Mapping of 222Rn and 4He in soil gas over a karstic limestone-granite boundary: correlation of high indoor 222Rn with zones of enhanced permeability

    International Nuclear Information System (INIS)

    O'Connor, P.J.; Gallagher, V.; Van den Boom, G.

    1992-01-01

    Recent indoor radon reconnaissance surveys in Ireland have identified buildings with high radon concentrations (up to 1700 Bq.m -3 ) overlying Carboniferous karstic limestone sequences in the western part of the country. A detailed investigation of indoor 222 Rn and soil gas 222 Rn and 4 He concentrations has been carried out over a karstic limestone-uraniferous granite boundary in County Galway. High indoor 222 Rn concentrations occur in dwellings over both lithologies. Radon migratory routes in bedrock and overburden appear to be controlled by zones of enhanced permeability, e.g. fractures, faults, etc. which are defined by linear arrays of elevated 4 He soil gas values. While the ultimate source of radon remains conjectural, the greatly enhanced permeability of karstified limestone is thought to be of fundamental importance in providing a means of rapid radon transport into overlying soils and buildings. (author)

  17. GEOMORPHOSITES AS A VALUABLE RESOURCE FOR TOURISM DEVELOPMENT IN A DEPRIVED AREA. THE CASE STUDY OF ANINA KARSTIC REGION (BANAT MOUNTAINS, ROMANIA

    Directory of Open Access Journals (Sweden)

    Laurențiu ARTUGYAN

    2014-12-01

    Full Text Available Geomorphosites are those landforms that in time, have acquired, a certain value, naming here scientific, cultural, aesthetic, ecological and/or economic. In many papers geomorphosites were associated with natural, relief-related tourist attractions. Those two notions, geomorphosite and natural tourist attraction are not synonymous, because a geomorphosite presents many features that give value to that landform. A geomorphosite is more than just topographic feature and that is the reason for which not all natural attractions are considered geomorphosite. Anina karstic region is synonymous with Anina Mining Area. This area was defined by Vasile Sencu (1977 as the area that is surrounded Anina town and it may be exploited by mining activities. The studied area presents many landforms specific for karst terrains. These features belong to the exokarst (sinkholes, poljies, karrens, gorges, karstic springs, but also to the endokarst (caves, shafts. The area is located in the largest and most compact area of carbonate rocks in Romania, in a typical structural area, Reșiţa-Moldova Nouă Synclinorium. Anina karstic region is an area with many socio-economical problems: poverty, unemployment and depopulation. Many landforms belonging to karst topography may be considered as geomorphosites due to their value (natural, economic, cultural. We believe that if some of these geomorphosites will be included in the touristic objectives, those landforms may generate a social-economic progress in this region, which nowadays is a deprived area. The aim of this paper is to point out that karstic geomorphosites in a deprived are may be a valuable resource.

  18. Modeling Raw Sewage Leakage and Transport in the Unsaturated Zone of Carbonate Aquifer Using Carbamazepine as an Indicator

    Science.gov (United States)

    Yakirevich, A.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Dvory, N. Z.

    2016-12-01

    Fast contamination of groundwater in karstic aquifers can be caused due to leaky sewers, for example, or overflow from sewer networks. When flowing through a karst system, wastewater has the potential to reach the aquifer in a relatively short time. The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused raw sewage to leak into the creek located in the study area. The subsequent infiltration of sewage through the thick ( 100 m) fractured/karst unsaturated zone led to a sharp increase in contaminant concentrations in the groundwater, which was monitored in a well located 29 meters from the center of the creek. Carbamazepine (CBZ) was used as an indicator for the presence of untreated raw sewage and its quantification in groundwater. The ultimate research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the fractured-porous unsaturated zone and karstified groundwater system. A quasi-3D dual permeability numerical model, representing the 'vadose zone - aquifer' system, was developed by a series of 1D equations solved in variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The 1D and 3D equations were coupled at the moving phreatic surface. The model was calibrated and applied to a simulated water flow scenario and CBZ transport during and after the observed sewage leakage event. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to elevated CBZ concentrations in the groundwater in the vicinity of the creek and tens of meters downstream. The resumption of autumn rains enhanced flushing of CBZ from the unsaturated zone and led to an increase in

  19. Inorganic carbon cycle in soil-rock-groundwater system in karst and fissured aquifers

    Directory of Open Access Journals (Sweden)

    Ajda Koceli

    2013-12-01

    Full Text Available The paper presents a systematic analysis of the isotopic composition of carbon (δ13CCaCO3 in carbonate rocks in central Slovenia, representing karst and fissured aquifers, and share of carbon contributions from carbonate dissolution and degradation of organic matter in aquifers, calculated from the mass balance equation. 59 samples of rocks (mainly dolomites from Upper Permian to Upper Triassic age were analyzed. Samples of carbonate rocks were pulverized and ground to fraction of 45 μm and for determination of δ13CCaCO3 analyzed with mass spectrometer for analyses of stable isotopes of light elements-IRMS. The same method was used for determination of isotopic composition of dissolved inorganic carbon (δ13CDIC in groundwater for 54 of 59 locations. Values of δ13CCaCO3 are in the range from -2.0 ‰ to +4.1 ‰, with an average δ13CCaCO3 value of +2.2 ‰. These values are typical for marine carbonates with δ13CCaCO3 around 0 ‰, although δ13CCaCO3 values differ between groups depending on the origin and age. Early diagenetic dolomites have relatively higher values of δ13CCaCO3 compared to other analyzed samples. The lowest values of δ13CCaCO3 were observed in Cordevolian and Bača dolomite, probably due to late diagenesis, during which meteoric water with lower isotopic carbon composition circulated in the process of sedimentation. Values of δ13CDIC range from -14.6 ‰ to -8.2 ‰. Higher δ13CDIC values (-8.2 ‰ indicate a low proportion of soil CO2 in the aquifer and rapid infiltration, while lower values (-14.6 ‰ indicate higher proportion of soil CO2 in the aquifer and slower infiltration. Calculated contributions of carbon from organic matter / dissolution of carbonates in the karstic and fissured aquifers s how a similar proportion (50 % : 50 %.

  20. aquifer in ajaokuta, southwestern nigeria

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... (1969) straight line method (observation well) of draw-down analysis in an unconfined aquifer (B=1) yield ... April) and a short wet season (May-September). .... DECOMPOSED. GRANITIC ROCK WITH. QUARTZ VEINS. 13.

  1. Numerical Simulation of Natural Convection in Heterogeneous Porous media for CO2 Geological Storage

    NARCIS (Netherlands)

    Ranganathan, P.; Farajzadeh, R.; Bruining, J.; Zitha, P.L.J.

    2012-01-01

    We report a modeling and numerical simulation study of density-driven natural convection during geological CO2 storage in heterogeneous formations. We consider an aquifer or depleted oilfield overlain by gaseous CO2, where the water density increases due to CO2 dissolution. The heterogeneity of the

  2. Lessons learned from IOR steamflooding in a bitumen-light oil heterogeneous reservoir

    NARCIS (Netherlands)

    Al Mudhafar, W.J.M.; Hosseini Nasab, S.M.

    2015-01-01

    The Steamflooding was considered in this research to extract the discontinuous bitumen layers that are located at the oil-water contact for the heterogeneous light oil sandstone reservoir of South Rumaila Field. The reservoir heterogeneity and the bitumen layers impede water aquifer approaching into

  3. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  4. Contribution of environmental isotopes to the study of large aquifers in Morocco

    International Nuclear Information System (INIS)

    Kabbaj, A.; Zeryouhi, I.; Carlier, P.

    1978-01-01

    The geochemistry of environmental isotopes has been applied to several aquifers in Maroc, some of them quite large: Charf el Akab in the Tanger region, the Oum er Rbia basin and the Tadla aquifer, the free nappe of limnic limes tone in the Sais plane, and the lias limestone aquifer. The isotopic investigations on the basis of hydrogeochemical data have given more precise information on the supply conditions of these aquifers. The types of water of different origin from the Atlas or the phosphate plateau in the Sais plane and the Tadla basin have been distinguished, the supply from one aquifer to another Lias nappe which, via the flexures of the Sais plane, supplies the nappe of limic limestone has been assessed, the homogeneity or heterogeneity of these aquifers has been investigated as well as their impermeability, the Tadla aquifer and the special case of Charf el Akab compared with the marine region. The findings have proved the usefulness of these techniques and permitted a specification of the general conditions for their application. (orig.) [de

  5. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

    Science.gov (United States)

    Paradis, Daniel; Ballard, Jean-Marc; Lefebvre, René; Savard, Martine M.

    2018-03-01

    Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

  6. The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

    2012-12-01

    Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

  7. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  8. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  9. Application of isotopic techniques for study of ground water from karstic areas. 1. Origin of waters

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2000-01-01

    Environmental stable isotope method was used for study of ground water from karst of NE Dobrogea. Study area is in the vicinity of Danube Delta (declared in 1990 by UNESCO the Reserve of Biosphere) and presents scientific and ecological interest. Measurements of deuterium content of ground water show that waters are meteoric in origin, but at the same time the results showed that the water from two sampling points could not originate from local ground water and have their recharge area at high altitude and a considerable distance. According to the δD values the following categories of waters were established: - waters depleted in deuterium (δD 0 / 00 ) relative to δD values of surface and ground water in the geographic area from which they were collected. They represent most probably the intrusion of isotopically light water from high altitude sites (higher than 1000 m) through network of highly permeable karst channels. The discharge of this component of aquifer occurs both by conduct flow and by diffuse flow; - Waters tributaries to the Danube River (δD > -75 0 / 00 ) that have a small time variability of δD values; - Local infiltration waters, situated in the West side of the investigated area towards the continental platform of the Dobrogea (δD > -70 0 / 00 ). They present high time variability of δD values, due to distinct seasonal effects; - Waters originated in mixing processes between the waters with different isotopic content. The endmember one is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) while the other endmember is the isotopically light water. (authors)

  10. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow

  11. Interprétation hydrogéologique de l'aquifère des bassins sud-rifains (Maroc) : apport de la sismique réflexionHydrogeological interpretation of the southern Rifean basins aquifer (Morocco): seismic reflexion contribution

    Science.gov (United States)

    Zouhri, Lahcen; Gorini, Christian; Lamouroux, Christian; Vachard, Daniel; Dakki, Mohammed

    2003-03-01

    The aquifer of the Rharb Basin is constituted by heterogeneous material. The seismic reflexion interpretation carried out in this area, highlighted a permeable device compartmentalized in raised and subsided blocks. Depressions identified in the northern and southernmost zones are characterized by Plio-Quaternary fillings that are favourable to the hydrogeological exploitation. Two mechanisms contribute to structure the Plio-Quaternary aquifer: the Hercynian reactivation in the southernmost part, and the gravitational mechanism of the Pre-Rifean nappe. The groundwater flow and the aquifer thickening are controlled by this reactivation.

  12. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  13. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  14. Characteristics of subtropic karstic Dinaride Lake in its unstable geothectonic regime

    Science.gov (United States)

    Krstic, N.

    2009-04-01

    Geotectonic evolution of Dinarides started in Mid-Cretaceous, when this part of African Plate approached Stable Europe. Geodynamic style is as follow: "subduction-termination / colision (Paleocene / Eocene), collision (Eocene), postcollision / colapse (Oligocene / early Miocene)" (Cvetković et al., 2004). Longlasting melting of lower crust (ibid: fig. 11). "The gravity colapse of the Dinaride orogen is inferred from the faulth pattern and shape" as mirrored in sedimetary record of lacustrine basin (ibid). So, at the turn from Paleogene to Neogene on Dinarides was formed large subtropical karstic system of lakes. Another part of Africa is the Adriatic Plate mowing northwards under the Alps (Schmid et al., 2006: fig. 1 and there in). Two coal seams (brown coal and lignite), formed during colateral catastrofic earthquakes, indicate two main phases of tectonic push of Adriatic plate. Evolution of Dinaric Lake(s) from shallow freshwater aquatorium toward deep saline lake was influenced by northward movements of Adriatic Plate and the response of Pannonian Mass. The sediment column of Dinaride Neogene was devided into tree parts (Milojević, 1963). They lay, in places, above reddish (continental) Oligocene sediments with Helix (Čičić & Milojević, 1977), but mostly in the Sava trough (Ugljevik, Banovići). Otherwise above Mesozoic and Paleozoic rocks. First part: basal zone above lie several brown coal seams indicating that the Adriatic Plate push was divided into phases. Catastrophic earthquake pull down the forest together with its large dwellers (Chalicotherium grande, an of Ungulata with claws) and sorted tree trunks at southern side of the lake Plevlja (Krstić et al., 1994). In this period freshwater ostracodes, and numerous characean gyrogonites, among them a genus similar to the Oligocene Harissichara, fill up some of beds. None of Congeria pelecipods are present. Charophyta algae making yellowish-brown limestone in Middle Bosnian depression lie just bellow

  15. Obtaining Samples Representative of Contaminant Distribution in an Aquifer

    International Nuclear Information System (INIS)

    Schalla, Ronald; Spane, Frank A.; Narbutovskih, Susan M.; Conley, Scott F.; Webber, William D.

    2002-01-01

    Historically, groundwater samples collected from monitoring wells have been assumed to provide average indications of contaminant concentrations within the aquifer over the well-screen interval. In-well flow circulation, heterogeneity in the surrounding aquifer, and the sampling method utilized, however, can significantly impact the representativeness of samples as contaminant indicators of actual conditions within the surrounding aquifer. This paper identifies the need and approaches essential for providing cost-effective and technically meaningful groundwater-monitoring results. Proper design of the well screen interval is critical. An accurate understanding of ambient (non-pumping) flow conditions within the monitoring well is essential for determining the contaminant distribution within the aquifer. The ambient in-well flow velocity, flow direction and volumetric flux rate are key to this understanding. Not only do the ambient flow conditions need to be identified for preferential flow zones, but also the probable changes that will be imposed under dynamic conditions that occur during groundwater sampling. Once the in-well flow conditions are understood, effective sampling can be conducted to obtain representative samples for specific depth zones or zones of interest. The question of sample representativeness has become an important issue as waste minimization techniques such as low flow purging and sampling are implemented to combat the increasing cost of well purging and sampling at many hazardous waste sites. Several technical approaches (e.g., well tracer techniques and flowmeter surveys) can be used to determine in-well flow conditions, and these are discussed with respect to both their usefulness and limitations. Proper fluid extraction methods using minimal, (low) volume and no purge sampling methods that are used to obtain representative samples of aquifer conditions are presented

  16. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  17. Sources of nitrate in water from springs and the Upper Floridan aquifer, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, B.G.; Hornsby, H.D.; Böhlke, John Karl

    1999-01-01

    In the Suwannee River basin of northern Florida, nitrate-N concentrations are 1.5 to 20 mg 1-1 in waters of the karstic Upper Floridan aquifer and in springs that discharge into the middle reach of the Suwannee River. During 1996-1997, fertilizers and animal wastes from farming operations in Suwannee County contributed approximately 49% and 45% of the total N input, respectively. Values of ??15N-NO3 in spring waters range from 3.9??? to 5.8???, indicating that nitrate most likely originates from a mixture of inorganic (fertilizers) and organic (animal waste) sources. In Lafayette County, animal wastes from farming operations and fertilizers contributed approximately 53% and 39% of the total N input, respectively, but groundwater near dairy and poultry farms has ??15N-NO3 values of 11.0-12.1???, indicative of an organic source of nitrate. Spring waters that discharge to the Suwannee River from Lafayette County have ??15N-NO3 values of 5.4-8.39???, which are indicative of both organic and inorganic sources. Based on analyses of CFCs, the mean residence time of shallow groundwater and spring water ranges between 8-12 years and 12-25 years, respectively.

  18. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  19. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    Science.gov (United States)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  20. Hydrogeology and results of aquifer tests in the vicinity of a hazardous-waste disposal site near Byron, Illinois

    Science.gov (United States)

    Kay, Robert T.; Olson, David N.; Ryan, Barbara J.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted an investigation of a Superfund Site near Byron, Illinois. The purpose of the investigation was to determine the hydrogeologic properties of the Galena-Platteville and St. Peter aquifers, the primary water-supply aquifers for domestic supply in the area. The Galena and Platteville Groups and older St. Peter Sandstone are separated by the Harmony Hill Shale Member of the Glenwood Formation. The Harmony Hill Shale Member is a semiconfining unit. Groundwater flow in the study area is from the site northwestward to the Rock River. Movement of groundwater in the dolomites is mainly through joints, fractures, and solution openings. Analysis of the Galena-Platteville aquifer-test data indicates that the calculated aquifer transmissivity ranges from 490 to 670 sq ft/day, and the calculated specific yield ranges from 0.017 to 0.140. Aquifer test data also indicate that the Galena-Platteville aquifer is heterogeneous and anisotropic. Analysis of the St. Peter aquifer-test data indicates that the calculated transmissivity of the aquifer ranges from 1,200 to 1 ,305 sq ft/day, storativity ranges from 0.000528 to 0.00128, horizontal hydraulic conductivity ranges from 2.9 to 3.1 ft/day, and leakage through the Harmony Hill Shale Member ranges from .000123 to .000217 ft/day/ft. (USGS)

  1. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    heterogeneous, highly conductive aquifer, we present some general findings that have applicability to slug testing. In particular, we find that aquifer hydraulic conductivity estimates obtained from larger slug heights tend to be lower on average (presumably due to non-linear wellbore losses) and tend to be less variable (presumably due to averaging over larger support volumes), supporting the notion that using the smallest slug heights possible to produce measurable water level changes is an important strategy when mapping aquifer heterogeneity. Finally, we present results specific to characterization of the aquifer at the Boise Hydrogeophysical Research Site. Specifically, we note that (1) K estimates obtained using a range of different slug heights give similar results, generally within ±20%; (2) correlations between estimated K profiles with depth at closely-spaced wells suggest that K values obtained from slug tests are representative of actual aquifer heterogeneity and not overly affected by near-well media disturbance (i.e., "skin"); (3) geostatistical analysis of K values obtained indicates reasonable correlation lengths for sediments of this type; and (4) overall, K values obtained do not appear to correlate well with porosity data from previous studies.

  2. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Directory of Open Access Journals (Sweden)

    Robert eDanczak

    2016-05-01

    Full Text Available Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11 and Parcubacteria (OD1 that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  3. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, J.I.; Pang, T.; Kueper, B.H. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Infrastructure & Environmental

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  4. Enhancement of wadi recharge using dams coupled with aquifer storage and recovery wells

    KAUST Repository

    Missimer, Thomas M. M.

    2014-06-25

    Wadi channel recharge to the underlying alluvial aquifer is naturally limited by the flashy nature of flood events, evapotranspiration losses of water from the vadose zone, and aquifer heterogeneity, particularly low vertical hydraulic conductivity. Anthropogenic lowering of the water table in many wadi aquifers has also reduced the potential recharge by increasing the thickness of the vadose zone, causing interflow water loss from surface emergence and evaporation. A method to enhance recharge is to slow the flow within wadi channels by placement of dam structures, thereby ponding water and increasing the vertical head gradient to create a more rapid rate of infiltration and percolation. Effectiveness of wadi dams to enhance aquifer recharge reduces over time due to mud deposition within the reservoir caused by storm events. Up to 80 % of the water in old wadi reservoirs is lost to free-surface evaporation before infiltration and recharge can occur. One method to maintain or increase the rate of recharge is to convey clean water by gravity flow from the reservoir down-gradient to artificially recharge the aquifer using existing wells. This type of system is a low-cost and low-energy recharge method which could greatly enhance groundwater storage in wadi aquifers. Modeling results show that existing wells could store up to 1,000 m3/day under gravity-feed conditions and up to 3,900 m3/day with the shut-in of the well to produce a pressurized system. © 2014 Springer-Verlag Berlin Heidelberg.

  5. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Science.gov (United States)

    Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael

    2016-05-01

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  6. Modelling of the influence of the 'Flimserstein' tunnel on the Lag Tiert karstic spring in Flims; Modellierung des Einflusses des Flimserstein-Tunnels auf die Karstquelle des Lag Tiert (Flims, GR)

    Energy Technology Data Exchange (ETDEWEB)

    Jeannin, P.-Y.; Haeuselmann, P. [Schweizerisches Institut fuer Spelaeologie und Karstkunde SISKA, La Chaux-de-Fonds (Switzerland); Wildberger, A. [Dr. von Moos AG, Geotechnisches Buero, Zuerich (Switzerland)

    2007-12-15

    This report describes the modelling of the influence of the 'Flimserstein' tunnel on the Lag Tiert karstic spring in Flims, Switzerland. When the tunnel, that provides a by-pass for the mountain village of Flims, was built, a karstic system was broached. As a result, several springs dried up and others had their capacity reduced. Also, the quantity of water available for a local hydropower station was reduced. The report describes how the situation as far as the underground watercourses are concerned was modelled and how exactly the tunnel construction changed the water-quantities at the various springs. The results of the study are presented and discussed and recommendations are made concerning the modelling of such karstic systems.

  7. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    Science.gov (United States)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  8. Relation between "terra rossa" from the Apulia aquifer of Italy and the radon content of groundwater: Experimental results and their applicability to radon occurrence in the aquifer

    Science.gov (United States)

    Tadolini, T.; Spizzico, M.

    The radon-222 (222Rn) activity in groundwater of the Apulian karstic aquifer in southern Italy is as great as 500 Becquerel per liter (Bq/L) locally. Normal radium-226 (226Ra) activity in the limestone and calcareous dolomites of the aquifer is not enough to explain such a high level. Laboratory investigations identified high 226Ra activity in the "terra rossa," the residuum occupying fissures and cavities in the bedrock, and also the relation between (1) 226Ra-bearing bedrock and "terra rossa" and (2) 222Rn in water. The "terra rossa" is the primary source of the radon in the groundwater. The experimental results show the need to characterize the "terra rossa" of Apulia on the basis of 226Ra activity and also to study the distribution and variations in 222Rn activity over time in the aquifer. Résumé L'activité du radon-222 (222Rn) dans les eaux souterraines de l'aquifère karstique des Pouilles, dans le sud de l'Italie, atteint localement 500 Becquerel par litre (Bq/L). L'activité normale du radium-226 (226Ra) dans les calcaires et dans les calcaires dolomitiques de l'aquifère n'est pas assez élevée pour expliquer des valeurs aussi élevées. Des analyses de laboratoire ont mis en évidence une forte activité en 226Ra dans la terra rossa, remplissage de fissures et de cavités de la roche, ainsi qu'une relation entre (1) la roche et la terra rossa contenant du 226Ra et (2) le 222Rn dans l'eau. La terra rossa est la source primaire de radon dans l'eau souterraine. Les résultats expérimentaux montrent qu'il est nécessaire de caractériser la terra rossa des Pouilles par son activité en 226Ra et d'étudier la distribution et les variations de l'activité en 222Rn au cours du temps dans l'aquifère. Resumen La actividad del radon-222 (222Rn) en el agua subterránea del acuífero cárstico de Apulia, al sur de Italia, alcanza localmente los 500Bq/L. La actividad normal del radio-226 (226Ra) en las calcitas y dolomitas del acuífero no es suficiente para

  9. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivity values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs

  10. Induced groundwater flux by increases in the aquifer's total stress.

    Science.gov (United States)

    Chang, Ching-Min; Yeh, Hund-Der

    2015-01-01

    Fluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values. © 2014, National Ground Water Association.

  11. Sequestration of carbon in saline aquifers - mathematical and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nordbotten, Jan Martin

    2004-01-01

    The work in this thesis focuses equally on two main topics. The set of these subjects deals with development of criteria for monotonicity of control volume methods. These methods are important and frequently used for solving the pressure equation arising in porous media flow. First we consider homogeneous parallelogram grids, and subsequently general logical Cartesian grids in heterogeneous media. This subject is concluded by the development of a new class of Multi Point Flux Approximation methods, motivated by the monotonicity results obtained. The second topic of this thesis is the development of analytical and semi- analytical solutions to the problem of leakage through abandoned wells. More specially, we look at a set of aquifers, separated by impermeable layers (aquicludes), where injection of water or CO{sub 2} takes place in some or all the aquifers. The aquifers and aquicludes are frequently penetrated by abandoned wells from oil exploration, and our problem consists of finding solutions to flow and leakage through these wells. The goal is to obtain expressions for leakage rates that may be evaluated quickly enough such that Monte Carlo realizations over statistical distributions of properties for abandoned wells can be performed. (author)

  12. Seismic velocities to characterize the soil-aquifer continuum on the Orgeval experimental basin (France)

    Science.gov (United States)

    Pasquet, S.; Ludovic, B.; Dhemaied, A.; Flipo, N.; Guérin, R.; Mouhri, A.; Faycal, R.; Vitale, Q.

    2013-12-01

    Among geophysical methods applied to hydrogeology, seismic prospecting is frequently confined to the characterization of aquifers geometry. The combined study of pressure- (P) and shear- (SH) wave velocities (respectively Vp and Vs) can however provide information about the aquifer parameters, as it is commonly done for most fluids in hydrocarbon exploration. This approach has recently been proposed in sandy aquifers with the estimation of Vp/Vs ratio. In order to address such issues in more complex aquifer systems (e.g. unconsolidated, heterogeneous or low-permeability media) we carried out P- and SH-wave seismic surveys on the Orgeval experimental basin (70 km east from Paris, France). This basin drains a multi-layer aquifer system monitored by a network of piezometers. The upper part of the aquifer system is characterized by tabular layers well delineated all over the basin thanks to Electrical Resistivity Tomography (ERT), Time Domain ElectroMagnetic (TDEM) soundings and wells. But the lateral variability of the intrinsic properties in each layer raises questions regarding the hydrodynamics of the upper aquifer and the validity of interpolations between piezometers. A simple interpretation of P- and SH-wave first arrivals for tabular models provides 1D velocity structures in very good agreement with the stratification anticipated from ERT and nearby geological logs. Vp/Vs ratios show a strong contrast at a depth consistent with the observed water table level, reinforcing the assumption of a free upper aquifer in the area. Similar experiments have to be conducted under different hydrological conditions to validate these observations. Anticipating the need to propose lateral applications of the method, we additionally performed tomographic inversions of the recorded data to retrieve 2D Vp and Vs models. If interpreted independently, both models fail to depict the stratification of the medium and the water table level cannot be straightforwardly identified

  13. Hydrogeologic and hydraulic characterization of aquifer and nonaquifer layers in a lateritic terrain (West Bengal, India)

    Science.gov (United States)

    Biswal, Sabinaya; Jha, Madan K.; Sharma, Shashi P.

    2018-02-01

    The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19-11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9-40 and 40-79 m, respectively. The mean K estimates by the GSA methods are 3.62-292.86 m/day for shallow aquifer layers and 0.97-209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69-693.79 m2/day, storage coefficient 1.01 × 10-7-2.13 × 10-4 and leakance 2.01 × 10-7-34.56 × 10-2 day-1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1-3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.

  14. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  15. Dealing with spatial heterogeneity

    Science.gov (United States)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  16. Aquifer test interpretation using derivative analysis and diagnostic plots

    Science.gov (United States)

    Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio

    2017-04-01

    Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.

  17. Characterization of a managed aquifer recharge system using multiple tracers.

    Science.gov (United States)

    Moeck, Christian; Radny, Dirk; Popp, Andrea; Brennwald, Matthias; Stoll, Sebastian; Auckenthaler, Adrian; Berg, Michael; Schirmer, Mario

    2017-12-31

    Knowledge about the residence times of artificially infiltrated water into an aquifer and the resulting flow paths is essential to developing groundwater-management schemes. To obtain this knowledge, a variety of tracers can be used to study residence times and gain information about subsurface processes. Although a variety of tracers exists, their interpretation can differ considerably due to subsurface heterogeneity, underlying assumptions, and sampling and analysis limitations. The current study systematically assesses information gained from seven different tracers during a pumping experiment at a site where drinking water is extracted from an aquifer close to contaminated areas and where groundwater is artificially recharged by infiltrating surface water. We demonstrate that the groundwater residence times estimated using dye and heat tracers are comparable when the thermal retardation for the heat tracer is considered. Furthermore, major ions, acesulfame, and stable isotopes (δ 2 H and δ 18 O) show that mixing of infiltrated water and groundwater coming from the regional flow path occurred and a vertical stratification of the flow system exist. Based on the concentration patterns of dissolved gases (He, Ar, Kr, N 2 , and O 2 ) and chlorinated solvents (e.g., tetrachloroethene), three temporal phases are observed in the ratio between infiltrated water and regional groundwater during the pumping experiment. Variability in this ratio is significantly related to changes in the pumping and infiltration rates. During constant pumping rates, more infiltrated water was extracted, which led to a higher dilution of the regional groundwater. An infiltration interruption caused however, the ratio to change and more regional groundwater is extracted, which led to an increase in all concentrations. The obtained results are discussed for each tracer considered and its strengths and limitations are illustrated. Overall, it is demonstrated that aquifer heterogeneity and

  18. Hydrodynamic Analysis of the Jaruco-Aguacate Aquifer; Analisis hidrodinamico del acuifero Jaurco-Aguacate

    Energy Technology Data Exchange (ETDEWEB)

    Dilla Salvador, Felix [Centro de Investigaciones Hidraulicas (Cuba)

    2002-03-01

    The paper shows the hydrodynamic analysis of the Jaruco-Aguacate aquifer using an unsteady groundwater flow mathematical model. The simulation includes conditions before and after pumping from a well filed, called El Gato, which is considered, as the most important water source for Havana city. The system is closed to the sea and conformed by an unconfined karstic aquifer with a well defined storage zone; its natural discharge flows through two spring groups. Results obtained with the model for the main spring discharge are near to the measured values, i. e. around 5 m{sup 3}/dec as the mean value for the period without main pumping station. Flow is reduced to 2.5-1.5 m{sup 3}/sec during pumping period but there are no data to confirm this result. Besides, a detailed study of the open boundary of the system is done when piezometric head variation in time is known. The mathematical modelling has been able to simulate the aquifer in its most general conception, in its regional as well as local representation, with a mean deviation of simulated head from observed values less than one meter in both analysed simulated periods. [Spanish] El objetivo del trabajo fue realizar un analisis hidrodinamico del acuifero Jaruco-Aguacate antes y despues de la puesta en marcha del acueducto el Gato, una de las fuentes de abasto mas importantes de la ciudad de La Habana, Cuba, basado en un modelo matematico de simulacion de flujo subterraneo transitorio bidimensional. El acuifero es una llanura carstica cerrada al mar y libre; hacia su centro, la zona de almacenamiento esta bien definida; el sistema de descarga natural realiza por medio de dos grupos de manantiales. El resultado obtenido para el gasto del manantial coincide con los valores aforados para un valor medio de 5 m{sup 3}/seg en el periodo analizado antes del funcionamiento del acueducto, pero su valor se reduce, variando desde 2.5 a 1.5 m{sup 3}/seg, en el periodo posterior, sin embargo, no existe informacion para

  19. Abiotic and seasonal control of soil-produced CO2 efflux in karstic ecosystems located in Oceanic and Mediterranean climates

    Science.gov (United States)

    Garcia-Anton, Elena; Cuezva, Soledad; Fernandez-Cortes, Angel; Alvarez-Gallego, Miriam; Pla, Concepcion; Benavente, David; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio

    2017-09-01

    This study characterizes the processes involved in seasonal CO2 exchange between soils and shallow underground systems and explores the contribution of the different biotic and abiotic sources as a function of changing weather conditions. We spatially and temporally investigated five karstic caves across the Iberian Peninsula, which presented different microclimatic, geologic and geomorphologic features. The locations present Mediterranean and Oceanic climates. Spot air sampling of CO2 (g) and δ13CO2 in the caves, soils and outside atmospheric air was periodically conducted. The isotopic ratio of the source contribution enhancing the CO2 concentration was calculated using the Keeling model. We compared the isotopic ratio of the source in the soil (δ13Cs-soil) with that in the soil-underground system (δ13Cs-system). Although the studied field sites have different features, we found common seasonal trends in their values, which suggests a climatic control over the soil air CO2 and the δ13CO2 of the sources of CO2 in the soil (δ13Cs-soil) and the system (δ13Cs-system). The roots respiration and soil organic matter degradation are the main source of CO2 in underground environments, and the inlet of the gas is mainly driven by diffusion and advection. Drier and warmer conditions enhance soil-exterior CO2 interchange, reducing the CO2 concentration and increasing the δ13CO2 of the soil air. Moreover, the isotopic ratio of the source of CO2 in both the soil and the system tends to heavier values throughout the dry and warm season. We conclude that seasonal variations of soil CO2 concentration and its 13C/12C isotopic ratio are mainly regulated by thermo-hygrometric conditions. In cold and wet seasons, the increase of soil moisture reduces soil diffusivity and allows the storage of CO2 in the subsoil. During dry and warm seasons, the evaporation of soil water favours diffusive and advective transport of soil-derived CO2 to the atmosphere. The soil CO2 diffusion is

  20. Arsenic, microbes and contaminated aquifers

    Science.gov (United States)

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  1. Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields

    Science.gov (United States)

    Hansen, Scott K.; Haslauer, Claus P.; Cirpka, Olaf A.; Vesselinov, Velimir V.

    2018-01-01

    This paper presents a methodology to predict the shape of solute breakthrough curves in heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the classical macrodispersion theory may not be applicable. The methodology relies on the observation that breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression. Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical contributions include heuristics for the time until an effective macrodispersion coefficient becomes applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen that the results here represent a way to derive continuous time random walk transition distributions from physical considerations rather than from empirical field calibration.

  2. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  3. Hydrochemistry of New Zealand's aquifers

    International Nuclear Information System (INIS)

    Rosen, M.R.

    2001-01-01

    Groundwater chemistry on a national scale has never been studied in New Zealand apart from a few studies on nitrate concentrations and pesticides. These studies are covered in Chapter 8 of this book. However general studies of groundwater chemistry, groundwater-rock interaction and regional characteristics of water quality have not been previously addressed in much detail. This is partly because New Zealand aquifers are relatively small on a world scale and are geologically and tectonically diverse (see Chapter 3). But New Zealand has also recently lacked a centralised agency responsible for groundwater quality, and therefore, no national assessments have been undertaken. In recent years, the Institute of Geological and Nuclear Sciences has managed a programme of collecting and analysing the groundwater chemistry of key New Zealand aquifers. This programme is called the National Groundwater Monitoring Programme (NGMP) and is funded by the New Zealand Public Good Science Fund. The programme started in 1990 using only 22 wells, with four regional authorities of the country participating. The NGMP now includes all 15 regional and unitary authorities that use groundwater and over 100 monitoring sites. The NGMP is considered a nationally significant database by the New Zealand Foundation for Research Science and Technology. The NGMP allows a national comparison of aquifer chemistries because the samples are all analysed at one laboratory in a consistent manner and undergo stringent quality control checks. Poor quality analyses are thus minimised. In addition, samples are collected quarterly so that long-term seasonal trends in water quality can be analysed, and the effects of changes in land use and the vulnerability of aquifers to contaminant leaching can be assessed. This chapter summarises the water quality data collected for the NGMP over the past 10 years. Some records are much shorter than others, but most are greater than three years. Additional information is

  4. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  5. Hydrogeological Conditions of a Crystalline Aquifer: Simulation of Optimal Abstraction Rates under Scenarios of Reduced Recharge

    Science.gov (United States)

    Fynn, Obed Fiifi; Chegbeleh, Larry Pax; Nude, Prosper M.; Asiedu, Daniel K.

    2013-01-01

    A steady state numerical groundwater flow model has been calibrated to characterize the spatial distribution of a key hydraulic parameter in a crystalline aquifer in southwestern Ghana. This was to provide an initial basis for characterizing the hydrogeology of the terrain with a view to assisting in the large scale development of groundwater resources for various uses. The results suggest that the structural entities that control groundwater occurrence in the area are quite heterogeneous in their nature and orientation, ascribing hydraulic conductivity values in the range of 4.5 m/d to over 70 m/d to the simulated aquifer. Aquifer heterogeneities, coupled possibly with topographical trends, have led to the development of five prominent groundwater flowpaths in the area. Estimated groundwater recharge at calibration ranges between 0.25% and 9.13% of the total annual rainfall and appears to hold significant promise for large-scale groundwater development to support irrigation schemes. However, the model suggests that with reduced recharge by up to 30% of the current rates, the system can only sustain increased groundwater abstraction by up to 150% of the current abstraction rates. Prudent management of the resource will require a much more detailed hydrogeological study that identifies all the aquifers in the basin for the assessment of sustainable basin yield. PMID:24453882

  6. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  7. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  8. The geomorphology and hydrogeology of the karstic Islands Maratua, East Kalimantan, Indonesia: the potential and constraints for tourist destination development

    Science.gov (United States)

    Haryono, E.; Sasongko, M. H. D.; Barianto, D. H.; Setiawan, J. B.; Hakim, A. A.; Zaenuri, A.

    2018-04-01

    Maratua Island is one of the islands of Berau District, East Kalimantan which has great potential of natural beauty for tourism development. The area currently is one of famous tourist destination in East Kalimantan which is a carbonate reef built-up or so-called karst island. This paper is an endeavor 1) to unveil geomorphological and hydrogeological characteristics of the island, and 2) to recommend Island development as a tourist destination. Maratua Island is a V shape atoll with the open lagoon. Six geomorphological units were found on the island, i.e., fringing reef, beach, marine terrace, karst ridge, structural valley, and lagoon. Caves are also found in the karst ridge and the coast as an inundated passage. Three structural depressions in the karst ridge are other unique geomorphological feature in the area of which a marine lake environment with jellyfish is inhabited. The island is typified by two different aquifer units, i.e., porous media and fractured media aquifer. Porous aquifer lies on the beach of Boibukut area. Fractured-aquifer characterizes the other geomorphological units in the area. Freshwater accordingly is found in the beach area with a limited amount. Unfortunately, the groundwater in the marine terrace and karst ridge are saline. Maratua Island has enormous potential for tourism destination development. The major tourist activities in the area based on the geomorphological unit are snorkeling and diving (in fringing reef and lagoo n), hiking, cave exploration and marine lake exploration and cave diving (in karst ridge and structural valley); recreation and picnic (beach). The major limitation in the area is a shortage of freshwater resource and land. Limited water supply should be extracted from the beach area of Bohe Bukut village. Groundwater extraction from the beach area of Bohe Bukut must be for drinking water only. Supply of drinking water should be substituted from collected rainwater or desalination from sea water and water in

  9. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    Science.gov (United States)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  10. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    Science.gov (United States)

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  11. Use of high performance computing to examine the effectiveness of aquifer remediation

    International Nuclear Information System (INIS)

    Tompson, A.F.B.; Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.; Loosmore, G.A.

    1994-06-01

    Large-scale simulation of fluid flow and chemical migration is being used to study the effectiveness of pump-and-treat restoration of a contaminated, saturated aquifer. A three-element approach focusing on geostatistical representations of heterogeneous aquifers, high-performance computing strategies for simulating flow, migration, and reaction processes in large three-dimensional systems, and highly-resolved simulations of flow and chemical migration in porous formations will be discussed. Results from a preliminary application of this approach to examine pumping behavior at a real, heterogeneous field site will be presented. Future activities will emphasize parallel computations in larger, dynamic, and nonlinear (two-phase) flow problems as well as improved interpretive methods for defining detailed material property distributions

  12. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  13. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  14. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  15. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    Science.gov (United States)

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  16. Geochemistry of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  17. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: combined delta37Cl and delta34S approach.

    Science.gov (United States)

    Liu, Cong-Qiang; Lang, Yun-Chao; Satake, Hiroshi; Wu, Jiahong; Li, Si-Liang

    2008-08-01

    Because of active exchange between surface and groundwater of a karstic hydrological system, the groundwater of Guiyang, the capital city of Guizhou Province, southwest China, has been seriously polluted by anthropogenic inputs of NO3-, SO4(2-), Cl-, and Na+. In this work, delta37Cl of chloride and delta34S variations of sulfate in the karstic surface/groundwater system were studied, with a main focus to identify contaminant sources, including their origins. The surface, ground, rain, and sewage water studied showed variable delta37Cl and delta34S values, in the range of -4.1 to +2.0 per thousand, and -20.4 to +20.9 per thousand for delta37Cl and delta34S (SO4(2-)), respectively. The rainwater samples yielded the lowest delta37Cl values among those observed to date for aerosols and rainwater. Chloride in the Guiyang area rain waters emanated from anthropogenic sources rather than being of marine origin, probably derived from HCl (g) emitted by coal combustion. By plotting 1/SO4(2-) vs delta34S and 1/Cl- vs delta37Cl, respectively, we were able to identify some clusters of data, which were assigned as atmospheric deposition (acid rain component), discharge from municipal sewage, paleo-brine components in clastic sedimentary rocks, dissolution of gypsum mainly in dolomite, oxidation of sulfide minerals in coal-containing clastic rocks, and possibly degradation of chlorine-containing organic matter. We conclude that human activities give a significant input of sulfate and chloride ions, as well as other contaminants, into the studied groundwater system through enhanced atmospheric deposition and municipal sewage, and that multiple isotopic tracers constitute a powerful tool to ascertain geochemical characteristics and origin of complex contaminants in groundwater.

  18. Economics of Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Robert G. Maliva

    2014-05-01

    Full Text Available Managed aquifer recharge (MAR technologies can provide a variety of water resources management benefits by increasing the volume of stored water and improving water quality through natural aquifer treatment processes. Implementation of MAR is often hampered by the absence of a clear economic case for the investment to construct and operate the systems. Economic feasibility can be evaluated using cost benefit analysis (CBA, with the challenge of monetizing benefits. The value of water stored or treated by MAR systems can be evaluated by direct and indirect measures of willingness to pay including market price, alternative cost, value marginal product, damage cost avoided, and contingent value methods. CBAs need to incorporate potential risks and uncertainties, such as failure to meet performance objectives. MAR projects involving high value uses, such as potable supply, tend to be economically feasible provided that local hydrogeologic conditions are favorable. They need to have low construction and operational costs for lesser value uses, such as some irrigation. Such systems should therefore be financed by project beneficiaries, but dichotomies may exist between beneficiaries and payers. Hence, MAR projects in developing countries may be economically viable, but external support is often required because of limited local financial resources.

  19. Analytical solutions for recession analyses of sloping aquifers - applicability on relict rock glaciers in alpine catchments

    Science.gov (United States)

    Pauritsch, Marcus; Birk, Steffen; Hergarten, Stefan; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2014-05-01

    model was then compared to the analytical solution based on the one dimensional Boussinesq equation for unconfined flow in sloping aquifers. Field observations as well as results from the numerical model suggest that the rock glacier has a complex internal structure with zones of low hydraulic conductivity and a high conductive layer on top. The analytical solution attempts to represent this heterogeneous aquifer by an equivalent homogeneous medium. However, as the relative contribution of the different aquifer components varies throughout the recession, the parameter estimates are not easily interpreted in terms of actual aquifer properties. Employing analytical solutions for recession analysis in this type of setting therefore requires a sound understanding of the internal structure and its influence on the flow and storage processes within the rock glacier.

  20. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  1. Vertical small scale variations of sorption and mineralization of three herbicides in subsurface limestone and sandy aquifer

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Mouvet, C.; Albrechtsen, Hans-Jørgen

    2011-01-01

    , France. From two intact core drills, four heterogenic limestone sections were collected from 4.50-26.40 m below surface (mbs) and divided into 12 sub-samples of 8-25 cm length, and one sandy aquifer section from 19.20-19.53 m depth divided into 7 sub-samples of 4-5 cm length. In the sandy aquifer section...... showed that a 30 cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total thickness of layers of 1 m would substantially increase natural attenuation....

  2. Karst Aquifer Recharge: A Case History of over Simplification from the Uley South Basin, South Australia

    Directory of Open Access Journals (Sweden)

    Nara Somaratne

    2015-02-01

    Full Text Available The article “Karst aquifer recharge: Comments on ‘Characteristics of Point Recharge in Karst Aquifers’, by Adrian D. Werner, 2014, Water 6, doi:10.3390/w6123727” provides misrepresentation in some parts of Somaratne [1]. The description of Uley South Quaternary Limestone (QL as unconsolidated or poorly consolidated aeolianite sediments with the presence of well-mixed groundwater in Uley South [2] appears unsubstantiated. Examination of 98 lithological descriptions with corresponding drillers’ logs show only two wells containing bands of unconsolidated sediments. In Uley South basin, about 70% of salinity profiles obtained by electrical conductivity (EC logging from monitoring wells show stratification. The central and north central areas of the basin receive leakage from the Tertiary Sand (TS aquifer thereby influencing QL groundwater characteristics, such as chemistry, age and isotope composition. The presence of conduit pathways is evident in salinity profiles taken away from TS water affected areas. Pumping tests derived aquifer parameters show strong heterogeneity, a typical characteristic of karst aquifers. Uley South QL aquifer recharge is derived from three sources; diffuse recharge, point recharge from sinkholes and continuous leakage of TS water. This limits application of recharge estimation methods, such as the conventional chloride mass balance (CMB as the basic premise of the CMB is violated. The conventional CMB is not suitable for accounting chloride mass balance in groundwater systems displaying extreme range of chloride concentrations and complex mixing [3]. Over simplification of karst aquifer systems to suit application of the conventional CMB or 1-D unsaturated modelling as described in Werner [2], is not suitable use of these recharge estimation methods.

  3. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    Science.gov (United States)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  4. Insights from the salinity origins and interconnections of aquifers in a regional scale sedimentary aquifer system (Adour-Garonne district, SW France): Contributions of δ34S and δ18O from dissolved sulfates and the 87Sr/86Sr ratio

    International Nuclear Information System (INIS)

    Brenot, Agnès; Négrel, Philippe; Petelet-Giraud, Emmanuelle; Millot, Romain; Malcuit, Eline

    2015-01-01

    Highlights: • Regional sedimentary aquifer on the Aquitaine Basin (SW France). • Dealing with limited number of groundwater wells available. • Strong control of evaporite dissolution on groundwater dissolved elements. • Guidelines for decision-makers to manage water resources. - Abstract: The multi-layered Eocene aquifer is a regional scale sedimentary aquifer system occupying ∼120,000 km 2 within the Adour-Garonne district (France). Local authorities have recently identified the aquifer as being at risk from extensive irrigation abstractions, threatening the sustainability of this key resource. Because large water abstractions for human activities can significantly influence the natural functioning of such aquifer systems, e.g., with leakage between aquifer layers, which can lead to water quality degradation, the characterization of such large systems constitutes a key point to protect and prevent further deterioration of aquatic ecosystems. This study provides further insight on this large aquifer through a geochemical approach, which addresses the limited number of groundwater wells where sampling is possible. For that purpose, a geochemical analysis combining two isotope systems (δ 34 S SO4 , δ 18 O SO4 and 87 Sr/ 86 Sr) has been applied. The Eocene sedimentary aquifer system (detrital to carbonate deposits) is made up of four aquifer layers, Eocene Infra-Molassic sand, Early Eocene, Middle Eocene and Late Eocene, and has a mineralized area north of the Aquitaine Basin, where groundwater shows strong mineralization and anomalous levels of critical substances (SO 4 , F, etc.), increasing the difficulty of resource exploitation. The extreme heterogeneity of the geochemical composition of the groundwater between the aquifers and within a single aquifer is discussed in terms of the lithological control induced by the lateral variation of facies and interconnections between aquifer layers. Geochemical tools, especially the δ 34 S and δ 18 O from

  5. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  6. A quantitative geologic study of heterogeneity

    International Nuclear Information System (INIS)

    Davis, J.M.; Phillips, F.M.

    1990-01-01

    Spatial variation of hydraulic conductivity has been generally recognized as the dominant medium-dependent control on the transport and dispersion of contaminants in ground water. An empirical study focusing on the relationship between patters of sedimentology and patterns of permeability is being conducted at an outcrop of the Pliocene/Pleistocene Sierra Ladrones formation, central New Mexico. Methods of geostatistics and sedimentary basin analysis are employed to study the problem of aquifer heterogeneity. An air permeameter provides a means of obtaining extensive field measurements of air-flow rates through the sediments. These flow rates are subsequently used to characterize the permeability distribution of the outcrop. Both the geologic information and the air-flow rate data provide the basis for analysis of aquifer heterogeneity. Preliminary geologic mapping indicates that the sediments in the study area are the products of an arid fluvial/interfluvial depositional environment. Probability distribution analysis of the air-flow rate data suggests that the permeability of these sediments is log-normally distributed. The air permeability data are used to estimate variograms and correlation lengths in both the horizontal and vertical directions. At the scale of 10's of centimeters, the horizontal variograms exhibit exponential variogram behaviour . When two distinct lithologies are present, the correlation structure appears to be a nested exponential. Variogram analysis of estimated mean permeability at the scale of meters also shows evidence of a nested correlation structure in the horizontal direction and a periodic correlation structure in the vertical direction. Results of this study suggest that there is a direct connection between observable geologic structure and permeability statistics. (Author) (35 refs., 10 figs., 5 tabs.)

  7. Use of static Quantitative Microbial Risk Assessment to determine pathogen risks in an unconfined carbonate aquifer used for Managed Aquifer Recharge.

    Science.gov (United States)

    Toze, Simon; Bekele, Elise; Page, Declan; Sidhu, Jatinder; Shackleton, Mark

    2010-02-01

    Managed Aquifer Recharge (MAR) is becoming a mechanism used for recycling treated wastewater and captured urban stormwater and is being used as a treatment barrier to remove contaminants such as pathogens from the recharged water. There is still a need, however, to demonstrate the effectiveness of MAR to reduce any residual risk of pathogens in the recovered water. A MAR research site recharging secondary treated wastewater in an unconfined carbonate aquifer was used in conjunction with a static Quantitative Microbial Risk Assessment (QMRA) to assess the microbial pathogen risk in the recovered water following infiltration and aquifer passage. The research involved undertaking a detailed hydrogeological assessment of the aquifer at the MAR site and determining the decay rates of reference pathogens from an in-situ decay study. These variables along with literature data were then used in the static QMRA which demonstrated that the recovered water at this site did not meet the Australian Guidelines for recycled water when used for differing private green space irrigation scenarios. The results also confirmed the importance of obtaining local hydrogeological data as local heterogeneity can influence of residence time in the aquifer which, in turn, influences the outcomes. The research demonstrated that a static QMRA can be used to determine the residual risk from pathogens in recovered water and showed that it can be a valuable tool in the preliminary design and operation of MAR systems and the incorporation of complementary engineered treatment processes to ensure that there is acceptable health risk from the recovered water. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  8. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  9. Existence of both culturable and viable but non culturable (VNC) E. coli populations with distinct settling velocities in karst aquifer

    Science.gov (United States)

    Petit, F.; Ratajczak, M.; Massei, N.; Lafite, R.; Clermont, O.; Denamur, E.; Berthe, T.

    2012-12-01

    The karst aquifers are particularly vulnerable to contamination by faecal pathogens mainly during rainfall event. In groundwater, the fate of E. coli is dependent on their ability to overcome environmental stresses and on their association with particles. Moreover, some strains can survive leading to the emergence of a sub-population of E. coli which failed to grow on laboratory media, while they were still alive thus designated as viable but non culturable (VNC). The aim of this study was to investigate (i) the structure of culturable E. coli population based on the survival ability, the distribution in four main phylo-groups (A, B1, B2, D) and the phenotypic characteristics; and, (ii) the fate of culturable and VNC E. coli, according to their settling velocities. This work was carried out on a karstic workshop-site for which the microbial quality of water was impaired related to livestock density and septic tanks overflows. Particles characterisation was performed by estimation of their settling velocities combined with electronic microscopy observation, and solid phase cytometry (ChemScan®RDI) was carried out to quantify the viable E. coli, and thus VNC E. coli. In the karst, different populations of E. coli were coexisting related to their survival, their culturability, and their association to particles. At the sinkhole, during a rainfall event with pasture, E. coli rapidly losing their culturability after 2 days have been more frequently isolated. These isolates are mainly multiresistant to antibiotics and harbor several virulence factors. In the same time, a population of VNC E. coli (79%), associated to the "non settleable particles" (settling velocities ranging between 10-5 to 10-2 mm.s-1), mainly corresponding to colloids and organic or organo-mineral microflocs was injected in the karst system, probably corresponding to the runoff of attached-bacteria originating from cowpats. Once in the karst, the relative contribution of culturable and VNC E. coli

  10. Impact of lateral flow on the transition from connected to disconnected stream-aquifer systems

    Science.gov (United States)

    Xian, Yang; Jin, Menggui; Liu, Yanfeng; Si, Aonan

    2017-05-01

    Understanding the mechanisms by which stream water infiltrates through streambeds to recharge groundwater systems is essential to sustainable management of scarce water resources in arid and semi-arid areas. An inverted water table (IWT) can develop under a stream in response to the desaturation between the stream and underlying aquifer as the system changes from a connected to disconnected status. However, previous studies have suggested that the IWT can only occur at the bottom of a low permeability streambed in which only the vertical flow between the stream and groundwater during disconnection was assumed. In the present study, numerical simulations revealed that the lateral flow induced by capillarity or heterogeneity also plays an essential role on interactions between streams and aquifers. Three pathways were identified for the transition from connection to disconnection in homogenous systems; notably, the lowest point of an IWT can develop not only at the bottom of the streambed but also within the streambed or the aquifer in response to the initial desaturation at, above, or below the interface between the streambed and aquifer (IBSA), respectively. A sensitivity analysis indicated that in wide streams, the lowest point of an IWT only occurs at the bottom of the streambed; however, for a stream half width of 1 m above a 6 m thick sandy loam streambed, the lowest point occurs in the streambed as stream depth is less than 0.5 m. This critical stream depth increases with streambed thickness and decreases with stream width. Thus, in narrow streams the lowest point can also develop in a thick streambed under a shallow stream. In narrow streams, the lowest point also forms in the aquifer if the ratio of the hydraulic conductivity of the streambed to that of the aquifer is greater than the ratio of the streambed thickness to the sum of the stream depth and the streambed thickness; correspondingly, the streambed is thin but relatively permeable and the stream is

  11. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  12. The Guarani Aquifer System: estimation of recharge along the Uruguay-Brazil border

    Science.gov (United States)

    Gómez, Andrea A.; Rodríguez, Leticia B.; Vives, Luis S.

    2010-11-01

    The cities of Rivera and Santana do Livramento are located on the outcropping area of the sandstone Guarani Aquifer on the Brazil-Uruguay border, where the aquifer is being increasingly exploited. Therefore, recharge estimates are needed to address sustainability. First, a conceptual model of the area was developed. A multilayer, heterogeneous and anisotropic groundwater-flow model was built to validate the conceptual model and to estimate recharge. A field campaign was conducted to collect water samples and monitor water levels used for model calibration. Field data revealed that there exists vertical gradients between confining basalts and underlying sandstones, suggesting basalts could indirectly recharge sandstone in fractured areas. Simulated downward flow between them was a small amount within the global water budget. Calibrated recharge rates over basalts and over outcropping sandstones were 1.3 and 8.1% of mean annual precipitation, respectively. A big portion of sandstone recharge would be drained by streams. The application of a water balance yielded a recharge of 8.5% of average annual precipitation. The numerical model and the water balance yielded similar recharge values consistent with determinations from previous authors in the area and other regions of the aquifer, providing an upper bound for recharge in this transboundary aquifer.

  13. Use of improved hydrologic testing and borehole geophysical logging methods for aquifer characterization

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Hall, S.H.; Vermeul, V.R.

    1996-01-01

    Depth-discrete aquifer information was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and bulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of time and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge test data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology. The bioremediation study site is located on the US Department of Energy's Hanford site. The study is being conducted by the Pacific Northwest National Laboratory to demonstrate in situ bioremediation of carbon tetrachloride (CCl 4 ). Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity. Tracer test and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated to be 73 ft/d, approximately three times higher than that calculated using the full length of the screened test interval

  14. Seismic reflection and structuring characterization of deep aquifer system in the Dakhla syncline (Cap Bon, North-Eastern Tunisia)

    Science.gov (United States)

    Bellali, Abir; Jarraya Horriche, Faten; Gabtni, Hakim; Bédir, Mourad

    2018-04-01

    The Dakhla syncline is located in the North-Eastern Tunisia. It is bounded by Abd El Rahmene anticline to the North-West, El Haouaria Graben to the North-East, Grombalia Graben to the South-West and the Mediterranean Sea to the East. The main aquifer reservoirs of Dakhla syncline are constituted by stacks of fluvial to deltaic Neogene sequences and carbonates. The interpretation of eight seismic reflection profiles, calibrated by wire line logging data of three oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of aquifers and their distribution in elevated structures and subsurface depressions. Lithostratigraphic correlations and seismic profiles analysis through the syncline show that the principal aquifers are thickest within the central and northern part of the study area and thinnest to the southern part of the syncline. Seismic sections shows that the fracture/fault pattern in this syncline is mainly concentrated along corridors with a major direction of NW-SE and secondary directions of N-S, E-W and NE-SW with different release. This is proved by the complexity structure of Eastern Tunisia, resulted from the interaction between the African and Eurasiatic plates. Isochron maps of aquifers systems exhibited the structuring of this syncline in sub-surface characterized by important lateral and vertical geometric and thickness variations. Seismic sections L1, L2, L3, L4, L5 and petroleum wells showed an heterogeneous multilayer aquifers of Miocene formed by the arrangement of ten sandstone bodies, separated by impermeable clay packages. Oligo-Miocene deposits correspond to the most great potential aquifers, with respectively an average transmissivity estimated: Somaa aquifer 6.5 10-4 m2/s, Sandstone level aquifer 2.6 10-3 m2/s, Beglia aquifer 1.1 10-3 m2/s, Ain Ghrab aquifer 1.3 10-4 m2/s and Oligocene aquifer 2 10-3 m2/s. The interpretation of spatial variations of seismic units and the

  15. Steam Injection For Soil And Aquifer Remediation

    Science.gov (United States)

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  16. Hydrogeologic characterization of devonian aquifers in Uruguay

    International Nuclear Information System (INIS)

    Massa, E.

    1988-01-01

    This article carried out the assistance research project implementation in devonian sedimentary units as a potentials aquifers and their best use to school supplying and rural population in central area of Uruguay.

  17. Aquifer parameter identification and interpretation with different ...

    African Journals Online (AJOL)

    unfortunately, field data deviations from the model type curves are not considered in ... Such an extensive Study can only he done when there is a set of aquifer test data with main and .... 1990; 1995) methods are employed for qualitative.

  18. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  19. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  20. The influence of DOM and microbial processes on arsenic release from karst during ASR operations in the Floridan Aquifer

    Science.gov (United States)

    Jin, J.; Zimmerman, A. R.

    2011-12-01

    The mobilization of subsurface As poses a serious threat to human health, particularly in a region such as Florida where population is heavily dependent on highly porous karstic aquifers for drinking water. Injection water used in aquifer storage and recovery (ASR) or aquifer recharge (AR) operations is commonly high in dissolved organic matter (DOM) and OM can also be present in the subsurface carbonate rock. Using batch incubation experiments, this study examined the role of core preservation methods, as well as the influence of labile and more refractory DOM on the mobilization of As from carbonate rock. Incubation experiments used sealed reaction vessels with preserved and homogenized core materials collected via coring the Suwannee Formation in southwest Florida and treatment additions consisting of 1) source water (SW) enriched in sterilized soil DOM, 2) SW enriched in soil DOM and microbes, and 3) SW enriched in sodium acetate. During an initial equilibration phase in native groundwater (NGW) with low dissolved oxygen (DO; Phase 1), we found the greatest As release of the whole incubation. In the beginning of Phase 2 (N2 headspace) in which NGW was replaced with treatment solutions, there was little As release except in the vessel with Na-acetate added, which also had the lowest ORP. At the start of Phase 3, when incubations were exposed to air, most vessels saw more ion (including As) release into solution. Vessel with Na-acetate had less As release in Phase 3 than in Phase 2. During all experimental phases, treatments of DOM or microbe additions had no apparent effect on the amount of As release. The core materials was found contain significant amount of indigenous DOM (about 8 g OC/kg core) which was released during the incubation so DOC concentrations displayed no clear pattern among different treatments. At least three abiotic As mobilization mechanisms may play a role in As released during different stages of the experiment. Desorption of As from iron

  1. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    Science.gov (United States)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    . Water Information System, National Master Plan Directorate. Jordan. Hamdan I., Wiegand B., Toll M., Sauter M. (2016) Spring response to precipitation events using δ 18O and δ 2H in the Tanour catchment, NW-Jordan. Isotopes in Environmental and Health Studies journal. Accepted GIEH-2015-0139. Hamdan, I.~in preparation.~Characterization of groundwater flow and vulnerability assessment of karstic aquifer - A case study from Tanour and Rasoun spring catchment (Ajloun, NW-Jordan).~Ph.D. Thesis, University of Göttingen, Germany.

  2. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    Science.gov (United States)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  3. Neurobiological heterogeneity in ADHD

    NARCIS (Netherlands)

    de Zeeuw, P.

    2011-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heterogeneous disorder clinically. Symptoms take many forms, from subtle but pervasive attention problems or dreaminess up to disruptive and unpredictable behavior. Interestingly, early neuroscientific work on ADHD assumed either a

  4. Heterogeneous Calculation of {epsilon}

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf

    1961-02-15

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.

  5. Heterogeneous Calculation of ε

    International Nuclear Information System (INIS)

    Jonsson, Alf

    1961-02-01

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer

  6. Geological entropy and solute transport in heterogeneous porous media

    Science.gov (United States)

    Bianchi, Marco; Pedretti, Daniele

    2017-06-01

    We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.

  7. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0168 HETEROGENEOUS INTEGRATION TECHNOLOGY Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...Final September 1, 2016 – May 1, 2017 4. TITLE AND SUBTITLE HETEROGENEOUS INTEGRATION TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A...provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are

  8. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an

  9. Possibilities for artificial recharge in Crestatx aquifer (Mallorca) using water surpluses from Ufanes de Gabelli springs; Posibilidades de recarga artificial del acuifero de Crestatx (Mallorca) con excedentes de las Ufanes de Gabelli

    Energy Technology Data Exchange (ETDEWEB)

    Orden, J. A. de la; Murillo, J. M.; Sesmero, C.; Blasco, O.

    2009-07-01

    In this paper we show an study about the possibilities of artificially recharge the Crestatx aquifer, in Majorca, using water surpluses from Ufanes de Gabelli springs. These springs are typically karstic, characterized by a very quick response to intense precipitation. Water flows drained are very high in very short time periods. The discharge pattern is very variable, depending on the rainfall pattern, but we can say that, as an average, there are 6 or 7 drainage episodes per year. Recorded water flows have been up to 30 m3/s. Drained water is driven to the sea, a few kilometers downstream, by the Torrente de San Miguel. This makes very difficult to exploit the springs water resources, even more by the fact of in the river mouth there is a large wetland named Albufera de Alcudia, which is protected by the law. Nevertheless there is a possibility to use a part of the surpluses to make the artificial recharge of Crestatx aquifer. In this paper, the first results of the artificial recharge feasibility study are shown, and too the first design of the future artificial recharge plant. (Author) 19 refs.

  10. Application of Fe-Cu/Biochar System for Chlorobenzene Remediation of Groundwater in Inhomogeneous Aquifers

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-12-01

    Full Text Available Chlorobenzene (CB, as a typical Volatile Organic Contaminants (VOC, is toxic, highly persistent and easily migrates in water, posing a significant risk to human health and subsurface ecosystems. Therefore, exploring effective approaches to remediate groundwater contaminated by CB is essential. As an enhanced micro-electrolysis system for CB-contaminated groundwater remediation, this study attempted to couple the iron-copper bimetal with biochar. Two series of columns using sands with different grain diameters were used, consisting of iron, copper and biochar fillings as the permeable reactive barriers (PRBs, to simulate the remediation of CB-contaminated groundwater in homogeneous and heterogeneous aquifers. Regardless of the presence of homogeneous or heterogeneous porous media, the CB concentrations in the effluent from the PRB columns were significantly lower than the natural sandy columns, suggesting that the iron and copper powders coupled with biochar particles could have a significant removal effect compared to the natural sand porous media in the first columns. CB was transported relatively quickly in the heterogeneous porous media, likely due to the fact that the contaminant residence time is proportional to the infiltration velocities in the different types of porous media. The average effluent CB concentrations from the heterogeneous porous media were lower than those from homogeneous porous media. The heterogeneity retarded the vertical infiltration of CB, leading to its extended lateral distribution. During the treatment process, benzene and phenol were observed as the products of CB degradation. The ultimate CB removal efficiency was 61.4% and 68.1%, demonstrating that the simulated PRB system with the mixture of iron, copper and biochar was effective at removing CB from homogeneous and heterogeneous aquifers.

  11. The effect of heterogeneity on the character of density-driven natural convection of CO{sub 2} overlying a brine layer

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, R. [Shell International Exploration and Production, Houston, TX (United States); Ranganathan, P.; Zitha, P.L.J.; Bruining, J. [Delft Univ. of Technology, Delft (Netherlands)

    2010-07-01

    This paper investigated the effect of heterogeneity on the character of natural-convection flow of carbon dioxide (CO{sub 2}) in aquifers and on the dissolution rate of CO{sub 2} in brine, contributing to a better understanding of the effect of heterogeneity on CO{sub 2} mass transfer in aquifers, which is necessary for efficient storage of CO{sub 2} in aquifers. The aquifer permeability, which is in practice heterogeneous, largely governs the efficiency of mixing in density-driven natural convection. The aquifer's degree of permeability variance and the correlation length informs the character of flow-driven mixing processes. Numerical simulation was used to identify different flow regimes of a density-driven natural flow regime. Heterogeneous fields were generated using a spectral method that allows the use of power-law variograms. From the simulations it was observed that the rate of mass transfer of carbon dioxide (CO{sub 2}) into water is higher for heterogeneous media. The formulation of the physical model and related equations and the method for generating the permeability fields were described. The simulation results indicated that gravity-induced fingering is the dominant pattern in low heterogeneity, but fingering will not occur in realistic porous media. The results also showed that the permeability field structure dominates at moderate heterogeneity, and that the flow is dispersive at high heterogeneity when the correlation length of the field is small. Heterogeneous media facilitate a larger rate of CO{sub 2} dissolution than homogenous media, which means that the former can store larger volumes of CO{sub 2}. 49 refs., 3 tabs., 13 figs.

  12. Guarani aquifer hydrogeological synthesis of the Guarani aquifer system. Edicion bilingue

    International Nuclear Information System (INIS)

    2009-01-01

    This work represents the synthesis of current knowledge of the Guarani Aquifer System, based on technical products made by different companies and consultants who participated in the framework of the Project for Environmental Protection and Sustainable Development of the Guarani Aquifer.

  13. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    in fractured limestone aquifers. The model comparison is conducted for a contaminated site in Denmark, where a plume of dissolved PCE has migrated through a fractured limestone aquifer. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology...... and hydrogeology. To describe the geology and fracture system, data from borehole logs and cores was combined with an analysis of heterogeneities and fractures from a nearby excavation and pump test data. We present how field data is integrated into the different model concepts. A challenge in the use of field...... and remediation strategies. Each model is compared with field data, considering both model fit and model suitability. Results show a considerable difference between the approaches, and that it is important to select the right one for the actual modeling purpose. The comparison with data showed how much...

  14. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    Science.gov (United States)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  15. A Greedy Approach for Placement of Subsurface Aquifer Wells in an Ensemble Filtering Framework

    KAUST Repository

    El Gharamti, Mohamad; Marzouk, Youssef M.; Huan, Xun; Hoteit, Ibrahim

    2015-01-01

    Optimizing wells placement may help in better understanding subsurface solute transport and detecting contaminant plumes. In this work, we use the ensemble Kalman filter (EnKF) as a data assimilation tool and propose a greedy observational design algorithm to optimally select aquifer wells locations for updating the prior contaminant ensemble. The algorithm is greedy in the sense that it operates sequentially, without taking into account expected future gains. The selection criteria is based on maximizing the information gain that the EnKF carries during the update of the prior uncertainties. We test the efficiency of this algorithm in a synthetic aquifer system where a contaminant plume is set to migrate over a 30 years period across a heterogenous domain.

  16. A Greedy Approach for Placement of Subsurface Aquifer Wells in an Ensemble Filtering Framework

    KAUST Repository

    El Gharamti, Mohamad

    2015-11-26

    Optimizing wells placement may help in better understanding subsurface solute transport and detecting contaminant plumes. In this work, we use the ensemble Kalman filter (EnKF) as a data assimilation tool and propose a greedy observational design algorithm to optimally select aquifer wells locations for updating the prior contaminant ensemble. The algorithm is greedy in the sense that it operates sequentially, without taking into account expected future gains. The selection criteria is based on maximizing the information gain that the EnKF carries during the update of the prior uncertainties. We test the efficiency of this algorithm in a synthetic aquifer system where a contaminant plume is set to migrate over a 30 years period across a heterogenous domain.

  17. Aquifer response to earth tides

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Narasimhan, T.N.

    1981-01-01

    The relation presented in the first part of this paper are applicable to packed-off wells and other situations where appreciable flow to the well does not exist. Comparisons of aquifer properties determined from the response to earth tides and from the more standard pumping tests for the two California fields are reasonably good. The case of an open well makes the problem more complicated, since there may be an appreciable amount of flow to the well. This flow to the well is seen as either a phase lag or as a difference in the ratio of the well signal to the tide for the semidiurnal and diurnal components of the tide. The latter is probably the better and more accurate indicator of flow to the well. Analyses of such situations, however, become involved and are probably best done as case-by-case studies. The numerical solutions show that treating the inverse problem through numerical modeling is at least feasible for any individual situation. It may be possible to simplify the inverse problem through the generation of type curves, but general type curves that are applicable to diverse situations are not likely to be practical. 7 figures

  18. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  19. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    Science.gov (United States)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  20. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  1. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.

    Science.gov (United States)

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    water standards for the downgradient wells under natural gradient conditions. Based on the results of this study, a 7-log reduction would require 125-280 m travel in clean coarse gravel aquifers, 1.7-3.9 km travel in contaminated coarse gravel aquifers, 33-61 m travel in clean sandy fine gravel aquifers, 33-129 m travel in contaminated sandy fine gravel aquifers, and 37-44 m travel in contaminated river and coastal sand aquifers. These recommended setback distances are for a worst-case scenario, assuming direct discharge of raw effluent into the saturated zone of an aquifer. Filtration theory was applied to calculate collision efficiency (alpha) from model-derived attachment rates (katt), and the results are compared with those reported in the literature. The calculated alpha values vary by two orders-of-magnitude, depending on whether collision efficiency is estimated from the effective particle size (d10) or the mean particle size (d50). Collision efficiency values for MS-2 are similar to those previously reported in the literature (e.g. ) [DeBorde, D.C., Woessner, W.W., Kiley, QT., Ball, P., 1999. Rapid transport of viruses in a floodplain aquifer. Water Res. 33 (10), 2229-2238]. However, the collision efficiency values calculated for Bacillus subtilis spores were unrealistic, suggesting that filtration theory is not appropriate for theoretically estimating filtration capacity for poorly sorted coarse gravel aquifer media. This is not surprising, as filtration theory was developed for uniform sand filters and does not consider particle size distribution. Thus, we do not recommend the use of filtration theory to estimate the filter factor or setback distances. Either of the methods applied in this work (BTC or concentration vs. distance analyses), which takes into account aquifer heterogeneities and site-specific conditions, appear to be most useful in determining filter factors and setback distances.

  2. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz

    2013-10-01

    Full Text Available River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high

  3. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  4. A major challenge for modeling conservation-based water use reductions in aquifers supporting irrigated agriculture: The specific yield quandary

    Science.gov (United States)

    Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.; Bohling, G.

    2017-12-01

    Many large regional aquifers supporting irrigated agriculture are experiencing high rates of water-level decline. The primary means of moderating these rates is to reduce pumping. The key question is what percent pumping reduction will significantly impact decline rates. We have recently developed a water-balance approach to address this question for subareas (100s to 1000s km2 in size) of seasonally pumped aquifers (Butler et al., GRL, 2016). This approach also provides an estimate of specific yield (Sy), which has been difficult to estimate from field data at the scale of modeling analyses. When applied to subareas of the High Plains aquifer in Kansas, this approach reveals that the Sy estimate is much lower (as much as a factor of five or more) than expected for an unconsolidated aquifer. One explanation is that the aquifer is heterogeneous with considerable amounts of fine material, whereas field data, such as drillers' logs, are often biased towards coarser intervals. An additional explanation, which appears to have received little attention, is the impact of entrapped air. In seasonally pumped systems, water levels pass through the same aquifer intervals multiple times, giving ample opportunity for air to be entrapped. This entrapped air imbues the aquifer with a specific yield that is considerably lower than what would be expected from lithology. If unrecognized, a larger-than-actual Sy value is input into the aquifer model. This can lead to the inadvertent use of the same-year recharge assumption, which may not be appropriate for many conditions (e.g., large depths to water), and can also result in artificially low estimates of net inflow for a depleting aquifer. Moreover, failure to recognize this condition can bedevil efforts to model conservation-based water use reductions. In that case, models will leave the range of conditions for which they have been calibrated and can become more vulnerable to parameter errors. Conservation-based water use reductions

  5. Hydrogeological Investigations of the Quaternary Aquifeer in the Northern Part of El-Sharkia Governorate, Egypt

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Ezz El Din, M.R.; Deyab, M.E.

    2011-01-01

    The hydraulic characteristics of surficial soils and materials of the Quaternary aquifer in the northern part of El-Sharkia Governorate were investigated. The surficial soil zone represents an aquitard for the aquifer and mainly composed of fine textured materials having vertical hydraulic conductivity ranged from 1.4 x10 -6 cm/sec to 2.15x10 -2 cm/sec. The semi-confined Quaternary aquifer is formed of sand and gravel with occasional clay lenses. The groundwater levels ranged from 9 m (MSL) to 5 m (MSL). The major trend of groundwater flow was from south to north and northwest directions. Another minor flow trend was observed to be from southwest to northeast direction. The aquifer is essentially recharged from Ismaillia Canal. The hydraulic gradient through the flow path was 1.9 x10 -4 , averagely. The hydraulic conductivity values differ vertically and laterally indicating the heterogeneity and anisotropy of the aquifer materials. They ranged from 40.1 to 222 m/day with an average value of about 95.8 m/day. The chemical compositions of groundwater and surface water bodies (canals and drains) were investigated. The chemistry of all water bodies was characterized by a basic nature (ph =7.2-7.9) and showed different salinities values and various hydrochemical facies. The average salinities values were 318.1 mg/l for canal water, 1013.4 mg/l for groundwater and 1260 mg/l for drain water. Canal water was fresh while groundwater and drain were fresh to brackish. The reasons causing the changes in salinity and hydrochemical facies were investigated using the relationships among water dissolved constituents and trends of ionic ratios. Subsurface flow, infiltration, evaporation, ion exchange, leaching, and dissolution were the hydrochemical processes leading to the groundwater modification. The suitability of groundwater and surface water for different uses are discussed and evaluated according to the international standards.

  6. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  7. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  8. Transport of Cryptosporidium parvum Oocysts in Charge Heterogeneous Porous Media: Microfluidics Experiment and Numerical Simulation

    Science.gov (United States)

    Liu, Y.; Meng, X.; Guo, Z.; Zhang, C.; Nguyen, T. H.; Hu, D.; Ji, J.; Yang, X.

    2017-12-01

    Colloidal attachment on charge heterogeneous grains has significant environmental implications for transport of hazardous colloids, such as pathogens, in the aquifer, where iron, manganese, and aluminium oxide minerals are the major source of surface charge heterogeneity of the aquifer grains. A patchwise surface charge model is often used to describe the surface charge heterogeneity of the grains. In the patchwise model, the colloidal attachment efficiency is linearly correlated with the fraction of the favorable patches (θ=λ(θf - θu)+θu). However, our previous microfluidic study showed that the attachment efficiency of oocysts of Cryptosporidium parvum, a waterborne protozoan parasite, was not linear correlated with the fraction of the favorable patches (λ). In this study, we developed a pore scale model to simulate colloidal transport and attachment on charge heterogeneous grains. The flow field was simulated using the LBM method and colloidal transport and attachment were simulated using the Lagrange particle tracking method. The pore scale model was calibrated with experimental results of colloidal and oocyst transport in microfluidic devices and was then used to simulate oocyst transport in charge heterogeneous porous media under a variety of environmental relative conditions, i.e. the fraction of favorable patchwise, ionic strength, and pH. The results of the pore scale simulations were used to evaluate the effect of surface charge heterogeneity on upscaling of oocyst transport from pore to continuum scale and to develop an applicable correlation between colloidal attachment efficiency and the fraction of the favorable patches.

  9. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  10. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    Science.gov (United States)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  11. 40 CFR 147.502 - Aquifer exemptions. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. [Reserved] 147.502... (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Florida § 147.502 Aquifer exemptions. [Reserved] ...

  12. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  13. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  14. Cancer heterogeneity and imaging.

    Science.gov (United States)

    O'Connor, James P B

    2017-04-01

    There is interest in identifying and quantifying tumor heterogeneity at the genomic, tissue pathology and clinical imaging scales, as this may help better understand tumor biology and may yield useful biomarkers for guiding therapy-based decision making. This review focuses on the role and value of using x-ray, CT, MRI and PET based imaging methods that identify, measure and map tumor heterogeneity. In particular we highlight the potential value of these techniques and the key challenges required to validate and qualify these biomarkers for clinical use. Copyright © 2016. Published by Elsevier Ltd.

  15. Preliminary characterization of an alpine karst aquifer in a complex geological setting using the KARSYS approach. Picos de Europa, North Spain

    Science.gov (United States)

    Ballesteros, Daniel; Malard, Arnauld; Jeannin, Pierre-Yves; Jiménez-Sánchez, Montserrat; García-Sansegundo, Joaquín; Meléndez, Mónica; Sendra, Gemma

    2013-04-01

    and the top of the Ordovician rocks, pushing the underground flow paths towards the northern part of the massif. Some boundaries of the saturated part of the groundwater bodies are unknown, although they could be associated to some rocks not considered in the geological model. The main karst springs supply 10 to 5,000 l/s, being located at altitudes ranging from 167 to 1,246 m (western area), and 178 to 440 m (central area) and at 600 m (eastern area). Their elevation is progressively decreasing toward the North, conditioning the regional circulation of karst groundwater. These results suggest that the geometry of the saturated part presents several compartments, resulting from the position of the out-of-sequence thrusts, with a relative elevation descending to the North. The results evidenced by the KARSYS approach provide first outlook of the geometry of the karst aquifers of the Picos de Europa, even if deep geological data are not precise or are scarce. The method has also revealed the main targets for future geological and hydrogeological research in this complex karstic environment. Jeannin et al. 2012. Environmental Earth Sciences DOI10.1007/s12665-012-1983-6.

  16. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  17. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    International Nuclear Information System (INIS)

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana; Pauwels, Hélène; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel; Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine

    2015-01-01

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All 87 Sr/ 86 Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO 3 water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues. - Highlights:

  18. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Lise, E-mail: l.cary@brgm.fr [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Petelet-Giraud, Emmanuelle [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Bertrand, Guillaume [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Kloppmann, Wolfram [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Aquilina, Luc [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Martins, Veridiana; Hirata, Ricardo [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Montenegro, Suzana [Civil Engineering Department, Federal University of Pernambuco, 50740 Recife, PE Brazil (Brazil); Pauwels, Hélène [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Chatton, Eliot [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Franzen, Melissa [CPRM, Brazilian Geologic Survey, Avenida Sul 2291, Recife PE (Brazil); Aurouet, Axel [Géo-Hyd, 101 rue Jacques Charles, 45160 Olivet (France); Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); and others

    2015-10-15

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All {sup 87}Sr/{sup 86}Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO{sub 3} water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues

  19. Unconsolidated Aquifers in Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2000-01-01

    Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site

  20. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  1. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  2. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  3. Comparison of groundwater flow in Southern California coastal aquifers

    Science.gov (United States)

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers.

  4. Heterogeneity and Networks

    OpenAIRE

    Goyal, S.

    2018-01-01

    This chapter shows that networks can have large and differentiated effects on behavior and then argues that social and economic pressures facilitate the formation of heterogenous networks. Thus networks can play an important role in understanding the wide diversity in human behaviour and in economic outcomes.

  5. Heterogeneous Computing in Economics

    DEFF Research Database (Denmark)

    Dziubinski, M.P.; Grassi, S.

    2014-01-01

    This paper shows the potential of heterogeneous computing in solving dynamic equilibrium models in economics. We illustrate the power and simplicity of C++ Accelerated Massive Parallelism (C++ AMP) recently introduced by Microsoft. Starting from the same exercise as Aldrich et al. (J Econ Dyn...

  6. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  7. in Heterogeneous Media

    Directory of Open Access Journals (Sweden)

    Saeed Balouchi

    2013-01-01

    Full Text Available Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modeling. Recently, simulated annealing (SA has been applied to generate stochastic realizations of spatially correlated fracture networks by assuming that the elastic energy of fractures follows Boltzmann distribution. Although SA honors local variability, the objective function of geometrical fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA and the derivation of the energy function, a novel technique is presented to adjust the model with highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir properties. The original SA algorithm is also modified by being constrained in different directions and weighting the energy function to make it appropriate for heterogeneous conditions. The simulation results of the presented approach are in good agreement with the observed field data.

  8. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  9. Why does heterogeneity matter?

    Science.gov (United States)

    K.B. Pierce

    2007-01-01

    This is a review of the book "Ecosystem function in heterogeneous landscapes" published in 2005. The authors are G. Lovett, C. Jones, M.G. Turner, and K.C. Weathers. It was published by Springer, New York. The book is a synthesis of the 10th Gary conference held at the Institute of Ecosystem Studies in Millbrook, New York, in 2003.

  10. Heterogeneity and option pricing

    NARCIS (Netherlands)

    Benninga, Simon; Mayshar, Joram

    2000-01-01

    An economy with agents having constant yet heterogeneous degrees of relative risk aversion prices assets as though there were a single decreasing relative risk aversion pricing representative agent. The pricing kernel has fat tails and option prices do not conform to the Black-Scholes formula.

  11. On transport in formations of large heterogeneity scales

    International Nuclear Information System (INIS)

    Dagan, Gedeon

    1990-01-01

    It has been suggested that in transport through heterogeneous aquifers, the effective dispersivity increases with the travel distance, since plumes encounter heterogeneity of increasing scales. This conclusion is underlain, however, by the assumption of ergodicity. If the plume is viewed as made up of different particles, this means that these particles move independently from a statistical point of view. To satisfy ergodicity the solute body has to be of a much larger extent than heterogeneity scales. Thus, if the latter are increasing for ever and the solute body is finite, ergodicity cannot be obeyed. To demonstrate this thesis we relate to the two-dimensional heterogeneity associated with transmissivity variations in the horizontal plane. First, the effective dispersion coefficient is defined as half the rate of change of the expected value of the solute body second spatial moment relative to its centroid. Subsequently the asymptotic large time limit of dispersivity is evaluated in terms of the log transmissivity integral scale and of the dimensions of the initial solute body in the direction of mean flow and normal to it. It is shown that for a thin plume aligned with the mean flow the effective dispersivity is zero and the effect of heterogeneity is a slight and finite expansion determined solely by the solute body size. In the case of a solute body transverse to the mean flow the effective dispersivity is different from zero, but has a maximal value which is again dependent on the solute body size and not on the heterogeneity scale. It is concluded that from a theoretical standpoint and for the definition of dispersivity adopted here for non-ergodic conditions, the claim of ever-increasing dispersivity with travel distance is not valid for the scale of heterogeneity analyzed here. (Author) (21 refs., 6 figs.)

  12. Heterogeneous Materials I and Heterogeneous Materials II

    International Nuclear Information System (INIS)

    Knowles, K M

    2004-01-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field of materials science interested in comparing predictions of properties with experimental results may well find the mathematical level quite daunting initially, as it is apparent that the author assumes a level of mathematics consistent with that taught in final year undergraduate and graduate theoretical physics courses. However, for such readers it is well worth persevering because of the in-depth coverage to which the various models are subjected, and also because of the extensive reference lists at the back of both volumes which direct readers to the various source references in the scientific literature. Thus, for the wider materials science scientific community the two volumes will be a valuable library resource. While I would have liked to see more comparison with experimental data on both ideal and 'real' heterogeneous materials than is provided by the author and a discussion of how to model strong nonlinear current--voltage behaviour in systems such as zinc oxide varistors, my overall

  13. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    Science.gov (United States)

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  14. Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer)

    DEFF Research Database (Denmark)

    Duque, Carlos; Calvache, Marie; Engesgaard, Peter Knudegaard

    2010-01-01

    Heat was applied as a tracer for determining river–aquifer relations in the Motril-Salobreña aquifer (S Spain). The aquifer has typically been recharged by River Guadalfeo infiltration, nevertheless from 2005 a dam was constructed changing the traditional dynamic river flow and recharge events...

  15. Can Remote Sensing Detect Aquifer Characteristics?: A Case Study in the Guarani Aquifer System

    Science.gov (United States)

    Richey, A. S.; Thomas, B.; Famiglietti, J. S.

    2013-12-01

    Global water supply resiliency depends on groundwater, especially regions threatened by population growth and climate change. Aquifer characteristics, even as basic as confined versus unconfined, are necessary to prescribe regulations to sustainably manage groundwater supplies. A significant barrier to sustainable groundwater management exists in the difficulties associated with mapping groundwater resources and characteristics at a large spatial scale. This study addresses this challenge by investigating if remote sensing, including with NASA's Gravity Recovery and Climate Experiment (GRACE), can detect and quantify key aquifer parameters and characteristics. We explore this through a case study in the Guarani Aquifer System (GAS) of South America, validating our remote sensing-based findings against the best available regional estimates. The use of remote sensing to advance the understanding of large aquifers is beneficial to sustainable groundwater management, especially in a trans-boundary system, where consistent information exchange can occur within hydrologic boundaries instead of political boundaries.

  16. State Aquifer Recharge Atlas Plates, Geographic NAD83, LDEQ (1999) [aquifer_recharge_potential_LDEQ_1988

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the boundaries of aquifer systems in the state of Louisiana and adjacent areas of Texas, Arkansas and a portion of Mississippi....

  17. Risk assessment and management of an oil contaminated aquifer

    International Nuclear Information System (INIS)

    Braxein, A.; Daniels, H.; Rouve, G.; Rubin, H.

    1991-01-01

    This paper concerns the provision of the basic information needed for the decision making process regarding the remedial measures leading to reutilization of an oil contaminated aquifer. The study refers to the case history of jet fuel contamination of an aquifer comprising part of the coastal aquifer of Israel. Due to that contamination two major water supply wells were abandoned. This study examines the use of numerical simulations in order to restore the contamination history of the aquifer. Such simulations also provide quantitative information needed for the decision making process regarding the future management of the contaminated aquifer

  18. Remediation of a contaminated thin aquifer by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Breh, W.; Suttheimer, J.; Hoetzl, H. [Univ. of Karlsruhe (Germany); Frank, K. [GEO-Service GmbH, Rheinmuenster (Germany)

    1997-12-31

    At an industrial site in Bruchsal (Germany) a huge trichloroethene contamination was found. After common remedial actions proved to be widely ineffective, new investigations led to a highly contaminated thin aquifer above the main aquifer. The investigation and the beginning of the remediation of the thin aquifer by two horizontal wells is described in this paper. Special attention was given to the dependence between precipitation and the flow direction in the thin aquifer and to hydraulic connections between the thin and the main aquifer. Also a short introduction into a new remedial technique by horizontal wells and first results of the test phase of the horizontal wells are given.

  19. The use of water marks mapping to understand flood overflow events inside karstic cavities: Cueva Fría and Cueva Rosa (Asturias, NW Spain)

    Science.gov (United States)

    González Lemos, Saúl; Stoll, Heather M.

    2014-05-01

    Several karst systems in Asturias (NW Spain) present evidence of fluvial deposits cemented in speleothems that may provide good chronology of past flood events inside the caves. This flood record is under research in two karstic caves of this region, Cueva Fría and Cueva Rosa, which have in common the presence of a perennial stream inside the cave and a low gradient of the cave passage. Immediately after a flood overflow event, water marks, foam and detritus are visible at different heights on the cave walls and correspond to heights of bottlenecks in overflow drainage through the cave passage. Flood events also deposit sand and gravel on terraces on the cave wall and move large volumes of sand in the cave bed. We have noted that detrital particles (like sand or silt particles) are preserved as inclusions inside the stalagmites and that their abundance inside coeval stalagmites decreases as altitude and distance from the perennial stream increase, supporting its fluvial affinity. However, not all the stalagmites that contain detrital particles are located close to the perennial streams. In this work, we have mapped the water marks preserved in the cave walls to reconstruct water levels associated to flood overflow events of different magnitude. We have found that water mark correlation along the cave passage is very useful to define the hydrological behaviour and flood model of the cave during these extreme events. The water mark mapping and correlation have been also useful to prove that during periods of high rainfall, the movement of the sand-bars inside the cave can cover partially or completely active stalagmites, facilitating the cementation process and trapping abundant detrital material inside the stalagmite carbonate. 14C and U/Th dating of the stalagmites can provide a chronology for the detrital rich layers, so that the abundance of fluvial material in the stalagmites can reveal periods of enhanced vs. reduced flooding in the cave over the past several

  20. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    Science.gov (United States)

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and ...

  2. Biogeochemical aspects of aquifer thermal energy storage

    NARCIS (Netherlands)

    Brons, H.J.

    1992-01-01

    During the process of aquifer thermal energy storage the in situ temperature of the groundwater- sediment system may fluctuate significantly. As a result the groundwater characteristics can be considerably affected by a variety of chemical, biogeochemical and microbiological

  3. Hydrochemical characterization of groundwater aquifer using ...

    African Journals Online (AJOL)

    Hydrochemical data analysis revealed four sources of solutes. The processes responsible for their enrichment include: chemical weathering, leaching of the overlying sediments, domestic activities, climatic condition and the flow pattern of the aquifer. The factors have contributed to the changes of the groundwater chemistry ...

  4. Aquifer restoration: state of the art

    National Research Council Canada - National Science Library

    Knox, Robert C; Knox, R. C

    1986-01-01

    ... of chemicals or waste materials, improper underground injection of liquid wastes, and placement of septic tank systems in hydrologically and geologically unsuitable locations. Incidents of aquifer pollution from man's waste disposal activities have been discovered with increasing regularity. At the same time, demands for groundwater usage have been inc...

  5. Sedimentological analysis of a contaminated groundwater aquifer

    International Nuclear Information System (INIS)

    Towse, D.

    1991-01-01

    The use of sedimentological reservoir analysis techniques adapted from standard oilfield practice can improve the efficiency and reduce the costs of the evaluation of groundwater aquifers and the design of restoration programs. An evaluation/restoration program at a site in California drilled over 200 test wells in about 750 ac. All wells were logged lithologically and with wireline. The shallow aquifer is a complex braided alluvial floodplain deposit of Late Quaternary age. Analysis demonstrates depositional and erosional responses to periodic hinterland uplifts and to changing climatic conditions. Channel, overbank, lacustrine, and minor deltaic deposits can be recognized. The aquifer architecture has been interpreted to explain the movement of fuel and halogenated hydrocarbon solvents in the sediments and water. Routine engineering geology techniques and hydrologic tests were used to evaluate contamination and to design experimental restoration processes. As demonstrated here, sedimentological techniques show promise in reducing the costs and time required for this type of study. The abundant detailed data will be used in an attempt to develop a microcomputer-based expert system for rapid preliminary analyses of similar aquifers or reservoirs

  6. isotopic characteristics of aquifers in sinai

    International Nuclear Information System (INIS)

    Al-Gamal, S.A.

    2004-01-01

    the environmental isotopes data (expressed as δ 2 d and δ 18 O) of different aquifers in sinai were treated using correlation and regression techniques. whereas, rain water isotopic data were treated using empirical orthogonal functions (EOF) techniques. environmental isotopes for different aquifers expressed in terms of O-18 and H-2, were taken to represent the isotopic characteristics. regression equations using the highly correlated variables of δ 2 d and δ 18 O were constructed for each aquifer. the latitudinal variations (of rainwater in sinai and selected climatic stations east mediterranean ) versus rainwater isotopic compositions were analyzed using the normalized variables. it was found that the latitudinal variations of the rainwater isotopic compositions ( δ 2 D, δ 18 O), vapor pressure, and surface temperature occurred in parallel and decreased with latitude. in the east mediterranean, empirical linear relationship between altitude and δ 2 D has indicted that the rate of change of δ 2 D with height is comparable with the dry lapse rate in the atmosphere.The obtained regression equations of environmental isotopes data have impacted on different slopes and different constants expressing the non-homogeneity in the isotopic composition of rainwater recharging the aquifers of sinai , due to the presence of different air masses

  7. Information and Heterogeneous Beliefs

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Qin, Zhenjiang

    2014-01-01

    In an incomplete market with heterogeneous prior beliefs, we show public information can have a substantial impact on the ex ante cost of capital, trading volume, and investor welfare. The Pareto effcient public information system is the system enjoying the maximum ex ante cost of capital...... and the maximum expected abnormal trading volume. Imperfect public information increases the gains-to-trade based on heterogeneously updated posterior beliefs. In an exchange economy, this leads to higher growth in the investors' certainty equivalents and, thus, a higher equilibrium interest rate, whereas the ex...... ante risk premium is unaffected by the informativeness of the public information system. Similar results are obtained in a production economy, but the impact on the ex ante cost of capital is dampened compared to the exchange economy due to welfare improving reductions in real investments to smooth...

  8. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  9. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  10. Micromechanics of heterogeneous materials

    CERN Document Server

    Buryachenko, Valeriy

    2007-01-01

    Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.

  11. Effects of Heterogeneity and Uncertainties in Sources and Initial and Boundary Conditions on Spatiotemporal Variations of Groundwater Levels

    Science.gov (United States)

    Zhang, Y. K.; Liang, X.

    2014-12-01

    Effects of aquifer heterogeneity and uncertainties in source/sink, and initial and boundary conditions in a groundwater flow model on the spatiotemporal variations of groundwater level, h(x,t), were investigated. Analytical solutions for the variance and covariance of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation with a white noise source/sink and a random transmissivity field were derived. It was found that in a typical aquifer the error in h(x,t) in early time is mainly caused by the random initial condition and the error reduces as time goes to reach a constant error in later time. The duration during which the effect of the random initial condition is significant may last a few hundred days in most aquifers. The constant error in groundwater in later time is due to the combined effects of the uncertain source/sink and flux boundary: the closer to the flux boundary, the larger the error. The error caused by the uncertain head boundary is limited in a narrow zone near the boundary but it remains more or less constant over time. The effect of the heterogeneity is to increase the variation of groundwater level and the maximum effect occurs close to the constant head boundary because of the linear mean hydraulic gradient. The correlation of groundwater level decreases with temporal interval and spatial distance. In addition, the heterogeneity enhances the correlation of groundwater level, especially at larger time intervals and small spatial distances.

  12. Percolation in Heterogeneous Media

    International Nuclear Information System (INIS)

    Vocka, Radim

    1999-01-01

    This work is a theoretical reflection on the problematic of the modeling of heterogeneous media, that is on the way of their simple representation conserving their characteristic features. Two particular problems are addressed in this thesis. Firstly, we study the transport in porous media, that is in a heterogeneous media which structure is quenched. A pore space is represented in a simple way - a pore is symbolized as a tube of a given length and a given diameter. The fact that the correlations in the distribution of pore sizes are taken into account by a construction of a hierarchical network makes possible the modeling of porous media with a porosity distributed over several length scales. The transport in the hierarchical network shows qualitatively different phenomena from those observed in simpler models. A comparison of numerical results with experimental data shows that the hierarchical network gives a good qualitative representation of the structure of real porous media. Secondly, we study a problem of the transport in a heterogeneous media which structure is evolving during the time. The models where the evolution of the structure is not influenced by the transport are studied in detail. These models present a phase transition of the same nature as that observed on the percolation networks. We propose a new theoretical description of this transition, and we express critical exponents describing the evolution of the conductivity as a function of fundamental exponents of percolation theory. (author) [fr

  13. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    or no fixed heterogeneity influences this trait. We propose that dynamic heterogeneity provides a 'neutral' model for assessing the possible role of unobserved 'quality' differences between individuals. We discuss fitness for dynamic life histories, and the implications of dynamic heterogeneity...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...... distributions of lifetime reproductive success. Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate variation between life histories. We show by an example that observed distributions of lifetime reproductive success are often consistent with the claim that little...

  14. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers

    Science.gov (United States)

    Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.

    2013-12-01

    Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their

  15. Genetic heterogeneity of retinitis pigmentosa

    OpenAIRE

    Hartono, Hartono

    2015-01-01

    Genetic heterogeneity is a phenomenon in which a genetic disease can be transmitted by several modes of inheritance. The understanding of genetic heterogeneity is important in giving genetic counselling.The presence of genetic heterogeneity can be explained by the existence of:1.different mutant alleles at a single locus, and2.mutant alleles at different loci affecting the same enzyme or protein, or affecting different enzymes or proteins.To have an overall understanding of genetic heterogene...

  16. Geochemical evidence for groundwater behavior in an unconfined aquifer, south Florida

    Science.gov (United States)

    Meyers, Jayson B.; Swart, Peter K.; Meyers', Janet L.

    1993-07-01

    Five well sites have been investigated along an east-west transect across the surfical aquifer system (SAS) of south Florida. Differences between rainfall during wet seasons (June-October) and evaporation during dry seasons (November-May) give surface waters of this region isotopically light ( δ 18O -22‰ and δ D -7.6‰ ) and heavy ( δ 18O +4.2‰ ) compositions, respectively. Surface waters and shallow groundwaters are enriched in 18O and D to the west, which is consistent with westward decrease in equal excess of rainfall. In the shallow portion of the SAS (less than 20 m, Biscayne sub-aquifer) heterogeneous stable isotopic compositions occur over short spans of time (less than 90 days), reflecting seasonal changes in the isotopic composition of recharge and rapid flushing. Homogeneous stable isotopic compositions occur below the Biscayne sub-aquifer, marking the zone of delayed circulation. Surface evaporation calculated from a stable isotope evaporation model agrees with previously published estimates of 75-95% by physical evaporation measurements and water budget calculations. This model contains many parameters that are assumed to be mean values, but short-term variability in some of these parameters may make this model unsuitable for the application of yearly mean values. For the Everglades, changes in the isotopic composition of atmospheric vapor during the dry season may cause the model to yield anomalous results when annual mean values are used. Chloride-enriched waters (more than 280 mg 1 -1) form a plume emanating from the bottom central portion of the transect. Elevated chloride concentration and light stable isotopic composition ( δ 18O ≈ -2‰ , δ D ≈ -8‰ ) suggest this plume is probably caused not by salinity of residual seawater in the aquifer, but by leakage from the minor artesian water-bearing zone of the Floridan aquifer system. Stable isotope values from Floridan aquifer groundwater plot close to the meteoric water line, in the

  17. How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings

  18. On the origins of hypersaline groundwater in the Nile Delta Aquifer

    Science.gov (United States)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2017-04-01

    -renewable fresh water in the Nile Delta aquifer. References: Nofal, E. R., Amer, M. A., El-Didy, S. M., & Akram, M. F. (2015). Sea Water Intrusion in Nile Delta in Perspective of New Configuration of the Aquifer Heterogeneity Using the Recent Stratigraphy Data. Journal of American Science, 11(6), 567-570.

  19. Improved aquifer characterization and the optimization of the design of brackish groundwater desalination systems

    KAUST Repository

    Malivaa, Robert G.

    2011-07-01

    Many water scarce regions possess brackish-water resources that can be desalted to provide alternative water supplies. Brackish groundwater desalination by reverse osmosis (RO) is less expensive than seawater systems because of reduced energy and pretreatment requirements and lesser volumes of concentrate that require disposal. Development of brackish groundwater wellfields include the same hydraulic issues that affect conventional freshwater wellfields. Managing well interference and prevention of adverse impacts such as land subsidence are important concerns. RO systems are designed to treat water whose composition falls within a system-specific envelope of salinities and ion concentrations. A fundamental requirement for the design of brackish groundwater RO systems is prediction of the produced water chemistry at both the start of pumping and after 10-20 years of operation. Density-dependent solute-transport modeling is thus an integral component of the design of brackish groundwater RO systems. The accuracy of groundwater models is dependent upon the quality of the hydrogeological data upon which they are based. Key elements of the aquifer characterization are the determination of the three-dimensional distribution of salinity within the aquifer and the evaluation of aquifer heterogeneity with respect to hydraulic conductivity. It is necessary to know from where in a pumped aquifer (or aquifer zone) water is being produced and the contribution of vertical flow to the produced water. Unexpected, excessive vertical migration (up-coning) of waters that are more saline has adversely impacted some RO systems because the salinity of the water delivered to the system exceeded the system design parameters. Improved aquifer characterization is possible using advanced geophysical techniques, which can, in turn, lead to more accurate solute-transport models. Advanced borehole geophysical logs, such as nuclear magnetic resonance, were run as part of the exploratory test

  20. San Pedro River Aquifer Binational Report

    Science.gov (United States)

    Callegary, James B.; Minjárez Sosa, Ismael; Tapia Villaseñor, Elia María; dos Santos, Placido; Monreal Saavedra, Rogelio; Grijalva Noriega, Franciso Javier; Huth, A. K.; Gray, Floyd; Scott, C. A.; Megdal, Sharon; Oroz Ramos, L. A.; Rangel Medina, Miguel; Leenhouts, James M.

    2016-01-01

    The United States and Mexico share waters in a number of hydrological basins and aquifers that cross the international boundary. Both countries recognize that, in a region of scarce water resources and expanding populations, a greater scientific understanding of these aquifer systems would be beneficial. In light of this, the Mexican and U.S. Principal Engineers of the International Boundary and Water Commission (IBWC) signed the “Joint Report of the Principal Engineers Regarding the Joint Cooperative Process United States-Mexico for the Transboundary Aquifer Assessment Program" on August 19, 2009 (IBWC-CILA, 2009). This IBWC “Joint Report” serves as the framework for U.S.-Mexico coordination and dialogue to implement transboundary aquifer studies. The document clarifies several details about the program such as background, roles, responsibilities, funding, relevance of the international water treaties, and the use of information collected or compiled as part of the program. In the document, it was agreed by the parties involved, which included the IBWC, the Mexican National Water Commission (CONAGUA), the U.S. Geological Survey (USGS), and the Universities of Arizona and Sonora, to study two priority binational aquifers, one in the San Pedro River basin and the other in the Santa Cruz River basin. This report focuses on the Binational San Pedro Basin (BSPB). Reasons for the focus on and interest in this aquifer include the fact that it is shared by the two countries, that the San Pedro River has an elevated ecological value because of the riparian ecosystem that it sustains, and that water resources are needed to sustain the river, existing communities, and continued development. This study describes the aquifer’s characteristics in its binational context; however, most of the scientific work has been undertaken for many years by each country without full knowledge of the conditions on the other side of the border. The general objective of this study is to

  1. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Rowland, Helen A.L.; Gault, Andrew G.; Lythgoe, Paul; Polya, David A.

    2008-01-01

    Elevated As is well known to be present in aquifers utilised for drinking water and irrigation in West Bengal and Bangladesh. This problem has also more recently been discovered in other parts of Asia, including Vietnam, Cambodia, Inner Mongolia and the Middle Ganges Plain. Analysis of groundwaters in Kandal Province of Cambodia found waters with comparable geochemistry to the As-rich groundwaters of the West Bengali Delta. Similarities included high but heterogeneous As distributions, predominantly in the form As(III), high Fe, moderate to high HCO 3 - , circumneutral pH, low SO 4 2- and geochemical components indicative of reducing conditions. Good positive correlations between As, Fe, HCO 3 - and NH 4 + , and dissolved organic C is consistent with As release predominantly via microbially mediated reductive dissolution of As bearing Fe(III) oxides. Further evidence for such a process is found from correlations between As, Fe and organic matter from analysis of aquifer sediments, by the presence of goethite in the finer fractions and from the association of As with amorphous, poorly crystalline and well crystallised hydrous Fe oxides. The presence of several high As, but low Fe, wells implies that microbes could have a more direct role in mediating As release via the direct utilisation of Fe(III) or As(V) as electron acceptors. The presence of elevated As in waters with short aquifer residence times (as indicated by their geochemical signature) highlights the possible vulnerability of these aquifers to the influx of surface derived waters, providing an additional source of labile organic C that could exacerbate As release by stimulating microbial activity

  3. Estimation of surface runoff for calculating recharge in the karstic massif of Ports of Beseit (Tarragona, Spain) combining water balance in the soil and analysis of flow hydrographs

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa Martinez, S.; Custodio, E.

    2016-07-01

    For the right estimation of aquifer recharge by precipitation surface taking into account runoff is particularly relevant. Non considering it in the estimation of the groundwater resources can overestimate them. In the Baix Ebre aquifer system, in southern Catalonia, the surface and vadose zone runoff produced in the karstified carbonate formations in the Ports de Beseit massif has to be evaluated in order to achieve a better estimation of the resources transferred from this massif to the Plana de La Galera plain. Starting from the conceptual hydrogeological model, the average annual runoff is estimated. It includes the discharge from temporal perched aquifers in the Ports de Beseit massif, in the Matarraña river basin, and in the SE watershed to the Plana de La Galera plain. This is performed by analyzing the river and tributaries hydrographs, the filling and emptying hydrographs of the Ulldecona reservoir, and the soil water balance using the Visual Balan code applied to obtain the runoff in the Ulldecona reservoir watershed. The runoff has been estimated about 105±20 mm·yr−1, which represents 20–30% of average annual recharge in the Ports, estimated with soil water balance and atmospheric chloride deposition balance, about 350–500 mm·yr−1, which is mostly transferred laterally to the Plana de La Galera plain. (Author)

  4. Estimation of surface runoff for calculating recharge in the karstic massif of Ports of Beseit (Tarragona, Spain) combining water balance in the soil and analysis of flow hydrographs

    International Nuclear Information System (INIS)

    Espinosa Martinez, S.; Custodio, E.

    2016-01-01

    For the right estimation of aquifer recharge by precipitation surface taking into account runoff is particularly relevant. Non considering it in the estimation of the groundwater resources can overestimate them. In the Baix Ebre aquifer system, in southern Catalonia, the surface and vadose zone runoff produced in the karstified carbonate formations in the Ports de Beseit massif has to be evaluated in order to achieve a better estimation of the resources transferred from this massif to the Plana de La Galera plain. Starting from the conceptual hydrogeological model, the average annual runoff is estimated. It includes the discharge from temporal perched aquifers in the Ports de Beseit massif, in the Matarraña river basin, and in the SE watershed to the Plana de La Galera plain. This is performed by analyzing the river and tributaries hydrographs, the filling and emptying hydrographs of the Ulldecona reservoir, and the soil water balance using the Visual Balan code applied to obtain the runoff in the Ulldecona reservoir watershed. The runoff has been estimated about 105±20 mm·yr−1, which represents 20–30% of average annual recharge in the Ports, estimated with soil water balance and atmospheric chloride deposition balance, about 350–500 mm·yr−1, which is mostly transferred laterally to the Plana de La Galera plain. (Author)

  5. Conceptual hydrochemical model of late Pleistocene aquifers at the Samario-Sitio Grande petroleum reservoir, Gulf of Mexico, Mexico

    International Nuclear Information System (INIS)

    Birkle, Peter; Angulo, Maricela

    2005-01-01

    Carbon-14 concentrations between 0.83 and 11.79 pmC of formation water from the Activo Samaria-Sitio Grande petroleum reservoir in SE-Mexico, extracted from 3500 to 4500 m.b.s.l., indicate a common infiltration event of surface water during the late Pleistocene period. Mixing of two components - meteoric water and seawater, previously evaporated at the surface - explain the widespread mineralization (TDI = 15-257 g/L) of Na-Cl and Na-Ca-Cl type reservoir water. Statistical discrimination by clustering and a heterogeneous chemical-isotopic fluid composition indicate the existence of 4 different water types as part of local aquifer systems, which are separated by normal and thrust faults. Tectonic horst and graben structures show an ambiguous, individual hydraulic behaviour - as permeable conduits and/or as impermeable barriers, causing the local limitation of aquifer extent. The recent increase of water production in petroleum wells is not related to the injection of surface water, but the long-term extraction of oil reserves is modifying the original position and flow direction of the reservoir aquifers. The rise of the initial groundwater level reflects the final stage of an exhausted petroleum reservoir with coning effects of underlying aquifer systems. The flexible change towards superior production intervals could represent a feasible technique to avoid the abrupt closure of invaded production wells

  6. Conceptual hydrochemical model of late Pleistocene aquifers at the Samario-Sitio Grande petroleum reservoir, Gulf of Mexico, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Av. Reforma 113, Col. Palmira, Cuernavaca, Mor., 62490 (Mexico)]. E-mail: birkle@iie.org.mx; Angulo, Maricela [PEMEX - Exploracion y Produccion, Diseno de Explotacion Cactus-Nispero Sitio Grande, Zona Industrial S/N, Reforma, Chiapas (Mexico)

    2005-06-15

    Carbon-14 concentrations between 0.83 and 11.79 pmC of formation water from the Activo Samaria-Sitio Grande petroleum reservoir in SE-Mexico, extracted from 3500 to 4500 m.b.s.l., indicate a common infiltration event of surface water during the late Pleistocene period. Mixing of two components - meteoric water and seawater, previously evaporated at the surface - explain the widespread mineralization (TDI = 15-257 g/L) of Na-Cl and Na-Ca-Cl type reservoir water. Statistical discrimination by clustering and a heterogeneous chemical-isotopic fluid composition indicate the existence of 4 different water types as part of local aquifer systems, which are separated by normal and thrust faults. Tectonic horst and graben structures show an ambiguous, individual hydraulic behaviour - as permeable conduits and/or as impermeable barriers, causing the local limitation of aquifer extent. The recent increase of water production in petroleum wells is not related to the injection of surface water, but the long-term extraction of oil reserves is modifying the original position and flow direction of the reservoir aquifers. The rise of the initial groundwater level reflects the final stage of an exhausted petroleum reservoir with coning effects of underlying aquifer systems. The flexible change towards superior production intervals could represent a feasible technique to avoid the abrupt closure of invaded production wells.

  7. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Science.gov (United States)

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  8. Active thermal tracer testing in a shallow aquifer of the Thur valley, Switzerland

    Science.gov (United States)

    Schweingruber, Mischa; Somogyvári, Márk; Bayer, Peter

    2015-04-01

    Tracer tests are one of the standard methods for investigating groundwater processes. Among the range of different test variants, using heat as a tracer has gained substantial interest during the last decade. Temperature measurements have become essential ingredients for example for characterization of river-aquifer interactions and in the field of geothermics. Much less attention than on natural temperature signals has been devoted to induced synthetic temperature signals, even though it is well known that temperature is an easy to measure, invisible but sensitive system property. Design, application and inversion of such active thermal tracer tests represent one focus of our work. We build up on the experience from related field experiments, where heated water was injected and the propagation of the generated thermal anomaly was monitored. In this presentation, we show the results from first field-testing in an alluvial aquifer at the Widen site in the Thur valley in Switzerland. The thermal evolution of groundwater was monitored in summer 2014 during and after several days of heated water injection. By this test, we want to derive insights into the prevailing hydraulic heterogeneity of the shallow aquifer at the site. The results are used for calibration of a two dimensional hydrogeological numerical model. With the calibrated hydraulic conductivity field, the experiment is simulated and the transient evolution of the heat plume is visualized. Hydraulic heterogeneity is identified as one main factor for lateral spreading of the heat plume. The most important result of the experiment is that the significance of the ambient flow field is very high and even with high pumping rates to establish forced gradient conditions its effect cannot be overridden. During the test, precious technical experience was gained, which will be beneficial for subsequent heat tracer applications. For example, the challenge of maintaining a constant injection rate and temperature could

  9. Geological heterogeneity: Goal-oriented simplification of structure and characterization needs

    Science.gov (United States)

    Savoy, Heather; Kalbacher, Thomas; Dietrich, Peter; Rubin, Yoram

    2017-11-01

    Geological heterogeneity, i.e. the spatial variability of discrete hydrogeological units, is investigated in an aquifer analog of glacio-fluvial sediments to determine how such a geological structure can be simplified for characterization needs. The aquifer analog consists of ten hydrofacies whereas the scarcity of measurements in typical field studies precludes such detailed spatial models of hydraulic properties. Of particular interest is the role of connectivity of the hydrofacies structure, along with its effect on the connectivity of mass transport, in site characterization for predicting early arrival times. Transport through three realizations of the aquifer analog is modeled with numerical particle tracking to ascertain the fast flow channel through which early arriving particles travel. Three simplification schemes of two-facies models are considered to represent the aquifer analogs, and the velocity within the fast flow channel is used to estimate the apparent hydraulic conductivity of the new facies. The facies models in which the discontinuous patches of high hydraulic conductivity are separated from the rest of the domain yield the closest match in early arrival times compared to the aquifer analog, but assuming a continuous high hydraulic conductivity channel connecting these patches yields underestimated early arrivals times within the range of variability between the realizations, which implies that the three simplification schemes could be advised but pose different implications for field measurement campaigns. Overall, the results suggest that the result of transport connectivity, i.e. early arrival times, within realistic geological heterogeneity can be conserved even when the underlying structural connectivity is modified.

  10. Heterogeneous chromatin target model

    International Nuclear Information System (INIS)

    Watanabe, Makoto

    1996-01-01

    The higher order structure of the entangled chromatin fibers in a chromosome plays a key role in molecular control mechanism involved in chromosome mutation due to ionizing radiations or chemical mutagens. The condensed superstructure of chromatin is not so rigid and regular as has been postulated in general. We have proposed a rheological explanation for the flexible network system ('chromatin network') that consists of the fluctuating assembly of nucleosome clusters linked with supertwisting DNA in a chromatin fiber ('Supertwisting Particulate Model'). We have proposed a 'Heterosensitive Target Model' for cellular radiosensitivity that is a modification of 'Heterogeneous Target Model'. The heterogeneity of chromatin target is derived from the highly condensed organization of chromatin segments consist of unstable and fragile sites in the fluctuating assembly of nucleosome clusters, namely 'supranucleosomal particles' or 'superbeads'. The models have been principally supported by our electron microscopic experiments employing 'surface - spreading whole - mount technique' since 1967. However, some deformation and artifacts in the chromatin structure are inevitable with these electron microscopic procedures. On the contrary, the 'atomic force microscope (AFM)' can be operated in liquid as well as in the air. A living specimen can be examined without any preparative procedures. Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. The living human chromosomes were submerged in a solution of culture medium and observed by AFM using a liquid immersion cell. The surface - spreading whole - mount technique was applicable for this observation. The particulate chromatin segments of nucleosome clusters were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (J.P.N.)

  11. Heterogeneous Active Matter

    Science.gov (United States)

    Kolb, Thomas; Klotsa, Daphne

    Active systems are composed of self-propelled (active) particles that locally convert energy into motion and exhibit emergent collective behaviors, such as fish schooling and bird flocking. Most works so far have focused on monodisperse, one-component active systems. However, real systems are heterogeneous, and consist of several active components. We perform molecular dynamics simulations of multi-component active matter systems and report on their emergent behavior. We discuss the phase diagram of dynamic states as well as parameters where we see mixing versus segregation.

  12. Implications of heterogeneity on transport simulations at large scale: the Morroa aquifer case

    Directory of Open Access Journals (Sweden)

    Anibal Jose Pérez-García

    2014-01-01

    Full Text Available El acuífero Morroa, localizado en el departamento de Sucre (Colombia, representa la única fuente de suministro de agua potable de cerca de 500.000 habitantes que incluyen la totalidad de los habitantes de la capital del departamento Sincelejo. Aunque se han desarrollado muchos estudios en esta zona que incluyen la recolección de gran cantidad de información relacionada con niveles piezométricos, información estratigráfica, pruebas de bombeo, esta información es difusa, heterogénea y fraccionada. La incertidumbre asociada a esta información afecta cualquier intento de cuantificar la respuesta del acuífero, por esta razón el punto de partida de esta investigación es el desarrollo de una metodología capaz de integrar todas las variables en un modelo conceptual. Para considerar la incertidumbre se generaron múltiples realizaciones del acuífero de tal manera que todas respetan las propiedades estadísticas de la información disponible. Para generar estas realizaciones se utilizaron dos metodologías: (1 SISIM, que es un método basado en estadísticas de dos puntos (semivariograma, y (2 SNESIM, que es un algoritmo basado en el concepto de imágenes de entrenamiento (estadística de puntos múltiples. Resultados de las simulaciones muestran la gran capacidad de este último para reproducir geometrías curvilíneas complejas. En una segunda fase, se desarrollaron simulaciones de flujo y transporte de contaminantes de una manera integrada usando los dos modelos conceptuales obtenidos a través de las dos aproximaciones geoestadísticas. Condiciones de flujo estacionario y un contaminante conservativo fueron asumidos para todas las simulaciones. Los resultados obtenidos muestran una influencia notable de la heterogeneidad en general, así como una gran sensibilidad al método geoestadístico usado para generar la heterogeneidad. Las diferencias observadas tendrían un gran efecto en el diseño de políticas de manejo integral del recurso hídrico a medio y largo plazo, así como en el diseño de medidas de remediación.

  13. Estimation of Transport Parameters Using Forced Gradient Tracer Tests in Heterogeneous Aquifers

    National Research Council Canada - National Science Library

    Illangasekare, Tissa

    2003-01-01

    .... The focus was on both reactive and sorptive parameters. The experimental component of the study was conducted in a three-dimensional, intermediate-scale test tank to obtain accurate data on the behavior of nonreactive and sorptive tracers...

  14. A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers

    Science.gov (United States)

    Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.

    2016-10-01

    Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.

  15. Direct-push geochemical profiling for assessment of inorganic chemical heterogeneity in aquifers

    Science.gov (United States)

    Schulmeister, M.K.; Healey, J.M.; Butler, J.J.; McCall, G.W.

    2004-01-01

    Discrete-depth sampling of inorganic groundwater chemistry is essential for a variety of site characterization activities. Although the mobility and rapid sampling capabilities of direct-push techniques have led to their widespread use for evaluating the distribution of organic contaminants, complementary methods for the characterization of spatial variations in geochemical conditions have not been developed. In this study, a direct-push-based approach for high-resolution inorganic chemical profiling was developed at a site where sharp chemical contrasts and iron-reducing conditions had previously been observed. Existing multilevel samplers (MLSs) that span a fining-upward alluvial sequence were used for comparison with the direct-push profiling. Chemical profiles obtained with a conventional direct-push exposed-screen sampler differed from those obtained with an adjacent MLS because of sampler reactivity and mixing with water from previous sampling levels. The sampler was modified by replacing steel sampling components with stainless-steel and heat-treated parts, and adding an adapter that prevents mixing. Profiles obtained with the modified approach were in excellent agreement with those obtained from an adjacent MLS for all constituents and parameters monitored (Cl, NO3, Fe, Mn, DO, ORP, specific conductance and pH). Interpretations of site redox conditions based on field-measured parameters were supported by laboratory analysis of dissolved Fe. The discrete-depth capability of this approach allows inorganic chemical variations to be described at a level of detail that has rarely been possible. When combined with the mobility afforded by direct-push rigs and on-site methods of chemical analysis, the new approach is well suited for a variety of interactive site-characterization endeavors. ?? 2003 Elsevier B.V. All rights reserved.

  16. Environmental assessment on karstic formations for implantation of a terrestrial pipeline: case study of the Cacimbas-Catu gas pipeline; Avaliacao ambiental para implantacao de dutos terretres em terrenos carsticos: estudo de caso Gasoduto Cacimbas-Catu

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Shanty Navarro; Oliveira, Wilson Jose de; Braun, Oscar [PETROBRAS, Rio de Janeiro, RJ (Brazil)] (and others)

    2008-07-01

    This work concerns in the development of a study on mapping and detection of structures and geological and geotechnical features associated with karstic relief and its implications in terms of ground stability to support the pipeline as well as from the point of view of cavities / caves conservation, potentially impacted by this activity. The limited mobility of track, carried by the existing restrictions, make the route of the Cacimbas-Catu pipeline pass through the cities of Itapebi (BA), Belomonte (BA), Mascote (BA) e Camaca (BA), where the local geology is characterized by rocks of Rio Pardo Group, dating from the Superior proterozoic (lower sequence predominantly carbonatic and upper sequence predominantly terrigenous). The study included a survey of secondary data, a field survey confirming karstic features, a 2D and subsequently 3D tomography survey, and a drilling survey to direct research at points of geo-electrical anomalies. The work did not identify underground cavities on the Cacimbas-Catu pipeline route. Even taking the studies presented geo-electric anomalies the direct investigation did not confirm the presence of voids in sub-surface, which enables the implementation of pipelines in this place, however the presence of electric anomalies with high resistivity indicate geotechnical areas where special care should be taken in relation to the stability of the ground. (author)

  17. Aquifer thermal energy storage in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Iihola, H; Ala-Peijari, T; Seppaenen, H

    1988-01-01

    The rapid changes and crises in the field of energy during the 1970s and 1980s have forced us to examine the use of energy more critically and to look for new ideas. Seasonal aquifer thermal energy storage (T < 100/sup 0/C) on a large scale is one of the grey areas which have not yet been extensively explored. However, projects are currently underway in a dozen countries. In Finland there have been three demonstration projects from 1974 to 1987. International co-operation under the auspices of the International Energy Agency, Annex VI, 'Environmental and Chemical Aspects of Thermal Energy Storage in Aquifers and Research and Development of Water Treatment Methods' started in 1987. The research being undertaken in 8 countries includes several elements fundamental to hydrochemistry and biochemistry.

  18. Study of Aquifer Thermal Energy Storage

    Science.gov (United States)

    Okuyama, Masaaki; Umemiya, Hiromichi; Shibuya, Ikuko; Haga, Eiji

    Yamagata University 'Aquifer Thermal Energy Storage (ATES)' is the experimental system which has been running since 1982. From the results for along terms of experiments, we obtain many important knowledge. This paper presents the accomplishments for 16 years and the characteristics of thermal energy storage in thermal energy storage well. The conclusions show as follows. 1)In recent years, the thermal recovery factor of warm energy storage well becomes almost constant at about 60%. 2) The thermal recovery factor of cool energy storage well increases gradually and becomes at about 15%. 3) Since the ferric colloidal dam is formed in aquifer, thermal recovery factor increase year after year. 4) Back wash can remove clogging for ferric colloidal dam. 5) The apparent thermal diffusivity decrease gradually due to ferric colloidal dam.

  19. Increasing freshwater recovery upon aquifer storage : A field and modelling study of dedicated aquifer storage and recovery configurations in brackish-saline aquifers

    NARCIS (Netherlands)

    Zuurbier, Koen

    2016-01-01

    The subsurface may provide opportunities for robust, effective, sustainable, and cost-efficient freshwater management solutions. For instance, via aquifer storage and recovery (ASR; Pyne, 2005): “the storage of water in a suitable aquifer through a well during times when water is available, and the

  20. Investigating the Surface and Subsurface in Karstic Regions – Terrestrial Laser Scanning versus Low-Altitude Airborne Imaging and the Combination with Geophysical Prospecting

    Directory of Open Access Journals (Sweden)

    Nora Tilly

    2017-08-01

    Full Text Available Combining measurements of the surface and subsurface is a promising approach to understand the origin and current changes of karstic forms since subterraneous processes are often the initial driving force. A karst depression in south-west Germany was investigated in a comprehensive campaign with remote sensing and geophysical prospecting. This contribution has two objectives: firstly, comparing terrestrial laser scanning (TLS and low-altitude airborne imaging from an unmanned aerial vehicle (UAV regarding their performance in capturing the surface. Secondly, establishing a suitable way of combining this 3D surface data with data from the subsurface, derived by geophysical prospecting. Both remote sensing approaches performed satisfying and the established digital elevation models (DEMs differ only slightly. These minor discrepancies result essentially from the different viewing geometries and post-processing concepts, for example whether the vegetation was removed or not. Validation analyses against high-accurate DGPS-derived point data sets revealed slightly better results for the DEMTLS with a mean absolute difference of 0.03 m to 0.05 m and a standard deviation of 0.03 m to 0.07 m (DEMUAV: mean absolute difference: 0.11 m to 0.13 m; standard deviation: 0.09 m to 0.11 m. The 3D surface data and 2D image of the vertical cross section through the subsurface along a geophysical profile were combined in block diagrams. The data sets fit very well and give a first impression of the connection between surface and subsurface structures. Since capturing the subsurface with this method is limited to 2D and the data acquisition is quite time consuming, further investigations are necessary for reliable statements about subterraneous structures, how these may induce surface changes, and the origin of this karst depression. Moreover, geophysical prospecting can only produce a suspected image of the subsurface since the apparent resistivity is measured

  1. Impact of mixing chemically heterogeneous groundwaters on the sustainability of an open-loop groundwater heat pump

    Science.gov (United States)

    Burté, L.; Farasin, J.; Cravotta, C., III; Gerard, M. F.; Cotiche Baranger, C.; Aquilina, L.; Le Borgne, T.

    2017-12-01

    Geothermal systems using shallow aquifers are commonly used for heating and cooling. The sustainability of these systems can be severely impacted by the occurrence of clogging process. The geothermal loop operation (including pumping of groundwater, filtering and heat extraction through exchangers and cooled water injection) can lead to an unexpected biogeochemical reactivity and scaling formation that can ultimately lead to the shutdown of the geothermal doublet. Here, we report the results of investigations carried out on a shallow geothermal doublet (dynamic). Hydrochemical data collected at the pumping well showed that groundwater was chemically heterogeneous long the 11 meters well screen. While the aquifer was dominantly oxic, a localized inflow of anoxic water was detected and evaluated to produce about 40% of the total flow . The mixture of chemically heterogeneous water induced by pumping lead to the oxidation of reductive species and thus to the formation of biogenic precipitates responsible for clogging. The impact of pumping waters of different redox potential and chemical characteristics was quantified by numerical modeling using PHREEQC. These results shows that natural chemical heterogeneity can occur at a small scale in heterogeneous aquifers and highlight the importance of their characterization during the production well testing and the geothermal loop operation in order to take preventive measures to avoid clogging.

  2. Understanding Uranium Behavior in a Reduced Aquifer

    Science.gov (United States)

    Janot, N.; Lezama-Pacheco, J. S.; Williams, K. H.; Bernier-Latmani, R.; Long, P. E.; Davis, J. A.; Fox, P. M.; Yang, L.; Giammar, D.; Cerrato, J. M.; Bargar, J.

    2012-12-01

    Uranium contamination of groundwater is a concern at several US Department of Energy sites, such Old Rifle, CO. Uranium transport in the environment is mainly controlled by its oxidation state, since oxidized U(VI) is relatively mobile, whereas U(IV) is relatively insoluble. Bio-remediation of contaminated aquifers aims at immobilizing uranium in a reduced form. Previous laboratory and field studies have shown that adding electron donor (lactate, acetate, ethanol) to groundwater stimulates the activity of metal- and sulfate-reducing bacteria, which promotes U(VI) reduction in contaminated aquifers. However, obtaining information on chemical and physical forms of U, Fe and S species for sediments biostimulated in the field, as well as kinetic parameters such as U(VI) reduction rate, is challenging due to the low concentration of uranium in the aquifers (typically bio-remediation experiment at the Old Rifle site, CO, from early iron-reducing conditions to the transition to sulfate-reducing conditions. Several in-well chromatographic columns packed with sediment were deployed and were sampled at different days after the start of bio-reduction. X-ray absorption spectroscopy and X-ray microscopy were used to obtain information on Fe, S and U speciation and distribution. Chemical extractions of the reduced sediments have also been performed, to determine the rate of Fe(II) and U(IV) accumulation.

  3. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1979-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 Csub(CH 4 )>-45 per mille and microbially produced or biogenic methane had delta 13 Csub(CH 4 ) 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  4. Investigating the Sources of Nitrogen Contamination in the Shallow Aquifer of Jakarta using a Newly Developed Distributed River-Aquifer Flow and Transport Model

    Science.gov (United States)

    Costa, D.; Burlando, P.; Liong, S. Y.

    2015-12-01

    Recent observations in the shallow aquifer of Jakarta show a rise in nitrate (NO3-) levels. Groundwater is extensively used in the city to compensate for the limited public water supply network and therefore the risk to public health from a rise in NO3- concentration is high. NO3- has been identified as a cofactor for methemoglobinemia in infants, a disease which can lead to death in extreme cases. The NO3- levels detected are still below regulatory limits for drinking purposes but strategies are necessary to contain the growing problem. To this end, the main sources and pathways of inorganic compounds containing nitrogen (N) - i.e. nitrate, nitrite (NO2-) and ammonium (NH4+) - were investigated. We combined 3 years of field measurements in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterize the N-cycle in both systems and quantify the contribution of river infiltration in the overall groundwater N budget. The computed infiltration fluxes were compared to estimates of leaks from poorly maintained septic tanks, which are extensively used in the city, to identify the main source of groundwater contamination. Observations show a strong and interdependent spatial and seasonal variability in the levels of NO3-, NO2- and NH4+ in the river, which is caused by changes in nitrification/denitrification rates due to variations in dissolved oxygen concentrations. Simulation results suggest that such dynamics in the river cause river to aquifer contamination patterns to likewise change over space and time, which leads to heterogeneous vulnerability distributions. The estimated contribution of river-N infiltration to the observed NO3- groundwater levels is small if compared to that originating from all leaking septic tanks inside Jakarta. However, in the vicinity of the Ciliwung, river to groundwater N-loading can play an important role in the local NO3- groundwater levels because it is highly

  5. Measurements of capillary pressure and electric permittivity of gas-water systems in porous media at elevated pressures : Application to geological storage of CO2 in aquifers and wetting behavior in coal

    NARCIS (Netherlands)

    Plug, W.J.

    2007-01-01

    Sequestration of CO2 in aquifers and coal layers is a promising technique to reduce greenhouse gas emissions. Considering the reservoir properties, e.g. wettability, heterogeneity and the caprocks sealing capacity, the capillary pressure is an important measure to evaluate the efficiency, the

  6. Hydrology of the shallow aquifer and uppermost semiconfined aquifer near El Paso, Texas

    Science.gov (United States)

    White, D.E.; Baker, E.T.; Sperka, Roger

    1997-01-01

    The availability of fresh ground water in El Paso and adjacent areas that is needed to meet increased demand for water supply concerns local, State, and Federal agencies. The Hueco bolson is the principal aquifer in the El Paso area. Starting in the early 1900s and continuing to the 1950s, most of the municipal and industrial water supply in El Paso was pumped from the Hueco bolson aquifer from wells in and near the Rio Grande Valley and the international border. The Rio Grande is the principal surface-water feature in the El Paso area, and a major source of recharge to the shallow aquifer (Rio Grande alluvium) within the study area is leakage of flow from the Rio Grande.

  7. Hydrochemical zonation of the western part of Göksu Delta aquifer system, Southern Turkey

    Science.gov (United States)

    Dokuz, U. E.; Çelik, M.; Arslan, Ş.; Engin, H.

    2012-04-01

    In general, coastal areas are preferred places for human settlement, especially at places where infrastructure routes benefit from rivers, streets, or harbours. As a result, these areas usually suffer from rising population and endure increasingly high demand on natural resources like water. Göksu Delta, located in southern Turkey, is one of the important wetland areas of Turkey at the Mediterranean coast. It is divided into two parts by Göksu River. The western part of the delta, which is the subject matter of this study, hosts fertile agricultural fields, touristic places and a Special Environmental Protection Area. These properties of the region lead to a water-dependent ecosystem where groundwater has widely been used for agricultural and domestic purposes. When the exploitation of groundwater peaked in the middle of 1990s, the groundwater levels dropped and seawater intruded. General Directorate of State Hydraulic Works tried to stop seawater intrusion by building irrigation channels connected to Göksu River and banned drilling of new wells for groundwater exploitation, although it is hard to control the drilling of wells without official permit. Geological studies show that the delta is composed of terrestrial sediments including clay to coarse sand deposited during Quaternary. The heterogeneous sediments of Göksu Delta cause hydrogeological features of the aquifer systems to be heterogeneous and anisotropic. Hydrogeological investigations, therefore, indicate mainly two different aquifers, shallow and deep, separated by an aquitard. The shallow aquifer is under unconfined to confined conditions from north to south while the deep aquifer is under confined conditions. This study focuses on hydrogeochemical zonation in terms of hydrochemical processes that affect the Göksu Delta aquifer systems. For this purpose, hydrogeochemical and isotopic studies are conducted to understand the salinisation and softening processes of groundwater. The physicochemical

  8. Influence of coal mine tips on the chalk aquifer. Sampling methods for three dimensional sulphate infiltration study

    International Nuclear Information System (INIS)

    Barrez, F.; Mania, J.; Mansy, J.L.; Piwakowski, B.

    2005-01-01

    The coal basin of the Nord-Pas-de-Calais region (France) shows a very strong deterioration of the Chalk aquifer quality. In order to better model the hydro-dynamism and to improve knowledge on the chemical interactions, sampling according to depth of the groundwater is undertaken. The low-flow sampling and the profiles of the in-situ physicochemical parameters allow the observation of various vertical heterogeneities of the aquifer. The areas where the coal mine tips are localised appear very interesting to study. The sulphates released by the pyrite oxidation allow a 'artificial tracing' and give a visualization of the flow as well as information on the implied chemical processes between the oxidizing and reducing zones. (authors)

  9. Influence of coal mine tips on the chalk aquifer. Sampling methods for three dimensional sulphate infiltration study

    Energy Technology Data Exchange (ETDEWEB)

    Barrez, F.; Mania, J. [Polytech' Lille, Dept. Genie Civil, UMR CNRS 8107 (LML), 59 - Villeneuve d' Ascq (France); Mansy, J.L. [Lille-1 Univ., Lab. de Sedimentologie et de Geodynamique, UMR CNRS 8110 (PBDS), 59 - Villeneuve d' Ascq (France); Piwakowski, B. [Ecole Centrale de Lille, Groupe Electronique Acoustique IEMN-DOAE, UMR CNRS 8520, 59 - Villeneuve d' Ascq (France)

    2005-07-01

    The coal basin of the Nord-Pas-de-Calais region (France) shows a very strong deterioration of the Chalk aquifer quality. In order to better model the hydro-dynamism and to improve knowledge on the chemical interactions, sampling according to depth of the groundwater is undertaken. The low-flow sampling and the profiles of the in-situ physicochemical parameters allow the observation of various vertical heterogeneities of the aquifer. The areas where the coal mine tips are localised appear very interesting to study. The sulphates released by the pyrite oxidation allow a 'artificial tracing' and give a visualization of the flow as well as information on the implied chemical processes between the oxidizing and reducing zones. (authors)

  10. A convenient method for estimating the contaminated zone of a subsurface aquifer resulting from radioactive waste disposal into ground

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kousuke; Uchida, Shigeo.

    1981-01-01

    Studies were conducted to estimate the contamination spread resulting from the radioactive waste disposal into a subsurface aquifer. A general equation, expressing the contaminated zone as a function of radioactive decay, the physical and chemical parameters of soil is presented. A distribution coefficient was also formulated which can be used to judge the suitability of a site for waste disposal. Moreover, a method for predicting contaminant concentration in groundwater at a site boundary is suggested for a heterogeneous media where the subsurface aquifer has different values of porosity, density, flow velocity, distribution coefficient and so on. A general equation was also developed to predict the distribution of radionuclides resulting from the disposal of a solid waste material. The distributions of contamination was evaluated for 90 Sr and 239 Pu which obey a linear adsorption model and a first order kinetics respectively. These equations appear to have practical utility for easily estimating groundwater contamination. (author)

  11. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study present the variations of recharge into the aquifer under the prediction simulations. The recharge rate increases the water level as indicated by hydraulic heads. This shows that it can alter groundwater of Manukan Island which has been suffering from an overexploration in its unconfined the aquifer. The increase in recharge rate (from 600 mm/year to 750 mm/year increases the water level indicated by hydraulic heads. A reduction in pumping rate (from 0.072 m3/day to 0.058 m3/day not only increases the amount of water levels in aquifer but also reduces the supply hence a deficit in supply. The increase in hydraulic heads depends on the percentage reduction of pumping and recharges rates. The well water has 1978.3 mg/L chloride with current pumping (0.072 m3/day and recharge rates (600 mm/year. However, with an increased of recharge rate and current pumping rate it has decreased about 1.13%. In addition, reduction in pumping rate made the chloride concentration decreased about 2.8%. In general, a reduction in pumping with an increase in recharge rate leads to a decreased in chloride concentrations within the vicinity of cone of depression. Next, to further develop the numerical model, the model should focus on climate change variables such as consequences of climate change are increase in air temperature, increase in sea surface temperature, and more extreme weather conditions. These parameters are considered critical parameters for climate change impact modeling in aquifers. The behavior of the aquifer and its sustainable pumping rate can be done by applying a computer modeling component.

  12. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  13. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.

    Science.gov (United States)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-21

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  14. Delineating saturated conduit patterns and dimensions in the upper Floridan aquifer through numerical groundwater flow modeling (Invited)

    Science.gov (United States)

    Kincaid, T. R.; Meyer, B. A.

    2009-12-01

    In groundwater flow modeling, aquifer permeability is typically defined through model calibration. Since the pattern and size of conduits are part of a karstic permeability framework, those parameters should be constrainable through the same process given a sufficient density of measured conditions. H2H Associates has completed a dual-permeability steady-state model of groundwater flow through the western Santa Fe River Basin, Florida from which a 380.9 km network of saturated conduits was delineated through model calibration to heads and spring discharges. Two calibration datasets were compiled describing average high-water and average low-water conditions based on heads at 145 wells and discharge from 18 springs for the high-water scenario and heads at 188 wells and discharge from 9 springs for the low-water scenario. An initial conduit network was defined by assigning paths along mapped conduits and inferring paths along potentiometric troughs between springs and swallets that had been connected by groundwater tracing. These initial conduit assignments accounted for only 13.75 and 34.1 km of the final conduit network respectively. The model was setup using FEFLOW™ where conduits were described as discrete features embedded in a porous matrix. Flow in the conduits was described by the Manning-Strickler equation where variables for conduit area and roughness were used to adjust the volume and velocity of spring flows. Matrix flow was described by Darcy’s law where hydraulic conductivity variations were limited to three geologically defined internally homogeneous zones that ranged from ~2E-6 m/s to ~4E-3 m/s. Recharge for both the high-water and low-water periods was determined through a water budget analysis where variations were restricted to nine zones defined by land-use. All remaining variations in observed head were then assumed to be due to conduits. The model was iteratively calibrated to the high-water and low-water datasets wherein the location, size

  15. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting

  16. Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation

    Science.gov (United States)

    Wang, X.; Jourde, H.

    2017-12-01

    Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.

  17. Microbiological risks of recycling urban stormwater via aquifers.

    Science.gov (United States)

    Page, D; Gonzalez, D; Dillon, P

    2012-01-01

    With the release of the Australian Guidelines for Water Recycling: Managed Aquifer Recharge (MAR), aquifers are now being included as a treatment barrier when assessing risk of recycled water systems. A MAR research site recharging urban stormwater in a confined aquifer was used in conjunction with a Quantitative Microbial Risk Assessment to assess the microbial pathogen risk in the recovered water for different end uses. The assessment involved undertaking a detailed assessment of the treatment steps and exposure controls, including the aquifer, to achieve the microbial health-based targets.

  18. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1983-01-01

    A heterogeneous gas core nuclear reactor is disclosed comprising a core barrel provided interiorly with an array of moderator-containing tubes and being otherwise filled with a fissile and/or fertile gaseous fuel medium. The fuel medium may be flowed through the chamber and through an external circuit in which heat is extracted. The moderator may be a fluid which is flowed through the tubes and through an external circuit in which heat is extracted. The moderator may be a solid which may be cooled by a fluid flowing within the tubes and through an external heat extraction circuit. The core barrel is surrounded by moderator/coolant material. Fissionable blanket material may be disposed inwardly or outwardly of the core barrel

  19. Heterogeneity in Waardenburg syndrome.

    Science.gov (United States)

    Hageman, M J; Delleman, J W

    1977-01-01

    Heterogeneity of Waardenburg syndrome is demonstrated in a review of 1,285 patients from the literature and 34 previously unreported patients in five families in the Netherlands. The syndrome seems to consist of two genetically distinct entities that can be differentiated clinically: type I, Waardenburg syndrome with dystopia canthorum; and type II, Waardenburg syndrome without dystopia canthorum. Both types have an autosomal dominant mode of inheritance. The incidence of bilateral deafness in the two types of the syndrome was found in one-fourth with type I and about half of the patients with type II. This difference has important consequences for genetic counseling. Images Fig. 7 Fig. 8 Fig. 9 PMID:331943

  20. Quantifying hidden individual heterogeneity

    DEFF Research Database (Denmark)

    Steiner, Ulrich; Lenart, Adam; Vaupel, James W.

    Aging is assumed to be driven by the accumulation of damage or some other aging factor which shapes demographic patterns, including the classical late age mortality plateaus. However to date, heterogeneity in these damage stages is not observed. Here, we estimate underlying stage distributions...... and stage dynamics, based on observed survival patterns of isoclonal bacteria. Our results reveal demographic dynamics being dominated by low damage stages and transmission of damage from mother to daughters is low. Still, our models are too simplistic and deterministic. Explaining the observed data...... requires more stochastic processes as our current models includes. We are only at the beginning of understanding the diverse mechanism behind aging and the shaping of senescence....

  1. Receiver Heterogeneity Helps

    DEFF Research Database (Denmark)

    Kovács, Erika R.; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    Heterogeneity amongst devices and desired service are commonly seen as a source of additional challenges for setting up an efficient multi-layer multicast service. In particular, devices requiring only the base layer can become a key bottleneck to the performance for other devices. This paper...... studies the case of a wireless multi-layer multicast setting and shows that the judicious use of network coding allows devices with different computational capabilities to trade-off processing complexity for an improved quality of service. As a consequence, individual devices can determine their required...... effort, while bringing significant advantages to the system as a whole. Network coding is used as a key element to reduce signaling in order to deliver the multicast service. More importantly, our proposed approach focuses on creating some structure in the transmitted stream by allowing inter-layer...

  2. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River

    Science.gov (United States)

    Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong

    2016-09-01

    Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3-) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3 years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems.

  3. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    Science.gov (United States)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  4. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.; Drewes, Jö rg E.; Amy, Gary L.; Maliva,, Robert G.; Keller, Stephanie

    2012-01-01

    , such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge

  5. Recharge mechanism in karstic systems investigation through the correlation of chemical and isotopic composition of rain and spring-water (case study: Figeh and Barada springs)

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2012-03-01

    Karst aquifers represents an important groundwater resources not only in Syria, but in the world-wide. The hydrological approaches for studying the karst system were developed in the last tow decade. One of the main approaches is the use of natural isotopes and hydrochemical traces for description the recharge and discharge and estimate the recharge rate of karst aquifer system. The main filed site tests are the Figeh and Barada karst aquifer, located in the carbonate rocks of the Anti-Lebanon Mountains. Environmental isotopes and chemical major ions (δ 18 Ο, δ 2 H and 3 H), in precipitation and groundwater were integrated for studying the isotope and hydrochemical characterization and the description of temporal variations of groundwater discharge from the karst springs of Figeh and Barada which are considered as the main large springs due to there huge discharge in the Anti-Lebanon Mountains. The δ 18 O values are -8.9 and -7.7. for Figeh and Barada respectively. The regression line for both precipitation and groundwater discharge from Figeh and Barada is described by the equation: δD = 7.9δ 18 O + 19.7 wish shows no evaporation during precipitation and suggest that the groundwater are mainly from direct infiltration of precipitation. The altitude gradients in the precipitation were estimated to be -0.23./100 m for δ 18 O. The main recharge areas were estimated to be 2000±50 and 1350±50 m.a.s.l for Figeh and Barada springs.The chloride mass balance (CMB) method was used to quantify recharge rates of groundwater in the Mountain karst aquifer of Figeh spring. The recharge rate varies from 192 to 825 mm year-1, which corresponds to 43 and 67% of the total annual rainfall. Recharge rates estimated by CMB were compared with values obtained from other methods and were found to be in good agreement. The tritium concentrations in groundwater are low and very close to the rainfall value 4.5 Tu for meteoric stations. Adopting a model with exponential time

  6. Statistical Estimation of Heterogeneities: A New Frontier in Well Testing

    Science.gov (United States)

    Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.

    2001-12-01

    Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.

  7. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  8. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  9. Determination of hydrogeological conditions in large unconfined aquifer: A case study in central Drava plain (NE Slovenia)

    Science.gov (United States)

    Keršmanc, Teja; Brenčič, Mihael

    2016-04-01

    In several countries, many unregulated landfills exits which releasing harmful contaminations to the underlying aquifer. The Kidričevo industrial complex is located in southeastern part of Drava plain in NW Slovenia. In the past during the production of alumina and aluminum approximately 11.2 million tons of wastes were deposit directly on the ground on two landfills covering an area of 61 hectares. Hydrogeological studies were intended to better characterized conditions bellow the landfill. Geological and hydrogeological conditions of Quaternary unconfined aquifer were analyzed with lithological characterization of well logs and cutting debris and XRF diffraction of silty sediments on 9 boreholes. Hydrogeological conditions: hydraulic permeability aquifer was determined with hydraulic tests and laboratory grain size analyses where empirical USBR and Hazen methods were applied. Dynamics of groundwater was determined by groundwater contour maps and groundwater level fluctuations. The impact of landfill was among chemical analyses of groundwater characterised by electrical conductivity measurements and XRF spectrometry of sand sediments. The heterogeneous Quaternary aquifer composed mainly of gravel and sand, is between 38 m and 47.5 m thick. Average hydraulic permeability of aquifer is within the decade 10-3 m/s. Average hydraulic permeability estimated on grain size curves is 6.29*10-3 m/s, and for the pumping tests is 4.0*10-3 m/s. General direction of groundwater flow is from west to east. During high water status the groundwater flow slightly changes flow direction to the southwest and when pumping station in Kidričevo (NW of landfill) is active groundwater flows to northeast. Landfills have significant impact on groundwater quality.

  10. Characterising alluvial aquifers in a remote ephemeral catchment (Flinders River, Queensland) using a direct push tracer approach

    Science.gov (United States)

    Taylor, Andrew R.; Smith, Stanley D.; Lamontagne, Sébastien; Suckow, Axel

    2018-01-01

    The availability of reliable water supplies is a key factor limiting development in northern Australia. However, characterising groundwater resources in this remote part of Australia is challenging due to a lack of existing infrastructure and data. Here, direct push technology (DPT) was used to characterise shallow alluvial aquifers at two locations in the semiarid Flinders River catchment. DPT was used to evaluate the saturated thickness of the aquifer and estimate recharge rates by sampling for environmental tracers in groundwater (major ions, 2H, 18O, 3H and 14C). The alluvium at Fifteen Mile Reserve and Glendalough Station consisted of a mixture of permeable coarse sandy and gravely sediments and less permeable clays and silts. The alluvium was relatively thin (i.e. < 20 m) and, at the time of the investigation, was only partially saturated. Tritium (3H) concentrations in groundwater was ∼1 Tritium Unit (TU), corresponding to a mean residence time for groundwater of about 12 years. The lack of an evaporation signal for the 2H and 18O of groundwater suggests rapid localised recharge from overbank flood events as the primary recharge mechanism. Using the chloride mass balance technique (CMB) and lumped parameter models to interpret patterns in 3H in the aquifer, the mean annual recharge rate varied between 21 and 240 mm/yr. Whilst this recharge rate is relatively high for a semiarid climate, the alluvium is thin and heterogeneous hosting numerous alluvial aquifers with varied connectivity and limited storage capacity. Combining DPT and environmental tracers is a cost-effective strategy to characterise shallow groundwater resources in unconsolidated sedimentary aquifers in remote data sparse areas.

  11. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    Science.gov (United States)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  12. Using MODFLOW with CFP to understand conduit-matrix exchange in a karst aquifer during flooding

    Science.gov (United States)

    Spellman, P.; Screaton, E.; Martin, J. B.; Gulley, J.; Brown, A.

    2011-12-01

    /d) of matrix hydraulic conductivity. Other factors increased the amount of exchange by 1% or less, with tortuosity (which varied from 1 to 2) being most significant with a 1% increase, followed by conduit diameter (1 to 5 m) and roughness height (0.1 to 5m) with increases in exchange of 0.4% and 0.3% respectively. Antecedent aquifer conditions were also seen to exert important controls on influencing exchange with greater exchange occurring in floods following dry periods than during wet periods. These preliminary results indicate that heterogeneity of the hydraulic conductivity across karst aquifers will control the distribution of flood waters that enter into the aquifer matrix. Because flood waters are typically undersaturated with respect to the carbonate minerals, the location of this infiltrated water into the highest hydraulic conductivity zones should enhance dissolution, thereby increasing hydraulic conductivity in a feedback loop that will enhance future infiltration of floodwater. Portions of the aquifer prone to infiltrating flood water and dissolution will also be most sensitive to contamination from surface water infiltration.

  13. Interconnecting heterogeneous database management systems

    Science.gov (United States)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  14. Analysis of the karst aquifer structure of the Lamalou area (Herault, France) with ground penetrating radar

    International Nuclear Information System (INIS)

    Al-Fares, W.; Bakalowicz, M.; Guerin, R.; Dukhan, M.

    2004-01-01

    The study site at Lamalou karst spring Hortus karst plateau) is situated 40 km north of Montpellier in France. It consists of a limestone plateau, drained by a karst conduit discharging as a spring. This conduit extends for a few dozen meters in fractured and karstified limestone rocks, 15 to 70 m below the surface. The conduit is accessible from the surface. The main goal of this study is to analyze the surface part of the karst and to highlight the karstic features and among them the conduit, and to test the performances of ground penetrating radar (GPR) in a karstic environment. This method thus appears particularly well adapted to the analysis of the near-surface (<30 m in depth) structure of a karst, especially when clayey coating or soil that absorbs and attenuates the radar is rare and discontinuous. A GPR pulse EKKO 100 (Sensors and Software) was used on the site with a 50 MHz antenna frequency. The results highlight structures characterizing the karstic environment: The epikarst, bedding planes, fractured and karstified zones, compact and massive rock and karrens, a typical karst landform. One of the sections revealed in detail the main conduit located at a depth of 20 m, and made it possible to determine its geometry. This site offers possibilities of validation of GPR data by giving direct access to the karstic conduit and through two cored boreholes. These direct observations confirm the interpretation of all the GPR sections. (author

  15. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest: B in Regional aquifer-system analysis

    Science.gov (United States)

    Young, H.L.; Siegel, D.I.

    1992-01-01

    The Cambrian-Ordovician aquifer system contains the most extensive and continuous aquifers in the northern Midwest of the United States. It is the source of water for many municipalities, industries, and rural water users. Since the beginning of ground-water development from the aquifer system in the late 1800's, hydraulic heads have declined hundreds of feet in the heavily pumped Chicago-Milwaukee area and somewhat less in other metropolitan areas. The U.S. Geological Survey has completed a regional assessment of this aquifer system within a 161,000-square-mile area encompassing northern Illinois, northwestern Indiana, Iowa, southeastern Minnesota, northern Missouri, and Wisconsin.

  16. On-Farm, Almond Orchard Flooding as a Viable Aquifer Recharge Alternative

    Science.gov (United States)

    Ulrich, C.; Nico, P. S.; Wu, Y.; Newman, G. A.; Conrad, M. E.; Dahlke, H. E.

    2017-12-01

    In 2014, California legislators passed the Sustainable Groundwater Management Act (SGMA), which requires groundwater sustainability agencies (areas) to identify/prioritize water basins, develop current and projected water use/needs, develop a groundwater management plan, develop fees, etc. One of the challenges for implementing SGMA is the lack of data that can support alternative groundwater recharge methods such as on-farm flooding. Prior to anthropogenic river control, river floodplains captured excess water during overbank flow in the rainy season in the CA central valley. Today levees and canals strategically route rainy season high flows to the delta/ocean when irrigation water is not needed. Utilizing farmland once again as infiltration basins for groundwater banking and aquifer recharge could be a viable answer to California's depleted central valley aquifers. Prior to 2017, U.C. Davis had partnered with the Almond Board of California (ABC) and local growers to study the efficacy of agricultural flooding and the effects on annual almond crops (. LBNL joined this team to help understand the conveyance of recharge water, using electrical resistivity tomography (ERT), into the subsurface (i.e. localized fast paths, depth of infiltration, etc.) during flooding events. The fate of the recharge water is what is significant to understanding the viability of on-farm flooding as an aquifer recharge option. In this study two orchards (in Delhi and Modesto, CA), each approximately 2 acres, were flooded during the almond tree dormant period (January), to rec