WorldWideScience

Sample records for heterodera rostochiensis woll

  1. Development of the yellow potato cyst nematode Globodera rostochiensis (Woll.) on potatoes after gamma irradiation of cysts

    International Nuclear Information System (INIS)

    Karnkowski, W.; Ignatowicz, S.

    1999-01-01

    Gamma irradiation inhibited the development of the yellow potato cyst nematode, Globodera rostochiensis (Woll.) Behrens when cysts containing juveniles in anabiosis were irradiated with a dose of 0.5 kGy or higher. A dose of 0.5 kGy reduced the infestation level and the density of females/cysts on root of infested plants. However, a few cysts were found on roots of plants grown in pots with soil treated with a dose of 3.0 kGy. Development of the second generation of the potato cyst nematode (= F1 cysts that originated from irradiated cysts) was much weaker than that of the parental generation. The F1 females and/or cysts were found only in the control and in the 0.5 kGy treatment in low numbers. (author)

  2. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Science.gov (United States)

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins that are delivered to the apoplast, as well as...

  3. Phenotypic analysis of apoplastic effectors from the phytopathogenic nematode, Globodera rostochiensis demonstrates that an expansin can induce and suppress host defenses

    Science.gov (United States)

    The potato cyst nematode Globodera rostochiensis (Woll.) is an important pest of potato. Like other biotrophic pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm to successfully infect their hosts. We have identifie...

  4. Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis Cv. Woll).

    Science.gov (United States)

    Buskov, S; Serra, B; Rosa, E; Sørensen, H; Sørensen, J C

    2002-02-13

    The potato cyst nematode (Globodera rostochiensis cv. Woll) is responsible for large yield losses in the potato crop, and opportunities for reducing the attack of these plant nematode species are, therefore, important. This study has been devoted to the testing of the in vitro effects on the potato cyst nematode of eight glucosinolates [prop-2-enyl-, but-3-enyl-, (R)-4-methylsulfinylbut-3-enyl-, benzyl-, phenethyl-, 4-hydroxybenzyl-, (2S)-2-hydroxybut-3-enyl-, and (2R)-2-hydroxy-2-phenylethylglucosinolate] as well as the effects of the products of this myrosinase-catalyzed hydrolysis. The glucosinolates were used at three concentrations, 0.05, 0.3, and 1.0 mg/mL, in the presence or absence of the enzyme myrosinase. The effects of the compounds on the mortality were monitored every 8 h for a 72 h period. No effects were found for any of the intact glucosinolates. However, when active myrosinase was included with 1 mg/mL phenethylglucosinolate at pH 6.5, 100% mortality was observed within just 16 h. A similar effect was achieved at the same concentration of benzyl- and prop-2-enylglucosinolates in the myrosinase-containing solutions, although longer exposures were required (24 and 40 h, respectively). The main aglucone products released from the glucosinolates with pronounced effects on the nematodes were shown to be the corresponding isothiocyanates. The results suggest that mixtures of these specific glucosinolates and active myrosinase or autolysis of plant materials containing these enzymes and glucosinolates might be used to control the potato cyst nematode in the soil.

  5. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  6. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  7. cyst nematode in tiaret a

    African Journals Online (AJOL)

    F. Labdelli

    1 sept. 2017 ... Le nématode à kyste Heterodera avenae Woll. trouvé pour la ... décrite par [43] la culture est réalisée dans un mélange composé de terre, sable et ..... Heterodera avenae on Wheat an Barley yield components and on final ...

  8. IDENTIFIKASI PATOTIPE GLOBODERA ROSTOCHIENSIS MENGGUNAKAN KLON DIFERENSIAL

    Directory of Open Access Journals (Sweden)

    . Lisnawita

    2014-08-01

    Full Text Available Identification of Globodera rostochiensis using differential clones. Potato cyst nematode, Globodera rostochiensis, is a relatively new pathogen in Indonesia that becomes a constraint to potato production. To manage the parasite effectively, it is very important to identify the pathotype of  G. rostochiensis populations. Therefore, this research was carried out to identify G.  rostochiensis pathotypes. Four G. rostochiensis samples, consisting of three samples from East Java and one sample from Central Java, were identified using a set of differential clones. The result showed that G. rostochiensis samples from East Java were new pathotype, whereas the sample from Central Java was Ro1 pathotype.

  9. Population dynamics of potato cyst nematodes and associated damage to potato

    NARCIS (Netherlands)

    Schans, J.

    1993-01-01

    Population dynamics of potato cyst nematodes (PCN; Globoderarostochiensis (Woll.) Skarbilovich and G. pallida Stone) and their interactions with potato plants are insufficiently understood to explain variations of population

  10. Genetic diversity of the potato cyst nematode in the Netherlands

    NARCIS (Netherlands)

    Folkertsma, R.T.

    1997-01-01


    The potato cyst nematodes Globodera rostochiensis (Woll.) Skarbilovich and G. pallida (Stone) originate from the Andes region in South America and have been introduced into Western Europe since 1850. Both species are

  11. THE INFLUENCE OF POTATO CYST NEMATODE G. ROSTOCHIENSIS INFESTATION ON DIFFERENT POTATO CULTIVARS

    OpenAIRE

    Gregor Urek; S Širca; Stare Geric; B Dolničar; P Strajnar

    2008-01-01

    The potato cyst nematode Globodera rostochiensis is one of the most serious pests of potato in Slovenia. Precise nematode identification and knowledge about potato cultivars, which are most suitable for growing in the Slovenian climate conditions and most resistant to G. rostochiensis, are necessary to develop an effective integrated pest control. Here we report the results of the influence of G. rostochiensis pathotype Ro1/4 on the yield of different potato cultivars: the susceptible cultiva...

  12. The reorganization of root anatomy and ultrastructure of syncytial cells in tomato (Lycopersicon esculentum Mill. infected with potato cyst nematode (Globodera rostochiensis Woll.

    Directory of Open Access Journals (Sweden)

    Sylwia Fudali

    2011-01-01

    Full Text Available The sequence of anatomical and ultrastructural events leading to the syncytium development in tomato roots infected with Globodera rostochiensis was examined. The syncytia were preferentially induced in cortical or pericyclic cells in the elongation zone of root. They developed towards the vascular cylinder by incorporation of new cells via local cell wall breakdown. After surrounding primary phloem bundle and reaching xylem tracheary elements syncytia spread along vascular cylinder. Roots in primary state of growth seemed to be the best place for syncytium induction as syncytia formed in the zone of secondary growth were less hypertrophied. At the ultrastructural level syncytial elements were characterized by strong hypertrophy, breakdown of central vacuole, increased volume of cytoplasm, proliferation of organelles, and enlargement of nuclei. On the syncytial wall adjoining vessels the cell wall ingrowths were formed, while the syncytial walls at interface of phloem were considerably thickened. They lacked of functional plasmodesmata and did not form any ingrowths. Using immunofluorescent-labelling and immunogold-labelling methods tomato expansin 5 protein was localized in nematode infected roots. The distribution of LeEXP A5 was restricted only to the walls of syncytia. The protein distribution pattern indicated that LeEXP A5 could mediates cell wall expansion during hypertrophy of syncytial elements.

  13. Endogenous cellulases in stylet secretions of cyst nematodes

    NARCIS (Netherlands)

    Smant, G.

    1998-01-01

    This thesis describes the identification ofβ-1,4-endoglucanases (cellulases) in stylet secretions of the two cyst nematodes species, Globodera rostochiensis and Heterodera glycines . A novel method was developed to raise monoclonal antibodies that were

  14. The Effect of Temperature, Potato Varieties, and The Origin Of Cyst on The Reproductive Biology of Globodera rostochiensis

    Directory of Open Access Journals (Sweden)

    Nurjanah Nurjanah

    2016-12-01

    Full Text Available Potato cyst nematode (Globodera rostochiensis [Wollenweber] Behrens is a nematode species of worldwide regulatory concern. This nematode caused serious economic of potato losses in Indonesia. This research studied by factorial designed to evaluated the effect of temperature (10, 20, and 30ºC, potato varieties (`Granola´, `Margahayu´, and `Cipanas´, and origin of cyst (West, Central, and East Java on reproductive biology of G. rostochiensis in the growth chamber. The research was conducted by observed of produced the new cyst number, reproduction fitness, survival, fecundity, and multiplication of G. rostochiensis. The result showed that all of the potato varieties were infected by G. rostochiensis when they were grown at the temperature ranging of 20 and 30ºC but not at 10ºC. The optimum temperature for maximum number of cysts with the highest reproduction factor, survival, fecundity and multiplication rate for all populations was 20ºC. The origin of cyst did not have any effect on the reproductive rate. The temperature of 20ºC provided is best environment for the life of G. rostochiensis on Granola.   INTISARI Nematoda sista kentang (Globodera rostochiensis [Wollenweber] Behrens adalah spesies nematoda yang mendapatkan perhatian khusus di seluruh dunia. G. rostochiensis menyebabkan kerugian ekonomi yang serius pada pertanaman kentang di Indonesia. Penelitian ini menguji pengaruh perbedaan suhu (10, 20, dan 30ºC, varietas kentang (Granola, Cipanas, dan Margahayu, dan asal sista (Jawa Barat, Jawa Tengah, dan Jawa Timur terhadap biologi reproduksi G. rostochiensis di growth chamber menggunakan rancangan acak lengkap faktorial. Pengamatan dilakukan terhadap jumlah sista baru, kemampuan reproduksi, daya tahan hidup, keperidian dan multiplikasi G. rostochiensis. Seluruh varietas kentang yang diuji terserang G. rostochiensis pada suhu 20 dan 30ºC kecuali pada suhu 10ºC. Kisaran suhu optimum untuk memperoleh jumlah sista baru yang maksimum

  15. THE INFLUENCE OF POTATO CYST NEMATODE G. ROSTOCHIENSIS INFESTATION ON DIFFERENT POTATO CULTIVARS

    Directory of Open Access Journals (Sweden)

    Gregor Urek

    2008-07-01

    Full Text Available The potato cyst nematode Globodera rostochiensis is one of the most serious pests of potato in Slovenia. Precise nematode identification and knowledge about potato cultivars, which are most suitable for growing in the Slovenian climate conditions and most resistant to G. rostochiensis, are necessary to develop an effective integrated pest control. Here we report the results of the influence of G. rostochiensis pathotype Ro1/4 on the yield of different potato cultivars: the susceptible cultivar Desiree, the resistant cultivars White Lady, Miranda, Aladin, Sante and Adora, and the clone KIS 94-1/5-14. The yield of cv. White Lady was the highest and that of susceptible cv. Desiree the lowest. The influence of several resistant and one susceptible potato cultivars on population dynamics of G. rostochiensis was also determined. The total number of cysts/100 cm3 and the number of eggs and juveniles per cyst increased in the susceptible cv. Desiree and decreased in the resistant cultivars White Lady, Sante and Adora.

  16. The genomic organization of four b-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications.

    NARCIS (Netherlands)

    Yan, Y.; Smant, G.; Stokkermans, J.P.W.G.; Qin Ling,; Baum, T.J.; Schots, A.; Davis, E.L.

    1998-01-01

    The genomic organization of genes encoding -1,4-endoglucanases (cellulases) from the plant-parasitic cyst nematodes Heterodera glycines and Globodera rostochiensis (HG-eng1, Hg-eng2, GR-eng1, and GR-eng2) was investigated. HG-eng1 and GR-eng1 both contained eight introns and structural domains of

  17. Species of Heterodera cysts in cereal fields in Flanders.

    Science.gov (United States)

    Yilmaz, Zeliha Colak; Deeren, Anne-Marie; De Sutter, Nancy; Viaene, Nicole

    2009-01-01

    Heterodera is a genus of cyst-forming nematodes, including the cereal cysts which can provoke yield reductions in grain crops. As little is known about the occurrence of these cysts in Belgian grain fields, a survey was organized, starting in Flanders. Soil samples were taken from 50 fields where cereals are grown in rotation with mainly beet, potato and vegetables. Cysts were extracted from the 112 samples and 10 individuals per sample were identified up to species level by morphometrical and morphological observations. The beet cyst nematode, Heterodera schachtii, was found in 34 fields (56%) at infestation levels varying from 0.6 to 1322 cysts/kg soil. Other Heterodera species (e.g. H. trifolii, H. mani) were found in low numbers and sometimes in mixtures with H. schachtii, but no cereal cysts were detected. This survey confirms that beet cyst nematodes are a problem in Flanders. The few cereal cysts that might be present were perhaps not detected due to the few individuals that were identified. For this reason, molecular identification tools which allow fast and accurate identification of Heterodera species would be very useful. It could be interesting to find out why cereal cysts are suppressed in our regions and to expand the survey to the Walloon region where more cereals are grown.

  18. The Effect of Potato Varieties on Population of Golden Cyst Nematode (Globodera rostochiensis

    Directory of Open Access Journals (Sweden)

    Jasmina Bačić

    2010-01-01

    Full Text Available The effect of susceptibility/resistance of seed potato varieties on population of golden cyst nematode – Globodera rostochiensis (Wollenweber, 1923 Skarbilovich, 1959 was investigated in the infested field of Brdo, KO Ljubovija No. 413, in Mačva District in Serbia during 2002 and 2003. The susceptible varieties Desiree, Innovator, Kennebec, Cleopatra, and Kondor were used in the experiment as varieties frequently grown in this district. The resistant ex-andigena varieties Agria, Frisia, Latona, Saturna, and Tresor were chosen on the basis of identified pathotypes of G. rostochiensis population originating from the aforementioned infested field. The results of this research indicated that nematode population of G. rostochiensis could be reduced and higher yield obtained by growing the resistant ex-andigena varieties in case of presence of pathotype Ro1. In the second year of investigation, final cyst density was 3.5 times lower than in the first year. It subsequently affected the crop yield which increased in the second year. The lowest crop yield was observed for susceptible varieties Kennebec (8.5 t/ha and Cleopatra (16.9 t/ha, and the highest for resistant varieties Agria (25.7 t/ha and Frisia (29.1 t/ha. These results may be useful to growers in the infested areas of Mačva District when choosing potato varieties, in order to eradicate the quarantine nematode G. rostochiensis.

  19. Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines

    Science.gov (United States)

    The secreted proteins encoded by “parasitism genes” expressed within the esophageal glands cells of cyst nematodes play important roles in plant parasitism. Homologous transcripts and encoded proteins of the Heterodera glycines pioneer parasitism genes Hgsyv46, Hg4e02 and Hg5d08 were identified and ...

  20. Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars

    OpenAIRE

    Montes, Maria Jesus; Andrés, María Fe; Sin, E.; Lopez Braña, Isidoro; Martín-Sánchez, J.A.; Romero, M.D.; Delibes Castro, Angeles

    2008-01-01

    Cereal cyst nematode (CCN; Heterodera avenae Woll.) is a root pathogen of cereal crops that can cause severe yield losses in wheat (Triticum aestivum). Differential host–nematode interactions occur in wheat cultivars carrying different CCN resistance (Cre) genes. The objective of this study was to determine the CCN resistance conferred by the Cre7 gene from Aegilops triuncialis in a 42-chromosome introgression line and to assess the effects of the Cre1, Cre3, Cre4, and Cre8 genes present in A...

  1. Towards identification of oesophageal gland proteins in Globodera rostochiensis

    NARCIS (Netherlands)

    Boer, de J.M.

    1996-01-01


    Secretory proteins from the dorsal and subventral oesophageal glands of potato cyst- nematodes (Globodera rostochiensis and G.pallida ) are considered to play an important role in the induction and exploitation of the

  2. MEKANISME KETAHANAN KENTANG (SOLANUM TUBEROSUM TERHADAP NEMATODA SISTA KUNING (GLOBODERA ROSTOCHIENSIS

    Directory of Open Access Journals (Sweden)

    Dewi Fitriyanti, Mulyadi, dan Christanti Sumardiyono .

    2011-11-01

    Full Text Available Resistance mechanism of potato (Solanum tuberosum to golden cyst nematode (Globodera rostochiensis.  The research was conducted from June 2005 to May 2006 in Kepuhharjo, Cangkringan, Sleman, Yogyakarta. The aims of the research were to find the resistance status of 20 potato varieties, role of  chlorogenic acid and caffeic acid  in the resistance mechanism and histopathological differences between resistant and susceptible potato varieties to  G. rostochiensis. The results showed that two varieties were resistant to G. rostochiensis, i.e, Hertha and Manohara.  Thirteen varieties were moderately resistant, i.e; No.30, No.44, No. 5, No.19, Batang Hitam, Agria,  Desiree, Berolina, Atlantik, No.095, Cipanas, FLS and Colombus, and five varieties were susceptible, i.e; Kikondo, Granola, Erika, LBR, and Fries. The presence of chlorogenic acid and caffeic acid in Hertha (resistant variety and in Granola (susceptible variety were analized by TLC. In Hertha chlorogenic acid was detected at 4, 5, and 6 days after inoculation (DAI, whereas in Granola it was detected at 1 and 6 DAI. It was assumed that the presence of chlorogenic acid for 3 successively week in Hertha, caused it more resistant than Granola.  Cell lignification inhibited                       G. rostochiensis grow well inside the root tissue of Hertha, whereas in Granola only a few cell was lignified as indicated by less absorption of red colour (safranin in infected areas. Caffeic acid was not detected either in uninoculated or inoculated of both potato varieties.  It indicated that caffeic acid might not be naturally present in Hertha and Granola and nematode infection could not stimulate the production of this compound.

  3. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis

    NARCIS (Netherlands)

    Jones, J.T.; Reavy, B.; Smant, G.; Prior, A.E.

    2004-01-01

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for

  4. Influence of soil temperature on Globodera rostochiensis and Globodera pallida

    Directory of Open Access Journals (Sweden)

    Agata KACZMAREK

    2015-01-01

    Full Text Available Relationships between soil temperatures and the potato cyst nematode (PCN life cycle and population multiplication were investigated to understand the risks to potato crops from PCN in relation to increasing soil temperatures associated with climate change, and to support development of the United Kingdom Potato Council`s PCN management model. The initial (hatching part of the PCN life cycle was examined for both Globodera rostochiensis and G. pallida over a range of temperatures, and the responses are then considered in relation to actual soil temperatures during the potato growing season in different sites in the United Kingdom. Hatching was stimulated by potato root diffusate over a temperature range from 5–29ºC and was monitored for 5 weeks. The greatest cumulative percentage hatch of second stage juveniles (J2 occurred between 15 and 27ºC for G. rostochiensis and 13–25ºC for G. pallida. Globodera rostochiensis hatched more quickly and had a delayed hatch at ≥25ºC while G. pallida was more efficient at these higher temperatures. From these observations, it is likely that climate change, and associated increases in soil temperatures, will result in increased rates and amounts of hatching for both species, leading to increased population levels on susceptible hosts and damage to potato crops. Currently, regions of the United Kingdom with warm soil temperatures are also expected to have high levels of hatching of PCN, and therefore greater multiplication resulting in greater challenges in the management of these nematodes in infested land.

  5. Molecular aspects of cyst nematodes.

    Science.gov (United States)

    Lilley, Catherine J; Atkinson, Howard J; Urwin, Peter E

    2005-11-01

    SUMMARY Taxonomy: Superkingdom Eukaryota; kingdom Metazoa; phylum Nematoda; class Chromadorea; order Tylenchida; suborder Tylenchina; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; main genera Heterodera and Globodera. Cyst nematodes comprise approximately 100 known species in six genera. They are pathogens of temperate, subtropical and tropical plant species and the host range of many species is narrow. The most economically important species are within the Globodera and Heterodera genera. Globodera pallida and G. rostochiensis are important pathogens of potato crops. There are many economic species in the Heterodera genus, including Heterodera glycines (soybean cyst nematode), H. avenae (cereal cyst nematode) and H. schachtii (sugar beet cyst nematode), the last of which attacks a range of Chenopodiaceae and Cruciferae, including Arabidopsis thaliana. Disease symptoms: Field symptoms of severe cyst nematode infection are often stunting, wilting and chlorosis, but considerable yield loss can occur without obvious symptoms. The only unique indicator of cyst nematode infection is the presence of adult female nematodes attached to host roots after several weeks of parasitism. Disease control: This is usually achieved by using integrated pest management involving cultural practices such as crop rotation, resistant cultivars if available and chemical control when economically justified.

  6. Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida.

    Science.gov (United States)

    Duceppe, Marc-Olivier; Lafond-Lapalme, Joël; Palomares-Rius, Juan Emilio; Sabeh, Michaël; Blok, Vivian; Moffett, Peter; Mimee, Benjamin

    2017-06-20

    Potato cyst nematodes (PCNs), Globodera rostochiensis and G. pallida, cause important economic losses. They are hard to manage because of their ability to remain dormant in soil for many years. Although general knowledge about these plant parasitic nematodes has considerably increased over the past decades, very little is known about molecular events involved in cyst dormancy and hatching, two key steps of their development. Here, we have studied the progression of PCN transcriptomes from dry cysts to hatched juveniles using RNA-Seq. We found that several cell detoxification-related genes were highly active in the dry cysts. Many genes linked to an increase of calcium and water uptake were up-regulated during transition from dormancy to hydration. Exposure of hydrated cysts to host plant root exudates resulted in different transcriptional response between species. After 48 h of exposure, G. pallida cysts showed no significant modulation of gene expression while G. rostochiensis had 278 differentially expressed genes. The first G. rostochiensis significantly up-regulated gene was observed after 8 h and was coding for a transmembrane metalloprotease. This enzyme is able to activate/inactivate peptide hormones and could be involved in a cascade of events leading to hatching. Several known effector genes were also up-regulated during hatching.

  7. Molecular genetic analysis of the pathogenicity of the potato cyst nematode Globodera rostochiensis

    NARCIS (Netherlands)

    Qin, L.

    2001-01-01

    A new strategy to identify pathogenicity factors from the potato cyst nematode Globodera rostochiensis is developed. cDNA-AFLP technology and in situ hybridization allowed us to efficiently select putative pathogenicity factors among thousands of

  8. The cyst nematodes Heterodera and Globodera species in Egypt

    Science.gov (United States)

    Information concerning the occurrence and distribution of the cyst nematodes (Heterodera spp. and Globodera spp.) in Egypt is important to assess their potential to cause economic damage to many crop plants. A nematode survey was conducted in Alexandria, El Behera and Sohag governorates during 2012-...

  9. Pathogenicity and host range of Heterodera arenaria in coastal foredunes

    NARCIS (Netherlands)

    Stoel, C.D.; Putten, van der W.H.

    2006-01-01

    In coastal foredunes, the cyst nematode Heterodera arenaria has been supposed to play a role in degeneration of the pioneer grass Ammophila arenaria (marram grass). However, recent field surveys and field inoculation experiments suggested that the abundance of this cyst nematode is controlled by the

  10. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T

    2016-06-10

    The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.

  11. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    Science.gov (United States)

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.

  12. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI.

    Science.gov (United States)

    Chen, Shiyan; Chronis, Demosthenis; Wang, Xiaohong

    2013-09-01

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, (1) nematode secreted effectors are becoming recognized as suppressors of plant immunity. (2)(-) (4) Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction. (3) To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.

  13. Identifikasi Nematoda Sista Kuning (Globodera rostochiensis pada Kentang di Batu, Jawa Timur

    Directory of Open Access Journals (Sweden)

    Mulyadi Mulyadi

    2003-07-01

    Full Text Available Identification of Globodera rostochiensis was done based on the information given by the Direktorat Perlindungan Hortikultura, that the potato plants in the sub district of Bumiaji, Batu, East Java, were attacked by potato cyst nematode (Globodera. Plants and soil samples were taken from the potato's areas in the sub-district of Bumiaji, especially in the villages of Brakseng (± 1,700-1,800 m a.s.l, Tunggangan (± 1,600-1,700 m a.s.l, Kembangan (± 1,600-1.700 m a.s.l, and Junggo (± 1,200 m a.s.l. Based on morphological observations on eggs, larvae, females, and cysts, the nematode was identified as Globodera rostochiensis with special morphological characters: 1 second stage larvae vermifonn with total body length 531 - 563μ (x 548,4 μ, body width 22 - 26 μ (x 23,6u, stylet well developed with stylet knobs rounded, and part of the posterior portion hyaline in appearance; 2 cyst globular in shape with protruding neck, cyst's length 470 - 1,008 μ (x 638,08 μ, cyst's width 357 - 744 μ (x 490,33μ, and when the vulval basin is lost forming a single circular fenestra. Cuticle surface between anus and vulva basin have more than 12 paralel ridges.

  14. Behavior of cereal's varieties in the presence of Heterodera avenae ...

    African Journals Online (AJOL)

    The behaviour of cereals varieties (Ofanto, Waha and Vitron for durum wheat; Anza and HD1120 for bread wheat and Saida with Acsad for barly) were tested towards Heterodera avenae. The analysis of the variance reveals that the nematode has an effect on the development of durum wheat for the number of ear per ...

  15. Pathogenicity of Heterodera daverti, H. zeae, and Meloidogyne incognita on rice

    Science.gov (United States)

    The reactions of five rice cultivars to the cyst nematodes Heterodera daverti and H. zeae and the root-knot nematode Meloidogyne incognita were determined in the greenhouse. The results showed that both H. daverti and H. zeae infected and reproduced successfully on some of the tested rice cultivars....

  16. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.

    Science.gov (United States)

    Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-10-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.

  17. Redescription of Heterodera fici (Nematoda: Heteroderidae) with SEM Observations

    OpenAIRE

    Golden, A. Morgan; Maqbool, M. A.; Shahina, F.

    1988-01-01

    Heterodera fici is redescribed and illustrated with comparative details and revised measurements and diagnostic characters of the females, males, cysts, and juveniles from Maryland and Pakistan. This species is in the "schachtii group" (cysts lemon shaped, with bullae, and ambifenestrate) but the fenestrae in some cysts, presumab!y young ones, are small and widely spaced, appearing bifenestrate. It is most closely related to H. schachtii, H. glycines, and H. cajani but differs from these spec...

  18. Heterodera schachtii, el nematodo del quiste de la remolacha

    OpenAIRE

    Gutiérrez Sosa, Manuel; Castillo, Pablo

    2003-01-01

    Los nematodos fitoparasitos estan ampliamente distribuidos en suelos naturales y cultivados de todas las regiones del mundo. De hecho, cualquier planta cultivada puede sufrir un perjuicio importante en su crecimiento cuando existen elevadas densidades de poblaci6n de estos microorganismos en suelo ylo farCeS de sus huespedes. EI nematodo del quiste de la remolacha Heterodera schacht;; constituye uno de 105 principales problemas fitopatol6gicos de este cultivo en todo ...

  19. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  20. The effect of linalool on second-stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida.

    Science.gov (United States)

    Būda, Vincas; Cepulytė-Rakauskienė, Rasa

    2011-09-01

    Linalool is either a toxic compound to a few species of plant parasitic nematodes or attractive to entomopathogenic nematodes. This compound is produced and emitted by several host plants of Globodera rostochiensis and G. pallida, the potato cyst nematodes (PCN). With the aim to reveal the effect of linalool on PCN, laboratory assays were carried out. Survival of PCN second-stage juveniles (J2s) in water + linalool control did not differ; thus, proving linalool to be nontoxic to PCN. Behavioral assays carried out in Petri dishes revealed attractiveness in the form of positive response of J2s of both PCN species towards linalool. Based on these behavioral assays, sensitivity to linalool of G. rostochiensis J2s was higher compared with that of G. pallida J2s. Linalool is the first compound of plant origin to elicit positive response in both PCN species.

  1. Efecto de la fertilización nitrogenada en la incidencia de Fusarium oxysporum f. sp. Dianthi y Heterodera trifolii g. en clavel Effect of nitrogen fertilization on the incidence of Fusarium oxysporum f. sp. Dianthi and Heterodera trifolii G. in carnation

    Directory of Open Access Journals (Sweden)

    Burbano Luis E.

    1990-12-01

    Full Text Available

    El manejo de la fertilización es uno de los métodos que junto con otras formas de control puede reducir la severidad de algunas enfermedades; en el presente trabajo se evaluó el efecto de la fertilización nitrogenada, utilizando diferentes fuentes de nitrógeno sobre las enfermedades causadas por Fusarium oxysporum f. sp, Dianthi y Heterodera trifolii G. Se emplearon como fuentes de nitrógeno de fosfato de amonio, nitrato de potasio y nitrón 26, y sulfato de potasio como testigo. Al finalizar el ensayo, además de la variación
    de pH, se evaluó potencial de inóculo de Fusarium oxysporum f. sp, Dianthi, el número y viabilidad de los quistes de Heterodera trifolii G., lo mismo que el número de plantas
    enfermas, Los resultados mostraron que los tratamientos
    con nitrato de potasio y sulfato de potasio incrementaron el pH, mintras que el nitrón 26 y el fosfato de amonio acidificaron el suelo. Al final del experimento se presentó
    un menor número de colonias de Fusarium oxysporum f. sp.Dianthi en los suelos tratados con sulfato y nitrato de potasio. El número de quistes y viabilidad de Heterodera trifolii G. no fueron afectados por los tratamientos. El mayor número de tallos florales se obtuvo con el tratamiento de sulfato de potasio y el menor con el de fosfato de amonio.

    Handling the fertilization is one of the methods that among with other controling ways can reduce the strength of some diseases; in this essay it was tested the effeet of the nitrogenated fertilization, using differents nitrogen sources allover the diseases; produced by the Fusarium oxysporum
    f. sp. dianthi and Heterodera trifolii G. Ammonium phosphate, potassium nitrate and Nitron 26 were used as nitrogen sources, and potassium sulfate was used as a paterno At the end of the test, beside of the pH variation, it was evaluated the Fusarium oxysporum f. sp. dianthi inoculus potential,
    the number of eysts and the viability of the

  2. Rapid Methods to Distinguish Heterodera schachtii from Heterodera glycines Using PCR Technique

    Directory of Open Access Journals (Sweden)

    Hyoung Rai Ko

    2017-09-01

    Full Text Available The purpose of this study was to develop rapid methods for distinguishing between Heterodera schachtii and H. glycines detected from chinese cabbage fields of highland in Gangwon, Korea. To do this, we performed PCR-RFLP and PCR with the primers set developed in this study for GC147, GC408 and PM001 population, H. schachtii, and YS224, DA142 and BC115 population, H. glycines. Eight restriction enzymes generated RFLP profiles of mtDNA COI region for populations of H. schachtii and H. glycines, repectively. As a result, treatment of two restriction enzymes, RsaI and HinfI, were allowed to distinguish H. schachtii from H. glycines based on the differences of DNA band patterns. The primer set, #JBS1, #JBG1 and #JB3R, amplified specific fragments with 277 and 339 bp of H. schachtii, 339 bp of H. glycines, respectively, while it did not amplify fragments from three root-knot nematodes and two root-lesion nematodes. Thus, the primer set developed in this study could be a good method, which is used to distinguish between H. schachtii and H. glycines.

  3. Potato cyst nematodes Globodera rostochiensis and Globodera pallida, and their chemoecological interactions with the host plant

    OpenAIRE

    Čepulytė-Rakauskienė, Rasa

    2012-01-01

    Potato cyst nematodes Globodera rostochiensis and Globodera pallida are one of the most important solanaceous plant pests. Identification of potato cyst nematodes species is exposed to morphological similarities and overlapping morphometric measurements between species. Only modern molecular techniques allow more accurate identification of potato cyst nematode species. Hence, it is important to apply these techniques in order to reliably identify these species in Lithuania. Potato roo...

  4. Interactions of Heterodera daverti, H. goldeni and H. zeae with Meloidogyne incognita on rice

    Science.gov (United States)

    The interactions of the cyst nematodes Heterodera daverti, H. goldeni and H. zeae with the root-knot nematode Meloidogyne incognita on rice (Oryza sativa) cultivars Giza 178 and Sakha 101 were studied in the greenhouse. Inoculation with H. goldeni alone or one week before inoculation with M. incogni...

  5. Development of a species-specific PCR assay for differentiation of Heterodera filipjevi and H. avenae

    Science.gov (United States)

    Heterodera avenae and H. filipjevi are economically important cyst nematodes that restrict production of cereal crops in the Pacific Northwest (PNW) USA and elsewhere in the world. Identification of these two species is critical for recommending and implementing effective management practices. Prime...

  6. Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis

    NARCIS (Netherlands)

    Kudla, U.; Qin Ling,; Milac, A.; Kielak, A.; Maissen, C.; Overmars, H.A.; Popeijus, H.E.; Roze, E.H.A.; Petrescu, A.J.; Smant, G.; Bakker, J.; Helder, J.

    2005-01-01

    Southern analysis showed that Gr-EXPB1, a functional expansin from the potato cyst nematode Globodera rostochiensis, is member of a multigene family, and EST data suggest expansins to be present in other plant parasitic nematodes as well. Homology modeling predicted that Gr-EXPB1 domain 1 (D1) has a

  7. A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis.

    Science.gov (United States)

    Finkers-Tomczak, Anna; Danan, Sarah; van Dijk, Thijs; Beyene, Amelework; Bouwman, Liesbeth; Overmars, Hein; van Eck, Herman; Goverse, Aska; Bakker, Jaap; Bakker, Erin

    2009-06-01

    The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class.

  8. The Effector SPRYSEC-19 of Globodera rostochiensis Suppresses CC-NB-LRR-Mediated Disease Resistance in Plants1[C][W][OA

    Science.gov (United States)

    Postma, Wiebe J.; Slootweg, Erik J.; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O.G.; van Gelderen, Kasper; Lozano-Torres, Jose L.; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-01-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants. PMID:22904163

  9. New Cyst Nematode, Heterodera sojae n. sp. (Nematoda: Heteroderidae) from Soybean in Korea.

    Science.gov (United States)

    Kang, Heonil; Eun, Geun; Ha, Jihye; Kim, Yongchul; Park, Namsook; Kim, Donggeun; Choi, Insoo

    2016-12-01

    A new soybean cyst nematode Heterodera sojae n. sp. was found from the roots of soybean plants in Korea. Cysts of H. sojae n. sp. appeared more round, shining, and darker than that of H. glycines . Morphologically, H. sojae n. sp. differed from H. glycines by fenestra length (23.5-54.2 µm vs. 30-70 µm), vulval silt length (9.0-24.4 µm vs. 43-60 µm), tail length of J2 (54.3-74.8 µm vs. 40-61 µm), and hyaline part of J2 (32.6-46.3 µm vs. 20-30 µm). It is distinguished from H. elachista by larger cyst (513.4-778.3 µm × 343.4-567.1 µm vs. 350-560 µm × 250-450 µm) and longer stylet length of J2 (23.8-25.3 µm vs. 17-19 µm). Molecular analysis of rRNA large subunit (LSU) D2-D3 segments and ITS gene sequence shows that H. sojae n. sp. is more close to rice cyst nematode H. elachista than H. glycines . Heterodera sojae n. sp. was widely distributed in Korea. It was found from soybean fields of all three provinces sampled.

  10. Analysis and Characterization of Vitamin B Biosynthesis Pathways in the Phytoparasitic Nematode Heterodera Glycines

    Science.gov (United States)

    Craig, James P.

    2009-01-01

    The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…

  11. Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Robertson, L; Robertson, W M; Jones, J T

    1999-08-01

    Secretions were induced from second (invasive) stage juveniles (J2s) of the potato cyst nematode Globodera rostochiensis by exposing them to 5-methoxy-N,N-dimethyl tryptamine oxalate (DMT). Secretions were collected from J2s in sufficient quantity to allow direct analysis. Gel electrophoresis followed by monochromatic silver staining demonstrated the presence of at least 10 proteins. The presence of several enzymes, including superoxide dismutase and proteases, was demonstrated using Western blots and activity assays. Antisera raised against the secretions recognized bands on Western blots consistent in molecular mass with those identified on silver stained gels. The antisera recognized structures implicated in the production of secretions including the subventral gland cells and surface of J2s.

  12. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom

    Czech Academy of Sciences Publication Activity Database

    Jones, L.; Koehler, A.-K.; Trnka, Miroslav; Balek, Jan; Challinor, A. J.; Atkinson, H. J.; Urwin, P.

    2017-01-01

    Roč. 23, č. 11 (2017), s. 4497-4507 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : climate change * Globodera pallida * Globodera rostochiensis * plant pathogens * potato cyst nematode * soil temperature simulations * soil-borne pests Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  13. Laboratory trials to infect insects and nematodes by some acaropathogenic Hirsutella strains (Mycota: Clavicipitaceous anamorphs).

    Science.gov (United States)

    Bałazy, Stanisław; Wrzosek, Marta; Sosnowska, Danuta; Tkaczuk, Cezary; Muszewska, Anna

    2008-02-01

    Laboratory assays have been carried out to artificially infect insect larvae of the birch bark-beetle (Scolytus ratzeburgi Jans.-Coleoptera, Scolytidae) and codling moth Cydia pomonella L. -Lepidoptera, Tortricidae) as well as the potato cyst nematode-Globodera rostochiensis Wollenweber, sugar beet nematode-Heterodera schachtii Schmidt and root-knot nematode-Meloidogyne hapla Chif (Nematoda, Heteroderidae), by the phialoconidia of some fungal species of the genus Hirsutella. From among four species tested on insects only H. nodulosa Petch infected about 20% of S. ratzeburgi larvae, whereas H. kirchneri (Rostrup) Minter, Brady et Hall, H. minnesotensis Chen, Liu et Chen, and H. rostrata Bałazy et Wiśniewski did not affect insect larvae. Only single eggs of the root-knot nematode were infected by H. minnesotensis in the laboratory trials, whereas its larvae remained unaffected. No infection cases of the potato cyst nematode (G. rostochiensis) and sugar beet nematode eggs were obtained. Comparisons of DNA-ITS-region sequences of the investigated strains with GenBank data showed no differences between H. minnesotensis isolates from the nematodes Heterodera glycines Ichinohe and from tarsonemid mites (authors' isolate). A fragment of ITS 2 with the sequence characteristic only for H. minnesotensis was selected. Two cluster analyses indicated close similarity of this species to H. thompsonii as sister clades, but the latter appeared more heterogenous. Insect and mite pathogenic species H. nodulosa localizes close to specialized aphid pathogen H. aphidis, whereas the phytophagous mite pathogens H. kirchneri and H. gregis form a separate sister clade. Hirsutella rostrata does not show remarkable relations to the establishment of aforementioned groups. Interrelated considerations on the morphology, biology and DNA sequencing of investigated Hirsutella species state their identification more precisely and facilitate the establishment of systematic positions.

  14. Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi.

    Science.gov (United States)

    Chen, Qing; Rehman, S; Smant, G; Jones, John T

    2005-07-01

    RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.

  15. Characterization of resistance to Globodera rostochiensis pathotype Ro1 in cultivated and wild potato species accessions from the Vavilov Institute of Plant Industry

    Science.gov (United States)

    Potato cyst nematodes (PCN) in Russia are represented by only Globodera rostochiensis pathotype Ro1. It is a quarantine pathogen with losses in yield in susceptible cultivars which can reach 50-90%. The aims of our study were to verify the species and pathotype composition of natural PCN populations...

  16. A Secreted SPRY Domain-Containing Protein (SPRYSEC) from the Plant-Parasitic Nematode Globodera rostochiensis Interacts with a CC-NB-LRR Protein from a Susceptible Tomato

    NARCIS (Netherlands)

    Rehman, S.; Postma, W.J.; Tytgat, T.O.G.; Prins, J.C.P.; Qin Ling,; Overmars, H.A.; Vossen, J.; Spiridon, L.N.; Petrescu, A.J.; Goverse, A.; Bakker, J.; Smant, G.

    2009-01-01

    Esophageal gland secretions from nematodes are believed to include effectors that play important roles in plant parasitism. We have identified a novel gene family encoding secreted proteins specifically expressed in the dorsal esophageal gland of Globodera rostochiensis early in the parasitic cycle,

  17. Comparison of alternative methods for the control of potatoes nematodes (globodera rostochiensis and Globodera pallida) in soils of SA Pobla. Majorca, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gomila, I.; Olmo, D.; Rotger, B.; Rossello, M. I.; Nieto, A.; Rossello, J.; Lopez-Lopez, G.; Ibanez, A.; Sastre Conde, I.; Juan Serra, A.

    2009-07-01

    Among phytoparistic nematodes. Globodera rostochiensis and Globodera pallida represent one the highest problem of potato crop and as so need to be controlled years. Tradicionally, this control was performed through soil chemical disinfection before starting the crop. Nowadays most of the products used for this disinfection are eliminated from the market due to the UE directive 91/444. (Author)

  18. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Lu, Shun-Wen; Chen, Shiyan; Wang, Jianying; Yu, Hang; Chronis, Demosthenis; Mitchum, Melissa G; Wang, Xiaohong

    2009-09-01

    Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.

  19. Bulviniai cistiniai nematodai Globodera rostochiensis ir Globodera pallida, jų chemoekologinių sąveikų su augalu šeimininku tyrimas

    OpenAIRE

    Čepulytė-Rakauskienė, Rasa

    2012-01-01

    Potato cyst nematodes Globodera rostochiensis and Globodera pallida are one of the most important solanaceous plant pests. Identification of potato cyst nematodes species is exposed to morphological similarities and overlapping morphometric measurements between species. Only modern molecular techniques allow more accurate identification of potato cyst nematode species. Hence, it is important to apply these techniques in order to reliably identify these species in Lithuania. Potato roots...

  20. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  1. Cereal Cyst Nematode (Heterodera avenae) on Oats. II. Early Root Development and Nematode Tolerance

    OpenAIRE

    Volkmar, K. M.

    1989-01-01

    The effect of Heterodera avenae infestation on early seminal and lateral root growth was examined in four oat genotypes differing in tolerance to H. avenae. Recently emerged seminal roots were inoculated with a range of H. avenae larval densities, then transferred a hydroponic system to remove the effect of later nematode penetration on root development. Intolerance to H. avenae was assessed in terms of impairment of seminal root extension resulting in fewer primary lateral roots emerging fro...

  2. Low temperature scanning electron microscopic studies on the interaction of globodera rostochiensis woll. and trichoderma harzianum rifai

    International Nuclear Information System (INIS)

    Saifullah, A.; Khan, N.U.

    2014-01-01

    Low temperature scanning electron microscopic (LTSEM) studies revealed that Trichoderma harzianum infected mature potato cysts nematode eggs by penetrating directly the cyst wall or via natural opening of mouth. Mycelial penetration on cyst wall or egg surface has been seen. The penetration of cyst wall or egg surface was either chemical or mechanical (directly or with appresorium) or both. Freeze fractionation showed the presence of mycelia inside the eggs. (author)

  3. [Genetic variability and differentiation of three Russian populations of yellow potato cyst nematode Globodera rostochiensis as revealed by nuclear markers].

    Science.gov (United States)

    Khrisanfova, G G; Kharchevnikov, D A; Popov, I O; Zinov'eva, S V; Semenova, S K

    2008-05-01

    Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G(st)), as well as the gene flow indices N(m) between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia. Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.

  4. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis.

    Science.gov (United States)

    Jones, J T; Reavy, B; Smant, G; Prior, A E

    2004-01-07

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for secretion from animal cells while the other is predicted to be intracellular. Both genes are expressed in all parasite stages tested. The mRNA encoding the intracellular GpX is present throughout the nematode second stage juvenile and is particularly abundant in metabolically active tissues including the genital primordia. The mRNA encoding the secreted GpX is restricted to the hypodermis, the outermost cellular layer of the nematode, a location from which it is likely to be secreted to the parasite surface. Biochemical studies confirmed the secreted protein as a functional GpX and showed that, like secreted GpXs of other parasitic nematodes, it does not metabolise hydrogen peroxide but has a preference for larger hydroperoxide substrates. The intracellular protein is likely to have a role in metabolism of active oxygen species derived from internal body metabolism while the secreted protein may protect the parasite from host defences. Other functional roles for this protein are discussed.

  5. Morphological and molecular observations on the cereal cyst nematode Heterodera filipjevi from the Volga and South Ural regions of Russia

    Science.gov (United States)

    During 2010-2012, a survey was conducted to determine the distribution and species diversity of the cereal cyst nematode Heterodera filipjevi within the Volga and South Ural regions of the Russian Federation. A total of 270 soil samples were collected. Seven populations of CCN were found in the rhiz...

  6. Characterization of cereal cyst nematodes (Heterodera spp. in Morocco based on morphology, morphometrics and rDNA-ITS sequence analysis

    Directory of Open Access Journals (Sweden)

    Mokrini Fouad

    2017-09-01

    Full Text Available Morphological and molecular diversity among 11 populations of cereal cyst nematodes from different wheat production areas in Morocco was investigated using light microscopy, species-specific primers, complemented by the ITS-rDNA sequences. Morphometrics of cysts and second-stage juveniles (J2s were generally within the expected ranges for Heterodera avenae; only the isolate from Aïn Jmaa showed morphometrics conforming to those of H. latipons. When using species-specific primers for H. avenae and H. latipons, the specific bands of 109 bp and 204 bp, respectively, confirmed the morphological identification. In addition, the internal transcribed spacer (ITS regions were sequenced to study the diversity of the 11 populations. These sequences were compared with those of Heterodera species available in the GenBank database (www.ncbi.nlm.nih.gov and confirmed again the identity of the species. Ten sequences of the ITS-rDNA were similar (99–100% to the sequences of H. avenae published in GenBank and three sequences, corresponding with one population, were similar (97–99% to H. latipons.

  7. Life cycle of the potato golden cyst nematode (Globodera rostochiensis grown under climatic conditions in Belgrade

    Directory of Open Access Journals (Sweden)

    Bačić Jasmina

    2011-01-01

    Full Text Available The life cycle of a population of the quarantine nematode Globodera rostochiensis on the root of susceptible potato variety, Desiree, originating from an infected field (CC Ljubovija no. 413 on the mountain of Jagodnja in the district of Mačva, was studied under experimental conditions in Belgrade in 2002-2003. The golden cyst nematode completed one generation per year in the temperate climate of this region. In 2002, the life cycle lasted 29 days after the penetration of the second stage juveniles into the roots. An adverse effect of high soil temperatures above 25 °C was observed in 2003, influencing the development of the nematode and making the life cycle last two months longer.

  8. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    Science.gov (United States)

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  9. Use of chemical flocculation and nested PCR for Heterodera glycines detection in DNA extracts from field soils with low population densities

    Science.gov (United States)

    The soybean cyst nematode (SCN) Heterodera glycines is a major pathogen of soybean world-wide. Distinction between SCN and other members of H. schachtii sensu stricto group based on morphology is a tedious task. A molecular assay was developed to detect SCN in field soils with low population densiti...

  10. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  11. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  12. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    Full Text Available The cereal cyst nematode (CCN, Heterodera avenae is a major pest of wheat (Triticum spp that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy revealed fewer glycoside hydrolases (GHs but more glycosyl transferases (GTs and carbohydrate esterases (CEs when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  13. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Science.gov (United States)

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N; Jones, Michael G K; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  14. Dispersal strategy of cyst nematodes (Heterodera arenaria) in the plant root zone of mobile dunes and consequences for emergence, survival and reproductive success

    NARCIS (Netherlands)

    Stoel, C.D.; Putten, van der W.H.

    2006-01-01

    Root-feeding nematodes may play an important role in generating spatial and temporal variation in natural plant communities, but little is known about the performance of the nematodes in the plant root zone. We studied the emergence, survival and reproductive success of the cyst nematode Heterodera

  15. Dispersal strategy of cyst nematodes (Heterodera Arenaria) in the plant root zone of mobile dunes and consequences for emergence, survival and reproductive success

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Van der Putten, W.H.

    2006-01-01

    Root-feeding nematodes may play an important role in generating spatial and temporal variation in natural plant communities, but little is known about the performance of the nematodes in the plant root zone. We studied the emergence, survival and reproductive success of the cyst nematode Heterodera

  16. VIRULENT GROUP Ro1,4 POTATO GOLDEN CYST NEMATODES (Globodera rostochiensis WOLLENWEBER IN CROATIA

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2005-06-01

    Full Text Available The potato golden cyst nematode (Globodera rostochiensis WOLLENWEBER is very important potato pest. According to EPPO it is on the quarantines A2 list. This species was detected on the territory of Belice in 2001. In 2002 soil samples were taken on two treatments, one with potato in monoculture and the other on the wheat where potato was previous crop. Cysts extraction was done in the laboratory of nematology at the Faculty of Agriculture in Osijek and Swedish University of Agriculture Sciences, Department of Crop Science. Virulent group Ro1,4 was detected. More cysts were discovered in the monoculture potato soil (458/100 ccm of soil than in the soil under the wheat (368/100 ccm of soil. In 2004 vitality of the cysts were analysed. Cysts from potato monoculture had higher vitality (203 larvae/ cyst than cyst from the soil under wheat (38 larvae/cyst with potato as previous crop.

  17. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    OpenAIRE

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that ...

  18. Efecto de la fertilización nitrogenada en la incidencia de Fusarium oxysporum f. sp. Dianthi y Heterodera trifolii g. en clavel Effect of nitrogen fertilization on the incidence of Fusarium oxysporum f. sp. Dianthi and Heterodera trifolii G. in carnation

    OpenAIRE

    Burbano Luis E.; Erazo Aurelio; Orozco de Amezquita Martha; Garcés de Granada Emira

    1990-01-01

    El manejo de la fertilización es uno de los métodos que junto con otras formas de control puede reducir la severidad de algunas enfermedades; en el presente trabajo se evaluó el efecto de la fertilización nitrogenada, utilizando diferentes fuentes de nitrógeno sobre las enfermedades causadas por Fusarium oxysporum f. sp, Dianthi y Heterodera trifolii G. Se emplearon como fuentes de nitrógeno de fosfato de amonio, nitrato de potasio y nitrón 26, y sulfato de potasio como testigo. Al f...

  19. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  20. Water relations during desiccation of cysts of the potato-cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Wharton, D A; Worland, M R

    2001-03-01

    The loss during desiccation of osmotically active water (OAW), which freezes during cooling to -45 degrees C, and osmotically inactive water (OIW), which remains unfrozen, from the cysts of the potato cyst nematode, Globodera rostochiensis, was determined using differential scanning calorimetry. Exotherms and endotherms associated with non-egg compartments were not detected after 5 min desiccation at 50% relative humidity and 20 degrees C. The pattern of water loss from the cysts indicates that water is lost from compartments outside the eggs first, that nearly all the non-egg water is OAW and that the OIW content of the cyst is contained within the eggs. Water is lost from the eggs only after the OAW content outside the eggs falls below that within the eggs. Both OAW and OIW are lost from the eggs during desiccation but the eggs retain a small amount of OIW. Other animals which survive some desiccation but which are not anhydrobiotic will tolerate the loss of OAW but not the loss of their OIW. Anhydrobiotic animals can survive the loss of both their OAW and a substantial proportion of their OIW.

  1. Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Kudla, Urszula; Qin, Ling; Milac, Adina; Kielak, Anna; Maissen, Cyril; Overmars, Hein; Popeijus, Herman; Roze, Erwin; Petrescu, Andrei; Smant, Geert; Bakker, Jaap; Helder, Johannes

    2005-04-25

    Southern analysis showed that Gr-EXPB1, a functional expansin from the potato cyst nematode Globodera rostochiensis, is member of a multigene family, and EST data suggest expansins to be present in other plant parasitic nematodes as well. Homology modeling predicted that Gr-EXPB1 domain 1 (D1) has a flat beta-barrel structure with surface-exposed aromatic rings, whereas the 3D structure of Gr-EXPB1-D2 was remarkably similar to plant expansins. Gr-EXPB1 shows highest sequence similarity to two extracellular proteins from saprophytic soil-inhabiting Actinobacteria, and includes a bacterial type II carbohydrate-binding module. These results support the hypothesis that a number of pathogenicity factors of cyst nematodes is of procaryotic origin and were acquired by horizontal gene transfer.

  2. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using Real-Time PCR with SYBR green I dye.

    Science.gov (United States)

    Madani, Mehrdad; Subbotin, Sergei A; Moens, Maurice

    2005-04-01

    The potato cyst nematode Globodera pallida and the beet cyst nematode Heterodera schachtii are major nematode pests in world agriculture. Precise identification and knowledge about the number of nematodes in field soil are necessary to develop effective integrated pest control. Here we report the results of the Real-Time PCR assay for the rapid detection and quantification of G. pallida and H. schachtii. Using species specific primers and SYBR green I dye, we were able to detect a single second stage juvenile of cyst forming nematodes in samples. The specificity of the reaction was confirmed by the lack of amplification of DNAs from other Heterodera or Globodera species. Validation tests showed a rather high correlation between real numbers of second stage juveniles in a sample and expected numbers detected by Real-Time PCR. Reasons for observed differences in sensitivity and reliability of quantification detection for two species as well as other problems of Real-Time PCR are discussed. The Real-Time PCR assay with SYBR green I dye targeting fragments of the ITS-rDNA provided a sensitive means for the rapid and simultaneous detection and quantification of juveniles of these pests.

  4. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  5. The expression of R genes in genetic and induced resistance to potato cyst nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975.

    Science.gov (United States)

    Lavrova, V V; Matveeva, E M; Zinovieva, S V

    2015-01-01

    The characteristics of expression of two genes, H1 and Gro1-4, which determine the resistance to the sedentary parasitic nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975, in the resistant (Krepysh) and susceptible (Nevskii) potato cultivars was studied under a short-term exposure to low temperatures. Such treatment of susceptible plants at the early stages of ontogeny led to the activation of expression of H1 and Gro1-4 genes in roots and the H1 gene in leaves. The transcriptional activity of R genes was detected not only in roots but also in leaves (i.e., in tissue remote from the site of direct injury by the nematode) in the case of both genetic and induced resistance, indicating the development of a systemic defense response of plants to infection.

  6. Control químico del Nematodo quiste Heterodera trifolii en clavel miniatura Chemical control of the cyst nematode, Heterodera trifolii in miniature carnation

    Directory of Open Access Journals (Sweden)

    Marroquin Alicia

    1991-12-01

    Full Text Available Una de las enfermedades en el cultivo del clavel recientemente registradas en Colombia es el nemátodo quiste, Heterodera trifolii. Un aumento del marchitamiento vascular ocasionado por Fusarium oxysporumof. sp. dianthi se ha observado en algunas fincas afectadas por los dos patógenos. La investigación se realizó para evaluar el efecto de varios productos químicos en el control del nemátodo, en un invernadero comercial con clavel miniatura de la variedad Red Baron. Los fumigantes DD-metilisotiocianato, Dazomet y Metan sodio se aplicaron al suelo antes de la siembra, solos y en combinación con tres nemáticidas no fumiqantes Aldicarb, Carbofuran y Oxamil, en tres épocas de aplicación. Los fumigantes fueron máseficientes para la reducción de la población del nemátodo en el suelo que los nematicidasno fumigantes. El mejor tratamiento fue DD-metilisotiocianato con una reducción del 52% de la población de quistes viables y de 38% en la población de larvas en el suelo, un adelanto de 15 días en la cosecha, un aumento del 9% en rendimiento y del 19% en ingresos netos, en comparación con el Testigo no tratado. Entre los nematicidas no fumigantes, los mejores tratamientos fueron Aldicarb y Carbofuran aplicados en el momento de la siembra y Oxamil aplicado 30 días después de la siembra. La combinación de los fumigantes y de los nematicidas no fumigantes no mejoró el control del nemátodo, el rendimiento y la calidad de las flores, pero si aumentó notablemente los costos de producción.
    One of the diseases recently registered on carnation in Colombia is the cystnematode caused by Heterodera trifolii. An increase of the vascular wilt was observed in some farms affected by the two pathogens. A trial was carried out in a commercial greenhouse with miniature carnation of the variety Red Baron. The fumigants DD memethylisothiocianate, Dazomet and Methamsodium applied to the soil before planting were used alone and in combination with

  7. Pengaruh Berbagai Ekstrak Metanol Tumbuhan terhadap Mortalitas Juvenil Instar-2 dan Penetasan Telur Nematoda Sista Kentang (Globodera rostochiensis

    Directory of Open Access Journals (Sweden)

    Iis Nur Asyiah

    2005-07-01

    Full Text Available The research was conducted to know the influence of methanol extracts from 19 plant species to the second-stage juvenil (J2 mortality and to the hatching of the potato cyst nematode, Globodera rostochiensis, the new pest of potato in Indonesia. The research was conducted by using complete random design, where each treatment was repeated 3 times. Cyst hatching was conducted by using ZnSO4 10-2 M. Data obtained to be analyzed with the ANOVA and continued with the DMRT 5%. The result indicated that from 19 species of examined plant, clove flower and leaf methanol extract with concentration 10.000 ppm inflicted 100% and 96,7% J2 mortality and others inflicted <50% 12 mortality. Clove flower and leaf methanol extract permanently inhibited of cyst hatching, methanol extract of Andrograpis puniculata, Capsium frutescens, Chrysanthemum sp., and Allium sativum inhibited of cyst hatching non permanently, while other plants extract methanol didn't inhibit of cyst hatching.

  8. The potential signalling pathways which regulate surface changes induced by phytohormones in the potato cyst nematode (Globodera rostochiensis).

    Science.gov (United States)

    Akhkha, A; Curtis, R; Kennedy, M; Kusel, J

    2004-05-01

    It has been demonstrated that the surface lipophilicity of the plant-parasitic nematode Globodera rostochiensis decreases when infective larvae are exposed to the phytohormones indole-3-acetic acid (auxin) or kinetin (cytokinin). In the present study, it was shown that inhibition of phospholipase C (PLC) or phosphatidylinositol 3 kinase (PI3-kinase) reversed the effect of phytohormones on surface lipophilicity. The signalling pathway(s) involved in surface modification were investigated using 'caged' signalling molecules and stimulators or inhibitors of different signalling enzymes. Photolysis of the 'caged' signalling molecules, NPE-caged Ins 1,4,5-P3, NITR-5/AM or caged-cAMP to liberate IP3, Ca2+ or cAMP respectively, decreased the surface lipophilicity. Activation of adenylate cyclase also decreased the surface lipophilicity. In contrast, inhibition of PI3-kinase using Wortmannin, LY-294002 or Quercetin, and inhibition of PLC using U-73122 all increased the surface lipophilicity. Two possible signalling pathways involved in phytohormone-induced surface modification are proposed.

  9. First Report of the Fig Cyst Nematode, Heterodera fici Kirjanova, on Fig Tree, Ficus carica, in Ontario, Canada.

    Science.gov (United States)

    Sun, Fengcheng; Henry, Neil; Yu, Qing

    2017-06-01

    Although fig trees are a popular ornamental fruit tree in subtropical regions, some hardy species, such as Ficus carica , have been grown in the west coast of British Columbia and southern Ontario in Canada. The fig cyst nematode, Heterodera fici Kirjanova, is a pest on fig plants, and the heavy infestation can cause retarded growth and yellowing of leaves (Maqbool et al., 1987). In the spring of 2016, a sample of rhizosphere from a potted fig ( F. carica ) seedling was submitted to the Nematology Laboratory, Canadian Food Inspection Agency. The sample was collected from a nursery in Niagara-on-the-Lake, Ontario, Canada, during an inspection to support export certification. The fig trees in the nursery had been grown in the outside fields during the growing seasons and potted and moved to indoor during the winters for last 3 years. The sample was subjected to a nematode extraction process, including decanting and sieving and misting, and lemon-shaped cysts and second-stage juveniles of Heterodera sp. were recovered from the sample examined. The morphological and molecular analyses of the cysts, vulval cone, and second-stage juveniles from both the roots and the crushed cysts identified the species as Heterodera fici Kirjanova. The cysts were characterized by their dark brown color and lemon shape, as well as distinct necks and vulval cones. The vulval cones were observed having an ambifenestrate fenestra (Fig. 1AFig. 1Photomicrographs of Heterodera fici on fig tree from Ontario, Canada. A, B. Cyst vulval cones with the ambifenestrate fenestra in A) and well-developed underbridge and bullae in B). C-E. The second-stage juveniles from a crushed cyst with the whole body in C), the anterior region in D) and the posterior region in E).), dome-shaped bullae scattered around the underbridge plane (Fig. 1B), well-developed underbridge (Fig. 1B), and coarse zig-zag ridges surrounding the fenestra on the surface. The cyst measurements ( n = 3) were length 608.7 ± 91.6 (506

  10. Isolation of Fungi from Heterodera glycines and in vitro Bioassays for Their Antagonism to Eggs.

    Science.gov (United States)

    Meyer, S L; Huettel, R N; Sayre, R M

    1990-10-01

    Twenty fungi were assayed in vitro for antagonism to eggs of Heterodera glycines. Eight of the fungi were isolated from cysts or eggs of H. glycines during the current study, one was isolated from Panagrellus redivivus, and eleven were obtained from other researchers or collections. The bioassays were conducted on eggs from nematodes that had been grown monoxenically on excised root tips. Phoma chrysanthemicola, one strain of Verticillium chlamydosporium, and one strain of V. lecanii caused a decrease (P Trichoderma polysporum infected live eggs but enhanced (P Fusarium sp., Neocosmospora vasinfecta, Scytalidium fulvum, Trichoderma harzianum (two strains), V. chlamydosporium (one strain), V. lecanii (three strains), and an unidentified fungus did not measurably affect egg viability, even though hyphae of five of these fungi were seen in live eggs. The bioassay provides a useful step in the selection of a biological control agent for this major nematode pest.

  11. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    Science.gov (United States)

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species. PMID:19283127

  12. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes.

    Science.gov (United States)

    Kim, D G; Riggs, R D

    1991-07-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species.

  13. Identifikasi karakter morfologi nematoda sista pada tanaman jagung (Heterodera zeae di Indonesia

    Directory of Open Access Journals (Sweden)

    Yuliantoro Baliadi

    2012-02-01

    Full Text Available Identification of nematode species is the fi rst step in the resolution of major nematological problems. Accurate identification of maize cyst nematode species is essential for more detailed research, particularly for it control measure. Although morphological observations by using the key characters of each nematode are suitable for identification purposes, the cyst nematodes could not beclearly identified based on it due to the wide variations. For the identification of the cyst nematode species, key characters relating to body surface, head, mouth, esophagus, tail as well as habitat and feeding habits was used in the present examination. Procedures for the permanent and temporary preparations of nematodes were used. The nematode specimens were observed under the microscope to confirm the key characters. Results of measurements and descriptions revealed that the cyst nematode collected from maize roots in Madura island have the same ambifenestrate as that of Heterodera zeae. The underbridge is short and thin and there is two layer of bullae arrangement in vulval cone, the first layer with four finger-like bullae located immediately below the underbridge and the second layer very randomly located below the fi rst one. These characteristics are of H. zeae. These complete of morphological identifications are a new report of H. zeae in Indonesia.

  14. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  15. Distribución e identificación de especies hospedantes de Heterodera glycines Ichinohe raza 3 en el Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Varón de Agudelo Francia

    1988-06-01

    Full Text Available Se dividió la parte plana del Valle del Cauca en tres zonas (norte, centro y sur, habiéndose visitado 33 fincas. En la zona norte las malezas con mayor porcentaje de frecuencia y distribución en los cultivos de soya fueron Digitaria horizontalis, Echinochloa colonum y Leptochloa filiformis; en la zona centro Ipomoea hirta, Amaranthus dubius y Echinochloa colonum y en la zona sur predominaron Ipomoea hirta, Portulaca oleracea Cyperus rotundus. Los análisis de muestras de suelo y raíces indicaron que H. glycines se encuentra distribuido en todo el Valle del Cauca, presentando la zona sur (Candelaria, Palmira y Puerto Tejada las mayores poblaciones. Entre las especies evaluadas (malezas, cultivos, leguminosas forrajeras y silvestres, solamente Glycine max y Phaseolus vulgaris se consideraron como susceptibles a H. glycines raza 3. y P. angularis y P. multiflora permitieron muy poca infección y multiplicación del nemátodo.A nematode recognition of Heterodera glycines was focused on crops of soybean. Valle del Cauca was divided in three zones (northen, central and southern and 33 farms were visited. The results of the analysis on samples of soils and roots showe that Heterodera glycines is scattered throughout Valle del Cauca, being the southern zone (Palmira, Candelaria and Puerto Tejada the one having the highest standards in nematode population. Weeds showing a greater frequency percentage were : Digitaria horizontalis, Echinochloa colonum and Leptochloa filiformis, in the northen zone; Ipomoea hirta, Amaranthus dubius and Echinochloa colonum, in the central zone, and Ipomoea hirta, Portulaca oleracea and Cyperus rotundus, in the southern zone , From among the whole species evaluated (weeds, crops, leguminous a n d fodder plants, Glycine max and Phaseolus vulgaris were considered to be susceptible to H. Glycines race 3. Phaseolus angularis y P. multiflora let low population levels.

  16. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    Science.gov (United States)

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  17. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    Science.gov (United States)

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-12-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  18. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    Directory of Open Access Journals (Sweden)

    Jose L Lozano-Torres

    2014-12-01

    Full Text Available Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes

  19. Effect of storage in vitro and in soil on the hatch from cysts of the pigeonpea cyst nematode, Heterodera cajani

    OpenAIRE

    Gaur, H.S.; Beane, J.; Perry, R.N.

    1996-01-01

    L'éclosion et l'infestivité des juvéniles de deuxième stade (J2) issus de kystes du nématode à kyste du pois d'Angole, #Heterodera cajani$, ont été testées après que les kystes ont été exposés à une humidité relative (RH) de 0, 60, 80 et 100% pendant 3 semaines ou après avoir été stockés pendant au moins 12 mois dans un sol séché à l'air. Un retard dans l'éclosion a pu être mis en relation avec le temps de stockage et la RH. Les RH 80 et 100% ont moins d'influence sur l'éclosion que les RH 0 ...

  20. Scientific Opinion on the risks to plant health posed by European versus non-European populations of the potato cyst nematodes Globodera pallida and Globodera rostochiensis

    DEFF Research Database (Denmark)

    Baker, R.; Candresse, T.; Dormannsné Simon, E.

    2012-01-01

    The Panel on Plant Health has delivered a scientific opinion on the different risks posed by European and non-European populations of the potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis to solanaceous plants in the EU and on the effectiveness of current control measures...... to place of production freedom and soil origin were noted, and the Panel identified additional risk reduction options for certain plants for planting (e.g. bulbs) and additional requirements to confirm the absence of PCN in places of production. The Panel also identified some problems with the existing...... control measures to reduce the spread of PCN within the EU. A thorough and well-coordinated EU-wide survey using standardized methods would be necessary to evaluate the need to maintain these measures. The monitoring of PCN populations should exploit new diagnostic techniques (e.g. mitochondrial DNA...

  1. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  2. The Role of Cytokinin During Infection of Arabidopsis thaliana by the Cyst Nematode Heterodera schachtii.

    Science.gov (United States)

    Shanks, Carly M; Rice, J Hollis; Zubo, Yan; Schaller, G Eric; Hewezi, Tarek; Kieber, Joseph J

    2016-01-01

    Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode, in part, by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyperinduced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.

  3. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  4. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  5. [Allelic state of the molecular marker for the golden nematode (Globodera rostochiensis) resistance gene H1 among Ukrainian and world cultivars of potato (Solanum tuberosum ssp. tuberosum)].

    Science.gov (United States)

    Karelov, A V; Pilipenko, L A; Kozub, N A; Bondus, R A; Borzykh, A U; Sozinov, I A; Blium, Ia B; Sozinov, A A

    2013-01-01

    The purpose of our investigation was determination of allelic state of the H1 resistance gene against the pathotypes Ro1 and Ro4 of golden potato cyst nematode (Globodera rostochiensis) among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. The allelic condition of the TG689 marker was determined by PCR with DNA samples isolated from tubers of potato and primers, one pair of which flanks the allele-specific region and the other one was used for the control of DNA quality. Among analyzed 77 potato cultivars the allele of marker associated with the H1-type resistance was found in 74% of Ukrainian and 90% foreign ones although some of those cultivars proved to be susceptible to the golden potato nematode in field. The obtained data confirm the presence of H1-resistance against golden nematode pathotypes Ro1 and Ro4 among the Ukrainian potato cultivars and efficiency of the used marker within the accuracy that has been declared by its authors.

  6. Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec, Canada.

    Science.gov (United States)

    Boucher, Annie Christine; Mimee, Benjamin; Montarry, Josselin; Bardou-Valette, Sylvie; Bélair, Guy; Moffett, Peter; Grenier, Eric

    2013-10-01

    The golden cyst nematode (Globodera rostochiensis), native to South America, has been introduced in many parts of the world, including Europe and North America. Recently, it was found for the first time in the province of Quebec, Canada in the locality of St. Amable near Montreal. To date, very few studies have examined the population genetics of this pest. Consequently, there is a lack of knowledge about the genetic structure and evolution of this nematode. In this study, twelve new microsatellite markers were developed in order to explore these questions. These markers were used to genotype fifteen populations originating from different regions of the world, including five from Canada. Within populations, the highest genetic diversity was consistently observed in the populations from Bolivia, the postulated region of origin of the golden nematode, and the lowest in populations from British Columbia (Canada) and New York (USA). The two Quebec populations were very similar to each other and to the population found in Newfoundland, but surprisingly, they were significantly different from three other North American populations including those from New York and British Columbia. Based on our results, we conclude that the golden cyst nematode has been introduced in North America at least twice from distinct regions of the world. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  7. Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reaction-restriction fragment length polymorphism and cyst morphology.

    Science.gov (United States)

    Yan, Guiping; Smiley, Richard W

    2010-03-01

    The cereal cyst nematodes Heterodera filipjevi and H. avenae impede wheat production in the Pacific Northwest (PNW). Accurate identification of cyst nematode species and awareness of high population density in affected fields are essential for designing effective control measures. Morphological methods for differentiating these species are laborious. These species were differentiated using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS)-ribosomal (r)DNA with up to six restriction endonucleases (TaqI, HinfI, PstI, HaeIII, RsaI, and AluI). The method was validated by inspecting underbridge structures of cyst vulval cones. Grid soil sampling of an Oregon field infested by both species revealed that H. filipjevi was present at most of the infested grid sites but mixtures of H. avenae and H. filipjevi also occurred. These procedures also detected and differentiated H. filipjevi and H. avenae in soil samples from nearby fields in Oregon and H. avenae in samples from Idaho and Washington. Intraspecific polymorphism was not observed within H. filipjevi or PNW H. avenae populations based on the ITS-rDNA. However, intraspecific variation was observed between H. avenae populations occurring in the PNW and France. Methods described here will improve detection and identification efficiencies for cereal cyst nematodes in wheat fields.

  8. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Bakker, Erin; Achenbach, Ute; Bakker, Jeroen; van Vliet, Joke; Peleman, Johan; Segers, Bart; van der Heijden, Stefan; van der Linde, Piet; Graveland, Robert; Hutten, Ronald; van Eck, Herman; Coppoolse, Eric; van der Vossen, Edwin; Bakker, Jaap; Goverse, Aska

    2004-06-01

    The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH x RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (http://www.dpw.wageningen-ur.nl/uhd/). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F(1) SH x RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.

  9. Early responses of resistant and susceptible potato roots during invasion by the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Sheridan, Jacqueline P; Miller, Anthony J; Perry, Roland N

    2004-03-01

    Signals from roots of resistant (cv. Maris Piper) and susceptible (cv. Désirée) potato cultivars during invasion by second stage juveniles (J2s) of the potato cyst nematode, Globodera rostochiensis, were investigated. Novel experimental chambers enabled the recording of electrophysiological responses from roots during nematode invasion. The root cell membrane potentials were maintained throughout the 3 d required to assess invasion and feeding site development. The steady-state resting membrane potentials of Désirée were more negative than those of Maris Piper on day 1, but the reverse on day 3. After 5 d there was no difference between the two cultivars. Intracellular microelectrodes detected marked spike activity in roots after the application of J2s and there were distinct and reproducible differences between the two cultivars, with the response from Désirée being much greater than that from Maris Piper. The responses to mechanical stimulation of roots by blunt micropipettes and sharp electrodes were consistent and similar in both cultivars to the responses in Maris Piper obtained after nematode invasion, but could not account for the marked response found in Désirée. Exogenous application of exoenzymes, used to mimic nematode chemical secretions, resulted in a distinct depolarization pattern that, although similar in both cultivars, was different from patterns obtained during nematode invasion or mechanical stimulation. The pH of homogenates prepared from roots of both cultivars was measured and a Ca2+ channel blocker was used to assess the role of Ca2+ in nematode invasion. The results indicated a role for Ca2+ in the signalling events that occur during nematode invasion.

  10. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    Directory of Open Access Journals (Sweden)

    Changlong Chen

    Full Text Available Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  11. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  12. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  13. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  14. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  15. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  16. Endogenous cellulases in animals: Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes

    Science.gov (United States)

    Smant, Geert; Stokkermans, Jack P. W. G.; Yan, Yitang; de Boer, Jan M.; Baum, Thomas J.; Wang, Xiaohong; Hussey, Richard S.; Gommers, Fred J.; Henrissat, Bernard; Davis, Eric L.; Helder, Johannes; Schots, Arjen; Bakker, Jaap

    1998-01-01

    β-1,4-Endoglucanases (EGases, EC 3.2.1.4) degrade polysaccharides possessing β-1,4-glucan backbones such as cellulose and xyloglucan and have been found among extremely variegated taxonomic groups. Although many animal species depend on cellulose as their main energy source, most omnivores and herbivores are unable to produce EGases endogenously. So far, all previously identified EGase genes involved in the digestive system of animals originate from symbiotic microorganisms. Here we report on the synthesis of EGases in the esophageal glands of the cyst nematodes Globodera rostochiensis and Heterodera glycines. From each of the nematode species, two cDNAs were characterized and hydrophobic cluster analysis revealed that the four catalytic domains belong to family 5 of the glycosyl hydrolases (EC 3.2.1, 3.2.2, and 3.2.3). These domains show 37–44% overall amino acid identity with EGases from the bacteria Erwinia chrysanthemi, Clostridium acetobutylicum, and Bacillus subtilis. One EGase with a bacterial type of cellulose-binding domain was identified for each nematode species. The leucine-rich hydrophobic core of the signal peptide and the presence of a polyadenylated 3′ end precluded the EGases from being of bacterial origin. Cyst nematodes are obligatory plant parasites and the identified EGases presumably facilitate the intracellular migration through plant roots by partial cell wall degradation. PMID:9560201

  17. Pasteuria endospores from Heterodera cajani (Nematoda: Heteroderidae) exhibit inverted attachment and altered germination in cross-infection studies with Globodera pallida (Nematoda: Heteroderidae).

    Science.gov (United States)

    Mohan, Sharad; Mauchline, Tim H; Rowe, Janet; Hirsch, Penny R; Davies, Keith G

    2012-03-01

    The Pasteuria group of Gram-positive, endospore-forming bacteria are parasites of invertebrates and exhibit differences in host specificity. We describe a cross-infection study between an isolate of Pasteuria from pigeon pea cyst nematode, Heterodera cajani, which also infects the potato cyst nematode, Globodera pallida, from the United Kingdom. A proportion of the attached endospores, 13% on H. cajani and 22% on G. pallida adhere to the cuticle in an inverted orientation. Inverted and conventionally attached endospores germinated and produced bacillus-like rods that completed their life cycle in Pasteuria population was systematically followed in two different nematode genera. A 1430-base pair fragment of the 16S rRNA gene sequence of the Pasteuria isolate from H. cajani revealed 98.6% similarity to the orthologous gene in Pasteuria nishizawae. Additionally, their respective endospore sizes were not significantly different, in contrast their host ranges are. Potential reasons for this remain unclear and are discussed. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Qin, L; Overmars, H; Helder, J; Popeijus, H; van der Voort, J R; Groenink, W; van Koert, P; Schots, A; Bakker, J; Smant, G

    2000-08-01

    A new strategy has been designed to identify putative pathogenicity factors from the dorsal or subventral esophageal glands of the potato cyst nematode Globodera rostochiensis. Three independent criteria were used for selection. First, genes of interest should predominantly be expressed in infective second-stage juveniles, and not, or to a far lesser extent, in younger developmental stages. For this, gene expression profiles from five different developmental stages were generated with cDNA-AFLP (amplified fragment length polymorphism). Secondly, the mRNA corresponding to such a putative pathogenicity factor should predominantly be present in the esophageal glands of pre-parasitic juveniles. This was checked by in situ hybridization. As a third criterion, these proteinaceous factors should be preceded by a signal peptide for secretion. Expression profiles of more than 4,000 genes were generated and three up-regulated, dorsal gland-specific proteins preceded by signal peptide for secretion were identified. No dorsal gland genes have been cloned before from plant-parasitic nematodes. The partial sequence of these three factors, A4, A18, and A41, showed no significant homology to any known gene. Their presence in the dorsal glands of infective juveniles suggests that these proteins could be involved in feeding cell initiation, and not in migration in the plant root or in protection against plant defense responses. Finally, the applicability of this new strategy in other plant-microbe interactions is discussed.

  19. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

    Science.gov (United States)

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-01-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii–Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage. PMID:25825039

  20. Heterodera guangdongensis n. sp. (Nematoda: Heteroderinae) from bamboo in Guangdong Province, China--a new cyst nematode in the Cyperi group.

    Science.gov (United States)

    Zhuo, Kan; Wang, Honghong; Zhang, Hongling; Liao, Jinling

    2014-11-07

    Heterodera guangdongensis n. sp. is described from bamboo (Phyllostachys pubescens Mazel) based on morphology and molecular analyses of rRNA D2D3 expansion domains of large subunit (LSU D2D3) and internal transcribed spacer (ITS) sequences. This new species can be classified in the Cyperi group. Cysts are characterized by a prominent, ambifenestrate vulval cone with weak underbridge, a vulva-anus distance of 28.9-35.9 μm and a vulval slit of 31.1-41.0 μm, but without bullae. Females are characterized by a 25.1-27.6 μm stylet with rounded knobs sloping slightly posteriorly. Males are characterized by a 21.5-23.0 μm stylet with knobs slightly projecting or flat anteriorly, lateral field with four lines, and a 22.0-26.0 μm spicule with bifurcate tip. Second-stage juveniles are characterized by a 19.3-21.3 stylet with slightly projecting or anteriorly flattened knobs, lateral field with three lines, a 41.7-61.3 μm tail with finely rounded terminus and hyaline portion forming 43.0-57.1% of the tail length. Molecular analyses show that the species has unique D2D3 and ITS rRNA sequences and RFLP-ITS-rRNA profiles.

  1. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  2. Molecular and genetic analyses of potato cyst nematode resistance loci

    NARCIS (Netherlands)

    Bakker, E.H.

    2003-01-01

    This thesis describes the genomic localisation and organisation of loci that harbour resistance to the potato cyst nematode species Globodera pallida and G. rostochiensis . Resistance to the potato cyst nematodes G. pallida and G. rostochiensis is an important aspect in potato breeding. To gain

  3. Introgression of Globodera resistance into the russet market class

    Science.gov (United States)

    Two species of potato cyst nematode (Globodera rostochiensis and G. pallida,) have been identified in the U.S. and are under quarantine regulations, with a third newly identified species (G. ellingtonae) not categorized as a quarantined pest. Management of G. rostochiensis in the state of New York ...

  4. Breeding and development of Globodera-resistant potato varieties with long tuber shape and russet skin for production in the western United States

    Science.gov (United States)

    Two species of potato cyst nematode (Globodera rostochiensis, and G. pallida,) have been identified in the U.S. and are under quarantine regulations, with a third newly identified species (G. ellingtonae) not categorized as a quarantined pest. Management of G. rostochiensis in the state of New York...

  5. Novel RNA viruses within plant parasitic cyst nematodes.

    Science.gov (United States)

    Ruark, Casey L; Gardner, Michael; Mitchum, Melissa G; Davis, Eric L; Sit, Tim L

    2018-01-01

    The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.

  6. Structure of syncytia induced by Heterodera schachtii Schmidt in roots of susceptible and resistant radish (Raphanus sativus L., var. oleiformis

    Directory of Open Access Journals (Sweden)

    Grażyna Grymaszewska

    2014-01-01

    Full Text Available The structure of syncytia induced by Heterodera schachtii Schmidt in roots of susceptible Raphanus sativus L. cv. "Siletina" and resistant radish cv. "Pegletta" was investigated. In the radish cultivar "Siletina" the syncytia most often appeared in the elongation zone of lateral roots. They were initiated in the procambium and pericycle but also included the parenchyma cells of vascular cylinder. In the susceptible cultivar "Siletina" the cells forming the female's syncytia were subject to hypertrophy. Their cytoplasmic density increased. The cytoplasm contained numerous organella. The proliferation of the smooth endoplasmic reticulum took place. Branched cell wall ingrowths were formed next to the vessels. In the male's syncytia the cells were only slightly increased. Their protoplasts contained few organelles. The cell wall ingrowths were poorly developed. In the syncytia of the resistant cultivar "Pegletta" there was only a slight increase of the cell volume. A well developed system of rough endoplasmic reticulum was observed in the protoplast. Distended ER cisterns contained fine fibrillar material. Material of similar structure also appeared in numerous small vacuoles. In resistant plants only some, not numerous, syncytia spreading in procambium fully developed and functioned long enough for the parasite females to mature. At an advanced stage of infection a well developed system of a rough ER was observed also in those syncytia and numerous vacuoles appeared.

  7. Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong

    2008-11-01

    Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.

  8. Identifying QTL for fur quality traits in mink (Neovison vison)

    DEFF Research Database (Denmark)

    Thirstrup, Janne Pia; Anistoroaei, Razvan Marian; Guldbrandtsen, Bernt

    2012-01-01

    Mapping of quantitative trait loci (QTL) affecting fur quality traits (guard hair length, guard hair thikness, and density of woll) was performed in a 3-generation population (F2-design). In the parental generation, Nordic wild mink were crossed reciprocally with American short nap mink. Twenty o...

  9. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism.

    Science.gov (United States)

    Chronis, Demosthenis; Chen, Shiyan; Lu, Shunwen; Hewezi, Tarek; Carpenter, Sara C D; Loria, Rosemary; Baum, Thomas J; Wang, Xiaohong

    2013-04-01

    Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  10. Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis.

    Science.gov (United States)

    Hewezi, Tarek; Piya, Sarbottam; Richard, Geoffrey; Rice, J Hollis

    2014-09-01

    Plant-parasitic cyst nematodes induce the formation of a multinucleated feeding site in the infected root, termed the syncytium. Recent studies point to key roles of the phytohormone auxin in the regulation of gene expression and establishment of the syncytium. Nevertheless, information about the spatiotemporal expression patterns of the transcription factors that mediate auxin transcriptional responses during syncytium formation is limited. Here, we provide a gene expression map of 22 auxin response factors (ARFs) during the initiation, formation and maintenance stages of the syncytium induced by the cyst nematode Heterodera schachtii in Arabidopsis. We observed distinct and overlapping expression patterns of ARFs throughout syncytium development phases. We identified a set of ARFs whose expression is predominantly located inside the developing syncytium, whereas others are expressed in the neighbouring cells, presumably to initiate specific transcriptional programmes required for their incorporation within the developing syncytium. Our analyses also point to a role of certain ARFs in determining the maximum size of the syncytium. In addition, several ARFs were found to be highly expressed in fully developed syncytia, suggesting a role in maintaining the functional phenotype of mature syncytia. The dynamic distribution and overlapping expression patterns of various ARFs seem to be essential characteristics of ARF activity during syncytium development. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  11. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots.

    Science.gov (United States)

    Cai, Daguang; Thurau, Tim; Tian, Yanyan; Lange, Tina; Yeh, Kai-Wun; Jung, Christian

    2003-04-01

    Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.

  12. The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopsis.

    Science.gov (United States)

    Elashry, Abdelnaser; Okumoto, Sakiko; Siddique, Shahid; Koch, Wolfgang; Kreil, David P; Bohlmann, Holger

    2013-09-01

    The beet cyst nematode Heterodera schachtii is able to infect Arabidopsis plants and induce feeding sites in the root. These syncytia are the only source of nutrients for the nematodes throughout their life and are a nutrient sink for the host plant. We have studied here the role of amino acid transporters for nematode development. Arabidopsis contains a large number of different amino acid transporters in several gene families but those of the AAP family were found to be especially expressed in syncytia. Arabidopsis contains 8 AAP genes and they were all strongly expressed in syncytia with the exception of AAP5 and AAP7, which were slightly downregulated. We used promoter::GUS lines and in situ RT-PCR to confirm the expression of several AAP genes and LHT1, a lysine- and histidine-specific amino acid transporter, in syncytia. The strong expression of AAP genes in syncytia indicated that these transporters are important for the transport of amino acids into syncytia and we used T-DNA mutants for several AAP genes to test for their influence on nematode development. We found that mutants of AAP1, AAP2, and AAP8 significantly reduced the number of female nematodes developing on these plants. Our study showed that amino acid transport into syncytia is important for the development of the nematodes. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  13. The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approaches to its control.

    Science.gov (United States)

    Nicol, J M; Elekçioğlu, I H; Bolat, N; Rivoal, R

    2007-01-01

    The Cereal Cyst Nematodes (CCNs) are a group of several closely related species which have been documented to cause economic yield loss on rainfed wheat production systems in several part of the world including North Africa, West Asia, China, India, Australia, America and several countries in Europe. The most commonly reported species is Heterodera avenae, however there are at least two other species H. filipjevi and H. latipons are implicated. It is well appreciated that plants under water and nutrient stress suffer greater yield loss. Control of CCNs requires maintaining nematode populations below economic thresholds. Chemicals are not environmentally sustainable or economic and the major emphasis on control has been with host genetic resistance applied with other integrated pest managent options. Unfortunately due to the number of species and pathotype variation genetic control of Cereal Cyst Nematode with plant resistance is complex. Turkey is one of the top ten wheat producers in the world and has identified these nematode as a major biotic constraint in their rainfed wheat systems. In 2001 a new joint intiative was established between CIMMYT International, the Turkish Ministry of Agriculture and (Ukurova University in Adana to understand i) the distribution of cereal nematodes on wheat; ii) assess the economic importance and improve our understanding of the population dynamics iii) culture, screen and assess known sources of resistance and identify new sources to both groups of nematodes; iv) integrate new sources of resistance into bread wheat cultivars for Turkey and International germplasm using conventional and molecular tools; v) investigate other integrated control options such as rotation and different wheat management strategies and finally vi) capacity build scientists to work in this important area. Some highlights of this work will be presented and the newly formed ICCNI - International Cereal Cyst Nematode Initative introduced.

  14. Isolation, Characterization, and Distribution of a Biocontrol Fungus from Cysts of Heterodera glycines.

    Science.gov (United States)

    Kim, D G; Riggs, R D; Correll, J C

    1998-05-01

    ABSTRACT Seventy-six populations of Heterodera glycines were collected from 33 counties in 10 states of the United States along the Mississippi and Missouri Rivers in 1992 and 1993. A sterile hyphomycete fungus of an unnamed taxon, designated ARF18 and shown to be a parasite of eggs of H. glycines, was isolated from eggs and cysts of 10 of the populations from Kentucky, Louisiana, Mississippi, and Tennessee. Ten isolates of ARF18 obtained in this study and seven isolates obtained in earlier studies were characterized for cultural morphology on several growth media, the ability to produce sclerotium-like structures (SLS) on cornmeal agar, growth rates, pathogenicity to eggs of H. glycines in vitro, and mitochondrial (mt) DNA restriction fragment length polymorphisms (RFLPs). All 17 isolates of ARF18 readily grew on potato dextrose agar, cornmeal agar, and nutrient agar. Based on colony morphology and SLS appearance on cornmeal agar, the isolates could be grouped into two morphological phenotypes. Isolates that produced SLS that were composed of a compact mass of hyphae were designated ARF18-C, whereas isolates that produced SLS composed of a mass of loosely clumped hyphae were designated ARF18-L. Only minor differences in growth rates were detected among the ARF18-C and ARF18-L isolates. All 10 ARF18-C isolates, which were from Arkansas, Louisiana, Mississippi, and Tennessee, belonged to a single mtDNA RFLP haplotype. The seven ARF18-L isolates shared many comigrating mtDNA restriction fragments with one another, but belonged to three distinct mtDNA RFLP haplotypes. Ability to infect eggs of H. glycines in vitro varied considerably among the various isolates of ARF18. In particular, several of the ARF18-C isolates were consistently able to infect over 50% (mean = 70.0%, standard deviation = 16%) of the eggs of H. glycines, whereas ARF18-L infected eggs to a lesser degree (mean = 25%, standard deviation = 27%). ARF18-C was isolated only from H. glycines populations

  15. Nematofauna asociada a la rizosfera de papas (Solanum tuberosum cultivadas en la zona productora del Cofre de Perote, Veracruz, México Nematode fauna associated with the rhizosphere of potato crop (Solanum tuberosum grown in the region of Cofre de Perote, Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Damaris Desgarennes

    2009-12-01

    Full Text Available Se determinaron y clasificaron en grupos tróficos las especies de nematodos asociados a la rizosfera de Solanum tuberosum en suelos altamente infectados por el nematodo dorado de la papa (Globodera rostochiensis en un ciclo de cultivo, en la zona productora del Cofre de Perote, Veracruz, México. Se identificaron 7 géneros (Aphelenchoides, Aphelenchus, Crassolabium, Mesodorylaimus, Plectus y Steinernema y 8 especies (Aporcelaimellus obtusicaudatus, Ecumenicus monohystera, Acrobeles mariannae, Acrobeles singulus, Acrobeloides nanus, Cruznema tripartitum, Eucephalobus oxyuroides, y Globodera rostochiensis en asociación con la rizosfera de papas cultivadas. Crassolabium sp. y E. monohystera se registran por primera vez para México.Nematode species associated with the rhizosphere of Solanum tuberosum were identified and classified into trophic groups from soils highly infected by the golden potato cyst nematode (Globodera rostochiensis in a single crop cycle in the producing zone on the Cofre de Perote, Veracruz, Mexico. Seven genera (Aphelenchoides, Aphelenchus, Crassolabium, Mesodorylaimus, Plectus and Steinernema and 8 species (Aporcelaimellus obtusicaudatus, Ecumenicus monohystera, Acrobeles mariannae, Acrobeles singulus, Acrobeloides nanus, Cruznema tripartitum, Eucephalobus oxyuroides, and Globodera rostochiensis were found in association with the rhizosphere of cultivated potatoes. Crassolabium sp. and E. monohystera are recorded for the first time in México.

  16. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  17. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  18. Life Cycle, Ultrastructure, and Host Specificity of the North American Isolate of Pasteuria that Parasitizes the Soybean Cyst Nematode, Heterodera glycines.

    Science.gov (United States)

    Atibalentja, N; Jakstys, B P; Noel, G R

    2004-06-01

    Light and transmission electron microscopy were used to investigate the life cycle and ultrastructure of an undescribed isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. Studies also were conducted to determine the host specificity of Pasteuria. The endospores that attached to the cuticle of second-stage juveniles (J2) of H. glycines in soil did not germinate until the encumbered nematodes invaded soybean roots. Thereafter, the bacterium developed and completed its life cycle only in females. The stages of endosporogenesis were typical of Pasteuria spp. The mature endospore, like that of P. nishizawae, the only other Pasteuria known to infect H. glycines, produces an epicortical layer that completely surrounds the cortex, an outer spore coat that tapers progressively from the top to the base of the central body, and a double basal adhesion layer. However, subtle differences exist between the Pasteuria from North America and P. nishizawae with regard to size of the central body, nature and function of the mesosomes observed in the earlier stages of endosporogenesis, and appearance of the fibers lining the basal adhesion layer and the exosporium of the mature endospore. Endospores of the North American Pasteuria attached to J2 of H. schachtii, H. trifolii, and H. lespedezae but not to Meloidogyne arenaria race 1, Tylenchorhynchus nudus, and Labronema sp. Results from this study indicate that the North American Pasteuria is more similar to P. nishizawae than to any other known member of the genus. Additional evidence from comparative analysis of 16S rDNA sequences is needed to clarify whether these two Pasteuria belong to the same species.

  19. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  20. Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi.

    Directory of Open Access Journals (Sweden)

    Samad Ashrafi

    Full Text Available Cyst nematodes are globally important pathogens in agriculture. Their sedentary lifestyle and long-term association with the roots of host plants render cyst nematodes especially good targets for attack by parasitic fungi. In this context fungi were specifically isolated from nematode eggs of the cereal cyst nematode Heterodera filipjevi. Here, Ijuhya vitellina (Ascomycota, Hypocreales, Bionectriaceae, encountered in wheat fields in Turkey, is newly described on the basis of phylogenetic analyses, morphological characters and life-style related inferences. The species destructively parasitises eggs inside cysts of H. filipjevi. The parasitism was reproduced in in vitro studies. Infected eggs were found to harbour microsclerotia produced by I. vitellina that resemble long-term survival structures also known from other ascomycetes. Microsclerotia were also formed by this species in pure cultures obtained from both, solitarily isolated infected eggs obtained from fields and artificially infected eggs. Hyphae penetrating the eggshell colonised the interior of eggs and became transformed into multicellular, chlamydospore-like structures that developed into microsclerotia. When isolated on artificial media, microsclerotia germinated to produce multiple emerging hyphae. The specific nature of morphological structures produced by I. vitellina inside nematode eggs is interpreted as a unique mode of interaction allowing long-term survival of the fungus inside nematode cysts that are known to survive periods of drought or other harsh environmental conditions. Generic classification of the new species is based on molecular phylogenetic inferences using five different gene regions. I. vitellina is the only species of the genus known to parasitise nematodes and produce microsclerotia. Metabolomic analyses revealed that within the Ijuhya species studied here, only I. vitellina produces chaetoglobosin A and its derivate 19-O-acetylchaetoglobosin A. Nematicidal

  1. Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi.

    Science.gov (United States)

    Ashrafi, Samad; Helaly, Soleiman; Schroers, Hans-Josef; Stadler, Marc; Richert-Poeggeler, Katja R; Dababat, Abdelfattah A; Maier, Wolfgang

    2017-01-01

    Cyst nematodes are globally important pathogens in agriculture. Their sedentary lifestyle and long-term association with the roots of host plants render cyst nematodes especially good targets for attack by parasitic fungi. In this context fungi were specifically isolated from nematode eggs of the cereal cyst nematode Heterodera filipjevi. Here, Ijuhya vitellina (Ascomycota, Hypocreales, Bionectriaceae), encountered in wheat fields in Turkey, is newly described on the basis of phylogenetic analyses, morphological characters and life-style related inferences. The species destructively parasitises eggs inside cysts of H. filipjevi. The parasitism was reproduced in in vitro studies. Infected eggs were found to harbour microsclerotia produced by I. vitellina that resemble long-term survival structures also known from other ascomycetes. Microsclerotia were also formed by this species in pure cultures obtained from both, solitarily isolated infected eggs obtained from fields and artificially infected eggs. Hyphae penetrating the eggshell colonised the interior of eggs and became transformed into multicellular, chlamydospore-like structures that developed into microsclerotia. When isolated on artificial media, microsclerotia germinated to produce multiple emerging hyphae. The specific nature of morphological structures produced by I. vitellina inside nematode eggs is interpreted as a unique mode of interaction allowing long-term survival of the fungus inside nematode cysts that are known to survive periods of drought or other harsh environmental conditions. Generic classification of the new species is based on molecular phylogenetic inferences using five different gene regions. I. vitellina is the only species of the genus known to parasitise nematodes and produce microsclerotia. Metabolomic analyses revealed that within the Ijuhya species studied here, only I. vitellina produces chaetoglobosin A and its derivate 19-O-acetylchaetoglobosin A. Nematicidal and nematode

  2. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  3. Molecular and Pathotype Identification of Potato Cyst Nematodes

    Directory of Open Access Journals (Sweden)

    Mulyadi Mulyadi

    2014-07-01

    Full Text Available In Indonesia, potato cyst nematode (PCN was first reported in Bumiaji, Kota Batu, East Java by PT Syngenta and was identified as Globodera rostochiensis. Based on the surveillances, G. rostochiensis were also found in Batur, Banjarnegara, and Kejajar, Wonosobo, and Pangalengan, Bandung. In addition, in Batur, Banjarnegara, another species which was identified as G. pallida was found. The aim of this research were to identify the species of PCN using molecular method, pathotype identification, and to study the distributions of PCN especially in Java. The PCN are collected from potato planting areas in Kota Batu, East Java; Wonosobo and Banjarnegara, Central Java; and Pangalengan, Bandung, West Java. PCN were extracted and isolated from soil, and then identified by  morphological and molecular analysis. PCN were found in potato planting areas in Kota Batu, East Java; Wonosobo and Banjarnegara, Central Java; and Pangalengan, West Java. Based on the morphological characters, molecular method, and the differential host test, the PCN identified as G. rostochiensis are amplified an approximately 434 bp with pathotype Ro2.   Di Indonesia, nematoda sista kentang (NSK pertama dilaporkan di Bumiaji, Kota Batu, Jawa Timur oleh PT Syngenta yang diidentifikasi sebagai Globodera rostochiensis. Berdasarkan hasil survei, NSK ditemukan di Batur, Banjarnegara dan Kejajar, Wonosobo, Pangalengan. Spesies G. pallida juga ditemukan Batur, Banjarnegara. Penelitian ini bertujuan untuk mengidentifikasi spesies NSK menggunakan metode molekuler, identifikasi patotipe NSK, dan untuk mengetahui penyebaran NSK khususnya di Pulau Jawa. Sampel NSK dikumpulkan dari lahan pertanaman kentang di Bumiaji, Kota Batu, Jawa Timur; Wonosobo dan Banjarnegara, Jawa Tengah; serta Pangalengan, Bandung, Jawa Tengah. NSK diekstraksi dan diisolasi dari tanah yang selanjutnya diidentifikasi secara morfologi dan analisis molekuler. NSK yang terdapat pada lahan pertanaman kentang ditemukan di

  4. Virulence assessment of Portuguese isolates of potato cyst nematodes (Globodera spp.

    Directory of Open Access Journals (Sweden)

    Maria José M. DA CUNHA

    2012-05-01

    Full Text Available Identification of species and virulence groups of potato cyst nematodes (PCN, Globodera pallida and G. rostochiensis, present in field populations is important in the control of these nematodes by means of resistant cultivars. In order to characterize the virulence of Globodera spp. isolates from Portugal, 43 G. rostochiensis and three G. pallida isolates were evaluated by measuring their multiplication rates on a susceptible potato cultivar and five differential potato genotypes in a growth chamber pot experiment. Principal Component Analysis and Hierarchical Cluster Analysis showed that the reproduction rates were different in terms of both the numbers of eggs and the numbers of cysts produced. Portuguese isolates of PCN were more virulent on genotypes derived from Solanum vernei than on genotypes derived from other Solanum resistance sources, and there was a significant nematode isolate × host genotype interaction. The virulence bioassay clearly distinguished the two PCN species but failed to differentiate isolates into pathotypes. There was a wide and continuous range of virulence to the resistant genotypes, especially in G. rostochiensis isolates.

  5. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae during Incompatible Infection to Aegilops variabilis.

    Directory of Open Access Journals (Sweden)

    Minghui Zheng

    Full Text Available One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae. These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi

  6. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    Science.gov (United States)

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  7. First Report of Korean Cyst Nematode, Heterodera koreana, Parasitic on Bamboo, Phyllostachys nigra, from Iran.

    Science.gov (United States)

    Maafi, Zahra Tanha; Taheri, Zahra Majd

    2015-09-01

    Bamboo is grown sporadically in the north of Iran and is confined to very limited areas. The history of growing bamboo was to some extent simultaneous with the entrance, commencement, and growth of the tea industry in the north about a century ago. The bamboo was used for making baskets to transfer the harvested tea foliage from farm to the factory and other linked functions. A main area allocated for bamboo growing is located in Lahidjan Agricultural Research Station (LARS) in the north of Iran, where several species of bamboo were cultivated in an area of 5 ha. The species include five species of Phyllostachys (viz., P. aurea, P. bambusoides, P. decora, P. nigra, P. vivax) and one species of Arundinaria gigantean, Pleioblastus fortune, and Semiarundinaria fastuosa; however, only P. aurea and P. nigra have been precisely identified. A survey on plant parasitic nematodes associated with bamboo mainly on P. nigra in LARS revealed second-stage juveniles of cyst forming nematode in soil samples. Further analysis of root and soil samples led to recovery of a cyst nematode belonging to the genus Heterodera and the Afenestrata group. Cysts, vulval cone, and second-stage juveniles were studied for morphological and morphometric features. The classical identification was followed by amplification of the ribosomal RNA-ITS region and the D2-D3 expansion segments of 28S large-subunit rRNA gene; the amplified fragments were sequenced, edited, and compared with those of the corresponding published gene sequences. New D2-D3 and rRNA-ITS gene sequences were deposited in the GenBank database under the accession numbers KR818910 and KR818911, respectively. Based on the morphological and molecular data, the species of the cyst-forming nematode was identified as H. koreana (Vovlas et al., 1992; Mundo-Ocampo et al., 2008). The body contour of cysts was mainly subspherical, vey often with irregular shape (Fig. 1A), yellowish to light brown, thin cuticle with fine zigzag pattern

  8. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO; 1550 clusters were assigned enzyme commission (EC numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to

  9. Association analysis of resistance to cereal cyst nematodes (Heterodera avenae) and root lesion nematodes (Pratylenchus neglectus and P. thornei) in CIMMYT advanced spring wheat lines for semi-arid conditions.

    Science.gov (United States)

    Dababat, Abdelfattah A; Ferney, Gomez-Becerra Hugo; Erginbas-Orakci, Gul; Dreisigacker, Susanne; Imren, Mustafa; Toktay, Halil; Elekcioglu, Halil I; Mekete, Tesfamariam; Nicol, Julie M; Ansari, Omid; Ogbonnaya, Francis

    2016-12-01

    To identify loci linked to nematode resistance genes, a total of 126 of CIMMYT advanced spring wheat lines adapted to semi-arid conditions were screened for resistance to Heterodera avenae , Pratylenchus neglectus , and P. thornei , of which 107 lines were genotyped with 1,310 DArT. Association of DArT markers with nematode response was analyzed using the general linear model. Results showed that 11 markers were associated with resistance to H. avenae (pathotype Ha21), 25 markers with resistance to P. neglectus , and 9 significant markers were identified to be linked with resistance to P. thornei . In this work we confirmed that chromosome 4A (~90-105 cM) can be a source of resistance to P. thornei as has been recently reported. Other significant markers were also identified on chromosomal regions where no resistant genes have been reported for both nematodes species. These novel QTL were mapped to chromosomes 5A, 6A, and 7A for H. avenae ; on chromosomes 1A, 1B, 3A, 3B, 6B, 7AS, and 7D for P. neglectus ; and on chromosomes 1D, 2A, and 5B for P. thornei and represent potentially new loci linked to resistance that may be useful for selecting parents and deploying resistance into elite germplasm adapted to regions where nematodes are causing problem.

  10. Mechanisms and Characterization of Trichoderma longibrachiatum T6 in Suppressing Nematodes (Heterodera avenae in Wheat

    Directory of Open Access Journals (Sweden)

    Shuwu Zhang

    2017-09-01

    Full Text Available Heterodera avenae is an important soil-borne pathogen that affects field crops worldwide. Chemical nematicides can be used to control the nematode, but they bring toxicity to the environment and human. Trichoderma longibrachiatum has been shown to have the ability to control H. avenae cysts, but detailed microscopic observations and bioassays are lacking. In this study, we used microscopic observations and bioassays to study the effect of T. longibrachiatum T6 (TL6 on the eggs and second stage juveniles (J2s of H. avenae, and investigate the role of TL6 in inducing the resistance to H. avenae in wheat seedling at physiological and biochemical levels. Microscopic observations recorded that TL6 parasitized on the H. avenae eggs, germinated, and produced a large number of hyphae on the eggs surface at the initial stage, thereafter, the eggs were completely surrounded by dense mycelia and the contents of eggs were lysed at the late stage. Meanwhile, the conidia suspension of TL6 parasitized on the surface of J2s, produced a large number of hyphae that penetrated the cuticle and caused deformation of the nematodes. TL6 at the concentration of 1.5 × 107 conidia ml−1 had the highest rates of parasitism on eggs and J2s, reflected by the highest hatching-inhibition of eggs and the mortality of J2s. In the greenhouse experiments, wheat seedlings treated with TL6 at 1.5 × 107 conidia ml−1 had reduced H. avenae infection, and increased plant growth significantly compared to the control. The cysts and juveniles in soil were reduced by 89.8 and 92.7%, the juveniles and females in roots were reduced by 88.3 and 91.3%, whereas the activity of chitinase and β-1, 3-glucanase, total flavonoids and lignin contents in wheat roots were increased significantly at different stage after inoculation with the eggs and TL6 conidia in comparison to the control. Maximum activity of chitinase and β-1, 3-glucanase were recorded at the 20th and 15th Days after

  11. PCR-RFLP diagnostic method for identifying Globodera species in Slovenia

    Directory of Open Access Journals (Sweden)

    Sasa ŠIRCA

    2011-01-01

    Full Text Available Species identification within the genus Globodera is based on the morphological and morphometrical characters of the cysts and second stage juveniles, and these are included in the majority of identification keys. Morphometrical methods are fast and can be applied to most of samples but they demand a trained and experienced specialist. Furthermore, some morphometrical characters may overlap between populations and beetwen species, leading to inaccurate identification. To confirm and complement the morphometrical identification of Globodera species molecular methods have been developed. Sequences of the internal transcribed spacer regions ITS1 and ITS2 of the rDNA gene cluster proved to be useful for identifying nematode species identification. A PCR-RFLP molecular method was used to identify Globodera rostochiensis, G. pallida, G. tabacum and G. achilleae. Globodera rostochiensis, G. pallida, G. tabacum and G. achilleae can be distinguished with PCR-RFLP analysis of the rDNA ITS fragment using five restriction enzymes. The RFLP patterns of G. rostochiensis, G. tabacum and G. achilleae were species-specific, while those of G. pallida varied. South American populations of G. pallida differed from other populations as their RFLP patterns were demonstrated to be distinct by in silico restriction of the ITS sequences deposited at NCBI.

  12. Bitte ein Bitcoin: staatlicher Millionengewinn aus beschlagnahmten Bitcoins?

    OpenAIRE

    Sikora, Judith

    2018-01-01

    Auf dem bisherigen Höchststand des Bitcoins-Kurses Mitte Dezember 2017 kündigte die Generalstaatsanwaltschaft Frankfurt an, sie wolle 126 beschlagnahmte Bitcoins (damaliger Wert: 1,9 Millionen Euro) veräußern. Die in Gießen angesiedelte Außenstelle der hessischen Zentralstelle zur Bekämpfung der Internet- und Computerkriminalität ZIT hatte 2014 mehrere Online-Marktplätze abgeschaltet, auf denen u.a. mit Drogen gehandelt wurde. Bei einer Razzia beschlagnahmte sie die Server der Betreiber und g...

  13. Optimization of In Vitro Techniques for Distinguishing between Live and Dead Second Stage Juveniles of Heterodera glycines and Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines (Soybean Cyst nematode, or SCN and Meloidogyne incognita (Root-Knot nematode, or RKN are two damaging plant-parasitic nematodes on important field crops. Developing a quick method to distinguish between live and dead SCN and RKN second stage juveniles (J2 is vital for high throughput screening of pesticides or biological compounds against SCN and RKN. The in vitro assays were conducted in 96-well plates to determine the optimum chemical stimulus to distinguish between live and dead SCN and RKN J2. Sodium carbonate (Na2CO3, sodium bicarbonate (NaHCO3, and sodium hydroxide (NaOH were evaluated for the nematode response to see if these compounds can help distinguish between viable from the dead J2. Results indicated that live SCN J2 responded equally (P ≤ 0.05 to 1 μl Na2CO3 and 10 μl NaHCO3 in 100 μl of water at pH = 10. Live SCN J2 responded by twisting their bodies in a curling shape and increasing rate of movements within 2 minutes of exposure. The twisting activity continued for up to 30 minutes. Live RKN J2 responded by increasing activity with the application of 1 μl NaOH in 100 μl of water at pH = 10 also in the 2 minutes to 30 minutes time frame. Furthermore, in growth chamber tests to confirm the infectivity of live SCN. The live SCN as determined by exposure to 1 μl of Na2CO3 indicated 60.5% of the SCN J2 were alive and of those, 29.5% were infective and entered the soybean roots. The 1 μl of NaOH stimulus revealed that 75.2% RKN J2 were alive and of those, 14.9% were infective and entered soybean roots. These results confirmed that 1 μl of Na2CO3 added to 100 μl suspension of SCN J2 and 1 μl of NaOH added to 100 μl suspension of RKN J2 are the effective stimuli for rapidly distinguishing between live and dead SCN and RKN J2 in vitro. SCN and RKN J2 responded differently to different compounds.

  14. Naturally Induced Secretions of the Potato Cyst Nematode Co-stimulate the Proliferation of Both Tobacco Leaf Protoplasts and Human Peripheral Blood Mononuclear Cells

    NARCIS (Netherlands)

    Goverse, A.; Rouppe van der Voort, J.N.A.M.; Rouppe van der voort, C.; Kavelaars, A.; Smant, G.; Schots, A.; Bakker, J.; Helder, J.

    1999-01-01

    Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a

  15. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  16. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  17. Expression of Two Functionally Distinct Plant Endo-ß-1,4-Glucanases Is Essential for the Compatible Interaction Between Potato Cyst Nematode and Its Hosts

    NARCIS (Netherlands)

    Karczmarek, A.; Fudali, S.; Lichocka, M.; Sobczak, M.; Kurek, W.; Janakowski, S.; Roosien, J.; Golinowski, W.; Bakker, J.; Goverse, A.; Helder, J.

    2008-01-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-ß-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the

  18. Solanum sisymbriifolium (Lam.) : a trap crop for potato cyst nematodes

    NARCIS (Netherlands)

    Timmermans, B.G.H.

    2005-01-01

    Keywords:Solanumsisymbriifolium ,Globoderapallida ,Globoderarostochiensis ,

  19. A Pest of Importance

    Science.gov (United States)

    Potato cyst nematodes (PCN), G. rostochiensis and G. pallida, are internationally-recognized quarantine pests and considered the most devastating pests of potatoes worldwide. PCNs continue to spread throughout North America and were recently detected in Idaho (G. pallida) and Quebec and Alberta, Can...

  20. Genetic mapping and pyramiding of resistance genes in potato

    NARCIS (Netherlands)

    Tan, M.Y.A.

    2008-01-01

    Numerous pathogens can infect potato, but late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are most damaging. Several species of root knot nematodes (RKN) are an emerging threat. Breeders have successfully deployed disease

  1. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    Science.gov (United States)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in

  2. Potato transformation and potato cyst nematode infection on potato plantlets in tissue culture

    Science.gov (United States)

    These two protocols describe the methods for generating transgenic potato plants and for evaluating potato cyst nematode (Globodera rostochiensis and G. pallida) infection on potato plantlets in tissue culture. These methods are useful tools that can be used in the study of the interactions between ...

  3. Morphology and DNA sequence data reveal the presence of Globodera ellingtonae in the Andean region

    NARCIS (Netherlands)

    Lax, P.; Rondan Dueñas, J.C.; Franco-Ponce, J.; Gardenal, C.N.; Doucet, M.E.

    2014-01-01

    Potato cyst nematodes, G. rostochiensis and G. pallida, are the most economically important nematode pests of potatoes worldwide and are subject to strict quarantine regulations in many countries. Globodera ellingtonae was recently described from Oregon (USA), with its host-plant in the field being

  4. The draft genome of Globodera ellingtonae

    Science.gov (United States)

    Globodera ellingtonae is a newly described potato cyst nematode found in Idaho, Oregon, and Argentina. Here we present a genome assembly for G. ellingtonae, a relative of the quarantine nematodes G. pallida and G. rostochiensis, produced using data from Illumina and Pacific Biosciences sequencing te...

  5. Potato cyst nematodes: pests of national importance

    Science.gov (United States)

    Potato cyst nematodes (PCN; G. rostochiensis and G. pallida) are internationally-recognized quarantine pests and considered the most devastating pests of potatoes due to annual worldwide yield losses estimated at 12.2%. PCNs continue to spread throughout North America and were recently detected in I...

  6. Developmental dynamics of Globodera ellingtonae in field-grown potato

    Science.gov (United States)

    Globodera ellingtonae is a recently described nematode parasite of potato, which is closely related to the economically-significant potato cyst nematodes, G. rostochiensis and G. pallida. Because of the close relationship of G. ellingtonae to the potato cyst nematodes, a greater understanding of its...

  7. A new chorismate mutase gene identified from Globodera ellingtonae and its utility as a molecular diagnostic marker

    Science.gov (United States)

    Globodera ellingtonae, a new cyst nematode species recently detected in Oregon and confirmed of reproduction on potato, shares key morphological features with the two species of potato cyst nematode (PCN; G. rostochiensis and G. pallida) of quarantine concern. Currently no methods are available for ...

  8. Dicty_cDB: Contig-U15596-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available |pid:none) Cryptosporidium sp. LPHN actin gen... 94 2e-17 EU128482_1( EU128482 |pid:none) Tanichthys albonube...d:none) Globodera rostochiensis actin 2 mR... 93 3e-17 EU128481_1( EU128481 |pid:none) Tanichthys albonube

  9. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    Science.gov (United States)

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  10. The relationship between temperature and development in Globodera ellingtonae

    Science.gov (United States)

    A new cyst nematode species, Globodera ellingtonae, was recently described from populations in Oregon and Idaho; this nematode has been shown to reproduce on potato. Because of this nematodes close relationship to the potato cyst nematodes, G. rostochiensis and G. pallida, an understanding of the ri...

  11. The Effect of Solarization and Manure in Controlling Sugar Beet Cyst Nematode Heterodera schachtii Schmidt

    Directory of Open Access Journals (Sweden)

    mehdi Nasr Esfahani

    2017-01-01

    Full Text Available Introduction. Sugar beet cyst nematode, Heterodera schachtii Schmidt is the major disease of sugar beet worldwide, causing considerable damages, and even death of the plants, in the infested fields. There are several suggested methods of controls, which may have its own difficulties to be taken into consideration. To avoid the use of nematicides, and reduced the risk of chemical hazards in the environment, any sorts of nonchemical management is incorrigible. However, any method of management must be safe, large scale application and economical. Thus, in this manuscript, polyethylene sheaths were used to solarize and or disinfection of the infested soils to H. schachtii. And, also, the incorporation of the farm yards manure was taken into consideration too. Therefore, the field experiments were carried out in infected sugar beet growing regions, where there was a heavy infestation to the sugar beet nematodes, Isfahan province, Iran, to determine the effects of soil solarization alone and or along with undecomposed farm yard manure on sugar beet cyst nematode, H. schachtii. Material and Methods. Transparent Polyethylene sheaths of 2microns were used to solarize and or disinfection of the infested soils to H. schachtii. The fresh farm yards manure for 40 tons per hector for the incorporation was taken into consideration. The field experiments were carried out in infected sugar beet growing regions, where, there was a heavy infestation to the sugar beet nematodes, Jey and Ghahab of Isfahan, Isfahan province, Iran, for determination of the effects of soil solarization alone and or along with undecomposed farm yard manure on sugar beet cyst nematode, H. schachtii. Treatments were consisted of soil solarization with transparent polyethylene sheets, fresh yard manure, integration of soil solarization with farm yard manure and untreated, control and or ckecks in a randomized block design in three replications each in an infested field conditions, in the

  12. Spatial analysis of soybean canopy response to soybean cyst nematodes (Heterodera glycines) in eastern Arkansas: An approach to future precision agriculture technology application

    Science.gov (United States)

    Kulkarni, Subodh

    2008-10-01

    Heterodera glycines Ichinohe, commonly known as soybean cyst nematode (SCN) is a serious widespread pathogen of soybean in the US. Present research primarily investigated feasibility of detecting SCN infestation in the field using aerial images and ground level spectrometric sensing. Non-spatial and spatial linear regression analyses were performed to correlate SCN population densities with Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) derived from soybean canopy spectra. Field data were obtained from two fields; Field A and B under different nematode control strategies in 2003 and 2004. Analysis of aerial image data from July 18, 2004 from the Field A showed a significant relationship between SCN population at planting and the GNDVI (R2=0.17 at p=0.0006). Linear regression analysis revealed that SCN had a little effect on yield (R2 =0.14, at p=0.0001, RMSEP=1052.42 kg ha-1) and GNDVI (R 2=0.17 at p=0.0006, RMSEP=0.087) derived from the aerial imagery on a single date. However, the spatial regression analysis based on spherical semivariogram showed that the RMSEP was 0.037 for the GNDVI on July 18, 2004 and 427.32 kg ha-1 for yield on October 14, 2003 indicating better model performance. For July 18, 2004 data from Field B, a relationship between NDVI and the cyst counts at planting was significant (R2=0.5 at p=0.0468). Non-spatial analyses of the ground level spectrometric data for the first field showed that NDVI and GNDVI were correlated with cyst counts at planting (R 2=0.34 and 0.27 at p=0.0015 and 0.0127, respectively), and GNDVI was correlated with eggs count at planting (R2= 0.27 at p=0.0118). Both NDVI and GNDVI were correlated with egg counts at flowering (R 2=0.34 and 0.27 at p=0.0013 and 0.0018, respectively). However, paired T test to validate the above relationships showed that, predicted values of NDVI and GNDVI were significantly different. The statistical evidences suggested that variability in vegetation indices was caused

  13. Lamoka, a variety with excellent chip color out of cold storage and resistance to the golden potato cyst nematode

    Science.gov (United States)

    Lamoka is a white-skinned, white-fleshed potato cultivar variety notable for excellent chip color from cold storage, good yield, and resistance to both common scab and race Ro1 of the golden potato cyst nematode (Globodera rostochiensis). It was selected from a cross made at Cornell University in 1...

  14. Molecular diagnostics of potato cyst nematodes (PCN) from the national survey

    Science.gov (United States)

    The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are regulated pathogens of potato, a crop worth nearly $3.9 billion in the United States. Since the initial discovery of G. pallida in Idaho in 2006, extensive surveys of the major potato growing acreage have been carried out, to...

  15. Host resistance in potato to three Globodera species

    Science.gov (United States)

    Potato cyst nematodes (PCN) under quarantine in the U.S. and Canada are the pale cyst nematode (Globodera pallida) and the golden cyst nematode (G. rostochiensis). A new species, G. ellingtonae was discovered in Oregon and Idaho in 2008 and is not currently a quarantine pest. In 2006 detection of ...

  16. SPRYSEC effector proteins in Globodera rostochiensis

    NARCIS (Netherlands)

    Rehman, S.

    2008-01-01

    Plant pathogens inject so-called effector molecules into the cells of a host plant to promote their growth and reproduction in these hosts. In plant parasitic nematodes, these effector molecules are produced in the salivary glands. The objective of this thesis was to identify and characterize

  17. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Science.gov (United States)

    Ruark, Casey L; Koenning, Stephen R; Davis, Eric L; Opperman, Charles H; Lommel, Steven A; Mitchum, Melissa G; Sit, Tim L

    2017-01-01

    Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines) from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC) and Missouri (MO). The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2), and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO). Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst) and Heterodera schachtii (beet cyst), but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  18. Introduction of beet cyst nematode resistance from Sinapis alba L. and Raphanus sativus L. into Brassica napus L. (oil-seed rape) through sexual and somatic hybridization

    NARCIS (Netherlands)

    Lelivelt, C.L.C.

    1993-01-01

    Experiments were performed to select for beet cyst nematode (Heterodera schachtii Schm., abbrev. BCN) resistant genotypes of Brassica napus L. (oilseed rape), and to introduce BCN-resistance from the related species Raphanus

  19. PCR detection of potato cyst nematode.

    Science.gov (United States)

    Reid, Alex

    2009-01-01

    Potato cyst nematode (PCN) is responsible for losses in potato production totalling millions of euros every year in the EC. It is important for growers to know which species is present in their land as this determines its subsequent use. The two species Globodera pallida and Globodera rostochiensis can be differentiated using an allele-specific PCR.

  20. Population dynamics of host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Stoel, C.D.; Duyts, H.; Putten, van der W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  1. Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Duyts, H.; Van der Putten, W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  2. Potato Cyst Nematode in East Java: Newly Infected Areas and Identification

    Directory of Open Access Journals (Sweden)

    Happy Cahya Nugrahana

    2017-12-01

    Full Text Available Potato Cyst Nematodes (PCN, Globodera rostochiensis has noted to be a devastated pest on potato in Indonesia. It is listed as the A2 pest by Plant Quarantine of Republik Indonesia, and it was also being a highly concerned plant parasitic nematode species worlwide. Therefore, both intensive and extensive surveys should be done to monitor the spread of PCN, especially in East Java as one of the centre of potato plantations in Indonesia. The aim of this study was to study the distribution of PCN in four potato plantations in East Java, i.e. Batu, Magetan, Probolinggo, and Pasuruan which were located between 1,205 to 2,063 m above the sea level. Extraction and isolation of cysts from soil samples was done using Baunacke method, and it was followed by identification of the nematodes using morphological and molecular approaches according to Baldwin and Mundo-Ocampo. The results showed that PCN was found on all sampling sites, i.e. Batu (Sumber Brantas, Jurang Kuali, Tunggangan, Junggo, Brakseng; Magetan (Dadi, Sarangan, Singolangu; Probolinggo (Tukul, Pandansari, Ledokombo, Sumberanom, Wonokerto, Ngadas, Pasuruan (Wonokerto, Tosari, Ledoksari, Ngadiwono. Magetan and Pasuruan were noted as new infested areas in East Java. Both morphological and molecular methods showed that the species found on all sites was Globodera rostochiensis.   Intisari Nematoda Sista Kentang (NSK, Globodera rostochiensis telah tercatat sebagai hama yang menghancurkan tanaman kentang di Indonesia. NSK terdaftar sebagai Organisme Pengganggu Tumbuhan Karantina golongan A2 oleh Badan Karantina Pertanian Republik Indonesia, dan juga merupakan spesies nematoda parasit tanaman yang sangat merugikan di seluruh dunia. Oleh karena itu, baik survei intensif maupun ekstensif harus dilakukan untuk memantau penyebaran NSK, terutama di Jawa Timur sebagai salah satu sentra tanaman kentang di Indonesia. Tujuan dari penelitian ini adalah untuk mempelajari distribusi NSK pada empat daerah sentra

  3. Dissecting host plant manipulation by cyst and root-knot nematodes

    NARCIS (Netherlands)

    Karczmarek, A.

    2006-01-01

    Cyst ( Globodera spp. and Heterodera spp.) and root-knot nematodes ( Meloidogyne spp.), one of the most damaging crop pests, are a perfect example of highly adapted, sophisticated root parasites. These nematodes induces specialized feeding structures (cyst

  4. Phylogency and Evolution of Nematodes

    NARCIS (Netherlands)

    Bert, W.; Karssen, G.; Helder, J.

    2011-01-01

    Many plant-parasitic nematodes including members of the genera Meloidogyne (root-knot nematodes), Heterodera and Globodera (cyst nematodes) and Pratylenchus (lesion nematodes) are studied as they cause major damage to crops such as potato, tomato, soybean and sugar beet. Both for fundamental reasons

  5. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Directory of Open Access Journals (Sweden)

    Casey L Ruark

    Full Text Available Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC and Missouri (MO. The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2, and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO. Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst and Heterodera schachtii (beet cyst, but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  6. A real-time PCR assay for the detection of Pasteuria nishizawae in soil

    Science.gov (United States)

    Pasteuria nishizawae is a mycelial, endospore-forming, and obligately parasitic bacterium that has shown a great potential for the biological control of the soybean cyst nematode, Heterodera glycines, in both microplot and field studies. Other than China, Japan, and South Korea, P. nishizawae has be...

  7. Distribution and infestation rate of cyst nematodes (Tylenchida: Heteroderidae) in cabbage growing areas in Samsun

    Science.gov (United States)

    Information concerning the occurrence and distribution of cyst nematodes (Heterodera spp.) in Samsun, Turkey is needed to assess their potential to cause economic damage on many crop plants. Surveys on the distribution and infestation rates of cyst nematodes in cabbage fields in Samsun were conducte...

  8. Nutritional requirements for soybean cyst nematode

    Science.gov (United States)

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  9. Occurrence and distribution of cyst nematodes infecting cereals in Sicily, Italy

    Science.gov (United States)

    During 2008 and 2009, a survey on specific composition, frequency and geographical distribution of cyst nematodes living on cereals was conducted in Sicily (Italy). Heterodera latipons Franklin and H. hordecalis Andersson appeared to be the most common species in durum wheat (Triticum durum Desf.) a...

  10. Isolation of nematicidal constituents from essential oil of Kaempferia ...

    African Journals Online (AJOL)

    Purpose: To explore the nematicidal activities of the essential oil of Kaempferia galanga rhizomes and its isolated constituents against Heterodera avenae. Methods: Essential oil of K. galanga rhizomes was obtained by hydrodistillation and characterized by gas chromatography/mass spectrometric (GC/MS) analysis using ...

  11. Transcriptome-wide selection of a reliable set of reference genes for gene expression studies in potato cyst nematodes (Globodera spp.).

    Science.gov (United States)

    Sabeh, Michael; Duceppe, Marc-Olivier; St-Arnaud, Marc; Mimee, Benjamin

    2018-01-01

    Relative gene expression analyses by qRT-PCR (quantitative reverse transcription PCR) require an internal control to normalize the expression data of genes of interest and eliminate the unwanted variation introduced by sample preparation. A perfect reference gene should have a constant expression level under all the experimental conditions. However, the same few housekeeping genes selected from the literature or successfully used in previous unrelated experiments are often routinely used in new conditions without proper validation of their stability across treatments. The advent of RNA-Seq and the availability of public datasets for numerous organisms are opening the way to finding better reference genes for expression studies. Globodera rostochiensis is a plant-parasitic nematode that is particularly yield-limiting for potato. The aim of our study was to identify a reliable set of reference genes to study G. rostochiensis gene expression. Gene expression levels from an RNA-Seq database were used to identify putative reference genes and were validated with qRT-PCR analysis. Three genes, GR, PMP-3, and aaRS, were found to be very stable within the experimental conditions of this study and are proposed as reference genes for future work.

  12. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  13. Pasteuria Nishizawae Studies in Tennessee

    Science.gov (United States)

    Spores of Pasteuria nishizawae were first recovered in Tennessee in 2008 attached to soybean cyst nematode juveniles, Heterodera glycines, and inside cysts extracted from soil collected at Ames Plantation, Grand Junction, TN. The field had a 15% increase from 1997 through 2004 in number of samples ...

  14. Impact of no-till cover cropping of Italian ryegrass on above and below ground faunal communities inhabiting a soybean field with special emphasis on soybean cyst nematodes

    Science.gov (United States)

    Two field trials were conducted in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop in a no-till soybean (Glycine max) planting to 1) reduce populations of plant-parasitic nematodes (i.e., the soybean cyst nematode, Heterodera glycines and lesion nematodes...

  15. Isolation of DNA markers linked to a beet cyst nematode resistamce locus in Beta patellaris and Beta procumbens

    NARCIS (Netherlands)

    Salentijn, E.M.J.; Sandal, N.N.; Lange, W.; Bock, de T.S.M.; Krens, F.A.; Marcker, K.A.; Stiekema, W.J.

    1992-01-01

    In cultivated beet no useful level of resistance of the beet cyst nematode (BCN) Heterodera schachtii Schm. has been found, unlike the situation in wild species of the section Procumbentes. Stable introgression of resistance genes from the wild species into Beta vulgaris has not been achieved, but

  16. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile

    Directory of Open Access Journals (Sweden)

    Marlon López

    2015-09-01

    Full Text Available Potato Genebank of the Universidad Austral de Chile (UACh is an important gene bank in Chile. The accessions collected all over the country possess high genetic diversity, present interesting agronomic and cooking traits, and show resistance to biotic and abiotic stress. A particularly interesting subgroup of the gene bank includes the accessions collected in the South of Chile, the Chilota Potato Genebank. The focus of this study is the identification of virus and nematode resistant genes in potatoes (Solatium tuberosum L., using the RYSC3 and YES3-3B molecular markers. The Potato virus Y(PVY resistance genes Ry adg and Ry sto were identified. Furthermore, the CP60 marker was used to assess the Rx resistance gene that confers resistance to Potato virus X (PVX. In addition, the HC and GRO1-4 markers were utilized to identify the GpaVvrn_QTL and Gro1-4, resistance genes of Globodera pallida and Globodera rostochiensis, respectively. Both G. pallida and G. rostochiensis are Potato Cyst Nematodes (PCN. The plant material used in this study included leaves from 271 accessions of the gene bank. These samples were collected in the field where natural pathogen pressure of potential viruses and diseases exists. ELISA assays were run for field detection of PVY and PVX. However, there have been no previous reports of nematode presence in the plant material. The results herein presented indicate presence of virus and nematode resistance genes in accessions of the Chilota Potato Genebank. In terms of virus resistance, 99 accessions out of the 271 tested possess the Ry adg resistance gene and 17 accessions of these 271 tested have the Ry sto resistance gene. Also, 10 accessions showed positive amplification of the Rxl resistant gene marker. As to nematode resistance, 99 accessions have possible resistance to G. pallida and 54 accessions show potential resistance to G. rostochiensis as detected using the available molecular markers.

  17. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  18. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    Science.gov (United States)

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  19. The effect of organic fertilizers on population dynamics of sugar beet cyst nematode, Heterodera schachtii 1871

    Directory of Open Access Journals (Sweden)

    N. Helalat

    2018-01-01

    Full Text Available Effect of Organic Manure on Sugar Beet Cyst Nematode Population Densities of Heterodera schachtii Schmidt 1871 Introduction. Sugar beet cyst nematode (SBCN, Hederodera schachtii Schmidt. 1871, marked as one of the most damaging disease of sugar beet worldwide. It's also an important disease of sugar beet in Isfahan Province, and causing plenty of an irreversible damage. Thus, the nematode infested fields for cultivation in the province and the country is to be threatened. This nematode has a wide host range, over 218 plant species from 95 genera, belonging to 23 families, including field crops, ornamentals and weeds as hosts, which have been identified and introduced so far. The SBCN management's strategies are a long term crop rotation, use of catch crops, early planting and the use of nematicides. In general, the best method reported to control SBCN is a 3 to 7-year rotation with non-host plants. In addition, incorporation of farm manure into the soil had a positive effect in controlling potato golden cyst nematode. Testing on vermicomposting and non-organic fertilizers revealed that, free-living nematodes in the population index were highest in the vermicompost treatments than non-organic fertilizers. Materials and methods. The initial population of SBCN in the infested soil was determined, before the treatment of the selected field. Then, 200 g. of soil were selected, out of several samples collected from every plots, which was air dried and in the file system using Fenwick, the cysts were extracted. Eggs and the second larvae in the soil and end up in a 200 g. of soil were calculated accordingly. All the organic matters, including, poultry manure at 10, 20 and 40 t/ha compost fertilizer by municipality of Isfahan wastes, vermicompost, waste cabbage leaves and farm manure (cow manure were employed. Reproductive factors and the percent decrease and or increase in SBCN populations in each treatment were calculated relative to the initial

  20. BEHAVIOR OF CEREAL'S VARIETIES IN THE PRESENCE OF ...

    African Journals Online (AJOL)

    F. Labdelli

    1 sept. 2017 ... ... of this nematode. Key words: Nematode; Heterodera; cereals; varieties; behaviour. .... L'essai est mené à l'air libre en conditions extérieures à raison de 08 répétitions pour les témoins et 08 ..... cyst nematode populations from north Africa and Asia . Nematology ... Research 2008, 6 (Special issue), 81-87.

  1. Penicillium oxalicum reduces the number of cysts and juveniles of potato cyst nematodes.

    Science.gov (United States)

    Martinez-Beringola, M L; Salto, T; Vázquez, G; Larena, I; Melgarejo, P; De Cal, A

    2013-07-01

    To test the biocontrol potential of Penicillium oxalicum, a biocontrol agent against fungal diseases and against the potato cyst nematodes (PCNs), Globodera pallida and Globodera rostochiensis. We tested the effect of P. oxalicum on the nematode cysts under laboratory conditions or in soil microcosms. A reduction in the rate of G. pallida juveniles hatching by P. oxalicum was observed when root diffusates from the 'Monalisa' and the 'Désirée' potato cultivar were used (98·6 and 74·1% reduction, respectively). However, the rate of G. pallida juveniles hatching was not significantly reduced when root diffusates from the 'San Pedro' tomato cultivar were used. Penicillium oxalicum also significantly reduced the ability of the G. rostochiensis juveniles to hatch (30·9% reduction) when root diffusates of the 'Désirée' potato cultivars were used. Penicillium oxalicum treatment of the soil significantly reduced the number of G. pallida cysts that were recovered from the soil of each pot that contained the 'Désirée' potato cultivar. Our results show that P. oxalicum is a potential biocontrol inoculant for protecting potato crops against PCNs. Penicillium oxalicum has potential to be used in order to reduce PCNs. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  2. Two tomato endoglucanases have a function during syncytium development

    Directory of Open Access Journals (Sweden)

    Małgorzata Lichocka

    2011-01-01

    Full Text Available Globodera rostochiensis, as well as other cyst nematodes, induces formation of a multinucleate feeding site, called syncytium, in host roots. In tomato roots infected with a potato cyst nematode, the syncytium is initiated in the cortex or pericycle. Progressive cell wall dissolution and subsequent fusion of protoplasts of newly incorporated cells lead to syncytium formation. Expansion and development of a syncytium strongly depends on modifications of a cell wall, including its degradation, elongation, thickening, and formation of ingrowths within it in close contact with tracheary elements. Recent reports have demonstrated that during formation of syncytium, numerous genes of plant origin, coding for cell wall-modifying enzymes are up-re-gulated. In this research, we studied a detailed distribution and function of two tomato 1,4-β-endoglucanases in developing feeding sites induced by G. rostochiensis. In situ localization of tomato LeCel7 and LeCel8 transcripts and proteins demonstrated that these enzymes were specifically up-regulated within syncytium and in the cells adjacent to the syncytium. In non-infected roots an expression of LeCel7 and LeCel8 was observed in the root cap and lateral root primordia. Our data confirm that cell wall-modifying enzymes of plant origin have a role in a modification of cell wall within syncytia, and demonstrate that plant endoglucanases are involved in syncytia formation.

  3. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1 from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    Directory of Open Access Journals (Sweden)

    Fen Qiao

    Full Text Available Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266, Ha-far-2 (KU877267, Hf-far-1 (KU877268. Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more

  4. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    Science.gov (United States)

    Qiao, Fen; Luo, Lilian; Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  5. Biocontrol: Fungal Parasites of Female Cyst Nematodes

    OpenAIRE

    Kerry, Brian

    1980-01-01

    Three species of fungi, Catenaria auxiliarls (Kühn) Tribe, Nematophthora gynophila Kerry and Crump, and a Lagenidiaceous fungus have been found attacking female cyst nematodes. All are zoosporic fungi which parasitize females on the root surface, cause the breakdown of the nematode cuticle, and prevent cyst formation. Their identification and some aspects of their biology are reviewed. N. gynophila is widespread in Britain and reduces populations of the cereal cyst nematode, Heterodera avenae...

  6. Asociaciones de marcadores moleculares con la resistencia a enfermedades, caracteres morfológicos y agronómicos en familias diploides de papa (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Julio Gabriel

    2016-01-01

    Full Text Available Quince familias de papa (840 genotipos provenientes de cruzas inter-específicas entre especies de Solanum stenotomum, S. goniocalyx y S. phureja  fueron genotipadas, con el objetivo de asociar  seis marcadores moleculares (GP94, HC, Nl25, Gro 1-4, RYSC3 y CP60 con genes mayores de resistencia para tizón tardío (Phytophthora infestans, verruga (Synchytrium endobioticum, nematodo - quiste (Globodera pallida y G. rostochiensis y virus PVY y PVX. Los resultados mostraron que cinco de los marcadores aplicados fueron polimórficos y amplificaron en más del 80% de las familias. El marcador RYSC3 que co-localiza con el gen Ryadg no amplificó en ninguna de las familias evaluadas. La familia 8 amplificó la banda para tres marcadores (CP60, GP94 y NL25 en la totalidad de sus clones. La prueba de χ2 se utilizó para determinar el ajuste de las proporciones de segregación de cada familia para cada marcador y genotipar los progenitores. Nueve caracteres agronómicos y morfológicos fueron evaluados en la cosecha. Mediante agrupamiento cluster fueron seleccionados 107 clones con resistencia a PVX, P. infestans, G. rostochiensis y S. endobioticum, alto rendimiento y volumen de tubérculos, elevado número de tubérculos y ojos superficiales. Sobre la base de estos resultados, aspectos prácticos para la aplicación eficiente de la selección asistida por marcadores moleculares son discutidos en este artículo.

  7. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking

    Directory of Open Access Journals (Sweden)

    Alkharouf Nadim W

    2009-03-01

    Full Text Available Abstract Background A single Glycine max (soybean genotype (Peking reacts differently to two different populations of Heterodera glycines (soybean cyst nematode within the first twelve hours of infection during resistant (R and susceptible (S reactions. This suggested that H. glycines has population-specific gene expression signatures. A microarray analysis of 7539 probe sets representing 7431 transcripts on the Affymetrix® soybean GeneChip® were used to identify population-specific gene expression signatures in pre-infective second stage larva (pi-L2 prior to their infection of Peking. Other analyses focused on the infective L2 at 12hours post infection (i-L212h, and the infective sedentary stages at 3days post infection (i-L23d and 8days post infection (i-L2/L38d. Results Differential expression and false discovery rate (FDR analyses comparing populations of pi-L2 (i.e., incompatible population, NL1-RHg to compatible population, TN8 identified 71 genes that were induced in NL1-RHg as compared to TN8. These genes included putative gland protein G23G12, putative esophageal gland protein Hgg-20 and arginine kinase. The comparative analysis of pi-L2 identified 44 genes that were suppressed in NL1-RHg as compared to TN8. These genes included a different Hgg-20 gene, an EXPB1 protein and a cuticular collagen. By 12 h, there were 7 induced genes and 0 suppressed genes in NL1-RHg. By 3d, there were 9 induced and 10 suppressed genes in NL1-RHg. Substantial changes in gene expression became evident subsequently. At 8d there were 13 induced genes in NL1-RHg. This included putative gland protein G20E03, ubiquitin extension protein, putative gland protein G30C02 and β-1,4 endoglucanase. However, 1668 genes were found to be suppressed in NL1-RHg. These genes included steroid alpha reductase, serine proteinase and a collagen protein. Conclusion These analyses identify a genetic expression signature for these two populations both prior to and subsequently

  8. Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale.

    Science.gov (United States)

    Wang, Niuniu; Zhang, Yongjie; Jiang, Xianzhi; Shu, Chi; Hamid, M Imran; Hussain, Muzammil; Chen, Senyu; Xu, Jianping; Xiang, Meichun; Liu, Xingzhong

    2016-11-01

    Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs.

    Science.gov (United States)

    Święcicka, Magdalena; Skowron, Waldemar; Cieszyński, Piotr; Dąbrowska-Bronk, Joanna; Matuszkiewicz, Mateusz; Filipecki, Marcin; Koter, Marek Daniel

    2017-04-01

    Potato cyst nematode Globodera rostochiensis is an obligate parasite of solanaceous plants, triggering metabolic and morphological changes in roots which may result in substantial crop yield losses. Previously, we used the cDNA-AFLP to study the transcriptional dynamics in nematode infected tomato roots. Now, we present the rescreening of already published, upregulated transcript-derived fragment dataset using the most current tomato transcriptome sequences. Our reanalysis allowed to add 54 novel genes to 135, already found as upregulated in tomato roots upon G. rostochiensis infection (in total - 189). We also created completely new catalogue of downregulated sequences leading to the discovery of 76 novel genes. Functional classification of candidates showed that the 'wound, stress and defence response' category was enriched in the downregulated genes. We confirmed the transcriptional dynamics of six genes by qRT-PCR. To place our results in a broader context, we compared the tomato data with Arabidopsis thaliana, revealing similar proportions of upregulated and downregulated genes as well as similar enrichment of defence related transcripts in the downregulated group. Since transcript suppression is quite common in plant-nematode interactions, we assessed the possibility of miRNA-mediated inverse correlation on several tomato sequences belonging to NB-LRR and receptor-like kinase families. The qRT-PCR of miRNAs and putative target transcripts showed an opposite expression pattern in 9 cases. These results together with in silico analyses of potential miRNA targeting to the full repertoire of tomato R-genes show that miRNA mediated gene suppression may be a key regulatory mechanism during nematode parasitism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. A method for estimating the contribution of seed potatoes, machinery and soil tare in field infestations with potato cyst nematodes on a national scale.

    Science.gov (United States)

    Goeminne, M; Demeulemeester, K; Viaene, N

    2011-01-01

    In order to make a cost benefit analysis for the management of the potato cyst nematodes Globodera rostochiensis and G. pallida, we developed a method to estimate the relative importance of three basic distribution channels of potato cyst nematodes: seed potatoes, machinery and soil tare. The baseline is determined by the area planted with potatoes, the area infested with potato cysts, the proportion of resistant potato cultivars and the distribution of cysts trough different channels. This quantification forms a basis for the evaluation of the effects of different control measures for potato cyst nematode on a national scale. The method can be useful as an example for application in other countries.

  11. Morphological and molecular identification of potato cyst nematode populations in Serbia

    Directory of Open Access Journals (Sweden)

    Oro Violeta

    2010-01-01

    Full Text Available Quarantine species such as potato cyst nematodes Globodera rostochiensis and G. pallida are present in Serbia since 1999 and 2005, respectively. These nematodes are sibling species and their morphological identification is complex due to their morphometric overlap. The cysts from the localities of Kladnica, Šanac, Gojna Gora and Milatovići were grown on susceptible potato varieties and their morphological differences have been discussed. To avoid ambiguities in species morphological designation a duplex PCR method was chosen for a rapid and accurate species identification. The whole procedure, from DNA extraction to DNA isolation, can be performed in a single day. .

  12. Taxonomic Diversity of Fungi Associated with Some PCN Populations from Serbia

    Directory of Open Access Journals (Sweden)

    Violeta Oro

    2012-01-01

    Full Text Available Increased content of pesticides in food chain resulted in using microorganisms asagents of biological control. The potato cyst nematodes (PCN - Globodera pallida and G.rostochiensis belong to the group of the most important parasites - the quarantine organisms.The external and internal area of a cyst harbor numerous fungal and bacterial species.The aim of this study was to identify antagonistic fungi associated with some PCN populationsfrom Serbia. Fungal antagonists of potato cyst nematodes have not been previouslyinvestigated in our country. The diversity of PCN fungal antagonists is not reflected only atthe species level but also at the level of higher taxonomic categories.

  13. Effect of plant and fungous metabolites on Meloidogyne exigua Efeito de metabólitos vegetais e fúngicos sobre Meloidogyne exigua

    Directory of Open Access Journals (Sweden)

    Daniel Rufino Amaral

    2009-01-01

    Full Text Available As nematodes cause great damage to Brazilian coffee production, effective methods to control these parasites are necessary. In a previous work Allium cepa L., Cajanus cajan (L. Mill., Crotalaria juncea L., Ficus elastica Roxb., Ruta graveolens L., Stylosanthes guianensis Aubl., Leucaena leucocephala (Lam. Dewit., Brachiaria decumbens Stapf., Catharanthus roseus G. Don, Tagetes minuta L., Ricinus communis L. and Coffea arabica L. produced active substances against Meloidogyne exigua Goeldi, a nematode widely disseminated through Brazilian coffee fields. Thus, aqueous extracts of such plants, collected in a different season from that of the previous work, as well as crude metabolites produced in liquid medium by Fusarium moniliforme Shelden and Cylindrocarpon magnusianum (Sacc. Woll., were submitted to in vitro assays with M. exigua second-stage juveniles (J2. All plants and fungi produced active substances against J2. Therefore, their metabolites were applied to six-month-old coffee plants inoculated with M. exigua. After 90 days in a greenhouse, those samples obtained from A. cepa, L. leucocephala, R. graveolens and F. moniliforme inhibited the production of galls and eggs by M. exigua, demonstrating potential to control such parasite.Os nematóides acarretam grandes perdas aos produtores brasileiros de café, sendo necessário o desenvolvimento de métodos eficientes para o seu controle. Em trabalho anterior, Allium cepa L., Cajanus cajan (L. Mill., Crotalaria juncea L., Ficus elastica Roxb., Ruta graveolens L., Stylosanthes guianensis Aubl., Leucaena leucocephala (Lam. Dewit., Brachiaria decumbens Stapf., Catharanthus roseus G. Don, Tagetes minuta L., Ricinus communis L. e Coffea arabica L. produziram substâncias ativas contra o nematóide Meloidogyne exigua Goeldi, que é amplamente disseminado pelos cafezais brasileiros. Dando continuidade a esse trabalho, extratos aquosos das plantas mencionadas, coletadas em época diferente daquela

  14. A New Race (X12) of Soybean Cyst Nematode in China.

    Science.gov (United States)

    Lian, Yun; Guo, Jianqiu; Li, Haichao; Wu, Yongkang; Wei, He; Wang, Jinshe; Li, Jinying; Lu, Weiguo

    2017-09-01

    The soybean cyst nematode (SCN), Heterodera glycines , is a serious economic threat to soybean-producing regions worldwide. A new SCN population (called race X12) was detected in Shanxi province, China. Race X12 could reproduce on all the indicator lines of both race and Heterodera glycines (HG) type tests. The average number of females on Lee68 (susceptible control) was 171.40 with the lowest Female Index (FI) 61.31 on PI88788 and the highest FI 117.32 on Pickett in the race test. The average number of females on Lee68 was 323.17 with the lowest FI 44.18 on PI88788 and the highest FI 97.83 on PI548316 in the HG type test. ZDD2315 and ZDD24656 are elite resistant germplasms in China. ZDD2315 is highly resistant to race 4, the strongest infection race in the 16 races with FI 1.51 while being highly sensitive to race X12 with FI 64.32. ZDD24656, a variety derived from PI437654 and ZDD2315, is highly resistant to race 1 and race 2. ZDD24656 is highly sensitive to race X12 with FI 99.12. Morphological and molecular studies of J2 and cysts confirmed the population as the SCN H. glycines . This is a new SCN race with stronger virulence than that of race 4 and is a potential threat to soybean production in China.

  15. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes.

    Science.gov (United States)

    Tytgat, Tom; Vanholme, Bartel; De Meutter, Jan; Claeys, Myriam; Couvreur, Marjolein; Vanhoutte, Isabelle; Gheysen, Greetje; Van Criekinge, Wim; Borgonie, Gaetan; Coomans, August; Gheysen, Godelieve

    2004-08-01

    By performing cDNA AFLP on pre- and early parasitic juveniles, we identified genes encoding a novel type of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in the cyst nematode Heterodera schachtii. The proteins consist of three domains, a signal peptide for secretion, a mono-ubiquitin domain, and a short C-terminal positively charged domain. A gfp-fusion of this protein is targeted to the nucleolus in tobacco BY-2 cells. We hypothesize that the C-terminal peptide might have a regulatory function during syncytium formation in plant roots.

  16. Suppression of NGB and NAB/ERabp1 in tomato modifies root responses to potato cyst nematode infestation.

    Science.gov (United States)

    Dąbrowska-Bronk, Joanna; Czarny, Magdalena; Wiśniewska, Anita; Fudali, Sylwia; Baranowski, Łukasz; Sobczak, Mirosław; Święcicka, Magdalena; Matuszkiewicz, Mateusz; Brzyżek, Grzegorz; Wroblewski, Tadeusz; Dobosz, Renata; Bartoszewski, Grzegorz; Filipecki, Marcin

    2015-05-01

    Plant-parasitic nematodes cause significant damage to major crops throughout the world. The small number of genes conferring natural plant resistance and the limitations of chemical control require the development of new protective strategies. RNA interference or the inducible over-expression of nematicidal genes provides an environment-friendly approach to this problem. Candidate genes include NGB, which encodes a small GTP-binding protein, and NAB/ERabp1, which encodes an auxin-binding protein, which were identified as being up-regulated in tomato roots in a transcriptome screen of potato cyst nematode (Globodera rostochiensis) feeding sites. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization confirmed the localized up-regulation of these genes in syncytia and surrounding cells following nematode infection. Gene-silencing constructs were introduced into tomato, resulting in a 20%-98% decrease in transcription levels. Nematode infection tests conducted on transgenic plants showed 57%-82% reduction in the number of G. rostochiensis females in vitro and 30%-46% reduction in pot trials. Transmission electron microscopy revealed a deterioration of cytoplasm, and degraded mitochondria and plastids, in syncytia induced in plants with reduced NAB/ERabp1 expression. Cytoplasm in syncytia induced in plants with low NGB expression was strongly electron translucent and contained very few ribosomes; however, mitochondria and plastids remained intact. Functional impairments in syncytial cytoplasm of silenced plants may result from NGB's role in ribosome biogenesis; this was confirmed by localization of yellow fluorescent protein (YFP)-labelled NGB protein in nucleoli and co-repression of NGB in plants with reduced NAB/ERabp1 expression. These results demonstrate that NGB and NAB/ERabp1 play important roles in the development of nematode-induced syncytia. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  17. Characterization of genes coding for small hypervariable peptides in Globodera rostochiensis

    NARCIS (Netherlands)

    Bers, van N.E.M.

    2008-01-01

    Plant parasitic nematodes secrete a cocktail of effector molecules, which are involved
    in several aspects of the interaction with the host, eg. in host defense suppression, in
    migration and in feeding cell formation. In this thesis, we performed the first study on
    10 novel peptide

  18. Molecular characterization of PCN populations from Serbia

    Directory of Open Access Journals (Sweden)

    Oro Violeta

    2012-01-01

    Full Text Available The morphology of potato cyst nematodes (PCN was until recently almost the only way to identify these quarantine organisms. In the last two decades, molecular analyses contributed to faster and more efficient identification of two Globodera species (Globodera pallida and G. rostochiensis and allowed insight into the genetic structure of those parts that were practically inaccessible by morphological studies. Molecular characterization was performed in ITS1-5.8S-ITS2 region. The comparison was made with sequences of different foreign PCN populations via NCBI GenBank database. The results of molecular studies showed similarities and differences between local and foreign PCN populations in the part of genome that was studied.

  19. Nonlinear secret image sharing scheme.

    Science.gov (United States)

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.

  20. Análise de genótipos de soja quanto à resistência ao nematoide do cisto

    OpenAIRE

    Juliatti, Breno Cezar Marinho

    2015-01-01

    Os nematoides são muito abundantes, uma vez que representam 80% dos indivíduos do reino Animália. O nematoide do cisto da soja (NCS), Heterodera glycines, é um dos principais problemas para o cultivo da soja e está presente em cerca de dez estados. Algumas espécies ou cultivares de soja possuem a característica de resistência ou alteração das capacidades de sobrevivência e perpetuação de nematoides (índice de fêmeas IF), cujo processo é ativado quando o nematoide inicia o processo de parasi...

  1. Mitochondrial genomes of Meloidogyne chitwoodi and M. incognita (Nematoda: Tylenchina): comparative analysis, gene order and phylogenetic relationships with other nematodes.

    Science.gov (United States)

    Humphreys-Pereira, Danny A; Elling, Axel A

    2014-01-01

    Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Functional characterization of CLE peptides from a plant-parasitic nematode Globodera rostochiensis

    Science.gov (United States)

    Plant CLAVATA3/ESR (CLE) proteins are a large family of secreted peptide ligands that play important roles in plant growth and development. Recent evidence suggests that plant-parasitic cyst nematodes secrete ligand mimics of plant CLE peptides to modify selected host root cells into multinucleate f...

  3. Cohort profile: the Motorik-Modul Longitudinal Study: physical fitness and physical activity as determinants of health development in German children and adolescents.

    Science.gov (United States)

    Wagner, Matthias O; Bös, Klaus; Jekauc, Darko; Karger, Claudia; Mewes, Nadine; Oberger, Jennifer; Reimers, Anne K; Schlenker, Lars; Worth, Annette; Woll, Alexander

    2014-10-01

    The Motorik-Modul (MoMo) Longitudinal Study aims to contribute to long-term improvement in the health of German children and adolescents by focusing on: (i) the development of physical fitness and physical activity (including period effects); (ii) the individual and physical/social environmental determinants of the development of physical fitness and physical activity; and (iii) the impact of physical fitness and physical activity on the development of physical and mental health. The MoMo Longitudinal Study began with a nationwide representative sample of 4529 children and adolescents who ranged in age from 4-17 years at the study baseline (2003-2006). The first survey wave of the MoMo Longitudinal Study was conducted between 2009 and 2012, with two subsequent survey waves to be conducted between 2014 and 2016 and 2018 and 2020, respectively. The MoMo Longitudinal Study includes a physical fitness test profile, a physical activity questionnaire, and subjective and objective measures of health from the German Health Interview and Examination Survey (KiGGS). Data access is provided on request (alexander.woll@kit.edu). For further information, including a complete list of publications please visit www.motorik-modul.de. Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2013; all rights reserved.

  4. Host Status of Different Potato (Solanum tuberosum) Varieties and Hatching in Root Diffusates of Globodera ellingtonae.

    Science.gov (United States)

    Zasada, Inga A; Peetz, Amy; Wade, Nadine; Navarre, Roy A; Ingham, Russ E

    2013-09-01

    Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. 'Russet Burbank,' 'Desiree,' 'Modac,' 'Norland,' 'Umatilla,' and 'Yukon Gold' were good hosts (RF > 14) for G. ellingtonae. Potato varieties 'Maris Piper,' 'Atlantic,' and 'Satina,' all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera ellingtonae hatched readily in PRD and TRD

  5. Description of Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon.

    Science.gov (United States)

    Handoo, Zafar A; Carta, Lynn K; Skantar, Andrea M; Chitwood, David J

    2012-03-01

    A new species of cyst nematode, Globodera ellingtonae, is described from soil collected from a field in Oregon. Second-stage juveniles (J2) of the species are characterized by body length of 365-515 μm, stylet length of 19-22.5 μm, basal knobs rounded posteriorly and pointed anteriorly, tail 39-55 μm, hyaline tail terminus 20-32.5 μm, and tail tapering uniformly but abruptly narrowing and constricted near the posterior third of the hyaline portion, ending with a peg-like, finely rounded to pointed terminus. Cysts are spherical to sub-spherical, dark to light brown and circumfenestrate and cyst wall pattern is ridge-like with heavy punctations. Males have a stylet length of 21-25 μm and spicule length of 30-37 μm with a pointed thorn-like tip. Females have a stylet length of 20-22.5 μm, one head annule and labial disc, heavy punctations on the cuticle, and short vulval slit 7.5-8 μm long. Morphologically this new, round-cyst species differs from the related species G. pallida, G. rostochiensis, G. tabacum complex and G. mexicana by its distinctive J2 tail, and by one or another of the following: shorter mean stylet length in J2, females and males; number of refractive bodies in the hyaline tail terminus of J2; cyst morphology including Granek's ratio; number of cuticular ridges between the anus and vulva; and in the shape and length of spicules in males. Its relationship to these closely related species are discussed. Based upon analysis of ribosomal internal transcribed spacer (ITS) sequences, G. ellingtonae n. sp. is distinct from G. pallida, G. rostochiensis, G. tabacum and G. mexicana. Bayesian and Maximum Parsimony analysis of cloned ITS rRNA gene sequences indicated three clades, with intraspecific variability as high as 2.8%. In silico analysis revealed ITS restriction fragment length polymorphisms for enzymes Bsh 1236I, Hinf I, and Rsa I that overlap patterns for other Globodera species.

  6. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development.

    Science.gov (United States)

    Lee, Chris; Chronis, Demosthenis; Kenning, Charlotte; Peret, Benjamin; Hewezi, Tarek; Davis, Eric L; Baum, Thomas J; Hussey, Richard; Bennett, Malcolm; Mitchum, Melissa G

    2011-02-01

    Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.

  7. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii.

    Directory of Open Access Journals (Sweden)

    John Fosu-Nyarko

    Full Text Available The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668 with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.. Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.

  8. The importance, biology and management of cereal cyst nematodes (Heterodera spp.

    Directory of Open Access Journals (Sweden)

    F. Mokrini

    2018-01-01

    Full Text Available Cereals are exposed to biotic and abiotic stresses. Among the biotic stresses, plant-parasitic nematodes play an important role in decreasing crop yield. Cereal cyst nematodes (CCNs are known to be a major constraint to wheat production in several parts of the world. Significant economic losses due to CCNs have been reported. Recognition and identification of CCNs are the first steps in nematode management. This paper reviews the current distribution of CCNs in different parts of the world and the recent advances in nematode identification. The different approaches for managing CCNs are also discussed.

  9. Dicty_cDB: Contig-U16049-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 46 0.003 (Q99MI1) RecName: Full=ELKS/RAB6-interacting/CAST family member ... 46 0.003 ( P90901 ) RecName: Full=Intermed...158L3-1, ... 46 0.003 X70834_1( X70834 |pid:none) C.elegans IFA1 gene for intermed...ma OY-M D... 45 0.006 AY154743_1( AY154743 |pid:none) Heterodera glycines intermediate f... 45 0.006 BC01755...e R3-3104H6, **... 44 0.35 5 ( EK361499 ) 1095469021880 Global-Ocean-Sampling_GS-31-01-01-1... 34 0.75 2 ( A...is duranensis genomi... 48 1.0 1 ( EJ349938 ) 1092963576764 Global-Ocean-Sampling_GS-28-01-01-1... 48 1.0 1

  10. Identification and Characterization of the Most Abundant Cellulases in Stylet Secretions from Globodera rostochiensis

    NARCIS (Netherlands)

    Rehman, S.; Butterbach, P.B.E.; Popeijus, H.E.; Overmars, H.A.; Davis, E.L.; Jones, J.T.; Goverse, A.; Bakker, J.; Smant, G.

    2009-01-01

    Plant-parasitic cyst nematodes secrete cell wall modifying proteins during their invasion of host plants. In this study, we used a monoclonal antibody to immunopurify and to sequence the N terminus of the most abundant cellulases in stylet secretions of preparasitic juveniles of Globodera

  11. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  12. 'Candidatus pasteuria usgae' sp. nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus.

    Science.gov (United States)

    Giblin-Davis, R M; Williams, D S; Bekal, S; Dickson, D W; Brito, J A; Becker, J O; Preston, J F

    2003-01-01

    Taxonomically relevant characteristics of a fastidiously Gram-positive, obligately endoparasitic prokaryote (strain S-1) that uses the phytoparasitic sting nematode Belonolaimus longicaudatus as its host are reviewed. 16S rDNA sequence similarity (> or = 93%) confirms its congeneric ranking with other Pasteuria species and strains from nematodes and cladocerans and corroborates morphological, morphometric and host range evidence suggesting a novel taxon. The 16S rDNA sequence of strain S-1 has greatest similarity (96%) to the 16S rDNA sequences of both Pasteuria penetrans from root-knot nematodes (Meloidogyne species) and the recently reported strain of Pasteuria isolated from the soybean cyst nematode Heterodera glycines. Because the obligately endoparasitic nature of prokaryotes in the genus Pasteuria prevents isolation of definitive type strains, strain S-1 is proposed as 'Candidatus Pasteuria usgae' sp. nov.

  13. Molecular variation in the potato cyst nematode, Globodera pallida, in relation to virulence.

    Science.gov (United States)

    Blok, V C; Pylypenko, L; Phillips, M S

    2006-01-01

    The potato cyst nematode Globodera pallida poses a challenge for potato growers. The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida cause damage valued at over pounds 50m per annum in the U.K. and problems in controlling PCN are growing due to the increase in populations and spread of G. pallida, the lack of many commercially attractive cultivars with resistance to this species and the pressure to reduce nematicide use. Over 60% of potato fields in the U.K. are infected with G. pallida (Minnis et al. 2000). The Scottish Agricultural Science Agency (SASA) figures show that the incidence of both species of PCN on Scottish seed potato land, though low, has been increasing. The proportion of potato land in ware production in Scotland is also increasing and now represents 50% of the potato growing area. This situation potentially increases the risk of the spread of PCN unless it is very carefully monitored and managed.

  14. Naturally induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells.

    Science.gov (United States)

    Goverse, A; Rouppe van der Voort, J; Roppe van der Voort, C; Kavelaars, A; Smant, G; Schots, A; Bakker, J; Helder, J

    1999-10-01

    Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones alpha-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a protoplast-based bioassay, a low-molecular-weight peptide(s) (cyst nematode secretions also co-stimulated mitogenesis in human peripheral blood mononuclear cells (PBMC). The stimulation of plant cells isolated from nontarget tissue--these nematodes normally invade the roots of potato plants--suggests the activation of a general signal transduction mechanism(s) by an oligopeptide(s) secreted by the nematode. Whether a similar oligopeptide-induced mechanism underlies human PBMC activation remains to be investigated. Reactivation of the cell cycle is a crucial event in feeding cell formation by cyst nematodes. The secretion of a mitogenic low-molecular-weight peptide(s) by infective juveniles of the potato cyst nematode could contribute to the redifferentiation of plant cells into such a feeding cell.

  15. Heterodera schachtii Tyrosinase-like protein a novel nematode effector modulating plant hormone homeostasis

    Czech Academy of Sciences Publication Activity Database

    Habash, S.; Radakovic, Z.S.; Vaňková, Radomíra; Siddique, S.; Dobrev, Petre; Gleason, C.; Grundler, F.M.W.; Elashry, A.

    2017-01-01

    Roč. 7, JUL 31 (2017), č. článku 6874. ISSN 2045-2322 Institutional support: RVO:61389030 Keywords : arabidopsis-thaliana * cyst-nematode * parasitic nematode * transient expression * host plants * sequence * identification * infection * model * transformation Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 4.259, year: 2016

  16. 1,10-Phenanthroline and its derivatives are novel hatching stimulants for soybean cyst nematodes.

    Science.gov (United States)

    Nonaka, Shiori; Katsuyama, Tsutomu; Kondo, Tatsuhiko; Sasaki, Yasuyuki; Asami, Tadao; Yajima, Shunsuke; Ito, Shinsaku

    2016-11-01

    Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode and one of the most serious soybean pests. Herein, we present the heterocyclic compound 1,10-phenanthroline (Phen) and its derivatives as novel hatching stimulants for SCN. Phen treatment promoted hatching of second-stage juveniles of SCNs in a concentration-dependent manner. In addition, the hatching of SCNs following treatment with Phen occurred more rapidly than that following treatment with the known hatching stimulant, glycinoeclepin A (GEA). Furthermore, the co-application of Phen and GEA enhanced SCN hatching rate compared with that of Phen or GEA alone. A structure-activity relationship study for Phen derivatives suggested that 2,2'-bipyridine is the essential structure of the SCN-hatching stimulants. These results suggest that Phen and its derivatives activate different hatching pathways of SCNs from GEA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Infection Assay of Cyst Nematodes on Arabidopsis Roots.

    Science.gov (United States)

    Bohlmann, Holger; Wieczorek, Krzysztof

    2015-09-20

    Plant parasitic nematodes are devastating pests on many crops. Juveniles (J2) of cyst nematodes invade the roots to induce a syncytium. This feeding site is their only source of nutrients. Male nematodes leave the roots after the fourth molt to mate with females. The females stay attached to their syncytia throughout their life and produce hundreds of eggs, which are contained in their bodies. When the females die their bodies form the cysts, which protect the eggs. Cysts can survive for many years in the soil until favorable conditions induce hatching of the juveniles. The beet cyst nematode Heterodera schachtii ( H. schachtii )is a pathogen of sugar beet ( Beta vulgaris ) but can also complete its life cycle on Arabidopsis roots growing on agar plates under sterile conditions. We present here protocols for a stock culture of H. schachtii and an infection assay on agar plates.

  18. Nitrate analogs as attractants for soybean cyst nematode.

    Science.gov (United States)

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  19. Superoxide Dismutase as a Tool for the Mulacular Identification of Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    S. Molinari

    2004-08-01

    Full Text Available Superoxide dismutase (SOD is a constitutive family of enzymes produced by all aerobic organisms. Varying amounts of SOD activity have been found at all life stages of the most diffused plant parasitic nematodes. SOD is important to aerobic metabolism and parasitism of nematodes in that it catalyzes the first step of the neutralization of the highly toxic superoxide anion (O2 •-, which is largely produced in plant-nematode incompatible reactions. SOD has also been shown to be a significant tool to diagnose root-knot, cyst-, and longidorid nematodes. A high SOD polymorphism has been revealed by Native-Page on gradient polyacrylamide gels for Meloidogyne spp. and by isoelectrofocusing for Globodera, Xiphinema and Longidorus spp. The sensitivity of such procedures has been improved by using the PhastSystem (Amersham Biosciences, Piscata, NJ, USA, an automated equipment for electrophoresis. An accurate discrimination of species of all the nematode genera tested has been achieved and an attempt was made to group populations of the Xiphinema americanum-group and to detect Globodera rostochiensis and G. pallida pathotypes.

  20. Molecular characterization and functional analysis of ubiquitin extension genes from the potato cyst nematode Globodera rostochiensis

    Science.gov (United States)

    Ubiquitin is a highly conserved 76-amino acid protein found in every eukaryotic cell. It has been proposed that ubiquitin has many cellular functions including DNA repair, transcription regulation, regulation of cell cycle and apoptosis. We identified two ubiquitin extension genes (Gr-Ubi1 and Gr-Ub...

  1. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  2. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  3. Techniques for characterization and eradication of potato cyst nematode: a review.

    Science.gov (United States)

    Bairwa, Aarti; Venkatasalam, E P; Sudha, R; Umamaheswari, R; Singh, B P

    2017-09-01

    Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida . Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.

  4. DISTRIBUTION OF Heterodera schachtii Schmidt 1871 IN THE TOVARNIK AREA AND CURRENT OPTIONS FOR CONTROL

    Directory of Open Access Journals (Sweden)

    Dinka Grubišić

    2016-06-01

    Full Text Available Beet nematode is one of the most harmful pests of sugar beet. It was found on 194 ha in the Tovarnik area 37 years ago. As this is the sugar beet intensive production area, the aim of this study was to determine the present-day distribution of this pest. Sampling of 1159.49 ha of sugar beet fields and collecting of 692 soil samples were conducted in the period 2012-2014. Soil samples were processed using Spears flotation devices, cysts were identified according to morphological characteristics and population density was determined by crushing cysts in Huysman’s homogenizer. Population density was expressed by g of soil and used to determine the appropriate control measures. H. schachtii was found in 34.54% of the samples and 40% of sampled fields. Total infested area is 867.21 ha being evidence of conservation, but also significant expansion of H. schachtii in the Tovarnik area. Population density ranged from 0.06 to 20.72/ g of soil. By determining the population density and taking appropriate control measures, such as regular crop rotation, weed control, sowing of trap crops and tolerant varieties of sugar beet, increase of pest populations and allow long-term production of sugar beet can be prevented.

  5. Phenotypic and molecular analysis of a pasteuria strain parasitic to the sting nematode.

    Science.gov (United States)

    Bekal, S; Borneman, J; Springer, M S; Giblin-Davis, R M; Becker, J O

    2001-06-01

    Pasteuria strain S-1 was found to parasitize the sting nematode Belonolaimus longicaudatus. S-1 spores attached to several strains of B. longicaudatus from different geographical locations within the United States. However, they did not adhere to any of the following species: Heterodera schachtii, Longidorus africanus, Meloidogyne hapla, M. incognita, M. javanica, Pratylenchus brachyurus, P. scribneri, P. neglectus, P. penetrans, P. thornei, P. vulnus, and Xiphinema spp. The 16S rRNA genes from Pasteuria strain S-1 and P. penetrans strain Pp from Senegal were obtained by PCR amplification. A DNA sequence analysis showed that the S-1 16S rRNA had 96% or less similarity to the 16S rRNA genes from all previously reported Pasteuria species. Diverse phylogenetic methods all provided robust support for an association of Pasteuria strain S-1, Pasteuria strain NA parasitic to H. glycines, and P. penetrans strain Pp, to the exclusion of P. ramosa. In addition, our study showed intraspecific variation within P. penetrans as inferred by its 98% similarity to P. penetrans strain Pp.

  6. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    Science.gov (United States)

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  7. Top 10 plant-parasitic nematodes in molecular plant pathology.

    Science.gov (United States)

    Jones, John T; Haegeman, Annelies; Danchin, Etienne G J; Gaur, Hari S; Helder, Johannes; Jones, Michael G K; Kikuchi, Taisei; Manzanilla-López, Rosa; Palomares-Rius, Juan E; Wesemael, Wim M L; Perry, Roland N

    2013-12-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  8. Females and males of root-parasitic cyst nematodes induce different symplasmic connections between their syncytial feeding cells and the phloem in Arabidopsis thaliana.

    Science.gov (United States)

    Hofmann, Julia; Grundler, Florian M W

    2006-01-01

    Root syncytia induced by the beet cyst nematode Heterodera schachtii were thought to be symplasmically isolated. A recent study with mobile and immobile GFP constructs expressed in transgenic Arabidopsis plants under the control of pAtSUC2 showed that only mobile GFP could be detected in syncytia and suggested the existence of plasmodesmata between syncytia and the phloem. In the present study the existence of plasmodesmata between syncytia and the phloem is proven by grafting experiments. This technique rules out the possibility that GFP accumulation in syncytia is due to GFP expression in syncytia. Mobile GFP could be followed from transgenic scions carrying a pAtSUC2-gfp fusion construct via wild-type rootstocks into nematode-induced syncytia. While GFP could be detected in all syncytia associated to female nematodes, it was never observed in syncytia of male juveniles. As no GFP-mRNA could be detected in the rootstock we postulate that GFP as protein entered syncytia of females via plasmodesmata, while the protein was excluded from syncytia of male juveniles by plasmodesmata with a lower size exclusion limit.

  9. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.

    Science.gov (United States)

    Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F

    2013-04-25

    The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.

  10. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994.

    Science.gov (United States)

    Koenning, S R; Overstreet, C; Noling, J W; Donald, P A; Becker, J O; Fortnum, B A

    1999-12-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema.

  11. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  12. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhou

    Full Text Available Soybean cyst nematode (SCN is the most damaging soybean pest worldwide. To improve soybean resistance to SCN, we employed a soybean seed-coating strategy through combination of three rhizobacterial strains, including Bacillus simple, B. megaterium and Sinarhizobium fredii at various ratios. We found seed coating by such rhizobacterial strains at a ratio of 3:1:1 (thereafter called SN101 produced the highest germination rate and the mortality of J2 of nematodes. Then, the role of soybean seed coating by SN101 in nematode control was evaluated under both greenhouse and two field conditions in Northeast China in 2013 and 2014. Our results showed that SN101 treatment greatly reduced SCN reproduction and significantly promoted plant growth and yield production in both greenhouse and field trials, suggesting that SN101 is a promising seed-coating agent that may be used as an alternative bio-nematicide for controlling SCN in soybean fields. Our findings also demonstrate that combination of multiple rhizobacterial strains needs to be considered in the seed coating for better management of plant nematodes.

  13. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan.

    Science.gov (United States)

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-06-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.

  14. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity

    Directory of Open Access Journals (Sweden)

    Amalia Diaz-Granados

    2016-10-01

    Full Text Available Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These round worms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.

  15. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  16. Characterization of type and genetic diversity among soybean cyst nematode differentiators

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2012-04-01

    Full Text Available The development of soybean cyst nematode, Heterodera glycines Ichinohe, resistant genotypes with high yields has been one of the objectives of soybean (Glycine max (L. Merrill breeding programs. The objective of this study was to characterize the pathotype of soybean cyst nematodes and analyze the genetic diversity of ten differentiator lines ('Lee 74', Peking, Pickett, PI 88788, PI 90763, PI 437654, PI 209332, PI 89772, PI 548316 and 'Hartwig'. Inoculum was obtained from plants cultivated in field soil in Viçosa, state of Minas Gerais, Brazil. Thirty-four days after inoculating each plant with 4,000 eggs, the number of females, female index, total number of eggs, number of eggs per female, reproduction factor, plant height, number of nodes, fresh and dry matter weights were assessed. The differential lines were first grouped with Scott-Knott test. Subsequently, the genetic diversity was evaluated using dendrograms, graphic analysis and the Tocher grouping method. The inoculum of H. glycines obtained from NBSGBP-UFV was characterized as HG Type 0. The differentiating lines were divergent, and PI 89772, PI 437654, 'Hartwig' and 'Peking' had the greatest potential for use in breeding programs.

  17. Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita

    Science.gov (United States)

    Mimics of two natural influences, a chemical similar to one present in cyst nematodes and low temperature exposure of nematode eggs, were evaluated for their effects on quantitative and qualitative features of embryonic development and hatching. The polyphenol epigallocatechin gallate (EGCG), an ana...

  18. Caracterização molecular de populações do nematóide-de-cisto-da-soja com diferentes índices de parasitismo na cultivar Hartwig Molecular characterization of soybean cyst nematode populations with different parasitism index to the Hartwig cultivar

    Directory of Open Access Journals (Sweden)

    Ricardo Vilela Abdelnoor

    2001-02-01

    Full Text Available Recentemente, foi descoberta uma raça do nematóide-de-cisto-da-soja (NCS; Heterodera glycines que apresentou a capacidade de quebrar a resistência da cultivar Hartwig, até então considerada resistente a todas as raças conhecidas do nematóide. Essa população foi coletada no Município de Sorriso, Estado do Mato Grosso, e foi caracterizada como raça 4. Para verificar a diversidade genética entre esta e outras populações pertencentes às raças 4 e 9, foi feita uma caracterização molecular pela técnica de marcadores moleculares RAPD. Foram utilizadas nove populações do NCS, das quais quatro apresentavam a capacidade de parasitar 'Hartwig'. Foi verificado que as populações capazes de parasitar 'Hartwig' foram bastante diferentes das demais. Por meio de análise de agrupamento, com base nas distâncias genéticas encontradas, foram obtidos três grupos: o primeiro, constituído por indivíduos classificados como raça 4, mas que não parasitam 'Hartwig'; o segundo, constituído por quatro populações capazes de parasitar 'Hartwig', e o terceiro, por apenas uma população, classificado como raça 9, e que também não parasita 'Hartwig'. Este estudo confirmou que a população de NCS, encontrada em Sorriso, é geneticamente distinta das demais populações da raça 4 encontradas e constitui uma nova raça, denominada 4+.Recently, a new race of soybean cyst nematode (SCN (Heterodera glycines was discovered, which breaks the resistance of cultivar Hartwig, resistant to all known races of SCN. This population was obtained from soybean plants collected in the Sorriso county, state of Mato Grosso, Brazil, and is characterized as race 4. To verify if this isolate was different from others classified as races 4 and 9, their genetic diversity was analyzed by using the RAPD technique. Nine populations of SCN were analyzed, and only four populations were able to parasitize soybean plants cultivar Hartwig. Based on this study, it was

  19. Linkage analysis by genotyping of sibling populations: a genetic map for the potato cyst nematode constructed using a "pseudo-F2" mapping strategy.

    Science.gov (United States)

    Rouppe van der Voort, J N; van Eck, H J; van Zandvoort, P M; Overmars, H; Helder, J; Bakker, J

    1999-07-01

    A mapping strategy is described for the construction of a linkage map of a non-inbred species in which individual offspring genotypes are not amenable to marker analysis. After one extra generation of random mating, the segregating progeny was propagated, and bulked populations of offspring were analyzed. Although the resulting population structure is different from that of commonly used mapping populations, we show that the maximum likelihood formula for a normal F2 is applicable for the estimation of recombination. This "pseudo-F2" mapping strategy, in combination with the development of an AFLP assay for single cysts, facilitated the construction of a linkage map for the potato cyst nematode Globodera rostochiensis. Using 12 pre-selected AFLP primer combinations, a total of 66 segregating markers were identified, 62 of which were mapped to nine linkage groups. These 62 AFLP markers are randomly distributed and cover about 65% of the genome. An estimate of the physical size of the Globodera genome was obtained from comparisons of the number of AFLP fragments obtained with the values for Caenorhabditis elegans. The methodology presented here resulted in the first genomic map for a cyst nematode. The low value of the kilobase/centimorgan (kb/cM) ratio for the Globodera genome will facilitate map-based cloning of genes that mediate the interaction between the nematode and its host plant.

  20. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.).

    Science.gov (United States)

    Finkers-Tomczak, Anna; Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2011-02-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene.

  1. A Simple Method for the Extraction, PCR-amplification, Cloning, and Sequencing of Pasteuria 16S rDNA from Small Numbers of Endospores.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Ciancio, A

    2004-03-01

    For many years the taxonomy of the genus Pasteuria has been marred with confusion because the bacterium could not be cultured in vitro and, therefore, descriptions were based solely on morphological, developmental, and pathological characteristics. The current study sought to devise a simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16S rDNA from small numbers of endospores, with no need for prior DNA purification. Results show that DNA extracts from plain glass bead-beating of crude suspensions containing 10,000 endospores at 0.2 x 10 endospores ml(-1) were sufficient for PCR-amplification of Pasteuria 16S rDNA, when used in conjunction with specific primers. These results imply that for P. penetrans and P. nishizawae only one parasitized female of Meloidogyne spp. and Heterodera glycines, respectively, should be sufficient, and as few as eight cadavers of Belonolaimus longicaudatus with an average number of 1,250 endospores of "Candidatus Pasteuria usgae" are needed for PCR-amplification of Pasteuria 16S rDNA. The method described in this paper should facilitate the sequencing of the 16S rDNA of the many Pasteuria isolates that have been reported on nematodes and, consequently, expedite the classification of those isolates through comparative sequence analysis.

  2. Expression of two functionally distinct plant endo-beta-1,4-glucanases is essential for the compatible interaction between potato cyst nematode and its hosts.

    Science.gov (United States)

    Karczmarek, Aneta; Fudali, Sylwia; Lichocka, Malgorzata; Sobczak, Miroslaw; Kurek, Wojciech; Janakowski, Slawomir; Roosien, Jan; Golinowski, Wladyslaw; Bakker, Jaap; Goverse, Aska; Helder, Johannes

    2008-06-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-beta-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the expression of two out of the at least eight EGases, namely Sl-cel7 and Sl-cel9C1, is specifically upregulated during syncytium formation. In situ hybridization and immunodetection studies demonstrated that both EGases are specifically expressed inside and adjacent to proliferating syncytia. To assess the importance of Sl-cel7 and Sl-cel9C1 for nematode development, we decided to knock them out individually. Sl-cel9C1 probably is the only class C EGase in tomato, and we were unable to regenerate Sl-cel9C1-silenced plants. Potato (S. tuberosum), a close relative of tomato, harbors at least two class C EGases, and St-cel7-or St-cel9C1-silenced potato plants showed no obvious aberrant phenotype. Infection with potato cyst nematodes resulted in a severe reduction of the number of adult females (up to 60%) and a sharp increase in the fraction of females without eggs (up to 89%). Hence, the recruitment of CEL7, an enzyme that uses xyloglucan and noncrystalline cellulose as natural substrates, and CEL9C1, an enzyme that uses crystalline cellulose, is essential for growth and development of potato cyst nematodes.

  3. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate.

    Science.gov (United States)

    Palomares-Rius, Juan Emilio; Hedley, Pete; Cock, Peter J A; Morris, Jenny A; Jones, John T; Blok, Vivian C

    2016-01-01

    Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).

  4. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    Directory of Open Access Journals (Sweden)

    Juan Emilio Palomares-Rius

    2016-02-01

    Full Text Available Plant-parasitic nematodes (PPN need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN (Globodera pallida and G. rostochiensis are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium, while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules.

  5. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Kammerhofer, N.; Radakovic, Z.; Regis, J.M.A.; Dobrev, Petre; Vaňková, Radomíra; Grundler, F.M.W.; Siddique, S.; Hofmann, J.; Wieczorek, K.

    2015-01-01

    Roč. 207, č. 3 (2015), s. 778-789 ISSN 0028-646X R&D Projects: GA MŠk LD14120 Institutional support: RVO:61389030 Keywords : defence responses * early infection * ethylene Subject RIV: ED - Physiology Impact factor: 7.210, year: 2015

  6. Systemic above- and belowground cross talk: hormone-based responses triggered by Heterodera schachtii and shoot herbivores in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Kammerhofer, N.; Egger, B.; Dobrev, Petre; Vaňková, Radomíra; Hofmann, J.; Schausberger, P.; Wieczorek, K.

    2015-01-01

    Roč. 66, č. 22 (2015), s. 7005-7017 ISSN 0022-0957 R&D Projects: GA MŠk LD14120 Institutional support: RVO:61389030 Keywords : Aboveground–belowground interactions * Frankliniella occidentalis * herbivores Subject RIV: EF - Botanics Impact factor: 5.677, year: 2015

  7. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  8. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    Science.gov (United States)

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  9. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes.

    Science.gov (United States)

    Meyer, Susan L F; Halbrendt, John M; Carta, Lynn K; Skantar, Andrea M; Liu, Ting; Abdelnabby, Hazem M E; Vinyard, Bryan T

    2009-12-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG) is produced by some isolates of the beneficial bacterium Pseudomonas fluorescens. DAPG is toxic to many organisms, and crop yield increases have been reported after application of DAPG-producing P. fluorescens. This study was conducted to determine whether DAPG is toxic to selected nematodes. The plant-parasitic nematodes Heterodera glycines, Meloidogyne incognita, Pratylenchus scribneri and Xiphinema americanum, and the bacterial-feeding nematodes Caenorhabditis elegans, Pristionchus pacificus, and Rhabditis rainai, were immersed in concentrations ranging from 0 to 100 μg/ml DAPG. Egg hatch and viability of juveniles and adults were determined. DAPG was toxic to X. americanum adults, with an LD₅₀ of 8.3 μg/ml DAPG. DAPG decreased M. incognita egg hatch, but stimulated C. elegans hatch during the first hours of incubation. Viability of M. incognita J2 and of C. elegans J1 and adults was not affected. There were no observed effects on the other nematodes. The study indicated that DAPG is not toxic to all nematodes, and did not affect the tested species of beneficial bacterial-feeding nematodes. Augmentation of DAPG-producing P. fluorescens populations for nematode biocontrol could be targeted to specific nematode species known to be affected by this compound and by other antibiotics produced by the bacteria, or these bacteria could be used for other possible effects, such as induced plant resistance.

  10. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Dowd, Carola D; Chronis, Demosthenis; Radakovic, Zoran S; Siddique, Shahid; Schmülling, Thomas; Werner, Tomáš; Kakimoto, Tatsuo; Grundler, Florian M W; Mitchum, Melissa G

    2017-10-01

    Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  12. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes.

    Science.gov (United States)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S; Lozano-Torres, Jose L; Grundler, Florian M W; Siddique, Shahid

    2017-12-16

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Wieczorek, K; Elashry, A; Quentin, M; Grundler, F M W; Favery, B; Seifert, G J; Bohlmann, H

    2014-09-01

    Pectin in the primary plant cell wall is thought to be responsible for its porosity, charge density, and microfibril spacing and is the main component of the middle lamella. Plant-parasitic nematodes secrete cell wall-degrading enzymes that macerate the plant tissue, facilitating the penetration and migration within the roots. In sedentary endoparasitic nematodes, these enzymes are released only during the migration of infective juveniles through the root. Later, nematodes manipulate the expression of host plant genes, including various cell wall enzymes, in order to induce specific feeding sites. In this study, we investigated expression of two Arabidopsis pectate lyase-like genes (PLL), PLL18 (At3g27400) and PLL19 (At4g24780), together with pectic epitopes with different degrees of methylesterification in both syncytia induced by the cyst nematode Heterodera schachtii and giant cells induced by the root-knot nematode Meloidogyne incognita. We confirmed upregulation of PLL18 and PLL19 in both types of feeding sites with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ RT-PCR. Furthermore, the functional analysis of mutants demonstrated the important role of both PLL genes in the development and maintenance of syncytia but not giant cells. Our results show that both enzymes play distinct roles in different infected root tissues as well as during parasitism of different nematodes.

  14. FMRFamide-related peptides in potato cyst nematodes.

    Science.gov (United States)

    Kimber, M J; Fleming, C C; Bjourson, A J; Halton, D W; Maule, A G

    2001-09-03

    This study presents data demonstrating the presence of FMRFamide-related peptides (FaRPs) in potato cyst nematodes (PCN). Five transcripts of FaRP encoding genes, designated gpflp-1 to gpflp-5, were characterised using RACE. In terms of ORFs, gpflp-1 was 444 base pairs (bp) long and coded for four copies of the FaRP, PF3 (KSAYMRFamide) whilst gpflp-2 was 309 bp long and encoded one copy of the peptide, KNKFEFIRFamide. gpflp-3 (420 bp) Encoded two copies of KHEYLRFamide (AF2) and the genes gpflp-4 and gpflp-5 encoded a total of 11 FaRPs, most of which are novel to PCN. FMRFamide-related peptide (FaRP)-like immunoreactivity was observed in both PCN species, Globodera pallida and Globodera rostochiensis, using an antiserum raised against the invertebrate peptide, FMRFamide. Immunopositive neurones were found throughout the central nervous system in the ventral and dorsal nerve cords and the circumpharyngeal and perianal nerve rings. Reactive neurones were also present peripherally, innervating the highly muscular pharynx with a nerve net and ring-like structures. Positive immunostaining was also observed in neurones running toward the stylet protractor muscles and/or the anterior sensory apparatus. This study implicates a role for FaRPs in feeding, host penetration and sensory function of PCN. This is the first study to characterise FaRP encoding genes from a plant-parasitic nematode using a targeted PCR based RACE approach and further underlines the importance and diversity of this neuropeptide group in the phylum Nematoda.

  15. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene.

    Science.gov (United States)

    Sobczak, Miroslaw; Avrova, Anna; Jupowicz, Justyna; Phillips, Mark S; Ernst, Karin; Kumar, Amar

    2005-02-01

    The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.

  16. Heterodera fengi n. sp. (Nematoda: Heteroderinae) from bamboo in Guangdong Province, China--a new cyst nematode in the Cyperi group.

    Science.gov (United States)

    Wang, Honghong; Zhuo, Kan; Ye, Weimin; Zhang, Hongling; Peng, Deliang; Liao, Jinling

    2013-01-01

    Heteroderafengi n. sp. is described and illustrated from bamboo (Phyllostachys pubescens Mazel) based on morphology and molecular analyses of rRNA LSU D2D3 region and ITS. This new species belongs to the Cyperi group. Cysts are characterized by prominent vulval cone with ambifenestrate, bifurcate underbridge that is thicker in middle and a 47.0 (40.0-60.0) µm long vulval slit, but without bullae. The second-stage juveniles are characterized by a 23.2 (22.0-24.0) µm long stylet with slightly projected or anteriorly flattened knobs, three incisures in lateral field, a 70.2 (62.5-77.0) µm long tail with bluntly rounded terminus and hyaline portion ca 58.9 (50.0-62.5)% of the tail length. Males are characterized by a 25.1 (24.5-26.3) µm long stylet with rounded knobs sloping posteriorly, four incisures in lateral field, a 29.8 (27.5-31.3) µm long spicule with bifurcate tip. Phylogenetic analysis shows that the species has unique D2D3 and ITS rRNA sequences and RFLP-ITS-rRNA profiles. Heteroderafengi n. sp. is closest to H. elachista in dendrograms inferred from both DNA sequences.

  17. Validation of microsatellite markers for assisted selection of soybean resistance to cyst nematode races 3 and 14 Validação de marcadores microssatélites para a seleção assistida de resistência de soja ao nematóide-de-cisto raças 3 e 14

    Directory of Open Access Journals (Sweden)

    Marcia Flores da Silva

    2007-08-01

    Full Text Available The objective of this work was to validate microsatellite markers associated with resistance to soybean cyst nematode (Heterodera glycines Ichinohe races 3 and 14, in soybean (Glycine max L. genotypes, for use in marker-assisted selection (MAS programs. Microsatellites of soybean linkage groups A2, D2 and G were tested in two populations, and their selection efficiencies were determined. The populations were 65 F2:3 families from Msoy8001 (resistant x Conquista (susceptible cross, and 66 F2:3 families of S5995 (resistant x Renascença (susceptible cross, evaluated for resistance to races 3 and 14, respectively. Families with female index up to 30% were considered moderately resistant. Markers of A2 and G linkage groups were associated with resistance to race 3. Markers Satt309 and GMENOD2B explained the greatest proportion of phenotypic variance in the different groups. The combinations Satt309+GMENOD2B and Satt309+Satt187 presented 100% selection efficiency. Resistance to race 14 was associated with markers of G linkage group, and selection efficiency in the Satt309+Satt356 combination was 100%. The selection differential obtained by phenotypic and marker assisted selection showed that both can result in similar gains.O objetivo deste trabalho foi validar marcadores microssatélites associados à resistência às raças 3 e 14 do nematóide-de-cisto (Heterodera glycines Ichinohe da soja (Glycine max L., para serem utilizados em programas de seleção assistida por marcadores moleculares (SAM. Microssatélites dos grupos de ligação A2, D2 e G da soja foram testados em duas populações, e suas eficiências de seleção foram determinadas. As populações foram 65 famílias F2:3, do cruzamento Msoy8001 (resistente x Conquista (suscetível, e 66 famílias F2:3, do cruzamento S5995 (resistente x Renascença (suscetível, avaliadas para a resistência às raças 3 e 14, respectivamente. Famílias com índice de fêmeas de até 30% foram

  18. The plant cell wall in the feeding sites of cyst nematodes.

    Science.gov (United States)

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  19. Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode.

    Science.gov (United States)

    Afzal, Ahmed J; Srour, Ali; Saini, Navinder; Hemmati, Naghmeh; El Shemy, Hany A; Lightfoot, David A

    2012-04-01

    Host resistance to "yellow dwarf" or "moonlight" disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24-48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.

  20. Effects of root herbivory by nematodes on the performance and preference of a leaf-infesting generalist aphid depend on nitrate fertilization.

    Science.gov (United States)

    Kutyniok, Magdalene; Persicke, Marcus; Müller, Caroline

    2014-02-01

    The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.

  1. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann

    2014-03-01

    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  2. In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla.

    Directory of Open Access Journals (Sweden)

    Fengjuan Zhang

    Full Text Available Plant-parasitic nematodes (PPNs are piercing/sucking pests, which cause severe damage to crops worldwide, and are difficult to control. The cyst and root-knot nematodes (RKN are sedentary endoparasites that develop specialized multinucleate feeding structures from the plant cells called syncytia or giant cells respectively. Within these structures the nematodes produce feeding tubes, which act as molecular sieves with exclusion limits. For example, Heterodera schachtii is reportedly unable to ingest proteins larger than 28 kDa. However, it is unknown yet what is the molecular exclusion limit of the Meloidogyne hapla. Several types of Bacillus thuringiensis crystal proteins showed toxicity to M. hapla. To monitor the entry pathway of crystal proteins into M. hapla, second-stage juveniles (J2 were treated with NHS-rhodamine labeled nematicidal crystal proteins (Cry55Aa, Cry6Aa, and Cry5Ba. Confocal microscopic observation showed that these crystal proteins were initially detected in the stylet and esophageal lumen, and subsequently in the gut. Western blot analysis revealed that these crystal proteins were modified to different molecular sizes after being ingested. The uptake efficiency of the crystal proteins by the M. hapla J2 decreased with increasing of protein molecular mass, based on enzyme-linked immunosorbent assay analysis. Our discovery revealed 140 kDa nematicidal crystal proteins entered M. hapla J2 via the stylet, and it has important implications in designing a transgenic resistance approach to control RKN.

  3. Assessing Cross-disciplinary Efficiency of Soil Amendments for Agro-biologically, Economically, and Ecologically Integrated Soil Health Management

    Science.gov (United States)

    2010-01-01

    Preventive and/or manipulative practices will be needed to maintain soil's biological, physiochemical, nutritional, and structural health in natural, managed, and disturbed ecosystems as a foundation for food security and global ecosystem sustainability. While there is a substantial body of interdisciplinary science on understanding function and structure of soil ecosystems, key gaps must be bridged in assessing integrated agro-biological, ecological, economical, and environmental efficiency of soil manipulation practices in time and space across ecosystems. This presentation discusses the application of a fertilizer use efficiency (FUE) model for assessing agronomic, economic, ecological, environmental, and nematode (pest) management efficiency of soil amendments. FUE is defined as increase in host productivity and/or decrease in plant-parasitic nematode population density in response to a given fertilizer treatment. Using the effects of nutrient amendment on Heterodera glycines population density and normalized difference vegetative index (indicator of physiological activities) of a soybean cultivar ‘CX 252’, how the FUE model recognizes variable responses and separates nutrient deficiency and toxicity from nematode parasitism as well as suitability of treatments designed to achieve desired biological and physiochemical soil health conditions is demonstrated. As part of bridging gaps between agricultural and ecological approaches to integrated understanding and management of soil health, modifications of the FUE model for analyzing the relationships amongst nematode community structure, soil parameters (eg. pH, nutrients, %OM), and plant response to soil amendment is discussed. PMID:22736840

  4. Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes.

    Science.gov (United States)

    Palomares-Rius, Juan E; Hedley, Pete E; Cock, Peter J A; Morris, Jenny A; Jones, John T; Vovlas, Nikos; Blok, Vivian

    2012-12-01

    The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  5. Effective delivery of a nematode-repellent peptide using a root-cap-specific promoter.

    Science.gov (United States)

    Lilley, Catherine J; Wang, Dong; Atkinson, Howard J; Urwin, Peter E

    2011-02-01

    The potential of the MDK4-20 promoter of Arabidopsis thaliana to direct effective transgenic expression of a secreted nematode-repellent peptide was investigated. Its expression pattern was studied in both transgenic Arabidopsis and Solanum tuberosum (potato) plants. It directed root-specific β-glucuronidase expression in both species that was chiefly localized to cells of the root cap. Use of the fluorescent timer protein dsRED-E5 established that the MDK4-20 promoter remains active for longer than the commonly used constitutive promoter CaMV35S in separated potato root border cells. Transgenic Arabidopsis lines that expressed the nematode-repellent peptide under the control of either AtMDK4-20 or CaMV35S reduced the establishment of the beet cyst nematode Heterodera schachtii. The best line using the AtMDK4-20 promoter displayed a level of resistance >80%, comparable to that of lines using the CaMV35S promoter. In transgenic potato plants, 94.9 ± 0.8% resistance to the potato cyst nematode Globodera pallida was achieved using the AtMDK4-20 promoter, compared with 34.4 ± 8.4% resistance displayed by a line expressing the repellent peptide from the CaMV35S promoter. These results establish the potential of the AtMDK4-20 promoter to limit expression of a repellent peptide whilst maintaining or even improving the efficacy of the cyst-nematode defence. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes.

    Science.gov (United States)

    Preston, J F; Dickson, D W; Maruniak, J E; Nong, G; Brito, J A; Schmidt, L M; Giblin-Davis, R M

    2003-06-01

    Pasteuria spp. include endospore-forming bacterial pathogens of cladoceran crustaceans and plant-parasitic nematodes. Propagation of these nematode pathogens requires attachment of soilborne endospores to nematode hosts, infection, growth, sporulation, and release of endospores to repeat the cycle of infection and propagation. The ability of these bacteria to suppress the levels of plant-parasitic nematodes in the field has made them particularly promising candidates for biocontrol of nematode diseases of plants. Genes encoding 16S ribosomal RNA have been sequenced for the cladoceran (water flea) parasite and type species, Pasteuria ramosa, and for Pasteuria spp. isolated from root-knot (Meloidogyne arenaria race 1 and Meloidogyne sp.), soybean cyst (Heterodera glycines), and sting (Belonolaimus longicaudatus) nematodes. These have provided a phylogenetic basis for their designation to a distinct clade within the family Alicyclobacillaceae of the gram-positive endospore-forming bacteria. Two apparent biotypes of P. penetrans demonstrating a host preference for different Meloidogyne spp. showed identical 16S rDNA sequences, suggesting host-recognition evolves within a given species. The sequences of genes encoding sporulation transcription factors, sigE and sigF, from P. penetrans biotype P-20 show different phylogenetic relationships to other endospore-forming bacteria, supporting their application to further discriminate Pasteuria spp. and biotypes. Distribution of an adhesin-associated epitope on polypeptides from different Pasteuria isolates provides an immunochemical approach to differentiate species and biotypes with specific host preferences. Application of bioinformatics to genomic data, as well as further characterization of the biochemical basis for host recognition, will facilitate development of Pasteuria spp. as benign alternatives to chemical nematicides.

  7. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; MacDonald, Margaret H; Kabir, Sara; Youssef, Reham M; Hosseini, Parsa; Brewer, Eric

    2013-05-01

    During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.

  8. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  9. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA.

    Science.gov (United States)

    Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R

    2001-10-01

    The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.

  10. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing.

    Science.gov (United States)

    Tian, Bin; Wang, Shichen; Todd, Timothy C; Johnson, Charles D; Tang, Guiliang; Trick, Harold N

    2017-08-02

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.

  11. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    Science.gov (United States)

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  12. A survey of the Cape Floristic Region of South Africa for the presence of cyst nematodes (Nematoda: Heteroderidae).

    Science.gov (United States)

    Knoetze, Rinus; Swart, Antoinette

    2014-12-09

    A survey was performed to detect the presence of cyst nematodes in the Cape Floristic Region of South Africa. Soil was collected in the rhizosphere of the dominant plant species within blocks of indigenous vegetation and cysts were extracted from them. A total of 81 blocks of indigenous vegetation were sampled as described. Cysts were detected in 7 of these samples, representing 6 different vegetation types. One set of primers was used to amplify the ITS regions from these cysts, including the 5.8S ribosomal gene, as well as short parts of the 18S and 28S ribosomal genes. ITS-rDNA sequences from the indigenous isolates were aligned with selected sequences of other species from the Heteroderidae. Phylogenetic analyses to resolve the relationships between indigenous isolates and selected representatives of the Heteroderidae were conducted using the Maximum Parsimony method. The consensus tree resulting from alignment of the circumfenestrate cysts revealed that isolates SK18, WK1 and WK26 are included in a clade of Globodera species that parasitise non-solanaceous plants, forming a monophyletic group with G. millefolii, G. artemisiae, and an unidentified Globodera sp. from Portugal. In a tree resulting from the alignment of the Heterodera spp., isolates OK14 and WK2 are included in the Afenestrata group, forming a monophyletic group with H. orientalis.This survey unearthed at least four potentially new species of cyst nematodes, which may prove invaluable for the study of the evolution and biogeography of the group.

  13. Mutation induction and isolation in potato through true seed and tuber mutagenesis and use of tissue culture

    International Nuclear Information System (INIS)

    Upadhya, M.D.; Abraham, M.J.; Dass, B.; Chandra, R.

    1982-01-01

    Advance MV generation clones from hydrazine-sulphate-treated 'O.T' cultures have been field evaluated and 12 cultures have been selected for yield trials. One culture, DN-31-3, has been found to be day-neutral in its tuberization behaviour. Four JL/RA clones have been selected after a large-scale field trial. These clones are the selections from gamma-irradiated self seeds of Kufri Lauvkar (A-7416) and hybrid A-2235. Similarly 15 MV 3 clones have been selected from the populations raised from EMS- and DES-treated self seeds of A-2235. Day-neutral mutants have been selected from the fourth to seventh sprouts taken from EMS-treated tuber halves of Kufri Jyoti. From the sixth sprout harvest from EMS-treated Kufri Jyoti halves, one mutant, BCN-6-2, has been isolated which showed less than 30 cysts of G. rostochiensis in the MV 2 generation. This clone has been multiplied and made disease-free through apical meristem culture. Through the use of a new medium, PM-32, the plating efficiency of mechanically isolated single callus cells of dihaploid PH-258 is 30-35%. Nitsch's medium has been modified to formulate a new medium for direct embryogenesis in single callus cells of Phulwa. All stages up to the globular stage could be observed after five to six weeks of culture. Efforts were continued for the enzymatic isolation of single-leaf mesophyll cells from dihaploid PH-258. A new cell separation medium has been formulated which gives 80% viable cells. The LD 50 and LD 100 doses of EMS for the single callus cells of dihaploid PH-255 were found to be 500 ppm and 1000 ppm respectively. (author)

  14. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  15. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    2017-02-01

    Full Text Available Stem cell pools in the SAM (shoot apical meristem, RAM (root apical meristem and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed that cyst nematode CLE-like effector proteins delivered into host cells through a stylet, act as ligand mimics of plant A-type CLE peptides and are pivotal for successful parasitism. Here we report the identification of a new class of CLE peptides from cyst nematodes with functional similarity to the B-type CLE peptide TDIF (tracheary element differentiation inhibitory factor encoded by the CLE41 and CLE44 genes in Arabidopsis. We further demonstrate that the TDIF-TDR (TDIF receptor-WOX4 pathway, which promotes procambial meristem cell proliferation, is involved in beet cyst nematode Heterodera schachtii parasitism. We observed activation of the TDIF pathway in developing feeding sites, reduced nematode infection in cle41 and tdr-1 wox4-1 mutants, and compromised syncytium size in cle41, tdr-1, wox4-1 and tdr-1 wox4-1 mutants. By qRT-PCR and promoter:GUS analyses, we showed that the expression of WOX4 is decreased in a clv1-101 clv2-101 rpk2-5 mutant, suggesting that WOX4 is a potential downstream target of nematode CLEs. Exogenous treatment with both nematode A-type and B-type CLE peptides induced massive cell proliferation in wild type roots, suggesting that the two types of CLEs may regulate cell proliferation during feeding site formation. These findings highlight an important role of the procambial cell proliferation pathway in cyst nematode feeding site formation.

  16. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yasuka L. Yamaguchi

    2017-07-01

    Full Text Available Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita, and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8, TDR and WOX4 were activated not only in M. incognita-induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii-induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host’s developmental regulation of the vascular stem cells during gall formation.

  17. Heterozygote deficits in cyst plant-parasitic nematodes: possible causes and consequences.

    Science.gov (United States)

    Montarry, Josselin; Jan, Pierre-Loup; Gracianne, Cecile; Overall, Andrew D J; Bardou-Valette, Sylvie; Olivier, Eric; Fournet, Sylvain; Grenier, Eric; Petit, Eric J

    2015-04-01

    Deviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances. © 2015 John Wiley & Sons Ltd.

  18. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots.

    Science.gov (United States)

    Yamaguchi, Yasuka L; Suzuki, Reira; Cabrera, Javier; Nakagami, Satoru; Sagara, Tomomi; Ejima, Chika; Sano, Ryosuke; Aoki, Yuichi; Olmo, Rocio; Kurata, Tetsuya; Obayashi, Takeshi; Demura, Taku; Ishida, Takashi; Escobar, Carolina; Sawa, Shinichiro

    2017-01-01

    Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita , and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8 , TDR and WOX4 were activated not only in M. incognita -induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii -induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host's developmental regulation of the vascular stem cells during gall formation.

  19. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    Science.gov (United States)

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  20. Cell wall ingrowths in nematode induced syncytia require UGD2 and UGD3.

    Directory of Open Access Journals (Sweden)

    Shahid Siddique

    Full Text Available The cyst nematode Heterodera schachtii infects roots of Arabidopsis plants and establishes feeding sites called syncytia, which are the only nutrient source for nematodes. Development of syncytia is accompanied by changes in cell wall structures including the development of cell wall ingrowths. UDP-glucuronic acid is a precursor of several cell wall polysaccharides and can be produced by UDP-glucose dehydrogenase through oxidation of UDP-glucose. Four genes in Arabidopsis encode this enzyme. Promoter::GUS analysis revealed that UGD2 and UGD3 were expressed in syncytia as early as 1 dpi while expression of UGD1 and UGD4 could only be detected starting at 2 dpi. Infection assays showed no differences between Δugd1 and Δugd4 single mutants and wild type plants concerning numbers of males and females and the size of syncytia and cysts. On single mutants of Δugd2 and Δugd3, however, less and smaller females, and smaller syncytia formed compared to wild type plants. The double mutant ΔΔugd23 had a stronger effect than the single mutants. These data indicate that UGD2 and UGD3 but not UGD1 and UGD4 are important for syncytium development. We therefore studied the ultrastructure of syncytia in the ΔΔugd23 double mutant. Syncytia contained an electron translucent cytoplasm with degenerated cellular organelles and numerous small vacuoles instead of the dense cytoplasm as in syncytia developing in wild type roots. Typical cell wall ingrowths were missing in the ΔΔugd23 double mutant. Therefore we conclude that UGD2 and UGD3 are needed for the production of cell wall ingrowths in syncytia and that their lack leads to a reduced host suitability for H. schachtii resulting in smaller syncytia, lower number of developing nematodes, and smaller females.

  1. A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence.

    Directory of Open Access Journals (Sweden)

    Sadia Bekal

    Full Text Available Phytoparasitic nematodes that are able to infect and reproduce on plants that are considered resistant are referred to as virulent. The mechanism(s that virulent nematodes employ to evade or suppress host plant defenses are not well understood. Here we report the use of a genetic strategy (allelic imbalance analysis to associate single nucleotide polymorphisms (SNPs with nematode virulence genes in Heterodera glycines, the soybean cyst nematode (SCN. To accomplish this analysis, a custom SCN SNP array was developed and used to genotype SCN F3-derived populations grown on resistant and susceptible soybean plants. Three SNPs reproducibly showed allele imbalances between nematodes grown on resistant and susceptible plants. Two candidate SCN virulence genes that were tightly linked to the SNPs were identified. One SCN gene encoded biotin synthase (HgBioB, and the other encoded a bacterial-like protein containing a putative SNARE domain (HgSLP-1. The two genes mapped to two different linkage groups. HgBioB contained sequence polymorphisms between avirulent and virulent nematodes. However, the gene encoding HgSLP-1 had reduced copy number in virulent nematode populations and appears to produce multiple forms of the protein via intron retention and alternative splicing. We show that HgSLP-1 is an esophageal-gland protein that is secreted by the nematode during plant parasitism. Furthermore, in bacterial co-expression experiments, HgSLP-1 co-purified with the SCN resistance protein Rhg1 α-SNAP, suggesting that these two proteins physically interact. Collectively our data suggest that multiple SCN genes are involved in SCN virulence, and that HgSLP-1 may function as an avirulence protein and when absent it helps SCN evade host defenses.

  2. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  3. Exploitation of FTA cartridges for the sampling, long-term storage, and DNA-based analyses of plant-parasitic nematodes.

    Science.gov (United States)

    Marek, Martin; Zouhar, Miloslav; Douda, Ondřej; Maňasová, Marie; Ryšánek, Pavel

    2014-03-01

    The use of DNA-based analyses in molecular plant nematology research has dramatically increased over recent decades. Therefore, the development and adaptation of simple, robust, and cost-effective DNA purification procedures are required to address these contemporary challenges. The solid-phase-based approach developed by Flinders Technology Associates (FTA) has been shown to be a powerful technology for the preparation of DNA from different biological materials, including blood, saliva, plant tissues, and various human and plant microbial pathogens. In this work, we demonstrate, for the first time, that this FTA-based technology is a valuable, low-cost, and time-saving approach for the sampling, long-term archiving, and molecular analysis of plant-parasitic nematodes. Despite the complex structure and anatomical organization of the multicellular bodies of nematodes, we report the successful and reliable DNA-based analysis of nematode high-copy and low-copy genes using the FTA technology. This was achieved by applying nematodes to the FTA cards either in the form of a suspension of individuals, as intact or pestle-crushed nematodes, or by the direct mechanical printing of nematode-infested plant tissues. We further demonstrate that the FTA method is also suitable for the so-called "one-nematode-assay", in which the target DNA is typically analyzed from a single individual nematode. More surprisingly, a time-course experiment showed that nematode DNA can be detected specifically in the FTA-captured samples many years after initial sampling occurs. Collectively, our data clearly demonstrate the applicability and the robustness of this FTA-based approach for molecular research and diagnostics concerning phytonematodes; this research includes economically important species such as the stem nematode (Ditylenchus dipsaci), the sugar beet nematode (Heterodera schachtii), and the Northern root-knot nematode (Meloidogyne hapla).

  4. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites.

    Science.gov (United States)

    Li, Yongchun; Guo, Na; Zhao, Jinming; Zhou, Bin; Xu, Ran; Ding, Hui; Zhao, Weiguo; Gai, Junyi; Xing, Han

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F 2:8:11 lines) and JN(RN)P7 (248 F 2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, P< 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  5. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Science.gov (United States)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  6. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode.

    Science.gov (United States)

    Koter, Marek D; Święcicka, Magdalena; Matuszkiewicz, Mateusz; Pacak, Andrzej; Derebecka, Natalia; Filipecki, Marcin

    2018-03-01

    Cyst-forming plant-parasitic nematodes are pests threatening many crops. By means of their secretions cyst nematodes induce the developmental and metabolic reprogramming of host cells that lead to the formation of a syncytium, which is the sole food source for growing nematodes. The in depth micro RNA (miRNA) dynamics in the syncytia induced by Globodera rostochiensis in tomato roots was studied. The miRNAomes were obtained from syncytia covering the early and intermediate developmental stages, and were the subject of differential expression analysis. The expression of 1235 miRNAs was monitored. The fold change (log 2 FC) ranged from -7.36 to 8.38, indicating that this transcriptome fraction was very variable. Moreover, we showed that the DE (differentially expressed) miRNAs do not fully overlap between the selected time points, suggesting infection stage specific regulation by miRNA. The correctness of RNA-seq expression profiling was confirmed by qRT-PCR (quantitative Real Time Polymerase Chain Reaction) for seven miRNA species. Down- and up-regulated miRNA species, including their isomiRs, were further used to identify their potential targets. Among them there are a large number of transcription factors linked to different aspects of plant development belonging to gene families, such as APETALA2 (AP2), SQUAMOSA (MADS-box), MYB, GRAS, and AUXIN RESPONSE FACTOR (ARF). The substantial portion of potential target genes belong to the NB-LRR and RLK (RECEPTOR-LIKE KINASE) families, indicating the involvement of miRNA mediated regulation in defense responses. We also collected the evidence for target cleavage in the case of 29 miRNAs using one of three alternative methods: 5' RACE (5' Rapid Amplification of cDNA Ends), a search of tasiRNA within our datasets, and the meta-analysis of tomato degradomes in the GEO (Gene Expression Omnibus) database. Eight target transcripts showed a negative correlation with their respective miRNAs at two or three time points. These

  7. Frequency of Intestinal Parasites in Patients With Gastrointestinal Disorders, in Different Parts of Iran During 2012-2013

    Directory of Open Access Journals (Sweden)

    Nozhat Zebardast

    2015-02-01

    Full Text Available Background: Intestinal parasites of humans are one of the most important health problems worldwide, especially those located in tropical and subtropical areas. Objectives: The aim of this study was to determine the frequency of intestinal parasites in patients with gastrointestinal disorders, in different parts of Iran. Patients and Methods: A total of 1520 stool samples were collected from patients with gastrointestinal disorders. The stool specimens were examined by direct wet mount, formalin-ether concentration and a modified version of the Ziehl-Neelsen staining technique. Amoeba-positive samples were cultured for further differentiation of Entamoeba histolytica, E. dispar, E. moshkovskii. DNA-based methods were used to differentiate these amoebas and to detect Cryptosporidium- positive samples. Statistical analysis was carried out by SPSS ver. 16. Results: Out of the 1520 individuals studied, 153 (10.06% were infected at least with one intestinal parasite. 781 (51.4% of patients were male and 738 (48.6% were female. The prevalence of protozoan parasites 148 (9.7% was significantly higher than helminth parasites 5 (0.3% (P < 0.001. The frequency of intestinal parasites was as follows: Blastocystis sp., 72 (4.73%; Giardia intestinalis, 35 (2.30%; Entamoeba coli 21 (1.38%; Endolimax nana 10 (0.92%; Cryptosporidium spp., 1 (0.06%; Entamoeba dispar, 1 (0.06%; Dientamoeba fragilis, 1 (0.06%; Hymenolepis nana, 3 (0.19%; Dicrocoelium dendriticum, 2 (0.13%. In five (0.32% of the positive samples, co-infections with two parasites were found. G. intestinalis was more prevalent in male 22/35 (62.86% than female 13/35 (37.14% as well as in 0-9 years old group. In one sample Heterodera ova contained larva were seen. Conclusions: Blastocystis and G. intestinalis were the predominant intestinal parasites detected in patient with gastrointestinal disorders. The results indicated that the intestinal parasites, particularly helminth infections have been

  8. Discrimination of plant-parasitic nematodes from complex soil communities using ecometagenetics.

    Science.gov (United States)

    Porazinska, Dorota L; Morgan, Matthew J; Gaspar, John M; Court, Leon N; Hardy, Christopher M; Hodda, Mike

    2014-07-01

    Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis

  9. Transcription of Biotic Stress Associated Genes in White Clover (Trifolium repens L.) Differs in Response to Cyst and Root-Knot Nematode Infection.

    Science.gov (United States)

    Islam, Afsana; Mercer, Chris F; Leung, Susanna; Dijkwel, Paul P; McManus, Michael T

    2015-01-01

    The transcription of four members of the Kunitz proteinase inhibitor (KPI) gene family of white clover (Trifolium repens L.), designated as Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5, was investigated at both local infection (roots) and systemic (leaf tissue) sites in white clover in response to infection with the clover root knot nematode (CRKN) Meloidogyne trifoliophila and the clover cyst nematode (CCN) Heterodera trifolii. Invasion by the CRKN resulted in a significant decrease in transcript abundance of Tr-KPI4 locally at both 4 days post-infection (dpi) and at 8 dpi, and an increase in transcription of Tr-KPI1 systemically at 8 dpi. In contrast, an increase in transcript abundance of all four Tr-KPI genes locally at 4 and 8 dpi, and an increase of Tr-KPI1, Tr-KPI2, and Tr-KPI5 at 8 dpi systemically was observed in response to infection with the CCN. Challenge of a resistant (R) genotype and a susceptible (S) genotype of white clover with the CCN revealed a significant increase in transcript abundance of all four Tr-KPI genes locally in the R genotype, while an increase in abundance of only Tr-KPI1, Tr-KPI2, and Tr-KPI5 was observed in the S genotype, and only at 4 dpi. The transcript abundance of a member of the1-AMINOCYCLOPROPANE-1-CARBOXYLATE (ACC) SYNTHASE gene family from white clover (Tr-ACS1) was significantly down-regulated locally in response to CRKN infection at 4 and 8 dpi and at 4 dpi, systemically, while abundance increased locally and systemically at 8 dpi in response to CCN challenge. Conversely, the abundance of the jasmonic acid (JA) signalling gene, CORONATINE-INSENSITIVE PROTEIN 1 from white clover (Tr-COI1) increased significantly at 8 dpi locally in response to CRKN infection, but decreased at 8 dpi in response to CCN infection. The significance of this differential regulation of transcription is discussed with respect to differences in infection strategy of the two nematode species.

  10. Analysis of reporter proteins GUS and DsRed driven under the control of CaMV35S promoter in syncytia induced by beet cyst nematode Heterodera schachtii in Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    2016-05-01

    Full Text Available Background: Cyst nematodes induce specialized feeding structures called syncytia in the plant roots. The expression of CaMV promoter in syncytia has remained topic of debate. The objective of this research was to study the activity of CaMV promoter by using reporter proteins like GUS and DsRed under the control of CaMV35S promoter in syncytia induced by H. schachtii in Arabidopsis roots. Methods: pMAA-Red and pPZP3425 plasmids were used to study expression of GUS and DsRed in syncytia. The plants were grown in 2% Knop medium under sterile conditions in growth chambers at 25°C in long day conditions. GUS activity in syncytia was studied through staining of syncytia using X-gluc solution. Ds-Red fluorescence in syncytia was detected by using an inverse microscope equipped with UV filter. Results: The expression analysis of DsRed protein driven by CaMV promoter demonstrated that this promoter is active in syncytia at all the time points. All the syncytia showed DsRed expression at 5 dpi. At 7 dpi, 10 dpi and 15 dpi over 90%, 80% and 50% of the syncytia showed DsRed fluorescence respectively. There was very high fluorescence in the syncytia as compared to the uninfected root segments due to high expression. CaMV::GUS lines showed GUS expression in 80% of 5dpi syncytia. However, unlike expression of DsRed, the number of GUS stained syncytia decreased quickly to around 50% at 7 dpi and to about 5% in the 15 dpi syncytia. Conclusions: The results conclude that CaMV promoter is more active in younger syncytia as compared to older syncytia but can be used for expression in syncytia. Moreover, DsRed protein could be used as better reporter for evaluation of gene expression in syncytia as compared to GUS.

  11. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation

    Science.gov (United States)

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E.

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes

  12. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation.

    Science.gov (United States)

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes

  13. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Directory of Open Access Journals (Sweden)

    Mateusz Matuszkiewicz

    2018-03-01

    Full Text Available Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD known as the hypersensitive response (HR, whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1 family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2 revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively. LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators

  14. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Science.gov (United States)

    Matuszkiewicz, Mateusz; Sobczak, Miroslaw; Cabrera, Javier; Escobar, Carolina; Karpiński, Stanislaw; Filipecki, Marcin

    2018-01-01

    Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD) known as the hypersensitive response (HR), whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1) family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2) revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively). LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators belonging to the

  15. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    Science.gov (United States)

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar

  16. Sequence mining and transcript profiling to explore cyst nematode parasitism

    Directory of Open Access Journals (Sweden)

    Recknor Justin

    2009-01-01

    Full Text Available Abstract Background Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. Results We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. Conclusion We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the

  17. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses.

    Science.gov (United States)

    Srour, Ali; Afzal, Ahmed J; Blahut-Beatty, Laureen; Hemmati, Naghmeh; Simmonds, Daina H; Li, Wenbin; Liu, Miao; Town, Christopher D; Sharma, Hemlata; Arelli, Prakash; Lightfoot, David A

    2012-08-02

    Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. The inference that soybean has adapted part of an existing pathogen recognition and

  18. The phytosanitary form and fighting measures diseases and pests of sugar beet from Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Timus Asea M.

    2006-01-01

    Full Text Available Sugar beet is one of the most important agricultural crops in the Republic of Moldova. The North and Central regions have good enough pedoclimatic conditions. The genetic potential of sorts and hybrids can be created through the application of modern technologies in order to grow at least 32-35 tons/ha of sugar beet roots. In the Republic of Moldova, sugar beet vegetates between 160 and 180 days in the first year and needs approximately an amount of 2400-2900°C, average of 15.3-15.4°C. Each phenological phase needs different temperatures: at least 4C° is necessary for planting and springing an amount of 650°C is necessary for foliar apparatus; an amount of 1150- 1800°C is necessary to grow the volume of roots and for sugar depositing the average of 2400 to 2600°C is necessary. The mentioned temperatures ensure a normal development of sugar beet plants. If these temperatures fluctuate, the pathogens and pests are stimulated to develop. The most frequent diseases of sugar beet are: Pythium de baryanum Hesse., Aphanomyces cochlioides Dresch. Peronospora schachtii Fuck., Phoma betae Fr. Cercospora beticola Sacc. Erysiphe communis Grev. f. betae Jacz., virosis - Beta virus 2, 3 si 4 etc. The main pests belong to the following categories: Homoptera: Aphis fabae Scop. (fam. Aphididae, Pemphigus fuscicornis Koch. (fam. Pemphigidae Coleoptera: Agriotes sp. (fam. Elateridae, Chaetocnema concinna M. Ch. breviuscula Fld., Cassida nebulosa L. (fam. Chrysomelidae, Atomaria linearis Step. (fam. Cryptophagidae; Bothynoderes punctiventris Germ., Tanymechus dilaticollis Gyll., T. palliatus F., Psalidium maxillosum F. (Curculionidae; Lepidoptera: Agrotis segetum Den. et Schiff., Authographa gamma L. Mamestra (Barathra brassicae L. (Noctuidae, Loxostege sticticalis L. (Pyralidae, Gnorimoschema ocellatella Boyd.; Diptera Pegomyia betae Curtis. (fam. Anthomyidae. Heterodera schachtii Schmidt (Heteroderidae. The most recommended insecticides for fighting the

  19. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    Directory of Open Access Journals (Sweden)

    Srour Ali

    2012-08-01

    Full Text Available Abstract Background Soybean (Glycine max (L. Merr. resistance to any population of Heterodera glycines (I., or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS, was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06 encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%. In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has

  20. Rapid identification of cyst (Heterodera spp., Globodera spp.) and root-knot (Meloidogyne spp.) nematodes on the basis of ITS2 sequence variation detected by PCR-single-strand conformational polymorphism (PCR-SSCP) in cultures and field samples

    NARCIS (Netherlands)

    Clapp, J.P.; Van der Stoel, C.D.; Van der Putten, W.H.

    2000-01-01

    Cyst and root-knot nematodes show high levels of gross morphological similarity. This presents difficulties for the study of their ecology in natural ecosystems. In this study, cyst and root-knot nematode species, as well as some ectoparasitic nematode species, were identified using the second

  1. Some Plant Parasitic Nematodes of Fruit Trees in Northern Khorasan Province, Iran

    Directory of Open Access Journals (Sweden)

    N. Heidarzadeh

    2017-08-01

    investigation was the identification of plant-parasitic nematodes of fruit trees based on morphological and morphometrical characters in Northern Khorasan province. Materials and Methods: In order to investigate the biodiversity of plant parasitic nematodes of fruit cultivation in Northern Khorasan Province, 70 soil samples were collected during 2011-2012. Nematodes were extracted by centrifugal flotation technique and transferred to glycerin according to the modified De Grisse method (1969. The permanent slides were prepared from the extracted nematodes. The nematodes were identified by light microscopy, based on morphological and morphometrical characters. Measurements and drawings were performed using a drawing tube attached to an Olympus BH2 light microscope. The ratios and the morphometric symbols used in morphometric tables of each specimen. Nematodes were identified based on morphological and morphometrical characters using identification keys. Results and Discussion: In this study, 17 species from 13 genera belonged to sub order Tylenchina were identified as follows: Aphelenchoides richardsoni, Aphelenchus avenae, Basiria graminophila, Boleodorus thylactus, Ditylenchus filimus, D. medicaginis, Filenchus cylindricaudatus, F. thornei, Geocenamus tenuidens, Helicotylenchus digonicus, H. pseudorobustus, Heterodera schachtii, Merlinius brevidens, Pratylenchus neglectus, P. thornei, Tylenchorhynchus latus, Zygotylenchus guevarai. Among these species, Pratylenchus neglectus, Merlinius brevidens and Boleodorus thylactus were more frequent, respectively. Ditylenchus filimus is reported for the first time from Iran. D. filimus is characterized by low and striated head, stylet 7-9 µm, median bulb muscular, glandular bulb offset, posterior vulva( V=81-85, PUS=0.5-1.1, tail conical with very sharp and pointed terminus. Conclusion: In this study, 17 species from 13 genera belong to suborder Tylenchina were identified. Among these species, Pratylenchus neglectus, Merlinius brevidens

  2. Editorial: Computerspiele und Videogames in formellen und informellen Bildungskontexten

    Directory of Open Access Journals (Sweden)

    Johannes Fromme

    2008-01-01

    (vgl. www.digra.org. Seit 2001 gibt es mit der «Game Studies» eine primär kulturwissenschaftlich ausgerichtete Online-Zeitschrift (vgl. gamestudies.org, und daneben sind zahlreiche Publikationen zu verzeichnen, die zur Strukturierung und Systematisierung des Forschungsfeldes beigetragen haben, etwa die transdisziplinär angelegten Sammel- und Tagungsbände von Wolf & Perron (2003; Fritz & Fehr (2003, Copier & Raessens (2003, Neitzel, Bopp & Nohr (2004, Raessens & Goldstein (2005, Kaminski & Lorber (2006, Vorderer & Bryant (2006, de Castell & Jenson (2007, Kafai et al. (2008, Quandt, Wimmer & Wolling (2008. Ausserdem liegen Monografien vor, die sich um Orientierung sowie empirische oder theoretische Klärungen bemühen (etwa Fromme, Meder & Vollmer 2000, Newman 2004, Juul 2005, Klimmt 2005, Mäyrä 2008, Pearce & Artemesia 2009. Diese wissenschaftlichen Entwicklungen und Arbeiten zeigen, dass die Phase der blossen Skandalisierung oder akademischen Ignorierung der Computerspiele zu Ende geht. Stattdessen kann von einer zunehmenden Normalisierung und Ausdifferenzierung der akademischen Auseinandersetzung mit diesen neuen Medien und ihren Verwendungsweisen ausgegangen werden, wie sie bei anderen, etablierteren Gegenstandsbereichen (etwa der Film- oder Fernsehforschung schon länger selbstverständlich ist. Zur Normalisierung und Differenzierung der Debatte soll auch dieses Themenheft der Online-Zeitschrift «MedienPädagogik» auf www.medienpaed.com beitragen, das sich mit den digitalen Spielen und Spielkulturen aus einer primär medienpädagogischen Perspektive befasst und nach den Chancen und Potentialen für informelle wie auch formelle Lern- und Bildungsprozesse fragt. Die Beiträge fokussieren in diesem Spannungsfeld von Spielen und Lernen, von Unterhaltung und Bildung unterschiedliche Aspekte. Die Mehrzahl greift dabei aktuelle Diskussionen über Einsatzmöglichkeiten digitaler Spiele im Bereich des Lernens und der Ausbildung auf, die unter dem Label

  3. Resúmenes de las tesis de grado en floricultura realizadas en la Facultad de Agronomía, Universidad Nacional de Colombia. Bogotá D.C., entre 1981 y 1993

    Directory of Open Access Journals (Sweden)

    Casas Eduardo

    1992-12-01

    Full Text Available

    Reconocimiento e identificación de Phialophora cinerescens y Fusarium oxysporum f. sp. dianthi en el cultivo del clavel en la sabana de Bogotá. / Estudio del poder patogénico de Botrytis cinerea pers. Sobre cinco especies de flores de exportación. / Botrytis cinerea Pers. / Agente causal de la pudrición de las flores y de la corona del estatice (Limonium sinuatum mili. / Aspectos biológicos y control químico de la roya del clavel en la sabana de Bogotá. / Patogenicidad de agrobacterium tumefaciens en algunas especies de plantas de flores de exportación. / Control del marchitamiento vascular del clavel ocasionado por Phialophora cinerescens y Fusarium oxysporum. / Control biológico de la agalla de corona en plantas de crisantemo con la cepa k-84 de Agrobacterium radiobacter var. Radiobacter (Beijerink & van celden Conn. / Control de Fusarium oxysporum f. sp. dianthi en clavel mediante tratamiento del suelo y aplicación de antagonistas. / Control del marchitamiento vascular del clavel ocasionado por Fuserium oxysporum f. sp. dianthi. / Estudios orientados a la determinación del agente causal del síntoma "tallo flexuoso" en Rosa sp. Variedad visa. / Control de Sclerotinia sclerotiorum (lib. de Bary en crisantemo y habichuela con diferentes aislamientos de Trichoderma y con fungicidas. / Efecto del fotoperiodo sobre la concentración y expresión de síntomas del virus Tswv en pompón y producción de material libre por cultivo de meristemos. / Estudios preliminares de la posible interacción entre el hongo Fusarium oxysporum Schlecht f. sp. dianthi (Prill & Del Snyder & Hansen y el nematodo quiste Heterodera trifolii (Goffart, en clavel estándar (Dianthus caryophyllus l. / Control químico de la .mancha foliar anillada del clavel causada