WorldWideScience

Sample records for hermophilic anaerobic biodegradability

  1. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  2. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  3. Anaerobic biodegradation of hexazinone in four sediments

    International Nuclear Information System (INIS)

    Wang Huili; Xu Shuxia; Tan Chengxia; Wang Xuedong

    2009-01-01

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  4. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  6. Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential.

    Science.gov (United States)

    Meylan, William; Boethling, Robert; Aronson, Dallas; Howard, Philip; Tunkel, Jay

    2007-09-01

    Many screening-level models exist for predicting aerobic biodegradation potential from chemical structure, but anaerobic biodegradation generally has been ignored by modelers. We used a fragment contribution approach to develop a model for predicting biodegradation potential under methanogenic anaerobic conditions. The new model has 37 fragments (substructures) and classifies a substance as either fast or slow, relative to the potential to be biodegraded in the "serum bottle" anaerobic biodegradation screening test (Organization for Economic Cooperation and Development Guideline 311). The model correctly classified 90, 77, and 91% of the chemicals in the training set (n = 169) and two independent validation sets (n = 35 and 23), respectively. Accuracy of predictions of fast and slow degradation was equal for training-set chemicals, but fast-degradation predictions were less accurate than slow-degradation predictions for the validation sets. Analysis of the signs of the fragment coefficients for this and the other (aerobic) Biowin models suggests that in the context of simple group contribution models, the majority of positive and negative structural influences on ultimate degradation are the same for aerobic and methanogenic anaerobic biodegradation.

  7. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  8. Anaerobic biodegradability and treatment of Egyption domestic sewage

    NARCIS (Netherlands)

    Elmitwally, T.A.; Al-Sarawey, A.; El-Sherbiny, M.F.; Zeeman, G.; Lettinga, G.

    2003-01-01

    The anaerobic biodegradability of domestic sewage for four Egyptian villages and four Egyptian cities was determined in batch experiments. The results showed that the biodegradability of the Egyptian-villages sewage (73%) was higher than that of the cities (66%). The higher biodegradability of the

  9. The influence of incorporating leachate on anaerobic biodegradability of domestic sewage

    Directory of Open Access Journals (Sweden)

    Luz Edith Barba

    2010-01-01

    Full Text Available Treating leachate is one of the most important challenges in designing and operating a sanitary landfill. Anaerobic treatment u- sing a mixture of leachate and domestic sewage represents a suitable treatment option having good potential applicability in developing countries. The influence of adding leachate from a domestic sanitary landfill on the anaerobic biodegradability of domestic sewage has been evaluated in this paper. Five samples were evaluated for the study: 100% domestic sewage (DS, 100% leachate (L and three leachate mixtures (L with domestic sewage (DS as follows: 10%(L:90%(DS, 20%(L:80%(DS and 30%(L:70%(DS. The samples’ anaerobic biodegradability was monitored for 30 days using methane production accumulation and variation in volatile fatty acid (VFA concentration and composition. A detailed analysis of chemical oxygen demand (COD composition was performed at the end of the monitoring period. The results of the study showed that a 10%(L:90%(DS mixture provided the maximum leachate (L domestic sewage (DS combination mixture which could be anaerobically biodegradable with no significantly inhibitory effects. Mixtures using a higher percentage of leachate showed significantly potential inhibition effects on the anaerobic biodegradation of domestic sewage.

  10. Saponification of fatty slaughterhouse wastes for enhancing anaerobic biodegradability.

    Science.gov (United States)

    Battimelli, Audrey; Carrère, Hélène; Delgenès, Jean-Philippe

    2009-08-01

    The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste--aeroflotation fats and flesh fats from animal carcasses--was studied in order to improve the waste's anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions. The results showed little increase in the total volume of biogas, indicating a good biodegradability of the raw wastes. Mean biogas volume reached 1200 mL/g VS which represented more than 90% of the maximal theoretical biogas potential. Raw fatty wastes were slowly biodegraded whereas pretreated wastes showed improved initial reaction kinetics, indicating a better initial bio-availability, particularly for mesophilic runs. The effects observed for raw wastes with ethanol as co-substrate depended on the process temperature: in mesophilic conditions, an initial improvement was observed whereas in thermophilic conditions a significant decrease in biodegradability was observed.

  11. Anaerobic digestion of amine-oxide-based surfactants: biodegradation kinetics and inhibitory effects.

    Science.gov (United States)

    Ríos, Francisco; Lechuga, Manuela; Fernández-Arteaga, Alejandro; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2017-08-01

    Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R 12 and AO-R 14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.

  12. Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Stamatelatou, K.; Batstone, Damien J.

    2006-01-01

    -limiting for the compound biodegradation. In this study, the anaerobic biodegradation of DEHP was investigated through batch kinetic experiments and dynamic transitions of a continuous stirred tank reactor (CSTR) fed with secondary sludge contaminated with DEHP. A widely accepted model (ADM1) was used to fit the anaerobic......" against biodegradation. The model, fitted to the batch experimental data, was able to predict DEHP removal in the CSTR operated at various HRTs....

  13. Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2016-05-01

    This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L(-1), are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment.

  14. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Yoshida, Takahiro

    2011-01-01

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 o C. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  15. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang, E-mail: xiesg@pku.edu.cn

    2015-04-09

    Highlights: • NP biodegradation can occur under both nitrate- and sulfate-reducing conditions. • Anaerobic condition affects sediment bacterial diversity during NP biodegradation. • NP-degrading bacterial community structure varies under different anaerobic conditions. - Abstract: Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg{sup −1}) could be removed under these two anaerobic conditions after 90 or 110 days’ incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor.

  16. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    Science.gov (United States)

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-06-01

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor

    DEFF Research Database (Denmark)

    Jantsch, T.G.; Angelidaki, Irini; Schmidt, Jens Ejbye

    2002-01-01

    Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments...... ðl dÞ1 and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 l ðlreactor dÞ1, with a yield of 0.05 l gas ðg VSÞ1. These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies...... such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations. 2002 Elsevier Science Ltd. All rights reserved....

  18. Biodegradation of phenol using an anaerobic EGSB reactors

    International Nuclear Information System (INIS)

    Eguia, A.; Olvera, M. E.; Cerezo, R.; Kuppusamy, I.

    2009-01-01

    Phenol is a compound found naturally in domestic and industrial waste waters and should be removed since in high concentrations it proves to be fatal. The present investigation was undertaken to evaluate the anaerobic biodegradability of the phenol in the wastewaters supplementing sulphates in the form of CaSO 4 2 , to increment the COD t otal removal value. (Author)

  19. Evaluation of Anaerobic Biodegradation of Organic Carbon Extracted from Aquifer Sediment

    OpenAIRE

    Kelly, Catherine Aileen

    2006-01-01

    In conjunction with ongoing studies to develop a method for quantifying potentially biodegradable organic carbon (Rectanus et al 2005), this research was conducted to evaluate the extent to which organic carbon extracted using this method will biodegrade in anaerobic environments. The ultimate goal is to use this method for the evaluation of chloroethene contaminated sites in order to estimate the long-term sustainability of monitored natural attenuation (MNA) as a remediation strategy. Alt...

  20. Improved anaerobic biodegradation of biosolids by the addition of food waste as a co-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-W.; Han, S.-K.; Song, Y.-C.; Baek, B.-C.; Yoo, K.-S.; Lee, J.-J.; Shin, H.-S.

    2003-07-01

    The temperature phased anaerobic digestion (TPAD) process was applied to increase the performance of anaerobic treatment of biosolids. Previously obtained results indicate that this system showed the advantages of thermophilic and mesophilic anaerobic digestion process. By comparing the performance of each reactor of the system, it was illustrated that the main stage of methane production was the thermophilic reactor which has faster microbial metabolism. However, the result revealed that substrate characteristics of low VS/TS limited the system performance. Therefore, to evaluate the effect of food waste as a co-substrate for improving anaerobic biodegradability, biochemical methane potential (BMP) tests were conducted in thermophilic conditions with biomass of thermophilic reactor. It was confirmed that the co-digestion of sewage sludge mixed with food waste had a distinct improvement on biodegradability. The most significant advantages were the preferable environment provided by food waste for the growth and activity of anaerobes and the mutual assistance between biosolids and food waste. (author)

  1. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production

    DEFF Research Database (Denmark)

    Triolo, Jin Mi; Pedersen, Lene; Qu, Haiyan

    2012-01-01

    The suitability of municipal plant waste for anaerobic digestion was examined using 57 different herbaceous and non-herbaceous samples. Biochemical methane potential (BMP) and anaerobic biodegradability were related to the degree of lignification and crystallinity of cellulose. The BMP of herbace...

  2. Understanding the anaerobic biodegradability of food waste: Relationship between the typological, biochemical and microbial characteristics.

    Science.gov (United States)

    Fisgativa, Henry; Tremier, Anne; Le Roux, Sophie; Bureau, Chrystelle; Dabert, Patrick

    2017-03-01

    In this study, an extensive characterisation of food waste (FW) was performed with the aim of studying the relation between FW characteristics and FW treatability through an anaerobic digestion process. In addition to the typological composition (paper, meat, fruits, vegetables contents, etc) and the physicochemical characteristics, this study provides an original characterisation of microbial populations present in FW. These intrinsic populations can actively participate to aerobic and anaerobic degradation with the presence of Proteobacteria and Firmicutes species for the bacteria and of Ascomycota phylum for the fungi. However, the characterisation of FW bacterial and fungi community shows to be a challenge because of the biases generated by the non-microbial DNA coming from plant and by the presence of mushrooms in the food. In terms of relations, it was demonstrated that some FW characteristics as the density, the volatile solids and the fibres content vary as a function of the typological composition. No direct relationship was demonstrated between the typological composition and the anaerobic biodegradability. However, the Pearson's matrix results reveal that the anaerobic biodegradation potential of FW was highly related to the total chemical oxygen demand (tCOD), the total solid content (TS), the high weight organic matter molecules soluble in water (SOL W >1.5 kDa) and the C/N ratio content. These relations may help predicting FW behaviour through anaerobic digestion process. Finally, this study also showed that the storage of FW before collection, that could induce pre-biodegradation, seems to impact several biochemical characteristics and could improve the biodegradability of FW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  4. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.M.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  5. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds

    DEFF Research Database (Denmark)

    Fuchedzhieva, Nadezhda; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2008-01-01

    for the study were linear alkyl benzene sulphonates (LAS) and rhamnolipid-biosurfactant complex from Pseudomonas sp. PS-17. Biodegradation of fluoranthene was monitored by GC/MS for a period up to 12th day. No change in the fluoranthene concentration was registered after 7th day. The presence of LAS enhanced...... biodegradation was most likely as a result of the increased fluoranthene solubility. The results indicate that LAS can be considered as a promising agent for facilitation of the process of anaerobic polycyclic aromatic hydrocarbons (PAH) biodegradation under methanogenic conditions....

  6. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  7. Geochemical indicators of anaerobic biodegradation of BTEX

    International Nuclear Information System (INIS)

    Wilson, J.T.; Kampbell, D.; Hutchins, S.; Wilson, B.; Kennedy, L.G.

    1992-01-01

    In the late 1970s, a leaking underground pipeline released petroleum hydrocarbons to a shallow, water-table aquifer in Kansas. Approximately six acres surrounding the release contain hydrocarbons at residual saturation. Parts of the release have acclimated and are carrying out anaerobic biodegradation of benzene, toluene, and the xylenes, Analysis of ground water from monitoring wells in areas that have acclimated reveal high concentrations of methane, less than -.1/liter oxygen, millimolar concentrations of acetate, and strongly reducing redox potentials. There is also a marked shift in the radio of the concentration of individual compounds to the total concentration of petroleum hydrocarbons

  8. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    Science.gov (United States)

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  9. Benzene biodegradation using an anaerobic column coupled to Mn(IV) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Villatoro-Monzon, W.R.; Velasquez-Mejia, E.K.; Morales-Ibarria, M.G.; Razo-Flores, E. [Instituto Mexicano del Petroleo (Mexico). Programo de Biotenologia del Petroleo

    2004-07-01

    Benzene, toluene, and o, m, p-xylene compounds make up a large proportion of gasoline. Due to spills and leaks from underground tanks, these compounds frequently contaminate groundwater and sediment. In particular the high solubility of benzene makes it very mobile and an extra danger to groundwater. Moreover, there are strong links between benzene and cancer and thus benzene is considered a serious pollutant. Contaminated sites usually become anaerobic due to microbe action. In this study, benzene biodegradation was done in a glass column inoculated with anaerobic Rhine River sediment and using Mn(IV) as the final electron acceptor. Under steady state operation, benzene biodegradation efficiency was as high as 95 per cent. Carbon dioxide and Mn(II) recovery rates were 81 and 77 per cent respectively. Reactor sediment was withdrawn on day 104 and subject to DGGE profiling. This sediment showed different band patterns than the original sediment that was not exposed to benzene. The authors conclude that the species associated with the degradation of benzene are of the genus Propionibacterium and Actinomyces. 17 refs., 2 figs.

  10. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems

    DEFF Research Database (Denmark)

    Ingerslev, Flemming; Toräng, Lars; Loke, M.-L.

    2001-01-01

    The primary aerobic and anaerobic biodegradability at intermediate concentrations (50-5000 mug/l) of the antibiotics olaquindox (OLA), metronidazole (MET), tylosin (TYL) and oxytetracycline (OTC) was studied in a simple shake flask system simulating the conditions in surface waters. The purpose...

  11. Biodegradation of Methylene Blue Dye by Sequential Treatment Using Anaerobic Hybrid Reactor and Submerged Aerobic Fixed Film Bioreactor

    Science.gov (United States)

    Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika

    2017-12-01

    Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.

  12. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  13. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2009-01-01

    to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions...

  14. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Alatriste-Mondragon, Felipe; Iranpour, R.

    2003-01-01

    of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP...... and DEHP as model compounds of one biodegradable and one recalcitrant PAE respectively. The degradation of all the PAE tested in this study (DEP, DBP and DEHP) is adequately described by first-order kinetics. Batch and continuous experiments showed that DEP and DBP present in sludge are rapidly degraded...... under mesophilic anaerobic conditions (a first-order kinetic constant of 8.04 x 10(-2) and 13.69 x 10(-2) -4.35 day(-1) respectively) while DEHP is degraded at a rate between one to two orders of magnitude lower (0.35 x 10(-2) -3.59 x 10(-2) day(-1)). It is of high significance that experiments...

  15. Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates.

    Science.gov (United States)

    McKelvie, Jennifer R; Lindstrom, Jon E; Beller, Harry R; Richmond, Sharon A; Sherwood Lollar, Barbara

    2005-12-01

    In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.

  16. Heat treatment of organics for increasing anaerobic biodegradability. Quarterly progress report, July 1, 1979-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, D.; Colberg, P.J.; Baugh, K.; Young, L.Y.; McCarty, P.L.

    1979-01-01

    The objective of this study is to evaluate thermochemical pretreatment as a method for increasing the anaerobic biodegradability of organic materials so that they can be more completely fermented to methane gas, a potential source of fuel. The current study has four specific phases: (1) biological conversion of lignocellulose to methane, (2) biodegradation of lignin and lignin fractions, (3) pretreatment of nitrogenous organics for increasing biodegradability, (4) biodegradation of lignin aromatic compounds, and (5) biochemical methane potential and toxicity testing. Results are reported for phases one, two, and three. No new information is available for phases four and five at this time.

  17. Anaerobic biodegradability essays from brewery wastewater using granular and flocculent sludges

    Directory of Open Access Journals (Sweden)

    C J Collazos Chávez

    2003-01-01

    Full Text Available At the beginning of nineties the colombian beer industry begun the application of anaerobic technology for the treatment of their wastewater efluents throught different regions of the country. These treatment plants have not been working appropriately due to different factors, and are creating concern among the industrial sector and the water pollution control agencies. This work constitutes the second phase of a research project designed to establish a selection and improvement criteria of the sludges used in the systems. It also looks to analyze other associated factors such as: waste, characteristics, operation conditions and design parameters. The investigation was conducted in two phases using granular and floculent sludges. This method was used for determining the anaerobic biodegradability of wastewater from two industrial plants.

  18. Screening tests for assessing the anaerobic biodegradation of pollutant chemicals in subsurface environments

    Science.gov (United States)

    Suflita, Joseph M.; Concannon, Frank

    1995-01-01

    Screening methods were developed to assess the susceptibility of ground water contaminants to anaerobic biodegradation. One method was an extrapolation of a procedure previously used to measure biodegradation activity in dilute sewage sludge. Aquifer solids and ground water with no additional nutritive media were incubated anaerobically in 160-ml serum bottles containing 250 mg·l−1 carbon of the substrate of interest. This method relied on the detection of gas pressure or methane production in substrateamended microcosms relative to background controls. Other screening procedures involved the consumption of stoichiometrically required amounts of sulfate or nitrate from the same type of incubations. Close agreement was obtained between the measured and calculated amounts of substrate bioconversion based on the measured biogas pressure in methanogenic microcosms. Storage of the microcosms for up to 6 months did not adversely influence the onset or rate of benzoic acid mineralization. The lower detection limits of the methanogenic assay were found to be a function of the size of the microcosm headspace, the mean oxidation state of the substrate carbon, and the method used to correct for background temperature fluctuations. Using these simple screening procedures, biodegradation information of regulatory interest could be generated, including, (i) the length of the adaptation period, (ii) the rate of substrate decay and (iii) the completeness of the bioconversion.

  19. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites

    Science.gov (United States)

    Bian, Xin-Yu; Maurice Mbadinga, Serge; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  20. Assessment of anaerobic biodegradability of five different solid organic wastes

    Science.gov (United States)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  1. Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments

    International Nuclear Information System (INIS)

    Beltran, J.; Gonzalez, T.; Garcia, J.

    2008-01-01

    The biodegradation of the organic pollutant matter present in green table olive wastewater (GTOW) is studied in batch reactors by an aerobic biodegradation and by an anaerobic digestion. In the aerobic biodegradation, the evolution of the substrate (in terms of chemical and biochemical oxygen demand), biomass, and total polyphenolic compounds present in the wastewater are followed during the process, and a kinetic study is performed using Contois' model, which when applied to the experimental results provides the kinetic parameter of this model, resulting in a modified Contois' equation (q = 3.3S/(0.31S 0 X + X), gCOD/gVSS d -1 ). Other kinetic parameters were determined: the cellular yield coefficient (Y X/S = 5.7 x 10 -2 gVSS/gCOD) and the kinetic constant of cellular death phase (k d = 0.16 d -1 ). Similarly, in the anaerobic digestion, the evolution of the substrate digested and the methane produced are followed, and the kinetic study is conducted using a modified Monod model combined with the Levenspiel model, due to the presence of inhibition effects. This model leads to the determination of the kinetic parameters: kinetic constant when no inhibitory substance is present (k M0 = 8.4 x 10 -2 h -1 ), critical substrate concentration of inhibition (TP* = 0.34 g/L) and inhibitory parameter (n = 2.25)

  2. Simultaneous biodegradation of carbon tetrachloride and trichloroethylene in a coupled anaerobic/aerobic biobarrier

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kiwook [Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588 (Korea, Republic of); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078 (China); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588 (Korea, Republic of); Oh, Juhyun; Bae, Jisu [Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588 (Korea, Republic of)

    2016-08-05

    Highlights: • Coupled biodegradation of carbon tetrachloride (CT) and trichloroethylene (TCE) in biobarrier with polyethylene glycol carriers. • TCE aerobically cometabolized and CT anaerobically dechlorinated. • Removal efficiencies of over 98%, leaving residuals below or near the regulatory standards. • Coupled aerobic/anaerobic environments established by H{sub 2}O{sub 2} injected at 50% of electron donor. • Longer retention time (from 3.6 to 7.2 days) achieved satisfactory removal at lower temperature (18 °C). - Abstract: Simultaneous biodegradation of carbon tetrachloride (CT) and trichloroethylene (TCE) in a biobarrier with polyethylene glycol (PEG) carriers was studied. Toluene/methanol and hydrogen peroxide (H{sub 2}O{sub 2}) were used as electron donors and an electron acceptor source, respectively, in order to develop a biologically active zone. The average removal efficiencies for TCE and toluene were over 99.3%, leaving the respective residual concentrations of ∼12 and ∼57 μg/L, which are below or close to the groundwater quality standards. The removal efficiency for CT was ∼98.1%, with its residual concentration (65.8 μg/L) slightly over the standards. TCE was aerobically cometabolized with toluene as substrate while CT was anaerobically dechlorinated in the presence of electron donors, with the respective stoichiometric amount of chloride released. The oxygen supply at equivalent to 50% chemical oxygen demand of the injected electron donors supported successful toluene oxidation and also allowed local anaerobic environments for CT reduction. The originally augmented (immobilized in PEG carriers) aerobic microbes were gradually outcompeted in obtaining substrate and oxygen. Instead, newly developed biofilms originated from indigenous microbes in soil adapted to the coupled anaerobic/aerobic environment in the carrier for the simultaneous and almost complete removal of CT, TCE, and toluene. The declined removal rates when temperature

  3. Biodegradation of poly(lactic acid, poly(hydroxybutyrate-co-hydroxyvalerate, poly(butylene succinate and poly(butylene adipate-co-terephthalate under anaerobic and oxygen limited thermophilic conditions

    Directory of Open Access Journals (Sweden)

    Jutakan Boonmee

    2016-01-01

    Full Text Available In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid (PLA, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV, poly(butylene succinate (PBS, and poly(butylene adipate-co-terephthalate (PBAT were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of biodegradation after 75 days was investigated by weight loss determination, visual examination, and surface appearance by scanning electronic microscopy (SEM. Under both anaerobic and oxygen limited conditions, the complete degradation (100% weight loss was found only in PHBV after 75 days. The plastic degradations were ranked in the order of PHBV> PLA> PBS> PBAT. The percentage of weight losses were significantly different at p ≤ 0.05. However, for all studied plastics, the degradation under anaerobic and oxygen limited conditions did not significantly different at 95% confidence.

  4. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The

  5. Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.

    Science.gov (United States)

    Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R

    2012-11-01

    Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    Science.gov (United States)

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  7. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming, E-mail: sunmingming@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Feng, E-mail: fenghu@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Teng, Ying [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Jiang, Xin [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Kengara, Fredrick Orori [Department of Chemistry, Maseno University, Private Bag, Maseno 40105 (Kenya)

    2014-01-15

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies.

  8. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    International Nuclear Information System (INIS)

    Sun, Mingming; Ye, Mao; Hu, Feng; Li, Huixin; Teng, Ying; Luo, Yongming; Jiang, Xin; Kengara, Fredrick Orori

    2014-01-01

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies

  9. Microbiological and Hydrogeochemical Controls on Anaerobic Biodegradation of Petroleum Hydrocarbons: Case Study from Fort McCoy, WI

    Science.gov (United States)

    Schreiber, M. E.; Zwolinski, M. D.; Taglia, P. J.; Bahr, J. M.; Hickey, W. J.

    2001-05-01

    We are investigating the role of anaerobic processes that control field-scale BTEX loss using a variety of experimental and numerical techniques. Tracer tests, laboratory microcosms, and in situ microcosms (ISMs) were designed to examine BTEX biodegradation under intrinsic and enhanced anaerobic conditions in a BTEX plume at Fort McCoy, WI. In the tracer tests, addition of nitrate resulted in loss of toluene, ethylbenzene, and m, p-xylenes but not benzene. Laboratory microcosm and ISM experiments confirmed that nitrate addition is not likely to enhance benzene biodegradation at the site. Excess nitrate losses were observed in both field and laboratory experiments, indicating that reliance on theoretical stoichiometric equations to estimate contaminant mass losses should be re-evaluated. To examine changes in microbial community during biodegradation of BTEX under enhanced nitrate-reducing conditions, DNA was extracted from laboratory microcosm sediment, the 16S-rRNA gene was amplified using eubacterial primers, and products were separated by denaturing gradient gel electrophoresis. Banding patterns suggest that nitrate caused more of a community change than BTEX. These data suggest that nitrate plays an important role in microbial population selection. Numerical simulations were conducted to simulate the evolution of the BTEX plume and to quantify BTEX losses due to intrinsic and nitrate-enhanced biodegradation. Results suggest that the majority of intrinsic BTEX mass loss has occurred under aerobic and iron-reducing conditions. Due to depletion of solid-phase Fe(III) over time, however, future BTEX losses under iron-reducing conditions will decrease, and methanogenesis will play an increasingly important role in controlling biodegradation. The simulations also suggest that although nitrate addition will decrease TEX concentrations, source removal with intrinsic biodegradation is likely the most effective treatment method for the site.

  10. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora

    Energy Technology Data Exchange (ETDEWEB)

    Benner, R.; Maccubbin, A.E.; Hodson, R.E.

    1984-05-01

    Specifically radiolabeled (/sup 14/C-lignin)lignocelluloses and (/sup 14/C-polysaccharide)lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These (/sup 14/C)lignocellulose preparations and synthetic (/sup 14/C)lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to /sup 14/CO/sub 2/ and /sup 14/CH/sub 4/. Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic (/sup 14/C) lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers. 31 references.

  11. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  12. Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Namango, Saul S; Geißen, Sven-Uwe

    2016-03-01

    Anaerobic digestion is used to treat effluents with a lot of organics, such as molasses distillery wastewater (MDW) which is the effluent of bioethanol production from molasses. The raw MDW requires a lot of dilution water before biodigestion, while the digested MDW has high level of recalcitrants which are problematic for its discharge. This study investigated ferric coagulation, Fenton, Fenton-like (with ferric ions as catalyst) processes and their combinations on the biodegradability of digested MDW. The Fenton and Fenton-like processes after coagulation increased the MDW biodegradability defined by (BOD5/COD) from 0.07 to (0.4-0.6) and saved 50% of H2O2 consumed in the classic Fenton process. The effluent from coagulation coupled to a Fenton-like process was used as dilution water for the raw MDW before the anaerobic digestion. The process was stable with volumetric loading of approx. 2.7 g COD/L/d. It resulted in increased overall biogas recovery and significantly decreased the demand for the dilution water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater

    International Nuclear Information System (INIS)

    Cetecioglu, Zeynep; Ince, Bahar; Gros, Meritxell; Rodriguez-Mozaz, Sara; Barceló, Damia; Ince, Orhan; Orhon, Derin

    2015-01-01

    This study evaluated the chronic impact and biodegradability of sulfamethoxazole under anaerobic conditions. For this purpose, a lab-scale anaerobic sequencing batch reactor was operated in a sequence of different phases with gradually increasing sulfamethoxazole doses of 1 to 45 mg/L. Conventional parameters, such as COD, VFA, and methane generation, were monitored with corresponding antimicrobial concentrations in the reactor and the methanogenic activity of the sludge. The results revealed that anaerobic treatment was suitable for pharmaceutical industry wastewater with concentrations of up to 40 mg/L of sulfamethoxazole. Higher levels exerted toxic effects on the microbial community under anaerobic conditions, causing the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The adverse long-term impact was quite variable for fermentative bacteria and methanogenic achaea fractions of the microbial community based on changes inflicted on the composition of the residual organic substrate and mRNA expression of the key enzymes. - Highlights: • Chronic impact of sulfamethoxazole was lethal at 45 mg/L on the microbial community. • Sulfamethoxazole was highly biodegradable under anaerobic conditions. • While the COD removal stopped, the sorption of sulfamethoxazole into the sludge increased. • Sulfamethoxazole has a reversible inhibitory effect on acetoclastic methanogens

  14. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Cetecioglu, Zeynep, E-mail: cetecioglu@itu.edu.tr [Istanbul Technical University, Environmental Engineering Department, 34469 Maslak, Istanbul (Turkey); Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona (Spain); Ince, Bahar [Bogazici University, Institute of Environmental Sciences, Rumelihisarustu - Bebek, 34342 Istanbul (Turkey); Gros, Meritxell; Rodriguez-Mozaz, Sara; Barceló, Damia [Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona (Spain); Ince, Orhan; Orhon, Derin [Istanbul Technical University, Environmental Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2015-12-01

    This study evaluated the chronic impact and biodegradability of sulfamethoxazole under anaerobic conditions. For this purpose, a lab-scale anaerobic sequencing batch reactor was operated in a sequence of different phases with gradually increasing sulfamethoxazole doses of 1 to 45 mg/L. Conventional parameters, such as COD, VFA, and methane generation, were monitored with corresponding antimicrobial concentrations in the reactor and the methanogenic activity of the sludge. The results revealed that anaerobic treatment was suitable for pharmaceutical industry wastewater with concentrations of up to 40 mg/L of sulfamethoxazole. Higher levels exerted toxic effects on the microbial community under anaerobic conditions, causing the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The adverse long-term impact was quite variable for fermentative bacteria and methanogenic achaea fractions of the microbial community based on changes inflicted on the composition of the residual organic substrate and mRNA expression of the key enzymes. - Highlights: • Chronic impact of sulfamethoxazole was lethal at 45 mg/L on the microbial community. • Sulfamethoxazole was highly biodegradable under anaerobic conditions. • While the COD removal stopped, the sorption of sulfamethoxazole into the sludge increased. • Sulfamethoxazole has a reversible inhibitory effect on acetoclastic methanogens.

  15. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 degrees C.

    Science.gov (United States)

    Ferrer, Ivet; Palatsi, Jordi; Campos, Elena; Flotats, Xavier

    2010-10-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 degrees C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 degrees C and 55 degrees C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH(4)/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5L vs. 3-3.5 L CH(4)/kg COD x day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 oC

    International Nuclear Information System (INIS)

    Ferrer, Ivet; Palatsi, Jordi; Campos, Elena; Flotats, Xavier

    2010-01-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 o C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 o C and 55 o C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH 4 /kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH 4 /kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  17. Life Cycle Assessment of different uses of biogas from anaerobic digestion of separately collected biodegradable waste in France. Final report

    International Nuclear Information System (INIS)

    2007-01-01

    In the first part of the study, Gaz de France (GdF) and the French Environment Energy Management Agency (ADEME) wished to identify the best method to use the biogas from anaerobic digestion of separately collected biodegradable waste (bio-waste). Secondly, GdF and ADEME wished to evaluate the strength and weaknesses of the two main different organic recycling: anaerobic digestion (methanization) and composting. The study is based on the life cycle assessment method. The life cycle assessment used for this study consists in quantifying the environmental impacts of all of the activities which are related to the chosen use method. This methodology involves compiling a detailed account of all substances and energy flows removed or emitted from or into the environment at each stage of the life cycle. These flows are then translated into indicators of potential environment impacts. This methodology is based on the international standards ISO14040 and ISO 14044. The life cycle assessment was performed by RDC Environnement. In this study, two questions were treated: - Which is the best valorisation method for biogas produced from the anaerobic digestion of separately collected biodegradable waste: fuel, heat or electricity? ('Biogas' question); - Which is the best treatment for the separately collected biodegradable waste: anaerobic digestion (methanization) or industrial composting? ('Composting' question). The field of the study includes the arrival of the separately collected biodegradable waste at the anaerobic unit as well as the utilisation of the biogas energy and the agricultural use of the digestate from anaerobic digestion. For each biogas utilisation, the environmental impacts of each life cycle stage were considered as well as the impacts that were avoided due to the substitution of the use of non-renewable energy ('conventional' procedures). The modelling of the direct composting of the biodegradable waste was realised taking into account the followings

  18. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  19. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  20. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  1. Advances in Biodegradation of Multiple Volatile Organic Compounds

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.

    2017-12-01

    Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.

  2. Concurrent nitrate and Fe(III) reduction during anaerobic biodegradation of phenols in a sandstone aquifer

    DEFF Research Database (Denmark)

    Broholm, Mette; Crouzet, C.; Arvin, Erik

    2000-01-01

    The biodegradation of phenols (similar to 5, 60, 600 mg 1(-1)) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer, The aqueous phase was sampled and analyzed...... for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific depth intervals from a vertical profile across the ammonium plume was also conducted. The miniature microcosms used in this experiment were sacrificed for sampling for phenols...... and selected redox sensitive parameters at the end of the experiment. The sandstone material was characterized with respect to oxidation and reduction potential and Fe(II) and Fe(III) speciation prior to use for all microcosms and at the end of the experiments for selected microcosms. The redox conditions...

  3. Problems Caused by Microbes and Treatment Strategies Anaerobic Hydrocarbon Biodegradation and Biocorrosion: A Case Study

    Science.gov (United States)

    Suflita, Joseph M.; Duncan, Kathleen E.

    The anaerobic biodegradation of petroleum hydrocarbons is important for the intrinsic remediation of spilt fuels (Gieg and Suflita, 2005), for the conversion of hydrocarbons to clean burning natural gas (Gieg et al., 2008; Jones et al., 2008) and for the fundamental cycling of carbon on the planet (Caldwell et al., 2008). However, the same process has also been implicated in a host of difficult problems including reservoir souring (Jack and Westlake, 1995), oil viscosity alteration (Head et al., 2003), compromised equipment performance and microbiologically influenced corrosion (Duncan et al., 2009). Herein, we will focus on the role of anaerobic microbial communities in catalysing biocorrosion activities in oilfield facilities. Biocorrosion is a costly problem that remains relatively poorly understood. Understanding of the underlying mechanisms requires reliable information on the carbon and energy sources supporting biofilm microorganisms capable of catalysing such activities.

  4. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hua [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Zhou, Hong-Wei [Department of Environmental Health Science, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Wong, Yuk-Shan [Department of Biology, The Hong Kong University of Science and Technology (Hong Kong); Tam, Nora Fung-Yee, E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-10-15

    The vertical distribution of polycyclic aromatic hydrocarbons (PAHs) at different sediment depths, namely 0-2 cm, 2-4 cm, 4-6 cm, 6-10 cm, 10-15 cm and 15-20 cm, in one of the most contaminated mangrove swamps, Ma Wan, Hong Kong was investigated. It was the first time to study the intrinsic potential of deep sediment to biodegrade PAHs under anaerobic conditions and the abundance of electron acceptors in sediment for anaerobic degradation. Results showed that the total PAHs concentrations (summation of 16 US EPA priority PAHs) increased with sediment depth. The lowest concentration (about 1300 ng g{sup -1} freeze-dried sediment) and the highest value (around 5000 ng g{sup -1} freeze-dried sediment) were found in the surface layer (0-2 cm) and deeper layer (10-15 cm), respectively. The percentage of high molecular weight (HMW) PAHs (4 to 6 rings) to total PAHs was more than 89% at all sediment depths. The ratio of phenanthrene to anthracene was less than 10 while fluoranthene to pyrene was around 1. Negative redox potentials (Eh) were recorded in all of the sediment samples, ranging from - 170 to - 200 mv, with a sharp decrease at a depth of 6 cm then declined slowly to 20 cm. The results suggested that HMW PAHs originated from diesel-powered fishing vessels and were mainly accumulated in deep anaerobic sediments. Among the electron acceptors commonly used by anaerobic bacteria, sulfate was the most dominant, followed by iron(III), nitrate and manganese(IV) was the least. Their concentrations also decreased with sediment depth. The population size of total anaerobic heterotrophic bacteria increased with sediment depth, reaching the peak number in the middle layer (4-6 cm). In contrast, the aerobic heterotrophic bacterial count decreased with sediment depth. It was the first time to apply a modified electron transport system (ETS) method to evaluate the bacterial activities in the fresh sediment under PAH stress. The vertical drop of the ETS activity suggested that

  5. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China

    International Nuclear Information System (INIS)

    Li, Chun-Hua; Zhou, Hong-Wei; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2009-01-01

    The vertical distribution of polycyclic aromatic hydrocarbons (PAHs) at different sediment depths, namely 0-2 cm, 2-4 cm, 4-6 cm, 6-10 cm, 10-15 cm and 15-20 cm, in one of the most contaminated mangrove swamps, Ma Wan, Hong Kong was investigated. It was the first time to study the intrinsic potential of deep sediment to biodegrade PAHs under anaerobic conditions and the abundance of electron acceptors in sediment for anaerobic degradation. Results showed that the total PAHs concentrations (summation of 16 US EPA priority PAHs) increased with sediment depth. The lowest concentration (about 1300 ng g -1 freeze-dried sediment) and the highest value (around 5000 ng g -1 freeze-dried sediment) were found in the surface layer (0-2 cm) and deeper layer (10-15 cm), respectively. The percentage of high molecular weight (HMW) PAHs (4 to 6 rings) to total PAHs was more than 89% at all sediment depths. The ratio of phenanthrene to anthracene was less than 10 while fluoranthene to pyrene was around 1. Negative redox potentials (Eh) were recorded in all of the sediment samples, ranging from - 170 to - 200 mv, with a sharp decrease at a depth of 6 cm then declined slowly to 20 cm. The results suggested that HMW PAHs originated from diesel-powered fishing vessels and were mainly accumulated in deep anaerobic sediments. Among the electron acceptors commonly used by anaerobic bacteria, sulfate was the most dominant, followed by iron(III), nitrate and manganese(IV) was the least. Their concentrations also decreased with sediment depth. The population size of total anaerobic heterotrophic bacteria increased with sediment depth, reaching the peak number in the middle layer (4-6 cm). In contrast, the aerobic heterotrophic bacterial count decreased with sediment depth. It was the first time to apply a modified electron transport system (ETS) method to evaluate the bacterial activities in the fresh sediment under PAH stress. The vertical drop of the ETS activity suggested that the

  6. Anaerobic biodegradation of a petrochemical waste-water using biomass support particles

    International Nuclear Information System (INIS)

    Sharma, S.; Ramakrishna, C.; Desai, J.D.; Bhatt, N.M.

    1994-01-01

    During the anaerobic biodegradation of effluent from a dimethyl terephthalate (DMT) manufacturing plant, reduction in chemical oxygen demand (COD) degradation and biogas formation was observed after the waste-water concentration exceeded 25% of added feed COD. This condition reverted back to normal after 25-30 days when the DMT waste-water concentration in the feed was brought down to a non-toxic level. However, the above effects were observed only after the concentration of DMT waste-water reached more than 75% of added feed COD when biomass support particles (BSP) were augmented to the system. In the BSP system, a biomass concentration of up to 7000 mg/l was retained and the sludge retention time increased to >200 days compared to 2200 mg/l and 8-10 days, respectively, in the system without BSP (control). Formaldehyde in the waste-water was found to be responsible for the observed toxicity. The BSP system was found to resist formaldehyde toxicity of up to 375 mg/l as against 125 mg/l in the control system. Moreover, the BSP system recovered from the toxicity much faster (15 days) than the control (25-30 days). The advantages of the BSP system in anaerobic treatment of DMT waste-water are discussed. (orig.)

  7. Anaerobic biodegradation of halogenated and nonhalogenated N-, s-, and o-heterocyclic compounds in aquifer slurries

    Science.gov (United States)

    Adrian, Neal R.; Suflita, Joseph M.

    1994-01-01

    The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay

  8. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Hu Zhifeng; Deng Dong

    2008-01-01

    Effective anaerobic BTEX biodegradation was obtained under nitrate and sulfate reducing conditions by the mixed bacterial consortium that were enriched from gasoline contaminated soil. Under the conditions of using nitrate or sulfate as reducing acceptor, the degradation rates of the six tested substrates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene. The higher concentrations of BTEX were toxic to the mixed cultures and led to reduce the degradation rates of BTEX. Benzene and p-xylene were more toxic than toluene and ethylbenzene. Nitrate was a more favorable electron acceptor compared to sulfate. The measured ratios between the amount of nitrate consumed and the amount of benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene degraded were 9.47, 9.26, 11.14, 12.46, 13.36 and 13.02, respectively. The measured ratios between sulfate reduction and BTEX degradation were 3.51, 4.33, 4.89, 4.81, 4.86 and 4.76, respectively, which were nearly the same to theoretical ones, and the relative error between the measured and calculated ratios was less than 10%

  9. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    Science.gov (United States)

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. SONO-OXIDATIVE PRE-TREATMENT OF WASTE ACTIVATED SLUDGE BEFORE ANAEROBIC BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    S. Şahinkaya

    Full Text Available Abstract The effects of sonication, potassium ferrate (K2FeO4 oxidation and their simultaneous combination (called "sono-oxidative pre-treatment" on chemical properties and anaerobic digestion of waste activated sludge (WAS were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS dosage for 2-h individual K2FeO4 oxidation, 0.50 W/mL ultrasonic power density for 10-min individual sonication and, lastly, the combination of 2.5-min sonication at 0.75 W/mL ultrasonic power density with 2-h chemical oxidation at 0.3 g K2FeO4/g TS dosage for sono-oxidative pre-treatment. The disintegration efficiencies of these methods under the optimized conditions were in the following descending order: 37.8% for sono-oxidative pre-treatment > 26.3% for sonication > 13.1% for K2FeO4 oxidation. The influences of these methods on anaerobic biodegradability were tested with the biochemical methane potential assay. It was seen that the cumulative methane production increased by 9.2% in the K2FeO4 oxidation reactor, 15.8% in the sonicated reactor and 18.6% in the reactor with sono-oxidative pre-treatment, compared to the control (untreated reactor.

  11. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  12. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    Science.gov (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Feasibility of biodegradation of pentachlorophenol in scrap wood

    International Nuclear Information System (INIS)

    Beaulieu, G.; Besner, A.; Gilbert, R.; Tetreault, P.; Beaudet, R.; Bisaillon, J. G.; Lepine, F.; Ottou, J. M.; Sansregret, J. L.; Lei, J.

    1998-04-01

    The feasibility of biological treatment of scrap wood impregnated in pentachlorophenol (PCP) was investigated using wood samples impregnated with PCP for biodegradation experiments by the Hydro-Quebec Research Institute (IREQ). IREQ identified the necessity of pre-treating the wood, first by shredding wood poles into wood shavings, followed by mechanical milling of the shavings to obtain wood dust. Biodegradation experiments under anaerobic conditions were performed by the Armand-Frappier Institute by isolating a consortium of bacteria from a mixture of PCP-contaminated soils and a municipal anaerobic sludge that was able to degrade PCP under anaerobic methanogenic conditions at 29 degrees C. A complementary source of carbon was found to be necessary for the bacterial consortium to degrade the PCP. The best PCP degradation results were obtained with an aerobic fixed-film reactor. Aerobic biodegradation tests were performed on liquor extracted from wood dust contaminated with PCP. The anaerobic fixed field reactor was able to completely degrade the PCP extracted from wood dust in less than one day. Aerobic biodegradation was also investigated using microorganisms and fungi. Over a four month experimental period only low concentrations of PCP were found in effluents treated with the aerobic cultures. 117 refs., 38 tabs., 31 figs

  14. Uptake and biodegradation of the antimicrobial sulfadimidine by the species Tripolium pannonicum acting as biofilter and its further biodegradation by anaerobic digestion and concomitant biogas production.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-11-01

    This project analyses the uptake and biodegradation of the antimicrobial sulfadimidine (SDI) from the culture medium and up to the anaerobic digestion. Tripolium pannonicum was grown under hydroponic conditions with different concentrations of SDI (0, 5 and 10mg·L(-1)) and the fresh biomass, containing different amounts of SDI taken up, was used as substrate for biogas production. SDI was analyzed by liquid chromatography coupled to positive ion electrospray mass spectrometry (ESI LC-MS). Based on the findings, T. pannonicum is able to uptake SDI. The more SDI is in the culture medium, the higher the SDI content in the plant tissue. According to this study, it is possible to produce high yields of biogas using biomass of T. pannonicum containing SDI and at the same time biodegradation of SDI is carried out. The highest specific biogas yield is obtained using shoots as substrate of the plants cultivated at 5mg·L(-1) SDI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phthalates biodegradation in the environment.

    Science.gov (United States)

    Liang, Da-Wei; Zhang, Tong; Fang, Herbert H P; He, Jianzhong

    2008-08-01

    Phthalates are synthesized in massive amounts to produce various plastics and have become widespread in environments following their release as a result of extensive usage and production. This has been of an environmental concern because phthalates are hepatotoxic, teratogenic, and carcinogenic by nature. Numerous studies indicated that phthalates can be degraded by bacteria and fungi under aerobic, anoxic, and anaerobic conditions. This paper gives a review on the biodegradation of phthalates and includes the following aspects: (1) the relationship between the chemical structure of phthalates and their biodegradability, (2) the biodegradation of phthalates by pure/mixed cultures, (3) the biodegradation of phthalates under various environments, and (4) the biodegradation pathways of phthalates.

  17. Characterization and Optimization of Dual Anaerobic/Aerobic Biofilm Process

    National Research Council Canada - National Science Library

    Togna, A

    1997-01-01

    The purpose of this Phase I STTR effort was to develop and characterize a dual anaerobic/aerobic biofilm process that promotes anaerobic reductive dehalogenation and aerobic cometabolic biodegradation...

  18. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    Science.gov (United States)

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  19. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  20. Biodegradation of phenol with chromium(VI) reduction in an anaerobic fixed-biofilm process-Kinetic model and reactor performance

    International Nuclear Information System (INIS)

    Lin, Yen-Hui; Wu, Chih-Lung; Hsu, Chih-Hao; Li, Hsin-Lung

    2009-01-01

    A mathematical model system was derived to describe the simultaneous removal of phenol biodegradation with chromium(VI) reduction in an anaerobic fixed-biofilm reactor. The model system incorporates diffusive mass transport and double Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A laboratory-scale column reactor was employed to validate the kinetic model system. Batch kinetic tests were conducted independently to evaluate the biokinetic parameters used in the model simulation. The removal efficiencies of phenol and chromium(VI) in an anaerobic fixed-biofilm process were approximately 980 mg/g and 910 mg/g, respectively, under a steady-state condition. In the steady state, model-predicted biofilm thickness reached up to 350 μm and suspended cells in the effluent were 85 mg cell/l. The experimental results agree closely with the results of the model simulations.

  1. Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge's solubilisation, reduction, anaerobic biodegradability and acute biological toxicity.

    Science.gov (United States)

    Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua

    2015-09-01

    Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    Science.gov (United States)

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  4. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...

  5. Monitoring biodegradation of hydrocarbons by stable isotope fractionation

    Science.gov (United States)

    Dorer, Conrad; Fischer, Anko; Herrmann, Steffi; Richnow, Hans-Hermann; Vogt, Carsten

    2010-05-01

    In the last decade, several studies have demonstrated that stable isotope tools are highly applicable for monitoring anaerobic biodegradation processes. An important methodological approach is to characterize distinct degradation pathways with respect to the specific mechanism of C-H-bond cleavage and to quantify the extent of biodegradation by compound specific isotope analysis (CSIA). Here, enrichment factors (ɛbulk) needed for a CSIA field site approach must be determined in laboratory reference experiments. Recent research results from different laboratories have shown that single ɛbulk values for similar degradation pathways can be highly variable; thus, the use of two-dimensional compound specific isotope analysis (2D-CSIA) has been encouraged for characterizing biodegradation pathways more precisely. 2D-CSIA for hydrocarbons can be expressed by the slope of the linear regression for hydrogen versus carbon discrimination known as lambda ≈ ɛHbulk/ɛCbulk. We determined the carbon and hydrogen isotope fractionation for the biodegradation of benzene, toluene and xylenes by various reference cultures. Specific enzymatic reactions initiating different biodegradation pathways could be distinguished by 2D-CSIA. For the aerobic di- and monohydroxylation of the benzene ring, lambda values always lower than 9 were observed. Enrichment cultures degrading benzene anaerobically produced significant different values: lambda values between 8-19 were oberved for nitrate-reducing consortia, whereas sulfate-reducing and methanogenic consortia showed always lambda values greater than 20 [1,2]. The observed variations suggest that (i) aerobic benzene biodegradation can be distinguished from anaerobic biodegradation, and (ii) that more than a single mechanism seems to exist for the activation of benzene under anoxic conditions. lambda values for anaerobic toluene degradation initiated by the enzyme benzylsuccinate synthase (BSS) ranged from 4 to 41, tested with strains using

  6. Heat treatment of organics for increasing anaerobic biodegradability. Annual progress report, June 1, 1976-May 31, 1977. Civil engineering technical report No. 222

    Energy Technology Data Exchange (ETDEWEB)

    Healy, J.B. Jr.; Owen, W.F.; Stuckey, D.C.; Young, L.Y.; McCarty, P.L.

    1977-06-30

    This report represents the results of the first year of study on the heat treatment of organics to increase its biodegradability by anaerobic bacteria for the microbial production of methane. The purpose of this study is to develop a means for increasing the yield and reducing the cost of methane, a useful energy source. The procedures being evaluated are heat treatment at temperatures up to 250/sup 0/C, under pH ranges of 1 to 13. Included in this report are results on: (1) lignocellulose digestion and acclimation to its products from heat treatment; (2) the fate of waste activated sludge and its cellular nitrogenous compounds; and (3) the biodegradability of model compounds likely to be formed during heat treatment.

  7. Biodegradation of 2,3,7,8 TCDD by anaerobic and aerobic microcosms collected from bioremediation treatments for cleaning up dioxin contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dang Thi; Tuan, Mai Anh; Viet, Nguyen Quoc; Sanh, Nguyen Thi [Vietnamese Academy of Science and Technology (VAST) (Viet Nam). Inst. of Biotechnology; Sau, Trinh Khac [Vietnam-Russian Tropical Center (Viet Nam); Papke, O. [ERGO Forschungsgesellschaft, Hamburg (Germany)

    2004-09-15

    There are many microbes that can degrade polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurants (PCDFs) and polychlorinated biphenyls (PCBs) have been isolated including purified bacteria, actinomycetes, white rods, filamentous fungi, anaerobes and also anaerobic and aerobic consortia. Bioremediation one of biological remediation has been studied as hopeful alternative to physical and chemical treatments that using for cleaning up PCDDs, PCDFs. In Vietnam for cleaning up ''hot spot'' of some former military air bases, bioremediation has been studying in different scales of Danang site. After 18 to 24 month treatments, the reduction of toxicity was significally detected. In order to study biodegradability by different groups and one of dominated strain that are existing microorganisms in our treatments, the investigation of 2,3,7,8 TCDD anaerobic and aerobic degradations was carried out in the laboratory condition. Anaerobic microbial consortium containing three different bacteria such as two Gram- negative vibrio and rod and one gram positive cocoides bacteria. This consortium could degrade 118 pg TEQ/ml 2,3,7,8 TCDD after 133 days under sulfate reduction. Concentration of 2,3,7,8 TCDD in the soil extract that adding to medium at starting point of cultivation was 144.6 pg TEQ/ml. About 81% toxicity was removed. Aerobic consortium containing all three Gram-negative bacteria and one fungal strain. After 9 day shaking at 180 rpm/min and 30 C, 85.6 % of 164.45 pg TEQ/ml 2,3,7,8 TCDD was removed. Other preliminary results of study of 2,3,7,8 TCDD biodegradation as sole carbon and energy by show that this strain FDN30 could remove 43,45 pg TEQ/ml (59%) of 73,1 pgTEQ/ml adding dioxin after two weeks. These findings explain why high concentration of contaminants in treated soil was decreased after two year treatment. Indigenous microorganisms play leading role in the detoxification of 2,3,7,8 TCDD in contaminated soils.

  8. Anaerobic biodegradation of pentachlorophenol in a fixed-film reactor inoculated with polluted sediment from Santos-Sao Vicente Estuary, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Saia, F.T.; Damianovic, M.H.R.Z.; Cattony, E.B.M.; Brucha, G.; Foresti, E. [Sao Paulo Univ., Sao Carlos (Brazil). Lab. of Biological Processes; Vazoller, R.F. [Sao Paulo Univ., Sao Paulo (Brazil). Lab. of Environmental Microbiology

    2007-06-15

    This paper discusses the results of pentachlorophenol (PCP) anaerobic biodegradation in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor operated under methanogenic and halophylic conditions. The system was inoculated with autochthonous microorganisms taken from a site in the Santos-Sao Vicente Estuary (state of Sao Paulo, Brazil) severely contaminated with PCP, phenolic compounds, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy metals. The inoculum was previously enriched for methanogenesis activity by changing glucose concentrations and under halophylic condition. PCP was added to the HAIB reactor as sodium salt (NaPCP) at an initial concentration of 5 mg l{sup -1} and increased to 13, 15, and 21 mg l{sup -1}. Organic matter removal efficiency ranged from 77 to 100%. PCP removal efficiency was 100%. Denaturing gradient gel electrophoresis profile showed changes in the structure of Bacteria domain, which was associated with NaPCP and glucose amendments. The diversity of Archaea remained unaltered during the different phases. Scanning electron microscope examinations showed that cells morphologically resembling Methanosarcina and Methanosaeta predominated in the biofilm. These cells were detected by fluorescence in situ hybridization with the Methanosarcinales (MSMX860) specific probe. The results are of great importance in planning the estuary's restoration by using anaerobic technology and autochthonous microorganisms for bioremediation. (orig.)

  9. Characteristics of residues from thermally treated anaerobic sludges

    International Nuclear Information System (INIS)

    Friedman, A.A.; Smith, J.E.; De Santis, J.; Ptak, T.; Ganley, R.C.

    1988-01-01

    Sludge management and disposal are probably the most difficult and expensive operations involved in wastewater treatment today. To minimize final disposal costs many waste treatment facilities practice some form of anaerobic digestion and dewatering to reduce the volume and offensiveness of their by-product sludges. One potential alternative for reducing sludge volumes consists of high temperature, partial oxidation of these previously digested sludges (PDS) and subsequent anaerobic biological conversion of resulting soluble organics to methane. This paper describes solids destruction, residue characteristics and biodegradability factors that should be considered in the design of liquid thermal treatment processes for the management of anaerobic sludges. To date only very limited information is available concerning the suitability of thermally treated PDS to serve as a substrate for the generation of methane. The primary objective of this research was to determine the feasibility of producing methane efficiently from the residual VSS in anaerobically digested sludges. Secondary goals were to establish the ''best'' conditions for thermal treatment for solubilizing PDS, to observe the effect of the soluble products on methanogenesis and to evaluate process sidestreams for dewaterability and anaerobic biodegradability

  10. Biodegradation of organ chlorine pesticides in contaminated soil collected from Yen Tap, Cam Khe, Phu Tho

    International Nuclear Information System (INIS)

    Nguyen Thuy Binh; Nguyen Van Toan; Pham Thi Thai; Dinh Thi Thu Hang

    2007-01-01

    Biodegradation of POPs contaminant in soil collected from Phu Tho province and Nghe An province had carried out. The process comprises treating soil, which contains anaerobic and aerobic microbes capable of transforming lindane and DDT into harmless material and being under anaerobic and aerobic steps. Significant biodegradation of POPs contaminants occurred in there tests. But some of toxic organic compounds remained. (author)

  11. Experimental biogas research by anaerobic digestion of waste of ...

    African Journals Online (AJOL)

    Currently, one of the most efficient and prospective methods of biodegradable waste management is anaerobic digestion in a bio-reactor. The use of this method for managing biodegradable waste generating in agriculture and elsewhere would result in the recovery of biogas that could be used as an alternative to natural ...

  12. Enhanced natural attenuation of heterocyclic hydrocarbons: biodegradation under anaerobic conditions and in the presence of H2O2

    International Nuclear Information System (INIS)

    Sagner, A.; Tiehm, A.

    2005-01-01

    Heterocyclic aromatic compounds containing nitrogen, sulfur, or oxygen (NSO-HET) are highly mobile due to their high water solubility and low anaerobic degradation rates. In addition some of them are highly toxic and also carcinogenic. However, this class of pollutants is not included in standard risk assessment protocols. In our study, NSO-HET were analyzed in tar oil polluted groundwater plumes originating from (i) a small landfill and (ii) an abandoned manufactured gas plant site. A similar composition of the NSO-HET benzofuran, dibenzo-furan, benzo-thiophene, dibenzo-thiophene, quinoline, and carbazole was found at the two sites. In the polluted groundwater plume, the two ring NSO-HET decreased more rapidly as compared to the three ring NSO-HET. In anaerobic microcosm studies, only benzofuran was degraded under sulfate reducing conditions. In the presence of Fe(III) or nitrate, benzo-thiophene and dibenzo-thiophene were degraded within 400 days. Under aerobic conditions, the degradation of all NSO-HET was observed. In conclusion, the addition of oxygen or hydrogen peroxide is a suitable measure to stimulate biodegradation of hetero-aromatic compounds. (authors)

  13. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  14. Biodegradation of tetrabromobisphenol A in the sewage sludge process.

    Science.gov (United States)

    Peng, Xingxing; Wang, Zhangna; Wei, Dongyang; Huang, Qiyuan; Jia, Xiaoshan

    2017-11-01

    Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A (TBBPA) was successfully acclimated in an anaerobic reactor over 280days. During the period from 0 to 280days, the TBBPA degradation rate (DR), utilization of glucose, and VSS were monitored continuously. After 280days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20days of treatment in batch experiments. Based on scanning electron microscopy (SEM) observations and denaturing gradient gel electrophoresis (DGGE) determinations, the diversity of the microorganisms after 0 and 280days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol, 3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A, were identified by gas chromatography-mass spectrometry (GC-MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model. Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions. Copyright © 2017. Published by Elsevier B.V.

  15. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luis Busi; Chiaranda, Helen Simone; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2013-06-01

    Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m(2) that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

  16. Polyvinyl alcohol biodegradation under denitrifying conditions

    Czech Academy of Sciences Publication Activity Database

    Marušincová, H.; Husárová, L.; Růžička, J.; Ingr, M.; Navrátil, Václav; Buňková, L.; Koutný, M.

    2013-01-01

    Roč. 84, October (2013), s. 21-28 ISSN 0964-8305 Grant - others:GA ČR(CZ) GAP108/10/0200 Institutional support: RVO:61388963 Keywords : polyvinyl alcohol * biodegradation * denitrification * waste-water treatment * anaerobic * Steroidobacter Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.235, year: 2013

  17. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase

    Directory of Open Access Journals (Sweden)

    Adriano Aguiar Mendes

    2010-12-01

    Full Text Available Lipids-rich wastewater was partial hydrolyzed with porcine pancreas lipase and the efficiency of the enzymatic pretreatment was verified by the comparative biodegradability tests (crude and treated wastewater. Alternatively, simultaneous run was carried out in which hydrolysis and digestion was performed in the same reactor. Wastewater from dairy industries and low cost lipase preparation at two concentrations (0.05 and 0.5% w.v-1 were used. All the samples pretreated with enzyme showed a positive effect on organic matter removal (Chemical Oxygen Demand-COD and formation of methane. The best results were obtained when hydrolysis and biodegradation were performed simultaneously, attaining high COD and color removal independent of the lipase concentration. The enzymatic treatment considerably improved the anaerobic operational conditions and the effluent quality (lower content of suspended solids and less turbidity. Thus, the use of enzymes such as lipase seemed to be a very promising alternative for treating the wastewaters having high fat and grease contents, such as those from the dairy industry.O presente trabalho teve como objetivo o pré-tratamento de efluente da indústria de laticínios na hidrólise de lipídeos, empregando lipase de fonte de células animais de baixo custo disponível comercialmente (pâncreas de porco na formação de gás metano por biodegradabilidade anaeróbia empregando diferentes concentrações de lipase (0,05 e 0,5 % w.v-1. A utilização de lipase no pré-tratamento do efluente acelerou a hidrólise de lipídeos e, conseqüentemente, auxiliou o tratamento biológico resultando na redução da matéria orgânica em termos de Demanda Química de Oxigênio (DQO, cor e sólidos em suspensão como lipídeos. Os melhores resultados em termos de remoção de DQO e cor foram obtidos quando a hidrólise e biodigestão foram realizadas simultaneamente, independente da concentração de lipase empregada. Estes resultados

  18. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    International Nuclear Information System (INIS)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-01-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD i nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  19. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-07-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD{sub i}nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  20. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study

    Science.gov (United States)

    Chen, Yu Dao; Barker, James F.; Gui, Lai

    2008-02-01

    Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron

  1. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  2. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  3. Adhesion of biodegradative anaerobic bacteria to solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schie, P.M. van; Fletcher, M.

    1999-11-01

    In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, the authors need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. They studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. The authors studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe{sup 3+} on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electro-static-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments.

  4. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  5. Waste sizing solution as co-substrate for anaerobic decolourisation of textile dyeing wastewaters

    NARCIS (Netherlands)

    Bisschops, I.; Santos, dos A.B.; Spanjers, H.

    2005-01-01

    Dyeing wastewaters and residual size are textile factory waste streams that can be treated anaerobically. For successful anaerobic treatment of dyeing effluents, a co-substrate has to be added because of their low concentration of easily biodegradable compounds. Starch-based size contains easily

  6. Pretreatment and Anaerobic Co-digestion of Selected PHB and PLA Bioplastics

    Directory of Open Access Journals (Sweden)

    Nicholas Benn

    2018-01-01

    Full Text Available Conventional petroleum-derived plastics are recalcitrant to biodegradation and can be problematic as they accumulate in the environment. In contrast, it may be possible to add novel, biodegradable bioplastics to anaerobic digesters at municipal water resource recovery facilities along with primary sludge to produce more biomethane. In this study, thermal and chemical bioplastic pretreatments were first investigated to increase the rate and extent of anaerobic digestion. Subsequently, replicate, bench-scale anaerobic co-digesters fed synthetic primary sludge with and without PHB bioplastic were maintained for over 170 days. Two polyhydroxybutyrate (PHB, one poly(3-hydroxybutyrate-co-4-hydroxybutyrate and one polylactic acid (PLA bioplastic were investigated. Biochemical methane potential (BMP assays were performed using both untreated bioplastic as well as bioplastic pretreated at elevated temperature (35–90°C under alkaline conditions (8anaerobic co-digesters fed synthetic primary sludge with PHB bioplastic resulted in 80–98% conversion of two PHB bioplastics to biomethane and a 5% biomethane production increase at the organic loadings employed (sludge OLR = 3.6 g COD per L of reactor volume per day [g COD/LR-d]; bioplastic OLR = 0.75 g theoretical oxygen demand per L of reactor volume per day [ThOD/LR-d] compared to digesters not fed bioplastics. Anaerobic digestion or co-digestion is a feasible management option for biodegradable plastics.

  7. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    Science.gov (United States)

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Anaerobic biodegradation of estrogens-hard to digest

    NARCIS (Netherlands)

    Mes, de T.Z.D.; Kujawa, K.; Zeeman, G.; Lettinga, G.

    2008-01-01

    Although many publications are available on the fate of estrone (E1), 17b-estradiol (E2) and 17a-ethynylestradiol (EE2) during aerobic wastewater treatment, little is published on their fate under strictly anaerobic conditions. Present research investigated the digestibility of E1 and EE2, using

  9. Concept of Compound Retention Time for Organic Micro Pollutants in Anaerobic Membrane Bioreactor with Nanofiltration

    KAUST Repository

    Pan, Jiangjiang

    2011-01-01

    to control OMPs wastage. An innovative hybrid process, anaerobic membrane bioreactor with nanofiltration (AnMBR-NF), in which enhanced OMPs removal is possible based on the concept of compound retention time (CRT) through coupling anaerobic biodegradation

  10. Study and optimization of the biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Poly-chloro-biphenyls (PCBs) during the anaerobic and aerobic digestion of long-term contaminated urban sludge; Etude et optimisation de la biodegradation d'hydrocarbures aromatiques polycycliques (HAPs) et de polychlorobiphenyls (PCBs) au cours de la digestion anaerobie et aerobie de boues urbaines contaminees

    Energy Technology Data Exchange (ETDEWEB)

    Trably, E.

    2002-12-15

    This study deals with the behavior of PAHs and PCBs during anaerobic and aerobic digestion of long-term contaminated sludge. Initially, an analytical method of 13 PAHs in sludge was developed to PAH-monitoring in laboratory-scaled bioreactors. For this, the method was optimized and validated for its high accuracy and its high reproducibility. In order to estimate precisely the PAH and PCB biological removal performances of each reactor, it was also proposed a method of analysis of the results based on mass balance. Therefore, it was observed for the first time significant PAHs removal under methanogenic conditions. It was also shown that PAH and PCB removals were limited by the mass transfer kinetics and particularly by the reduction of solids. The anaerobic and aerobic processes were then optimized by improving the PAH diffusion with the enhancement of reactor temperature and with the addition of surfactants and solvent, such as methanol. It was highlighted the great fragility of the methanogenic ecosystems and, on the opposite, the strong potential of the aerobic ecosystem for PAHs biodegradation. Indeed, some aerobic processes were successful in decontaminating sludge significantly (at 45 deg. C or in the presence of methanol). Lastly, the PAH biodegradation was characterized partly by the monitoring of {sup 14}C-radiolabelled compounds and by the molecular identification of the methanogenic archaea species. It was suggested that some archaea microorganisms were implied in PAHs biodegradation under strict anaerobic methanogenic conditions. (author)

  11. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    Science.gov (United States)

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  12. Anaerobic Biodegradability and Methane Potential of Crop Residue Co-Digested with Buffalo Dung

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2013-07-01

    Full Text Available ABD (Anaerobic Biodegradability and BMP (Biochemical Methane Potential of banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw co-digested with buffalo dung was evaluated through AMPTS (Automatic Methane Potential Test System. The substrates were analyzed for moisture, TS (Total Solids and VS (Volatile Solids, ultimate analysis (CHONS, pH and TA (Total Alkalinity. The BMPobserved during incubation of 30 days at the temperature of 37±0.2°C was 322 Nml CH4/g VSadd for wheat straw followed by 260, 170, 149, 142 and 138 Nml CH4/gVSadd for canola straw, rice straw, cotton stalks, banana plant waste and sugarcane trash respectively, whereas the maximum theoretical BMP was 481 Nml CH4/gVSadd for cotton stalks, followed by 473, 473, 446, 432 and 385 Nml CH4/gVSadd for wheat straw, banana plant waste, canola straw, rice straw and sugarcane trash respectively. The percentage ABD values were in the range of 68-30%. In addition to this, the effect of lignin content in the crop residue was evaluated on the ABD. The results of this study indicate that, the co-digestion of the crop residues with buffalo dung is feasible for production of renewable methane

  13. Anaerobic co-digestion of coffee husks and microalgal biomass after thermal hydrolysis.

    Science.gov (United States)

    Passos, Fabiana; Cordeiro, Paulo Henrique Miranda; Baeta, Bruno Eduardo Lobo; de Aquino, Sergio Francisco; Perez-Elvira, Sara Isabel

    2018-04-01

    Residual coffee husks after seed processing may be better profited if bioconverted into energy through anaerobic digestion. This process may be improved by implementing a pretreatment step and by co-digesting the coffee husks with a more liquid biomass. In this context, this study aimed at evaluating the anaerobic co-digestion of coffee husks with microalgal biomass. For this, both substrates were pretreated separately and in a mixture for attaining 15% of total solids (TS), which was demonstrated to be the minimum solid content for pretreatment of coffee husks. The results showed that the anaerobic co-digestion presented a synergistic effect, leading to 17% higher methane yield compared to the theoretical value of both substrates biodegraded separately. Furthermore, thermal hydrolysis pretreatment increased coffee husks anaerobic biodegradability. For co-digestion trials, the highest values were reached for pretreatment at 120 °C for 60 min, which led to 196 mLCH 4 /gVS and maximum methane production rate of 0.38 d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Akkaya, Ebru; Ozkaya, Bestamin

    2008-01-01

    One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits

  15. Anaerobic was co-digestion with OMW and glycerol

    International Nuclear Information System (INIS)

    Athanasoulia, E.; Melidis, P.; Aivasidis, A.

    2009-01-01

    The main by-product of any biological wastewater treatment is waste activated sludge (WAS). Anaerobic digestion is the most common treatment technique for sludge stabilization, resulting in a reduction in the amount of volatile solids (VS) with biogas production, at the same time. On the other hand, many agro-industrial organic wastes are readily biodegradable and as a result, anaerobic co-digestion of sludge with agro-industrial wastes is being developed potential advantages such as increased biogas production and improved nutrience balance. (Author)

  16. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  17. Biodegradation of 2 - methoxyethanol by a new bacterium isolate ...

    African Journals Online (AJOL)

    Microbial biodegradation of 2-methoxyethanol also known as Methyl glycol (MG) under anaerobic conditions has received much attention during the past decade. However, not much is known about the aerobic degradation of 2-methoxyethanol. Samples from various environmental niches were enriched to isolate and ...

  18. Anaerobic biodegradability and methane potential of crop residue co-digested with buffalo dung

    International Nuclear Information System (INIS)

    Sahito, A.R.; Mahar, R.B.; Brohi, K.M.

    2013-01-01

    ABD (Anaerobic Biodegradability) and BMP (Biochemical Methane Potential) of banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw co-digested with buffalo dung was evaluated through AMPTS (Automatic Methane Potential Test System). The substrates were analyzed for moisture, TS (Total Solids) and VS (Volatile Solids), ultimate analysis (CHONS), pH and TA (Total Alkalinity). The BMP/sub observed/ during incubation of 30 days at the temperature of 37+-0.2+-degree C was 322 Nml CH4/g VSadd for wheat straw followed by 260, 170, 149, 142 and 138 Nml CH4/gVS/sub add/ for canola straw, rice straw, cotton stalks, banana plant waste and sugarcane trash respectively, whereas the maximum theoretical BMP was 481 Nml CH/sub 4//gVS/sub add/ for cotton stalks, followed by 473, 473, 446, 432 and 385 Nml CH/sub 4//gVS/sub add/ for wheat straw, banana plant waste, canola straw, rice straw and sugarcane trash respectively. The percentage ABD values were in the range of 68-30%. In addition to this, the effect of lignin content in the crop residue was evaluated on the ABD. The results of this study indicate that, the co-digestion of the crop residues with buffalo dung is feasible for production of renewable methane. (author)

  19. Improved biogas production and biodegradation of oilseed rape straw by using kitchen waste and duck droppings as co-substrates in two-phase anaerobic digestion

    Science.gov (United States)

    Wang, Chuqiao; Hong, Feng; Lu, Yong; Liu, Hengming

    2017-01-01

    Oilseed rape straw (ORS) is a kind of biorefractory waste widely existing in the rural area of China, which is highly suitable to mix with kitchen waste (KW) and duck droppings (DD) in two-phase anaerobic digestion (AD). This research introduced the importance of KW and DD addition to improve the biogas production and biodegradation of ORS. A set of comparative experiments were conducted on two-phase mono- and co-digestion with organic load of 60 g VS/L. The total methane yield (TMY) and the biodegradation of ORS of co-digestions were obviously improving, and the synergistic effect found in the two-phase co-digestions. The optimum mixing ratio of ORS, KW and DD was 50:40:10, and the corresponding TMY and VS degradation rate of ORS were 374.5 mL/g VS and 49.7%, respectively. Addition of KW and DD maintained the pH within the optimal range for the hydrolyzing-acidification, improved the phase separation and buffering capacity of AD system. PMID:28767709

  20. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-09-27

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.

  1. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. PMID:28904262

  2. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    Science.gov (United States)

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Kusum Lata; Kishore, V.V.N. [Tata Energy Research Institute, New Delhi (India). Darbari Seth Block

    2000-06-01

    Anaerobic digestion is the most suitable option for the treatment of high strength organic effluents. The presence of biodegradable components in the effluents coupled with the advantages of anaerobic process over other treatment methods makes it an attractive option. This paper reviews the suitability and the status of development of anaerobic reactors for the digestion of selected organic effluents from sugar and distillery, pulp and paper, slaughterhouse and dairy units. In addition, modifications in the existing reactor designs for improving the efficiency of digestion has also been suggested. (author)

  4. Fate of benzotriazole and 5-methylbenzotriazole in recycled water recharged into an anaerobic aquifer: column studies.

    Science.gov (United States)

    Alotaibi, M D; Patterson, B M; McKinley, A J; Reeder, A Y; Furness, A J; Donn, M J

    2015-03-01

    The fate of benzotriazole (BTri) and 5-methylbenzotriazole (5-MeBT) was investigated under anaerobic conditions at nano gram per litre concentrations in large-scale laboratory columns to mimic a managed aquifer recharge replenishment strategy in Western Australia. Investigations of BTri and 5-MeBT sorption behaviour demonstrated mobility of the compounds with retardation coefficients of 2.0 and 2.2, respectively. Degradation processes over a period of 220 days indicated first order biodegradation of the BTri and 5-MeBT under anaerobic aquifer conditions after a biological lag-time of approximately 30-60 days. Biodegradation half-lives of 29 ± 2 and 26 ± 1 days for BTri and 5-MeBT were respectively observed, with no threshold effect to biodegradation observed at the 200 ng L(-1). The detection of degradation products provided further evidence of BTri and 5-MeBT biodegradation. These results suggested that if BTri and 5-MeBT were present in recycled water recharged to the Leederville aquifer, biodegradation during aquifer passage is likely given sufficient aquifer residence times or travel distances between recycled water injection and groundwater extraction. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Degradation of Dehydrodivanillin by Anaerobic Bacteria from Cow Rumen Fluid

    OpenAIRE

    Chen, Wei; Ohmiya, Kunio; Shimizu, Shoichi; Kawakami, Hidekuni

    1985-01-01

    Dehydrodivanillin (DDV; 0.15 g/liter) was biodegradable at 37°C under strictly anaerobic conditions by microflora from cow rumen fluid to the extent of 25% within 2 days in a yeast extract medium. The anaerobes were acclimated on DDV for 2 weeks, leading to DDV-degrading microflora with rates of degradation eight times higher than those initially. Dehydrodivanillic acid and vanillic acid were detected in an ethylacetate extract of a DDV-enriched culture broth by thin-layer, gas, and high-perf...

  7. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    International Nuclear Information System (INIS)

    Shih, Yang-hsin; Chou, Hsi-Ling; Peng, Yu-Huei

    2012-01-01

    Highlights: ► BDE-3 was degraded with two anaerobes in different rates. ► Glucose addition augment the debromination efficiencies. ► Hydrogen gas was detected and relative microbes were identified. ► Extra-carbon source enhanced degradation partial due to H 2 -generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H 2 gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  8. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers.

    Science.gov (United States)

    Kleinsteuber, Sabine; Schleinitz, Kathleen M; Vogt, Carsten

    2012-05-01

    Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.

  9. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    Science.gov (United States)

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, Marie

    2015-01-01

    Roč. 111, Jan (2015), s. 176-184 ISSN 0141-3910 Institutional support: RVO:61388963 Keywords : poly(ethylene terephthalate) * copolymers * sludge * biodegradation * hydrolysis * waste Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.120, year: 2015

  11. Anaerobic acidification of glucose in an upflow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zoetemeyer, R J; Matthijsen, A J.C.M.; Van den Heuvel, J C; Cohen, A; Boelhouwer, C

    1982-01-01

    Glucose (10 and 50 kg/cubic meters) was effectively biodegraded to mainly butyrate, lactate, and acetate in an anaerobic upflow reactor at minimum residence times of 26 and 82 minutes, respectivelyly. Sludge granulation occurred at residence times of 1 and 6 hours, respective, which increased biomass retention. Maximum glucose conversion was 450 and 630 kg/cubic meters-day.

  12. Assessment of the anaerobic degradation of six active pharmaceutical ingredients.

    Science.gov (United States)

    Musson, Stephen E; Campo, Pablo; Tolaymat, Thabet; Suidan, Makram; Townsend, Timothy G

    2010-04-01

    Research examined the anaerobic degradation of 17 alpha-ethynylestradiol, acetaminophen, acetylsalicylic acid, ibuprofen, metoprolol tartrate, and progesterone by methanogenic bacteria. Using direct sample analysis and respirometric testing, anaerobic degradation was examined with (a) each compound as the sole organic carbon source and (b) each compound at a lower concentration (250 microg/L) and cellulose serving as the primary organic carbon source. The change in pharmaceutical concentration was determined following 7, 28, 56, and 112 days of anaerobic incubation at 37 degrees C. Only acetylsalicylic acid demonstrated significant degradation; the remaining compounds showed a mixture of degradation and abiotic removal mechanisms. Experimental results were compared with BIOWIN, an anaerobic degradation prediction model of the US Environmental Protection Agency. The BIOWIN model predicted anaerobic biodegradability of the compounds in the order: acetylsalicylic acid > metoprolol tartrate > ibuprofen > acetaminophen > 17 alpha-ethinylestradiol >progesterone. This corresponded well with the experimental findings which found degradability in the order: acetylsalicylic acid > metoprolol tartrate > acetaminophen > ibuprofen. (c) 2010 Elsevier B.V. All rights reserved.

  13. Methods to Select Chemicals for In Situ Biodegradation of Fuel Hydrocarbons

    Science.gov (United States)

    1990-07-01

    Aurelius , M.W. and Wallace, R.C. Degradation Of A Toxaphene-Contaminated Soil Matrix Under Anaerobic Conditions. Superfund 󈨜, Proceedings of the 9th...Biodegradation of Gasoline in a Sand Formation," Project No. 307-77, Suntech, Inc., Marcus Hook, PA, 1978. Raymond, R.L., Jamison, V.W., Hudson, J.O

  14. Concept of Compound Retention Time for Organic Micro Pollutants in Anaerobic Membrane Bioreactor with Nanofiltration

    KAUST Repository

    Pan, Jiangjiang

    2011-12-01

    Organic micropollutants (OMPs) have received more and more attention in recent years due to their potential harmful effects on public health and aquatic ecosystems, and eliminating OMPs in wastewater treatment systems is an important solution to control OMPs wastage. An innovative hybrid process, anaerobic membrane bioreactor with nanofiltration (AnMBR-NF), in which enhanced OMPs removal is possible based on the concept of compound retention time (CRT) through coupling anaerobic biodegradation and NF rejection, is proposed and examined in terms of preliminary feasibility in this study. First, NF membrane screening through sludge water dead-end filtration tests demonstrated that KOCH NF200 (molecular weight cut-off (MWCO) 200 Da, acid/base stable) performed best in organic matter rejection. Then, selected OMPs (ketobrofen and naproxen) in MQ water and a biologically treated wastewater matrix were filtered through NF200 under constant-pressure dead-end mode, with and without stirring, and several methods (contact angle, scanning electronic microscopy, Zeta potential, Fourier transform infra-red spectroscopy) were used to characterize membranes. Results show selected OMPs in MQ could be rejected (about 40%) by a clean NF200 membrane. The main rejection mechanism was initial absorption by the membrane followed by size exclusion (electric charge interaction plays a less important role). The wastewater matrix could enhance the rejection significantly (up to 90%) because effluent organic matter (EfOM) enhanced size exclusion and electric charge interaction through blocking membrane pores and forming a gel layer as well as binding some OMPs through partitioning followed by retention by NF. Third, an anaerobic bioreactor was set up to evaluate the anaerobic biodegradability of selected OMPs. Results showed selected OMPs could be absorbed by sludge and reached equilibrium within one day, and then were consumed by anaerobic microorganism with a half life 9.4 days for

  15. Anaerobic biodegradation of cyanide under methanogenic conditions.

    Science.gov (United States)

    Fallon, R D; Cooper, D A; Speece, R; Henson, M

    1991-01-01

    Upflow, anaerobic, fixed-bed, activated charcoal biotreatment columns capable of operating at free cyanide concentrations of greater than 100 mg liter-1 with a hydraulic retention time of less than 48 h were developed. Methanogenesis was maintained under a variety of feed medium conditions which included ethanol, phenol, or methanol as the primary reduced carbon source. Under optimal conditions, greater than 70% of the inflow free cyanide was removed in the first 30% of the column height. Strongly complexed cyanides were resistant to removal. Ammonia was the nitrogen end product of cyanide transformation. In cell material removed from the charcoal columns, [14C]bicarbonate was the major carbon end product of [14C]cyanide transformation. PMID:1872600

  16. Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production.

    Science.gov (United States)

    Gikas, Petros; Zhu, Baoning; Batistatos, Nicolas Ion; Zhang, Ruihong

    2018-06-15

    Municipal solid waste (MSW) contains a large fraction of biodegradable organic materials. When disposed in landfills, these materials can cause adverse environmental impact due to gaseous emissions and leachate generation. This study was performed with an aim of effectively separating the biodegradable materials from a Mechanical Biological Treatment (MBT) facility and treating them in well-controlled anaerobic digesters for biogas production. The rotary drum reactor (RDR) process (a sub-process of the MBT facilities studied in the present work) was evaluated as an MSW pretreatment technology for separating and preparing the biodegradable materials in MSW to be used as feedstock for anaerobic digestion. The RDR processes used in six commercial MSW treatment plants located in the USA were surveyed and sampled. The samples of the biodegradable materials produced by the RDR process were analyzed for chemical and physical characteristics as well as anaerobically digested in the laboratory using batch reactors under thermophilic conditions. The moisture content, TS, VS and C/N of the samples varied between 64.7 and 44.4%, 55.6 to 35.3%, 27.0 to 41.3% and 24.5 to 42.7, respectively. The biogas yield was measured to be between 533.0 and 675.6 mL g -1 VS after 20 days of digestion. Approximately 90% of the biogas was produced during the first 13 days. The average methane content of the biogas was between 58.0 and 59.9%. The results indicated that the biodegradable materials separated from MSW using the RDR processes could be used as an excellent feedstock for anaerobic digestion. The digester residues may be further processed for compost production or further energy recovery by using thermal conversion processes such as combustion or gasification. Copyright © 2017. Published by Elsevier Ltd.

  17. Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions

    Science.gov (United States)

    Dominic, J.; Nambi, I. M.

    2013-12-01

    Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization

  18. Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor.

    Science.gov (United States)

    Stamper, D M; Tuovinen, O H

    1998-01-01

    Alachlor, metolachlor, and propachlor are detoxified in biological systems by the formation of glutathione-acetanilide conjugates. This conjugation is mediated by glutathione-S-transferase, which is present in microorganisms, plants, and mammals. Other organic sulfides and inorganic sulfide also react through a nucleophilic attack on the 2-chloro group of acetanilide herbicides, but the products are only partially characterized. Sorption in soils and sediments is an important factor controlling the migration and bioavailability of these herbicides, while microbial degradation is the most important factor in determining their overall fate in the environment. The biodegradation of alachlor and metolachlor is proposed to be only partial and primarily cometabolic, and the ring cleavage seems to be slow or insignificant. Propachlor biodegradation has been reported to proceed to substantial (> 50%) mineralization of the ring structure. Reductive dechlorination may be one of the initial breakdown mechanisms under anaerobic conditions. Aerobic and anaerobic transformation products vary in their polarity and therefore in soil binding coefficient. A catabolic pathway for chloroacetanilide herbicides has not been presented in the literature because of the lack of mineralization data under defined cultural conditions.

  19. Anaerobic biotransformation of estrogens

    International Nuclear Information System (INIS)

    Czajka, Cynthia P.; Londry, Kathleen L.

    2006-01-01

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-α-ethynylestradiol (EE2) and 17-β-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 μg L -1 day -1 ), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-α-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-α-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments

  20. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    Science.gov (United States)

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  1. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  2. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    NARCIS (Netherlands)

    Leitao, R.; Santaellla, S.T.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2009-01-01

    The effects of hydraulic retention time (HRT) and influent COD concentration (CODInf) on Specific Methanogenic Activity (SMA) and the biodegradability of an anaerobic sludge need to be elucidated because of the discordant results available in literature. This information is important for the

  3. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors

    International Nuclear Information System (INIS)

    Alvarino, T.; Suarez, S.; Lema, J.M.; Omil, F.

    2014-01-01

    Highlights: • Removals of 16 PPCPs under aerobic and anaerobic conditions were quantified. • Operation conditions (HRT, v up , biomass activity and conformation) influenced removal. • Highest removals associated to aerobic biodegradation. • Sorption was only relevant for lipophilic compounds in the UASB reactor. - Abstract: The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion

  4. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors

    Energy Technology Data Exchange (ETDEWEB)

    Alvarino, T., E-mail: teresa.alvarino@usc.es; Suarez, S., E-mail: Sonia.suarez@usc.es; Lema, J.M., E-mail: juan.lema@usc.es; Omil, F., E-mail: francisco.omil@usc.es

    2014-08-15

    Highlights: • Removals of 16 PPCPs under aerobic and anaerobic conditions were quantified. • Operation conditions (HRT, v{sub up}, biomass activity and conformation) influenced removal. • Highest removals associated to aerobic biodegradation. • Sorption was only relevant for lipophilic compounds in the UASB reactor. - Abstract: The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion.

  5. Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Ahring, Birgitte Kiær

    2004-01-01

    The present study aimed at investigating the effect of thermal pretreatment of sludge at 70degreesC on the anaerobic degradation of three commonly found phthalic acid esters (PAE): di-ethyl phthalate (DEP), di-butyl phthalate (DBP), and di-ethylhexyl phthalate (DEHP). Also, the enzymatic treatment...... at 28degreesC with a commercial lipase was studied as a way to enhance PAE removal. Pretreatment at 70degreesC of the sludge containing PAE negatively influenced the anaerobic biodegradability of phthalate esters at 37degreesC. The observed reduction of PAE biodegradation rates after the thermal...... pretreatment was found to be proportional to the PAE solubility in water: the higher the solubility, the higher the percentage of the reduction (DEP > DBP > DEHP). PAE were slowly degraded during the pretreatment at 70degreesC, yet this was probably due to physicochemical reactions than to microbial...

  6. Effect of influent COD/SO4(2-) ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Ni, Jialing; Hojo, Toshimasa; Kubota, Kengo; Li, Yu-You

    2016-08-01

    A lab-scale upflow anaerobic sludge blanket (UASB) has been run for 250days to investigate the influence of influent COD/SO4(2-) ratios on the biodegradation behavior of starch wastewater and process performance. Stepwise decreasing COD/SO4(2-) ratio enhanced sulfidogenesis, complicating starch degradation routes and improving process stability. The reactor exhibited satisfactory performance at a wide COD/SO4(2-) range ⩾2, attaining stable biogas production of 1.15-1.17LL(-1)d(-1) with efficient simultaneous removal of total COD (73.5-80.3%) and sulfate (82.6±6.4%). Adding sulfate favored sulfidogenesis process and diversified microbial community, invoking hydrolysis-acidification of starch and propionate degradation and subsequent acetoclastic methanogenesis; whereas excessively enhanced sulfidogenesis (COD/SO4(2-) ratios UASB technology in water industry from basic science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    Science.gov (United States)

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  8. Anaerobic digestion of solid slaughterhouse waste chemically pretreated

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; Montoya, L.; Rodirguez, A.

    2009-07-01

    One of the mayor problems facing the industrialized world today is to solve environmental contamination and identify efficient treatment to give solution to the current problems like the generation of enormous quantities of liquid and solid wastes. The solid slaughterhouse waste, due to its elevated concentration of biodegradable organics, can be efficiently treated by anaerobic digestion although the high content of lignocellulose materials, makes it a slowly process. (Author)

  9. Anaerobic digestion of solid slaughterhouse waste chemically pretreated

    International Nuclear Information System (INIS)

    Flores, C.; Montoya, L.; Rodirguez, A.

    2009-01-01

    One of the mayor problems facing the industrialized world today is to solve environmental contamination and identify efficient treatment to give solution to the current problems like the generation of enormous quantities of liquid and solid wastes. The solid slaughterhouse waste, due to its elevated concentration of biodegradable organics, can be efficiently treated by anaerobic digestion although the high content of lignocellulose materials, makes it a slowly process. (Author)

  10. Life Cycle Assessment of different uses of biogas from anaerobic digestion of separately collected biodegradable waste in France. Final report; Analyse du Cycle de Vie des modes de valorisation energetique du biogaz issu de methanisation de la Fraction Fermentescible des Ordures Menageres collectee selectivement en France. Rapport Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In the first part of the study, Gaz de France (GdF) and the French Environment Energy Management Agency (ADEME) wished to identify the best method to use the biogas from anaerobic digestion of separately collected biodegradable waste (bio-waste). Secondly, GdF and ADEME wished to evaluate the strength and weaknesses of the two main different organic recycling: anaerobic digestion (methanization) and composting. The study is based on the life cycle assessment method. The life cycle assessment used for this study consists in quantifying the environmental impacts of all of the activities which are related to the chosen use method. This methodology involves compiling a detailed account of all substances and energy flows removed or emitted from or into the environment at each stage of the life cycle. These flows are then translated into indicators of potential environment impacts. This methodology is based on the international standards ISO14040 and ISO 14044. The life cycle assessment was performed by RDC Environnement. In this study, two questions were treated: - Which is the best valorisation method for biogas produced from the anaerobic digestion of separately collected biodegradable waste: fuel, heat or electricity? ('Biogas' question); - Which is the best treatment for the separately collected biodegradable waste: anaerobic digestion (methanization) or industrial composting? ('Composting' question). The field of the study includes the arrival of the separately collected biodegradable waste at the anaerobic unit as well as the utilisation of the biogas energy and the agricultural use of the digestate from anaerobic digestion. For each biogas utilisation, the environmental impacts of each life cycle stage were considered as well as the impacts that were avoided due to the substitution of the use of non-renewable energy ('conventional' procedures). The modelling of the direct composting of the biodegradable waste was realised taking into

  11. Observation on the biodegradation and bioremediation potential of methyl t-butyl ether

    International Nuclear Information System (INIS)

    Salanitro, J.; Wisniewski, H.; McAllister, P.

    1995-01-01

    There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies

  12. Biodegradation of uranium-contaminated waste oil

    International Nuclear Information System (INIS)

    Hary, L.F.

    1983-01-01

    The Portsmouth Gaseous Diffusion Plant routinely generates quantities of uranium-contaminated waste oil. The current generation rate of waste oil is approximately 2000 gallons per year. The waste is presently biodegraded by landfarming on open field soil plots. However, due to the environmental concerns associated with this treatment process, studies were conducted to determine the optimum biodegradation conditions required for the destruction of this waste. Tests using respirometric flasks were conducted to determine the biodegradation rate for various types of Portsmouth waste oil. These tests were performed at three different loading rates, and on unfertilized and fertilized soil. Additional studies were conducted to evaluate the effectiveness of open field landfarming versus treatment at a greenhouse-like enclosure for the purpose of maintaining soil temperatures above ambient conditions. The respirometric tests concluded that the optimum waste oil loading rate is 10% weight of oil-carbon/weight of soil (30,600 gallons of uranium-contaminated waste oil/acre) on soils with adjusted carbon:nitrogen and carbon:phosphorus ratios of 60:1 and 800:1, respectively. Also, calculational results indicated that greenhouse technology does not provide a significant increase in biodegradation efficiency. Based on these study results, a 6300 ft. 2 abandoned anaerobic digester sludge drying bed is being modified into a permanent waste oil biodegradation facility. The advantage of using this area is that uranium contamination will be contained by the bed's existing leachate collection system. This modified facility will be capable of handling approximately 4500 gallons of waste oil per year; accordingly current waste generation quantities will be satisfactorily treated. 15 refs., 14 figs., 4 tabs

  13. The role of natural wood constituents on the anaerobic treatability of forest industry wastewaters

    NARCIS (Netherlands)

    Sierra - Alvarez, R.

    1990-01-01

    Anaerobic treatment has been shown to be an efficient and energy conserving method for treating various types of readily biodegradable non-inhibitory forest industry wastewaters. However, the high toxicity of paper mill effluents derived from chemical wood processing operations has hampered

  14. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    Science.gov (United States)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  15. Anaerobic digestion of animal by-products and slaughterhouse waste: main process limitations and microbial community interactions

    OpenAIRE

    Palatsi Civit, Jordi; Viñas, Marc; Guivernau, Miriam; Fernández García, Belén; Flotats Ripoll, Xavier

    2011-01-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270–300 LCH4 kg 1 COD) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 gCOD kg 1, a clear inhibitory process was monitored. Despite the reported severe inhibition, related to l...

  16. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  17. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Ying Guangguo; Yu Xiangyang; Kookana, Rai S.

    2007-01-01

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  18. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guangguo, Ying [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Xiangyang, Yu [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  19. Fate of N-nitrosodimethylamine in recycled water after recharge into anaerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Pitoi, M M; Furness, A J; Bastow, T P; McKinley, A J

    2012-03-15

    Laboratory and field experiments were undertaken to assess the fate of N-nitrosodimethylamine (NDMA) in aerobic recycled water that was recharged into a deep anaerobic pyritic aquifer, as part of a managed aquifer recharge (MAR) strategy. Laboratory studies demonstrated a high mobility of NDMA in the Leederville aquifer system with a retardation coefficient of 1.1. Anaerobic degradation column and (14)C-NDMA microcosm studies showed that anaerobic conditions of the aquifer provided a suitable environment for the biodegradation of NDMA with first-order kinetics. At microgram per litre concentrations, inhibition of biodegradation was observed with degradation half-lives (260±20 days) up to an order of magnitude greater than at nanogram per litre concentrations (25-150 days), which are more typical of environmental concentrations. No threshold effects were observed at the lower ng L(-1) concentrations with NDMA concentrations reduced from 560 ng L(-1) to recharge bore. These microcosm experiments showed a faster degradation rate than anaerobic microcosms, with a degradation half-life of 8±2 days, after a lag period of approximately 10 days. Results from a MAR field trial recharging the Leederville aquifer with aerobic recycled water showed that NDMA concentrations reduced from 2.5±1.0 ng L(-1) to 1.3±0.4 ng L(-1) between the recharge bore and a monitoring location 20 m down gradient (an estimated aquifer residence time of 10 days), consistent with data from the aerobic microcosm experiment. Further down gradient, in the anaerobic zone of the aquifer, NDMA degradation could not be assessed, as NDMA concentrations were too close to their analytical detection limit (<1 ng L(-1)). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. MICROBIAL DEGRADATION OF NITROGEN, OXYGEN AND SULFUR HETEROCYCLIC COMPOUNDS UNDER ANAEROBIC CONDITIONS: STUDIES WITH AQUIFER SAMPLES

    Science.gov (United States)

    The potential for anaerobic biodegradation of 12 heterocyclic model compounds was studied. Nine of the model compounds were biotransformed in aquifer slurries under sulfate-reducing or methanogenic conditions. The nitrogen and oxygen heterocyclic compounds were more susceptible t...

  1. Continuous treatment of N-Methyl-p-nitro aniline (MNA) in an Upflow Anaerobic Sludge Blanket (UASB) bioreactor

    Science.gov (United States)

    Olivares, Christopher I.; Wang, Junqin; Silva Luna, Carlos D.; Field, Jim A.; Abrell, Leif; Sierra-Alvarez, Reyes

    2017-01-01

    N-methyl-p-nitroaniline (MNA) is an ingredient of insensitive munitions (IM) compounds that serves as a plasticizer and helps reduce unwanted detonations. As its use becomes widespread, MNA waste streams will be generated, necessitating viable treatment options. We studied MNA biodegradation and its inhibition potential to, a representative anaerobic microbial population in wastewater treatment, methanogens. Anaerobic biodegradation and toxicity assays were performed and an up-flow anaerobic sludge blanket reactor (UASB) was operated to test continuous degradation of MNA. MNA was transformed almost stoichiometrically to N-methyl-p-phenylenediamine (MPD). MPD was not mineralized, however, it was readily autoxidized and polymerized extensively upon aeration at pH = 9. In the UASB reactor, MNA was fully degraded up to a loading rate of 297.5 μM MNA d-1). Regarding toxicity, MNA was very inhibitory to acetoclastic methanogens (IC50 = 103 μM) whereas MPD was much less toxic, causing only 13.9% inhibition at the highest concentration tested (1025 μM). The results taken as a whole indicate that anaerobic sludge can transform MNA to MPD continuously, and that the transformation decreases the cytotoxicity of the parent pollutant. MPD can be removed through extensive polymerization. These insights could help define efficient treatment options for waste streams polluted with MNA. PMID:26454121

  2. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  3. ADM1-based modeling of anaerobic digestion of swine manure fibers pretreated with aqueous ammonia soaking

    OpenAIRE

    Jurado, Esperanza; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    Anaerobic digestion of manure fibers present challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) and subsequent ammonia removal has been tested as a simple and cheap method to disrupt the lignocellulose and increase the methane potential and the biogas productivity of manure fibers. In the present study, mesophilic anaerobic digestion of AAS pretreated manure fibers was tested in CSTR-type digesters fed with swine manure and/or a mixture of swine manure and AAS pretrea...

  4. Modeling flow inside an anaerobic digester by CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Alexandra Martinez; Jimenez, P. Amparo Lopez [Departmento do Ingenieria Hidralica y Medio Ambiente, Universitat Politecnica de Valencia, Camino de Vera S/N 46022 (Spain); Martinez, Tatiana Montoya; Monanana, Vincente Fajardo [Grupo Aquas de Valencia. Avenida Marques del Turia 19 46005 Valencia (Spain)

    2011-07-01

    Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its important role in performance, hydraulics of flow inside digesters has not been quantified or adequately characterized. In this contribution a three-dimensional steady-state computational fluid dynamics (CFD) simulation has been performed for a particular anaerobic digester, in order to visualize the flow patterns. Flow and velocities profiles have been represented inside the digester to identify possible dead zones or stratifications. The geometry of a real digester installed in Valencia Waste Water Treatment Plant (located in Quart-Benager, Valencia, Spain) has been used in order to consider the proposed methodology.

  5. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.

    2004-01-01

    Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of the theoretical maximum. Increased methane recovery from organic waste would lead to reduced handling of digested solilds, lower methane emissions to the environment, and higher green energy...

  6. Anaerobic Co-Digestion of the Microalgae Scenedesmus Sp.

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Suarez, J. L.; Carreras, N.

    2011-06-07

    Microalgae biomass has been widely studied for biogas production over the last years and results show that anaerobic digestion is often limited by the low C/N ratio of this type of biomass. Therefore, codigestion with substrates of high C/N ratio is necessary. The objectives of this study are to set up an experimental method that ease reproducibility and control of anaerobic digestion processes in laboratory conditions and to determine the biodegradability and biogas production potential of the co-digestion process of microalgae Scenedesmus sp. and energy crop Opuntia ficus indica (L.) Miller. Results obtained showed that higher C/N ratios are preferred in order to maximize methane production. Highest methane yield obtained was 0.252m3CH4/Kg VS and degradability expressed as percentage COD reduced is around 30% for the ideal mixture found, made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. A laboratory setup using MicroOxymax respirometer, after its adaptation to work under anaerobic conditions, can be used for the monitoring of anaerobic digestion processes. Scenedesmus sp. as sole substrate for anaerobic digestion does not give good results due to low C/N ratio. However, when codigesting it with O. ficus-indica methane production is satisfactory. Best mixture was made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. (Author)

  7. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Variability in plume (redox) biogeochemistry

    Science.gov (United States)

    McLeod, Heather C.; Roy, James W.; Slater, Gregory F.; Smith, James E.

    2018-01-01

    The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175 cm high × 525 cm long) sand aquifer tank for 330 days, with a vertical shift in plume position and increased nutrient inputs occurring at Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.

  9. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    de Best, JH; Hunneman, P; Doddema, HJ; Janssen, DB; Harder, W; Doddema, Hans J.

    1999-01-01

    Carbon tetrachloride (52 mu M) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  10. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    Best, J.H. de; Hunneman, P.; Doddema, H.J.; Janssen, D.B.; Harder, W.

    1999-01-01

    Carbon tetrachloride (52 μM) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  11. Anaerobic fermentation of beef cattle manure. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, A.G.; Chen, Y.R.; Varel, V.H.

    1981-01-01

    The research to convert livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation are summarized. The major biological and operational factors involved in methanogenesis were discussed, and a kinetic model that describes the fermentation process was presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration were shown to have significant effects on CH/sub 4/ production rate. The kinetic model predicted methane production rates of existing pilot and full-scale fermentation systems to within 15%. The highest methane production rate achieved by the fermenter was 4.7 L CH/sub 4//L fermenter day. This is the highest rate reported in the literature and about 4 times higher than other pilot or full-scale systems fermenting livestock manures. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter designs by selecting design criteria that maximize the net energy production per unit cost was presented. Based on the results, we believe that the economics of anaerobic fermentation is sufficiently favorable for farm-scale demonstration of this technology.

  12. Biodegradation of cyanide in groundwater and soils from gasworks sites in south-eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, S.M.E.; Weaver, T.R.; Lawrence, C.R. [University of Melbourne, Parkvills, Vic. (Australia). School of Earth Sciences

    1999-07-01

    Groundwater from a gasworks site in south-eastern Australia has been found to contain high concentrations of cyanide (total), sulphate, and ammonia (1400 mg L{sup -1}, 6500 mg L{sup -1}, and 580 mg L{sup -1} respectively). Soil from another gasworks site has been found to contain 587 mg kg{sup -1} of cyanide (total), with concentrations of cyanide in the groundwater at this site being relatively low ({lt} 21 mgL{sup -1} CN(Total)). Experiments were conducted to determine the biodegradation rates of cyanide in groundwater and soils using samples from both sites. Column experiments and bioreactors were constructed to produce both aerobic and anaerobic conditions for the groundwater containing high concentrations of cyanide. Samples of water were taken periodically to analyse the pH, redox potential, temperature, and concentrations of cyanide (free and total), sulphate, ammonia, nitrate and dissolved organic carbon (DOC). Initial results indicate that concentrations of cyanide are declining in both aerobic and anaerobic conditions, with biodegradation one process producing degradation. 9 refs., 4 figs., 2 tabs.

  13. Effect of the two-stage thermal disintegration and anaerobic digestion of sewage sludge on the COD fractions

    Directory of Open Access Journals (Sweden)

    Ciaciuch Anna

    2017-09-01

    Full Text Available The research presents the changes in chemical oxygen demand (COD fractions during the two-stage thermal disintegration and anaerobic digestion (AD of sewage sludge in municipal wastewater treatment plant (WWTP. Four COD fractions have been separated taking into account the solubility of substrates and their susceptibility to biodegradation: inert soluble organic matter SI, readily biodegradable substrate SS, slowly biodegradable substrates XS and inert particulate organic material XI. The results showed that readily biodegradable substrates SS (46.8% of total COD and slowly biodegradable substrates XS (36.1% of total COD were dominant in the raw sludge effluents. In sewage effluents after two-stage thermal disintegration, the percentage of SS fraction increased to 90% of total COD and percentage of XS fraction decreased to 8% of total COD. After AD, percentage of SS fraction in total COD decreased to 64%, whereas the percentage of other fractions in effluents increased.

  14. Kraft pulp and paper mill wastewater treatment using fixed bed anaerobic reactors

    International Nuclear Information System (INIS)

    Damianovic, M. H. R. Z; Ruas, D.; Pires, E. C.; Foresti, E.

    2009-01-01

    The effluents of pulp mills contain a myriad of toxic compounds, biodegradable organic matter and sulfur compounds. to decrease the amount of fresh water required for pulp and paper production closed circuits are in use, however, higher concentrations of slat, as oxidized sulfur compounds, are encountered in the wastewaters. energy costs and new environmental concerns are motivating the use of anaerobic pretreatment as a way to decrease energy expenditure in the treatment plant together with lower sludge production. In anaerobic environment, the organic matter removal can follow methanogenic or sulfidogenic paths and with the latter simultaneous reduction of the oxidized sulfur compounds also occurs. (Author)

  15. Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Larsen, Bjarne

    2016-01-01

    A new technology for pre-treating source-separated organic household waste prior to anaerobic digestion was assessed, and its performance was compared to existing alternative pre-treatment technologies. This pre-treatment technology is based on waste pulping with water, using a specially developed...... screw mechanism. The pre-treatment technology rejects more than 95% (wet weight) of non-biodegradable impurities in waste collected from households and generates biopulp ready for anaerobic digestion. Overall, 84-99% of biodegradable material (on a dry weight basis) in the waste was recovered...... in the biopulp. The biochemical methane potential for the biopulp was 469±7mL CH4/g ash-free mass. Moreover, all Danish and European Union requirements regarding the content of hazardous substances in biomass intended for land application were fulfilled. Compared to other pre-treatment alternatives, the screw...

  16. Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge.

    Science.gov (United States)

    O'Kelly, Brendan C

    2008-01-01

    The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials.

  17. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture

    International Nuclear Information System (INIS)

    Fogel, M.M.; Taddeo, A.R.; Fogel, S.

    1986-01-01

    Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14 CO 2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO 2 . Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations

  18. Effect of inoculum-substrate ratio on acclimatization of pharmaceutical effluent in an anaerobic batch reactor.

    Science.gov (United States)

    Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R

    2008-07-01

    Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on

  19. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    International Nuclear Information System (INIS)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Highlights: → Energy balances were calculated for the thermal treatment of biodegradable wastes. → For wood and RDF, combustion in dedicated facilities was the best option. → For paper, garden and food wastes and mixed waste incineration was the best option. → For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  20. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    Directory of Open Access Journals (Sweden)

    Shixiong Sheng

    2017-12-01

    Full Text Available This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7 to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.

  1. Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures

    NARCIS (Netherlands)

    Tan, N.C.G.; Prenefeta-Boldú, F.X.; Opsteeg, J.L.; Lettinga, G.; Field, J.A.

    1999-01-01

    A prerequisite for the mineralization (complete biodegradation) of many azo dyes is a combination of reductive and oxidative steps. In this study, the biodegradation of two azo dyes, 4-phenylazophenol (4-PAP) and Mordant Yellow 10 (4-sulfophenylazo-salicylic acid; MY10), was evaluated in batch

  2. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    Energy Technology Data Exchange (ETDEWEB)

    Xun, Luying

    2009-11-20

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bind EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10^(-10) nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.

  3. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    International Nuclear Information System (INIS)

    Xun, Luying

    2009-01-01

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bind EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10 -10 nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.

  4. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  5. ADM1-based modeling of anaerobic digestion of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    fibers. In the present study, mesophilic anaerobic digestion of AAS pretreated manure fibers was tested in CSTR-type digesters fed with swine manure and/or a mixture of swine manure and AAS pretreated manure fibers. The Anaerobic Digestion Model No.1 (ADM1) was used for the prediction of the effect......Anaerobic digestion of manure fibers present challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) and subsequent ammonia removal has been tested as a simple and cheap method to disrupt the lignocellulose and increase the methane potential and the biogas productivity of manure...... that the AAS had on the efficiency of the anaerobic digestion of manure. Kinetic parameters were estimated by fitting of the model to data from manure fed digesters. The model was able to satisfactorily simulate the behaviour of digesters fed with manure. However, the model predictions were poorer...

  6. Assessment of MTBE biodegradation in contaminated groundwater using 13C and 14C analysis: Field and laboratory microcosm studies

    International Nuclear Information System (INIS)

    Thornton, Steven F.; Bottrell, Simon H.; Spence, Keith H.; Pickup, Roger; Spence, Michael J.; Shah, Nadeem; Mallinson, Helen E.H.; Richnow, Hans H.

    2011-01-01

    Highlights: → Carbon isotope fractionation for MTBE varies with dissolved oxygen concentration. → Carbon isotope fractionation can underestimate MTBE biodegradation at plume fringes. → Fractionation factors must be for specific biodegradation mechanisms and conditions. → Specific microbial populations influence carbon isotope fractionation in groundwater. - Abstract: Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14 C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ 13 C compositions of MTBE in groundwater samples from the plume showed no significant 13 C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O 2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O 2 . The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7 per mille in the MTBE δ 13 C composition and an isotope enrichment factor (ε) of -1.53 per mille when dissolved O 2 was not limiting. However, for the low dissolved O 2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7 per mille, corresponding to an ε value of -0.22 per mille to -0.24 per mille. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O 2

  7. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel

    International Nuclear Information System (INIS)

    Wyrwas, Bogdan; Chrzanowski, Łukasz; Ławniczak, Łukasz; Szulc, Alicja; Cyplik, Paweł; Białas, Wojciech; Szymański, Andrzej; Hołderna-Odachowska, Aleksandra

    2011-01-01

    Highlights: ► Efficient degradation of Triton X-100 under both aerobic and aerobic conditions. ► Triton X-100 was most likely degraded via the ‘central fission’ mechanism. ► Preferential degradation of Triton X-100 over diesel oil. ► The presence of surfactants decreased diesel oil biodegradation efficiency. - Abstract: The hypothesis regarding preferential biodegradation of surfactants applied for enhancement of microbial hydrocarbons degradation was studied. At first the microbial degradation of sole Triton X-100 by soil isolated hydrocarbon degrading bacterial consortium was confirmed under both full and limited aeration with nitrate as an electron acceptor. Triton X-100 (600 mg/l) was utilized twice as fast for aerobic conditions (t 1/2 = 10.3 h), compared to anaerobic conditions (t 1/2 = 21.8 h). HPLC/ESI-MS analysis revealed the preferential biodegradation trends in both components classes of commercial Triton X-100 (alkylphenol ethoxylates) as well as polyethylene glycols. The obtained results suggest that the observed changes in the degree of ethoxylation for polyethylene glycol homologues occurred as a consequence of the ‘central fission’ mechanism during Triton X-100 biodegradation. Subsequent experiments with Triton X-100 at approx. CMC concentration (150 mg/l) and diesel oil supported our initial hypothesis that the surfactant would become the preferred carbon source even for hydrocarbon degrading bacteria. Regardless of aeration regimes Triton X-100 was utilized within 48–72 h. Efficiency of diesel oil degradation was decreased in the presence of surfactant for aerobic conditions by approx. 25% reaching 60 instead of 80% noted for experiments without surfactant. No surfactant influence was observed for anaerobic conditions.

  8. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    Science.gov (United States)

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  9. Anaerobic digestion of residues from production and refining of vegetable oils as an alternative to conventional solutions.

    Science.gov (United States)

    Torrijos, M; Thalla, Arun Kumar; Sousbie, P; Bosque, F; Delgenès, J P

    2008-01-01

    The purpose of this work was to study the anaerobic digestion of by-products generated during the production and refining of oil with the objective of proposing an alternative solution (methanisation) to the conventional solutions while reducing the energy consumption of fossil origin on refinery sites. The production of sunflower oil was taken as example. Glycerine from the production of biodiesel was also included in this study. The results show that glycerine has a high potential for methanisation because of its high methane potential (465 ml CH4/g VS) and high metabolization rates (0.42 g VS/g VSS.d). The use of oil cake as substrate for anaerobic digestion is not interesting because it has a low methane potential of 215 ml CH4/g VS only and because it is easily recovered in animal feed. Six residues have quite a high methane potential (465 to 850 ml CH4/g VS) indicating a good potential for anaerobic digestion. However, they contain a mixture of rapidly and slowly biodegradable organic matter and the loading rates must remain quite low (0.03 to 0.09 g VS/g VSS.d) to prevent any accumulation of slowly biodegradable solids in the digesters. IWA Publishing 2008.

  10. Aerobic versus Anaerobic Microbial Degradation of Clothianidin under Simulated California Rice Field Conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Tomco, Patrick L; Howard, Megan W; Schempp, Tabitha T; Stewart, Davis J; Stacey, Phillip M; Ball, David B; Tjeerdema, Ronald S

    2016-09-28

    Microbial degradation of clothianidin was characterized under aerobic and anaerobic California rice field conditions. Rate constants (k) and half-lives (DT50) were determined for aerobic and anaerobic microcosms, and an enrichment experiment was performed at various nutrient conditions and pesticide concentrations. Temperature effects on anaerobic degradation rates were determined at 22 ± 2 and 35 ± 2 °C. Microbial growth was assessed in the presence of various pesticide concentrations, and distinct colonies were isolated and identified. Slow aerobic degradation was observed, but anaerobic degradation occurred rapidly at both 25 and 35 °C. Transformation rates and DT50 values in flooded soil at 35 ± 2 °C (k = -7.16 × 10(-2) ± 3.08 × 10(-3) day(-1), DT50 = 9.7 days) were significantly faster than in 25 ± 2 °C microcosms (k= -2.45 × 10(-2) ± 1.59 × 10(-3) day(-1), DT50 = 28.3 days). At the field scale, biodegradation of clothianidin will vary with extent of oxygenation.

  11. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects

    Directory of Open Access Journals (Sweden)

    Aspasia A. Chatzipaschali

    2012-09-01

    Full Text Available Cheese whey utilization is of major concern nowadays. Its high organic matter content, in combination with the high volumes produced and limited treatment options make cheese whey a serious environmental problem. However, the potential production of biogas (methane, hydrogen or other marketable products with a simultaneous high COD reduction through appropriate treatment proves that cheese whey must be considered as an energy resource rather than a pollutant. The presence of biodegradable components in the cheese whey coupled with the advantages of anaerobic digestion processes over other treatment methods makes anaerobic digestion an attractive and suitable treatment option. This paper intends to review the most representative applications of anaerobic treatment of cheese whey currently being exploited and under research. Moreover, an effort has been made to categorize the common characteristics of the various research efforts and find a comparative basis, as far as their results are concerned. In addition, a number of dairy industries already using such anaerobic digestion systems are presented.

  12. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).

    Science.gov (United States)

    Marić, Nenad; Matić, Ivan; Papić, Petar; Beškoski, Vladimir P; Ilić, Mila; Gojgić-Cvijović, Gordana; Miletić, Srđan; Nikić, Zoran; Vrvić, Miroslav M

    2018-01-20

    The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O 2 , NO 3 - , Mn, Fe, SO 4 2- , HCO 3 - ), δ 13 C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ 13 C values of DIC ranged from - 15.83 to - 2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes-the activity of biodegradation mechanisms in field conditions.

  13. Identification of anaerobic microorganisms for converting kitchen waste to biogas

    International Nuclear Information System (INIS)

    Amirhossein Malakahmad; Shahrom Mohd Zain; Noor Ezlin Ahmad Basri; Shamsul Rahman Mohamed Kutty; Mohd Hasnain Isa

    2010-01-01

    Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system. (Author)

  14. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions.

    Science.gov (United States)

    Palatsi, J; Viñas, M; Guivernau, M; Fernandez, B; Flotats, X

    2011-02-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 L(CH4) kg(-1)(COD)) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 g(COD) kg(-1), a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Anaerobic biodegradability essays from brewery wastewater using granular and flocculent sludges

    OpenAIRE

    C J Collazos Chávez; M C Díaz Báez

    2003-01-01

    At the beginning of nineties the colombian beer industry begun the application of anaerobic technology for the treatment of their wastewater efluents throught different regions of the country. These treatment plants have not been working appropriately due to different factors, and are creating concern among the industrial sector and the water pollution control agencies. This work constitutes the second phase of a research project designed to establish a selection and improvement criteria of t...

  16. Transformation and biodegradation of 1,2,3-trichloropropane (TCP).

    Science.gov (United States)

    Samin, Ghufrana; Janssen, Dick B

    2012-09-01

    1,2,3-Trichloropropane (TCP) is a persistent groundwater pollutant and a suspected human carcinogen. It is also is an industrial chemical waste that has been formed in large amounts during epichlorohydrin manufacture. In view of the spread of TCP via groundwater and its toxicity, there is a need for cheap and efficient technologies for the cleanup of TCP-contaminated sites. In situ or on-site bioremediation of TCP is an option if biodegradation can be achieved and stimulated. This paper presents an overview of methods for the remediation of TCP-contaminated water with an emphasis on the possibilities of biodegradation. Although TCP is a xenobiotic chlorinated compound of high chemical stability, a number of abiotic and biotic conversions have been demonstrated, including abiotic oxidative conversion in the presence of a strong oxidant and reductive conversion by zero-valent zinc. Biotransformations that have been observed include reductive dechlorination, monooxygenase-mediated cometabolism, and enzymatic hydrolysis. No natural organisms are known that can use TCP as a carbon source for growth under aerobic conditions, but anaerobically TCP may serve as electron acceptor. The application of biodegradation is hindered by low degradation rates and incomplete mineralization. Protein engineering and genetic modification can be used to obtain microorganisms with enhanced TCP degradation potential.

  17. Treatment of melanoidin wastewater by anaerobic digestion and coagulation.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Götz, Gesine; Geißen, Sven-Uwe

    2015-01-01

    Melanoidins are dark-coloured recalcitrant pollutants found in many industrial wastewaters including coffee-manufacturing effluent, molasses distillery wastewater (MDWW) and other wastewater with molasses as the raw material. The wastewaters are mostly treated with anaerobic digestion after some dilution to minimize the inhibition effect. However, the dark colour and recalcitrant dissolved organic carbon (DOC) mainly caused by melanoidin are not effectively removed. The aim of this study was to investigate the removal of colour and remnant DOC by different coagulants from anaerobically digested MDWW. From the six coagulants tested, ferric chloride had the highest melanoidin (48%), colour (92.7%) and DOC (63.3%) removal at pH 5 and a dosage of 1.6 g/l. Both polymer and inorganic salt coagulants tested had optimal colour, melanoidin and DOC removal at acidic pH. The molecular size distribution of synthetic melanoidins by liquid chromatography-organic carbon detection indicated a preferential removal of high-molecular-weight melanoidins over low weight melanoidins by the coagulation. Further studies should focus on how to improve biodegradability of the treated effluent for it to be reused as dilution water for anaerobic digestion.

  18. Anaerobic degradation of phthalates in unsorted household wastes; Anaerob nedbrytning av ftalater med ymp fraan anaerobt behandlat hushaallsavfall

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, H.

    1993-10-01

    Phthalic acid and diethyl phthalate were tested for their biodegradability in anaerobic, unsorted household wastes. The compounds were analyzed by measuring absorbance after centrifugation of a water suspension. This cheap and rapid method was proven to be applicable. Both phthalic acid and diethyl phthalate disappeared almost completely in 1-3 months, using initial concentrations from 50 to 250 mg/l. The same methodology was used for diethylhexyl phthalate, but did not work. The stoichiometrically expected amounts of methane were not found for any of the compounds, and in case of diethyl phthalate an inhibition of the methane production was observed. (36 refs., 17 figs.)

  19. Effect of temperature on biodegradation of crude oil

    International Nuclear Information System (INIS)

    Zekri, A.; Chaalal, O.

    2005-01-01

    An active strain of anaerobic thermophilic bacteria was isolated from the environment of the United Arab Emirates. This project studied the effect of temperature, salinity and oil concentration on biodegradation of crude oil. Oil weight loss, microbial growth and the changes of the crude oil asphaltene concentration are used to evaluate the oil degradation by this strain. A series of batch experiments was performed to study the effects of bacteria on the degradation of crude oil. The effects of oil concentration, bacteria concentration, temperature and salinity on the biodegradation were investigated. The temperatures of the studied systems were varied between 35 and 75 o C and the salt concentrations were varied between 0 and 10%. Oil concentrations were ranged from 5 to 50% by volume. Experimental work showed the bacteria employed in this project were capable of surviving the harsh environment and degrading the crude oil at various conditions. Increasing the temperature increases the rate of oil degradation by bacteria. Increasing the oil concentration in general decreases the rate of bacteria oil degradation. Salinity plays a major role on the acceleration of biodegradation process of crude oil. An optimum salinity should be determined for every studied system. The finding of this project could be used in either the treatment of oil spill or in-situ stimulation of heavy oil wells. (author)

  20. Feasibility tests for treating shampoo and hair colorant wastewaters using anaerobic processes.

    Science.gov (United States)

    Ahammad, Shaikh Z; Yakubu, A; Dolfing, J; Mota, C; Graham, D W

    2012-01-01

    Wastes from the personal care product (PCP) industry are often high in biodegradable carbon, which makes them amenable to aerobic biological treatment, although process costs are usually high due to aeration inefficiencies, high electricity demand and production of large amounts of sludge. As such, anaerobic treatment technologies are being considered to lower net energy costs by reducing air use and increasing methane production. To assess the amenability of PCP wastes to anaerobic treatment, methane yields and rates were quantified in different anaerobic reactors treating typical PCP wastes, including wastes from shampoo and hair colorant products. Overall, shampoo wastes were more amenable to methanogenesis with almost double the methane yields compared with colour wastes. To assess relevant microbial guilds, qPCR was performed on reactor biomass samples. Methanosaetaceae abundances were always significantly higher than Methanosarcinaceae and Methanomicrobiales abundances (P shampoo wastes, differences cannot be explained by relative microbial abundances and probably result from the presence of inhibiting compounds in hair colorants (e.g., oxidants) at higher levels. Results showed that anaerobic technologies have great potential for treating PCP wastes, but additional work is needed to establish the basis of elevated methane yields and inhibition, especially when colorant wastes are present.

  1. Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions

    International Nuclear Information System (INIS)

    Waisner, S.; Hansen, L.; Fredrickson, H.; Nestler, C.; Zappi, M.; Banerji, S.; Bajpai, R.

    2002-01-01

    Biodegradation of 14 C-tagged hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied in aerobic, anaerobic, and anaerobic/aerobic slurries to identify the conditions maximizing RDX-mineralization in Cornhusker Army Ammunition Plant (CAAP, NE) groundwater. Supplementation with phosphate and adequate quantities of acetate caused 25% mineralization of RDX in 3 weeks by microorganisms native to CAAP. Under anaerobic conditions, the same supplementation resulted in 20% mineralization in 3 weeks and 30% mineralization in 6 weeks. The highest degree of mineralization (50%) was obtained under aerobic conditions when the contaminated groundwater was augmented with a consortium of three microbes isolated from another RDX contaminated soil (Hastings, NE) in addition to supplemented with phosphate and acetic acid. Use of complex organic sources (potato or corn starch) slowed down the rates of mineralization under anaerobic conditions, but rapid mineralization ensued as soon as the aerobic conditions were created. Final RDX concentrations in aqueous phase were below detection limit under most conditions. Assimilation of RDX by the cells was negligible

  2. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  3. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  4. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    Haritash, A.K.; Kaushik, C.P.

    2009-01-01

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H 2 O, CO 2 (aerobic) or CH 4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can

  5. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  6. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    Directory of Open Access Journals (Sweden)

    Alejandra eAlvarado

    2014-11-01

    Full Text Available Anaerobic digestion (AD is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of anaerobic digestion technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for anaerobic digestion, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

  7. Ultrasound pre-treatment for anaerobic digestion improvement.

    Science.gov (United States)

    Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F

    2009-01-01

    Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.

  8. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    Science.gov (United States)

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  9. Biodegradability of leachates from Chinese and German municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    SELIC E.; WANG Chi; BOES N., HERBELL J.D.

    2007-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.

  10. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion.

    Science.gov (United States)

    Hillion, Marie-Lou; Moscoviz, Roman; Trably, Eric; Leblanc, Yoann; Bernet, Nicolas; Torrijos, Michel; Escudié, Renaud

    2018-01-01

    Biodegradable wastes produced seasonally need an upstream storage, because of the requirement for a constant feeding of anaerobic digesters. In the present article, the potential of co-ensiling biodegradable agro-industrial waste (sugar beet leaves) and lignocellulosic agricultural residue (wheat straw) to obtain a mixture with low soluble sugar content was evaluated for long-term storage prior to anaerobic digestion. The aim is to store agro-industrial waste while pretreating lignocellulosic biomass. The dynamics of co-ensiling was evaluated in vacuum-packed bags at lab-scale during 180 days. Characterization of the reaction by-products and microbial communities showed a succession of metabolic pathways. Even though the low initial sugars content was not sufficient to lower the pH under 4.5 and avoid undesirable fermentations, the methane potential was not substantially impacted all along the experiment. No lignocellulosic damages were observed during the silage process. Overall, it was shown that co-ensiling was effective to store highly fermentable fresh waste evenly with low sugar content and offers new promising possibilities for constant long-term supply of industrial anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    Science.gov (United States)

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors.

    Science.gov (United States)

    Alvarino, T; Suarez, S; Lema, J M; Omil, F

    2014-08-15

    The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  14. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    Science.gov (United States)

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Design considerations and operational performance of Anaerobic Digester: A Review

    Directory of Open Access Journals (Sweden)

    Muzaffar Ahmad Mir

    2016-04-01

    Full Text Available Due to the decline in fossil fuel reservoirs, the researchers emphasized more on the production of biogas from organic waste. Producing the renewable energy from biodegradable waste helps to overcome the energy crisis and solid waste management, done by anaerobic digestion. Anaerobic digestion is controlled breakdown of organic matter into methane gas (60%, carbon dioxide (40%, trace components along with digested used as soil conditioner. However there is vast dearth of literature regarding the design considerations. The batch digestion system yields a cost-effective and economically viable means for conversion of the food waste to useful energy. It is therefore recommended that such process can be increasingly employed in order to get and simultaneously protect the environment .This paper aims to draw key analysis and concern about the design considerations, analysis of gas production, substrates and inoculums utilization, uses and impacts of biogas.

  16. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Enhancement of in situ biodegradation of organic compounds in groundwater by targeted pump and treat intervention

    International Nuclear Information System (INIS)

    Thornton, S.F.; Baker, K.M.; Bottrell, S.H.; Rolfe, S.A.; McNamee, P.; Forrest, F.; Duffield, P.; Wilson, R.D.; Fairburn, A.W.; Cieslak, L.A.

    2014-01-01

    Highlights: • Pumping reduces contaminant toxicity below levels which stimulate in situ biodegradation. • Pumping increases the mixing of background oxidants into the plume for anaerobic respiration. • Bacterial sulphate reduction is very sensitive to contaminant concentrations. • Stable isotope analysis confirms the contribution of different biodegradation processes. • Targeted pump and treatment can enhance the natural attenuation of complex plumes. - Abstract: This study demonstrates the value of targeted pump and treatment (PAT) to enhance the in situ biodegradation of organic contaminants in groundwater for improved restoration. The approach is illustrated for a plume of phenolic compounds in a sandstone aquifer, where PAT is used for hydraulic containment and removal of dissolved phase contaminants from specific depth intervals. Time-series analysis of the plume hydrochemistry and stable isotope composition of dissolved species (δ 34 S-SO 4 , δ 13 C-CH 4 , δ 13 C-TDIC (TDIC = Total Dissolved Inorganic Carbon)) in groundwater samples from high-resolution multilevel samplers were used to deduce changes in the relative significance of biodegradation processes and microbial activity in the plume, induced by the PAT system over 3 years. The PAT system has reduced the maximum contaminant concentrations (up to 6800 mg L −1 total phenols) in the plume by 50% to ∼70% at different locations. This intervention has (i) stimulated in situ biodegradation in general, with an approximate doubling of contaminant turnover based on TDIC concentration, which has increased from <200 mg L −1 to >350 mg L −1 , (ii) enhanced the activity of SO 4 -reducing microorganisms (marked by a declining SO 4 concentration with corresponding increase in SO 4 -δ 34 S to values >7–14‰ V-CDT relative to background values of 1.9–6.5‰ V-CDT ), and (iii) where the TDIC increase is greatest, has changed TDIC-δ 13 C from values of −10 to −15‰ V-PDB to ∼−20‰ V

  18. Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul.

    Science.gov (United States)

    Inanc, B; Calli, B; Saatci, A

    2000-01-01

    In this study, characterization and anaerobic treatability of leachate from Komurcuoda Sanitary Landfill located on the Asian part of Istanbul were investigated. Time based fluctuations in characteristics of leachate were monitored for an 8 month period. Samples were taken from a 200 m3 holding tank located at the lowest elevation of the landfill. COD concentrations have ranged between 18,800 and 47,800 mg/l while BOD5 between 6820 and 38,500 mg/L. COD and BOD5 values were higher in summer and lower in winter due to dilution by precipitation. On the other hand, it was quite interesting that such a dilution effect was not observed for ammonia. The highest ammonia concentration, 2690 mg/L was in November 1998. BOD5/COD ratio was larger than 0.7 for most samples indicating high biodegradability, and acidic phase of decomposition in the landfill. For anaerobic treatability, three different reactors, namely an upflow anaerobic sludge bed reactor, an anaerobic upflow filter and a hybrid bed reactor, were used. The anaerobic reactors were operated for more than 230 days and were continuing operation when this paper was prepared. Organic loading was increased gradually from 1.3 kg COD/m3.day to 8.2 kg COD/m3.day while hydraulic retention time was reduced from 2.4 days to 2.0 days. All the reactors showed similar performances against organic loadings with efficiencies between 80% and 90%. However the reactors have experienced high ammonia concentrations several times throughout the experimental period, and showed different inhibition levels. Anaerobic filter was the least affected reactor while UASB was the most. Hybrid bed reactor has exhibited a similar performance to anaerobic filter although not to the same degree.

  19. Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking

    OpenAIRE

    Jurado, E.; Antonopoulou, G.; Lyberatos, G.; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2016-01-01

    Anaerobic digestion of manure fibers presents challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) has been tested as a simple method to disrupt the lignocellulose and increase the methane yield of manure fibers. In the present study, mesophilic anaerobic digestion of AAS pretreated manure fibers was performed in CSTR-type digesters, fed with swine manure and/or a mixtureof swine manure and AAS pretreated manure fibers (at a total solids based ratio of 0.52 manure per0....

  20. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production.

    Science.gov (United States)

    Oberding, Lisa K; Gieg, Lisa M

    2018-01-01

    applications for effective fuel-contaminated site remediation and for improved recovery from oil reservoirs. Previous studies have clearly demonstrated that short-chain alkanes (C 17 ) that comprise many fuel mixtures. Using an enrichment culture derived from a freshwater fuel-contaminated site, we demonstrate that the model waxy alkane n -octacosane can be biodegraded under methanogenic conditions by a presumed Smithella phylotype. Compared with that of controls, we show an increased abundance and expression of the assA gene, which is known to be important for anaerobic n -alkane metabolism. Metabolite analyses revealed the presence of a range of α,ω-dicarboxylic acids found only in n -octacosane-degrading cultures, a novel finding that lends insight as to how anaerobic communities may access waxes as growth substrates in anoxic environments. Copyright © 2017 American Society for Microbiology.

  1. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion.

    Science.gov (United States)

    Zhao, Chen; Yan, Hu; Liu, Yan; Huang, Yan; Zhang, Ruihong; Chen, Chang; Liu, Guangqing

    2016-06-01

    Huge amounts of fruit residues are produced and abandoned annually. The high moisture and organic contents of these residues makes them a big problem to the environment. Conversely, they are a potential resource to the world. Anaerobic digestion is a good way to utilize these organic wastes. In this study, the biomethane conversion performances of a large number of fruit residues were determined and compared using batch anaerobic digestion, a reliable and easily accessible method. The results showed that some fruit residues containing high contents of lipids and carbohydrates, such as loquat peels and rambutan seeds, were well fit for anaerobic digestion. Contrarily, residues with high lignin content were strongly recommended not to be used as a single substrate for methane production. Multiple linear regression model was adopted to simulate the correlation between the organic component of these fruit residues and their experimental methane yield, through which the experimental methane yield could probably be predicted for any other fruit residues. Four kinetic models were used to predict the batch anaerobic digestion process of different fruit residues. It was shown that the modified Gompertz and Cone models were better fit for the fruit residues compared to the first-order and Fitzhugh models. The first findings of this study could provide useful reference and guidance for future studies regarding the applications and potential utilization of fruit residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC Treatment by 454-Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Chao Wei

    Full Text Available In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O integrated process for the treatment of petrochemical nanofiltration concentrate (NFC wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A and aerobic biofilm (Sample O, 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD and Total Organic Carbon (TOC removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN on average were 90.51% and 75.11% during the entire treatment process.

  3. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing

    Science.gov (United States)

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260

  4. Isolation of Bacterial Strain for Biodegradation of Fats, Oil and Grease

    International Nuclear Information System (INIS)

    Alkhatib, M.F.; Mohd Zahangir Alam; Shabana, H.F.M.

    2015-01-01

    Fat, oil and grease (FOG) deposition is one of the major problems that harm the environment and cause dissatisfaction for human. Uncontrolled and un-pre-treated FOG removal from the kitchen could lead to its accumulation in the piping system. Problems include the interference of fat with the aerobic microorganisms that are responsible in treating the wastewater by reducing oxygen transfer rates and for anaerobic microorganisms; their efficiency could also be reduced due to the reduction of the transport of soluble substrates to the bacterial biomass. Biodegradation could be one of the effective means to treat FOG. The main objective of this study is to isolate bacterial strains from the FOG waste and identify the strains that are capable in biodegrading FOG waste. FOG sample was collected from a sewer manhole. Enrichment technique was applied, followed by isolation of bacterial strains to determine which strain is able to degrade the FOG deposition. Some morphology for the bacterial strain was done to determine its characteristics. (author)

  5. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions.

    Science.gov (United States)

    Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S

    2018-07-01

    The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis

    International Nuclear Information System (INIS)

    Qu, X.; Vavilin, V.A.; Mazeas, L.; Lemunier, M.; Duquennoi, C.; He, P.-J.; Bouchez, T.

    2009-01-01

    Utilizing stable carbon isotope data to account for aceticlastic and non-aceticlastic pathways of methane generation, a model was created to describe laboratory batch anaerobic decomposition of cellulosic materials (office paper and cardboard). The total organic and inorganic carbon concentrations, methane production volume, and methane and CO 2 partial pressure values were used for the model calibration and validation. According to the fluorescent in situ hybridization observations, three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H 2 /H 2 CO 3 as well as acetate-oxidizing syntrophs, were considered. It was shown that temporary inhibition of aceticlastic methanogens by non-ionized volatile fatty acids or acidic pH was responsible for two-step methane production from office paper at 35 o C where during the first and second steps methane was generated mostly from H 2 /H 2 CO 3 and acetate, respectively. Water saturated and unsaturated cases were tested. According to the model, at the intermediate moisture (150%), much lower methane production occurred because of full-time inhibition of aceticlastic methanogens. At the lowest moisture, methane production was very low because most likely hydrolysis was seriously inhibited. Simulations showed that during cardboard and office paper biodegradation at 55 o C, non-aceticlastic syntrophic oxidation by acetate-oxidizing syntrophs and hydrogenotrophic methanogens were the dominant methanogenic pathways.

  7. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    Science.gov (United States)

    2016-02-11

    FINAL REPORT In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones SERDP Project ER-2306...volatile organic compound (CVOCs), ethene and ethane in groundwater at Raritan Arsenal Area 18C after in situ bioremediation . 4 List of...aquifers, the bioremediation approach most commonly used for chlorinated solvents. The ability of methanotrophs to biodegrade 1,4-dioxane was

  8. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  9. In-situ atrazine biodegradation dynamics in wheat (Triticum) crops under variable hydrologic regime

    Science.gov (United States)

    la Cecilia, Daniele; Maggi, Federico

    2017-08-01

    A comprehensive biodegradation reaction network of atrazine (ATZ) and its 18 byproducts was coupled to the nitrogen cycle and integrated in a computational solver to assess the in-situ biodegradation effectiveness and leaching along a 5 m deep soil cultivated with wheat in West Wyalong, New South Wales, Australia. Biodegradation removed 97.7% of 2 kg/ha ATZ yearly applications in the root zone, but removal substantially decreased at increasing depths; dechlorination removed 79% of ATZ in aerobic conditions and 18% in anaerobic conditions, whereas deethylation and oxidation removed only 0.11% and 0.15% of ATZ, respectively. The residual Cl mass fraction in ATZ and 4 byproducts was 2.4% of the applied mass. ATZ half-life ranged from 150 to 247 days in the soil surface. ATZ reached 5 m soil depth within 200 years and its concentration increased from 1 ×10-6 to 4 ×10-6 mg/kgdry-soil over time. The correlation between ATZ specific biomass degradation affinity Φ0 and half-life t1/2, although relatively uncertain for both hydrolyzing and oxidizing bacteria, suggested that microorganisms with high Φ0 led to low ATZ t1/2. Greater ATZ applications were balanced by small nonlinear increments of ATZ biodegraded fraction within the root zone and therefore less ATZ leached into the shallow aquifer.

  10. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression

    KAUST Repository

    Harb, Moustapha

    2016-07-09

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  11. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression

    KAUST Repository

    Harb, Moustapha; Wei, Chunhai; Wang, Nan; Amy, Gary L.; Hong, Pei-Ying

    2016-01-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  12. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    Science.gov (United States)

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Rai, D.; Xun, L.

    2005-01-01

    The complexation of radionuclides (e.g., plutonium (Pu) and 60 Co) by codisposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Our previous NABIR research investigated the aerobic biodegradation and biogeochemistry of Pu(IV)-EDTA. Plutonium(IV) forms stable complexes with EDTA under aerobic conditions and an aerobic EDTA degrading bacterium can degrade EDTA in the presence of Pu and decrease Pu mobility. However, our recent studies indicate that while Pu(IV)-EDTA is stable in simple aqueous systems, it is not stable in the presence of relatively soluble Fe(III) compounds (i.e., Fe(OH) 3 (s)--2-line ferrihydrite). Since most DOE sites have Fe(III) containing sediments, Pu(IV) in likely not the mobile form of Pu-EDTA in groundwater. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed in this brand new project to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV) as PuO2(am) by metal reducing bacteria, the redox conditions required for this reduction, the strength of the Pu(III)-EDTA complex, how the Pu(III)-EDTA complex competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, the formation of a stable soluble Pu(III)-EDTA complex under anaerobic conditions would require degradation of the EDTA complex to limit Pu(III) transport in geologic environments. Anaerobic EDTA degrading microorganisms have not been isolated. These knowledge gaps preclude the development of a mechanistic understanding of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop Pu

  14. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  15. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  16. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  17. Anaerobic Digestion of Cattle Manure Influenced by Swirling Jet Induced Hydrodynamic Cavitation.

    Science.gov (United States)

    Langone, Michela; Soldano, Mariangela; Fabbri, Claudio; Pirozzi, Francesco; Andreottola, Gianni

    2018-04-01

    In this work, a modified swirling jet-induced cavitation has been employed for increasing anaerobic digestion efficiency of cattle manure. The hydrodynamic cavitation (HC) treatment improved the organic matter solubilization and the anaerobic biodegradability of cattle manure. The degree of disintegration increased by 5.8, 8.9, and 15.8% after the HC treatment at 6.0, 7.0, and 8.0 bars, respectively. However, the HC treatment at 7.0 bars had better results in terms of methane production. This result may be attributed to the possible formation of toxic and refractory compounds at higher inlet pressures, which could inhibit the methanization process. Further, total Kjeldahl nitrogen content was found to decrease with increasing inlet pressures, as the pH and the turbulent mixing favored the ammonia stripping processes. HC treatment decreased the viscosity of the treated cattle manure, favoring the manure pumping and mixing. Considerations on the energy input due to the HC pre-treatment and the energy output due to the enhanced methane yield have been presented. A positive energy balance can be obtained looking at the improved operational practices in the anaerobic digesters after the implementation of the HC pre-treatment.

  18. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    Science.gov (United States)

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  19. Renewable Biochemical Methane Potential through Anaerobic Co-digestion from Selective Feed Stocks

    Science.gov (United States)

    Thara, K.; Navis Karthika, Ignatius; Dheenadayalan, M. S., Dr

    2017-08-01

    Biochemical Methane Potential (BMP) analysis provides a measure of the anaerobic biodegradability of a given substrate. BMP test is also used to evaluate the potential biogas (methane) production between various Co-digestion substrates. This test is also used to determine the amount of organic carbon in a given material that can be an aerobically converted to methane-Biogas. Studies were carried out for the production of biogas from the leather solid waste. Co-digestion (simultaneous digestion of two or more substrates) studies were carried out in batch reactor using the fleshing (a solid waste generated during the processing of raw hides or skins into finished leather) along with the fruit and vegetable waste at mesophilic condition 35° C). The anaerobic methanogenic seed sludge prepared separately followed by standard BMP test, which was used as the seed inoculums. Recent research on this topic is reviewed in this current paper.

  20. Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion.

    Science.gov (United States)

    Lee, Jongkeun; Park, Ki Young; Cho, Jinwoo; Kim, Jae Young

    2018-01-01

    In this study, lab-scale batch tests were conducted to investigate releasing characteristics of heavy metals according to degradation of heavy metal containing biomass. The fate of heavy metals after released from biomass was also determined through adsorption tests and Visual MINTEQ simulation. According to the anaerobic batch test results as well as volatile solids and carbon balance analyses, maximum of 60% by wt. of biomass was degraded. During the anaerobic biodegradation, among Cd, Cu, Ni, Pb, and Zn, only Cu and Zn were observed in soluble form (approximately 40% by wt. of input mass). The discrepancy between degradation ratio of biomass and ratio of released heavy metals mass from biomass was observed. It seems that this discordance was caused by the fate (i.e., precipitated with sulfur/hydroxide or adsorbed onto sorbents) of each heavy metal types in solution after being released from biomass. Thus, releasing characteristics and fate of heavy metal should be considered carefully to predict stability of anaerobic digestion process for heavy metal-containing biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    Science.gov (United States)

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  2. Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site.

    Science.gov (United States)

    Sun, Weimin; Li, Yun; McGuinness, Lora R; Luo, Shuai; Huang, Weilin; Kerkhof, Lee J; Mack, E Erin; Häggblom, Max M; Fennell, Donna E

    2015-09-15

    Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity. Time-series DNA-stable isotope probing (SIP) was used to identify bacteria that incorporated (13)C-labeled aniline in the microcosms established to promote methanogenic conditions. In microcosms from heavily contaminated aquifer sediments, a phylotype with 92.7% sequence similarity to Ignavibacterium album was identified as a dominant aniline degrader as indicated by incorporation of (13)C-aniline into its DNA. In microcosms from contaminated canal sediments, a bacterial phylotype within the family Anaerolineaceae, but without a match to any known genus, demonstrated the assimilation of (13)C-aniline. Acidovorax spp. were also identified as putative aniline degraders in both of these two treatments, indicating that these species were present and active in both the canal and aquifer sediments. There were multiple bacterial phylotypes associated with anaerobic degradation of aniline at this complex industrial site, which suggests that anaerobic transformation of aniline is an important process at the site. Furthermore, the aniline degrading phylotypes identified in the current study are not related to any known aniline-degrading bacteria. The identification of novel putative aniline degraders expands current knowledge regarding the potential fate of aniline under anaerobic conditions.

  3. Proceedings of biodegradation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of Biodegradation. Topics include:biodegradation using the tools of biotechnology, basic science aspects of biodegradation, the physiological characteristics of microorganisms, the use of selective techniques that enhance the process of microbial evolution of biodegradative genes in nature, the genetic characteristics of microorganisms allowing them to biodegrade both natural and synthetic toxic chemicals, the molecular techniques that allow selective assembly of genetic segments form a variety of bacterial strains to a single strain, and methods needed to advance biodegradation research as well as the high-priority chemical problems important to the Department of Defense or to the chemical industry

  4. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria

    International Nuclear Information System (INIS)

    Georgiou, D.; Aivasidis, A.

    2006-01-01

    Textile wastewater was treated by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. The main target of this treatment was decoloration of the wastewater and transformation of the non-biodegradable azo-reactive dyes to the degradable, under aerobic biological conditions, aromatic amines. Special porous beads (Siran'' (registered)) were utilized as the microbial carriers. Acetic acid solution, enriched with nutrients and trace elements, served both as a pH-regulator and as an external substrate for the growth of methanogenic bacteria. The above technique was firstly applied on synthetic wastewater (an aqueous solution of a mixture of different azo-reactive dyes). Hydraulic residence time was gradually decreased from 24 to 6 h over a period of 3 months. Full decoloration of the wastewater could be achieved even at such a low hydraulic residence time (6 h), while methane-rich biogas was also produced. The same technique was then applied on real textile wastewater with excellent results (full decoloration at a hydraulic residence time of 6 h). Furthermore, the effluent proved to be highly biodegradable by aerobic microbes (activated-sludge). Thus, the above-described anaerobic/aerobic biological technique seems to be a very attractive method for treating textile wastewater since it is cost-effective and environment-friendly

  5. Mechanisms, Chemistry, and Kinetics of Anaerobic Biodegradation of cis-Dichloroethene and Vinyl Chloride

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, P.L.; Spormann, A.M.

    2000-12-01

    Anaerobic biological processes can result in PCE and TCE destruction through conversion to cis-dichloroethene (cDCE) then to vinyl chloride (VC), and finally to ethene. Here, the chlorinated aliphatic hydrocarbons (CAHs) serve as electron acceptors in energy metabolism, requiring electron donors such as hydrogen from an external source. The purpose of this study was to learn more about the biochemistry of cDCE and VC conversion to ethene, to better understand the requirements for electron donors, and to determine factors affecting the rates of CAH degradation and organism growth. The biochemistry of reductive dehalogenation of VC was studied with an anaerobic mixed culture enriched on VC. In other studies on electron donor needs for dehalogenation of cDCE and VC, competition for hydrogen was found to occur between the dehalogenators and other microorganisms such as methanogens and homoacetogens in a benzoate-acclimated dehalogenating methanogenic mixed culture. Factors affecting the relative rates of destruction of the solvents and their intermediate products were evaluated. Studies using a mixed PCE-dehalogenating culture as well as the VC enrichment for biochemical studies suggested that the same species was involved in both cDCE and VC dechlorination, and that cDCE and VC competitively inhibited each other's dechlorination rate.

  6. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Adelaja, Oluwaseun, E-mail: o.adelaja@my.westminster.ac.uk; Keshavarz, Tajalli, E-mail: t.keshavarz@westminster.ac.uk; Kyazze, Godfrey, E-mail: g.kyazze@westminster.ac.uk

    2015-02-11

    Highlights: • Effective degradation of petroleum hydrocarbon mixtures was achieved using MFC. • Adapted anaerobic microbial consortium was used as inoculum. • Bio-electricity generation was enhanced by 30-fold when riboflavin, was added. • Optimum MFC performance was obtained at mesophilic and moderately saline conditions. • Stable MFC performance was obtained during prolonged fed-batch MFC operation. - Abstract: Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20–50 °C), salinity (0.5–2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40 °C compared to MFC performance at 30 °C but decreased sharply by 4-fold when operating temperature was raised to 50 °C. The optimum reactor performance obtained at 40 °C was 1.15 mW/m{sup 2} maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m{sup 2}, 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents.

  7. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells

    International Nuclear Information System (INIS)

    Adelaja, Oluwaseun; Keshavarz, Tajalli; Kyazze, Godfrey

    2015-01-01

    Highlights: • Effective degradation of petroleum hydrocarbon mixtures was achieved using MFC. • Adapted anaerobic microbial consortium was used as inoculum. • Bio-electricity generation was enhanced by 30-fold when riboflavin, was added. • Optimum MFC performance was obtained at mesophilic and moderately saline conditions. • Stable MFC performance was obtained during prolonged fed-batch MFC operation. - Abstract: Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20–50 °C), salinity (0.5–2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40 °C compared to MFC performance at 30 °C but decreased sharply by 4-fold when operating temperature was raised to 50 °C. The optimum reactor performance obtained at 40 °C was 1.15 mW/m 2 maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m 2 , 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents

  8. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    DEFF Research Database (Denmark)

    Trably, Eric; Batstone, Damien J.; Christensen, Nina

    2008-01-01

    losses were observed in the sterile controls (20-22%), substantial DBP biodegradation was found in the enrichment cultures (90-99%). In addition, significant population changes were observed. The dominant bacterial species in the DBP-degrading cultures was affiliated to Soehngenia saccharolytica...... in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic...

  9. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Continuous micro-current stimulation to upgrade methanolic wastewater biodegradation and biomethane recovery in an upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Zhen, Guangyin; Lu, Xueqin; Kobayashi, Takuro; Su, Lianghu; Kumar, Gopalakrishnan; Bakonyi, Péter; He, Yan; Sivagurunathan, Periyasamy; Nemestóthy, Nándor; Xu, Kaiqin; Zhao, Youcai

    2017-08-01

    The dispersion of granules in upflow anaerobic sludge blanket (UASB) reactor represents a critical technical issue in methanolic wastewater treatment. In this study, the potentials of coupling a microbial electrolysis cell (MEC) into an UASB reactor for improving methanolic wastewater biodegradation, long-term process stability and biomethane recovery were evaluated. The results indicated that coupling a MEC system was capable of improving the overall performance of UASB reactor for methanolic wastewater treatment. The combined system maintained the comparatively higher methane yield and COD removal efficiency over the single UASB process through the entire process, with the methane production at the steady-state conditions approaching 1504.7 ± 92.2 mL-CH 4 L -1 -reactor d -1 , around 10.1% higher than the control UASB (i.e. 1366.4 ± 71.0 mL-CH 4 L -1 -reactor d -1 ). The further characterizations verified that the input of external power source could stimulate the metabolic activity of microbes and reinforced the EPS secretion. The produced EPS interacted with Fe 2+/3+ liberated during anodic corrosion of iron electrode to create a gel-like three-dimensional [-Fe-EPS-] n matrix, which promoted cell-cell cohesion and maintained the structural integrity of granules. Further observations via SEM and FISH analysis demonstrated that the use of bioelectrochemical stimulation promoted the growth and proliferation of microorganisms, which diversified the degradation routes of methanol, convert the wasted CO 2 into methane and accordingly increased the process stability and methane productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge.

    Science.gov (United States)

    Zhou, Quanlin; McCraven, Sally; Garcia, Julio; Gasca, Monica; Johnson, Theodore A; Motzer, William E

    2009-02-01

    Biodegradation of N-Nitrosodimethylamine (NDMA) has been found through laboratory incubation in unsaturated and saturated soil samples under both aerobic and anaerobic conditions. However, direct field evidence of in situ biodegradation in groundwater is very limited. This research aimed to evaluate biodegradation of NDMA in a large-scale groundwater system receiving recycled water as incidental and active recharge. NDMA concentrations in 32 monitoring and production wells with different screen intervals were monitored over a period of seven years. Groundwater monitoring was used to characterize changes in the magnitude and extent of NDMA in groundwater in response to seasonal hydrogeologic conditions and, more importantly, to significant concentration variations in effluent from water reclamation plants (associated with treatment-process changes). Extensive monitoring of NDMA concentrations and flow rates at effluent discharge locations and surface-water stations was also conducted to reasonably estimate mass loading through unlined river reaches to underlying groundwater. Monitoring results indicate that significant biodegradation of NDMA occurred in groundwater, accounting for an estimated 90% mass reduction over the seven-year monitoring period. In addition, a discrete effluent-discharge and groundwater-extraction event was extensively monitored in a well-characterized, localized groundwater subsystem for 626 days. Analysis of the associated NDMA fate and transport in the subsystem indicated that an estimated 80% of the recharged mass was biodegraded. The observed field evidence of NDMA biodegradation is supported by groundwater transport modeling accounting for various dilution mechanisms and first-order decay for biodegradation, and by a previous laboratory study on soil samples collected from the study site [Bradley, P.M., Carr, S.A., Baird, R.B., Chapelle, F.H., 2005. Biodegradation of N-Nitrosodimethylamine in soil from a water reclamation facility

  12. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    OpenAIRE

    Ngumah, Chima C.; Ogbulie, Jude N.; Orji, Justina C.; Amadi, Ekperechi S.

    2013-01-01

    This study investigated the effects of initiating anaerobic digestion (AD) of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 ºC and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD...

  13. Mineralization of LCFA associated with anaerobic sludge : kinetics, enhancement of methanogenic activity, and effect of VFA

    OpenAIRE

    Pereira, M. A.; Sousa, D. Z.; Mota, M.; Alves, M. M.

    2004-01-01

    Long-chain fatty acids (LCFA) associated with anaerobic sludge by mechanisms of precipitation, adsorption, or entrapment can be biodegraded to methane. The mineralization kinetics of biomass-associated LCFA were established according to an inhibition model based on Haldane’s enzymatic inhibition kinetics. A value around 1,000 mg COD-LCFA g VSS-1 was obtained for the optimal specific LCFA content that allowed the maximal mineralization rate. For sludge with specific LCFA contents of 2838...

  14. Semi-continuous anaerobic digestion of extruded OFMSW: Process performance and energetics evaluation.

    Science.gov (United States)

    Mu, Lan; Zhang, Lei; Zhu, Kongyun; Ma, Jiao; Li, Aimin

    2018-01-01

    Recently, extrusion press treatment shows some promising advantages for effectively separating of organic fraction of municipal solid waste (OFMSW) from the mixed MSW, which is critical for their following high-efficiency treatment. In this study, an extruded OFMSW obtained from a demonstrated MSW treatment plant was characterized, and submitted to a series of semi-continuous anaerobic experiments to examine its biodegradability and process stability. The results indicated that the extruded OFMSW was a desirable substrate with a high biochemical methane potential (BMP), balanced nutrients and reliable stability. For increasing organic loading rates (OLRs), feeding higher volatile solid (VS) contents in feedstock was much better than shortening the hydraulic retention times (HRTs), while excessively high contents caused a low biodegradability due to the mass transfer limitation. For energetics evaluation, a high electricity output of 129.19-156.37kWh/ton raw MSW was obtained, which was further improved by co-digestion with food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    Science.gov (United States)

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  16. Characterization of selected municipal solid waste components to estimate their biodegradability.

    Science.gov (United States)

    Bayard, R; Benbelkacem, H; Gourdon, R; Buffière, P

    2018-06-15

    Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Science.gov (United States)

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  18. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2013-05-01

    Full Text Available Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation, treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  19. Anaerobic and aerobic transformation of TNT

    Energy Technology Data Exchange (ETDEWEB)

    Kulpa, C.F. [Univ. of Notre Dame, IN (United States). Dept. of Biological Sciences; Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  20. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    International Nuclear Information System (INIS)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R.

    2016-01-01

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  1. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  2. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    Science.gov (United States)

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  3. Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J. [Keasling Lab, Biophysics Division, Lawrence Berkeley National Laboratory, Biophysics Division, 717 Potter Street, Bldlg 977 MC 3224, Berkeley, CA 94720-3224 (United States)]. E-mail yjtang@lbl.gov; Carpenter, Shelly D. [School of Oceanography, University of Washington, Seattle, WA 98195 (United States); Deming, Jody W. [School of Oceanography, University of Washington, Seattle, WA 98195 (United States); Krieger-Brockett, Barbara [Department of Chemical Engineering, University of Washington, Seattle, WA 98195 (United States)

    2006-11-15

    A whole-core injection method was used to determine depth-related rates of microbial mineralization of {sup 14}C-phenanthrene added to both contaminated and clean marine sediments of Puget Sound, WA. For 26-day incubations under micro-aerobic conditions, conversions of {sup 14}C-phenanthrene to {sup 14}CO{sub 2} in heavily PAH-contaminated sediments from two sites in Eagle Harbor were much higher (up to 30%) than those in clean sediments from nearby Blakely Harbor (<3%). The averaged {sup 14}C-phenanthrene degradation rates in the surface sediment horizons (0-3 cm) were more rapid (2-3 times) than in the deeper sediment horizons examined (>6 cm), especially in the most PAH polluted EH9 site. Differences in mineralization were associated with properties of the sediments as a function of sediment depth, including grain-size distribution, PAH concentration, total organic matter and total bacterial abundance. When strictly anaerobic incubations (in N{sub 2}/H{sub 2}/CO{sub 2} atmosphere) were used, the phenanthrene biodegradation rates at all sediment depths were two times slower than under micro-aerobic conditions, with methanogenesis observed after 24 days. The main rate-limiting factor for phenanthrene degradation under anaerobic conditions appeared to be the availability of suitable electron acceptors. Addition of calcium sulfate enhanced the first order rate coefficient (k {sub 1} increased from 0.003 to 0.006 day{sup -1}), whereas addition of soluble nitrate, even at very low concentration (<0.5 mM), inhibited mineralization. Long-term storage of heavily polluted Eagle Harbor sediment as intact cores under micro-aerobic conditions also appeared to enhance anaerobic biodegradation rates (k {sub 1} up to 0.11 day{sup -1})

  4. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wei, Yu-Ting; Wu, Shian-chee; Yang, Shi-Wei; Che, Choi-Hong; Lien, Hsing-Lung; Huang, De-Huang

    2012-01-01

    Highlights: ► Biodegradable surfactant stabilized nanoscale zero-valent iron (NZVI) is tested. ► Vinyl chloride and 1,2-dichloroethane are remediated by NZVI in the field. ► Multiple functions of biodegradable surfactants are confirmed. ► Biodegradable surfactants stabilize NZVI and facilitate the bioremediation. ► NZVI creates reducing conditions beneficial to an anaerobic bioremediation. - Abstract: Nanoscale zero-valent iron (NZVI) stabilized with dispersants is a promising technology for the remediation of contaminated groundwater. In this study, we demonstrated the use of biodegradable surfactant stabilized NZVI slurry for successful treatment of vinyl chloride (VC) and 1,2-dichloroethane (1,2-DCA) in a contaminated site in Taiwan. The biodegradable surfactant stabilized NZVI was coated with palladium and synthesized on-site. From monitoring the iron concentration breakthrough and distribution, it was found that the stabilized NZVI is capable of transporting in the aquifer at the test plot (200 m 2 ). VC was effectively degraded by NZVI while the 1,2-DCA degradation was relatively sluggish during the 3-month field test. Nevertheless, as 1,2-DCA is known to resist abiotic reduction by NZVI, the observation of 1,2-DCA degradation and hydrocarbon production suggested a bioremediation took place. ORP and pH results revealed that a reducing condition was achieved at the testing area facilitating the biodegradation of chlorinated organic hydrocarbons. The bioremediation may be attributed to the production of hydrogen gas as electron donor from the corrosion of NZVI in the presence of water or the added biodegradable surfactant serving as the carbon source as well as electron donor to stimulate microbial growth.

  5. [The decolorization and biodegrading metabolism of azo dyes by Pseudomonas S-42].

    Science.gov (United States)

    Liu, Z P; Yang, H F

    1989-12-01

    Pseudomonas S-42 was capable of decolorizing azo dyes such as Diamira Brilliant Orange RR(DBO-RR), Direct Brown M (DBM), Eriochrome Brown R(EBR) and so on. The cell suspension, cell-free extract and purified enzyme of Pseud. S-42 could decolorize azo dyes under similar conditions: the optimum pH and temperature laid 7.0 and 37 degrees C respectively. The efficiencies of decolorizing of DBO-RR, DBM, EBR by intact cells stood more than 90%. When the cell concentration was 15 mg(wet)/ml and the reaction time was 5 hours, the decolorizing activity for above three azo dyes by intact cells were 1.75, 2.4, 0.95 micrograms dye/mg cell, respectively. Cell-free extract and purified enzyme could well express the decolorizing activity only under the anaerobic condition and added NADH. Purified enzyme belongs to azoreductase, its molecular weight is about 34,000-2000 daltons, and its Vmax and Km for DBO-RR are 13 mumol.mg protein-1.min-1 and 54 mumol/L. The results of the detection of the biodegrading products of DBO-RR by spectrophotometric and NaNO2 reactional methods showed that the biodegradation of azo dyes was initiated by the reduction cleavage of azo bonds. It was hypothesized that biodegrading metabolism pathway of DBO-RR by Pseudomonas S-42.

  6. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  7. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  8. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Yang, Lihui; Zhang, Yongming; Bai, Qi; Yan, Ning; Xu, Hua; Rittmann, Bruce E.

    2015-01-01

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  9. Mesoscale Laboratory Models of the Biodegradation of Municipal Landfill Materials

    Science.gov (United States)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.; Zawislanski, P. T.

    2001-12-01

    Stabilization of municipal landfills is a critical issue involving land reuse, leachate treatment, and odor control. In an effort to increase landfill stabilization rates and decrease leachate treatment costs, municipal landfills can be operated as active aerobic or anaerobic bioreactors. Rates of settling and biodegradation were compared in three different treatments of municipal landfill materials in laboratory-scale bioreactors. Each of the three fifty-five-gallon clear acrylic tanks was fitted with pressure transducers, thermistors, neutron probe access tubes, a leachate recirculation system, gas vents, and air injection ports. The treatments applied to the tanks were (a) aerobic (air injection with leachate recirculation and venting from the top), (b) anaerobic (leachate recirculation with passive venting from the top), and (c) a control tank (passive venting from the top and no leachate recirculation). All tanks contained a 10-cm-thick layer of pea gravel at the bottom, overlain by a mixture of fresh waste materials on the order of 5-10 cm in size to an initial height of 0.55 m. Concentrations of O2, CO2 and CH4 were measured at the gas vent, and leachate was collected at the bottom drain. The water saturation in the aerobic and anaerobic tanks averaged 17 % and the control tank averaged 1 %. Relative degradation rates between the tanks were monitored by CO2 and CH4 production rates and O2 respiration rates. Respiration tests on the aerobic tank show a decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 300 days, indicating usable organics are being depleted. The anaerobic tank produced measurable methane after 300 days that increased to 41% by volume after 370 days. Over the test period, the aerobic tank settled 30 %, the anaerobic tank 18.5 %, and the control tank 11.1 %. The concentrations of metals, nitrate, phosphate, and total organic carbon in the aerobic tank leachate are an order of magnitude lower than in the anaerobic

  10. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  11. Immobilization of anaerobic bacteria on rubberized-coir for psychrophilic digestion of night soil.

    Science.gov (United States)

    Dhaked, Ram Kumar; Ramana, Karna Venkat; Tomar, Arvind; Waghmare, Chandrakant; Kamboj, Dev Vrat; Singh, Lokendra

    2005-08-01

    Low-ambient temperatures, biodigesters due to low-growth rate of the constituent bacterial consortium. Immobilization of anaerobic bacteria has been attempted in the biodigester operating at 10 degrees C. Various matrices were screened and evaluated for the immobilization of bacteria in digesters. Anaerobic digestion of night soil was carried out with hydraulic retention time in the range of 9-18 days. Among the tested matrices, rubberized-coir was found to be the most useful at 10 degrees C with optimum hydraulic retention time of 15 days. Optimum amount of coir was found as 25 g/L of the working volume of biodigesters. Immobilization of bacteria on the coir was observed by scanning electron microscopy and fluorescent microscopy. The study indicates that rubberized-coir can be utilized to increase biodegradation of night soil at higher organic loading. Another advantage of using this matrix is that it is renewable and easily available in comparison to other synthetic polymeric matrices.

  12. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    Science.gov (United States)

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan

    2015-09-01

    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Anaerobic digestion and co-digestion of slaughterhouse wastes

    Directory of Open Access Journals (Sweden)

    Sonia Castellucci

    2013-09-01

    Full Text Available The use of renewable energy is becoming increasingly necessary in order to address the global warming problem and, as a consequence, has become an high priority for many countries. Biomass is a clean and renewable energy source with growing potential to replace conventional fossil fuels. Among biomass, residual and waste ones represent a great resource for energy generation since they permit both to eliminate a possible waste and to produce energy. In the present work, the case of slaughterhouse wastes (SHWs has been investigated. Anaerobic digestion is nowadays considered as one of the most important and sustainable conversion technology exploiting organic matter and biodegradable wastes. Biogas results from this bio-chemical process and mainly consists of methane and carbon dioxide, leading to produce thermal energy and/or electricity. In this paper, the European Regulations on animal by-products (ABPs are described, and some previous study on anaerobic digestion and co-digestion of ABPs - more precisely SHWs - are considered and compared in order to fix a starting point for future tests on their co-digestion in a micro-scale pilot digester. This is to define optimal feed ratio values which ensure an increasing content of methane in the outgoing biogas.

  14. Start-up optimization of a batch anaerobic digestor for the treatment of solid cow manure

    OpenAIRE

    Riggio, Silvio; Torrijos, Michel; Debord, Romain; van Hullebusch, Eric D.; Comas, Joaquim; Steyer, Jean-Philippe; Escudié, Renaud

    2015-01-01

    In dry anaerobic digestors operated in batch mode where a liquid phase is sprinkled on a static solid phase, the choice of a liquid or a solid recycle form a previous batch into a new one is a key factor for a better industrial management when looking for a balance between energy production, substrate biodegradability and the initial investment. This work aims at studying the influence of this recycling on the kinetics and the performances of three systems filled-up with only solid cow man...

  15. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  16. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Directory of Open Access Journals (Sweden)

    Jing Yi

    Full Text Available The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  17. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    Science.gov (United States)

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  18. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Science.gov (United States)

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  19. Optimizing BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.

    1991-01-01

    Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. Gasoline and other fuels contain benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX), which are hazardous compounds, regulated by the U.S. Environmental Protection Agency (EPA). Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Michigan, were amended with selected concentrations of nutrients and one or more hydrocarbons. Toluene, ethylbenzene, m-xylene, and p-xylene, were degraded to below 5 micrograms/L when present as sole source substrates; stoichiometric calculations indicated that nitrate removal was sufficient to account for 70 to 80% of the compounds being mineralized. o-Xylene was recalcitrant when present as a sole source substrate, but was slowly degraded in the presence of the other hydrocarbons. Benzene was not degraded within one year, regardless of whether it was available as a sole source substrate or in combination with toluene, phenol, or catechol. Pre-exposure to low levels of BTEX and nutrients had variable effects, as did the addition of different concentrations of ammonia and phosphate. Nitrate concentrations as high as 500 mg/L NO3-N were slightly inhibitory. These data indicate that nitrate-mediated biodegradation of BTEX at Traverse City can occur under a variety of environmental conditions with rates relatively independent of nutrient concentrations. However, the data reaffirm that benzene is recalcitrant under strictly anaerobic conditions in these samples

  20. Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes

    Science.gov (United States)

    McKelvie, Jennifer R.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2007-12-01

    Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The δ 13C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of - 31.3 ± 0.5‰ ( n = 40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in 13C of MTBE by 40.6‰, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 μg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of δ 13C for TBA in groundwater samples in the "With ethanol lane" was - 26.0 ± 1.0‰ ( n = 32). Uniform δ 13C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of - 9.2‰ to - 15.6‰, and values of δ 13C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year - 1 ( n = 18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year - 1 calculated using contaminant mass-discharge for the "With ethanol lane".

  1. Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance.

    Science.gov (United States)

    Kavitha, S; Yukesh Kannah, R; Rajesh Banu, J; Kaliappan, S; Johnson, M

    2017-11-01

    The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation.

    Science.gov (United States)

    Bargiela, Rafael; Herbst, Florian-Alexander; Martínez-Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M; Ferrer, Manuel; Golyshin, Peter N

    2015-10-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments. © 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Metaproteomics and metabolomics analyses of chronically petroleum‐polluted sites reveal the importance of general anaerobic processes uncoupled with degradation

    Science.gov (United States)

    Bargiela, Rafael; Herbst, Florian‐Alexander; Martínez‐Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N.; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M.; Golyshin, Peter N.

    2015-01-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi‐enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large‐scale chronic pollution is yet to be defined, particularly in anaerobic and micro‐aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen‐depleted petroleum‐polluted sediments. PMID:26201687

  4. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Hanan Siddhu

    2016-01-01

    Full Text Available Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS for methane production. In this context, steam explosion (SE and thermal potassium hydroxide (KOH-60°C treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs, respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM, Fourier transform infrared (FTIR, and X-ray diffraction (XRD analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.

  5. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  6. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    Science.gov (United States)

    Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  7. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Hui [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Chengshuai [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Li, Fangbai, E-mail: cefbli@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Luo, Chunling [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Manjia; Hu, Min [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2015-11-15

    Highlights: • SIP suggested that Dechloromonas can mineralize PCP in soil. • Methanosaeta and Methanocella acquired PCP-derived carbon. • Lactate enhanced microbial degradation of PCP in soil. - Abstract: Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of {sup 13}CH{sub 4} and {sup 13}CO{sub 2} indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil.

  8. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing

    International Nuclear Information System (INIS)

    Tong, Hui; Liu, Chengshuai; Li, Fangbai; Luo, Chunling; Chen, Manjia; Hu, Min

    2015-01-01

    Highlights: • SIP suggested that Dechloromonas can mineralize PCP in soil. • Methanosaeta and Methanocella acquired PCP-derived carbon. • Lactate enhanced microbial degradation of PCP in soil. - Abstract: Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of 13 CH 4 and 13 CO 2 indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil

  9. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, Petra, E-mail: petra.bombach@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany); Nägele, Norbert [Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23" a, E-09001 Burgos (Spain); Rosell, Mònica [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona (Spain); Richnow, Hans H. [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Fischer, Anko [Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany)

    2015-04-09

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [{sup 13}C{sub 6}]-ETBE (BACTRAP{sup ®}s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant {sup 13}C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.

  10. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    International Nuclear Information System (INIS)

    Bombach, Petra; a, E-09001 Burgos (Spain))" data-affiliation=" (Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23a, E-09001 Burgos (Spain))" >Nägele, Norbert; Rosell, Mònica; Richnow, Hans H.; Fischer, Anko

    2015-01-01

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [ 13 C 6 ]-ETBE (BACTRAP ® s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant 13 C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation

  11. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    Science.gov (United States)

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  12. Zinc and copper distribution in swine wastewater treated by anaerobic digestion.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luís; Justi, Karin Cristiane

    2014-08-01

    Swine wastewater contain high levels of metals, such as copper and zinc, which can cause a negative impact on the environment. Anaerobic digestion is a process commonly used to remove carbon, and can act on metal availability (e.g., solubility or oxidation state). The present study aimed to evaluate the influence of anaerobic digestion on total Zn and Cu contents, and their chemical fractioning due to the biodegradation of the effluent over different hydraulic retention times (HRTs). The sequential extraction protocol proposed by the Community Bureau of Reference (BCR), plus two additional fractions, was the method chosen for this study of Cu and Zn distribution evaluation in swine wastewater. The Zn and Cu concentrations in raw swine manure were 63.58 ± 27.72 mg L(-1) and 8.98 ± 3.99 mg L(-1), respectively. The metal retention capacity of the bioreactor decreased when the HRT was reduced from 17.86 d to 5.32 d. Anaerobic digestion had a direct influence on zinc and copper distribution when raw manure (RM) and digested manure (DM) were compared. The reducible fraction showed a reduction of between 3.17% and 7.84% for Zn and between 2.52% and 11.92% for Cu when DM was compared with RM. However, the metal concentration increased in the oxidizable fraction of DM, viz. from 3.01% to 10.64% for Zn and from 4.49% to 16.71% for Cu, thus demonstrating the effect of anaerobic conditions on metal availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution

    International Nuclear Information System (INIS)

    An Chunjiang; He Yanling; Huang Guohe; Liu Yonghong

    2010-01-01

    The performance of mesophilic anaerobic granules to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was investigated under various conditions. The results of batch experiments showed that anaerobic granules were capable of removing HMX from aqueous solution with high efficiency. Both biotic and abiotic mechanisms contributed to the removal of HMX by anaerobic granules under mesophilic conditions. Adsorption appeared to play a significant role in the abiotic process. Furthermore, HMX could be biodegraded by anaerobic granules as the sole substrate. After 16 days of incubation, 99.04% and 96.42% of total HMX could be removed by 1 g VSS/L acclimated and unacclimated granules, respectively. Vancomycin, an inhibitor of acetogenic bacteria, caused a significant inhibition of HMX biotransformation, while 2-bromoethanesulfonic acid, an inhibitor of methanogenic bacteria, only resulted in a slight decrease of metabolic activity. The presence of the glucose, as a suitable electron donor and carbon source, was found to enhance the degradation of HMX by anaerobic granules. Our study showed that sulfate had little adverse effects on biotransformation of HMX by anaerobic granules. However, nitrate had significant inhibitory effect on the extent of HMX removal especially in the initial period. This study offered good prospects of using high-rate anaerobic technology in the treatment of munition wastewater.

  14. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  15. Physicochemical and biochemical characterization of non-biodegradable cellulose in Miocene gymnosperm wood from the Entre-Sambre-et-Meuse, Southern Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Lechien, Valerie; Rodriguez, Christian; Ongena, Marc; Hiligsmann, Serge; Thonart, Philippe [Liege Univ., Walloon Center of Industrial Biology, Gembloux (Belgium); Rulmont, Andre [Liege Univ., Chemistry Dept., Liege (Belgium)

    2006-11-15

    Specimens of Miocene fossil wood from the Entre-Sambre-et-Meuse karsts (southern Belgium) were examined using physicochemical and biochemical techniques in order to understand the reasons for the exceptional preservation of these fossilized remains after 15 million years. Structural and chemical changes were assessed by comparing the structural features of the fossil samples with those of their modern counterpart, Metasequoia. Solid state {sup 13} C nuclear magnetic resonance (NMR) and microscopic analysis showed good preservation of the cellulose structure in the fossil wood from the Florennes peat deposit. Despite the substantial cellulose fraction available in the fossil tissue, an enzymatic degradation test and a biochemical methane potential assay showed that the fossil cellulose could not be degraded by cellulases and anaerobic microorganisms usually involved in the biodegradation of organic matter. Moreover, the cellulose structure (crystallinity and surface area) seemed to have no effect on cellulose biodegradability in these Miocene fossil wood samples. On the basis of our observations, we suggest that the presence of a modified lignin structure could greatly influence cellulose preservation/biodegradability. (Author)

  16. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  17. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  18. [Anaerobic hydrolysis of terramycin crystallizing mother solution].

    Science.gov (United States)

    Ma, W; Wang, J; Liang, C; Qi, R; Yang, M

    2001-09-01

    The terramycin crystallizing mother solution contained high organics and high nitrogen. There were many kinds of bioinhibition in it but not enough electronic donor. Anaerobic hydrolysis of terramycin crystallizing mother solution was completed with up anarobic sludge bed in order to improve the biodegradability of wastewater and electronic donor in it. The variations of pH, COD, NH4+, and SO4(2-) were monitored. The COD removal was in a narrow range between 10% and 16.4% even when the HRT of the reactor was changed from 1.5 h to 6 h. pH increased because of formation of NH3 and reduction of SO4(2-). Most of SO4(2-) was reduced to S2- when the HRT was longer than 2 h. Batch experiments on hydrolyzed wastewater demonstrated that reaction rates of nitrification and denitrification increased by 90.9% and 45.2%, respectively.

  19. Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, E.; Antonopoulou, G.; Lyberatos, G.

    2016-01-01

    pretreated manure fibers was performed in CSTR-type digesters, fed with swine manure and/or a mixtureof swine manure and AAS pretreated manure fibers (at a total solids based ratio of 0.52 manure per0.48 fibers). Two different simulations were performed. In the first place, the Anaerobic Digestion Model 1......Anaerobic digestion of manure fibers presents challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) has been tested as a simple method to disrupt the lignocellulose and increase the methane yield of manure fibers. In the present study, mesophilic anaerobic digestion of AAS...... (ADM1) was fitted to a manure-fed, CSTR-type digester and validated by simulating the performance of a second reactor digesting manure. It was shown that disintegration and hydrolysis of the solid matter of manure was such a slow process that the organic particulate matter did not significantly...

  20. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  1. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  2. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  3. Effects of organic composition on the anaerobic biodegradability of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui

    2017-11-01

    This work investigated the influence of carbohydrates, proteins and lipids on the anaerobic digestion of food waste (FW) and the relationship between the parameters characterising digestion. Increasing the concentrations of proteins and lipids, and decreasing carbohydrate content in FW, led to high buffering capacity, reduction of proteins (52.7-65.0%) and lipids (57.4-88.2%), and methane production (385-627 mLCH 4 /g volatile solid), while achieving a short retention time. There were no significant correlations between the reduction of organics, hydrolysis rate constant (0.25-0.66d -1 ) and composition of organics. Principal Component Analysis revealed that lipid, C, and N contents as well as the C/N ratio were the principal components for digestion. In addition, methane yield, the final concentrations of total ammonia nitrogen and free ammonia nitrogen, final pH values, and the reduction of proteins and lipids could be predicted by a second-order polynomial model, in terms of the protein and lipid weight fraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    Science.gov (United States)

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils.

    Science.gov (United States)

    Lee, G T; Ro, H M; Lee, S M

    2007-08-01

    Bench-scale experiments for electrokinetically enhanced bioremediation of diesel in low permeability soils were conducted. An electrokinetic reactor (ER) was filled with kaolin that was artificially contaminated with diesel at a level of 2500 mg kg(-1). A constant voltage gradient of 1.0 V cm(-1) was applied. In phosphorus transport experiments, KH2PO4 was not distributed homogeneously along the ER, and most of the transported phosphorus was converted to water-insoluble aluminum phosphate after 12 days of electrokinetic (EK) operation. However, the advancing P front of triethyl phosphate (TEP) progressed with time and resulted in uniform P distribution. The treatments employed in the electrokinetically enhanced bioremediation of diesel were control (no addition of nitrogen and phosphorus), NP (KNO3+ KH2PO4), NT (KNO3+ TEP), UP (urea+ KH2PO4), and UT (urea+TEP). Analysis of effluent collected during the first 12 days of EK operation showed that diesel was not removed from the kaolin. After nutrient delivery, using the EK operation, the ER was transferred into an incubator for the biodegradation process. After 60 days of biodegradation, the concentrations of diesel in the kaolin for the NP, NT, UP, UT, and control treatments were 1356, 1002, 1658, 1612, and 2003 mg kg(-1), respectively. The ratio of biodegraded diesel concentration to initial concentration (2465 mg kg(-1)) in NP, NT, UP, UT, and control were 45.0%, 59.4%, 32.7%, 34.6%, and 18.7%, respectively. This result showed that TEP, treated along with NO3-, was most effective for the biodegradation of diesel. TEP was delivered more efficiently to the target zones and with less phosphorus loss than KH2PO4. However, this facilitated phosphorus delivery was effective in biodegrading diesel under anaerobic conditions only when electron acceptors, such as NO3-, were present.

  6. Vertical distribution of archaeal communities associated with anaerobic degradation of pentabromodiphenyl ether (BDE-99) in river-based groundwater recharge with reclaimed water.

    Science.gov (United States)

    Yan, Yulin; Ma, Mengsi; Liu, Xiang; Ma, Weifang; Li, Yangyao

    2018-02-01

    When groundwater is recharged with reclaimed water, the presence of trace amounts of biorefractory pentabromodiphenyl ether (PBDE, specifically BDE-99) might cause potential groundwater pollution. A laboratory-scale column was designed to investigate the distribution of the community of archaea in this scenario and the associated anaerobic degradation of BDE-99. The concentration of BDE-99 decreased significantly as soil depth increased, and fluorescence in situ hybridization (FISH) analysis suggested that archaea exerted significant effects on the biodegradation of PBDE. Through 454 pyrosequencing of 16s rRNA genes, we found that the distribution and structure of the archaeal community associated with anaerobic degradation of BDE-99 in the river-based aquifer media changed significantly between different soil depths. The primary debrominated metabolites varied with changes in the vertically distributed archaeal community. The archaea in the surface layer were dominated by Methanomethylovorans, and the middle layer was mainly composed of Nitrososphaera. Nitrosopumilus and Nitrososphaera were equally abundant in the bottom layer. In addition, Methanomethylovorans abundance depended on the depth of soil, and the relative abundance of Nitrosopumilus increased with increasing depth, which was associated with the oxidation-reduction potential and the content of intermediate metabolites. We propose that Nitrososphaera and Nitrosopumilus might be the key archaeal taxa mediating the biodegradation of BDE-99.

  7. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  8. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  9. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    OpenAIRE

    Farida Crisnaningtyas; Hanny Vistanty

    2016-01-01

    Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr) pada kisaran OLR (Organic Loading Rate) 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih ...

  10. Anaerobes in pleuropulmonary infections

    Directory of Open Access Journals (Sweden)

    De A

    2002-01-01

    Full Text Available A total of 76 anaerobes and 122 aerobes were isolated from 100 patients with pleuropulmonary infections, e.g. empyema (64, pleural effusion (19 and lung abscess (13. In 14% of the patients, only anaerobes were recovered, while a mixture of aerobes and anaerobes was encountered in 58%. From all cases of lung abscess, anaerobic bacteria were isolated, alone (04 or along with aerobic bacteria (13. From empyema and pleural effusion cases, 65.6% and 68.4% anaerobes were recovered respectively. Amongst anaerobes, gram negative anaerobic bacilli predominated (Prevotella melaninogenicus 16, Fusobacterium spp. 10, Bacteroides spp. 9, followed by gram positive anaerobic cocci (Peptostreptococcus spp. 31. Coliform bacteria (45 and Pseudomonas aeruginosa (42 were the predominant aerobic isolates.

  11. The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation

    Science.gov (United States)

    Hariyadi, H. R.

    2017-03-01

    The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation was carried out as well as the influence phenol and benzoate, and biodegradation of bromuconazole. Bromuconazole is a fungicide effective against Ascomycetes, Basidiomycetes and fungi imperfecti in cereals, grapes, top fruits and vegetables. It is also effective against Alternaria and Fusarium sp. The remaining fungicide in leaves might contaminates landfill. One month of organic waste added with bromuconazole was anaerobically incubated in 500 mL bottles at 30°C without shaking in dark room. High-Performance Liquid Chromatography (HPLC) with UV detector and a 100 RP 185μm Lichrosphere column was used to determine bromuconazole concentration. Methane content was determined by Gas Chromatography (GC) method equipped with a flame ionization detector and a metal column packed with 5% neopentyl glycol sebacate and 1% H3PO4 on Chromosorb W-AW (mesh 80-100). After incubation for 225 days, bromuconazole of 200 mg/L inhibited the production of methane (99.5 mM) significantly, but did not inhibit the production of volatile fatty acids. The addition of 100 mg/L phenol or 146 mg/L benzoate increased the production of methane, 143 mM and 135.2 mM, respectively compared with control (121.8 mM). In anaerobic conditions, the presence of toxic pollutants such as fungicide bromuconazole in landfills sites may cause further problems with the accumulation of volatile fatty acids in leachate. Further study to determine the threshold, the presence of bromconazole in low concentration (less than 200 mg/L) on the methane production is recommended.

  12. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions

    DEFF Research Database (Denmark)

    Broholm, Mette; Arvin, Erik

    2000-01-01

    in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: similar...... to 5 mg 1(-1): high: similar to 60 mg 1(-1), and very high: similar to 600 mg 1(-1)) and in the presence of other organic coal-tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms...

  13. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.

    Science.gov (United States)

    Devillers, J; Pandard, P; Richard, B

    2013-01-01

    Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.

  14. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  15. The utility of anaerobic blood culture in detecting facultative anaerobic bacteremia in children.

    Science.gov (United States)

    Shoji, Kensuke; Komuro, Hisako; Watanabe, Yasushi; Miyairi, Isao

    2013-08-01

    Routine anaerobic blood culture is not recommended in children because obligate anaerobic bacteremia is rare in the pediatric population. However, a number of facultative anaerobic bacteria can cause community and hospital acquired infections in children and the utility of anaerobic blood culture for detection of these organisms is still unclear. We conducted a retrospective analysis of all blood culture samples (n = 24,356) at a children's hospital in Japan from October 2009 to June 2012. Among the samples that had paired aerobic and anaerobic blood cultures, 717 samples were considered clinically significant with 418 (58%) organisms detected from both aerobic and anaerobic cultures, 167 (23%) detected only from aerobic culture and 132 (18%) detected only from anaerobic culture. While most facultative anaerobes were detectable by aerobic culture, over 25% of Enterobacteriaceae and 15% of Staphylococcus sp. were detected from anaerobic cultures bottles only, suggesting its potential role in selected settings. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry.

    Science.gov (United States)

    Peu, P; Sassi, J-F; Girault, R; Picard, S; Saint-Cast, Patricia; Béline, F; Dabert, P

    2011-12-01

    Seaweed (Ulva sp.) stranded on beaches were utilized as co-substrate for anaerobic digestion of pig slurry in three-month co-digestion tests in pilot scale anaerobic digesters in the laboratory. The methanogenic potential of Ulva sp. was low compared to that of other potential co-substrates available for use by farmers: 148 N m3CH4/t of volatile solids or 19 N m3CH4/t of crude product. When used as a co-substrate with pig manure (48%/52% w/w), Ulva sp. seaweed did not notably disrupt the process of digestion; however, after pilot stabilisation, biogas produced contained 3.5% H2S, making it unsuitable for energy recovery without treatment. Sequentially addition of the sulphate reduction inhibitor, potassium molybdate, to a final concentration of 3mM, temporarily reduced H2S emissions, but was unable to sustain this reduction over the three-month period. According to these pilot tests, the use of seaweed stranded on beaches as co-substrate in farm-based biogas plants shows some limitations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  18. Biodegradation of selected offshore chemicals

    OpenAIRE

    Wennberg, Aina C.; Petersen, Karina

    2017-01-01

    A review of biodegradation data for specific oil field chemicals and chemical groups were performed in order to evaluate if the current categorisation of these were appropriate based on the biodegradation properties. Data were compiled from databases like ECHA and MITI and from the literature. For compounds with limited or inconclusive test data, biodegradation was also estimated by the BIOWIN models, and the EAWAG-BBD pathway prediction system was used to predict plausible biodegradation pat...

  19. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  20. Use Of Biodegradation Ratios In Monitoring Trend Of Biostimulated Biodegradation In Crude Oil Polluted Soils

    Directory of Open Access Journals (Sweden)

    Okorondu

    2017-03-01

    Full Text Available This study deals with biodegradation experiment on soil contaminated with crude oil. The soil sample sets A BC D E F G were amended with inorganic fertilizer to enhance microbial growth and hydrocarbon degradation moisture content of some of the sets were as well varied. Biodegradation ratios nC17Pr nC18Ph and nC17nC18PrPh were used to monitor biodegradation of soil sets A BC D E F G for a period of 180. The soil samples were each contaminated with the same amount of crude oil and exposed to specific substrate treatment regarding the amount of nutrients and water content over the same period of time. The trend in biodegradation of the different soil sample sets shows that biodegradation ratio nC17nC18PrPh was more reflective of and explains the biodegradation trend in all the sample sets throughout the period of the experiment hence a better parameter ratio for monitoring trend of biostimulated biodegradation. The order of preference of the biodegradation ratios is expressed as nC18Ph nC17Pr nC17nC18 PrPh. This can be a relevant support tool when designing bioremediation plan on field.

  1. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    Directory of Open Access Journals (Sweden)

    Farida Crisnaningtyas

    2016-05-01

    Full Text Available Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr pada kisaran OLR (Organic Loading Rate 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih lanjut dengan menggunakan dua opsi proses: (1 fisika-kimia, dan (2 aerob. Koagulan alumunium sulfat dan flokulan kationik memberikan efisiensi penurunan COD tertinggi (73% pada kecepatan putaran masing-masing 100 rpm dan 40 rpm. Uji coba aerob dilakukan pada kisaran MLSS antara 4000-5000 mg/L dan mampu memberikan efisiensi penurunan COD hingga 97%. Hasil uji coba menunjukkan bahwa efisiensi penurunan COD total yang dapat dicapai dengan menggunakan teknologi anaerob-aerob adalah 97%, sedangkan kombinasi anaerob-koagulasi-flokulasi hanya mampu menurunkan COD total sebesar 72,53%. Berdasarkan hasil tersebut, kombinasi proses anaerob-aerob merupakan teknologi yang potensial untuk diaplikasikan dalam sistem pengolahan limbah cair industri farmasi. 

  2. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  3. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD).

    Science.gov (United States)

    Hu, Yun; Pang, Yunzhi; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Wachemo Akiber; Jaffar, Muhammad; Li, Xiujin

    2015-01-01

    A new biological pretreatment method by using liquid fraction of digestate (LFD) was advanced for promoting anaerobic biogasification efficiency of corn stover. 17.6% TS content and ambient temperature was appropriate for pretreatment. The results showed that C/N ratio decreased to about 30, while total lignin, cellulose, and hemicellulose (LCH) contents were reduced by 8.1-19.4% after pretreatment. 3-days pretreatment was considered to be optimal, resulting in 70.4% more biogas production, 66.3% more biomethane yield and 41.7% shorter technical digestion time compared with the untreated stover. The reductions on VS, cellulose, and hemicellulose were increased by 22.1-35.9%, 22.3-35.4%, and 19.8-27.2% for LFD-treated stovers. The promoted anaerobic biogasification efficiency was mainly attributed to the improved biodegradability due to the pre-decomposition role of the bacteria in LFD. The method proved to be an efficient and low cost approach for producing bioenergy from corn stover, meanwhile, reducing LFD discharge and minimizing its potential pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations.

    Science.gov (United States)

    Li, Kun; Liu, Ronghou; Sun, Chen

    2015-12-01

    Anaerobic digestions of pig manure (PM), dairy manure (DM), chicken manure (CM) and rabbit manure (RM) at initial volatile solid loading (VSL) of 8 g VS/L, 16 g VS/L, 32 g VS/L, 64 g VS/L were investigated under mesophilic conditions. The maximum methane yields of 410, 270, 377 and 323 mL CH4/g VSadded for PM, DM, CM and RM were all obtained at initial VSL of 8 g VS/L, respectively. The improvement of substrate concentration to 64 g VS/L not only decreased the methane yield and biodegradability both by 22.4%, 37.3%, 49.1% and 34.6% for PM, DM, CM and RM respectively, but also reduced the methane content in final biogas production. The Cone model (R(2): 0.9910-0.9974) showed a better fit to the experiment data and the calculated parameters indicated that anaerobic digestion of manures at higher loading has longer lag phase and lower hydrolysis rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment.

    Science.gov (United States)

    Solé-Bundó, Maria; Eskicioglu, Cigdem; Garfí, Marianna; Carrère, Hélène; Ferrer, Ivet

    2017-08-01

    This study aimed at analyzing the anaerobic co-digestion of microalgal biomass grown in wastewater and wheat straw. To this end, Biochemical Methane Potential (BMP) tests were carried out testing different substrate proportions (20-80, 50-50 and 80-20%, on a volatile solid basis). In order to improve their biodegradability, the co-digestion of both substrates was also evaluated after applying a thermo-alkaline pretreatment (10% CaO at 75°C for 24h). The highest synergies in degradation rates were observed by adding at least 50% of wheat straw. Therefore, the co-digestion of 50% microalgae - 50% wheat straw was investigated in mesophilic lab-scale reactors. The results showed that the methane yield was increased by 77% with the co-digestion as compared to microalgae mono-digestion, while the pretreatment only increased the methane yield by 15% compared to the untreated mixture. Thus, the anaerobic co-digestion of microalgae and wheat straw was successful even without applying a thermo-alkaline pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline.

    Science.gov (United States)

    Turker, Gokhan; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2018-01-01

    The way that antibiotic residues in manure follow is one of the greatest concerns due to its potential negative impacts on microbial communities, the release of metabolites and antibiotic resistant genes (ARGs) into the nature and the loss of energy recovery in anaerobic digestion (AD) systems. This study evaluated the link between different operating conditions, the biodegradation of oxytetracycline (OTC) and the formation of its metabolites and ARGs in anaerobic digesters treating cow manure. Microbial communities and ARGs were determined through the use of quantitative real-time PCR. The biodegradation of OTC and occurrence of metabolites were determined using UV-HPLC and LC/MS/MS respectively. The maximum quantity of resistance genes was also examined at the beginning of AD tests and concentration was in the order of: tetM >tetO. The numbers of ARGs were always higher at high volatile solids (VS) content and high mixing rate. The results of the investigation revealed that relationship between mixing rate and VS content plays a crucial role for elimination of ARGs, OTC and metabolites. This can be attributed to high abundance of microorganisms due to high VS content and their increased contact with elevated mixing rate. An increased interaction between microorganisms triggers the promotion of ARGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. External validation of EPIWIN biodegradation models.

    Science.gov (United States)

    Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M

    2005-01-01

    The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

  8. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  9. Organic micro-pollutants’ removal via anaerobic membrane bioreactor with ultrafiltration and nanofiltration

    KAUST Repository

    Wei, Chunhai

    2015-12-15

    The removal of 15 organic micro-pollutants (OMPs) in synthetic municipal wastewater was investigated in a laboratory-scale mesophilic anaerobic membrane bioreactor (AnMBR) using ultrafiltration and AnMBR followed by nanofiltration (NF), where powdered activated carbon (PAC) was added to enhance OMPs removal. No significant effects of OMPs spiking and NF connection on bulk organics removal and biogas production were observed. Amitriptyline, diphenhydramine, fluoxetine, sulfamethoxazole, TDCPP and trimethoprim showed readily biodegradable characteristics with consistent biological removal over 80%. Atrazine, carbamazepine, DEET, Dilantin, primidone and TCEP showed refractory characteristics with biological removal below 40%. Acetaminophen, atenolol and caffeine showed a prolonged adaption time of around 45 d, with initial biological removal below 40% and up to 50-80% after this period. Most readily biodegradable OMPs contained a strong electron donating group. Most refractory OMPs contained a strong electron withdrawing group or a halogen substitute. NF showed consistent high rejection of 80-92% with an average of 87% for all OMPs, which resulted in higher OMPs removal in AnMBR-NF than in AnMBR alone, especially for refractory OMPs. Limited sorption performance of PAC for OMPs removal was mainly due to low and batch dosage (100 mg/L) as well as the competitive sorption caused by bulk organics.

  10. Biodegradation of lubricant oil

    African Journals Online (AJOL)

    M

    2012-09-25

    Sep 25, 2012 ... lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of ..... amount after biodegradation showed no difference in the .... products polluted sites in Elele, Rivers State, Ngeria.

  11. Characterizing Field Biodegradation of N-nitrosodimethylamine (NDMA) in Groundwater with Active Reclaimed Water Recharge

    Science.gov (United States)

    McCraven, S.; Zhou, Q.; Garcia, J.; Gasca, M.; Johnson, T.

    2007-12-01

    N-Nitrosodimethylamine (NDMA) is an emerging contaminant in groundwater, because of its aqueous miscibility, exceptional animal toxicity, and human carcinogenicity. NDMA detections in groundwater have been tracked to either decomposition of unsymmetrical dimethylhydrazine (UDMH) used in rocket fuel facilities or chlorine disinfection in wastewater reclamation plants. Laboratory experiments on both unsaturated and saturated soil samples have demonstrated that NDMA can be biodegraded by microbial activity, under both aerobic and anaerobic conditions. However, very limited direct evidence for its biodegradation has been found from the field in saturated groundwater. Our research aimed to evaluate photolysis and biodegradation of NDMA occurring along the full travel path - from wastewater reclamation plant effluent, through rivers and spreading grounds, to groundwater. For this evaluation, we established an extensive monitoring network to characterize NDMA concentrations at effluent discharge points, surface water stations, and groundwater monitoring and production wells, during the operation of the Montebello Forebay Groundwater Recharge facilities in Los Angeles County, California. Field monitoring for NDMA has been conducted for more than six years, including 32 months of relatively lower NDMA concentrations in effluent, 43 months of elevated NDMA effluent concentrations, and 7 months with significantly reduced NDMA effluent concentrations. The NDMA effluent concentration increase and significant concentration decrease were caused by changes in treatment processes. The NDMA sampling data imply that significant biodegradation occurred in groundwater, accounting for a 90% mass reduction of NDMA over the six-year monitoring period. In addition, the occurrence of a discrete well monitored effluent release during the study period allowed critical analysis of the fate of NDMA in a well- characterized, localized groundwater flow subsystem. The data indicate that 80% of the

  12. Effect of temperature and dispersant (COREXIT® EC 9500A) on aerobic biodegradation of benzene in a coastal salt marsh sediment.

    Science.gov (United States)

    Tao, Rui; Olivera-Irazabal, Miluska; Yu, Kewei

    2018-08-01

    The coastal ecosystem in the northern Gulf of Mexico (GoM) has been seriously impacted by the 2010 BP oil spill. Two experiments were conducted to study the effect of temperature and addition of the dispersant on biodegradation of benzene, as a representative of petroleum hydrocarbon, in a coastal salt marsh sediment under aerobic conditions. The results show that benzene biodegradation was approximately 6 time faster under aerobic conditions (Eh > +300 mV) than under anaerobic iron-reduction conditions (+14 mV  10 °C > 30 °C as expected in a saline environment. Application of the dispersant caused initial fluctuations of benzene vapor pressure during the incubation due to its hydrophobic and hydrophilic nature of the molecules. Presence of the dispersant shows an inhibitory effect on benzene biodegradation, and the inhibition increased with concentration of the dispersant. The Gulf coast sediment seems in a favorable scenario to recover from the BP oil spill with an average temperature around 20 °C in spring and fall season. Application of the dispersant may be necessary for the oil spill rescue operation, but its side effects may deserve further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds.

    Science.gov (United States)

    Lizasoain, Javier; Trulea, Adrian; Gittinger, Johannes; Kral, Iris; Piringer, Gerhard; Schedl, Andreas; Nilsen, Paal J; Potthast, Antje; Gronauer, Andreas; Bauer, Alexander

    2017-11-01

    This study evaluated the effect of steam explosion on the chemical composition and biomethane potential of corn stover using temperatures ranging between 140 and 220°C and pretreatment times ranging between 2 and 15min. Biodegradation kinetics during the anaerobic digestion of untreated and corn stover, pretreated at two different intensities, 140°C for 5min and 180°C for 5min, were studied in tandem. Results showed that pretreatment at 160°C for 2min improved the methane yield by 22%. Harsher pretreatment conditions led to lower hemicellulose contents and methane yields, as well as higher lignin contents, which may be due to the formation of pseudo-lignin. The biodegradation kinetics trial demonstrated that steam explosion enhances the degradation of structural carbohydrates and acid insoluble lignin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery.

    Science.gov (United States)

    Ansari, Ashley J; Hai, Faisal I; Price, William E; Ngo, Huu H; Guo, Wenshan; Nghiem, Long D

    2018-07-01

    This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  15. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    Science.gov (United States)

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  17. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates.

    Science.gov (United States)

    Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile

    2017-12-01

    The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Tian, Zhe; Gao, Yingxin; Yang, Min

    2016-09-01

    The combined anaerobic-aerobic biosystem is assumed to consume less energy for the treatment of high strength industrial wastewater. In this study, pollutant removal performance and microbial diversity were assessed in a long-term (over 300 days) bench-scale sequential anaerobic-aerobic bioreactor treating coking wastewater. Anaerobic treatment removed one third of the chemical oxygen demand (COD) and more than half of the phenols with hydraulic retention time (HRT) of 42 h, while the combined system with total HRT of 114 h removed 81.8, 85.6, 99.9, 98.2, and 85.4 % of COD, total organic carbon (TOC), total phenols, thiocyanate, and cyanide, respectively. Two-dimensional gas chromatography with time-of-flight mass spectrometry showed complete removal of phenol derivatives and nitrogenous heterocyclic compounds (NHCs) via the combined system, with the anaerobic process alone contributing 58.4 and 58.6 % removal on average, respectively. Microbial activity in the bioreactors was examined by 454 pyrosequencing of the bacterial, archaeal, and fungal communities. Proteobacteria (61.2-93.4 %), particularly Betaproteobacteria (34.4-70.1 %), was the dominant bacterial group. Ottowia (14.1-46.7 %), Soehngenia (3.0-8.2 %), and Corynebacterium (0.9-12.0 %), which are comprised of phenol-degrading and hydrolytic bacteria, were the most abundant genera in the anaerobic sludge, whereas Thiobacillus (6.6-43.6 %), Diaphorobacter (5.1-13.0 %), and Comamonas (0.2-11.1 %) were the major degraders of phenol, thiocyanate, and NHCs in the aerobic sludge. Despite the low density of fungi, phenol degrading oleaginous yeast Trichosporon was abundant in the aerobic sludge. This study demonstrated the feasibility and optimization of less energy intensive treatment and the potential association between abundant bacterial groups and biodegradation of key pollutants in coking wastewater.

  19. Biodegradable Sonobuoy Decelerators

    Science.gov (United States)

    2015-06-01

    of Water Temperature and the Presence of Salt on the Disintegration Time of MonoSol A200 PVOH...polyhydroxyalkanoate (PHA). The proposed film would disintegrate , dissolve, and eventually biodegrade to prevent long-term effects on marine life. Ensuring no...Standard Specification for Non-Floating Biodegradable Plastics in the Marine Environment. Results showed that no PHA grades were toxic to the marine

  20. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater

    Directory of Open Access Journals (Sweden)

    B. Bernardi

    2017-12-01

    Full Text Available Olive oil production constitutes one of the most important agro-industrial business for Mediterranean countries, where 97% of the international production is focused. Such an activity, mainly carried out through three phase olive oil mill plants, generates huge amounts of solid and liquid by-products further than olive oil. Physico-chemical features of these by-products depend on various factors such as soil and climatic conditions, agricultural practices and processing. As currently carried out, the disposal of these by-products may lead to numerous problems taking into account management, economic and particularly environmental aspects. Indeed, olive mill wastewater is not easily biodegradable due to its high chemical and biochemical oxygen demand, its high content in phenolic compounds, high ratio C/N and low pH, leading consequently to soil and water source pollution. Considering, the above-mentioned statements, olive mill waste disposal constitutes nowadays a challenge for oil industry stakeholders. It becomes necessary to look for alternative solutions in order to overcome environmental problems and ensure the sustainability of oil industry. Anaerobic co-digestion of olive mill wastewater with other agro-industrial matrices could be one of these solutions; since it offers the possibility to produce green energy and break down toxicological compounds contained in these wastewater for a better disposal of the digested matrices as soil conditioner. In this contest, this note reports the functioning principle of an automated medium scale plant for anaerobic co-digestion of olive mill wastewater. Keywords: Medium scale prototype, Olive mill wastewater (OMWW, Anaerobic co-digestion (AcoD, Automatic process

  2. Study on biomethane production and biodegradability of different leafy vegetables in anaerobic digestion.

    Science.gov (United States)

    Yan, Hu; Zhao, Chen; Zhang, Jiafu; Zhang, Ruihong; Xue, Chunyu; Liu, Guangqing; Chen, Chang

    2017-12-01

    Enormous amounts of vegetable residues are wasted annually, causing many environmental problems due to their high moisture and organic contents. In this study, the methane production potential of 20 kinds of typical leafy vegetable residues in China were explored using a unified method. A connection between the biochemical components and the methane yields of these vegetables was well established which could be used to predict biogas performance in practice. A high volatile solid/total solid (VS/TS) ratio and hemicellulose content exhibited a positive impact on the biogas yield while lignin had a negative impact. In addition, three kinetic models were used to describe the methane production process of these agro-wastes. The systematic comparison of the methane production potentials of these leafy vegetables shown in this study will not only serve as a reference for basic research on anaerobic digestion but also provide useful data and information for agro-industrial applications of vegetable residues in future work.

  3. Slaughterhouse fatty waste saponification to increase biogas yield.

    Science.gov (United States)

    Battimelli, A; Torrijos, M; Moletta, R; Delgenès, J P

    2010-05-01

    A thermochemical pretreatment, i.e. saponification, was optimised in order to improve anaerobic biodegradation of slaughterhouse wastes such as aeroflotation grease and flesh fats from cattle carcass. Anaerobic digestion of raw wastes, as well as of wastes saponified at different temperatures (60 degrees C, 120 degrees C and 150 degrees C) was conducted in fed-batch reactors under mesophilic condition and the effect of different saponification temperatures on anaerobic biodegradation and on the long-chain fatty acids (LCFAs) relative composition was assessed. Even after increasing loads over a long period of time, raw fatty wastes were biodegraded slowly and the biogas potentials were lower than those of theoretical estimations. In contrast, pretreated wastes exhibited improved batch biodegradation, indicating a better initial bio-availability, particularly obvious for carcass wastes. However, LCFA relative composition was not significantly altered by the pretreatment. Consequently, the enhanced biodegradation should be attributed to an increased initial bio-availability of fatty wastes without any modification of their long chain structure which remained slowly biodegradable. Finally, saponification at 120 degrees C achieved best performances during anaerobic digestion of slaughterhouse wastes. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment.

    Science.gov (United States)

    Qiu, Guanglei; Song, Yong-Hui; Zeng, Ping; Duan, Liang; Xiao, Shuhu

    2013-08-01

    Biodegradation of berberine antibiotic was investigated in upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process. After 118days of operation, 99.0%, 98.0% and 98.0% overall removals of berberine, COD and NH4(+)-N were achieved, respectively. The detailed composition of the established bacterial communities was studied by using 16S rDNA clone library. Totally, 400 clones were retrieved and grouped into 186 operational taxonomic units (OTUs). UASB was dominated by Firmicutes and Bacteroidetes, while Proteobacteria, especially Alpha- and Beta-proteobacteria were prevalent in the MBRs. Clostridium, Eubacterium and Synergistes in the UASB, as well as Hydrogenophaga, Azoarcus, Sphingomonas, Stenotrophomonas, Shinella and Alcaligenes in the MBRs were identified as potential functional species in biodegradation of berberine and/or its metabolites. The bacterial community compositions in two MBRs were significantly discrepant. However, the identical functions of the functional species ensured the comparable pollutant removal performances in two bioreactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Zhao, S; Pinholt, E M; Madsen, J E

    2000-01-01

    Different types of biodegradable membranes have become available for guided tissue regeneration. The purpose of this study was to evaluate histologically three different biodegradable membranes (Bio-Gide, Resolut and Vicryl) and one non-biodegradable membrane (expanded polytetrafluoroethylene/e-PTFE...... that e-PTFE was well tolerated and encapsulated by a fibrous connective tissue capsule. There was capsule formation around Resolut and Vicryl and around Bio-Gide in the early phase there was a wide inflammatory zone already. e-PTFE and Vicryl were stable materials while Resolut and Bio-Gide fragmented...

  6. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  7. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  8. Electrooxidation as the anaerobic pre-treatment of fats: oleate conversion using RuO2 and IrO2 based anodes.

    Science.gov (United States)

    Gonçalves, M; Alves, M M; Correia, J P; Marques, I P

    2008-11-01

    Electrochemical treatment of oleate using RuO2 and IrO2 type dimensionally stable anodes in alkaline medium was performed to develop a feasible anaerobic pre-treatment of fatty effluents. The results showed that the pre-treated solutions over RuO2 were faster degraded by anaerobic consortium than the raw oleate solutions or the electrolysed solutions using IrO2. In batch experiments carried out with pre-treated solutions over RuO2 (100-500mg/L), no lag phases were observed before the methane production onset. On the other hand, raw oleate and pre-treated oleate over IrO2 had originated lag phases of 0-140 and 0-210h, respectively. This study demonstrated that it is advantageous to apply the electrochemical treatment carried out on the RuO2 type DSA in order to achieve a faster biodegradation of lipid-containing effluent and consequently to obtain a faster methane production.

  9. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  10. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    International Nuclear Information System (INIS)

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-01-01

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O 2 /L R -d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied

  11. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jun Wei [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, Jing-Yuan, E-mail: jywang@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-04-15

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was

  12. [Current clinical significance of anaerobic bacteremia].

    Science.gov (United States)

    Jirsa, Roman; Marešová, Veronika; Brož, Zdeněk

    2010-10-01

    to estimate tje current clinical significance of anaerobic bacteremia in a group of Czech hospitals. this retrospective analysis comprised 8 444 anaerobic blood cultures in patients admitted to four Czech hospitals between 2004 and 2007. in 16 patients, blood cultures yielded significant anaerobic bacteria. Thus, anaerobic bacteremia accounted for less than 2 % of clinically significant bacteremia. Four patients (18 %) died but none of the deaths could be clearly attributable to anaerobic bacteria in the bloodstream. The most common comorbidities predisposing to anaerobic bacteremia and the most frequent sources of infection were similar to those reported by other authors. The majority of anaerobic bacteremia cases were due to gram-negative bacteria, followed by Clostridium perfringens and, surprisingly, Eubacterium spp. (particularly Eubacterium lentum). anaerobic bacteremia remains rare. The comparison of our data with those by other authors suggests that (despite the reported high mortality) the actual clinical significance of anaerobic bacteremia is rather controversial and that the anaerobic bacteremia might not correspond to more serious pathogenic role of the anaerobic bacteria as the source of infection.

  13. Anaerobic biogranulation in a hybrid reactor treating phenolic waste

    International Nuclear Information System (INIS)

    Ramakrishnan, Anushyaa; Gupta, S.K.

    2006-01-01

    Granulation was examined in four similar anaerobic hybrid reactors 15.5 L volume (with an effective volume of 13.5 L) during the treatment of synthetic coal wastewater at the mesophilic temperature of 27 ± 5 deg. C. The hybrid reactors are a combination of UASB unit at the lower part and an anaerobic filter at the upper end. Synthetic wastewater with an average chemical oxygen demand (COD) of 2240 mg/L, phenolics concentration of 752 mg/L and a mixture of volatile fatty acids was fed to three hybrid reactors. The fourth reactor, control system, was fed with a wastewater containing sodium acetate and mineral nutrients. Coal waste water contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. A mixture of anaerobic digester sludge and partially granulated sludge (3:1) were used as seed materials for the start up of the reactors. Granules were observed after 45 days of operation of the systems. The granules ranged from 0.4 to 1.2 mm in diameter with good settling characteristics with an SVI of 12 mL/g SS. After granulation, the hybrid reactor performed steadily with phenolics and COD removal efficiencies of 93% and 88%, respectively at volumetric loading rate of 2.24 g COD/L d and hydraulic retention time of 24 h. The removal efficiencies for phenol and m/p-cresols reached 92% and 93% (corresponding to 450.8 and 153 mg/L), while o-cresol was degraded to 88% (corresponding to 51.04 mg/L). Dimethyl phenols could be removed completely at all the organic loadings and did not contribute much to the residual organics. Biodegradation of o-cresol was obtained in the hybrid-UASB reactors

  14. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.

    Science.gov (United States)

    Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker

    2007-02-15

    Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.

  15. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Delia Teresa, E-mail: delya.sponza@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eyluel University, Buca Kaynaklar Campus, Tinaztepe, 35160 Izmir (Turkey); Demirden, Pinar, E-mail: pinar.demirden@kozagold.com [Environmental Engineer, Koza Gold Company, Environmental Department, Ovacik, Bergama Izmir (Turkey)

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  16. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-01-01

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  17. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    Science.gov (United States)

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  18. Anaerobic treatment techniques

    International Nuclear Information System (INIS)

    Boehnke, B.; Bischofsberger, W.; Seyfried, C.F.

    1993-01-01

    This practical and theoretical guide presents the current state of knowledge in anaerobic treatment of industrial effluents with a high organic pollutant load and sewage sludges resulting from the treatment of municipal and industrial waste water. Starting from the microbiological bases of anaerobic degradation processes including a description and critical evaluation of executed plants, the book evolves the process-technical bases of anaerobic treatment techniques, derives relative applications, and discusses these with reference to excuted examples. (orig./UWA). 232 figs [de

  19. Research of the biodegradability of degradable/biodegradable plastic material in various types of environments

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2017-04-01

    Full Text Available Research was carried out in order to assess biodegradability of degradable/biodegradable materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive, advertised as 100% degradable or certifi ed as compostable within various types of environments. Research conditions were: (i controlled composting environment – laboratory-scale, (ii real composting conditions – domestic compost bin, (iii real composting conditions – industrial composting plant and (iv landfill conditions. The results demonstrate that the materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive or advertised as 100% degradable did not biodegrade in any of the above-described conditions and remained completely intact at the end of the tests. Biodegradation of the certified compostable plastic bags proceeded very well in laboratory-scale conditions and in real composting conditions – industrial composting plant, however, these materials did not biodegrade in real composting conditions – domestic compost bin and landfill conditions.

  20. Biodegradation of bioplastics in natural environments.

    Science.gov (United States)

    Emadian, S Mehdi; Onay, Turgut T; Demirel, Burak

    2017-01-01

    The extensive production of conventional plastics and their use in different commercial applications poses a significant threat to both the fossil fuels sources and the environment. Alternatives called bioplastics evolved during development of renewable resources. Utilizing renewable resources like agricultural wastes (instead of petroleum sources) and their biodegradability in different environments enabled these polymers to be more easily acceptable than the conventional plastics. The biodegradability of bioplastics is highly affected by their physical and chemical structure. On the other hand, the environment in which they are located, plays a crucial role in their biodegradation. This review highlights the recent findings attributed to the biodegradation of bioplastics in various environments, environmental conditions, degree of biodegradation, including the identified bioplastic-degrading microorganisms from different microbial communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Bioactivity test and GRW biogas yield test. Methods for optimizing biogas plants for anaerobic digestion of biowaste; Rostocker Aktivitaets- und GRW-Biogasertragstest. Einsatz zur Optimierung von Abfallvergaerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Engler, Nils [Rostock Univ. (Germany). Lehrstuhl Abfall- und Soffstromwirtschaft; Schiffner, Maik [Rostock Univ. (Germany). Forschungsvorhaben ' ' Bilanzierung von Stoff- und Energiestroemen' ' ; Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Soffstromwirtschaft; Rostock Univ. (Germany). Inst. fuer Umweltingenieurwesen; Fritz, Thomas

    2010-03-15

    Anaerobic digestion to obtain biogas is one option for energetic use of biodegradable waste. Data as e. g. the expected biogas yield, the biogas composition or inhibition effects are essentially to estimate the potentials and risks of the use of biowaste in commercial bio gas plants. To deliver such data, several test methods were developed. The GRW biogas yield test was first applied at the university of applied science in Goettingen and enhanced in cooperation with the University of Rostock. The test is particularly suitable for inhomogeneous samples as e. g. biowaste. The Bioactivity Test is still under development. First results have shown that the test can be applied for the detection of potentially inhibition effects. Combination of both Tests can deliver data for optimizing biogas plants for anaerobic digestion of biowaste (orig.)

  2. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2014-01-01

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  3. Anaerobic Co-Digestion of Canola Straw and Buffalo Dung: Optimization of Methane Production in Batch Experiments

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2014-01-01

    Full Text Available In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops' residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability. The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO3 / gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size.

  4. Anaerobic digestion performance of sweet potato vine and animal manure under wet, semi-dry, and dry conditions.

    Science.gov (United States)

    Zhang, Enlan; Li, Jiajia; Zhang, Keqiang; Wang, Feng; Yang, Houhua; Zhi, Suli; Liu, Guangqing

    2018-03-22

    Sweet potato vine (SPV) is an abundant agricultural waste, which is easy to obtain at low cost and has the potential to produce clean energy via anaerobic digestion (AD). The main objectives of this study were to reveal methane production and process stability of SPV and the mixtures with animal manure under various total solid conditions, to verify synergetic effect in co-digestion of SPV and manure in AD systems, and to determine the kinetics characteristics during the full AD process. The results showed that SPV was desirable feedstock for AD with 200.22 mL/g VS added of methane yield in wet anaerobic digestion and 12.20 L methane /L working volume in dry anaerobic digestion (D-AD). Synergistic effects were found in semi-dry anaerobic digestion and D-AD with each two mixing feedstock. In contrast with SPV mono-digestion, co-digestion with manure increased methane yield within the range of 14.34-49.11% in different AD digesters. The values of final volatile fatty acids to total alkalinity (TA) were below 0.4 and the values of final pH were within the range of 7.4-8.2 in all the reactors, which supported a positive relationship between carbohydrate hydrolysis and methanogenesis during AD process. The mathematical modified first order model was applied to estimate substrate biodegradability and methane production potential well with conversion constant ranged from 0.0003 to 0.0953 1/day, which indicated that co-digestion increased hydrolysis efficiency and metabolic activity. This work provides useful information to improve the utilization and stability of digestion using SPV and livestock or poultry manure as substrates.

  5. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  6. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan

    of mechanical and thermal properties of polymers. For example, measurements of the resonance frequency of cantilevers were used to characterize thin polymer coatings in various environmental conditions [2]. Also, the influence of humidity on the Young’s modulus of SU-8 was evaluated [3]. However, introduction...... (NIL). Second, we used spray-coating to deposit thin biodegradable films on microcantilevers. Both approaches allowed the determination of the Young’s modulus of the biopolymer. Furthermore, biodegradation by enzymes was investigated....

  7. Systemic approaches to biodegradation.

    Science.gov (United States)

    Trigo, Almudena; Valencia, Alfonso; Cases, Ildefonso

    2009-01-01

    Biodegradation, the ability of microorganisms to remove complex chemicals from the environment, is a multifaceted process in which many biotic and abiotic factors are implicated. The recent accumulation of knowledge about the biochemistry and genetics of the biodegradation process, and its categorization and formalization in structured databases, has recently opened the door to systems biology approaches, where the interactions of the involved parts are the main subject of study, and the system is analysed as a whole. The global analysis of the biodegradation metabolic network is beginning to produce knowledge about its structure, behaviour and evolution, such as its free-scale structure or its intrinsic robustness. Moreover, these approaches are also developing into useful tools such as predictors for compounds' degradability or the assisted design of artificial pathways. However, it is the environmental application of high-throughput technologies from the genomics, metagenomics, proteomics and metabolomics that harbours the most promising opportunities to understand the biodegradation process, and at the same time poses tremendous challenges from the data management and data mining point of view.

  8. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  9. Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: a column study.

    Science.gov (United States)

    Pitoi, M M; Patterson, B M; Furness, A J; Bastow, T P; McKinley, A J

    2011-04-01

    The fate of N-nitrosomorpholine (NMOR) was evaluated at microgram and nanogram per litre concentrations. Experiments were undertaken to simulate the passage of groundwater contaminants through a deep anaerobic pyritic aquifer system, as part of a managed aquifer recharge (MAR) strategy. Sorption studies demonstrated the high mobility of NMOR in the Leederville aquifer system, with retardation coefficients between 1.2 and 1.6. Degradation studies from a 351 day column experiment and a 506 day stop-flow column experiment showed an anaerobic biologically induced reductive degradation process which followed first order kinetics. A biological lag-time of less than 3 months and a transient accumulation of morpholine (MOR) were also noted during the degradation. Comparable half-life degradation rates of 40-45 days were observed over three orders of magnitude in concentration (200 ng L(-1) to 650 μg L(-1)). An inhibitory effect on microorganism responsible to the biodegradation of NMOR at 650 μg L(-1) or a threshold effect at 200 ng L(-1) was not observed during these experiments. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Clinical features of anaerobic orthopaedic infections.

    Science.gov (United States)

    Lebowitz, Dan; Kressmann, Benjamin; Gjoni, Shpresa; Zenelaj, Besa; Grosgurin, Olivier; Marti, Christophe; Zingg, Matthieu; Uçkay, Ilker

    2017-02-01

    Some patient populations and types of orthopaedic surgery could be at particular risk for anaerobic infections. In this retrospective cohort study of operated adult patients with infections from 2004 to 2014, we assessed obligate anaerobes and considered first clinical infection episodes. Anaerobes, isolated from intra-operative samples, were identified in 2.4% of 2740 surgical procedures, of which half (33/65; 51%) were anaerobic monomicrobial infections. Propionibacterium acnes, a penicillin and vancomycin susceptible pathogen, was the predominantly isolated anaerobe. By multivariate analysis, the presence of fracture fixation plates was the variable most strongly associated with anaerobic infection (odds ratio: 2.1, 95% CI: 1.3-3.5). Anaerobes were also associated with spondylodesis and polymicrobial infections. In contrast, it revealed less likely in native bone or prosthetic joint infections and was not related to prior antibiotic use. In conclusion, obligate anaerobes in our case series of orthopaedic infections were rare, and mostly encountered in infections related to trauma with open-fracture fixation devices rather than clean surgical site infection. Anaerobes were often co-pathogens, and cultures most frequently recovered P. acnes. These observations thus do not support changes in current practices such as broader anaerobe coverage for perioperative prophylaxis.

  11. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  12. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  14. A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, AB. Aziz Abdul; Daud, Zawawi; Ahmad, Zulkifli [Faculty of Civil and Enviromental Engineering, University Tun Hussein Onn (Malaysia)

    2011-07-01

    Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR) and hydraulic retention time (HRT) of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28{+-}2 C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37{+-}1 C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD) removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  15. Assays at laboratory scale for anaerobic treatment of piggery farm wastewater; Depuracion anaerobia de aguas residuales de granjas porcinas. Ensayos a escala de laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Duran Barrantes, M. M.; Alvarez Mateos, P.; Carta Escobar, F.; Romero Guzman, F. [Universidad de Sevilla (Spain); Fiestas Ros de Ursinos, J. A. [Instituto de la Grasa. Sevilla (Spain)

    2000-07-01

    The viability of an integrated biological treatment for the swine waste-water purification in a piggery farm, was studied. Previously, at a laboratory scale, the anaerobic biodegradability of this wastewater was analysed, using different clayey supports to immobilize the microorganisms in batch regime, at 35 degree centigree, with an organic load ranged from 0,2 to 2,2, g COD/I. The highest methane production was achieved at the first 24 hours. The mean highest efficiency (%COD removal) was obtained in reactors with sepiolite, natural sepiolite and treated sepiolite. (Author) 10 refs.

  16. Biodegradable Implants in Orthopaedics and Traumatology

    OpenAIRE

    YETKIN, Haluk

    2014-01-01

    Biodegradable implants are an alternative to metallic implants and have the advantage of not being necessary to remove once the fracture has healed. Twenty-two patients with fractures were treated with biodegradable implants. There were osteolysis in eleven patients; however, no serious complication was encountered. Although biodegradable implants are expensive, a second surgical procedure to remove the implants is not necessary, relieving the patient of the related costs and risks.

  17. Biodegradable and compostable alternatives to conventional plastics

    Science.gov (United States)

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  18. Biodegradable and compostable alternatives to conventional plastics.

    Science.gov (United States)

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  19. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    Science.gov (United States)

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.

  20. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  1. Microbial processes in the final repository, the silo part. Theoretical approach and preliminary experiments on the biodegradation of bitumen. Part 1

    International Nuclear Information System (INIS)

    Roffey, R.; Hjalmarsson, K.

    1984-01-01

    On Commission of SKBF/KBS the microbial processes that are likely to occur in the silo part of SFR, the final repository for medium- and low-level nuclear wastes, have been put together. The experimental studies concerning microbial degradation of bitumen are described. From a microbial point of view it is the biodegradation of bitumen that constitutes the greatest risk in the silo part of SFR. The degradation, aerobic as well as anaerobic, leads to production of carbon dioxide which might cause a decrease in pH to such an extent that hydrogen-gas producing corrosion of metal could occur. This production of gas can cause an increase in internal pressure of the repository. A culture of bacteria able to degrade bitumen aerobically has been enriched. Uptil now no culture degrading bitumen under anaerobic conditions have been obtained. When making a risk assessment of the SFR at the present time it is not possible to completely disregard the microbial activity. An account is also given for some international contacts in this area. 11 references

  2. Use of anaerobic hydrolysis pretreatment to enhance ultrasonic disintegration of excess sludge.

    Science.gov (United States)

    Li, Xianjin; Zhu, Tong; Shen, Yang; Chai, Tianyu; Xie, Yuanhua; You, Meiyan; Wang, Youzhao

    2016-01-01

    To improve the excess sludge disintegration efficiency, reduce the sludge disintegration cost, and increase sludge biodegradability, a combined pretreatment of anaerobic hydrolysis (AH) and ultrasonic treatment (UT) was proposed for excess sludge. Results showed that AH had an advantage in dissolving flocs, modifying sludge characteristics, and reducing the difficulty of sludge disintegration, whereas UT was advantageous in damaging cell walls, releasing intracellular substances, and decomposing macromolecular material. The combined AH-UT process was an efficient method for excess sludge pretreatment. The optimized solution involved AH for 3 days, followed by UT for 10 min. After treatment, chemical oxygen demand, protein, and peptidoglycan concentrations reached 3,949.5 mg O2/L, 752.5 mg/L and 619.1 mg/L, respectively. This work has great significance for further engineering applications, namely, reducing energy consumption, increasing the sludge disintegration rate, and improving the biochemical properties of sludge.

  3. Selected Topics in Anaerobic Bacteriology.

    Science.gov (United States)

    Church, Deirdre L

    2016-08-01

    Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.

  4. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  5. Production of clean energy by anaerobic digestion of phytomass - New prospects for a global warming amelioration technology

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Tasneem; Abbasi, S.A. [Centre for Pollution Control and Energy Technology, Pondicherry University, Chinakalapet, Puducherry 605014 (India)

    2010-08-15

    Anaerobic digestion of animal dung generated combustible gas - this fact has been known since over 130 years and has been gainfully utilized in generating clean energy in the form of methane-rich 'biogas'. During 1970s it was found that aquatic weeds and other phytomass, if anaerobically digested, also produced similarly combustible 'bio' gas. It raised great hopes that anaerobic digestion of phytomass will also enable generation of biogas that too on a much larger scale than is possible with animal manure. This, it was hoped, would also provide a means for utilizing weeds, crop wastes, and biodegradable municipal solid waste which otherwise cause environmental pollution. It appeared to be a 'no lose' possibility; it was hoped that soon the problems of weeds (and other biosolid wastes) as well as energy shortage, would vanish. At that time there was little realization of the global warming (GW) potential of methane nor of the fact that natural degradation of phytomass in the environment is causing massive quantities of GW gas emission. Hence, at that time, the potential benefits from anaerobic digestion of phytomass were perceived only in terms of pollution control and energy generation. But four decades have since elapsed and there is still no economically viable technology with which weeds and phytowastes can be gainfully converted to energy. This paper takes a look at what has happened and why. It also points towards the possibility of success finally emerging on the horizon. It would, hopefully, give a fresh impetus to the entire field of biomethanation R and D because all 'methane capture' technologies also indirectly contribute to very significant reduction in global warming. (author)

  6. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad

    2017-03-29

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L (98%) NH, 311 mg L (99%) NO, and 633 mg L (97%) total nitrogen (8 mg L averaged NO concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L (98%) and 350 mg L (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  7. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    Science.gov (United States)

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-19

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L -1 (98%) NH 4 , 311 mg L -1 (99%) NO 2 , and 633 mg L -1 (97%) total nitrogen (8 mg L -1 averaged NO 3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L -1 (98%) and 350 mg L -1 (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  8. Identification of synergistic impacts during anaerobic co-digestion of organic wastes.

    Science.gov (United States)

    Astals, S; Batstone, D J; Mata-Alvarez, J; Jensen, P D

    2014-10-01

    Anaerobic co-digestion has been widely investigated, but there is limited analysis of interaction between substrates. The objective of this work was to assess the role of carbohydrates, protein and lipids in co-digestion behaviour separately, and together. Two sets of batch tests were done, each set consisting of the mono-digestion of three substrates, and the co-digestion of seven mixtures. The first was done with pure substrates--cellulose, casein and olive oil--while in the second slaughterhouse waste--paunch, blood and fat--were used as carbohydrate, protein and lipid sources, respectively. Synergistic effects were mainly improvement of process kinetics without a significant change in biodegradability. Kinetics improvement was linked to the mitigation of inhibitory compounds, particularly fats dilution. The exception was co-digestion of paunch with lipids, which resulted in an improved final yield with model based analysis indicating the presence of paunch improved degradability of the fatty feed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    Science.gov (United States)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a

  10. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  11. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  12. Livestock Anaerobic Digester Database

    Science.gov (United States)

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  13. Biodegradation of oils in uranium deposits

    International Nuclear Information System (INIS)

    Landais, P.

    1989-01-01

    The biodegradation of free hydrocarbons that have migrated in reservoir facies has often been observed in the field of petroleum exploration. This alteration is characterized by the progressive removal by bacteria of the different types of hydrocarbons: n-alkanes, branched alkanes, aromatics, cycloalkanes, etc. One of the most important consequences of biodegradation is the biogenic reduction of sulphate, which has been noticed in several Pb-Zn deposits. Biodegradation of oils spatially associated with uranium mineralizations has been observed in Temple Mountain, Utah, and the Grand Canyon, Arizona, in the United States of America, and in Lodeve in France. It leads to the transformation of fluid oils into solid bitumens. Emphasis is placed on the relationships between the effects of biodegradation on organic matter (oxidation of aromatization) and the nature of aqueous fluids analysed in fluid inclusions trapped in authigenic minerals. Different mechanisms are proposed to explain the transformations of organic matter during biodegradation and their possible links with the ore forming process. (author). 40 refs, 13 figs, 1 tab

  14. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  15. High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus

    Science.gov (United States)

    Papazi, Aikaterini; Andronis, Efthimios; Ioannidis, Nikolaos E.; Chaniotakis, Nikolaos; Kotzabasis, Kiriakos

    2012-01-01

    Hydrogen is a highly promising energy source with important social and economic implications. The ability of green algae to produce photosynthetic hydrogen under anaerobic conditions has been known for years. However, until today the yield of production has been very low, limiting an industrial scale use. In the present paper, 73 years after the first report on H2-production from green algae, we present a combinational biological system where the biodegradation procedure of one meta-substituted dichlorophenol (m-dcp) is the key element for maintaining continuous and high rate H2-production (>100 times higher than previously reported) in chloroplasts and mitochondria of the green alga Scenedesmus obliquus. In particular, we report that reduced m-dcps (biodegradation intermediates) mimic endogenous electron and proton carriers in chloroplasts and mitochondria, inhibit Photosystem II (PSII) activity (and therefore O2 production) and enhance Photosystem I (PSI) and hydrogenase activity. In addition, we show that there are some indications for hydrogen production from sources other than chloroplasts in Scenedesmus obliquus. The regulation of these multistage and highly evolved redox pathways leads to high yields of hydrogen production and paves the way for an efficient application to industrial scale use, utilizing simple energy sources and one meta-substituted dichlorophenol as regulating elements. PMID:23145057

  16. Here today, gone tomorrow: biodegradable soft robots

    Science.gov (United States)

    Rossiter, Jonathan; Winfield, Jonathan; Ieropoulos, Ioannis

    2016-04-01

    One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a broken item and then procure a new one. In the 20th century enlightened environmentalists campaigned for recycling and reuse (R and R). R and R has continued to be an important part of new technology development, but there is still a huge problem of non-recyclable materials being dumped into landfill and being discarded in the environment. The challenge is even greater for robotics, a field which will impact on all aspects of our lives, where discards include motors, rigid elements and toxic power supplies and batteries. One novel solution is the biodegradable robot, an active physical machine that is composed of biodegradable materials and which degrades to nothing when released into the environment. In this paper we examine the potential and realities of biodegradable robotics, consider novel solutions to core components such as sensors, actuators and energy scavenging, and give examples of biodegradable robotics fabricated from everyday, and not so common, biodegradable electroactive materials. The realisation of truly biodegradable robots also brings entirely new deployment, exploration and bio-remediation capabilities: why track and recover a few large non-biodegradable robots when you could speculatively release millions of biodegradable robots instead? We will consider some of these exciting developments and explore the future of this new field.

  17. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    Science.gov (United States)

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and

  18. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  19. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  20. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  1. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    Science.gov (United States)

    Miguez, Carlos B.; Shen, Chun F.; Bourque, Denis; Guiot, Serge R.; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not sequentially. Here, emphasis was placed on monitoring various methanotrophic populations by using classical methods and also a PCR amplification assay based on the mmoX gene fragment of the soluble methane monooxygenase (sMMO). The following results were obtained: (i) under the conditions used, Methylosinus sporium appeared to survive better than Methylosinus trichosporium; (ii) the PCR method which we used could detect as few as about 2,000 sMMO gene-containing methanotrophs per g (wet weight) of granular sludge; (iii) inoculation of the bioreactors with pure cultures of methanotrophs contributed greatly to increases in the sMMO-containing population (although the sMMO-containing population decreased gradually with time, at the end of an experiment it was always at least 2 logs larger than the initial population before inoculation); (iv) in general, there was a good correlation between populations with the sMMO gene and populations that exhibited sMMO activity; and (v) inoculation with sMMO-positive cultures helped increase significantly the proportion of sMMO-positive methanotrophs in reactors, even after several weeks of operation under various regimes. At some point, anaerobic-aerobic bioreactors like those described here might be used for biodegradation of various chlorinated pollutants. PMID:9925557

  2. Kinetics of monomer biodegradation in soil.

    Science.gov (United States)

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  4. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  5. Biodegradable Metals From Concept to Applications

    CERN Document Server

    Hermawan, Hendra

    2012-01-01

    This book in the emerging research field of biomaterials covers biodegradable metals for biomedical applications. The book contains two main parts where each of them consists of three chapters. The first part introduces the readers to the field of metallic biomaterials, exposes the state of the art of biodegradable metals, and reveals its application for cardiovascular implants. It includes some fundamental aspects to give basic understanding on metals for further review on the degradable ones is covered in chapter one. The second chapter introduces the concept of biodegradable metals, it's st

  6. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  7. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  8. Anaerobic digestion of organic by-products from meat-processing industry. The effect of pre-treatments and co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.

    2011-07-01

    Anaerobic digestion is a multi-beneficial biological treatment during which micro-organisms degrade organic material producing biogas (i.e. methane) and stabilised end-product (i.e. digestate). Methane is a versatile renewable energy source and digestate can be used as an organic fertiliser and/or soil improver. Because of the increasing consumption and tightening environment and health legislation, production of organic wastes suitable for anaerobic digestion increases. Animal by-products (ABP) from the meat-processing industry are often rendered (contaminated material), used as feedstock (in fur breeding), or composted. However, ABPs studied could not be utilised in fodder or in animal food production and have currently been rendered or directed to composting, despite being mostly considered unsuitable for composting. Many ABPs are energy-rich, wet and pasty materials and suitable for the anaerobic digestion process. Moreover, suitable pre-treatment to hydrolyse solid materials and/or co-digestion of two or several materials may improve the anaerobic digestion with ultimate goal to increase the methane production, stabilisation and reusability of digestate. The case chosen for more detailed research was that of a middle-sized Finnish meat-processing industry. The aim of the thesis was to evaluate the feasibility of different ABPs presently available for treatment as raw material for anaerobic digestion. Another objective was to enhance the anaerobic digestion process via specific pre-treatments and co-digestion cases with the ultimate aim to increase the methane production and the quality of the digestate. The general goal was to observe the overall process from the perspective of real-circumstances in Finland to rise to needs in practice and to produce exploitable information for adopting sustainable development locally and case-specifically into practice via versatile anaerobic digestion technology. The ABPs studied were highly bio-degradable and especially

  9. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  10. Treatability and kinetics studies of mesophilic aerobic biodegradation of high oil and grease pet food wastewater

    International Nuclear Information System (INIS)

    Liu, Victor Lei; Nakhla, G.; Bassi, A.

    2004-01-01

    In this work, batch activated sludge studies were investigated for the treatment of raw pet food wastewater characterized by oil and grease concentrations of 50,000-66,000 mg/L, COD and BOD concentrations of 100,000 and 80,000 mg/L, respectively, as well as effluent from an existing anaerobic digester treating the aforementioned wastewater. A pre-treatment process, dissolved air flotation (DAF) achieved 97-99% reduction in O and G to about 400-800 mg/L, which is still atypically high for AS. The batch studies were conducted using a 4-L bioreactor at room temperature (21 deg. C) under different conditions. The experimental results showed for the DAF pretreated effluent, 92% COD removal efficiency can be achieved by using conventional activated sludge system at a 5 days contact time and applied initial soluble COD to biomass ratio of 1.17 mg COD/mg VSS. Similarly for the digester effluent at average oil and grease concentrations of 13,500 mg/L, activated sludge affected 63.7-76.2% soluble COD removal at 5 days. The results also showed that all kinetic data best conformed to the zero order biodegradation model with a low biomass specific maximum substrate utilization rate of 0.168 mg COD/mg VSS day reflecting the slow biodegradability of the wastewater even after 99% removal of oil and grease

  11. Biodegradable lubricants - ''the solution for future?''

    International Nuclear Information System (INIS)

    Jahan, A.

    1997-01-01

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO 2 , NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  12. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  13. Blendas PHB/copoliésteres biodegradáveis : biodegradação em solo Biodegradable PHB/copolyester blends : biodegradation in soil

    Directory of Open Access Journals (Sweden)

    Suzan A. Casarin

    2013-01-01

    Full Text Available Este trabalho apresenta os resultados do comportamento de blendas do polímero biodegradável PHB poli(hidroxibutirato com os copoliésteres também biodegradáveis EastarBio® e Ecoflex®, na composição de 75% de PHB e 25% dos copoliésteres, em contato com solo composto simulado. Foi também avaliada a influência da adição de pó de serra ou farinha de madeira, na proporção de 70% da blenda e 30% de pó de serra (p.d.s.. A biodegradação foi avaliada para amostras após 30, 60 e 90 dias em contato com solo, através de análises gravimétricas, morfológicas e mecânicas. A preparação inicial dos grânulos dos compostos poliméricos foi feita por extrusão, utilizando uma extrusora dupla-rosca e a moldagem dos corpos de prova foi realizada através da moldagem por injeção. Os materiais estudados biodegradam nas condições testadas. A blenda PHB/EastarBio® (75/25 + 30% p.d.s. apresentou maior redução de massa, 29% após 90 dias. Notou-se que a biodegradação se inicia pela superfície do material e que 90 dias são insuficientes para observar alterações internas.This paper reports on blends made with the biodegradable polymers poly(hydroxybutyrate (PHB and Eastar Bio® or Ecoflex® copolyesters, in contact with simulated compound soil. The blends had 75% of PHB and 25% of copolyesters. We also analyzed the influence from adding 30% of powder-wood or wood flour (WPC to 70% of the blend. Biodegradation was analyzed for samples after 30, 60 and 90 days in contact with soil, through thermogravimetric, morphological and mechanical analyses. The initial preparation of the granules of polymeric compounds was made by extrusion, using a twin-screw extruder and the molding of the specimens was performed by injection molding. The analysis indicated material biodegradation under the conditions tested. The PHB/Eastar Bio® blend (75/25 + 30% WPC exhibited the highest degradation with 29% of mass loss at the end of 90 days. Biodegradation

  14. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  15. Biodegradation studies of diesel-contaminated soils and sediments

    International Nuclear Information System (INIS)

    Schlauch, M.; Clark, D.

    1992-01-01

    Radian Corporation is currently remediating the Atchison, Topeka and Sante Fe Railway Superfund site in Clovis, New Mexico. Biodegradation of the petroleum hydrocarbon-contaminated soils and sediments was chosen as the remedial alternative. In order to evaluate the optimum conditions for full-scale bioremediation at this site, Radian designed and implemented various laboratory and field studies. The initial laboratory treatability study was conducted to determine if hydrocarbons in both soils and sediments could be biodegraded using indigenous microorganisms, and determine that the soil were biodegradable, while the sediments were not due to inhibitory factors. To further evaluate the biodegradability6 of the sediments, a laboratory study was initiated which introduced chloride-resistant microbes. The study showed that the sediment bioremediation was possibly by utilizing these microbes; however, the cost was not favorable. Finally, a field plot study was initiated to determine how soil biodegradation would proceed in field conditions, to optimize influencing factors such as moisture and nutrient levels and bioseed addition, and to investigate alternate methods of bioremediating the sediments. Results showed that hydrocarbons in the soils biodegraded much faster in the field than in the lab, and that hydrocarbons in sediments applied to biotreated soils containing acclimated microorganisms were successfully biodegraded

  16. Enhancing anaerobic digestion of poultry blood using activated carbon

    Directory of Open Access Journals (Sweden)

    Maria José Cuetos

    2017-05-01

    Full Text Available The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6–8 g/L. The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  17. Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses.

    Science.gov (United States)

    Hao, He; Tian, Yonglan; Zhang, Huayong; Chai, Yang

    2017-12-01

    The effect of copper (added as CuCl 2 ) on the anaerobic co-digestion of Phragmites straw and cow dung was studied in pilot experiments by investigating the biogas properties, process stability, substrate degradation and enzyme activities at different stages of mesophilic fermentation. The results showed that 30 and 100 mg/L Cu 2+ addition increased the cumulative biogas yields by up to 43.62 and 20.77% respectively, and brought forward the daily biogas yield peak, while 500 mg/L Cu 2+ addition inhibited biogas production. Meanwhile, the CH 4 content in the 30 and 100 mg/L Cu 2+ -added groups was higher than that in the control group. Higher pH values (close to pH 7) and lower oxidation-reduction potential (ORP) values in the Cu 2+ -added groups after the 8th day indicated better process stability compared to the control group. In the presence of Cu 2+ , the degradation of volatile fatty acids (VFAs) and other organic molecules (represented by chemical oxygen demand, COD) generated from hydrolysis was enhanced, and the ammonia nitrogen (NH 4 + -N) concentrations were more stable than in the control group. The contents of lignin and hemicellulose in the substrate declined in the Cu 2+ -added groups while the cellulose contents did not. Neither the cellulase nor the coenzyme F 420 activities could determine the biogas producing efficiency. Taking the whole fermentation process into account, the promoting effect of Cu 2+ addition on biogas yields was mainly attributable to better process stability, the enhanced degradation of lignin and hemicellulose, the transformation of intermediates into VFA, and the generation of CH 4 from VFA.

  18. Application of anaerobic digestion products of municipal solid food wastes in treating wastewaters

    Directory of Open Access Journals (Sweden)

    G. Fazeli

    2016-01-01

    Full Text Available Anaerobic digestion is the breakdown of biodegradable organic material by microorganisms in the absence of oxygen or in an oxygen-starved environment.This technology is superior to the landfilling and also the aerobic composting. The aim of the present study was to examine whether the effluent Volatile Fatty Acids from the anaerobic acidogenesis of the food waste can be used du to its high value in organic elements, as an external carbon source for the denitrificationin in waste water treatment plants . The results showed that Volatile Fatty Acids concentration in mg COD/L in the fermentation was in the range between 3,300 mg COD/L and 6,560 mgCOD/L.The n-butiric acid had the highest concentration in mgCOD/L followed by the propionic and acetic acid, while the valeric acid had the lowest concentration. As well as the concentration of the acetic and valeric acid were stable over the time. Opposite to these, the propionic and n-butyric acid showed high variability in the concentration, especially the n-butyric acid. The specific denitrification rate tests tests showed that the ethanol cultivated biomass was more successful in using the effluent of the food waste digestion as carbon source than methanol cultivated biomass.The specific denitrification reta tests results of our experiment, showed that the average of 0.15 an 0.51 mg N/mg for methanol and ethanol cultivated biomass respectively.

  19. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  20. Anaerobic treatment in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, M; Solisio, C; Ferrailo, G

    1984-02-01

    In Italy, environmental protection and energy conservation have become very important since the increase in oil prices. The law requires that all waste waters have a B.O.D. of 40 mg/l by 1986 so there has been an expansion of purification plants since 1976, using anaerobic digestion. The report deals with the current state of anaerobic treatment in Italy with particular reference to (1) animal wastes. In intensive holdings, anaerobic digestion leads to a decrease in pollution and an increase in biogas generation which can be used to cover the energy demand of the process. The factors which influence the builders of digestors for farms are considered. (2) Non toxic industrial wastes. These are the waste waters emanating from the meat packing, brewing, pharmaceutical and chemical industries. Particular reference is made to the distillery plants using anaerobic treatment prior to aerobic digestion. (3) Urban wastes. The advantages and the disadvantages are considered and further research and development is recommended. 20 references.

  1. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  2. Anaerobic prosthetic joint infection.

    Science.gov (United States)

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  3. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2006-01-01

    Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics...... such as composition of biodegradable fractions, C:N ratio and particle size is described. Generally, source sorting of OFMSW and a high content of food waste leads to higher biogas yields than the use of mechanically sorted OFMSW. Thermophilic processes are more efficient than mesophilic processes in terms of higher...... biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS(.)m(-3) d(-1). High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS(.)m(-3) d(-1) are applied. Multi...

  4. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantification of the inert chemical oxygen demand of raw wastewater and evaluation of soluble microbial product production in demo-scale upflow anaerobic sludge blanket reactors under different operational conditions.

    Science.gov (United States)

    Aquino, Sergio F; Gloria, Roberto M; Silva, Silvana Q; Chernicharo, Carlos A L

    2009-06-01

    This paper investigates the production of soluble microbial products (SMPs) in demonstration-scale upflow anaerobic sludge blanket reactors operated under different conditions and fed with raw wastewater. The results showed that 9.2 +/- 1.3% of the influent soluble chemical oxygen demand (COD) could be considered inert to anaerobic treatment and that the amount of COD produced by biomass varied from 30 to 70 mg x L(-1), accounting for 45 to 63% of the soluble effluent COD. The accumulation of SMP appeared to be dependent on the hydraulic retention time (HRT) applied to the reactors, with a larger accumulation of SMP observed at the lowest HRT (5 hours); this may have been due to stress conditions caused by high upflow velocity (1.1 m x h(-1)). In terms of residual COD characterization, ultrafiltration results showed that higher amounts of high molecular weight compounds were found when HRT was the lowest (5 hours), and that the molecular weight distribution depended on the operational condition of the reactors. Biodegradability tests showed that the low and high molecular weight SMPs were only partially degraded anaerobically (10 to 60%) and that the high molecular weight SMPs were difficult to degrade aerobically.

  6. Mass transfer analysis for terephthalic acid biodegradation by ...

    African Journals Online (AJOL)

    Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...

  7. Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses

    Directory of Open Access Journals (Sweden)

    Eunjong Kim

    2018-02-01

    Full Text Available Bedded pack manure has long been considered an unsuitable feedstock for conventional anaerobic digestion systems due to its high solids content. However, solid-state anaerobic digestion (SS-AD provides an opportunity to generate methane from such high-solids feedstocks. This study was conducted to determine the influence of moisture content on the digestion of bedded pack dairy manure using SS-AD. Mixtures of sawdust bedding and dairy manure were prepared with moisture contents (MCs of 70, 76, and 83% and digested at 37 °C for 85 days. The performance of digesters containing manure at 83% MC was 1.3 to 1.4-fold higher than that of digesters containing 70% MC manure in terms of volatile solids (VS reduction and biogas production. VS reduction rates were 55 to 75% and cumulative methane yield ranged from 64 to 90 NmL (gVS−1. These values are lower than those from SS-AD of fresh manure and this is likely due to the partial decomposition of biodegradable materials during the two to three-month period before the manure was removed from the barn. However, in terms of efficient management of farm odors and providing a renewable energy source for heating, SS-AD of bedded pack manure offers a potential alternative to the conventional composting systems currently in use.

  8. An effective and economic system for the determination of biogas production in discontinuous assays; Sistema effectivo y economico parala determinacion de la produccion de biogas en ensayos en discontinuo

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, I.; Fornes, O.; Ferrer, O.; Gordillo, M. A.; Font, X.

    2004-07-01

    Methodology for the determination of anaerobic biodegradability or toxicity assays is well described in bibliography. However a certain lack of information exists regarding the experimental assembly for the realization of such assays. In this article the experimental setup is described in detail, as well as the cost of a system for the determination of biogas production in toxicity or biodegradability anaerobic assays. (Author) 10 refs.

  9. Biodegradation of clofibric acid and identification of its metabolites

    International Nuclear Information System (INIS)

    Salgado, R.; Oehmen, A.; Carvalho, G.; Noronha, J.P.; Reis, M.A.M.

    2012-01-01

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: ► Clofibric acid is biodegradable. ► Mainly heterotrophic bacteria degraded the clofibric acid. ► Metabolites of clofibric acid biodegradation were identified. ► The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L −1 ), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  10. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    Science.gov (United States)

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.

  11. Biotransformation potential of phytosterols under anoxic and anaerobic conditions.

    Science.gov (United States)

    Dykstra, C M; Giles, H D; Banerjee, S; Pavlostathis, S G

    2014-01-01

    The biotransformation potential of three phytosterols (campesterol, stigmasterol and β-sitosterol) under denitrifying, sulfate-reducing and fermentative/methanogenic conditions was assessed. Using a group contribution method, the standard Gibbs free energy of phytosterols was calculated and used to perform theoretical energetic calculations. The oxidation of phytosterols under aerobic, nitrate-reducing, sulfate-reducing and methanogenic conditions was determined to be energetically feasible. However, using semi-continuously fed cultures maintained at 20-22 °C over 16 weekly feeding cycles (112 days; retention time, 21 days), phytosterol removal was observed under nitrate-reducing and sulfate-reducing conditions, but not under fermentative/methanogenic conditions. Under sulfate-reducing conditions, stigmast-4-en-3-one was identified as an intermediate of phytosterol biotransformation, a reaction more likely carried out by dehydrogenases/isomerases, previously reported to act on cholesterol under both oxic and anoxic (denitrifying) conditions. Further study of the biotransformation of phytosterols under anoxic/anaerobic conditions is necessary to delineate the factors and conditions leading to enhanced phytosterol biodegradation and the development of effective biological treatment systems for the removal of phytosterols from pulp and paper wastewaters and other phytosterol-bearing waste streams.

  12. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  13. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    Full Text Available Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  14. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  15. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  16. Biodegradability of polyurethane/polysaccharide blends

    International Nuclear Information System (INIS)

    Mothe, Cheila G.; Leite, Selma G.

    2001-01-01

    Biodegradable polymers for use in environmental waste-management has been the subject of much discussion over the last few years. Polyurethane mixtures with polysaccharide (80/20 and 90/10 w/w ) have been prepared and films obtained. These films were inoculated, according to ASTM G22-76 rule and analysed by thermogravimetry and scanning electronic microscopy (SEM). The results are discussed in terms of thermal degradation and biodegradability. (author)

  17. Modified kinetic-hydraulic UASB reactor model for treatment of wastewater containing biodegradable organic substrates.

    Science.gov (United States)

    El-Seddik, Mostafa M; Galal, Mona M; Radwan, A G; Abdel-Halim, Hisham S

    2016-01-01

    This paper addresses a modified kinetic-hydraulic model for up-flow anaerobic sludge blanket (UASB) reactor aimed to treat wastewater of biodegradable organic substrates as acetic acid based on Van der Meer model incorporated with biological granules inclusion. This dynamic model illustrates the biomass kinetic reaction rate for both direct and indirect growth of microorganisms coupled with the amount of biogas produced by methanogenic bacteria in bed and blanket zones of reactor. Moreover, the pH value required for substrate degradation at the peak specific growth rate of bacteria is discussed for Andrews' kinetics. The sensitivity analyses of biomass concentration with respect to fraction of volume of reactor occupied by granules and up-flow velocity are also demonstrated. Furthermore, the modified mass balance equations of reactor are applied during steady state using Newton Raphson technique to obtain a suitable degree of freedom for the modified model matching with the measured results of UASB Sanhour wastewater treatment plant in Fayoum, Egypt.

  18. Simple and convenient method for culturing anaerobic bacteria.

    OpenAIRE

    Behbehani, M J; Jordan, H V; Santoro, D L

    1982-01-01

    A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars.

  19. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    International Nuclear Information System (INIS)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-01-01

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively

  20. Inhibition of Anaerobic Biological Treatment: A Review

    Science.gov (United States)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  1. Analysis of anaerobic blood cultures in burned patients.

    Science.gov (United States)

    Regules, Jason A; Carlson, Misty D; Wolf, Steven E; Murray, Clinton K

    2007-08-01

    The utility of anaerobic blood culturing is often debated in the general population, but there is limited data on the modern incidence, microbiology, and utility of obtaining routine anaerobic blood cultures for burned patients. We performed a retrospective review of the burned patients electronic medical records database for all blood cultures drawn between January 1997 and September 2005. We assessed blood cultures for positivity, organisms identified, and growth in aerobic or anaerobic media. 85,103 blood culture sets were drawn, with 4059 sets from burned patients. Three hundred and forty-five single species events (619 total blood culture isolates) were noted in 240 burned patients. For burned patients, four isolates were obligate anaerobic bacteria (all Propionibacterium acnes). Anaerobic versus aerobic culture growth was recorded in 310 of 619 (50.1%) burned patient blood culture sets. 46 (13.5%) of the identified organisms, most of which were not obligate anaerobic bacteria, were identified from solely anaerobic media. The results of our study suggest that the detection of significant anaerobic bacteremia in burned patients is very rare and that anaerobic bottles are not needed in this population for that indication. However anaerobic blood cultures systems are also able to detect facultative and obligate aerobic bacteria; therefore, the deletion of the anaerobic culture medium may have deleterious clinical impact.

  2. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Zhen, Guangyin; Lu, Xueqin; Li, Yu-You; Zhao, Youcai

    2014-01-01

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DD SCOD ), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (k hyd ), but had no, or very slight enhancement on WAS ultimate

  3. Biodegradation of clofibric acid and identification of its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  4. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  5. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    Speece, R.E.

    1990-01-01

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH 4 and CO 2 . Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  6. Silica in situ enhanced PVA/chitosan biodegradable films for food packages.

    Science.gov (United States)

    Yu, Zhen; Li, Baoqiang; Chu, Jiayu; Zhang, Peifeng

    2018-03-15

    Non-degradable plastic food packages threaten the security of environment. The cost-effective and biodegradable polymer films with good mechanical properties and low permeability are very important for food packages. Among of biodegradable polymers, PVA/chitosan (CS) biodegradable films have attracted considerable attention because of feasible film forming ability. However, PVA/CS biodegradable films suffered from poor mechanical properties. To improve mechanical properties of PVA/CS biodegradable films, we developed SiO 2 in situ to enhance PVA/CS biodegradable films via hydrolysis of sodium metasilicate in presence of PVA and chitosan solution. The tensile strength of PVA/CS biodegradable films was improved 45% when 0.6 wt.% SiO 2 was incorporated into the films. Weight loss of PVA/CS biodegradable films was 60% after 30 days in the soil. The permeability of oxygen and moisture of PVA/CS biodegradable films was reduced by 25.6% and 10.2%, respectively. SiO 2 in situ enhanced PVA/CS biodegradable films possessed not only excellent mechanical properties, but also barrier of oxygen and water for food packages to extend the perseveration time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synthesis of biodegradable styrene copolymers

    OpenAIRE

    Gevers, Dries; Kobben, Stephan; Junkers, Tanja; Copinet, Alain; Buntinx, Mieke; Peeters, Roos

    2017-01-01

    Polystyrene (PS), a versatile polymer with many applications (e.g. packaging) representing about 10% of the total annual polymer consumption, shows practically no biodegradability. In this study a styrene (ST) based copolymer is synthesized and examined regarding its ability to degrade in a composting test. As second monomer, to introduce biodegradable ester groups, 5,6-benzo-2-metylene-dioxepane (BMDO) has been used in radical copolymerization reactions performed in inert and stirred 10 m...

  8. Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H2O2 with Lime and Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-11-01

    Full Text Available In the Mediterranean region, the disposal of residues of olive oil industries represents an important environmental issue. In recent years, many techniques were proposed to improve the characteristics of these wastes with the aim to use them for methane generation in anaerobic digestion processes. Nevertheless, these techniques, in many cases, result costly as well as difficult to perform. In the present work, a simple and useful process that exploits H2O2 in conjunction with lime is developed to enhance the anaerobic biodegradability of wet olive mill wastes (WMOW. Several tests were performed to investigate the influence of lime amount and H2O2 addition modality. The treatment efficiency was positively affected by the increase of lime dosage and by the sequential addition of hydrogen peroxide. The developed process allows reaching phenols abatements up to 80% and volatile fatty acids productions up to 90% by using H2O2 and Ca(OH2 amounts of 0.05 gH2O2/gCOD and 35 g/L, respectively. The results of many batch anaerobic digestion tests, carried out by means of laboratory equipment, proved that the biogas production from fresh wet olive mill wastes is hardly achievable. On the contrary, organic matter abatements, around to 78%, and great methane yields, up to 0.34–0.35 LCH4/gCODremoved, were obtained on pretreated wastes.

  9. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  10. Comparison of the efficacy of biodegradable and non-biodegradable scintillation liquids on the counting of tritium- and [14C]-labeled compounds

    Directory of Open Access Journals (Sweden)

    Medeiros R.B.

    2003-01-01

    Full Text Available The widespread use of ³H and 14C in research has generated a large volume of waste mixed with scintillation liquid, requiring an effective control and appropriate storage of liquid radioactive waste. In the present study, we compared the efficacy of three commercially available scintillation liquids, Optiphase HiSafe 3, Ultima-Gold(TM AB (biodegradable and Insta-Gel-XF (non-biodegradable, in terms of [14C]-glucose and [³H]-thymidine counting efficiency. We also analyzed the effect of the relative amount of water (1.6 to 50%, radioisotope concentration (0.1 to 100 nCi/ml, pH (2 to 10 and color of the solutions (samples containing 0.1 to 1.0 mg/ml of Trypan blue on the counting efficiency in the presence of these scintillation liquids. There were few significant differences in the efficiency of 14C and ³H counting obtained with biodegradable or non-biodegradable scintillation liquids. However, there was an 83 and 94% reduction in the efficiency of 14C and ³H counting, respectively, in samples colored with 1 mg/ml Trypan blue, but not with 0.1 mg/ml, independent of the scintillation liquid used. Considering the low cost of biodegradable scintillation cocktails and their efficacy, these results show that traditional hazardous scintillation fluids may be replaced with the new safe biodegradable fluids without impairment of ³H and 14C counting efficiency. The use of biodegradable scintillation cocktails minimizes both human and environmental exposure to hazardous solvents. In addition, some biodegradable scintillation liquids can be 40% less expensive than the traditional hazardous cocktails.

  11. On the efficiency of the hybrid and the exact second-order sampling formulations of the EnKF: a reality-inspired 3-D test case for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam

    KAUST Repository

    El Gharamti, Mohamad

    2016-11-15

    This study considers the assimilation problem of subsurface contaminants at the port of Rotterdam in the Netherlands. It involves the estimation of solute concentrations and biodegradation rates of four different chlorinated solvents. We focus on assessing the efficiency of an adaptive hybrid ensemble Kalman filter and optimal interpolation (EnKF-OI) and the exact second-order sampling formulation (EnKFESOS) for mitigating the undersampling of the estimation and observation errors covariances, respectively. A multi-dimensional and multi-species reactive transport model is coupled to simulate the migration of contaminants within a Pleistocene aquifer layer located around 25 m below mean sea level. The biodegradation chain of chlorinated hydrocarbons starting from tetrachloroethene and ending with vinyl chloride is modeled under anaerobic environmental conditions for 5 decades. Yearly pseudo-concentration data are used to condition the forecast concentration and degradation rates in the presence of model and observational errors. Assimilation results demonstrate the robustness of the hybrid EnKF-OI, for accurately calibrating the uncertain biodegradation rates. When implemented serially, the adaptive hybrid EnKF-OI scheme efficiently adjusts the weights of the involved covariances for each individual measurement. The EnKFESOS is shown to maintain the parameter ensemble spread much better leading to more robust estimates of the states and parameters. On average, a well tuned hybrid EnKF-OI and the EnKFESOS respectively suggest around 48 and 21 % improved concentration estimates, as well as around 70 and 23 % improved anaerobic degradation rates, over the standard EnKF. Incorporating large uncertainties in the flow model degrades the accuracy of the estimates of all schemes. Given that the performance of the hybrid EnKF-OI depends on the quality of the background statistics, satisfactory results were obtained only when the uncertainty imposed on the background

  12. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Wijetunga, Somasiri; Li Xiufen; Jian Chen

    2010-01-01

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  13. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  14. Microbial reductive dehalogenation.

    OpenAIRE

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic commun...

  15. Computational and comparative investigations of syntrophic acetate-oxidising bacteria (SAOB)

    OpenAIRE

    Manzoor, Shahid

    2014-01-01

    Today's main energy sources are the fossil fuels petroleum, coal and natural gas, which are depleting rapidly and are major contributors to global warming. Methane is produced during anaerobic biodegradation of wastes and residues and can serve as an alternative energy source with reduced greenhouse gas emissions. In the anaerobic biodegradation process acetate is a major precursor and degradation can occur through two different pathways: aceticlastic methanogenesis and syntrop...

  16. Characterization of biodegradation intermediates of nonionic surfactants by MALDI-MS. 2. Oxidative biodegradation profiles of uniform octylphenol polyethoxylate in 18O-labeled water.

    Science.gov (United States)

    Sato, Hiroaki; Shibata, Atsushi; Wang, Yang; Yoshikawa, Hiromichi; Tamura, Hiroto

    2003-01-01

    This paper reports the characterization of the biodegradation intermediates of octylphenol octaethoxylate (OP(8)EO) by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The biodegradation test study was carried out in a pure culture (Pseudomonas putida S-5) under aerobic conditions using OP(8)EO as the sole carbon source and (18)O-labeled water as an incubation medium. In the MALDI-MS spectra of biodegraded samples, a series of OP(n)EO molecules with n = 2-8 EO units and their corresponding carboxylic acid products (OP(n)EC) were observed. The use of purified OP(8)EO enabled one to distinguish the shortened OPEO molecules as biodegradation intermediates. Furthermore, the formation of OP(8)EC (the oxidized product of OP(8)EO) supported the notion that terminal oxidation is a step in the biodegradation process. When biodegradation study was carried out in (18)O-labeled water, incorporation of (18)O atoms into the carboxyl group was observed for OPEC, while no incorporation was observed for the shortened OPEO products. These results could provide some rationale to the biodegradation mechanism of alkylphenol polyethoxylates.

  17. Research regarding biodegradable properties of food polymeric products under microorganism activity

    Science.gov (United States)

    Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara

    2018-02-01

    Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.

  18. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  19. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...

  20. [Progress on biodegradation of polylactic acid--a review].

    Science.gov (United States)

    Li, Fan; Wang, Sha; Liu, Weifeng; Chen, Guanjun

    2008-02-01

    Polylactic acid is a high molecular-weight polyester made from renewable resources such as corn or starch. It is a promising biodegradable plastic due to its mechanical properties, biocompatibility and biodegradability. To achieve natural recycling of polylactic acid, relative microorganisms and the underlying mechanisms in the biodegradation has become an important issue in biodegradable materials. Up to date, most isolated microbes capable of degrading polylactic acid belong to actinomycetes. Proteases secreted by these microorganisms are responsible for the degradation. However, subtle differences exist between these polylactic acid degrading enzymes and typical proteases with respect to substrate binding and catalysis. Amino acids relative to catalysis are postulated to be highly plastic allowing their catalytic hydrolysis of polylactic acid. In this paper we reviewed current studies on biodegradation of polylactic acid concerning its microbial, enzymatic reactions and the possible mechanisms. We also discussed the probability of biologically recycling PLA by applying highly efficient strains and enzymes.

  1. Mineralization of LCFA associated with anaerobic sludge: Kinetics, enhancement of methanogenic activity, and effect of VFA.

    Science.gov (United States)

    Pereira, M A; Sousa, D Z; Mota, M; Alves, M M

    2004-11-20

    Long-chain fatty acids (LCFA) associated with anaerobic sludge by mechanisms of precipitation, adsorption, or entrapment can be biodegraded to methane. The mineralization kinetics of biomass-associated LCFA were established according to an inhibition model based on Haldane's enzymatic inhibition kinetics. A value around 1,000 mg COD-LCFA..g VSS(-1) was obtained for the optimal specific LCFA content that allowed the maximal mineralization rate. For sludge with specific LCFA contents of 2,838 +/- 63 and 4,571 +/- 257 mg COD-LCFA..g VSS(-1), the specific methanogenic activities in the presence of acetate, butyrate, and H(2)/CO(2) were significantly enhanced after the mineralization of the biomass-associated LCFA. For sludge with a specific LCFA content near the optimal value defined by the kinetic model, the effect of adding VFA to the medium was studied during the mineralization of the biomass-associated LCFA. Different patterns were obtained for each individual substrate. Acetate and butyrate were preferentially consumed by the consortium, but in the case of propionate no evidence of a sequential consumption pattern could be withdrawn. It was concluded that LCFA do not exert a bactericidal neither a permanent toxic effect toward the anaerobic consortia. A discussion is addressed to the relative roles of a reversible inhibitory effect and a transport limitation effect imposed by the LCFA surrounding the cells. (c) 2004 Wiley Periodicals, Inc

  2. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  3. Simultaneous adsorption and biodegradation of synthetic melanoidin

    African Journals Online (AJOL)

    Being an antioxidant, melanoidin removal through purely biodegradation has been inadequate. Consequently, in the current study, simultaneous adsorption and biodegradation (SAB) was employed in a stirred tank system to remove melanoidin from synthetic wastewater. Mixed microbial consortium was immobilized onto ...

  4. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  5. The phenomenon of granulation of anaerobic sludge

    NARCIS (Netherlands)

    Hulshoff Pol, L.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials

  6. State-of-the-art of biodegradable composite materials

    International Nuclear Information System (INIS)

    Baley, Ch.; Grohens, Y.; Pillin, I.

    2004-01-01

    Nowadays, the market demand for environment friendly materials is in strong growth. The biodegradable composites (biodegradable fibres and polymers) mainly extracted from renewable resources will be a major contributor to the production of new industrial high performance products partially solving the problem of waste management. At the end of the lifetime, a structural bio-composite could be be crushed and recycled through a controlled industrial composting process. This the state-of-the-art report focuses on the biopolymers the vegetable fibres properties, the mechanisms of biodegradation and the examples of biodegradable composites. Eco-design of new products requires these new materials for which a life cycle analysis is nevertheless necessary to validate their environmental benefits. (authors)

  7. "Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.

    Science.gov (United States)

    Papazi, Aikaterini; Kotzabasis, Kiriakos

    2013-01-01

    The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp - no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp - one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp - two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as "smart" bioenergetic "machines", that have the ability to continuously "calculate" the energy reserves and "use" the most energetically

  8. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing...... an aerotolerant Clostridium perfringens strain. A zone diameter above 27 mm was indicative of acceptable anaerobic conditions....

  9. Additional Equipment for Soil Biodegradation

    Science.gov (United States)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  10. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    Science.gov (United States)

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  11. Bioavailability and biodegradation kinetics of organics in soil

    International Nuclear Information System (INIS)

    Tabak, H.H.; Govind, R.; Gao, Chao; Kim, In-soo; Lai, Lei

    1992-01-01

    As EPA begins to remediate Superfund sites using permanent treatment technologies, such as bioremediation, a fundamental understanding of the kinetics and the factors that control the rate of bioremediation will be required. Biological treatment technologies hold considerable promise for safe, economical, on-site treatment of toxic wastes. A variety of biological treatment systems designed to degrade or detoxify environmental contaminants are currently being developed and marketed. Knowledge of the kinetics of biodegradation is essential to the evaluation of the persistence of most organic pollutants in soil. Furthermore, measurement of biodegradation kinetics can provide useful insights into the favorable range of the important environmental parameters for improvement of the microbiological activity and consequently the enhancement of contaminant biodegradation. A major effort is currently underway to clean up aquifers and soils that are contaminated by organic chemicals, which has generated increased interest in the development of in situ bioremediation technologies. Although considerable data exists for rates of biodegradation in aquatic environments, there is little information on biodegradation kinetics in soil matrices, where irreversible binding to the soil phase may limit the chemicals bioavailability and ultimate degradation. Knowledge on biodegradation kinetics in soil environments can facilitate decisions on the efficacy of in situ bioremediation. 6 refs., 3 figs., 2 tabs

  12. Pathways of 3-biofules (hydrogen, ethanol and methane) production from petrochemical industry wastewater via anaerobic packed bed baffled reactor inoculated with mixed culture bacteria

    International Nuclear Information System (INIS)

    Elreedy, Ahmed; Tawfik, Ahmed; Enitan, Abimbola; Kumari, Sheena; Bux, Faizal

    2016-01-01

    Highlights: • Bio-energy production from MEG contaminated wastewater via AnPBBR, was assessed. • Maximum concurrent H_2 and CH_4 production of 6.57 and 3.57 L/d were obtained. • Maximum ethanol generation of 237.13 mg/L was observed at a HRT of 9 h. • At OLRs up to 4 gCOD/L/d, MEG biodegradability of 71–98% was achieved. • AnPBBR economically achieved shorter payback period (6.25 y), compared to ABR. - Abstract: Simultaneous production of 3-biofuels (hydrogen, ethanol and methane) as by-products of the biodegradation of petrochemical wastewater containing MEG via anaerobic packed bed baffled reactor (AnPBBR), was extensively investigated. A four-chambered reactor supported by polyurethane sheets, was operated at a constant hydraulic retention time (HRT) of 36 h and different organic loading rates (OLRs) of 0.67, 1, 2 and 4 gCOD/L/d. The maximum specific H_2 and CH_4 production rates of 438.07 ± 43.02 and 237.80 ± 21.67 ml/L/d were respectively achieved at OLR of 4 gCOD/L/d. The residual bio-ethanol significantly increased from 57.15 ± 2.31 to 240.19 ± 34.69 mg/L at increasing the OLR from 0.67 to 4 gCOD/L/d, respectively. The maximum MEG biodegradability of 98% was attained at the lowest OLR. Compartment-wise profiles revealed that the maximum H_2 and ethanol production were achieved at HRT of 9 h (1st compartment), while the CH_4 production was peaked at HRTs of 27 and 36 h (last two compartments). Kinetic studies using Stover–Kincannon and completely stirred tank reactor (CSTR) in series models were successfully applied to the AnPBBR overall and compartment-to-compartment performance, respectively. The economic evaluation strongly revealed the potentials of using AnPBBR for simultaneous treatment and bio-energy production from petrochemical wastewater as compared to the classical anaerobic baffled reactor (ABR). Microbial analysis using Illumina MiSeq sequencing showed a diversity of bacterial community in AnPBBR. Proteobacteria (36

  13. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    2004-01-01

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  14. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  15. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition

    International Nuclear Information System (INIS)

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-01-01

    Highlights: • Methane production of microalgae biomass is hampered by their cell wall. • Pretreatment should be designed in accordance to the microalgae specie. • Fresh Chlamydomonas reinhardtii exhibited high anaerobic biodegradability. • Chlorella vulgaris anaerobic biodegradability was enhanced by 50% using protease pretreatment. - Abstract: The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86–96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C. reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption

  16. Cyclodextrin-enhanced biodegradation of phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.-M.; Marlowe, E.M.; Miller-Maier, R.M.; Brusseau, M.L. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1998-07-01

    The effectiveness of in situ bioremediation in many systems may be constrained by low contaminant bioavailability due to limited aqueous solubility or a large magnitude of sorption. The objective of this research was to evaluate the effect of hydroxypropyl-{beta}-cyclodextrin (HPCD) on phenanthrene solubilization and biodegradation. Results showed that analytical-grade HPCD can significantly increase the apparent solubility of phenanthrene. The increase in apparent solubility had a major impact on the biodegradation rate of phenanthrene. For example, in the presence of 10{sup 5} mg L{sup -1} HPCD, the substrate utilization rate increased from 0.17 mg h{sup -1} to 0.93 mg h{sup -1} while the apparent solubility was increased from 1.3 mg L{sup -1} to 161.3 mg L{sup -1}. As a result, only 0.3% of the phenanthrene remained at the end of a 48 h incubation for the highest concentration of HPCD tested (10{sup 5} mg L{sup -1}). In contrast, 45.2% of the phenanthrene remained in the absence of HPCD. Technical-grade HPCD, which contains the biodegradable impurity propylene glycol, also increased the substrate utilization rate, although to a lesser extent than the analytical-grade HPCD. On the basis of these results, it appears that HPCD can significantly increase the bioavailability, and thereby enhance the biodegradation of phenanthrene. 26 refs., 5 figs.

  17. Isolation of anaerobes from bubo associated with chancroid.

    Science.gov (United States)

    Kumar, B; Sharma, V K; Bakaya, V; Ayyagiri, A

    1991-01-01

    Ten men with bubo associated with chancroid were studied for bacterial flora especially anaerobes. Anaerobes were isolated from all 10 buboes and eight out of 10 ulcers of chancroid. Anaerobic cocci, B melaninogenicus and B fragilis were the most common isolates. anaerobes probably play a role in the pathogenesis of bubo in chancroid. PMID:1680792

  18. Biotransformation of a highly chlorinated PCB mixture in an activated sludge collected from a Membrane Biological Reactor (MBR) subjected to anaerobic digestion

    International Nuclear Information System (INIS)

    Bertin, Lorenzo; Capodicasa, Serena; Fedi, Stefano; Zannoni, Davide; Marchetti, Leonardo; Fava, Fabio

    2011-01-01

    The role of anaerobic digestion (AD) on the decontamination and biomethanization of a PCB-spiked sludge obtained from a Membrane Biological Reactor (MBR) pilot plant was investigated throughout a 10-month batch experiment. The study was carried out under mesophilic (35 deg. C) and thermophilic (55 deg. C) conditions and was monitored by means of an integrated chemical, microbiological and molecular biology strategy. Remarkable PCB depletions (higher than 50% of the overall spiked PCBs) and dechlorinations were achieved under methanogenic conditions. The process was not affected by yeast extract addition. Both acetoclastic and hydrogenotrophic methanogens, together with some fermentative eubacteria, were found to persist in all PCB biodegrading microcosms. This finding, together with those obtained from parallel microcosms where specific populations were selectively inhibited, suggested that native methanogens played a key role in the biodegradation and dechlorination of the spiked PCBs. Taken together, the results of this study indicate that AD is a feasible option for the decontamination and the efficient disposal (with the production of a CH 4 -rich biogas) of contaminated MBR sludge, which can be then employed as a fertilizer for agricultural purposes.

  19. Biodegradation of PuEDTA and Impacts on Pu Mobility

    International Nuclear Information System (INIS)

    Xun, Luying; Bolton, Jr. Harvey

    2001-01-01

    Ethylenediaminetetraacetate (EDTA) and nitrilotriacetate (NTA) are synthetic chelating agents, which can form strong water-soluble complexes with radionuclides and metals and has been used to decontaminate and process nuclear materials. Synthetic chelating agents were co-disposed with radionuclides (e.g., 60Co, Pu) and heavy metals enhancing their transport in the subsurface. An understanding of EDTA biodegradation is essential to help mitigate enhanced radionuclide transport by EDTA. The objective of this research is to develop fundamental data on factors that govern the biodegradation of radionuclide-EDTA. These factors include the dominant EDTA aqueous species, the biodegradation of various metal-EDTA complexes, the uptake of various metal-EDTA complexes into the cell, the distribution and mobility of the radionuclide during and after EDTA biodegradation, and the enzymology and genetics of EDTA biodegradation

  20. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries.

    Science.gov (United States)

    Escalante, H; Castro, L; Amaya, M P; Jaimes, L; Jaimes-Estévez, J

    2018-01-01

    Cheese whey (CW) is the main waste generated in the cheesemaking process and has high organic matter content and acidity. Therefore, CW disposal is a challenge for small to medium enterprises (SMEs) in the dairy industry that do not have any type of treatment plant. Anaerobic digestion (AD) is an attractive process for solving this problem. The aim of this research was to determine the biomethane and struvite precipitation potentials of CW from four dairy SMEs. First, changes in CW properties (organic matter and pH) were evaluated. Second, biomethane and struvite potentials were assessed using cattle slurry as inoculum. The organic matter in CW varied from 40 to 65gVS/kg, 65 to 140g COD/L, and 2 to 10g/L for VFAs depending on the sampling time and type of sample. The pH of the CW samples ranged from 3 to 6.5. In the anaerobic biodegradability analysis, methane yields reached 0.51 to 0.60L CH 4 /g VS added , which represented electrical and caloric potentials of 54 and 108kWh/m 3 for CW, respectively. Organic matter removal in all experiments was above 83%. Moreover, anaerobic digestates presented NH 4 + /PO 4 3- molar ratios between 2.6 and 4.0, which are adequate for struvite precipitation with potential production of 8.5-10.4g struvite/L CW. Finally, the use of biogas as energetic supplement and struvite as soil fertilizer, represents economics saves of US$ 6.91/m 3 CW and US$ 5.75/m 3 CW in therms of electricity and fertilizer use, respectively. The energetic, agricultural and economic potentials, evidence that AD process is a feasible alternative for cheese whey treatment. Copyright © 2017. Published by Elsevier Ltd.

  1. Effect of different ratios of cow manure and corn straw on the mixed anaerobic fermentation rate

    Directory of Open Access Journals (Sweden)

    Zongshan JIANG

    2016-08-01

    Full Text Available In order to study the effect of the different ratios on the anaerobic fermentation rate is investigated, and the rate-limiting factors are preliminarily determined, at mesophilic (38±1℃ condition, with anaerobic granular sludge as inoculums, different ratios of cow manure and corn straw are used as substrate for mixed anaerobic fermentation. By measuring daily biogas production, the concentrations of CH4 and CO2 in the marsh gas, TC, the concentration of VFAs and pH value, The results show that under the mixture ratio of 2∶1, the hydrolysis rate constants, cumulative biogas yield and biodegradability CH4 reach their high limits, which are 0.043 7 d-1, 271.93 mL/g and 71.59%, respectively. Moreover, it is found that the concentration of acetic acid is proportional to the amount of cow manure at the beginning (the first day of mixed fermentation, and the concentration of propionicacid is proportional to the amount of corn straw in medium fermentation stage (the fifth day. In addition, rate-limiting step of biogas production is related to the ratio of cow manure and corn in fermentation material. With the increasing of corn straw proportion, on the 1st day, it tends to hydrolysis acidogenesis; from the 2th day to 15th day, it tends to hydrogen-production acetogenisis; and from the 16th day to 30th day, it is hydrolysis acidogenesis. The paper focuses on the relationship between the ratio of cow manure and corn straw and the rate-limiting step for biogas production, which could provide a theoretical and experimental support for improving the efficiency of biogas production in mixed fermentation.

  2. Comparative evaluation of anoxomat and conventional anaerobic GasPak jar systems for the isolation of anaerobic bacteria.

    Science.gov (United States)

    Shahin, May; Jamal, Wafaa; Verghese, Tina; Rotimi, V O

    2003-01-01

    To evaluate the performance of the Anoxomat, in comparison with the conventional anaerobic GasPak jar system, for the isolation of obligate anaerobes. Anoxomat, model WS800, and anaerobic GasPak jar system (Oxoid) were evaluated. Anoxomat system utilized a gas mixture of 80% N(2), 10% CO(2) and 10% H(2), while the GasPak used a gas mixture of 90% H(2) and 10% CO(2). An anaerobic indicator within the jars monitored anaerobiosis. A total of 227 obligate anaerobic bacteria comprising 116 stock strains, 5 ATCC reference strains and 106 fresh strains, representing different genera, were investigated for growth on anaerobic agar plates and scored for density, colony sizes, susceptibility zones of antibiotic inhibition and the speed of anaerobiosis (reducing the indicator). The results demonstrate that the growth of anaerobic bacteria is faster inside the Anoxomat jar than in the anaerobic GasPak jar system. Of the 227 strains tested, the colonies of 152 (67%) were larger (by size range of 0.2-2.4 mm) in the Anoxomat at 48 h than in the GasPak jar compared with only 21% (range 0.1-0.3 mm) that were larger in the GasPak than in the Anoxomat. The remaining 12% were equal in their sizes. There was no measurable difference in the colony sizes of the reference strains. The Porphyromonas asaccharolytica strains failed to grow within the GasPak system but grew inside the Anoxomat. With the Anoxomat, anaerobiosis was achieved about 35 min faster than in the GasPak system. The density of growth recorded for 177 (78%) strains was heavier in the Anoxomat than in the GasPak jar. The zones of inhibition of the antibiotics tested were not different in the two systems. The Anoxomat system provided superior growth, in terms of density and colony size, and achieved anaerobiosis more rapidly. Evidently, the Anoxomat method is more reliable and appears to support the growth of strict anaerobes better. Copyright 2003 S. Karger AG, Basel

  3. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA).

    Science.gov (United States)

    Mundle, Scott O C; Johnson, Tiffany; Lacrampe-Couloume, Georges; Pérez-de-Mora, Alfredo; Duhamel, Melanie; Edwards, Elizabeth A; McMaster, Michaye L; Cox, Evan; Révész, Kinga; Sherwood Lollar, Barbara

    2012-02-07

    Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = -6.7‰ ± 0.4‰, and -4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = -3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ(13)C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.

  4. Anaerobic bacteraemia revisited: species and susceptibilities.

    Science.gov (United States)

    Ng, Lily S Y; Kwang, Lee Ling; Rao, Suma; Tan, Thean Yen

    2015-01-01

    This retrospective study was performed to evaluate the frequency of anaerobic bacteraemia over a 10-year period, and to provide updated antibiotic susceptibilities for the more clinically relevant anaerobes causing blood stream infection. Data were retrieved from the laboratory information system for the period 2003 to 2012. During this time, blood cultures were inoculated in Bactec™ Plus vials (BD, USA) and continuously monitored in the Bactec™ 9000 blood culture system (BD, USA). Anaerobic organisms were identified using commercial identification kits, predominantly API 20 A (bioMérieux, France) supplemented with Vitek ANC cards (bioMérieux, France) and AN-Ident discs (Oxoid, United Kingdom). A representative subset of isolates were retrieved from 2009 to 2011 and antimicrobial susceptibilities to penicillin, amoxicillin-clavulanate, clindamycin, imipenem, moxifloxacin, piperacillin-tazobactam and metronidazole were determined using the Etest method. Anaerobes comprised 4.1% of all positive blood culture with 727 obligate anaerobes recovered over the 10-year period, representing a positivity rate of 0.35%. The only significant change in anaerobe positivity rates occurred between 2003 and 2004, with an increase of 0.2%. The Bacteroides fragilis group (45%) were the predominant anaerobic pathogens, followed by Clostridium species (12%), Propioniobacterium species (11%) and Fusobacterium species (6%). The most active in vitro antibiotics were imipenem, piperacillin-tazobactam, amoxicillin-clavulanate and metronidazole, with susceptibilities of 95.0%, 93.3%, 90.8% and 90.8% respectively. Resistance was high to penicillin, clindamycin and moxifl oxacin. However, there were apparent differences for antibiotic susceptibilities between species. This study indicates that the anaerobes comprise a small but constant proportion of bloodstream isolates. Antibiotic resistance was high to some antibiotics, but metronidazole, the beta-lactam/beta-lactamase inhibitors and

  5. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  6. The second green revolution? Production of plant-based biodegradable plastics.

    Science.gov (United States)

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  7. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H.

    1989-01-01

    Anaerobic treatment of cheese whey using a 17.5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4.5 to 38.1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38.1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.

  8. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  9. New perspectives in anaerobic digestion.

    NARCIS (Netherlands)

    Lier, van J.B.; Tilche, A.; Ahring, B.K.; Macarie, H.; Moletta, R.; Dohanyos, M.; Hulshoff Pol, L.W.; Lens, P.N.L.; Verstraete, W.

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern

  10. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  11. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  12. Phyllosphere yeasts rapidly break down biodegradable plastics

    Science.gov (United States)

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  13. Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA

    International Nuclear Information System (INIS)

    Tang, Yinjie J. . E-mail yjtang@lbl.gov; Carpenter, Shelly D.; Deming, Jody W.; Krieger-Brockett, Barbara

    2006-01-01

    A whole-core injection method was used to determine depth-related rates of microbial mineralization of 14 C-phenanthrene added to both contaminated and clean marine sediments of Puget Sound, WA. For 26-day incubations under micro-aerobic conditions, conversions of 14 C-phenanthrene to 14 CO 2 in heavily PAH-contaminated sediments from two sites in Eagle Harbor were much higher (up to 30%) than those in clean sediments from nearby Blakely Harbor ( 14 C-phenanthrene degradation rates in the surface sediment horizons (0-3 cm) were more rapid (2-3 times) than in the deeper sediment horizons examined (>6 cm), especially in the most PAH polluted EH9 site. Differences in mineralization were associated with properties of the sediments as a function of sediment depth, including grain-size distribution, PAH concentration, total organic matter and total bacterial abundance. When strictly anaerobic incubations (in N 2 /H 2 /CO 2 atmosphere) were used, the phenanthrene biodegradation rates at all sediment depths were two times slower than under micro-aerobic conditions, with methanogenesis observed after 24 days. The main rate-limiting factor for phenanthrene degradation under anaerobic conditions appeared to be the availability of suitable electron acceptors. Addition of calcium sulfate enhanced the first order rate coefficient (k 1 increased from 0.003 to 0.006 day -1 ), whereas addition of soluble nitrate, even at very low concentration ( 1 up to 0.11 day -1 )

  14. Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR).

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-01-01

    In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.

  15. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    Science.gov (United States)

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Improvement of biodegradability of industrial wastewaters by radiation treatment

    International Nuclear Information System (INIS)

    Jo, H.J.; Kim, H.J.; Kim, J.G.; Jung, J.; Choi, J.S.; Park, Y.K.

    2006-01-01

    In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD 5 /COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents. (author)

  17. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  18. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    Science.gov (United States)

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  19. Biodegradation of penicillin-G wastewater using Phanerochate ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... emission of toxic substances and formation of sludge. In recent years, a white rot fungus, ... sporium as a potential microorganism for the biodegrade- tion of polychlorinated ... 1990), paper mill bleach plant effluent (Fukui, 1992) and spentwash (Fahy et al., ..... Studies on biodegradation of toxic compounds.

  20. Biodegradable magnesium-alloy stent:current situation in research

    International Nuclear Information System (INIS)

    Chen Hua; Zhao Xianxian

    2011-01-01

    In recent years, permanent metal stents are employed in the majority of interventional therapies; nevertheless, such kind of stents carries the problems of thrombosis and restenosis. Therefore, the biodegradable magnesium alloy stent has become the focus of attention. Theoretically, it has overcome the problems caused by permanent metal stents, so it is the development direction to use the biodegradable magnesium alloy in future. The authors believe that biodegradable magnesium alloy stents will be widely used in interventional procedures for many diseases. (authors)