WorldWideScience

Sample records for herbivore-induced plant volatiles

  1. Herbivore-induced blueberry volatiles and intra-plant signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  2. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey

    NARCIS (Netherlands)

    Amo, L.; Jansen, J.J.; Dam, van N.M.; Dicke, M.; Visser, M.E.

    2013-01-01

    Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous

  3. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  4. Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles

    Science.gov (United States)

    De Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2008-01-01

    Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey

  5. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    NARCIS (Netherlands)

    Danner, H.; Desurmont, G.A.; Cristescu, S.M.; Dam, N.M. van

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of

  6. Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores

    NARCIS (Netherlands)

    Horiuchi, J.I.; Arimura, G.I.; Ozawa, R.; Shimoda, T.; Dicke, M.; Takabayashi, J.; Nishioka, T.

    2003-01-01

    We tested the response of the herbivorous mite Tetranychus urticae to uninfested lima bean leaves exposed to herbivore-induced conspecific plant volatiles by using a Y-tube olfactometer. First, we confirmed that exposed uninfested leaves next to infested leaves were more attractive to carnivorous

  7. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    Science.gov (United States)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  8. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Science.gov (United States)

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R; Frost, Christopher J

    2010-01-01

    A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.

  10. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum

    NARCIS (Netherlands)

    Snoeren, T.A.L.; Mumm, R.; Poelman, E.H.; Yang, Y.; Pichersky, E.; Dicke, M.

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced

  11. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    Science.gov (United States)

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  12. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.

    Science.gov (United States)

    Snoeren, Tjeerd A L; Mumm, Roland; Poelman, Erik H; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-05-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

  13. Parasitic Wasps Can Reduce Mortality of Teosinte Plants Infested With Fall Armyworm: Support for a Defensive Function of Herbivore-Induced Plant Volatiles

    Directory of Open Access Journals (Sweden)

    Elvira S. de Lange

    2018-05-01

    Full Text Available Many parasitic wasps use volatiles emitted by plants under herbivore attack to find their hosts. It has therefore been proposed that these inducible plant volatiles serve an indirect defense function by recruiting parasitoids and other natural enemies. This suggested function remains controversial because there is little evidence that, in terms of fitness, plants benefit from the actions of natural enemies, particularly parasitoids, which do not immediately kill their hosts. We aimed to address this controversy in a semi-natural field experiment in Mexico, where we used large screen tents to evaluate how parasitoids can affect plant performance. The tritrophic study system comprised teosinte (Zea spp., the ancestor of maize, Spodoptera frugiperda Smith (Lepidoptera: Noctuidae and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae, which have a long evolutionary history together. In tents without parasitoids, S. frugiperda larvae inflicted severe damage to the plants, whereas in the presence of parasitoid wasps, leaf damage was reduced by as much as 80%. Parasitoids also mitigated herbivore-mediated mortality among young teosinte plants. Although these findings will not resolve the long-standing debate on the adaptive function of herbivore-induced plant volatiles (HIPVs, they do present strong support for the hypothesis that plants can benefit from the presence of parasitoid natural enemies of their herbivores.

  14. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  15. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  16. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential.

    Science.gov (United States)

    Turlings, Ted C J; Erb, Matthias

    2018-01-07

    Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.

  17. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission

    NARCIS (Netherlands)

    Menzel, T.R.; Weldegergis, B.T.; David, A.; Boland, W.; Gols, R.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those

  18. Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile

    NARCIS (Netherlands)

    Sznajder, B.; Sabelis, M.W.; Egas, M.

    2011-01-01

    The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific

  19. Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles

    NARCIS (Netherlands)

    Boer, de J.G.; Dicke, M.

    2004-01-01

    Many natural enemies of herbivorous arthropods use herbivore-induced plant volatiles to locate their prey. These foraging cues consist of mixtures of compounds that show a considerable variation within and among plantherbivore combinations, a situation that favours a flexible approach in the

  20. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    Science.gov (United States)

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  1. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  2. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    OpenAIRE

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affe...

  3. An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants.

    Directory of Open Access Journals (Sweden)

    Daniel M Mutyambai

    Full Text Available Attack of plants by herbivorous arthropods may result in considerable changes to the plant's chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs. These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore's parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L. volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in 'Nyamula', a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe (Lepidoptera: Crambidae egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS was used for volatile analysis. For the 'Nyamula' landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri and

  4. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite

    NARCIS (Netherlands)

    Boer, de J.G.; Posthumus, M.A.; Dicke, M.

    2004-01-01

    Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis

  5. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  6. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  7. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  8. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    Science.gov (United States)

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml-1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  9. Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile.

    Science.gov (United States)

    Sznajder, B; Sabelis, M W; Egas, M

    2011-06-01

    The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific herbivore-induced plant volatile, i.e. methyl salicylate (MeSa), could be found in a base population collected in the field (Sicily). To this end, we imposed purifying selection on individuals within iso-female lines of P. persimilis such that the lines were propagated only via the individual that showed either a preference or avoidance of MeSa. The responses of the lines were characterized as the mean proportion of individuals choosing MeSa when given a choice between MeSa and clean air. Significant variation in predator responses was detected among iso-female lines, thus confirming the presence of a genetic component for this behaviour. Nevertheless, we did not find a significant difference in the response to MeSa between the lines that were selected to avoid MeSa and the lines selected to prefer MeSa. Instead, in the course of selection the lines selected to avoid MeSa shifted their mean response towards a preference for MeSa. An inverse, albeit weaker, shift was detected for the lines selected to prefer MeSa. We discuss the factors that may have caused the apparent lack of a response to selection within iso-female line in this study and propose experimental approaches that address them.

  10. Exposure of Lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?

    NARCIS (Netherlands)

    Choh, Y.; Shimoda, T.; Ozawa, R.; Dicke, M.; Takabayashi, J.

    2004-01-01

    There is increasing evidence that volatiles emitted by herbivore-damaged plants can cause responses in downwind undamaged neighboring plants, such as the attraction of carnivorous enemies of herbivores. One of the open questions is whether this involves an active (production of volatiles) or passive

  11. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R; Rodriguez-Saona, Luis E; Frost, Christopher J

    2009-02-01

    Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or "primed") after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results

  12. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    , defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar...... defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects...

  13. Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions.

    Directory of Open Access Journals (Sweden)

    Thomas Degen

    Full Text Available Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated.

  14. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density dependent manner

    Science.gov (United States)

    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground...

  15. Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction

    Science.gov (United States)

    Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    2008-01-01

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species. PMID:18185960

  16. Prey and non-prey arthropods sharing a host plant : Effects on induced volatile emission and predator attraction

    NARCIS (Netherlands)

    de Boer, Jetske G.; Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile

  17. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  18. Distance and sex determine host plant choice by herbivorous beetles.

    Directory of Open Access Journals (Sweden)

    Daniel J Ballhorn

    Full Text Available Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores?We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials.Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged

  19. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    Science.gov (United States)

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  20. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  1. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  2. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers.

    Science.gov (United States)

    Shiojiri, Kaori; Karban, Richard

    2006-08-01

    Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.

  3. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Seth Davis

    Full Text Available Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1 plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2 herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3 plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.

  4. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis

    NARCIS (Netherlands)

    Poecke, R.M.P.; Posthumus, M.A.; Dicke, M.

    2001-01-01

    Many plant species defend themselves against herbivorous insects indirectly by producing volatiles in response to herbivory. These volatiles attract carnivorous enemies of the herbivores. Research on the model plant Arabidopsis thaliana (L.) Heynh. has contributed considerably to the unraveling of

  5. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae).

    Science.gov (United States)

    Moreira, Xoaquín; Nell, Colleen S; Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-09-06

    It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    Science.gov (United States)

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  7. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    Science.gov (United States)

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae

  8. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores.

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2008-03-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores.

  9. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants

    International Nuclear Information System (INIS)

    Pare, P.W.; Tumlinson, J.H.

    1997-01-01

    In response to insect feeding on the leaves, cotton (Gossypium hirsutum L.) plants release elevated levels of volatiles, which can serve as a chemical signal that attracts natural enemies of the herbivore to the damaged plant. Pulse-labeling experiments with [13C]CO2 demonstrated that many of the volatiles released, including the acyclic terpenes (E,E)-alpha-farnesene, (E)-beta-farnesene, (E)-beta-ocimene, linalool,(E)-4,8-dimethyl-1,3,7-nonatriene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetrane, as well as the shikimate pathway product indole, are biosynthesized de novo following insect damage. However, other volatile constituents, including several cyclic terpenes, butyrates, and green leaf volatiles of the lipoxygenase pathway are released from storage or synthesized from stored intermediates. Analysis of volatiles from artificially damaged plants, with and without beet armyworm (Spodoptera exigua Hubner) oral secretions exogenously applied to the leaves, as well as volatiles from beet armyworm-damaged and -undamaged control plants, demonstrated that the application of caterpillar oral secretions increased both the production and release of several volatiles that are synthesized de novo in response to insect feeding. These results establish that the plant plays an active and dynamic role in mediating the interaction between herbivores and natural enemies of herbivores

  10. Parasitism by Cuscuta pentagona Attenuates Host Plant Defenses against Insect Herbivores1

    Science.gov (United States)

    Runyon, Justin B.; Mescher, Mark C.; De Moraes, Consuelo M.

    2008-01-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores. PMID:18165323

  11. The impact of induced plant volatiles on lant-arthropod interactions

    NARCIS (Netherlands)

    Alba, J.M.; Bleeker, P.M.; Glas, J.J.; Schimmel, B.C.J.; van Wijk, M.; Sabelis, M.W.; Schuurink, R.C.; Kant, M.R.; Smagghe, G.; Diaz, I.

    2012-01-01

    Plants release volatile organic compounds from their vegetative tissues into their environment during most of their life cycle. The functions of these volatiles are diverse and not always known but some of these volatiles repel foraging herbivores while others, in turn, attract them and are feeding

  12. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice.

    Science.gov (United States)

    Lu, Jing; Li, Jiancai; Ju, Hongping; Liu, Xiaoli; Erb, Matthias; Wang, Xia; Lou, Yonggen

    2014-11-01

    Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants--an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  13. Molecular plant volatile communication.

    Science.gov (United States)

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  14. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  15. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests.

    Science.gov (United States)

    Santamaria, M Estrella; Martínez, Manuel; Cambra, Inés; Grbic, Vojislava; Diaz, Isabel

    2013-08-01

    Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.

  16. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-10-01

    Full Text Available Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.

  17. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions

    NARCIS (Netherlands)

    Lucas-Barbosa, Dani

    2016-01-01

    Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected.

  18. Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-04-01

    Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

  19. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    Science.gov (United States)

    Kant, M. R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B. C. J.; Villarroel, C. A.; Ataide, L. M. S.; Dermauw, W.; Glas, J. J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R. C.; Sabelis, M. W.; Alba, J. M.

    2015-01-01

    Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can

  20. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature

    Directory of Open Access Journals (Sweden)

    Meredith C. Schuman

    2018-06-01

    Full Text Available The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA. Among these, the conjugate jasmonoyl isoleucine (JA-Ile has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1, following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6 are much better defended even than a mildly jasmonate-deficient line (asLOX3. The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to

  1. Information use by the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae), a specialised natural enemy of herbivorous spider mites

    NARCIS (Netherlands)

    Boer, de J.G.; Dicke, M.

    2005-01-01

    Plants can respond to infestation by herbivores with the emission of specific herbivore-induced plant volatiles. Many carnivorous arthropods that feed on herbivorous prey use these volatiles to locate their prey. Despite the growing amount of research papers on the interactions in tritrophic

  2. Differential Response of a Local Population of Entomopathogenic Nematodes to Non-Native Herbivore Induced Plant Volatiles (HIPV) in the Laboratory and Field.

    Science.gov (United States)

    Rivera, Monique J; Rodriguez-Saona, Cesar; Alborn, Hans T; Koppenhöfer, Albrecht M

    2016-12-01

    Recent work has shown the potential for enhanced efficacy of entomopathogenic nematodes (EPN) through their attraction to herbivore induced plant volatiles. However, there has been little investigation into the utilization of these attractants in systems other than in those in which they were identified. We compared (E)-β-caryophyllene and pregeijerene in the highbush blueberry (Vaccinium corymbosum) agroecosystem in their ability to enhance the attraction of EPN to and efficacy against the system's herbivore, oriental beetle (Anomala orientalis). The relative attractiveness of (E)-β-caryophyllene and pregeijerene to a local isolate of the EPN species Steinernema glaseri was tested in a six-arm olfactometer in the laboratory to gather baseline values of attraction to the chemicals alone in sand substrate before field tests. A similar arrangement was used in a V. corymbosum field by placing six cages with assigned treatments and insect larvae with and without compound into the soil around the base of 10 plants. The cages were removed after 72 h, and insect baits were retrieved and assessed for EPN infection. The lab results indicate that in sand alone (E)-β-caryophyllene is significantly more attractive than pregeijerene to the local S. glaseri isolate Conversely, there was no difference in attractiveness in the field study, but rather, native S. glaseri were more attracted to cages with G. mellonella larvae, no larvae, and cages with the blank control and G. mellonella larvae.

  3. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities.

    Science.gov (United States)

    Kant, M R; Jonckheere, W; Knegt, B; Lemos, F; Liu, J; Schimmel, B C J; Villarroel, C A; Ataide, L M S; Dermauw, W; Glas, J J; Egas, M; Janssen, A; Van Leeuwen, T; Schuurink, R C; Sabelis, M W; Alba, J M

    2015-06-01

    Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to

  4. ß-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps.

    NARCIS (Netherlands)

    Mattiacci, L.; Dicke, M.; Posthumus, M.A.

    1995-01-01

    Cabbage plants respond to caterpillar (Pieris brassicae) herbivory by releasing a mixture of volatiles that makes them highly attractive to parasitic wasps (Cotesia glomerata) that attack the herbivores. Cabbage leaves that are artificially damaged and subsequently treated with gut regurgitant of P.

  5. Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector

    Directory of Open Access Journals (Sweden)

    Xavier eMartini

    2014-05-01

    Full Text Available Interactions between plant pathogens and arthropods have been predominantly studied through the prism of herbivorous arthropods. Currently, little is known about the effect of plant pathogens on the third trophic level. This question is particularly interesting in cases where pathogens manipulate host phenotype to increase vector attraction and presumably increase their own proliferation. Indeed, a predator or a parasitoid of a vector may take advantage of this manipulated phenotype to increase its foraging performance. We explored the case of a bacterial pathogen, Candidatus Liberibacter asiaticus (Las, which modifies the odors released by its host plant (citrus trees to attract its vector, the psyllid Diaphorina citri. We found that the specialist parasitoid of D. citri, Tamarixia radiata, was attracted more toward Las-infected than uninfected plants. We demonstrated that this attractiveness was due to the release of methyl salicylate. Parasitization of D. citri nymphs on Las-infected plants was higher than on uninfected controls. Also, parasitization was higher on uninfected plants baited with methyl salicylate than on non-baited controls. This is the first report of a parasitoid ‘eavesdropping’ on a plant volatile induced by bacterial pathogen infection, which also increases effectiveness of host seeking behavior of its herbivorous vector.

  6. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Directory of Open Access Journals (Sweden)

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  7. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense

    NARCIS (Netherlands)

    Mumm, R.; Dicke, M.

    2010-01-01

    Plants can respond to feeding or egg deposition by herbivorous arthropods by changing the volatile blend that they emit. These herbivore-induced plant volatiles (HIPVs) can attract carnivorous natural enemies of the herbivores, such as parasitoids and predators, a phenomenon that is called indirect

  9. How common is within-plant signaling via volatiles?

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-08-03

    Many plants respond to herbivory by releasing a complex blend of volatiles that may differ from that emitted by intact counterparts. These herbivore-induced plant volatiles (HIPV) mediate many interactions among plants and their community members, including alerting undamaged leaves of the attacked or neighboring plants to impending danger. It has been postulated that HIPVs evolved for within-plant signaling and that other organisms subsequently evolved to use them. However, only 7 studies have reported HIPV-mediated within-plant signaling, most conducted in the laboratory or greenhouse. This leaves open the ecological relevance and evolutionary underpinning of the phenomenon. We recently observed within-plant signaling in hybrid aspen under laboratory and field conditions. Greenhouse experiments showed that HIPVs mediated the process. While our study adds an aspen hybrid to the list of plants in which within-plant signaling has been demonstrated, we lack understanding of how common the process is and whether plants obtain fitness benefits.

  10. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Directory of Open Access Journals (Sweden)

    Ülo eNiinemets

    2013-07-01

    Full Text Available Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase pathway (LOX products, various C6 aldehydes, alcohols and derivatives, also called green leaf volatiles associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo- and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for several abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary

  11. Noctuidae-induced plant volatiles: current situation and prospects

    Directory of Open Access Journals (Sweden)

    Vanusa Rodrigues Horas

    2014-01-01

    Full Text Available Noctuids are phytophagous lepidopterans with some species causing significant damage to agriculture. The host plants, in turn, have developed defense mechanisms to cope with them, for instance chemical defenses. In this study we review the literature on plant volatiles induced by noctuids, and discuss the methodologies used to induce the production of volatiles that are usually employed in plant defense mechanisms. Future prospects involving this line of research in pest control are also discussed.

  12. Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation

    NARCIS (Netherlands)

    Belliure, B.; Janssen, A.; Sabelis, M.W.

    2008-01-01

    Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown

  13. Volatile chemical interaction between undamaged plants

    OpenAIRE

    Glinwood, Robert

    2010-01-01

    This chapter discusses whether plant chemical communication is a mechanism by which plant genetic diversity can affect the natural enemies of herbivores. Plant genetic diversity influences natural enemies, and these insects use volatile chemical cues to locate suitable habitats. However, the importance of chemical communication for these interactions has not been considered. In this chapter, the latest research on chemical communication between undamaged plants is reviewed. ...

  14. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.

    Science.gov (United States)

    Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R

    2016-11-01

    Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Early transcriptome analyses of Z-3-Hexenol-treated zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.

    Directory of Open Access Journals (Sweden)

    Jurgen Engelberth

    Full Text Available Green leaf volatiles (GLV, which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL as our model GLV in maize (Zea mays seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca(2+-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize.

  16. Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores.

    Science.gov (United States)

    Anstett, Daniel N; Chen, Wen; Johnson, Marc T J

    2016-08-01

    Plants are hypothesized to evolve increased defense against herbivores at lower latitudes, but an increasing number of studies report evidence that contradicts this hypothesis. Few studies have examined the evolution of constitutive and induced resistance along latitudinal gradients. When induction is not considered, underlying patterns of latitudinal clines in resistance can be obscured because plant resistance represents a combination of induced and constitutive resistance, which may show contrasting patterns with latitude. Here, we asked if there are latitudinal gradients in constitutive versus induced resistance by using genotypes of Oenothera biennis (Onagraceae) sampled along an 18° latitudinal gradient. We conducted two bioassay experiments to compare the resistance of plant genotypes against one generalist (Spodoptera exigua) and one specialist (Acanthoscelidius acephalus) herbivore. These insects were assayed on: i) undamaged control plants, ii) plants that had been induced with jasmonic acid, and iii) plants induced with herbivore damage. Additionally, we examined latitudinal gradients of constitutive and induced chemical resistance by measuring the concentrations of total phenolics, the concentration of oxidized phenolics, and the percentage of phenolics that were oxidized. Spodoptera exigua showed lower performance on plants from lower latitudes, whereas A. acephalus showed no latitudinal pattern. Constitutive total phenolics were greater in plants from lower latitudes, but induced plants showed higher total phenolics at higher latitudes. Oxidative activity was greatest at higher latitudes regardless of induction. Overall, both latitude and induction have an impact on different metrics of plant resistance to herbivory. Further studies should consider the effect of induction and herbivore specialization more explicitly, which may help to resolve the controversy in latitudinal gradients in herbivory and defense.

  17. The effect of genetically enriched (E)-β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia.

    Science.gov (United States)

    Shimoda, Takeshi; Nishihara, Masahiro; Ozawa, Rika; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-03-01

    Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico

    2017-11-14

    Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.

  19. Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies

    NARCIS (Netherlands)

    Kappers, I.F.; Hoogerbrugge, H.; Bouwmeester, H.J.; Dicke, M.

    2011-01-01

    In response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the

  20. Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata[w

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2004-01-01

    Although nitrogen (N) availability is known to alter constitutive resistance against herbivores, its influence on herbivore-induced responses, including signaling pathways, transcriptional signatures, and the subsequently elicited chemical defenses is poorly understood. We used the native tobacco, Nicotiana attenuata, which germinates in the postfire environment and copes with large changes in soil N during postfire succession, to compare a suite of Manduca sexta- and elicitor-induced responses in plants grown under high- and low-N (LN) supply rates. LN supply decreased relative growth rates and biomass by 35% at 40 d compared to high-N plants; furthermore, it also attenuated (by 39 and 60%) the elicitor-induced jasmonate and salicylate bursts, two N-intensive direct defenses (nicotine and trypsin proteinase inhibitors, albeit by different mechanisms), and carbon-containing nonvolatile defenses (rutin, chlorogenic acid, and diterpene glycosides), but did not affect the induced release of volatiles (cis-α-bergamotene and germacrene A), which function as indirect defenses. M. sexta and methyl jasmonate-induced transcriptional responses measured with a microarray enriched in herbivore-induced genes were also substantially reduced in plants grown under LN supply rates. In M. sexta-attacked LN plants, only 36 (45%) up-regulated and 46 (58%) down-regulated genes showed the same regulation as those in attacked high-N plants. However, transcriptional responses frequently directly countered the observed metabolic changes. Changes in a leaf's sensitivity to elicitation, an attacked leaf's waning ability to export oxylipin wound signals, and/or resource limitations in LN plants can account for the observed results, underscoring the conclusion that defense activation is a resource-intensive response. PMID:15133153

  1. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years...

  2. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa

    Science.gov (United States)

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects 1) plant volatiles emitted in r...

  3. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model.

    Science.gov (United States)

    Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A

    2015-09-01

    1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We

  4. Volatile Semiochemical Mediated Plant Defense in Cereals: A Novel Strategy for Crop Protection

    Directory of Open Access Journals (Sweden)

    Amanuel Tamiru

    2017-09-01

    Full Text Available Plants have evolved highly intriguing ways of defending themselves against insect attacks, including through emission of defense volatiles. These volatiles serve the plant’s defense by directly repelling phytophagous insects and/or indirectly through attracting natural enemies antagonistic to the herbivores. Several laboratory studies established the potential of improving plant resistance against insect attacks by manipulating the plant-derived volatile semiochemicals emissions. Yet, more efforts need to be conducted to translate the promising laboratory studies to fight economically-important crop pests under real field conditions. This is needed to address an increasing demand for alternative pest control options driven by ecological and environmental costs associated with the use of broad-spectrum insecticides. The practical examples discussed in this review paper demonstrate the real prospect of exploiting an inducible and constitutive plant volatile semiochemicals for developing novel and ecologically-sustainable pest management strategies to protect cereal crops from damaging insect pests.

  5. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses

  6. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; van Loon, J.J.A.; Van Dam, N.M.; Dicke, M.; Vet, L.E.M.

    2010-01-01

    1. Plant responses to herbivore attack may have community-wide effects on the composition of the plant-associated insect community. Thereby, plant responses to an early-season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of

  7. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice.

    Science.gov (United States)

    Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen

    2011-12-01

    The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.

  8. Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts

    Science.gov (United States)

    van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2011-01-01

    Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908

  9. Complex odor from plants under attack: herbivore's enemies react to the whole, not its parts.

    Directory of Open Access Journals (Sweden)

    Michiel van Wijk

    Full Text Available Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole.We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA, is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture.We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported.

  10. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field.

    Science.gov (United States)

    Wason, Elizabeth L; Hunter, Mark D

    2014-02-01

    Volatile organic chemical (VOC) emission by plants may serve as an adaptive plant defense by attracting the natural enemies of herbivores. For plant VOC emission to evolve as an adaptive defense, plants must show genetic variability for the trait. To date, such variability has been investigated primarily in agricultural systems, yet relatively little is known about genetic variation in VOCs emitted by natural populations of native plants. Here, we investigate intraspecific variation in constitutive and herbivore-induced plant VOC emission using the native common milkweed plant (Asclepias syriaca) and its monarch caterpillar herbivore (Danaus plexippus) in complementary field and common garden greenhouse experiments. In addition, we used a common garden field experiment to gauge natural enemy attraction to milkweed VOCs induced by monarch damage. We found evidence of genetic variation in the total constitutive and induced concentrations of VOCs and the composition of VOC blends emitted by milkweed plants. However, all milkweed genotypes responded similarly to induction by monarchs in terms of their relative change in VOC concentration and blend. Natural enemies attacked decoy caterpillars more frequently on damaged than on undamaged milkweed, and natural enemy visitation was associated with higher total VOC concentrations and with VOC blend. Thus, we present evidence that induced VOCs emitted by milkweed may function as a defense against herbivores. However, plant genotypes were equally attractive to natural enemies. Although milkweed genotypes diverge phenotypically in their VOC concentrations and blends, they converge into similar phenotypes with regard to magnitude of induction and enemy attraction.

  11. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    Science.gov (United States)

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  12. Induced parasitoid attraction by Arabidopsis thaliana : involvement of the octadecanoid and the salicylic acid pathway

    NARCIS (Netherlands)

    Poecke, van M.P.; Dicke, M.

    2002-01-01

    Plants can use indirect defence mechanisms to protect themselves against herbivorous insects. An example of such an indirect defence mechanism is the emission of volatiles by plants induced by herbivore feeding. These volatiles can attract the natural enemies of these herbivores, for example,

  13. Fungal endophytes – the hidden inducers of volatile terpene biosynthesis in tomato plants

    DEFF Research Database (Denmark)

    Ntana, Fani; Jensen, Birgit; Jørgensen, Hans Jørgen Lyngs

    mycorrhizal spores in the Indian Thar desert, colonizes the root cortex of a wide range of plants, enhancing plant growth and modulating plant specialized metabolism. The effect of S. indica colonization on the metabolism of the host can be potentially used in improving plant defence against pathogens...... and herbivores. Tomato (Solanum lycopersicum) is an important crop, often challenged by fungal pathogens and insect pests. The wide variety of secondary metabolites produced by the plant, and especially terpenes, play a crucial role in plant defence, helping in repelling possible enemies. This project is focused....... indica-inoculated and S. indica-free tomato plants. Preliminary data suggest that fungal colonization results in increased production of specific volatile terpenes. A transcriptome analysis on fungus-associated and fungus-free plant tissues is currently ongoing to elucidate in depth the mechanisms...

  14. Predators induce interspecific herbivore competition for food in refuge space

    OpenAIRE

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among herbivores is reduced by predators. Here we show the reverse: predators induce interspecific resource competi-tion among herbivores. We found that thrips larvae (Frankliniella occidentalis) use the ...

  15. Volatile communication between plants that affects herbivory: a meta-analysis.

    Science.gov (United States)

    Karban, Richard; Yang, Louie H; Edwards, Kyle F

    2014-01-01

    Volatile communication between plants causing enhanced defence has been controversial. Early studies were not replicated, and influential reviews questioned the validity of the phenomenon. We collected 48 well-replicated studies and found overall support for the hypothesis that resistance increased for individuals with damaged neighbours. Laboratory or greenhouse studies and those conducted on agricultural crops showed stronger induced resistance than field studies on undomesticated species, presumably because other variation had been reduced. A cumulative analysis revealed that early, non-replicated studies were more variable and showed less evidence for communication. Effects of habitat and plant growth form were undetectable. In most cases, the mechanisms of resistance and alternative hypotheses were not considered. There was no indication that some response variables were more likely to produce large effects. These results indicate that plants of diverse taxonomic affinities and ecological conditions become more resistant to herbivores when exposed to volatiles from damaged neighbours. © 2013 John Wiley & Sons Ltd/CNRS.

  16. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth.

    Science.gov (United States)

    Knudsen, Geir K; Norli, Hans R; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1

  17. Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore

    Science.gov (United States)

    Plant infection by pathogens can induce volatile organic compounds (VOCs). We infected ‘McNeal’ wheat and ‘Harrington’ barley with a Fusarium spp. blend (graminearum, avenaceum, and culmorum). Both cereals had highest VOC induction 14 d after pathogen introduction, significantly slightly lower induc...

  18. Phytohormone mediation of interactions between herbivores and plant pathogens

    NARCIS (Netherlands)

    Lazebnik, J.; Frago, E.; Dicke, M.; Loon, van J.J.A.

    2014-01-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in

  19. Inhibition of predator attraction to kairomones by non-host plant volatiles for herbivores: a bypass-trophic signal.

    Directory of Open Access Journals (Sweden)

    Qing-He Zhang

    2010-06-01

    Full Text Available Insect predators and parasitoids exploit attractive chemical signals from lower trophic levels as kairomones to locate their herbivore prey and hosts. We hypothesized that specific chemical cues from prey non-hosts and non-habitats, which are not part of the trophic chain, are also recognized by predators and would inhibit attraction to the host/prey kairomone signals. To test our hypothesis, we studied the olfactory physiology and behavior of a predaceous beetle, Thanasimus formicarius (L. (Coleoptera: Cleridae, in relation to specific angiosperm plant volatiles, which are non-host volatiles (NHV for its conifer-feeding bark beetle prey.Olfactory detection in the clerid was confirmed by gas chromatography coupled to electroantennographic detection (GC-EAD for a subset of NHV components. Among NHV, we identified two strongly antennally active molecules, 3-octanol and 1-octen-3-ol. We tested the potential inhibition of the combination of these two NHV on the walking and flight responses of the clerid to known kairomonal attractants such as synthetic mixtures of bark beetle (Ips spp. aggregation pheromone components (cis-verbenol, ipsdienol, and E-myrcenol combined with conifer (Picea and Pinus spp. monoterpenes (alpha-pinene, terpinolene, and Delta(3-carene. There was a strong inhibitory effect, both in the laboratory (effect size d = -3.2, walking bioassay and in the field (d = -1.0, flight trapping. This is the first report of combining antennal detection (GC-EAD and behavioral responses to identify semiochemical molecules that bypass the trophic system, signaling habitat information rather than food related information.Our results, along with recent reports on hymenopteran parasitoids and coleopteran predators, suggest that some NHV chemicals for herbivores are part of specific behavioral signals for the higher trophic level and not part of a background noise. Such bypass-trophic signals could be of general importance for third trophic level

  20. The Chloroplast-Localized Phospholipases D α4 and α5 Regulate Herbivore-Induced Direct and Indirect Defenses in Rice1[C][W

    Science.gov (United States)

    Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen

    2011-01-01

    The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice. PMID:21984727

  1. A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae)

    NARCIS (Netherlands)

    Uesugi, A.; Poelman, E.H.; Kessler, A.

    2013-01-01

    Plant-induced responses to multiple herbivores can mediate ecological interactions among herbivore species, thereby influencing herbivore community composition in nature. Several studies have indicated high specificity of induced responses to different herbivore species. In addition, there may be

  2. Volatile communication in plant-aphid interactions.

    Science.gov (United States)

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Macroevolutionary chemical escalation in an ancient plant-herbivore arms race.

    Science.gov (United States)

    Becerra, Judith X; Noge, Koji; Venable, D Lawrence

    2009-10-27

    A central paradigm in the field of plant-herbivore interactions is that the diversity and complexity of secondary compounds in plants have intensified over evolutionary time, resulting in the great variety of secondary products that currently exists. Unfortunately, testing of this proposal has been very limited. We analyzed the volatile chemistry of 70 species of the tropical plant genus Bursera and used a molecular phylogeny to test whether the species' chemical diversity or complexity have escalated. The results confirm that as new species diverged over time they tended to be armed not only with more compounds/species, but also with compounds that could potentially be more difficult for herbivores to adapt to because they belong to an increasing variety of chemical pathways. Overall chemical diversity in the genus also increased, but not as fast as species diversity, possibly because of allopatric species gaining improved defense with compounds that are new locally, but already in existence elsewhere.

  4. Elevated CO{sub 2} levels and herbivore damage alter host plant preferences

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, J. [Lund Univ., Dept. of Animal Ecology, Lund (Sweden); Anderson, Peter, Swedish Univ. of Agricultural Sciences, Dept. of Crop Sciences, Alnarp (SE)); Oleszek, W.; Stochmal, Anna [Inst. of Soil Science and Plant Cultivation, Dept. of Biochemistry, Pulawy (Poland); Agrell, Cecilia [Lund Univ., Dept. of Chemical Ecology and Ecotoxicology, Lund (Sweden)

    2006-01-01

    Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO{sub 2} conditions. To determine strength and effects of herbivore-induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO{sub 2} and damage effects on larval host plant preferences were determined through dual-choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO{sub 2} enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO{sub 2} conditions), but CO{sub 2} enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO{sub 2} levels had no effect on the herbivore-induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO{sub 2} level, and lowest for larvae on damaged alfalfa from the high CO{sub 2} treatment. Development time increased on damaged cotton irrespectively of CO{sub 2} treatment, and on damaged alfalfa in the elevated CO{sub 2} treatment. (au) These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore-induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter

  5. Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars.

    Science.gov (United States)

    Sobhy, Islam S; Bruce, Toby Ja; Turlings, Ted Cj

    2018-04-01

    The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the application of the inducers benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) and laminarin (β-1,3-glucan) is known to enhance the attractiveness of caterpillar-damaged cotton and maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea (Vigna unguiculata var. unguiculata) with these inducers and studied the effects on HI-VOC emissions and the attraction of three generalist endoparasitoids. After the inducers had been applied and the plants subjected to either real or mimicked herbivory by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis rufiventris showed a strong preference for BTH-treated plants, whereas Cotesia females were strongly attracted to both BTH- and laminarin-treated plants with real or mimicked herbivory. Treated plants emitted more of certain HI-VOCs, but considerably less indole and linalool and less of several sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no significant effect on leaf consumption by the caterpillars. Our findings confirm that treating cowpea plants with inducers can enhance their attractiveness to biological control agents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Climate change and genetically modified insecticidal plants. Plant-herbivore interactions and secondary chemistry of Bt Cry1Ac-toxin producing oilseed rape (Brassica napus L.) under elevated CO{sub 2} or O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, S.

    2008-07-01

    } and temperature despite differences in carbon and nitrogen concentrations between the non-Bt and Bt line. Feeding of Bt-susceptible diamondback moth (Plutella xylostella) larvae was equally inhibited on the Bt line in control conditions, under elevated CO{sub 2} and under O{sub 3} exposure. Constitutive glucosinolate and volatile terpenoid profiles of the non-Bt and Bt line plants were equal. Despite reduced feeding by Bt-susceptible P. xylostella on the Bt line, herbivore-induced increases in volatile terpenoids and glucosinolates were mostly comparable to those on the non-Bt line, with the exception of lowered increases in foliar concentration of 4-methoxy-3- indolylmethylglucosinolate and emissions of (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene and alpha- thujene in the Bt-transgenic line. The effectiveness of the transgenic trait, measured as Bt toxin concentration of leaves, was maintained under elevated CO{sub 2} and temperature, separately and in combination, and enhanced under elevated O{sub 3}. As an effect of elevated CO{sub 2}, increased glucosinolate and volatile terpenoid concentrations were detected in both non-Bt and Bt plant lines, whereas O{sub 3} exposure changed concentrations of specific glucosinolates and decreased total terpenoid emissions in both plant types. In tritrophic bioassays, an endoparasitoid of P. xylostella, Cotesia vestalis, was attracted to host-damaged non-Bt and Bt plants under elevated CO{sub 2} compared to control plants, whereas with elevated O{sub 3} the host-damaged Bt plants, which had reduced feeding damage, did not attract the parasitoids. This is in contrast to non-Bt plants, which also remained attractive under O{sub 3} exposure. To conclude, Bt-producing oilseed rape showed equal responses as the non-Bt parent line to the studied abiotic variations in terms of vegetative growth, allocation to constitutive glucosinolates and volatile terpenoids and nontarget herbivore susceptibility. This suggests that these

  7. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    Directory of Open Access Journals (Sweden)

    Geir K. Knudsen

    2017-12-01

    Full Text Available Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear or unrelated to the host (Pinaceae, spruce and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E-4

  8. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores

    NARCIS (Netherlands)

    Papadopoulou, G.V.; Dam, N.M. van

    2017-01-01

    Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and

  9. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  10. The role of herbivore- and plant-related experiences in intraspecific host preference of a relatively specialized parasitoid.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2017-09-06

    Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivore-derived cues than plant-derived cues. Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.) (Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores: (i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. Interestingly, naive parasitoids attacked more soybean-fed than cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  11. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve.

    Directory of Open Access Journals (Sweden)

    Wendy E Morrison

    2011-03-01

    Full Text Available Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4-17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp. preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of

  12. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; Loon, van J.J.A.; Dam, van N.M.; Vet, L.E.M.; Dicke, M.

    2010-01-01

    2. Here we studied the effect of early-season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to

  13. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  14. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F; Eisner, T

    1977-06-17

    The mixed-function oxidases of a polyphagous insect larva (the southern armyworm, Spodoptera eridania) were found to be induced by a diversity of secondary plant substances. The induction proceeds rapidly and in response to a small quantity of secondary substance. Following induction, the larva is less susceptible to dietary poisoning. It is argued that mixed-function oxidases play a major role in protecting herbivores against chemical stress from secondary plant substances.

  15. Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance1

    Science.gov (United States)

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-01-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  16. Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.).

    Science.gov (United States)

    Rasmann, Sergio; Agrawal, Anurag A; Cook, Susan C; Erwin, Alexis C

    2009-09-01

    Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically

  17. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.

    Science.gov (United States)

    Souza Silva, Érica A; Saboia, Giovanni; Jorge, Nina C; Hoffmann, Camila; Dos Santos Isaias, Rosy Mary; Soares, Geraldo L G; Zini, Claudia A

    2017-12-01

    with Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) provided a suitable tool to differentiate VOC profiles in vegetal material, and could open new perspectives and opportunities in agricultural and ecological studies for the detection and identification of herbivore-induced plant VOC emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1

    NARCIS (Netherlands)

    Poecke, van R.M.P.; Dicke, M.

    2003-01-01

    Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid

  19. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.).

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Patrick, Eamonn T; Knight, Anna C

    2014-07-01

    Despite the recognition that phytohormonal signaling mediates induced responses to herbivory, we still have little understanding of how such signaling varies among closely related species and may generate herbivore-specific induced responses. We studied closely related milkweeds (Asclepias) to link: 1) plant damage by two specialist chewing herbivores (milkweed leaf beetles Labidomera clivicolis and monarch caterpillars Danaus plexippus); 2) production of the phytohormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA); 3) induction of defensive cardenolides and latex; and 4) impacts on Danaus caterpillars. We first show that A. syriaca exhibits induced resistance following monarch herbivory (i.e., reduced monarch growth on previously damaged plants), while the defensively dissimilar A. tuberosa does not. We next worked with a broader group of five Asclepias, including these two species, that are highly divergent in defensive traits yet from the same clade. Three of the five species showed herbivore-induced changes in cardenolides, while induced latex was found in four species. Among the phytohormones, JA and ABA showed specific responses (although they generally increased) to insect species and among the plant species. In contrast, SA responses were consistent among plant and herbivore species, showing a decline following herbivore attack. Jasmonic acid showed a positive quantitative relationship only with latex, and this was strongest in plants damaged by D. plexippus. Although phytohormones showed qualitative tradeoffs (i.e., treatments that enhanced JA reduced SA), the few significant individual plant-level correlations among hormones were positive, and these were strongest between JA and ABA in monarch damaged plants. We conclude that: 1) latex exudation is positively associated with endogenous JA levels, even among low-latex species; 2) correlations among milkweed hormones are generally positive, although herbivore damage induces a

  20. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  1. Atmospheric transformation of plant volatiles disrupts host plant finding

    Science.gov (United States)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  2. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor.

    NARCIS (Netherlands)

    Dicke, M.; Baarlen, van P.; Wessels, R.; Dijkman, H.

    1993-01-01

    It was previously shown that in response to infestation by spider mites (Tetranychus urticae), lima bean plants produce a volatile herbivoreinduced synomone that attracts phytoseiid mites (Phytoseiulus persimilis) that are predators of the spider mites. The production of predator-attracting

  3. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  4. Natal Host Plants Can Alter Herbivore Competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  5. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage.

    Science.gov (United States)

    Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta

    2017-01-01

    Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  6. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Science.gov (United States)

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  7. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Directory of Open Access Journals (Sweden)

    Julia Kästner

    Full Text Available Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA, salicylic acid (SA and abscisic acid (ABA. We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1 was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  8. Induced and constitutive responses of digestive enzymes to plant toxins in an herbivorous mammal.

    Science.gov (United States)

    Kohl, Kevin D; Dearing, M Denise

    2011-12-15

    Many plants produce plant secondary compounds (PSCs) that bind and inhibit the digestive enzymes of herbivores, thus limiting digestibility for the herbivore. Herbivorous insects employ several physiological responses to overcome the anti-nutritive effects of PSCs. However, studies in vertebrates have not shown such responses, perhaps stemming from the fact that previously studied vertebrates were not herbivorous. The responses of the digestive system to dietary PSCs in populations of Bryant's woodrat (Neotoma bryanti) that vary in their ecological and evolutionary experience with the PSCs in creosote bush (Larrea tridentata) were compared. Individuals from naïve and experienced populations were fed diets with and without added creosote resin. Animals fed diets with creosote resin had higher activities of pancreatic amylase, as well as luminal amylase and chymotrypsin, regardless of prior experience with creosote. The experienced population showed constitutively higher activities of intestinal maltase and sucrase. Additionally, the naïve population produced an aminopeptidase-N enzyme that was less inhibited by creosote resin when feeding on the creosote resin diet, whereas the experienced population constitutively expressed this form of aminopeptidase-N. Thus, the digestive system of an herbivorous vertebrate responds significantly to dietary PSCs, which may be important for allowing herbivorous vertebrates to feed on PSC-rich diets.

  9. Getting prepared for future attack : induction of plant defences by herbivore egg deposition and consequences for the insect community

    NARCIS (Netherlands)

    Pashalidou, F.G.

    2015-01-01

    Plants have evolved intriguing defences against insect herbivores. Compared to constitutive Plants have evolved intriguing defences against insect herbivores. Compared to constitutive defences that are always present, plants can respond with inducible defences when they are attacked. Insect

  10. Language of plants: Where is the word?

    Science.gov (United States)

    Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K

    2016-04-01

    Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.

  11. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    Science.gov (United States)

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  13. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field

    NARCIS (Netherlands)

    Poelman, E.H.; Broekgaarden, C.; Loon, van J.J.A.; Dicke, M.

    2008-01-01

    Induction of plant defences by early season herbivores can mediate interspecific herbivore competition. We have investigated plant-mediated competition between three herbivorous insects through studies at different levels of biological integration. We have addressed (i) gene expression; (ii) insect

  14. Precipitation affects plant communication and defense.

    Science.gov (United States)

    Pezzola, Enrico; Mancuso, Stefano; Karban, Richard

    2017-06-01

    Anti-herbivore defense shows high levels of both inter- and intraspecific variability. Defending against herbivores may be costly to the plant when it requires a tradeoff in allocation between defense and other missed opportunities, such as reproduction. Indeed, the plastic expression of defensive traits allows the plant to invest resources in defense only when the risk of being damaged actually increases, avoiding wasted resources. Plants may assess risk by responding to volatile cues emitted by neighbors that are under attack. Most plastic responses likely depend on environmental conditions. In this experiment, we investigated the effect of water availability on resistance induced by volatile cues in sagebrush. We found that plants receiving additional water over summer and/or volatile cues from neighbor donor plants showed reduced herbivore damage compared to control plants. Interestingly, we found no evidence of interactions between additional water and volatile cues. We performed an inferential analysis comparing historical records of the levels of herbivore damage during different years that had different temperature and precipitation accumulations. Results confirmed findings from the experiment, as the regression model indicated that sagebrush was better defended during wetter and hotter seasons. Reports from the literature indicated that sagebrush is extremely sensitive to water availability in the soil. We suggest that water availability may directly affect resistance of herbivory as well as sensitivity to cues of damage. Costs and benefits of allocating resources to defensive traits may vary with environmental conditions. © 2017 by the Ecological Society of America.

  15. EPN Chemical ecology and new techniques for below ground sampling and analyses of volatile semiochemicals

    Science.gov (United States)

    It is well established that herbivory induced plant volatiles (HIPVs) attract natural enemies of the herbivores. Utilizing this plant response has become a fundamental part of above ground IPM programs. We now know that also roots can release HIPVs and that these compounds attract beneficial organis...

  16. Recent advances in plant-herbivore interactions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Deron E. Burkepile

    2017-02-01

    Full Text Available Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1 plant defense theory, (2 herbivore diversity and ecosystem function, (3 predation risk aversion and herbivory, and (4 how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally

  17. Virus infection decreases the attractiveness of white clover plants for a non-vectoring herbivore

    DEFF Research Database (Denmark)

    van Mölken, Tamara; Caluwe, Hannie de; Hordijk, Cornelis A.

    2012-01-01

    Plant pathogens and insect herbivores are prone to share hosts under natural conditions. Consequently, pathogen-induced changes in the host plant can affect herbivory, and vice versa. Even though plant viruses are ubiquitous in the field, little is known about plant-mediated interactions between ...

  18. Troublesome toxins: Time to re-think plant-herbivore interactions in vertebrate ecology

    Science.gov (United States)

    Swihart, R.K.; DeAngelis, D.L.; Feng, Z.; Bryant, J.P.

    2009-01-01

    Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  19. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  20. Insect herbivores should follow plants escaping their relatives

    NARCIS (Netherlands)

    Yguel, B.; Bailey, R.I.; Villemant, C.; Brault, A.; Jactel, H.; Prinzing, A.

    2014-01-01

    Neighboring plants within a local community may be separated by many millions of years of evolutionary history, potentially reducing enemy pressure by insect herbivores. However, it is not known how the evolutionary isolation of a plant affects the fitness of an insect herbivore living on such a

  1. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice

    Science.gov (United States)

    Hu, Lingfei; Ye, Meng; Li, Ran; Lou, Yonggen

    2016-01-01

    ABSTRACT WRKY proteins, which belong to a large family of plant-specific transcription factors, play important roles in plant defenses against pathogens and herbivores by regulating defense-related signaling pathways. Recently, a rice WRKY transcription factor OsWRKY53 has been reported to function as a negative feedback modulator of OsMPK3/OsMPK6 and thereby to control the size of the investment a rice plant makes to defend against a chewing herbivore, the striped stem borer Chilo suppressalis. We investigated the performance of a piecing-sucking herbivore, the brown planthopper (BPH) Nilaparvata lugens, on transgenic plants that silence or overexpress OsWRKY53, and found that OsWRKY53 activates rice defenses against BPH by activating an H2O2 burst and suppressing ethylene biosynthesis. These findings suggest that OsWRKY53 functions not only as a regulator of plants' investment in specific defenses, but also as a switch to initiate new defenses against other stresses, highlighting the versatility and importance of OsWRKY53 in herbivore-induced plant defenses. PMID:27031005

  2. Resilience in plant-herbivore networks during secondary succession.

    Directory of Open Access Journals (Sweden)

    Edith Villa-Galaviz

    Full Text Available Extensive land-use change in the tropics has produced a mosaic of successional forests within an agricultural and cattle-pasture matrix. Post-disturbance biodiversity assessments have found that regeneration speed depends upon propagule availability and the intensity and duration of disturbance. However, reestablishment of species interactions is still poorly understood and this limits our understanding of the anthropogenic impacts upon ecosystem resilience. This is the first investigation that evaluates plant-herbivore interaction networks during secondary succession. In particular we investigated succession in a Mexican tropical dry forest using data of caterpillar associations with plants during 2007-2010. Plant-herbivore networks showed high resilience. We found no differences in most network descriptors between secondary and mature forest and only recently abandoned fields were found to be different. No significant nestedness or modularity network structure was found. Plant-herbivore network properties appear to quickly reestablish after perturbation, despite differences in species richness and composition. This study provides some valuable guidelines for the implement of restoration efforts that can enhance ecological processes such as the interaction between plants and their herbivores.

  3. Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology

    Directory of Open Access Journals (Sweden)

    Feng Zhilan

    2009-02-01

    Full Text Available Abstract Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  4. Inducible indirect defence of plants : from mechanisms to ecological functions

    NARCIS (Netherlands)

    Dicke, M.; Poecke, van R.M.P.; Boer, de J.G.

    2003-01-01

    Inducible defences allow plants to be phenotypically plastic. Inducible indirect defence of plants by attracting carnivorous enemies of herbivorous arthropods can vary with plant species and genotype, with herbivore species or instar and potentially with other environmental conditions. So far,

  5. How does Phytoseiulus Persimilis find its prey when foraging within a bean plant?

    DEFF Research Database (Denmark)

    Zemek, R.; Nachman, Gøsta Støger; Ru°z¿ic¿kova´, S

    The role of herbivore-induced volatile substances in prey-finding by phytoseiid mites has been repeatedly documented using an olfactometer. The objective of the present paper is to test the hypothesis that movement by Phytoseiulus persimilis is affected by these volatiles even on plants. Two series...... was on the leaf surface since it was attracted to the spider mite patch, at least over a distance of 1 cm. These results thus demonstrate that herbivore-induced volatiles can be utilized by P. persimilis during search for prey also under conditions that mimic natural situations better than an olfactometer does....

  6. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber.

    Science.gov (United States)

    Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C

    2017-09-08

    Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.

  7. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors?

    Science.gov (United States)

    Clavijo McCormick, Andrea

    2016-12-01

    The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

  8. Describing a multitrophic plant-herbivore-parasitoid system at four spatial scales

    Science.gov (United States)

    Cuautle, M.; Parra-Tabla, V.

    2014-02-01

    Herbivore-parasitoid interactions must be studied using a multitrophic and multispecies approach. The strength and direction of multiple effects through trophic levels may change across spatial scales. In this work, we use the herbaceous plant Ruellia nudiflora, its moth herbivore Tripudia quadrifera, and several parasitoid morphospecies that feed on the herbivore to answer the following questions: Do herbivore and parasitoid attack levels vary depending on the spatial scale considered? With which plant characteristics are the parasitoid and the herbivore associated? Do parasitoid morphospecies vary in the magnitude of their positive indirect effect on plant reproduction? We evaluated three approximations of herbivore and parasitoid abundance (raw numbers, ratios, and attack rates) at four spatial scales: regional (three different regions which differ in terms of abiotic and biotic characteristics); population (i.e. four populations within each region); patch (four 1 m2 plots in each population); and plant level (using a number of plant characteristics). Finally, we determined whether parasitoids have a positive indirect effect on plant reproductive success (seed number). Herbivore and parasitoid numbers differed at three of the spatial scales considered. However, herbivore/fruit ratio and attack rates did not differ at the population level. Parasitoid/host ratio and attack rates did not differ at any scale, although there was a tendency of a higher attack in one region. At the plant level, herbivore and parasitoid abundances were related to different plant traits, varying the importance and the direction (positive or negative) of those traits. In addition, only one parasitoid species (Bracon sp.) had a positive effect on plant fitness saving up to 20% of the seeds in a fruit. These results underline the importance of knowing the scales that are relevant to organisms at different trophic levels and distinguish between the specific effects of species.

  9. Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol.

    Directory of Open Access Journals (Sweden)

    Jianing Wei

    2007-09-01

    Full Text Available Plant volatiles play an important role in defending plants against insect attacks by attracting their natural enemies. For example, green leaf volatiles (GLVs and terpenoids emitted from herbivore-damaged plants were found to be important in the host location of parasitic wasps. However, evidence of the functional roles and mechanisms of these semio-chemicals from a system of multiple plants in prey location by the parasitoid is limited. Little is known about the potential evolutionary trends between herbivore-induced host plant volatiles and the host location of their parasitoids.The present study includes hierarchical cluster analyses of plant volatile profiles from seven families of host and non-host plants of pea leafminer, Liriomyza huidobrensis, and behavioral responses of a naive parasitic wasp, Opius dissitus, to some principal volatile compounds. Here we show that plants can effectively pull wasps, O. dissitus, towards them by releasing a universally induced compound, (Z-3-hexenol, and potentially keep these plants safe from parasitic assaults by leafminer pests, L. huidobrensis. Specifically, we found that volatile profiles from healthy plants revealed a partly phylogenetic signal, while the inducible compounds of the infested-plants did not result from the fact that the induced plant volatiles dominate most of the volatile blends of the host and non-host plants of the leafminer pests. We further show that the parasitoids are capable of distinguishing the damaged host plant from the non-host plant of the leafminers.Our results suggest that, as the most passive scenario of plant involvement, leafminers and mechanical damages evoke similar semio-chemicals. Using ubiquitous compounds, such as hexenol, for host location by general parasitoids could be an adaptation of the most conservative evolution of tritrophic interaction. Although for this, other compounds may be used to improve the precision of the host location by the parasitoids.

  10. A conserved pattern in plant-mediated interactions between herbivores

    OpenAIRE

    Lu Jing; Robert Christelle A. M.; Lou Yonggen; Erb Matthias

    2016-01-01

    Abstract Plant?mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varyi...

  11. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  12. Insect herbivore feeding and their excretion contribute to volatile organic compounds emission to the atmosphere

    Science.gov (United States)

    Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.

    2011-12-01

    Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.

  13. Plant traits and plant biogeography control the biotic resistance provided by generalist herbivores

    NARCIS (Netherlands)

    Grutters, B.M.C.; Roijendijk, Yvonne; Verberk, W.C.E.P.; Bakker, E.S.

    2017-01-01

    1.Globalization and climate change trigger species invasions and range shifts, which reshuffle communities at an exceptional rate and expose plant migrants to unfamiliar herbivores. Dominant hypotheses to predict plant success are based on evolutionary novelty: either herbivores are maladapted to

  14. Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees

    NARCIS (Netherlands)

    Scutareanu, P.; Bruin, de J.; Posthumus, M.A.; Drukker, B.

    2003-01-01

    Qualitative and quantitative differences among pear cultivars were found in constitutive and Cacopsylla-induced volatiles, depending on experimental treatment of the trees (i.e., uninfested and partly or completely infested by psyllids). Blend differences were also found between pear cultivars and

  15. The importance of phenology in studies of plant-herbivore-parasitoid interactions

    NARCIS (Netherlands)

    Fei, Minghui

    2016-01-01

    Thesis title: The importance of phenology in studies of plant-herbivore-parasitoid interactions Author: Minghui Fei Abstract As food resources of herbivorous insects, the quality and quantity of plants can directly affect the performance of herbivorous insects and indirectly affect

  16. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  17. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths.

    Science.gov (United States)

    Kariyat, Rupesh R; Mauck, Kerry E; Balogh, Christopher M; Stephenson, Andrew G; Mescher, Mark C; De Moraes, Consuelo M

    2013-04-22

    Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.

  18. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  19. Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana.

    Science.gov (United States)

    Ghirardo, Andrea; Heller, Werner; Fladung, Matthias; Schnitzler, Jörg-Peter; Schroeder, Hilke

    2012-12-01

    The indirect defences of plants are comprised of herbivore-induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co-evolved plant-herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T-oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S-oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T-oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non-volatile polyphenolic leaf constituents (as quercetin-, kaempferol- and flavonol glycosides). In addition to non-volatile metabolic differences, typically defensive HIPV emissions differed between S-oaks and T-oaks. Female moths were attracted by the blend of HIPVs from S-oaks, showing significantly higher amounts of (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E)-β-ocimene and avoid T-oaks with relative high fraction of the sesquiterpenes α-farnesene and germacrene D. Hence, the strategy of T-oaks exhibiting directly herbivore-repellent HIPV emissions instead of high emissions of predator-attracting HIPVs of the S-oaks appears to be the better mechanism for avoiding defoliation. © 2012 Blackwell Publishing Ltd.

  20. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.

    Science.gov (United States)

    Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A

    2017-09-05

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.

  1. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.

    Science.gov (United States)

    Wetzel, William C; Thaler, Jennifer S

    2016-04-01

    Variability in plant chemistry has long been believed to suppress populations of insect herbivores by constraining herbivore resource selection behavior in ways that make herbivores more vulnerable to predation. The focus on behavior, however, overlooks the pervasive physiological effects of plant variability on herbivores. Here we propose the plant variability-gut acclimation hypothesis, which posits that plant chemical variability constrains herbivore anti-predator defenses by frequently requiring herbivores to acclimate their guts to changing plant defenses and nutrients. Gut acclimation, including changes to morphology and detoxification enzymes, requires time and nutrients, and we argue these costs will constrain how and when herbivores can mount anti-predator defenses. A consequence of this hypothesis is stronger top-down control of herbivores in heterogeneous plant populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.

    Science.gov (United States)

    ul Hassan, Muhammad Naeem; Zainal, Zamri; Ismail, Ismanizan

    2015-08-01

    Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  4. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  5. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice.

    Science.gov (United States)

    Wang, Qi; Li, Jiancai; Hu, Lingfei; Zhang, Tongfang; Zhang, Guren; Lou, Yonggen

    2013-07-01

    KEY MESSAGE : Silencing OsMPK3 decreased elicited JA levels, which subsequently reduced levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Mitogen-activated protein kinases (MPKs) are known to play an important role in plant defense by transferring biotic and abiotic signals into programmed cellular responses. However, their functions in the herbivore-induced defense response in rice remain largely unknown. Here, we identified a MPK3 gene from rice, OsMPK3, and found that its expression levels were up-regulated in response to infestation by the larvae of the striped stem borer (SSB) (Chilo suppressalis), to mechanical wounding and to treatment with jasmonic acid (JA), but not to infestation by the brown planthopper (BPH) Nilaparvata lugens or to treatment with salicylic acid. Moreover, mechanical wounding and SSB infestation induced the expression of OsMPK3 strongly and quickly, whereas JA treatment induced the gene more weakly and slowly. Silencing OsMPK3 (ir-mpk3) reduced the expression of the gene by 50-70 %, decreased elicited levels of JA and diminished the expression of a lipoxygenase gene OsHI-LOX and an allene oxide synthase gene OsAOS1. The reduced JA signaling in ir-mpk3 plants decreased the levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Our findings suggest that the gene OsMPK3 responds early in herbivore-induced defense and can be regulated by rice plants to activate a specific and appropriate defense response to different herbivores.

  6. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Directory of Open Access Journals (Sweden)

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  7. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores.

    Science.gov (United States)

    Moreira, X; Zas, R; Sampedro, L

    2013-05-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.

  8. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Science.gov (United States)

    Röder, Gregory; Rahier, Martine; Naisbit, Russell E

    2011-05-04

    Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  9. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Directory of Open Access Journals (Sweden)

    Gregory Röder

    2011-05-01

    Full Text Available Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae that possesses constitutive chemical defence (pyrrolizidine alkaloids and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae. Plants were induced in the field using chemical elicitors of the jasmonic acid (JA and salicylic acid (SA pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  10. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.

    Science.gov (United States)

    Forbey, Jennifer Sorensen; Dearing, M Denise; Gross, Elisabeth M; Orians, Colin M; Sotka, Erik E; Foley, William J

    2013-04-01

    We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

  11. Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes.

    Science.gov (United States)

    Kim, Tania N; Underwood, Nora; Inouye, Brian D

    2013-08-01

    Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense. Within a growing season, herbivores reduced S. carolinense plant size but did not affect the size of S. altissima, which exhibited compensatory growth. Across seasons, herbivores did not affect S. carolinense density or biomass but reduced both the density and population growth of S. altissima. The best-fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effect of S. altissima on S. carolinense; in other years, herbivores influenced the intrinsic rate of increase of S. altissima. We examined possible herbivore effects on the longer-term outcome of competition (over the time scale of a typical old-field habitat), using simulations based on the best-fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, S. carolinense was excluded by S. altissima in 72.3% of the simulations. We demonstrate that herbivores can influence the outcome of competition through changes in both per capita competitive effects and intrinsic rates of increase. We discuss the implications of these results for ecological succession and biocontrol.

  12. Belowground Plant–Herbivore Interactions Vary among Climate-Driven Range-Expanding Plant Species with Different Degrees of Novel Chemistry

    Directory of Open Access Journals (Sweden)

    Rutger A. Wilschut

    2017-10-01

    Full Text Available An increasing number of studies report plant range expansions to higher latitudes and altitudes in response to global warming. However, consequences for interactions with other species in the novel ranges are poorly understood. Here, we examine how range-expanding plant species interact with root-feeding nematodes from the new range. Root-feeding nematodes are ubiquitous belowground herbivores that may impact the structure and composition of natural vegetation. Because of their ecological novelty, we hypothesized that range-expanding plant species will be less suitable hosts for root-feeding nematodes than native congeneric plant species. In greenhouse and lab trials we compared nematode preference and performance of two root-feeding nematode species between range-expanding plant species and their congeneric natives. In order to understand differences in nematode preferences, we compared root volatile profiles of all range-expanders and congeneric natives. Nematode preferences and performances differed substantially among the pairs of range-expanders and natives. The range-expander that had the most unique volatile profile compared to its related native was unattractive and a poor host for nematodes. Other range-expanding plant species that differed less in root chemistry from native congeners, also differed less in nematode attraction and performance. We conclude that the three climate-driven range-expanding plant species studied varied considerably in their chemical novelty compared to their congeneric natives, and therefore affected native root-feeding nematodes in species-specific ways. Our data suggest that through variation in chemical novelty, range-expanding plant species may vary in their impacts on belowground herbivores in the new range.

  13. Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis).

    Science.gov (United States)

    Radville, Laura; Chaves, Arielle; Preisser, Evan L

    2011-06-01

    Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.

  14. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    Science.gov (United States)

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  15. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  16. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...... with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant–herbivore–pathogen interactions on plant performance and used meta-analysis to search for consistent patterns...

  17. Elevated carbon dioxide reduces emission of herbivore induced volatiles in Zea mays

    Science.gov (United States)

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defense mechanism by attracting parasitoid wasps; yet little is known about the impact of atmospheric changes on this form of plant defense. To in...

  18. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  19. Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata

    Directory of Open Access Journals (Sweden)

    Baldwin Ian T

    2008-10-01

    Full Text Available Abstract Background The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp. and herbivores (Manduca sexta in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000, which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. Results M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. Conclusion These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more

  20. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles.

    Science.gov (United States)

    Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min

    2013-07-01

    Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.

  1. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.

    Science.gov (United States)

    Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E

    2012-11-01

    Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Interactions among predators and plant specificity protect herbivores from top predators.

    Science.gov (United States)

    Bosc, Christopher; Pauw, Anton; Roets, Francois; Hui, Cang

    2018-05-04

    The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on 1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on 2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree

  3. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling.

    Science.gov (United States)

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-24

    Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions

  4. An air transfer experiment confirms the role of volatile cues in communication between plants.

    Science.gov (United States)

    Karban, Richard; Shiojiri, Kaori; Ishizaki, Satomi

    2010-09-01

    Previous studies reported that sagebrush plants near experimentally clipped neighbors experienced less herbivory than did plants near unclipped neighbors. Blocking air flow with plastic bags made this effect undetectable. However, some scientists remained skeptical about the possibility of volatile communication between plants since the existence and identity of a cue that operates in nature have never been demonstrated. We conducted an air transfer experiment that collected air from the headspace of an experimentally clipped donor plant and delivered it to the headspace of an unclipped assay plant. We found that assay plants treated with air from clipped donors were less likely to be damaged by naturally occurring herbivores in a field experiment. This simple air transfer experiment fulfills the most critical of Koch's postulates and provides more definitive evidence for volatile communication between plants. It also provides an inexpensive experimental protocol that can be used to screen plants for interplant communication in the field.

  5. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants.

    Science.gov (United States)

    Zhang, Zhijie; Pan, Xiaoyun; Blumenthal, Dana; van Kleunen, Mark; Liu, Mu; Li, Bo

    2018-04-01

    Invasive alien plants are likely to be released from specialist herbivores and at the same time encounter biotic resistance from resident generalist herbivores in their new ranges. The Shifting Defense hypothesis predicts that this will result in evolution of decreased defense against specialist herbivores and increased defense against generalist herbivores. To test this, we performed a comprehensive meta-analysis of 61 common garden studies that provide data on resistance and/or tolerance for both introduced and native populations of 32 invasive plant species. We demonstrate that introduced populations, relative to native populations, decreased their resistance against specialists, and increased their resistance against generalists. These differences were significant when resistance was measured in terms of damage caused by the herbivore, but not in terms of performance of the herbivore. Furthermore, we found the first evidence that the magnitude of resistance differences between introduced and native populations depended significantly on herbivore origin (i.e., whether the test herbivore was collected from the native or non-native range of the invasive plant). Finally, tolerance to generalists was found to be higher in introduced populations, while neither tolerance to specialists nor that to simulated herbivory differed between introduced and native plant populations. We conclude that enemy release from specialist herbivores and biotic resistance from generalist herbivores have contrasting effects on resistance evolution in invasive plants. Our results thus provide strong support for the Shifting Defense hypothesis. © 2018 by the Ecological Society of America.

  6. Avoidance and tolerance to avian herbivores in aquatic plants

    NARCIS (Netherlands)

    Hidding, A.

    2009-01-01

    Tolerance and avoidance are the two contrasting strategies that plants may adopt to cope with herbivores. Tolerance traits define the degree to which communities remain unaffected by herbivory. Trade-offs between herbivore avoidance and competitive strength and between avoidance and colonization

  7. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Putten, van der W.H.

    2012-01-01

    Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  8. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  9. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field.

    Science.gov (United States)

    Ahern, Jeffrey R; Whitney, Kenneth D

    2014-03-01

    Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant-herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field. Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness. The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide. To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories within the Asteraceae and other plant families showing

  10. Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica.

    Science.gov (United States)

    Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande

    2016-01-01

    Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.

  11. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants.

    Science.gov (United States)

    Okada, Kazunori; Abe, Hiroshi; Arimura, Gen-ichiro

    2015-01-01

    Jasmonic acid (JA) and its derivatives (jasmonates, JAs) are phytohormones with essential roles in plant defense against pathogenesis and herbivorous arthropods. Both the up- and down-regulation of defense responses are dependent on signaling pathways mediated by JAs as well as other stress hormones (e.g. salicylic acid), generally those involving the transcriptional and post-transcriptional regulation of transcription factors via protein modification and epigenetic regulation. In addition to the typical model plant Arabidopsis (a dicotyledon), advances in genetics research have made rice a model monocot in which innovative pest control traits can be introduced and whose JA signaling pathway can be studied. In this review, we introduce the dynamic functions of JAs in plant defense strategy using defensive substances (e.g. indole alkaloids and terpenoid phytoalexins) and airborne signals (e.g. green leaf volatiles and volatile terpenes) in response to biotrophic and necrotrophic pathogens as well as above-ground and below-ground herbivores. We then discuss the important issue of how the mutualism of herbivorous arthropods with viruses or bacteria can cause cross-talk between JA and other phytohormones to counter the defense systems. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  13. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense.

    Science.gov (United States)

    Rowen, Elizabeth; Gutensohn, Michael; Dudareva, Natalia; Kaplan, Ian

    2017-06-01

    Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure's effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/- MeSA, +/- herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm- damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.

  14. Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling

    Science.gov (United States)

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-01

    Abstract Background and Aims Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant’s competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional–structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results Our results indicate that there is indeed a strong interaction between levels of plant–plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering

  15. Structural breakdown of specialized plant-herbivore interaction networks in tropical forest edges

    Directory of Open Access Journals (Sweden)

    Bruno Ximenes Pinho

    2017-10-01

    Full Text Available Plant-herbivore relationships are essential for ecosystem functioning, typically forming an ecological network with a compartmentalized (i.e. modular structure characterized by highly specialized interactions. Human disturbances can favor habitat generalist species and thus cause the collapse of this modular structure, but its effects are rarely assessed using a network-based approach. We investigate how edge proximity alters plant-insect herbivore networks by comparing forest edge and interior in a large remnant (3.500 ha of the Brazilian Atlantic forest. Given the typical dominance of pioneer plants and generalist herbivores in edge-affected habitats, we test the hypothesis that the specialized structure of plant-herbivore networks collapse in forest edges, resulting in lower modularity and herbivore specialization. Despite no differences in the number of species and interactions, the network structure presented marked differences between forest edges and interior. Herbivore specialization, modularity and number of modules were significantly higher in forest interior than edge-affected habitats. When compared to a random null model, two (22.2% and eight (88.8% networks were significantly modular in forest edge and interior, respectively. The loss of specificity and modularity in plant-herbivore networks in forest edges may be related to the loss of important functions, such as density-dependent control of superior plant competitors, which is ultimately responsible for the maintenance of biodiversity and ecosystem functions. Our results support previous warnings that focusing on traditional community measures only (e.g. species diversity may overlook important modifications in species interactions and ecosystem functioning.

  16. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens.

    Science.gov (United States)

    Wininger, Kerry; Rank, Nathan

    2017-11-01

    Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research. © 2017 New York Academy of Sciences.

  17. Can alien plants support generalist insect herbivores?

    Science.gov (United States)

    Douglas Tallamy; Meg Ballard; Vincent D' Amico

    2009-01-01

    Rearing experiments were conducted to address two questions relevant to understanding how generalist lepidopteran herbivores interact with alien plants. We reared 10 yellow-striped armyworms (Spodoptera ornithogalli),...

  18. Plants are not sitting ducks waiting for herbivores to eat them.

    Science.gov (United States)

    Lev-Yadun, Simcha

    2016-05-03

    There is a common attitude toward plants, accordingly, plants are waiting around to be found and eaten by herbivores. This common approach toward plants is a great underestimation of the huge and variable arsenal of defensive plant strategies. Plants do everything evolution has allowed them to do in order not to be eaten. Therefore, plants are not sitting ducks and many plants outsmart and even exploit many invertebrate and vertebrate herbivores and carnivores for pollination and for seed dispersal, and even carnivores and parasitoids for defense.

  19. Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks.

    Science.gov (United States)

    de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M; Almeida-Neto, Mário

    2015-01-01

    Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.

  20. Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes.

    NARCIS (Netherlands)

    Geervliet, J.B.F.; Vet, L.E.M.; Dicke, M.

    1996-01-01

    To determine and compare innate preferences of the parasitoid species Cotesia glomerata and C. rubecula for different plant-herbivore complexes, long-range (1-m) foraging behavior was studied in dual-choice experiments in a wind tunnel. In this study we tested the hypothesis that naive females of

  1. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.

    Science.gov (United States)

    Gols, Rieta; Roosjen, Mara; Dijkman, Herman; Dicke, Marcel

    2003-12-01

    Jasmonic acid (JA) and the octadecanoid pathway are involved in both induced direct and induced indirect plant responses. In this study, the herbivorous mite, Tetranychus urticae, and its predator, Phytoseiulus persimilis, were given a choice between Lima bean plants induced by JA or spider mites and uninduced control plants. Infestation densities resulting in the induction of predator attractants were much lower than thus far assumed, i.e., predatory mites were significantly attracted to plants that were infested for 2 days with only one or four spider mites per plant. Phytoseiulus persimilis showed a density-dependent response to volatiles from plants that were infested with different numbers of spider mites. Similarly, treating plants with increasing concentrations of JA also led to increased attraction of P. persimilis. Moreover, the duration of spider mite infestation was positively correlated with the proportion of predators that were attracted to mite-infested plants. A pretreatment of the plants with JA followed by a spider mite infestation enhanced the attraction of P. persimilis to plant volatiles compared to attraction to volatiles from plants that were only infested with spider mites and did not receive a pretreatment with JA. The herbivore, T. urticae preferred leaf tissue that previously had been infested with conspecifics to uninfested leaf tissue. In the case of choice tests with JA-induced and control leaf tissue, spider mites slightly preferred control leaf tissue. When spider mites were given a choice between leaf discs induced by JA and leaf discs damaged by spider mite feeding, they preferred the latter. The presence of herbivore induced chemicals and/or spider mite products enhanced settlement of the mites, whereas treatment with JA seemed to impede settlement.

  2. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Roman T Kellenberger

    Full Text Available Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  3. Priming of antiherbivore defensive responses in plants

    Institute of Scientific and Technical Information of China (English)

    Jinwon Kim; Gary W.Felton

    2013-01-01

    Defense priming is defined as increased readiness of defense induction.A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses,both biotic and abiotic,and upon the following stimulus,induce defenses more quickly and strongly.For instance,some plants previously exposed to herbivore-inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding.Research on priming of antiherbivore defense has been limited to the HIPV-mediated mechanism until recently,but significant advances were made in the past three years,including non-HIPV-mediated defense priming,epigenetic modifications as the molecular mechanism of priming,and others.It is timely to consider the advances in research on defense priming in the plantinsect interactions.

  4. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling

    Directory of Open Access Journals (Sweden)

    Mina eAziz

    2016-04-01

    Full Text Available Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant’s growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03 transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm. In contrast, a previously-characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against beet armyworm feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.

  5. Air pollution impedes plant-to-plant communication, but what is the signal?

    Science.gov (United States)

    Blande, James D; Li, Tao; Holopainen, Jarmo K

    2011-07-01

    Since the first reports that undamaged plants gain defensive benefits following exposure to damaged neighbors, the idea that plants may signal to each other has attracted much interest. There has also been substantial debate concerning the ecological significance of the process and the evolutionary drivers. Part of this debate has centered on the distance over which signaling between plants occurs in nature. In a recent study we showed that an ozone concentration of 80 ppb, commonly encountered in nature, significantly reduces the distance over which plant-plant signaling occurs in lima bean. We went on to show that degradation of herbivore-induced plant volatiles by ozone is the likely mechanism for this. The key question remaining from our work was that if ozone is degrading the signal in transit between plants, which chemicals are responsible for transmitting the signal in purer air? Here we present the results of a small scale experiment testing the role of the two most significant herbivore-induced terpenes and discuss our results in terms of other reported functions for these chemicals in plant-plant signaling.

  6. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Science.gov (United States)

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  7. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  8. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  9. Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.

    Science.gov (United States)

    Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel

    2010-05-01

    Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.

  10. How predictable are the behavioral responses of insects to herbivore induced changes in plants? Responses of two congeneric thrips to induced cotton plants.

    Directory of Open Access Journals (Sweden)

    Rehan Silva

    Full Text Available Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae, Tetranychus urticae (Koch (Trombidiforms: Tetranychidae, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae, F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate.

  11. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Science.gov (United States)

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  12. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  13. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness.

    Directory of Open Access Journals (Sweden)

    Alexandria M Warneke

    Full Text Available Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure-the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores.

  14. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Science.gov (United States)

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen. Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  15. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  16. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  17. Secondary Plant Products Causing Photosensitization in Grazing Herbivores: Their Structure, Activity and Regulation

    Directory of Open Access Journals (Sweden)

    Jane C. Quinn

    2014-01-01

    Full Text Available Photosensitivity in animals is defined as a severe dermatitis that results from a heightened reactivity of skin cells and associated dermal tissues upon their exposure to sunlight, following ingestion or contact with UV reactive secondary plant products. Photosensitivity occurs in animal cells as a reaction that is mediated by a light absorbing molecule, specifically in this case a plant-produced metabolite that is heterocyclic or polyphenolic. In sensitive animals, this reaction is most severe in non-pigmented skin which has the least protection from UV or visible light exposure. Photosensitization in a biological system such as the epidermis is an oxidative or other chemical change in a molecule in response to light-induced excitation of endogenous or exogenously-delivered molecules within the tissue. Photo-oxidation can also occur in the plant itself, resulting in the generation of reactive oxygen species, free radical damage and eventual DNA degradation. Similar cellular changes occur in affected herbivores and are associated with an accumulation of photodynamic molecules in the affected dermal tissues or circulatory system of the herbivore. Recent advances in our ability to identify and detect secondary products at trace levels in the plant and surrounding environment, or in organisms that ingest plants, have provided additional evidence for the role of secondary metabolites in photosensitization of grazing herbivores. This review outlines the role of unique secondary products produced by higher plants in the animal photosensitization process, describes their chemistry and localization in the plant as well as impacts of the environment upon their production, discusses their direct and indirect effects on associated animal systems and presents several examples of well-characterized plant photosensitization in animal systems.

  18. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity.

    Science.gov (United States)

    Zhong, Zhiwei; Wang, Deli; Zhu, Hui; Wang, Ling; Feng, Chao; Wang, Zhongnan

    2014-04-01

    Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.

  19. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness

    NARCIS (Netherlands)

    Pashalidou, F.G.; Frago, E.; Griese, E.; Poelman, E.H.; Loon, van J.J.A.; Dicke, M.; Fatouros, N.E.

    2015-01-01

    Induction of plant defences, specifically in response to herbivore attack, can save costs that would otherwise be needed to maintain defences even in the absence of herbivores. However, plants may suffer considerable damage during the time required to mount these defences against an attacker. This

  20. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Science.gov (United States)

    Mahdavi-Arab, Nafiseh; Meyer, Sebastian T; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2014-01-01

    Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both

  1. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Directory of Open Access Journals (Sweden)

    Nafiseh Mahdavi-Arab

    Full Text Available Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance

  2. Climate alters response of an endemic island plant to removal of invasive herbivores

    Science.gov (United States)

    Kathryn, Mceachern A.; Thomson, D.M.; Chess, K.A.

    2009-01-01

    Islands experience higher rates of species extinction than mainland ecosystems, with biological invasions among the leading causes; they also serve as important model systems for testing ideas in basic and applied ecology. Invasive removal programs on islands are conservation efforts that can also be viewed as powerful manipulative experiments, but few data are available to evaluate their effects. We collected demographic and herbivore damage data for Castilleja mollis Pennell, an endangered plant endemic to Santa Rosa Island, California, over a 12-year period before, during, and after the implementation of control for introduced cattle, deer, and elk. We used these long-term data to explore mechanisms underlying herbivore effects, assess the results of herbivore reduction at the scales of both individual plants and populations, and determine how temporal variability in herbivory and plant demography influenced responses to herbivore removals. For individual plants, herbivore effects mediated by disturbance were greater than those of grazing. Deer and elk scraping of the ground substantially increased plant mortality and dormancy and reduced flowering and growth. Stem damage from browsing did not affect survivorship but significantly reduced plant growth and flower production. Herbivore control successfully lowered damage rates, which declined steeply between 1997 and 2000 and have remained relatively low. Castilleja mollis abundances rose sharply after 1997, suggesting a positive effect of herbivore control, but then began to decline steadily again after 2003. The recent decline appears to be driven by higher mean growing season temperatures; interestingly, not only reductions in scraping damage but a period of cooler conditions were significant in explaining increases in C. mollis populations between 1997 and 2002. Our results demonstrate strong effects of introduced herbivores on both plant demography and population dynamics and show that climate

  3. Climate alters response of an endemic island plant to removal of invasive herbivores.

    Science.gov (United States)

    McEachern, A Kathryn; Thomson, Diane M; Chess, Katherine A

    2009-09-01

    Islands experience higher rates of species extinction than mainland ecosystems, with biological invasions among the leading causes; they also serve as important model systems for testing ideas in basic and applied ecology. Invasive removal programs on islands are conservation efforts that can also be viewed as powerful manipulative experiments, but few data are available to evaluate their effects. We collected demographic and herbivore damage data for Castilleja mollis Pennell, an endangered plant endemic to Santa Rosa Island, California, over a 12-year period before, during, and after the implementation of control for introduced cattle, deer, and elk. We used these long-term data to explore mechanisms underlying herbivore effects, assess the results of herbivore reduction at the scales of both individual plants and populations, and determine how temporal variability in herbivory and plant demography influenced responses to herbivore removals. For individual plants, herbivore effects mediated by disturbance were greater than those of grazing. Deer and elk scraping of the ground substantially increased plant mortality and dormancy and reduced flowering and growth. Stem damage from browsing did not affect survivorship but significantly reduced plant growth and flower production. Herbivore control successfully lowered damage rates, which declined steeply between 1997 and 2000 and have remained relatively low. Castilleja mollis abundances rose sharply after 1997, suggesting a positive effect of herbivore control, but then began to decline steadily again after 2003. The recent decline appears to be driven by higher mean growing season temperatures; interestingly, not only reductions in scraping damage but a period of cooler conditions were significant in explaining increases in C. mollis populations between 1997 and 2002. Our results demonstrate strong effects of introduced herbivores on both plant demography and population dynamics and show that climate

  4. Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays

    Science.gov (United States)

    Plant volatiles not only have multiple defense functions against herbivores, fungi, and bacteria, but also have been implicated in signaling within the plant and toward other organisms. Elucidating the function of individual plant volatiles will require more knowledge of their biosynthesis and regul...

  5. Predators induce interspecific herbivore competition for food in refuge space

    NARCIS (Netherlands)

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among

  6. Macroevolution of plant defenses against herbivores in the evening primroses.

    Science.gov (United States)

    Johnson, Marc T J; Ives, Anthony R; Ahern, Jeffrey; Salminen, Juha-Pekka

    2014-07-01

    Plant species vary greatly in defenses against herbivores, but existing theory has struggled to explain this variation. Here, we test how phylogenetic relatedness, tradeoffs, trait syndromes, and sexual reproduction affect the macroevolution of defense. To examine the macroevolution of defenses, we studied 26 Oenothera (Onagraceae) species, combining chemistry, comparative phylogenetics and experimental assays of resistance against generalist and specialist herbivores. We detected dozens of phenolic metabolites within leaves, including ellagitannins (ETs), flavonoids, and caffeic acid derivatives (CAs). The concentration and composition of phenolics exhibited low to moderate phylogenetic signal. There were clear negative correlations between multiple traits, supporting the prediction of allocation tradeoffs. There were also positively covarying suites of traits, but these suites did not strongly predict resistance to herbivores and thus did not act as defensive syndromes. By contrast, specific metabolites did correlate with the performance of generalist and specialist herbivores. Finally, that repeated losses of sex in Oenothera was associated with the evolution of increased flavonoid diversity and altered phenolic composition. These results show that secondary chemistry has evolved rapidly during the diversification of Oenothera. This evolution has been marked by allocation tradeoffs between traits, some of which are related to herbivore performance. The repeated loss of sex appears also to have constrained the evolution of plant secondary chemistry, which may help to explain variation in defense among plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid

    NARCIS (Netherlands)

    Kos, M.; Houshyani, B.; Overeem, A.J.; Bouwmeester, H.J.; Weldegergis, B.T.; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2013-01-01

    BACKGROUND: Most insect-resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be

  8. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  9. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Directory of Open Access Journals (Sweden)

    Martin Pareja

    Full Text Available There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  10. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    Science.gov (United States)

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  11. Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens.

    Science.gov (United States)

    Fagan, William F; Bishop, John G

    2000-02-01

    Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.

  12. Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales.

    Science.gov (United States)

    Miller, Tom E X; Tyre, Andrew J; Louda, Svata M

    2006-11-01

    Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.

  13. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    NARCIS (Netherlands)

    Kant, M.R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B.C.J.; Villarroel, C.A.; Ataide, L.M.S.; Dermauw, W.; Glas, J.J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R.C.; Sabelis, M.W.; Alba, J.M.

    2015-01-01

    BACKGROUND: Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their

  14. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.

    Science.gov (United States)

    Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji

    2017-01-30

    Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2-3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant-plant communications, in pest management programs is necessary.

  15. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    This chapter focuses on a 10-year data series from Zackenberg on the trophic interactions between two characteristic arctic plant species, arctic willow Salix arctica and mountain avens Dryas octopetala, and three herbivore species covering the very scale of size present at Zackenberg, namely......, the moth Sympistis zetterstedtii, the collared lemming Dicrostonyx groenlandicus and the musk ox Ovibos moschatus. Data from Zackenberg show that timing of snowmelt, the length of the growing season and summer temperature are the basic variables that determine the phenology of flowering and primary...... production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...

  16. Silencing of a Germin-Like Gene in Nicotiana attenuata Improves Performance of Native Herbivores1[W

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2006-01-01

    Germins and germin-like proteins (GLPs) are known to function in pathogen resistance, but their involvement in defense against insect herbivores is poorly understood. In the native tobacco Nicotiana attenuata, attack from the specialist herbivore Manduca sexta or elicitation by adding larval oral secretions (OS) to wounds up-regulates transcripts of a GLP. To understand the function of this gene, which occurs as a single copy, we cloned the full-length NaGLP and silenced its expression in N. attenuata by expressing a 250-bp fragment in an antisense orientation with an Agrobacterium-based transformation system and by virus-induced gene silencing (VIGS). Homozygous lines harboring a single insert and VIGS plants had significantly reduced constitutive (measured in roots) and elicited NaGLP transcript levels (in leaves). Silencing NaGLP improved M. sexta larval performance and Tupiocoris notatus preference, two native herbivores of N. attenuata. Silencing NaGLP also attenuated the OS-induced hydrogen peroxide (H2O2), diterpene glycosides, and trypsin proteinase inhibitor responses, which may explain the observed susceptibility of antisense or VIGS plants to herbivore attack and increased nicotine contents, but did not influence the OS-elicited jasmonate and salicylate bursts, or the release of the volatile organic compounds (limonene, cis-α-bergamotene, and germacrene-A) that function as an indirect defense. This suggests that NaGLP is involved in H2O2 production and might also be related to ethylene production and/or perception, which in turn influences the defense responses of N. attenuata via H2O2 and ethylene-signaling pathways. PMID:16461381

  17. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  18. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  19. Reciprocal diversification in a complex plant-herbivore-parasitoid food web

    Directory of Open Access Journals (Sweden)

    Bokma Folmer

    2007-11-01

    Full Text Available Abstract Background Plants, plant-feeding insects, and insect parasitoids form some of the most complex and species-rich food webs. According to the classic escape-and-radiate (EAR hypothesis, these hyperdiverse communities result from coevolutionary arms races consisting of successive cycles of enemy escape, radiation, and colonization by new enemy lineages. It has also been suggested that "enemy-free space" provided by novel host plants could promote host shifts by herbivores, and that parasitoids could similarly drive diversification of gall form in insects that induce galls on plants. Because these central coevolutionary hypotheses have never been tested in a phylogenetic framework, we combined phylogenetic information on willow-galling sawflies with data on their host plants, gall types, and enemy communities. Results We found that evolutionary shifts in host plant use and habitat have led to dramatic prunings of parasitoid communities, and that changes in gall phenotype can provide "enemy-free morphospace" for millions of years even in the absence of host plant shifts. Some parasites have nevertheless managed to colonize recently-evolved gall types, and this has apparently led to adaptive speciation in several enemy groups. However, having fewer enemies does not in itself increase speciation probabilities in individual sawfly lineages, partly because the high diversity of the enemy community facilitates compensatory attack by remaining parasite taxa. Conclusion Taken together, our results indicate that niche-dependent parasitism is a major force promoting ecological divergence in herbivorous insects, and that prey divergence can cause speciation in parasite lineages. However, the results also show that the EAR hypothesis is too simplistic for species-rich food webs: instead, diversification seems to be spurred by a continuous stepwise process, in which ecological and phenotypic shifts in prey lineages are followed by a lagged evolutionary

  20. Omnivore-herbivore interactions: thrips and whiteflies compete via the shared host plant.

    Science.gov (United States)

    Pappas, Maria L; Tavlaki, Georgia; Triantafyllou, Anneta; Broufas, George

    2018-03-05

    Phytophagy is a common feature among pure herbivorous insects and omnivores that utilise both plant and prey as food resources; nevertheless, experimental evidence for factors affecting their interactions is restricted to intraguild predation and predator-mediated competition. We herein focused on plant-mediated effects that could result from plant defence activation or quality alteration and compared the performance of an omnivore, the western flower thrips Frankliniella occidentalis, and a pure herbivore, the greenhouse whitefly Trialeurodes vaporariorum, on cucumber plants previously infested with either species. Furthermore, we recorded their behavioural responses when given a choice among infested and clean plants. Whiteflies laid less eggs on plants previously exposed to thrips but more on whitefly-infested plants. Thrips survival was negatively affected on whitefly-infested than on thrips-infested or clean plants. Notably, whiteflies developed significantly faster on plants infested with conspecifics. In accordance, whiteflies avoided thrips-infested plants and preferred whitefly-infested over clean plants. Thrips showed no preference for either infested or clean plants. Our study is a first report on the role of plant-mediated effects in shaping omnivore-herbivore interactions. Considering the factors driving such interactions we will likely better understand the ecology of the more complex relationships among plants and pest organisms.

  1. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Directory of Open Access Journals (Sweden)

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  2. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Science.gov (United States)

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  3. Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones.

    Science.gov (United States)

    Geiselhardt, Sven; Otte, Tobias; Hilker, Monika

    2012-09-01

    The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation. © 2012 Blackwell Publishing Ltd/CNRS.

  4. Jasmonate-deficient plants have reduced direct and indirect defences against herbivores

    NARCIS (Netherlands)

    Thaler, J.S.; Farag, M.A.; Paré, P.W.; Dicke, M.

    2002-01-01

    Plants employ a variety of defence mechanisms, some of which act directly by having a negative effect on herbivores and others that act indirectly by attracting natural enemies of herbivores. In this study we asked if a common jasmonate-signalling pathway links the regulation of direct and indirect

  5. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    International Nuclear Information System (INIS)

    Winter, Thorsten R.; Rostas, Michael

    2008-01-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective

  6. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens.

    Science.gov (United States)

    Shikano, Ikkei

    2017-06-01

    Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect-pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect-pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant-insect-entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

  7. Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae?

    Science.gov (United States)

    Hountondji, Fabien C C; Hanna, Rachid; Sabelis, Maurice W

    2006-01-01

    Blends of volatile chemicals emanating from cassava leaves infested by the cassava green mite were found to promote conidiation of Neozygites tanajoae, an entomopathogenic fungus specific to this mite. Methyl salicylate (MeSA) is one compound frequently present in blends of herbivore-induced plant volatiles (HIPV) as well as that of mite-infested cassava. Here, we investigated the effect of methyl salicylate in its pure form on the production of pre-infective spores (conidia), and the germination of these spores into infective spores (capilliconidia), by a Brazilian isolate and a Beninese isolate of N. tanajoae. Mummified mites previously infected by the fungal isolates were screened under optimal abiotic conditions for sporulation inside tightly closed boxes with or without methyl salicylate diffusing from a capillary tube. Production of conidia was consistently higher (37%) when the Beninese isolate was exposed to MeSA than when not exposed to it (305.5 +/- 52.62 and 223.2 +/- 38.13 conidia per mummy with and without MeSA, respectively). MeSA, however, did not promote conidia production by the Brazilian isolate (387.4 +/- 44.74 and 415.8 +/- 57.95 conidia per mummy with and without MeSA, respectively). Germination of the conidia into capilliconidia was not affected by MeSA for either isolate (0.2%, 252.6 +/- 31.80 vs. 253.0 +/- 36.65 for the Beninese isolate and 4.2%, 268.5 +/- 37.90 vs. 280.2 +/- 29.43 for the Brazilian isolate). The effects of MeSA on the production of conidia were similar to those obtained under exposure to the complete blends of HIPV for the case of the Beninese isolate, but dissimilar (no promoting effect of MeSA) for the case of the Brazilian isolate. This shows that MeSA, being one compound out of many HIPV, can be a factor promoting sporulation of N. tanajoae, but it may not be the only factor as its effect varies with the fungal isolate under study.

  8. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    Science.gov (United States)

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  9. Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences.

    Science.gov (United States)

    Erb, Matthias; Robert, Christelle Am

    2016-04-01

    Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Anomalous dependence of population growth on the birth rate in the plant-herbivore system

    International Nuclear Information System (INIS)

    Cui, Xue M.; Han, Seung K.; Chung, Jean S.

    2010-01-01

    We performed a simulation of the two-species plant-herbivore system by using the agent-based NetLogo program and constructed a dynamic model of populations consistent with the simulation results. The dynamic model is a three-dimensional system including the mean energy of the herbivore in addition to two variables denoting the populations of plants and herbivores. A steady-state analysis of the dynamic model shows that the dependence of the herbivore population on the birth and the death rates observed from the agent model is consistent with the prediction of the dynamic model. Especially, the anomalous dependence of the herbivore population on the birth rate, where the population decreases with the birth rate for small death rate, is consistently explained by a phase plane analysis of the dynamic model.

  11. The tri-trophic interactions hypothesis: interactive effects of host plant quality, diet breadth and natural enemies on herbivores.

    Directory of Open Access Journals (Sweden)

    Kailen A Mooney

    Full Text Available Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia quality and predators between a specialist (Uroleucon macolai and a generalist (Aphis gossypii aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores.

  12. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Van der Putten, W.H.

    2012-01-01

    Invasive non-nativeplant species often harbor fewer herbivorous insects than related nativeplant species. However, little is known about how herbivorous insects on non-nativeplants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  13. A fungal root symbiont modifies plant resistance to an insect herbivore.

    Science.gov (United States)

    Borowicz, Victoria A

    1997-11-01

    Vesicular-arbuscular mycorrhizal (VAM) fungi are common root-colonizing symbionts that affect nutrient uptake by plants and can alter plant susceptibility to herbivores. I conducted a factorial experiment to test the hypotheses that colonization by VAM fungi (1) improves soybean (Glycine max) tolerance to grazing by folivorous Mexican bean beetle (Epilachna varivestis), and (2) indirectly affects herbivores by increasing host resistance. Soybean seedlings were inoculated with the VAM fungus Glomus etunicatum or VAM-free filtrate and fertilized with high-[P] or low-[P] fertilizer. After plants had grown for 7 weeks first-instar beetle larvae were placed on bagged leaves. Growth of soybean was little affected by grazing larvae, and no effects of treatments on tolerance of soybeans to herbivores were evident. Colonization by VAM fungus doubled the size of phosphorus-stressed plants but these plants were still half the size of plants given adequate phosphorus. High-[P] fertilizer increased levels of phosphorus and soluble carbohydrates, and decreased levels of soluble proteins in leaves of grazed plants. Colonization of grazed plants by VAM fungus had no significant effect on plant soluble carbohydrates, but increased concentration of phosphorus and decreased levels of proteins in phosphorus-stressed plants to concentrations similar to those of plants given adequate phosphorus. Mexican bean beetle mass at pupation, pupation rate, and survival to eclosion were greatest for beetles reared on phosphorus-stressed, VAM-colonized plants, refuting the hypothesis that VAM colonization improves host plant resistance. VAM colonization indirectly affected performance of Mexician bean beetle larvae by improving growth and nutrition of the host plant.

  14. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae

    NARCIS (Netherlands)

    Müller, Caroline; Loon, Van Joop; Ruschioni, Sara; Nicola, De Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-01-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently

  15. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    Science.gov (United States)

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.

  16. Asymmetric impacts of two herbivore ecotypes on similar host plants

    Science.gov (United States)

    Ecotypes may arise following allopatric separation from source populations. The simultaneous transfer of an exotic plant to a novel environment, along with its stenophagous herbivore, may complicate more traditional patterns of divergence from the plant and insect source populations. We evaluated ...

  17. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  18. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hushna Ara Naznin

    Full Text Available Volatile organic compounds (VOC were extracted and identified from plant growth-promoting fungi (PGPF, Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS. Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp. significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst. Subsequently, m-cresol and methyl benzoate (MeBA were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA or Jasmonic acid (JA/ethylene (ET signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  19. Insect herbivores drive real-time ecological and evolutionary change in plant populations.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Johnson, Marc T J; Maron, John L; Salminen, Juha-Pekka

    2012-10-05

    Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.

  20. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough.

    Science.gov (United States)

    Conchou, Lucie; Anderson, Peter; Birgersson, Göran

    2017-08-01

    Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.

  1. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species.

    Science.gov (United States)

    Nakadai, Ryosuke; Murakami, Masashi; Hirao, Toshihide

    2014-08-01

    Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

  2. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    Science.gov (United States)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near

  3. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    Science.gov (United States)

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    OpenAIRE

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    eLife digest Many different animals feed on plants, including almost half of all known insect species. Some herbivores?like caterpillars for example?feed by chewing. Others, such as aphids and planthoppers, use syringe-like mouthparts to pierce plants and then feed on the fluids within. To minimize the damage caused by these herbivores, plants activate specific defenses upon attack, including proteins that can inhibit the insect's digestive enzymes. The inhibitors are effective against chewin...

  5. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Thorsten R. [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany); Rostas, Michael [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany)], E-mail: rostas@botanik.uni-wuerzburg.de

    2008-09-15

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective.

  6. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Science.gov (United States)

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  7. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Science.gov (United States)

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  8. Volatiles of Solena amplexicaulis (Lam.) Gandhi Leaves Influencing Attraction of Two Generalist Insect Herbivores.

    Science.gov (United States)

    Sarkar, Nupur; Karmakar, Amarnath; Barik, Anandamay

    2016-10-01

    Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae) and Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) are important pests of Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae), commonly known as creeping cucumber. The profiles of volatile organic compounds from undamaged plants, plants after 48 hr continuous feeding of adult females of either E. vigintioctopunctata or A. foveicollis, by adults of both species, and after mechanical damaging were identified and quantified by GC-MS and GC-FID analyses. Thirty two compounds were detected in volatiles of all treatments. In all plants, methyl jasmonate was the major compound. In Y-shaped glass tube olfactometer bioassays under laboratory conditions, both insect species showed a significant preference for complete volatile blends from insect damaged plants, compared to those of undamaged plants. Neither E. vigintioctopunctata nor A. foveicollis showed any preference for volatiles released by heterospecifically damaged plants vs. conspecifically damaged plants or plants attacked by both species. Epilachna vigintioctopunctata and A. foveicollis showed attraction to three different synthetic compounds, linalool oxide, nonanal, and E-2-nonenal in proportions present in volatiles of insect damaged plants. Both species were attracted by a synthetic blend of 1.64 μg linalool oxide + 3.86 μg nonanal + 2.23 μg E-2-nonenal, dissolved in 20 μl methylene chloride. This combination might be used as trapping tools in pest management strategies.

  9. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.

    Science.gov (United States)

    Schweiger, R; Heise, A-M; Persicke, M; Müller, C

    2014-07-01

    The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species. © 2013 John Wiley & Sons Ltd.

  10. Ozone impedes the ability of a herbivore to find its host

    Science.gov (United States)

    Fuentes, Jose D.; Roulston, T.'ai H.; Zenker, John

    2013-03-01

    Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals.

  11. Ozone impedes the ability of a herbivore to find its host

    International Nuclear Information System (INIS)

    Fuentes, Jose D; Zenker, John; Roulston, T’ai H

    2013-01-01

    Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals. (letter)

  12. Acceleration of exotic plant invasion in a forested ecosystem by a generalist herbivore.

    Science.gov (United States)

    Eschtruth, Anne K; Battles, John J

    2009-04-01

    The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis). Nevertheless, several components of this hypothesis, including the role of generalist herbivores, remain relatively unexplored. We used repeated censuses of exclosures and paired controls to investigate the role of a generalist herbivore, white-tailed deer (Odocoileus virginianus), in the invasion of 3 exotic plant species (Microstegium vimineum, Alliaria petiolata, and Berberis thunbergii) in eastern hemlock (Tsuga canadensis) forests in New Jersey and Pennsylvania (U.S.A.). This work was conducted in 10 eastern hemlock (T. canadensis) forests that spanned gradients in deer density and in the severity of canopy disturbance caused by an introduced insect pest, the hemlock woolly adelgid (Adelges tsugae). We used maximum likelihood estimation and information theoretics to quantify the strength of evidence for alternative models of the influence of deer density and its interaction with the severity of canopy disturbance on exotic plant abundance. Our results were consistent with the enemy release hypothesis in that exotic plants gained a competitive advantage in the presence of generalist herbivores in the introduced range. The abundance of all 3 exotic plants increased significantly more in the control plots than in the paired exclosures. For all species, the inclusion of canopy disturbance parameters resulted in models with substantially greater support than the deer density only models. Our results suggest that white-tailed deer herbivory can accelerate the invasion of exotic plants and that canopy disturbance can interact with herbivory to magnify the impact. In addition, our results provide compelling evidence of nonlinear relationships between deer density and the impact of herbivory on exotic species abundance. These findings highlight the important role of herbivore density in determining impacts on

  13. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice.

    Science.gov (United States)

    Lu, Jing; Ju, Hongping; Zhou, Guoxin; Zhu, Chuanshu; Erb, Matthias; Wang, Xiaopeng; Wang, Peng; Lou, Yonggen

    2011-11-01

    Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H(2)O(2) biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H(2)O(2) pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant's metabolism towards an appropriate response to chewing or piercing/sucking insects. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    OpenAIRE

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Th?o; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root ...

  15. Whiteflies interfere with indirect plant defense against spider mites in Lima bean

    Science.gov (United States)

    Zhang, Peng-Jun; Zheng, Si-Jun; van Loon, Joop J. A.; Boland, Wilhelm; David, Anja; Mumm, Roland; Dicke, Marcel

    2009-01-01

    Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-β-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme β-ocimene synthase that catalyzes the synthesis of (E)-β-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels. PMID:19965373

  16. Volatilization of iodine from soils and plants

    International Nuclear Information System (INIS)

    Wildung, R.E.; Cataldo, D.A.; Garland, T.R.

    1985-04-01

    Elevated levels of 129 I, a long-lived fission product, are present in the environment as a result of nuclear weapons testing and fuel reprocessing. To aid in understanding the anomalous behavior of this element, relative to natural I ( 127 I), in the vicinity of nuclear fuel reprocessing plants, preliminary laboratory-growth chamber studies were undertaken to examine the possible formation of volatile inorganic and organic I species in soil and plant systems. Inorganic 129 I added to soil was volatilized from both the soil and plant during plant growth, at average ratios of 2 x 10 -3 %/day soil and 9 x 10 -3 %/day foliage, respectively. Volatilization rates from soil were an order of magnitude less in the absence of growing roots. Less than 2% of soil or plant volatiles was subsequently retained by plant canopies. Volatile I, chemically characterized by selective sorption methods, consisted principally of alkyl iodides formed by both soil and plant processes. However, plants and soils containing actively growing roots produced a larger fraction of volatile inorganic I than soil alone. 14 refs., 1 fig., 3 tabs

  17. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice

    OpenAIRE

    Hu, Lingfei; Ye, Meng; Li, Ran; Lou, Yonggen

    2016-01-01

    ABSTRACT WRKY proteins, which belong to a large family of plant-specific transcription factors, play important roles in plant defenses against pathogens and herbivores by regulating defense-related signaling pathways. Recently, a rice WRKY transcription factor OsWRKY53 has been reported to function as a negative feedback modulator of OsMPK3/OsMPK6 and thereby to control the size of the investment a rice plant makes to defend against a chewing herbivore, the striped stem borer Chilo suppressal...

  18. Combined effects of patch size and plant nutritional quality on local densities of insect herbivores

    NARCIS (Netherlands)

    Bukovinszky, T.; Gols, R.; Kamp, A.; De Oliveira-Domingues, F.; Hambäck, P.A.; Jongema, Y.; Bezemer, T.M.; Dicke, M.; Van Dam, N.M.; Harvey, J.A.

    2010-01-01

    Plant–insect interactions occur in spatially heterogeneous habitats. Understanding how such interactions shape density distributions of herbivores requires knowledge on how variation in plant traits (e.g. nutritional quality) affects herbivore abundance through, for example, affecting movement rates

  19. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced

  20. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, M. de; Zaanen, W. van; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the sspectrum of effectiveness of P. rapae-induced

  1. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.

    Science.gov (United States)

    Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio

    2013-05-01

    Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.

  2. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...... by both the timing of onset and the duration of winter snow-cover. Musk oxen significantly reduced the productivity of arctic willow, while high densities of collared lemmings during winter reduced the production of mountain averts flowers in the following summer. Under a deep snow-layer scenario, climate...... and the previous year's density of musk oxen had a negative effect on the present year's production of arctic willow. Previous year's primary production of arctic willow, in turn, significantly affected the present year's density of musk oxen positively. Climatic factors that affect primary production of plants...

  3. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    Science.gov (United States)

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the

  4. Attraction of Three Mirid Predators to Tomato Infested by Both the Tomato Leaf Mining Moth Tuta absoluta and the Whitefly Bemisia tabaci

    NARCIS (Netherlands)

    Silva, Diego B.; Bueno, Vanda H.P.; Loon, van Joop J.A.; Peñaflor, Maria Fernanda G.V.; Bento, José Maurício S.; Lenteren, van Joop C.

    2018-01-01

    Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies

  5. Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialist herbivore.

    Science.gov (United States)

    Dimarco, Romina D; Nice, Chris C; Fordyce, James A

    2012-11-01

    Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is "invisible to natural selection" because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore's chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval

  6. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.

    Directory of Open Access Journals (Sweden)

    Julio Miguel Grandez-Rios

    Full Text Available Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.

  7. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore

    Science.gov (United States)

    Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have ...

  8. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  9. Innate and Learned Prey-Searching Behavior in a Generalist Predator.

    Science.gov (United States)

    Ardanuy, Agnès; Albajes, Ramon; Turlings, Ted C J

    2016-06-01

    Early colonization by Zyginidia scutellaris leafhoppers might be a key factor in the attraction and settling of generalist predators, such as Orius spp., in maize fields. In this paper, we aimed to determine whether our observations of early season increases in field populations of Orius spp. reflect a specific attraction to Z. scutellaris-induced maize volatiles, and how the responses of Orius predators to herbivore-induced volatiles (HIPVs) might be affected by previous experiences on plants infested by herbivorous prey. Therefore, we examined the innate and learned preferences of Orius majusculus toward volatiles from maize plants attacked by three potential herbivores with different feeding strategies: the leafhopper Z. scutellaris (mesophyll feeder), the lepidopteran Spodoptera littoralis (chewer), and another leafhopper Dalbulus maidis (phloem feeder). In addition, we examined the volatile profiles emitted by maize plants infested by the three herbivores. Our results show that predators exhibit a strong innate attraction to volatiles from maize plants infested with Z. scutellaris or S. littoralis. Previous predation experience in the presence of HIPVs influences the predator's odor preferences. The innate preference for plants with cell or tissue damage may be explained by these plants releasing far more volatiles than plants infested by the phloem-sucking D. maidis. However, a predation experience on D. maidis-infested plants increased the preference for D. maidis-induced maize volatiles. After O. majusculus experienced L3-L4 larvae (too large to serve as prey) on S. littoralis-infested plants, they showed reduced attraction toward these plants and an increased attraction toward D. maidis-infested plants. When offered young larvae of S. littoralis, which are more suitable prey, preference toward HIPVs was similar to that of naive individuals. The HIPVs from plants infested by herbivores with distinctly different feeding strategies showed distinguishable

  10. Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae

    Directory of Open Access Journals (Sweden)

    Audrey Errard

    2016-08-01

    Full Text Available The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer both infest a number of economically significant crops, including tomato (Solanum lycopersicum. Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens on plant biochemistry was not investigated. Here we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites and aphids on different components of the tomato primary and secondary metabolism

  11. Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Amanda E Nelson

    Full Text Available Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.

  12. A latex metabolite benefits plant fitness under root herbivore attack

    OpenAIRE

    Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A.; Triebwasser-Freese, D.; Robert, C.A.M.; Verhoeven, K.; Preite, V.; Gershenzon, J.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major n...

  13. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground

    NARCIS (Netherlands)

    Biere, A.; Goverse, A.

    2016-01-01

    Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of

  14. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground

    NARCIS (Netherlands)

    Biere, A.; Goverse, Aska

    2016-01-01

    Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within and cross-compartment plant responses to these groups of phytophages in terms of

  15. Analisis senyawa volatil dari ekstrak tanaman yang berpotensi sebagai atraktan parasitoid telur wereng batang coklat, Anagrus nilaparvatae (Pang et Wang (Hymenoptera: Mymaridae

    Directory of Open Access Journals (Sweden)

    Surjani Wonorahardjo

    2015-09-01

    Full Text Available Plants produce volatiles as communication cues intra- or inter- species. Infested plants by herbivores will produce volatiles as indirect defense mechanism that attracts natural enemies of herbivores. Analysis of volatiles compounds produced by rice plant as result of infested brown plant hopper (BPH, Nilaparvata lugens Stâl, was done to identify compounds in the volatiles that potentially can be used as attractant for egg parasitoids of BPH, Anagrus nilaparvatae (Pang et Wang (Hymenoptera: Mymaridae. This research was an early stage to develop formulation of parasitoid attractant. The research activities include volatiles extraction of infested rice stem by BPH eggs using acetone, n-hexane as the extraction solvents; analyses of volatile compounds with GC-MS; and bioassay of parasitoid orientation behavior to the volatiles using olfactometer methods. Extraction methods applied were maceration and continuous extraction followed by concentration. Bioassay on the parasitoid orientation behavior was done by using Y-tube olfactometer and every lot of bioassay using 30 parasitoid females with 3 replicates. The results showed that the volatile compounds of extract of infested rice stem by BPH eggs comprise of 16 components. The highest proportion of the components extracted with acetone is 2-Pentanone, 4-hydroxy-4-methyl (19,9%, while those with n-hexane is Hexanedioic acid, dioctyl ester (65%. A. nilaparvatae showed positive response to the volatiles extracted from infested rice plant by N. lugens eggs. Therefore, the volatiles can be used as an attractant for the egg A. nilaparvatae to support rice pest management.

  16. Plant diversification promotes biocontrol services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies

    DEFF Research Database (Denmark)

    Wan, Nian Feng; Ji, Xiang Yun; Deng, Jian Yu

    2018-01-01

    Ecological niche indicators have been scarcely adopted to assess the biological control of insect herbivores by their natural enemies. We hypothesize that plant diversification promotes the biocontrol services by narrowing the niches of herbivores and broadening the niches of natural enemies....... Our study reveals that plant diversification promotes the biocontrol services by shaping the niche of herbivores and natural enemies, and provides a new assessment method to understand the biodiversity-niche-ecosystem management interactions........ In a large-scale experiment, we found that the abundance of natural enemies was increased by 38.1%, and the abundance of insect herbivores was decreased by 16.9% in peach orchards with plant diversification (treatment) compared to ones with monoculture (control). Stratified sampling indicated...

  17. Volatile oils from the plant and hairy root cultures of Ageratum conyzoides L.

    Science.gov (United States)

    Abdelkader, Mohamed Salaheldin A; Lockwood, George B

    2011-05-01

    Two lines of hairy root culture of Ageratum conyzoides L. induced by Agrobacterium rhizogenes ATCC 15834 were established under either complete darkness or 16 h light/8 h dark photoperiod conditions. The volatile oil yields from aerial parts and roots of the parent plant, the hairy root culture photoperiod line and the hairy root culture dark line were 0.2%, 0.08%, 0.03% and 0.02%, (w/w), respectively. The compositions of the volatiles from the hairy roots, plant roots and aerial parts were analysed by GC and GC-MS. The main components of the volatiles from the hairy root cultures were β-farnesene, precocene I and β-caryophyllene, in different amounts, depending on light conditions and also on the age of cultures. Precocene I, β-farnesene, precocene II and β-caryophyllene were the main constituents of the volatile oils from the parent plant roots, whereas precocene I, germacrene D, β-caryophyllene and precocene II were the main constituents of the aerial parts of the parent plant. Growth and time-course studies of volatile constituents of the two hairy root lines were compared. Qualitative and quantitative differences were found between the volatile oils from the roots of the parent plant and those from the hairy roots.

  18. Chrysanthemum expressing a linalool synthase gene 'smells good', but 'tastes bad' to western flower thrips

    DEFF Research Database (Denmark)

    Yang, Ting; Stoopen, Geert; Thoen, Manus

    2013-01-01

    Herbivore-induced plant volatiles are often involved in direct and indirect plant defence against herbivores. Linalool is a common floral scent and found to be released from leaves by many plants after herbivore attack. In this study, a linalool/nerolidol synthase, FaNES1, was overexpressed...... less preferred by WFT. Considering the common occurrence of linalool and its glycosides in plant tissues, it suggests that plants may balance attractive fragrance with 'poor taste' using the same precursor compound....

  19. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara.

    Science.gov (United States)

    Nguyen, Duy; D'Agostino, Nunzio; Tytgat, Tom O G; Sun, Pulu; Lortzing, Tobias; Visser, Eric J W; Cristescu, Simona M; Steppuhn, Anke; Mariani, Celestina; van Dam, Nicole M; Rieu, Ivo

    2016-07-01

    In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants. © 2016 John Wiley & Sons Ltd.

  20. Distinct roles of jasmonates and aldehydes in plant-defense responses.

    Directory of Open Access Journals (Sweden)

    E Wassim Chehab

    Full Text Available BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs, C(6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS and hydroperoxide lyase (HPL branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae, an insect herbivore (leafminers: Liriomyza trifolii, and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola. We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani, a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic

  1. Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions

    Science.gov (United States)

    Alves-Silva, Estevão; Del-Claro, Kleber

    2013-06-01

    Fires in the Cerrado savanna are a severe form of disturbance, but some species are capable of resprouting afterwards. It is unknown, however, how and whether post-fire resprouting represents a stressful condition to plants and how their rapid re-growth influences both the production of biochemical compounds, and interactions with mutualistic ants. In this study, we examined the influence of post-fire resprouting on biotic interactions (ant-plant-herbivore relationships) and on plant stress. The study was performed on two groups of the extrafloral nectaried shrub Banisteriopsis campestris (Malpighiaceae); one group was recovering from fire while the other acted as control. With respect to biotic interactions, we examined whether resprouting influenced extrafloral nectar concentration (milligrams per microliter), the abundance of the ant Camponotus crassus and leaf herbivory rates. Plant stress was assessed via fluctuating asymmetry (FA) analysis, which refers to deviations from perfect symmetry in bilaterally symmetrical traits (e.g., leaves) and indicates whether species are under stress. Results revealed that FA, sugar concentration, and ant abundance were 51.7 %, 35.7 % and 21.7 % higher in resprouting plants. Furthermore, C. crassus was significantly associated with low herbivory rates, but only in resprouting plants. This study showed that post-fire resprouting induced high levels of plant stress and influenced extrafloral nectar quality and ant-herbivore relationships in B. campestris. Therefore, despite being a stressful condition to the plant, post-fire resprouting individuals had concentrated extrafloral nectar and sustained more ants, thus strengthening the outcomes of ant-plant mutualism.

  2. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  3. Evolution of resistance to a multiple-herbivore community: genetic correlations, diffuse coevolution, and constraints on the plant's response to selection.

    Science.gov (United States)

    Wise, Michael J; Rausher, Mark D

    2013-06-01

    Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities-particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  4. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Science.gov (United States)

    Ulappa, Amy C.; Kelsey, Rick G.; Frye, Graham G.; Rachlow, Janet L.; Shipley, Lisa A.; Bond, Laura; Pu, Xinzhu; Forbey, Jennifer Sorensen

    2015-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites, PSMs) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to other plants. Pygmy rabbits (Brachylagus idahoensis) are dietary specialists that feed on sagebrush (Artemisia spp.) and forage on specific plants more than others within a foraging patch. We predicted that the plants with evidence of heavy foraging (browsed plants) would be of higher dietary quality than plants that were not browsed (unbrowsed). We used model selection to determine which phytochemical variables best explained the difference between browsed and unbrowsed plants. Higher crude protein increased the odds that plants would be browsed by pygmy rabbits and the opposite was the case for certain PSMs. Additionally, because pygmy rabbits can occupy foraging patches (burrows) for consecutive years, their browsing may influence the nutritional and PSM constituents of plants at the burrows. In a post hoc analysis, we did not find a significant relationship between phytochemical concentrations, browse status and burrow occupancy length. We concluded that pygmy rabbits use nutritional and chemical cues while making foraging decisions. PMID:26366011

  5. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  6. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone

    NARCIS (Netherlands)

    Tinzaara, W.; Gold, C.S.; Dicke, M.; Huis, van A.

    2005-01-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and

  7. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

    Science.gov (United States)

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou

    2014-01-01

    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  8. Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens

    Science.gov (United States)

    Scala, Alessandra; Allmann, Silke; Mirabella, Rossana; Haring, Michel A.; Schuurink, Robert C.

    2013-01-01

    Plants cannot avoid being attacked by an almost infinite number of microorganisms and insects. Consequently, they arm themselves with molecular weapons against their attackers. Plant defense responses are the result of a complex signaling network, in which the hormones jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) are the usual suspects under the magnifying glass when researchers investigate host-pest interactions. However, Green Leaf Volatiles (GLVs), C6 molecules, which are very quickly produced and/or emitted upon herbivory or pathogen infection by almost every green plant, also play an important role in plant defenses. GLVs are semiochemicals used by insects to find their food or their conspecifics. They have also been reported to be fundamental in indirect defenses and to have a direct effect on pests, but these are not the only roles of GLVs. These volatiles, being probably one of the fastest weapons exploited, are also able to directly elicit or prime plant defense responses. Moreover, GLVs, via crosstalk with phytohormones, mostly JA, can influence the outcome of the plant’s defense response against pathogens. For all these reasons GLVs should be considered as co-protagonists in the play between plants and their attackers. PMID:23999587

  9. Variation among volatile profiles induced by Botrytis cinerea infection of tomato plants

    OpenAIRE

    Jansen, R.M.C.

    2007-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not suitable for large sample sizes. In contrast we propose a fast and non-destructive detection method for plant diagnosis using volatiles as an early indicator of plant diseases. This report presents...

  10. Herbivore Impact on Tundra Plant Community Dynamics Using Long-term Remote Sensing Observation

    Science.gov (United States)

    Yu, Q.; Engstrom, R.; Shiklomanov, N. I.

    2014-12-01

    Arctic tundra biome is now experiencing dramatic environmental changes accentuated by summer sea-ice decline, permafrost thaw, and shrub expansion. Multi-decadal time-series of the Normalized Difference Vegetation Index (NDVI, a spectral metric of vegetation productivity) shows an overall "greening" trend across the Arctic tundra biome. Regional trends in climate plausibly explain large-scale patterns of increasing plant productivity, as diminished summer sea-ice extent warms the adjacent land causing tundra vegetation to respond positively (increased photosynthetic aboveground biomass). However, at more local scales, there is a great deal of spatial variability in NDVI trends that likely reflects differences in hydrology and soil conditions, disturbance history, and use by wildlife and humans. Particularly, habitat use by large herbivores, such as reindeer and caribou, has large impacts on vegetation dynamics at local and regional scales, but the role of herbivores in modulating the response of vegetation to warming climate has received little attention. This study investigates regional tundra plant community dynamics within inhabits of different sizes of wild caribou/reindeer herds across the Arctic using GIMMS NDVI (Normalized Difference Vegetation Index) 3g data product. The Taimyr herd in Russia is one of the largest herds in the world with a population increase from 450,000 in 1975 to about 1 million animals in 2000. The population of the porcupine caribou herd has fluctuated in the past three decades between 100,000 and 180,000. Time-series of the maximum NDVI within the inhabit area of the Taimyr herd has increased about 2% per decade over the past three decades, while within the inhabit area of the Porcupine herd the maximum NDVI has increased about 5% per decade. Our results indicate that the impact of large herbivores can be detected from space and further analyses on seasonal dynamics of vegetation indices and herbivore behavior may provide more

  11. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces and wool

    DEFF Research Database (Denmark)

    Kristensen, Ditte; Kristensen, Erik; Forchhammer, Mads C.

    2011-01-01

    The use of stable isotopes in diet analysis usually relies on the different photosynthetic pathways of C3 and C4 plants, and the resulting difference in carbon isotope signature. In the Arctic, however, plant species are exclusively C3, and carbon isotopes alone are therefore not suitable......% graminoids and up to 20% willows. In conclusion, the diet composition of an arctic herbivore can indeed be inferred from stable isotopes in arctic areas, despite the lack of C4 plants...... for studying arctic herbivore diets. In this study, we examined the potential of both stable carbon and nitrogen isotopes to reconstruct the diet of an arctic herbivore, here the muskox (Ovibos moschatus (Zimmermann, 1780)), in northeast Greenland. The isotope composition of plant communities and functional...

  12. First-Year Vitality of Reforestation Plantings in Response to Herbivore Exclusion on Reclaimed Appalachian Surface-Mined Land

    Directory of Open Access Journals (Sweden)

    Zachary J. Hackworth

    2018-04-01

    Full Text Available Conventional Appalachian surface-mine reclamation techniques repress natural forest regeneration, and tree plantings are often necessary for reforestation. Reclaimed Appalachian surface mines harbor a suite of mammal herbivores that forage on recently planted seedlings. Anecdotal reports across Appalachia have implicated herbivory in the hindrance and failure of reforestation efforts, yet empirical evaluation of herbivory impacts on planted seedling vitality in this region remains relatively uninitiated. First growing-season survival, height growth, and mammal herbivory damage of black locust (Robinia pseudoacacia L., shortleaf pine (Pinus echinata Mill., and white oak (Quercus alba L. are presented in response to varying intensities of herbivore exclusion. Seedling survival was generally high, and height growth was positive for all species. The highest herbivory incidence of all tree species was observed in treatments offering no herbivore exclusion. While seedling protectors lowered herbivory incidence compared with no exclusion, full exclusion treatments resulted in the greatest reduction of herbivore damage. Although herbivory from rabbits, small mammals, and domestic animals was observed, cervids (deer and elk were responsible for 95.8% of all damaged seedlings. This study indicates that cervids forage heavily on planted seedlings during the first growing-season, but exclusion is effective at reducing herbivory.

  13. Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant

    Directory of Open Access Journals (Sweden)

    Nicolas Bensoussan

    2016-07-01

    Full Text Available The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae, is one of the most polyphagous herbivores feeding on cell contents of over 1,100 plant species including more than 150 crops. It is being established as a model for chelicerate herbivores with tools that enable tracking of reciprocal responses in plant-spider mite interactions. However, despite their important pest status and a growing understanding of the molecular basis of interactions with plant hosts, knowledge of the way mites interface with the plant while feeding and the plant damage directly inflicted by mites is lacking. Here, utilizing histology and microscopy methods, we uncovered several key features of T. urticae feeding. By following the stylet path within the plant tissue, we determined that the stylet penetrates the leaf either in between epidermal pavement cells or through a stomatal opening, without damaging the epidermal cellular layer. Our recordings of mite feeding established that duration of the feeding event ranges from several minutes to more than half an hour, during which time mites consume a single mesophyll cell in a pattern that is common to both bean and Arabidopsis plant hosts. In addition, this study determined that leaf chlorotic spots, a common symptom of mite herbivory, do not form as an immediate consequence of mite feeding. Our results establish a cellular context for the plant-spider mite interaction that will support our understanding of the molecular mechanisms and cell signaling associated with spider mite feeding.

  14. Herbivore removal reduces influence of arbuscular mycorrhizal fungi on plant growth and tolerance in an East African savanna.

    Science.gov (United States)

    González, Jonathan B; Petipas, Renee H; Franken, Oscar; Kiers, E Toby; Veblen, Kari E; Brody, Alison K

    2018-05-01

    The functional relationship between arbuscular mycorrhizal fungi (AMF) and their hosts is variable on small spatial scales. Here, we hypothesized that herbivore exclusion changes the AMF community and alters the ability of AMF to enhance plant tolerance to grazing. We grew the perennial bunchgrass, Themeda triandra Forssk in inoculum from soils collected in the Kenya Long-term Exclosure Experiment where treatments representing different levels of herbivory have been in place since 1995. We assessed AMF diversity in the field, using terminal restriction fragment length polymorphism and compared fungal diversity among treatments. We conducted clipping experiments in the greenhouse and field and assessed regrowth. Plants inoculated with AMF from areas accessed by wild herbivores and cattle had greater biomass than non-inoculated controls, while plants inoculated with AMF from where large herbivores were excluded did not benefit from AMF in terms of biomass production. However, only the inoculation with AMF from areas with wild herbivores and no cattle had a positive effect on regrowth, relative to clipped plants grown without AMF. Similarly, in the field, regrowth of plants after clipping in areas with only native herbivores was higher than other treatments. Functional differences in AMF were evident despite little difference in AMF species richness or community composition. Our findings suggest that differences in large herbivore communities over nearly two decades has resulted in localized, functional changes in AMF communities. Our results add to the accumulating evidence that mycorrhizae are locally adapted and that functional differences can evolve within small geographical areas.

  15. Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Scott, Ian M; Samara, R; Renaud, J B; Sumarah, M W

    2017-09-01

    Plant elicitors can be biological or chemical-derived stimulators of jasmonic acid (JA) or salicylic acid (SA) pathways shown to prime the defenses in many crops. Examples of chemical elicitors of the JA and SA pathways include methyl-jasmonate and 1,2,3-benzothiadiazole-7-carbothioate (BTH or the commercial plant activator Actigard 50WG, respectively). The use of specific elicitors has been observed to affect the normal interaction between JA and SA pathways causing one to be upregulated and the other to be suppressed, often, but not always, at the expense of the plant's herbivore or pathogen defenses. The objective of this study was to determine whether insects feeding on Brassica crops might be negatively affected by SA inducible defenses combined with an inhibitor of detoxification and anti-oxidant enzymes that regulate the insect response to the plant's defenses. The relative growth rate of cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae) fed induced cabbage Brassica oleraceae leaves with the inhibitor, quercetin, was significantly less than those fed control cabbage with and without the inhibitor. The reduced growth was related to the reduction of glutathione S-transferases (GSTs) by the combination of quercetin and increased levels of indole glucosinolates in the cabbage treated with BTH at 2.6× the recommended application rate. These findings may offer a novel combination of elicitor and synergist that can provide protection from plant disease and herbivores in cabbage and other Brassica crops. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    NARCIS (Netherlands)

    Pineda, A.; Soler Gamborena, R.; Weldegergis, B.T.; Shimwela, M.M.; Loon, van J.J.A.; Dicke, M.

    2013-01-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it

  17. The role of methyl salicylate in prey searching behavior of the predatory mite phytoseiulus persimilis.

    Science.gov (United States)

    De Boer, Jetske G; Dicke, Marcel

    2004-02-01

    Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae--a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 microg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.

  18. Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley

    2015-04-01

    • Over the past two decades an interest in the role that plant-animal mutualistic networks play in the organization and dynamic of biodiversity has steadily risen. Despite the ecological, evolutionary, and economic importance of plant-herbivore and plant-pathogen antagonistic relationships, however, few studies have examined these interactions in an ecological network framework.• We describe for the first time the topological structure of multitrophic networks involving congeneric tropical plant species of the genus Heliconia (Heliconiaceae, Zingiberales) and their herbivores and pathogens in the state of Pernambuco, Brazil. We based our study on the available literature describing the organisms (e.g., insects, mites, fungi, and bacteria) that attack 24 different species, hybrids, and cultivated varieties of Heliconia.• In general, pathogen- and herbivore-Heliconia networks differed in their topological structure (more modular vs. more nested, respectively): pathogen-Heliconia networks were more specialized and compartmentalized than herbivore-Heliconia networks. High modularity was likely due to the high intimacy that pathogens have with their host plants as compared with the more generalized feeding modes and behavior of herbivores. Some clusters clearly reflected the clustering of closely related cultivated varieties of Heliconia sharing the same pathogens.• From a commercial standpoint, different varieties of the same Heliconia species may be more susceptible to being attacked by the same species of pathogens. In summary, our study highlights the importance of interaction intimacy in structuring trophic relationships between plants and pathogens in the tropics. © 2015 Botanical Society of America, Inc.

  19. Influence of host plants on sexual communication in the herbivorous bug Lygocoris pabulinus

    NARCIS (Netherlands)

    Groot, A.T.; Visser, J.H.

    2001-01-01

    Host plant volatiles may be involved in the sexual communication of insects in several ways. In the pheromone-producing sex, these volatiles may affect pheromone production or release and, in the receptive sex, plant volatiles may have a synergistic effect on the attraction to sex pheromone. We

  20. Chirospecific analysis of plant volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Tkachev, A V [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-10-31

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  1. Chirospecific analysis of plant volatiles

    International Nuclear Information System (INIS)

    Tkachev, A V

    2007-01-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  2. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp

    NARCIS (Netherlands)

    Rijk, de Marjolein; Yang, Daowei; Engel, Bastiaan; Dicke, Marcel; Poelman, Erik H.

    2016-01-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait-and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs)

  3. Experimental assemblage of novel plant-herbivore interactions: ecological host shifts after 40 million years of isolation.

    Science.gov (United States)

    Garcia-Robledo, Carlos; Horvitz, Carol C; Kress, W John; Carvajal-Acosta, A Nalleli; Erwin, Terry L; Staines, Charles L

    2017-11-01

    Geographic isolation is the first step in insect herbivore diet specialization. Such specialization is postulated to increase insect fitness, but may simultaneously reduce insect ability to colonize novel hosts. During the Paleocene-Eocene, plants from the order Zingiberales became isolated either in the Paleotropics or in the Neotropics. During the Cretaceous, rolled-leaf beetles diversified in the Neotropics concurrently with Neotropical Zingiberales. Using a community of Costa Rican rolled-leaf beetles and their Zingiberales host plants as study system, we explored if previous geographic isolation precludes insects to expand their diets to exotic hosts. We recorded interactions between rolled-leaf beetles and native Zingiberales by combining DNA barcodes and field records for 7450 beetles feeding on 3202 host plants. To determine phylogenetic patterns of diet expansions, we set 20 field plots including five exotic Zingiberales, recording beetles feeding on these exotic hosts. In the laboratory, using both native and exotic host plants, we reared a subset of insect species that had expanded their diets to the exotic plants. The original plant-herbivore community comprised 24 beetle species feeding on 35 native hosts, representing 103 plant-herbivore interactions. After exotic host plant introduction, 20% of the beetle species expanded their diets to exotic Zingiberales. Insects only established on exotic hosts that belong to the same plant family as their native hosts. Laboratory experiments show that beetles are able to complete development on these novel hosts. In conclusion, rolled-leaf beetles are pre-adapted to expand their diets to novel host plants even after millions of years of geographic isolation.

  4. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour.

    Science.gov (United States)

    Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S

    2016-08-11

    Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However

  5. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour

    Directory of Open Access Journals (Sweden)

    Alberto Fereres

    2016-08-01

    Full Text Available Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV, a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV, a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own

  6. Postfire Burnt-Wood Management Affects Plant Damage by Ungulate Herbivores

    Directory of Open Access Journals (Sweden)

    Jorge Castro

    2013-01-01

    Full Text Available I analyze the effect of post-fire burnt wood management on herbivore attack on a woody plant species (Ulex parviflorus. Two experimental plots of ca. 20 hectares were established at two elevations in a burnt area in a Mediterranean mountain (Sierra Nevada, Spain. Three replicates of three treatments differing in post-fire burnt wood management were established per plot: “no intervention” (NI, all trees remained standing, “partial cut plus lopping” (PCL, felling the trees, cutting the main branches, and leaving all the biomass in situ, and “salvage logging” (SL; removal of logs and elimination of woody debris. Risk of herbivory and damage intensity were monitored for two years. The pattern of attack by ungulate herbivores varied among treatments and years. In any case, there was an overall reduction in the risk of herbivory in the PCL treatment, presumably because the highest habitat complexity in this treatment hampered ungulate movement and foraging. As a result, the burnt logs and branches spread over the ground acted as a physical barrier that protected seedlings from herbivores. This protection may be used for the regeneration of shrubs and trees, and it is of interest for the regeneration of burnt sites either naturally or by reforestation.

  7. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Science.gov (United States)

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  8. Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction.

    Directory of Open Access Journals (Sweden)

    Rodrigo Cogni

    Full Text Available Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries vary at the regional scale, while other traits (trichomes and nitrogen content just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation.

  9. Botanical insecticides inspired by plant-herbivore chemical interactions.

    Science.gov (United States)

    Miresmailli, Saber; Isman, Murray B

    2014-01-01

    Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    Science.gov (United States)

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).

  11. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.

    Science.gov (United States)

    Schimmel, Bernardus C J; Ataide, Livia M S; Chafi, Rachid; Villarroel, Carlos A; Alba, Juan M; Schuurink, Robert C; Kant, Merijn R

    2017-06-01

    Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. The global distribution of diet breadth in insect herbivores.

    Science.gov (United States)

    Forister, Matthew L; Novotny, Vojtech; Panorska, Anna K; Baje, Leontine; Basset, Yves; Butterill, Philip T; Cizek, Lukas; Coley, Phyllis D; Dem, Francesca; Diniz, Ivone R; Drozd, Pavel; Fox, Mark; Glassmire, Andrea E; Hazen, Rebecca; Hrcek, Jan; Jahner, Joshua P; Kaman, Ondrej; Kozubowski, Tomasz J; Kursar, Thomas A; Lewis, Owen T; Lill, John; Marquis, Robert J; Miller, Scott E; Morais, Helena C; Murakami, Masashi; Nickel, Herbert; Pardikes, Nicholas A; Ricklefs, Robert E; Singer, Michael S; Smilanich, Angela M; Stireman, John O; Villamarín-Cortez, Santiago; Vodka, Stepan; Volf, Martin; Wagner, David L; Walla, Thomas; Weiblen, George D; Dyer, Lee A

    2015-01-13

    Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.

  13. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  14. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    Science.gov (United States)

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  15. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance.

    Science.gov (United States)

    Hao, Peiying; Liu, Caixiang; Wang, Yuanyuan; Chen, Rongzhi; Tang, Ming; Du, Bo; Zhu, Lili; He, Guangcun

    2008-04-01

    The brown planthopper (Nilaparvata lugens Stål; BPH) is a specialist herbivore on rice (Oryza sativa) that ingests phloem sap from the plant through its stylet mouthparts. Electronic penetration graphs revealed that BPH insects spent more time wandering over plants carrying the resistance genes Bph14 and Bph15, but less time ingesting phloem than they did on susceptible plants. They also showed that their feeding was frequently interrupted. Tests with [(14)C]sucrose showed that insects ingested much less phloem sap from the resistant than the susceptible plants. BPH feeding up-regulated callose synthase genes and induced callose deposition in the sieve tubes at the point where the stylet was inserted. The compact callose remained intact in the resistant plants, but genes encoding beta-1,3-glucanases were activated, causing unplugging of the sieve tube occlusions in susceptible plants. Continuing ingestion led to a remarkable reduction in the susceptible plants' sucrose content and activation of the RAmy3D gene, leading to starch hydrolysis and ultimately carbohydrate deprivation in the plants. Our results demonstrate that BPH feeding induces the deposition of callose on sieve plates in rice and that this is an important defense mechanism that prevents insects from ingesting phloem sap. In response, however, the BPH can unplug sieve tube occlusions by activating beta-1,3-glucanase genes in rice plants.

  16. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    Xiaobin Shi

    2016-06-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV. The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.

  17. Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale.

    Directory of Open Access Journals (Sweden)

    Franziska Peter

    Full Text Available Forest fragmentation and plant diversity have been shown to play a crucial role for herbivorous insects (herbivores, hereafter. In turn, herbivory-induced leaf area loss is known to have direct implications for plant growth and reproduction as well as long-term consequences for ecosystem functioning and forest regeneration. So far, previous studies determined diverging responses of herbivores to forest fragmentation and plant diversity. Those inconsistent results may be owed to complex interactive effects of both co-occurring environmental factors albeit they act on different spatial scales. In this study, we investigated whether forest fragmentation on the landscape scale and tree diversity on the local habitat scale show interactive effects on the herbivore community and leaf area loss in subtropical forests in South Africa. We applied standardized beating samples and a community-based approach to estimate changes in herbivore community composition, herbivore abundance, and the effective number of herbivore species on the tree species-level. We further monitored leaf area loss to link changes in the herbivore community to the associated process of herbivory. Forest fragmentation and tree diversity interactively affected the herbivore community composition, mainly by a species turnover within the family of Curculionidae. Furthermore, herbivore abundance increased and the number of herbivore species decreased with increasing tree diversity in slightly fragmented forests whereas the effects diminished with increasing forest fragmentation. Surprisingly, leaf area loss was neither affected by forest fragmentation or tree diversity, nor by changes in the herbivore community. Our study highlights the need to consider interactive effects of environmental changes across spatial scales in order to draw reliable conclusions for community and interaction patterns. Moreover, forest fragmentation seems to alter the effect of tree diversity on the herbivore

  18. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  19. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.).

    Science.gov (United States)

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-05-03

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps.

  20. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.

    Directory of Open Access Journals (Sweden)

    Rui Tang

    2016-05-01

    Full Text Available Hyphantria cunea (Drury is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV, to a mechanically-damaged M. alba volatile blend (MDV, to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps.

  1. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.)

    Science.gov (United States)

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-01-01

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps. PMID:27153095

  2. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    Science.gov (United States)

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators ( 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  3. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture

    Science.gov (United States)

    Reynolds, Olivia L.; Padula, Matthew P.; Zeng, Rensen; Gurr, Geoff M.

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a “beneficial substance”. This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  4. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.

    Science.gov (United States)

    Reynolds, Olivia L; Padula, Matthew P; Zeng, Rensen; Gurr, Geoff M

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels.

  5. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.

    Science.gov (United States)

    Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C

    2017-01-01

    Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple

  6. Are exotic herbivores better competitors? A meta-analysis.

    Science.gov (United States)

    Radville, Laura; Gonda-King, Liahna; Gómez, Sara; Kaplan, Ian; Preisser, Evan L

    2014-01-01

    Competition plays an important role in structuring the community dynamics of phytophagous insects. As the number and impact of biological invasions increase, it has become increasingly important to determine whether competitive differences exist between native and exotic insects. We conducted a meta-analysis to test the hypothesis that native/ exotic status affects the outcome of herbivore competition. Specifically, we used data from 160 published studies to assess plant-mediated competition in phytophagous insects. For each pair of competing herbivores, we determined the native range and coevolutionary history of each herbivore and host plant. Plant-mediated competition occurred frequently, but neither native nor exotic insects were consistently better competitors. Spatial separation reduced competition in native insects but showed little effect on exotics. Temporal separation negatively impacted native insects but did not affect competition in exotics. Insects that coevolved with their host plant were more affected by interspecific competition than herbivores that lacked a coevolutionary history. Insects that have not coevolved with their host plant may be at a competitive advantage if they overcome plant defenses. As native/exotic status does not consistently predict outcomes of competitive interactions, plant-insect coevolutionary history should be considered in studies of competition.

  7. Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests.

    Science.gov (United States)

    Carrillo-Perdomo, Estefanía; Jiménez-Arias, David; Aller, Ángel; Borges, Andrés A

    2016-05-01

    Snails and slugs are terrestrial gastropods representing an important biotic stress that adversely affects crop yields. These pests are typically controlled with molluscicides, which produce pollution and toxicity and further induce the evolution of resistance mechanisms, making pest management even more challenging. In our work, we have assessed the efficacy of two different plant defence activators, menadione sodium bisulphite (MSB) and 1,2,3-benzothiadiazole-7-thiocarboxylic acid S-methyl ester (BTH), as inducers of resistance mechanisms of the model plant for defence, Solanum lycopersicum, against the generalist mollusc Theba grasseti (Helicidae). The study was designed to test the feeding behaviour and choice of snails, and also to analyse the expression profile of different genes specifically involved in defence against herbivores and wounds. Our data suggest that, through the downregulation of the terpene volatile genes and the production of proteinase inhibitors, treated MSB plants may be less apparent to herbivores that use herbivore-induced plant volatiles for host location. By contrast, BTH was not effective in the treatment of the pest, probably owing to an antagonistic effect derived from the induction of both salicylic-acid-dependent and jasmonic-acid-dependent pathways. This information is crucial to determine the genetic basis of the choice of terrestrial gastropod herbivores in tomato, providing valuable insight into how the plant defence activators could control herbivore pests in plants. Our work not only reports for the first time the interaction between tomato and a mollusc pest but also presents the action of two plant defence inductors that seems to produce opposed responses by inducing resistance mechanisms through different defence pathways. © 2015 Society of Chemical Industry.

  8. Recent Advances in the Emission and Functions of Plant Vegetative Volatiles

    Directory of Open Access Journals (Sweden)

    Fang Dong

    2016-01-01

    Full Text Available Plants synthesize and emit a large variety of volatile organic compounds, which possess extremely important ecological functions. In most case, most plant volatiles are liquids, rather than gases, at room temperature. Some volatiles are emitted “on demand” when plants, especially vegetative parts, are exposed to abiotic or biotic stress. In this review, we summarize some of the highlights of plant vegetative volatile emission and functions research published during the past few years.

  9. Selenium hyperaccumulation offers protection from cell disruptor herbivores

    Directory of Open Access Journals (Sweden)

    Quinn Colin F

    2010-08-01

    Full Text Available Abstract Background Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis and the two-spotted spider mite (Tetranychus urticae. Results Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg-1 were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg-1. Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg-1 dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. Conclusions This is the first reported study investigating the

  10. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    . The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history.

  11. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.

    Science.gov (United States)

    Matsui, Kenji

    2016-08-01

    Plants have the ability to sense volatile organic compounds (VOCs) so as to efficiently adapt to their environment. The mechanisms underlying such plant 'olfactory' systems are largely unknown. Here I would like to propose that the metabolism of VOCs in plant tissues is one of the mechanisms by which plants sense VOCs. During the gas-exchange that is essential for photosynthesis, VOCs in the atmosphere are taken into the intercellular spaces of leaves. Each VOC is partitioned between the gas phase (intercellular space) and liquid phase (cell wall) at a certain ratio determined by Henry's law. The VOCs in the cell wall diffuse through the plasma membrane to the cytosol depending on their oil/water partition coefficients. Plants detoxify some VOCs, especially those that are oxidized, through glycosylation, glutathionylation, and reduction. These metabolic processes lower the concentration of VOCs in the cytosol, which facilitates further cytosolic uptake. As a result, vigorous metabolism of VOCs in the cytosol can lead to a substantial accumulation of VOC metabolites and the depletion of glutathione or NADPH. One such metabolite (a VOC glycoside) is known to mount a direct defense against herbivores, whilst deprivation of glutathione and NADPH can fortify plants with responses similar to the oxidative stress response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Potential Use of Native and Naturalized Insect Herbivores and Fungal Pathogens of Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Freedman, Jan E; Grodowitz, Michael J; Swindle, Robin; Nachtrieb, Julie G

    2007-01-01

    ...) scientists to identify naturalized and/or native herbivores of aquatic plants in an effort to develop alternative management strategies through an understanding of the agents' biology and ecology...

  13. No time for candy: passionfruit (Passiflora edulis) plants down-regulate damage-induced extra floral nectar production in response to light signals of competition.

    Science.gov (United States)

    Izaguirre, Miriam M; Mazza, Carlos A; Astigueta, María S; Ciarla, Ana M; Ballaré, Carlos L

    2013-09-01

    Plant fitness is often defined by the combined effects of herbivory and competition, and plants must strike a delicate balance between their ability to capture limiting resources and defend against herbivore attack. Many plants use indirect defenses, such as volatile compounds and extra floral nectaries (EFN), to attract canopy arthropods that are natural enemies of herbivorous organisms. While recent evidence suggests that upon perception of low red to far-red (R:FR) ratios, which signal the proximity of competitors, plants down-regulate resource allocation to direct chemical defenses, it is unknown if a similar phytochrome-mediated response occurs for indirect defenses. We evaluated the interactive effects of R:FR ratio and simulated herbivory on nectar production by EFNs of passion fruit (Passiflora edulis f. flavicarpa). The activity of petiolar EFNs dramatically increased in response to simulated herbivory and hormonal treatment with methyl jasmonate (MeJA). Low R:FR ratios, which induced a classic "shade-avoidance" repertoire of increased stem elongation in P. edulis, strongly suppressed the EFN response triggered by simulated herbivory or MeJA application. Strikingly, the EFN response to wounding and light quality was localized to the branches that received the treatments. In vines like P. edulis, a local response would allow the plants to precisely adjust their light harvesting and defense phenotypes to the local conditions encountered by individual branches when foraging for resources in patchy canopies. Consistent with the emerging paradigm that phytochrome regulation of jasmonate signaling is a central modulator of adaptive phenotypic plasticity, our results demonstrate that light quality is a strong regulator of indirect defenses.

  14. The effect of plant identity and the level of plant decay on molecular gut content analysis in a herbivorous soil insect

    OpenAIRE

    Wallinger, Corinna; Staudacher, Karin; Schallhart, Nikolaus; Peter, Eva; Dresch, Philipp; Juen, Anita; Traugott, Michael

    2012-01-01

    Plant roots represent an important food source for soil-dwelling animals, but tracking herbivore food choices below-ground is difficult. Here, we present an optimized PCR assay for the detection of plant DNA in the guts of invertebrates, using general plant primers targeting the trnT-F chloroplast DNA region. Based on this assay, we assessed the influence of plant identity on the detectability of ingested plant DNA in Agriotes click beetle larvae. Six different plant species were fed to the i...

  15. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-05-01

    Full Text Available Systemic acquired resistance (SAR is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  16. Effects of large herbivores on grassland arthropod diversity.

    Science.gov (United States)

    van Klink, R; van der Plas, F; van Noordwijk, C G E Toos; WallisDeVries, M F; Olff, H

    2015-05-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  17. Three-way interaction among plants, bacteria, and coleopteran insects.

    Science.gov (United States)

    Wielkopolan, Beata; Obrępalska-Stęplowska, Aleksandra

    2016-08-01

    Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.

  18. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    Science.gov (United States)

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-04

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible.

  19. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity.

    Science.gov (United States)

    Yli-Pirilä, Pasi; Copolovici, Lucian; Kännaste, Astrid; Noe, Steffen; Blande, James D; Mikkonen, Santtu; Klemola, Tero; Pulkkinen, Juha; Virtanen, Annele; Laaksonen, Ari; Joutsensaari, Jorma; Niinemets, Ülo; Holopainen, Jarmo K

    2016-11-01

    In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density. Compared to controls without larval feeding, clear new particle formation by nucleation in the reaction chamber was observed, and the SOA mass loadings in the insect-infested samples were significantly higher (up to 150-fold). To our knowledge, this study provides the first controlled documentation of SOA formation from direct VOC emission of deciduous trees damaged by known defoliating herbivores and suggests that chewing damage on mountain birch foliage could significantly increase reactive VOC emissions that can importantly contribute to SOA formation in subarctic forests. Additional feeding experiments on related silver birch confirmed the SOA results. Thus, herbivory-driven volatiles are likely to play a major role in future biosphere-vegetation feedbacks such as sun-screening under daily 24 h sunshine in the subarctic.

  20. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Science.gov (United States)

    Liu, Xiaojie; Vrieling, Klaas; Klinkhamer, Peter G.L.

    2017-01-01

    The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs), and chlorogenic acid (CGA), on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions. PMID:28611815

  1. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Directory of Open Access Journals (Sweden)

    Xiaojie Liu

    2017-05-01

    Full Text Available The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs, and chlorogenic acid (CGA, on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions.

  2. Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals

    Science.gov (United States)

    Studies of plant-insect interactions, and more recently the interactions among plants, insects, and microbes, have revealed that volatiles often facilitate insect movement, aggregation, and host location by herbivores, predators and parasitoids, all of which could be used to help protect agriculture...

  3. The genetics of indirect ecological effects - plant parasites and aphid herbivores

    Directory of Open Access Journals (Sweden)

    Jennifer K Rowntree

    2014-04-01

    Full Text Available When parasitic plants and aphid herbivores share a host, both direct and indirect ecological effects (IEEs can influence evolutionary processes. We used a hemiparasitic plant (Rhinanthus minor, a grass host (Hordeum vulgare and a cereal aphid (Sitobion avenae to investigate the genetics of IEEs between the aphid and the parasitic plant, and looked to see how these might affect or be influenced by the genetic diversity of the host plants. Survival of R. minor depended on the parasite’s population of origin, the genotypes of the aphids sharing the host and the genetic diversity in the host plant community. Hence the indirect effects of the aphids on the parasitic plants depended on the genetic environment of the system. Here, we show that genetic variation can be important in determining the outcome of IEEs. Therefore, IEEs have the potential to influence evolutionary processes and the continuity of species interactions over time.

  4. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Roelsgaard, Pernille Sølvhøj

    2014-01-01

    Cyanogenic glucosides (CNglcs) are widespread plant defence compounds that release toxic hydrogen cyanide by plant bglucosidase activity after tissue damage. Specialised insect herbivores have evolved counter strategies and some sequester CNglcs, but the underlying mechanisms to keep CNglcs intact...... during feeding and digestion are unknown. We show that CNglc-sequestering Zygaena filipendulae larvae combine behavioural, morphological, physiological and biochemical strategies at different time points during feeding and digestion to avoid toxic hydrolysis of the CNglcs present in their Lotus food...

  5. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores.

    Science.gov (United States)

    Kohl, Kevin D; Dearing, M D

    2012-09-01

    For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore-associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response. © 2012 Blackwell Publishing Ltd/CNRS.

  6. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  7. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  8. Instar-specific sensitivity of specialist Manduca sexta larvae to induced defences in their host plant Nicotiana attenuata

    NARCIS (Netherlands)

    Van Dam, N.M.; Hermenau, U.; Baldwin, I.T.

    2001-01-01

    1. The time delay associated with the activation of induced defences is thought to be a liability for this type of defence because it allows herbivores to remove biomass before the defence is fully induced. When defences are costly and plants grow with competitors, however, it may be more

  9. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  10. Specificity of induced defenses, growth, and reproduction in lima bean (Phaseolus lunatus) in response to multispecies herbivory.

    Science.gov (United States)

    Moreira, Xoaquín; Abdala-Roberts, Luis; Hernández-Cumplido, Johnattan; Cuny, Maximilien A C; Glauser, Gaetan; Benrey, Betty

    2015-08-01

    • Following herbivore attack, plants can either reduce damage by inducing defenses or mitigate herbivory effects through compensatory growth and reproduction. It is increasingly recognized that such induced defenses in plants are herbivore-specific, but less is known about the specificity of compensatory responses. Damage by multiple herbivores may also lead to synergistic effects on induction and plant fitness that differ from those caused by a single herbivore species. Although largely unstudied, the order of arrival and damage by different herbivore species might also play an important role in the impacts of herbivory on plants.• We investigated the specificity of defense induction (phenolics) and effects on growth (number of stems and leaves) and reproduction (number of seeds, seed mass, and germination rate) from feeding by two generalist leaf-chewing herbivores (Spodoptera eridania and Diabrotica balteata) on Phaseolus lunatus plants and evaluated whether simultaneous attack by both herbivores and their order of arrival influenced such dynamics.• Herbivory increased levels of leaf phenolics, but such effects were not herbivore-specific. In contrast, herbivory enhanced seed germination in an herbivore-specific manner. For all variables measured, the combined effects of both herbivore species did not differ from their individual effects. Finally, the order of herbivore arrival did not influence defense induction, plant growth, or seed number but did influence seed mass and germination.• Overall, this study highlights novel aspects of the specificity of plant responses induced by damage from multiple species of herbivores and uniquely associates such effects with plant lifetime fitness. © 2015 Botanical Society of America, Inc.

  11. Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems

    NARCIS (Netherlands)

    Petruzella, A.; Grutters, B.M.C.; Thomaz, S.M.; Bakker, E.S.

    2017-01-01

    Invasions of tropical and subtropical aquatic plants threaten biodiversity and cause ecological and economic impacts worldwide. An urgent question is whether native herbivores are able to inhibit the spread of these alien species thus providing biotic resistance. The potential for biotic resistance

  12. Plant-Herbivore and Plant-Pollinator Interactions of the Developing Perennial Oilseed Crop, Silphium integrifolium.

    Science.gov (United States)

    Prasifka, J R; Mallinger, R E; Hulke, B S; Larson, S R; Van Tassel, D

    2017-12-08

    Sampling in Kansas and North Dakota documented the plant-herbivore and plant-pollinator interactions of the developing perennial oilseed crop, Silphium integrifolium Michx. The larva of the tortricid moth, Eucosma giganteana (Riley), was the most damaging floret- and seed-feeding pest in Kansas, with infested heads producing ≈85% (2015) or ≈45% (2016) fewer seeds than apparently undamaged heads. Necrosis of apical meristems caused stunting and delayed bloom in Kansas; though the source of the necrosis is not known, observations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois; Hemiptera: Miridae), in S. integrifolium terminals suggest a possible cause. In North Dakota, E. giganteana larvae were not found, but pupae of Neotephritis finalis (Loew; Diptera: Tephritidae), a minor pest of cultivated sunflower, were common in the heads of S. integrifolium. Bees appeared highly attracted to S. integrifolium, and in all but one observation, bees were seen actively collecting pollen. The most common bees included large apids (Apis mellifera L., Svastra obliqua [Say], Melissodes spp.) and small-bodied halictids (Lasioglossum [Dialictus] spp.). Controlled pollination experiments demonstrated that S. integrifolium is pollinator dependent, due to both mechanical barriers (imperfect florets and protogyny) and genetic self-incompatibility. Subsequent greenhouse tests and AFLP confirmation of putative self-progeny show that a low (<1%) level of self-pollination is possible. If genetic self-incompatibility is eventually reduced through breeding, mechanical barriers would maintain a reliance on bees to move pollen between male and female florets. Collectively, observations on S. integrifolium show that both herbivore and pollinator management are important to maximize seed production. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens

    DEFF Research Database (Denmark)

    Murray, Dáithí C.; Pearson, Stuart G.; Fullagar, Richard

    2012-01-01

    DNA analysis identified unreported plant and animal taxa, some of which are locally extinct or endemic. The survival and preservation of DNA in hot, arid environments is a complex and poorly understood process that is both sporadic and rare, but the survival of DNA through desiccation may be important......The study of arid palaeoenvironments is often frustrated by the poor or non-existent preservation of plant and animal material, yet these environments are of considerable environmental importance. The analysis of pollen and macrofossils isolated from herbivore middens has been an invaluable source...

  14. A test of the herbivore optimization hypothesis using muskoxen and a graminoid meadow plant community

    Directory of Open Access Journals (Sweden)

    David L. Smith

    1996-01-01

    Full Text Available A prediction from the herbivore optimization hypothesis is that grazing by herbivores at moderate intensities will increase net above-ground primary productivity more than at lower or higher intensities. I tested this hypothesis in an area of high muskox {Ovibos moschatus density on north-central Banks Island, Northwest Territories, Canada (73°50'N, 119°53'W. Plots (1 m2 in graminoid meadows dominated by cottongrass (Eriophorum triste were either clipped, exposed to muskoxen, protected for part of one growing season, or permanently protected. This resulted in the removal of 22-44%, 10-39%, 0-39% or 0%, respectively, of shoot tissue during each growing season. Contrary to the predictions of the herbivore optimization hypothesis, productivity did not increase across this range of tissue removal. Productivity of plants clipped at 1.5 cm above ground once or twice per growing season, declined by 60+/-5% in 64% of the tests. The productivity of plants grazed by muskoxen declined by 56+/-7% in 25% of the tests. No significant change in productivity was observed in 36% and 75% of the tests in clipped and grazed treatments, respecrively. Clipping and grazing reduced below-ground standing crop except where removals were small. Grazing and clipping did not stimulate productivity of north-central Banks Island graminoid meadows.

  15. Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolution.

    Science.gov (United States)

    Butler, R J; Barrett, P M; Kenrick, P; Penn, M G

    2009-03-01

    Palaeobiologists frequently attempt to identify examples of co-evolutionary interactions over extended geological timescales. These hypotheses are often intuitively appealing, as co-evolution is so prevalent in extant ecosystems, and are easy to formulate; however, they are much more difficult to test than their modern analogues. Among the more intriguing deep time co-evolutionary scenarios are those that relate changes in Cretaceous dinosaur faunas to the primary radiation of flowering plants. Demonstration of temporal congruence between the diversifications of co-evolving groups is necessary to establish whether co-evolution could have occurred in such cases, but is insufficient to prove whether it actually did take place. Diversity patterns do, however, provide a means for falsifying such hypotheses. We have compiled a new database of Cretaceous dinosaur and plant distributions from information in the primary literature. This is used as the basis for plotting taxonomic diversity and occurrence curves for herbivorous dinosaurs (Sauropodomorpha, Stegosauria, Ankylosauria, Ornithopoda, Ceratopsia, Pachycephalosauria and herbivorous theropods) and major groups of plants (angiosperms, Bennettitales, cycads, cycadophytes, conifers, Filicales and Ginkgoales) that co-occur in dinosaur-bearing formations. Pairwise statistical comparisons were made between various floral and faunal groups to test for any significant similarities in the shapes of their diversity curves through time. We show that, with one possible exception, diversity patterns for major groups of herbivorous dinosaurs are not positively correlated with angiosperm diversity. In other words, at the level of major clades, there is no support for any diffuse co-evolutionary relationship between herbivorous dinosaurs and flowering plants. The diversification of Late Cretaceous pachycephalosaurs (excluding the problematic taxon Stenopelix) shows a positive correlation, but this might be spuriously related to

  16. Novel multitrophic interactions among an exotic, generalist herbivore, its host plants and resident enemies in California.

    Science.gov (United States)

    Hopper, Julie V; Mills, Nicholas J

    2016-12-01

    What happens when an exotic herbivore invades and encounters novel host plants and enemies? Here, we investigate the impacts of host plant quality and plant architecture on an exotic generalist herbivore, Epiphyas postvittana (Lepidoptera: Tortricidae) and its interactions with resident parasitoids in California. Using artificial diet and five plant species, we found significant effects of diet on the fitness of E. postvittana under laboratory conditions. In the field, based on a common garden experiment with host plants of nine species, we found that larval parasitism varied among plant species by a factor of 2.1 with a higher risk of parasitism on shorter than taller plants. Parasitism of egg masses varied by a factor of 4.7 among plant species with a higher risk of parasitism on taller than shorter plants. In the laboratory, the foraging time of a resident egg parasitoid on excised leaves varied among plant species, but did not correspond to observed egg parasitism rates on these same plants in the field. On leaves of Plantago lanceolata, the probability of egg parasitism decreased with trichome density. Overall, there was a significant effect of host plant on the intrinsic rate of increase of E. postvittana and on the extent of parasitism by resident parasitoids, but no correlation existed between these two effects. The recent decline of E. postvittana in California may be due to the low quality of some host plants and to the many resident enemies that readily attack it, perhaps due to its phylogenetic relatedness to resident tortricids.

  17. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid.

    Science.gov (United States)

    Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A

    2017-12-01

    One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.

  18. A method for the solvent extraction of low-boiling-point plant volatiles.

    Science.gov (United States)

    Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne

    2005-01-01

    A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.

  19. Volatile chemical cues guide host location and host selection by parasitic plants

    Science.gov (United States)

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2006-01-01

    The importance of plant volatiles in mediating interactions between plant species is much debated. Here, we demonstrate that the parasitic plant Cuscuta pentagona (dodder) uses volatile cues for host location. Cuscuta pentagona seedlings exhibit directed growth toward nearby tomato plants (Lycopersicon esculentum...

  20. Body odors of parasitized caterpillars give away the presence of parasitoid larvae to their primary hyperparasitoid enemies.

    Science.gov (United States)

    Zhu, Feng; Weldegergis, Berhane T; Lhie, Boris; Harvey, Jeffrey A; Dicke, Marcel; Poelman, Erik H

    2014-09-01

    Foraging success of parasitoids depends on the utilization of reliable information on the presence of their often, inconspicuous hosts. These parasitic wasps use herbivore-induced plant volatiles (HIPVs) that provide reliable cues on host presence. However, host searching of hyperparasitoids, a group of parasitoids that parasitize the larvae and pupae of other parasitoids, is more constrained. Their hosts do not feed on plants, and often are even concealed inside the body of the herbivore host. Hyperparasitoids recently have been found to use HIPVs of plants damaged by herbivore hosts in which the parasitoid larvae develop. However, hyperparasitoids that search for these parasitoid larvae may be confronted with healthy and parasitized caterpillars on the same plant, further complicating their host location. In this study, we addressed whether the primary hyperparasitoid Baryscapus galactopus uses caterpillar body odors to discriminate between unparasitized herbivores and herbivores carrying larvae of parasitoid hosts. We show that the hyperparasitoids made faster first contact and spent a longer mounting time with parasitized caterpillars. Moreover, although the three parasitoid hosts conferred different fitness values for the development of B. galactopus, the hyperparasitoids showed similar behavioral responses to caterpillar hosts carrying different primary parasitoid hosts. In addition, a two-chamber olfactometer assay revealed that volatiles emitted by parasitized caterpillars were more attractive to the hyperparasitoids than those emitted by unparasitized caterpillars. Analysis of volatiles revealed that body odors of parasitized caterpillars differ from unparasitized caterpillars, allowing the hyperparasitoids to detect their parasitoid host.

  1. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores

    Directory of Open Access Journals (Sweden)

    Amanda R. Meier

    2018-04-01

    Full Text Available Multitrophic species interactions are shaped by both top-down and bottom-up factors. Belowground symbionts of plants, such as arbuscular mycorrhizal fungi (AMF, can alter the strength of these forces by altering plant phenotype. For example, AMF-mediated changes in foliar toxin and nutrient concentrations may influence herbivore growth and fecundity. In addition, many specialist herbivores sequester toxins from their host plants to resist natural enemies, and the extent of sequestration varies with host plant secondary chemistry. Therefore, by altering plant phenotype, AMF may affect both herbivore performance and their resistance to natural enemies. We examined how inoculation of plants with AMF influences toxin sequestration and performance of two specialist herbivores feeding upon four milkweed species (Asclepias incarnata, A. curassavica, A. latifolia, A. syriaca. We raised aphids (Aphis nerii and caterpillars (Danaus plexippus on plants for 6 days in a fully factorial manipulation of milkweed species and level of AMF inoculation (zero, medium, and high. We then assessed aphid and caterpillar sequestration of toxins (cardenolides and performance, and measured defensive and nutritive traits of control plants. Aphids and caterpillars sequestered higher concentrations of cardenolides from plants inoculated with AMF across all milkweed species. Aphid per capita growth rates and aphid body mass varied non-linearly with increasing AMF inoculum availability; across all milkweed species, aphids had the lowest performance under medium levels of AMF availability and highest performance under high AMF availability. In contrast, caterpillar survival varied strongly with AMF availability in a plant species-specific manner, and caterpillar growth was unaffected by AMF. Inoculation with AMF increased foliar cardenolide concentrations consistently among milkweed species, but altered aboveground biomasses and foliar phosphorous concentrations in a plant

  2. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  3. Quantitative effects of cyanogenesis on an adapted herbivore.

    Science.gov (United States)

    Ballhorn, D J; Heil, M; Pietrowski, A; Lieberei, R

    2007-12-01

    Plant cyanogenesis means the release of gaseous hydrogen cyanide (HCN) in response to cell damage and is considered as an effective defense against generalist herbivores. In contrast, specialists are generally believed not to be affected negatively by this trait. However, quantitative data on long-term effects of cyanogenesis on specialists are rare. In this study, we used lima bean accessions (Fabaceae: Phaseolus lunatus L.) with high quantitative variability of cyanogenic features comprising cyanogenic potential (HCNp; concentration of cyanogenic precursors) and cyanogenic capacities (HCNc; release of gaseous HCN per unit time). In feeding trials, we analyzed performance of herbivorous Mexican bean beetle (Coleoptera: Coccinellidae: Epilachna varivestis Mulsant) on selected lines characterized by high (HC-plants) and low HCNp (LC-plants). Larval and adult stages of this herbivore feed on a narrow range of legumes and prefer cyanogenic lima bean as host plant. Nevertheless, we found that performance of beetles (larval weight gain per time and body mass of adult beetles) was significantly affected by lima bean HCNp: Body weight decreased and developmental period of larvae and pupae increased on HC-plants during the first generation of beetles and then remained constant for four consecutive generations. In addition, we found continuously decreasing numbers of eggs and larval hatching as inter-generational effects on HC-plants. In contrast to HC-plants, constantly high performance was observed among four generations on LC-plants. Our results demonstrate that Mexican bean beetle, although preferentially feeding on lima bean, is quantitatively affected by the HCNp of its host plant. Effects can only be detected when considering more than one generation. Thus, cyanide-containing precursors can have negative effects even on herbivores adapted to feed on cyanogenic plants.

  4. Health monitoring of plants by their emitted volatiles: A temporary increase in the concentration of nethyl salicylate after pathogen inoculation of tomato plants at greenhouse scale

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Verstappen, F.W.A.; Bouwmeester, H.J.; Posthumus, M.A.; Henten, van E.J.

    2011-01-01

    This paper describes a method to alert growers of the presence of a pathogen infection in their greenhouse based on the detection of pathogen-induced emissions of volatile organic compounds (VOCs) from plants. Greenhouse-grown plants were inoculated with spores of a fungus to learn more about this

  5. Intra- and interspecific differences in diet quality and composition in a large herbivore community.

    Directory of Open Access Journals (Sweden)

    Claire Redjadj

    Full Text Available Species diversity in large herbivore communities is often explained by niche segregation allowed by differences in body mass and digestive morphophysiological features. Based on large number of gut samples in fall and winter, we analysed the temporal dynamics of diet composition, quality and interspecific overlap of 4 coexisting mountain herbivores. We tested whether the relative consumption of grass and browse differed among species of different rumen types (moose-type and intermediate-type, whether diet was of lower quality for the largest species, whether we could identify plant species which determined diet quality, and whether these plants, which could be "key-food-resources" were similar for all herbivores. Our analyses revealed that (1 body mass and rumen types were overall poor predictors of diet composition and quality, although the roe deer, a species with a moose-type rumen was confirmed as an "obligatory non grazer", while red deer, the largest species, had the most lignified diet; (2 diet overlap among herbivores was well predicted by rumen type (high among species of intermediate types only, when measured over broad plant groups, (3 the relationship between diet composition and quality differed among herbivore species, and the actual plant species used during winter which determined the diet quality, was herbivore species-specific. Even if diets overlapped to a great extent, the species-specific relationships between diet composition and quality suggest that herbivores may select different plant species within similar plant group types, or different plant parts and that this, along with other behavioural mechanisms of ecological niche segregation, may contribute to the coexistence of large herbivores of relatively similar body mass, as observed in mountain ecosystems.

  6. Impact of two specialist insect herbivores on reproduction of horse nettle, Solanum carolinense.

    Science.gov (United States)

    Wise, Michael J; Sacchi, Christopher F

    1996-10-01

    The frequency of coevolution as a process of strong mutual interaction between a single plant and herbivore species has been questioned in light of more commonly observed, complex relationships between a plant and a suite of herbivore species. Despite recognition of the possibility of diffuse coevolution, relatively few studies have examined ecological responses of plants to herbivores in complex associations. We studied the impact of two specialist herbivores, the horse nettle beetle, Leptinotarsa juncta, and the eggplant flea beetle, Epitrix fuscula, on reproduction of their host, Solanum carolinense. Our study involved field and controlled-environment experimental tests of the impact on sexual and potential asexual reproduction of attack by individuals of the two herbivore species, individually and in combination. Field tests demonstrated that under normal levels of phytophagous insect attack, horse nettle plants experienced a reduction in fruit production of more than 75% compared with plants from which insects were excluded. In controlled-environment experiments using enclosure-exclosure cages, the horse nettle's two principal herbivores, the flea beetle and the horse nettle beetle, caused decreases in sexual reproduction similar to those observed in the field, and a reduction in potential asexual reproduction, represented by root biomass. Attack by each herbivore reduced the numbers of fruits produced, and root growth, when feeding in isolation. When both species were feeding together, fruit production, but not root growth, was lower than when either beetle species fed alone. Ecological interactions between horse nettle and its two primary herbivores necessary for diffuse coevolution to occur were evident from an overall analysis of the statistical interactions between the two herbivores for combined assessment of fruit and vegetative traits. For either of these traits alone, the interactions necessary to promote diffuse coevolution apparently were lacking.

  7. Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Dicke, M.; Loon, van J.J.A.

    2015-01-01

    Selected strains of non-pathogenic rhizobacteria can trigger induced systemic resistance (ISR) in plants against aboveground insect herbivores. However, the underlying mechanisms of plant-mediated interactions between rhizobacteria and herbivorous insects are still poorly understood. Using

  8. Trading direct for indirect defense? Phytochrome B inactivation in tomato attenuates direct anti-herbivore defenses whilst enhancing volatile-mediated attraction of predators

    NARCIS (Netherlands)

    Cortés, Leandro E.; Weldegergis, Berhane T.; Boccalandro, Hernán E.; Dicke, Marcel; Ballaré, Carlos L.

    2016-01-01

    Under conditions of competition for light, which lead to the inactivation of the photoreceptor phytochrome B (phyB), the growth of shade-intolerant plants is promoted and the accumulation of direct anti-herbivore defenses is down-regulated. Little is known about the effects of phyB on emissions

  9. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Directory of Open Access Journals (Sweden)

    Maria L Pappas

    Full Text Available Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI, may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood. The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  10. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    International Nuclear Information System (INIS)

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H.; Holopainen, Jarmo K.; Albrectsen, Benedicte R.; Blande, James D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. - Highlights: • We examined the effects of ozone on Pieris brassicae performance and preference. • We studied ozone and herbivore induced changes in the metabolome of Brassica nigra. • The performance of P. brassicae did not correlate with preference of ozonated plants. • Ozone and herbivore-feeding stress changes the phytochemical pools of B. nigra. - Ozone indirectly reduces herbivore performance, which is associated with change in phytochemical pools, but does not correlate with host plant preference

  11. Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene.

    Science.gov (United States)

    Li, Z-Q; Zhang, S; Cai, X-M; Luo, J-Y; Dong, S-L; Cui, J-J; Chen, Z-M

    2017-06-01

    Artificial Chrysopa pallens release is a well-known method for suppressing aphids, but it is difficult to establish lacewing populations in the field. Understanding the functions of C. pallens odorant-binding proteins (CpalOBPs) and behavioural responses of C. pallens to plant volatiles and aphid alarm pheromone (E)-ß-farnesene has important implications for population establishment after lacewing release. Based on our previous study, five antennae-enriched CpalOBPs were selected. Sequence alignment and phylogenetic analysis revealed that these five CpalOBPs were Classic OBPs and separated into different clades. Of them, CpalOBP10 clustered in the same clade with aphid OBP7, which mediates the perception of green leaf volatiles and (E)-ß-farnesene. Ligand-binding assays showed 31 compounds, including plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene, had high binding affinities for at least one of these five CpalOBPs. Of the 31 compounds, the pest-induced volatiles (Z)-3-hexenyl hexanoate and 2-hexyl-1-decanol, used in host location by the black bean aphid, elicited significant attractive behavioural responses from C. pallens. Conversely, (E)-ß-farnesene elicited strongly repellent behavioural responses. It is conceivable that C. pallens utilizes plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene as foraging cues. Our studies provide new insights into the interrelationships amongst C. pallens, its prey and the host plants. Compounds that elicited significant behavioural responses from C. pallens were also identified. © 2017 The Royal Entomological Society.

  12. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    Science.gov (United States)

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Indirect effects of domestic and wild herbivores on butterflies in an African savanna.

    Science.gov (United States)

    Wilkerson, Marit L; Roche, Leslie M; Young, Truman P

    2013-10-01

    Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long-term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle-only, wildlife-only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well-managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.

  14. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.

    Science.gov (United States)

    Bian, L; Sun, X L; Cai, X M; Chen, Z M

    2014-12-01

    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. © 2014 Entomological Society of America.

  15. On Volatility Induced Stationarity for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....

  16. Body Odors of Parasitized Caterpillars Give Away the Presence of Parasitoid Larvae to Their Primary Hyperparasitoid Enemies

    NARCIS (Netherlands)

    Zhu, Feng; Weldegergis, Berhane T.; Lhie, Boris; Harvey, Jeffrey A.; Dicke, Marcel; Poelman, Erik H.

    2014-01-01

    Foraging success of parasitoids depends on the utilization of reliable information on the presence of their often, inconspicuous hosts. These parasitic wasps use herbivore-induced plant volatiles (HIPVs) that provide reliable cues on host presence. However, host searching of hyperparasitoids, a

  17. Body odors of parasitized caterpillars give away the presence of parasitoid larvae to their primary hyperparasitoid enemies

    NARCIS (Netherlands)

    Zhu, F.; Weldegergis, B.T.; Lhie, B.; Harvey, J.A.; Dicke, M.; Poelman, E.H.

    2014-01-01

    Foraging success of parasitoids depends on the utilization of reliable information on the presence of their often, inconspicuous hosts. These parasitic wasps use herbivore-induced plant volatiles (HIPVs) that provide reliable cues on host presence. However, host searching of hyperparasitoids, a

  18. Geographic mosaic of plant evolution: extrafloral nectary variation mediated by ant and herbivore assemblages.

    Directory of Open Access Journals (Sweden)

    Anselmo Nogueira

    Full Text Available Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT. Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant-EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1 a population with smaller ants (Crematogaster crinosa matched with low abundance of EFNs; and (2 seven populations with bigger ants (Camponotus species matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated

  19. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone.

    Science.gov (United States)

    Tinzaara, W; Gold, C S; Dicke, M; van Huis, A

    2005-07-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey.

  20. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology

    NARCIS (Netherlands)

    Lameris, T.K.; Jochems, Femke; van der Graaf, A.J.; Andersson, M.; Limpens, J.; Nolet, B.A.

    2017-01-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be

  1. Reconstructing a herbivore's diet using a novel rbcL DNA mini-barcode for plants.

    Science.gov (United States)

    Erickson, David L; Reed, Elizabeth; Ramachandran, Padmini; Bourg, Norman A; McShea, William J; Ottesen, Andrea

    2017-05-01

    Next Generation Sequencing and the application of metagenomic analyses can be used to answer questions about animal diet choice and study the consequences of selective foraging by herbivores. The quantification of herbivore diet choice with respect to native versus exotic plant species is particularly relevant given concerns of invasive species establishment and their effects on ecosystems. While increased abundance of white-tailed deer ( Odocoileus virginianus ) appears to correlate with increased incidence of invasive plant species, data supporting a causal link is scarce. We used a metabarcoding approach (PCR amplicons of the plant rbc L gene) to survey the diet of white-tailed deer (fecal samples), from a forested site in Warren County, Virginia with a comprehensive plant species inventory and corresponding reference collection of plant barcode and chloroplast sequences. We sampled fecal pellet piles and extracted DNA from 12 individual deer in October 2014. These samples were compared to a reference DNA library of plant species collected within the study area. For 72 % of the amplicons, we were able to assign taxonomy at the species level, which provides for the first time-sufficient taxonomic resolution to quantify the relative frequency at which native and exotic plant species are being consumed by white-tailed deer. For each of the 12 individual deer we collected three subsamples from the same fecal sample, resulting in sequencing 36 total samples. Using Qiime, we quantified the plant DNA found in all 36 samples, and found that variance within samples was less than variance between samples ( F  = 1.73, P  = 0.004), indicating additional subsamples may not be necessary. Species level diversity ranged from 60 to 93 OTUs per individual and nearly 70 % of all plant sequences recovered were from native plant species. The number of species detected did reduce significantly (range 4-12) when we excluded species whose OTU composed plants inventoried

  2. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Science.gov (United States)

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  3. Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil

    NARCIS (Netherlands)

    van Klink, R.; Schrama, M.; Nolte, S.; Bakker, J. P.; WallisDeVries, M. F.; Berg, M. P.

    In addition to the well-studied impacts of defecation and defoliation, large herbivores also affect plant and arthropod communities through trampling, and the associated soil compaction. Soil compaction can be expected to be particularly important on wet, fine-textured soils. Therefore, we

  4. Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil

    NARCIS (Netherlands)

    van Klink, R.; Schrama, M.; Nolte, S.; Bakker, Jan P.; WallisDeVries, M.F.; Berg, M.P.

    2015-01-01

    In addition to the well-studied impacts of defecation and defoliation, large herbivores also affect plant and arthropod communities through trampling, and the associated soil compaction. Soil compaction can be expected to be particularly important on wet, fine-textured soils. Therefore, we

  5. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis

    NARCIS (Netherlands)

    van Wijk, M.; Wadman, W.J.; Sabelis, M.W.

    2006-01-01

    The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a

  6. Beyond the network of plants volatile organic compounds

    OpenAIRE

    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano

    2017-01-01

    Plants emission of volatile organic compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to classify plants species. By using bipartite netwo...

  7. The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

    Directory of Open Access Journals (Sweden)

    Judith Sitters

    2017-04-01

    Full Text Available It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N and phosphorus (P recycled through herbivore release (i.e., waste N:P are mainly determined by the stoichiometric composition of the herbivore's food (food N:P and its body nutrient content (body N:P. Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C:N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  8. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T. Martijn; van der Putten, W.H.; Brinkman, Pella; Biere, Arjen

    2017-01-01

    Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs

  9. Detecting changes in insect herbivore communities along a pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Eatough Jones, Michele [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: michele.eatough@ucr.edu; Paine, Timothy D. [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: timothy.paine@ucr.edu

    2006-10-15

    The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area.

  10. Detecting changes in insect herbivore communities along a pollution gradient

    International Nuclear Information System (INIS)

    Eatough Jones, Michele; Paine, Timothy D.

    2006-01-01

    The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area

  11. Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in vineyards

    Science.gov (United States)

    Methyl salicylate (MeSA), an herbivore induced plant volatile, can potentially elicit control of pests through attraction of beneficial arthropods. This study evaluates the effect of synthetic MeSA lures (PredaLure) on arthropod populations during the 2009 and 2010 seasons in two Oregon vineyards (...

  12. Chemical Cues in Tritrophic Interaction on Biocontrol of Insect Pest

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2017-03-01

    Full Text Available Tritrophic interaction among host plant-herbivore-parasitoid involves chemical cues. The infested plant by herbivores has been reacted to produce volatiles which is a cue used by the herbivore parasitoids for host location. These volatiles can be developed to enhance natural control of insect pests, especially by optimally use of parasitoids. Egg parasitoids are biocontrol agents that play an important role in natural control of herbivores. This research used a tritrophic interaction model of rice plant-brown plant hopper (BPH-egg parasitoid of BPH. Research on analysis of chemical cues in tritrophic interactions was aimed to identify volatiles that are used by the parasitoid to find its host. The volatiles that effectively affect the parasitoid orientation behavior could be developed into a parasitoid attractant. Extraction of volatiles as the egg parasitoid cues was done using soxhlet, and identification of the volatiles using Gas Chromatography-Mass Spectrometry (GC-MS. Bioassay of the volatiles on the BPH parasitoid orientation behavior was performed using Y-tube olfactometry. The volatiles that are used for host location cues by the parasitoid affect the parasitoid orientation behavior by showing the preference of the parasitoid females to the odor of volatile. Volatiles extracted from BPH-egg-infested plants and uninfested plants contain alcohol, hydrocarbon, and ester compounds. Based on the difference of the compound composition of both extractions, five compounds of long-chain hydrocarbon, both branched and unsaturated compounds are the main volatile components which caused positive orientation behavior of the egg parasitoid. The egg parasitoids showed positive behavior orientation toward the volatiles extracted from BPH-egg-infested plant. Those hydrocarbon compounds are potential materials to be developed into bio attractants of BPH egg parasitoid.

  13. Biochar application reduce ammonia volatilization in a soil-plant system: A closed chamber experiment

    Science.gov (United States)

    Mandal, Sanchita; Donner, Erica; Smith, Euan; Lombi, Enzo

    2017-04-01

    Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. About 10-30% of N can be lost as NH3 volatilization, which constitutes a significant economic loss. In recent years carbon-based materials such as biochar have created a great research interest because of their ability to increase soil fertility by reducing nutrient loss and pollutants bioavailability in soil. Most of the studies so far have investigated how biochar addition can reduce NH3 volatilization from soils but less information is available for soil-plant systems. In this research, wheat plants (Triticum aestivum, variety: Calingiri) were grown in a calcareous soil (pH 8, calcarosol) inside a closed chamber system to assess both ammonia volatilization and plant N uptake. In this specialized glass chamber air was passed through an inlet where the flow rate was maintained using an air pump (3.5 L min-1). The air outlet was passed through a sulphuric acid trap which was used to capture the volatilized NH3 from the chamber. Plants were watered using the inlet to maintain 50% field capacity throughout the incubation. Two different biochar samples were used in this study: a poultry manure biochar (PM-BC) and a green waste compost biochar (GW-BC) produced at 250 ˚C. Five different application rates were tested (0, 0.5, 1, 1.5, and 2%). The soil was mixed with biochar samples, water, N, P, K, Ca, Mg, and S for one week before sowing. After one week of germination, plants were transferred to the chamber for further three weeks incubation for NH3 volatilization measurement. The study identified that biochar application reduced the NH3 volatilization and increase the plant biomass. Biochar application at 0.5 and 2% decreased the NH3 volatilization by 36 and 48% respectively. The N uptake of the plants also increased from 2.9 to 28% at 0.5 and 2% application rates respectively. The dry biomass of the plant also increased

  14. Herbivore handling of a plant's trichome: the case of Heliconius charithonia (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae)

    International Nuclear Information System (INIS)

    Cardoso, Marcio Z.

    2008-01-01

    Trichomes reduce herbivore attack on plants by physically and/or chemically inhibiting movement or other activities. Despite evidence that herbivores are negatively affected by trichomes there also reports of insect counter-adaptations that circumvent the plant's defense. This paper reports on a study that investigated the likely mechanisms employed by larvae of the nymphalid butterfly, Heliconius charithonia (L.), that allow it to feed on a host that is presumably protected by hooked trichomes (Passiflora lobata (Killip) Hutch). Evidence were gathered using data from direct observations of larval movement and behavior, faeces analysis, scanning electron microscopy of plant surface and experimental analysis of larval movement on plants with and without trichomes (manually removed). The latter involved a comparison with a non specialist congener, Heliconius pachinus Salvin. Observations showed that H. charithonia larvae are capable of freeing themselves from entrapment on trichome tips by physical force. Moreover, wandering larvae lay silk mats on the trichomes and remove their tips by biting. In fact, trichome tips were found in the faeces. Experimental removal of trichomes aided in the movement of the non specialist but had no noticeable effect on the specialist larvae. These results support the suggestion that trichomes are capable of deterring a non specialist herbivore (H. pachinus). The precise mechanisms that allow the success of H. charithonia are not known, but I suggest that a blend of behavioral as well as physical resistance mechanisms is involved. Future studies should ascertain whether larval integument provides physical resistance to trichomes. (author)

  15. Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore.

    Science.gov (United States)

    Arab, Alberto; Trigo, José Roberto

    2011-05-01

    Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.

  16. Localization of a defensive volatile 4-hydroxy-4-methylpentan-2-one in the capitate glandular trichomes of Oenothera glazioviana

    Institute of Scientific and Technical Information of China (English)

    Yanyun Tan; Desen Li; Juan Hua; Shihong Luo; Yan Liu; Shenghong Li

    2017-01-01

    Glandular trichomes of plants produce a wide variety of secondary metabolites which are considered as major defensive chemicals. The capitate glandular trichomes of Oenothera glazioviana (Onagraceae) were collected with laser microdissection and analyzed by gas chromatography-mass spectrometry. The volatile compound 4-hydroxy-4-methylpentan-2-one (1) was identified. We found that compound 1 displays antimicrobial, insecticidal, and phytotoxic activities. These results suggest that compound 1 might function as a defensive compound in the capitate glandular trichomes of O. glazioviana against pathogens, insect herbivores, and presumably competitive plants as well.

  17. Localization of a defensive volatile 4-hydroxy-4-methylpentan-2-one in the capitate glandular trichomes of Oenothera glazioviana

    Directory of Open Access Journals (Sweden)

    Yanyun Tan

    2017-06-01

    Full Text Available Glandular trichomes of plants produce a wide variety of secondary metabolites which are considered as major defensive chemicals. The capitate glandular trichomes of Oenothera glazioviana (Onagraceae were collected with laser microdissection and analyzed by gas chromatography–mass spectrometry. The volatile compound 4-hydroxy-4-methylpentan-2-one (1 was identified. We found that compound 1 displays antimicrobial, insecticidal, and phytotoxic activities. These results suggest that compound 1 might function as a defensive compound in the capitate glandular trichomes of O. glazioviana against pathogens, insect herbivores, and presumably competitive plants as well.

  18. Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Ammagarahalli, Byrappa; Gemeno, César

    2015-10-01

    In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Contrasting insect attraction and herbivore-induced plant volatile production in maize

    Science.gov (United States)

    Maize inbred line W22 is an important resource for genetic studies due to the availability of the UniformMu mutant population and a complete genome sequence. In this study, we assessed the suitability of W22 as a model for tritrophic interactions between maize, Spodoptera frugiperda (fall armyworm) ...

  20. Effects of volatiles from Maruca vitrata larvae and caterpillar-infested flowers of their host plant Vigna unguiculata on the foraging behavior of the parasitoid Apanteles taragamae.

    Science.gov (United States)

    Dannon, Elie A; Tamò, Manuele; Van Huis, Arnold; Dicke, Marcel

    2010-10-01

    The parasitoid wasp Apanteles taragamae is a promising candidate for the biological control of the legume pod borer Maruca vitrata, which recently has been introduced into Benin. The effects of volatiles from cowpea and peabush flowers and Maruca vitrata larvae on host selection behavior of the parasitoid Apanteles taragamae were investigated under laboratory conditions by using a Y-tube olfactometer. Naïve and oviposition-experienced female wasps were given a choice between several odor sources that included (1) uninfested, (2) Maruca vitrata-infested, and (3) mechanically damaged cowpea flowers, as well as (4) stem portions of peabush plants carrying leaves and flowers, (5) healthy M. vitrata larvae, and moribund (6), and live (7) virus-infected M. vitrata larvae. Responses of naïve and oviposition-experienced female wasps did not differ for any of the odor source combinations. Wasps were significantly attracted to floral volatiles produced by cowpea flowers that had been infested with M. vitrata larvae and from which the larvae had been removed. Apanteles taragamae females also were attracted to Maruca vitrata-infested flowers after removal of both the larvae and their feces. Female wasps discriminated between volatiles from previously infested flowers and mechanically damaged flowers. Uninfested cowpea flowers attracted only oviposition-experienced wasps that had received a rewarding experience (i.e. the parasitization of two M. vitrata larvae feeding on cowpea flowers) before the olfactometer test. Wasps also were attracted to uninfested leaves and flowers of peabush. Moreover, they were also attracted to healthy and live virus-infected M. vitrata larvae, but not when the latter were moribund. Our data show that, similarly to what has been extensively been reported for foliar volatiles, flowers of plants also emit parasitoid-attracting volatiles in response to being infested with an herbivore.

  1. Simple plant-based design strategies for volatile organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, M.; Erickson, L.E.; Davis, L.C.

    1999-12-31

    Vegetation which enhances in-situ biodegradation of organic compounds can play a key role in the bioremediation of such contaminants in polluted soils and groundwater. Plants may act directly on some contaminants by degrading them, but their main effect is to enhance microbial populations in the thizosphere. Microbially mediated transformations are thus indirectly facilitated by root exudates which nourish the indigenous microorganisms. Plants may also be viewed as a solar driven pump-and-treat system which can contain a plume and reduce the spread of contaminated water. Laboratory investigations carried out in a growth chamber with alfalfa plants provide evidence for the (microbially mediated) biodegradation of organic compounds such as toluene, phenol and TCE. Alfalfa plants tolerate concentrations of these organics in contaminated water up to 100 mg/L. They facilitate transfer of the contaminants from the saturated to the vadose zone. For volatile organic compounds such as TCE, vegetation provides a controlled release of compounds and hence assures dilution of the TCE evapotranspired into the atmosphere from contaminated soils. Using a range of calculated plausible scenarios, it is shown that intermedia transfer caused by volatilization associated with plants is most unlikely to lead to exceedance of standards for gas phase contamination, for most volatile contaminants. Possible action level exceedances might occur with highly toxic substances including vinyl chloride and carbon tetrachloride, if they re present in ground water at levels above kilogram amounts in a single plume of a few hectares, and released by vigorously growing plants under hot dry conditions. Information needed for the calculation and design of plant-based bioremediation systems for typical sites is discussed in this paper.

  2. 27 CFR 18.40 - Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar.

    Science.gov (United States)

    2010-04-01

    ... volatile fruit-flavor concentrate plant and bonded wine cellar. 18.40 Section 18.40 Alcohol, Tobacco... Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar. A proprietor of a volatile fruit-flavor concentrate plant operating a contiguous bonded wine cellar may alternate the use of...

  3. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds.

    Science.gov (United States)

    Beck, John J; Smith, Lincoln; Baig, Nausheena

    2014-01-01

    The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mites and hop aphid in Oregon hop yards

    Science.gov (United States)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  5. The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice.

    Science.gov (United States)

    Zhou, Guoxin; Ren, Nan; Qi, Jingfeng; Lu, Jing; Xiang, Caiyu; Ju, Hongping; Cheng, Jiaan; Lou, Yonggen

    2014-09-01

    Oxylipins produced by the 13-lipoxygenase (LOX) have been reported to play an important role in plant defense responses to herbivores. Yet, the role of oxylipins produced by the 9-LOX pathway in this process remains largely unknown. Here we cloned a gene encoding a chloroplast-localized 9-LOX, Osr9-LOX1, from rice. Transcriptional analysis revealed that herbivore infestation, mechanical wounding and jasmonic acid (JA) treatment either repressed or did not enhance the level of Osr9-LOX1 transcripts at early stages but did at later stages, whereas salicylic acid (SA) treatment quickly increased the transcript level of Osr9-LOX1. Antisense expression of Osr9-lox1 (as-r9lox1) decreased the amount of wound-induced (Z)-3-hexenal but increased levels of striped stem borer (SSB)-induced linolenic acid, JA, SA and trypsin protease inhibitors. These changes were associated with increased resistance in rice to the larvae of the SSB Chilo suppressalis. In contrast, although no significant differences were observed in the duration of the nymph stage or the number of eggs laid by female adults between the brown planthopper (BPH) Nilaparvata lugens that fed on as-r9lox1 lines and BPH that fed on wild-type (WT) rice plants, the survival rate of BPH nymphs that fed on as-r9lox1 lines was higher than that of nymphs that fed on WT plants, possibly because of a higher JA level. The results demonstrate that Osr9-LOX1 plays an important role in regulating an herbivore-induced JA burst and cross-talk between JA and SA, and in controlling resistance in rice to chewing and phloem-feeding herbivores. © 2014 Scandinavian Plant Physiology Society.

  6. Perception of volatiles produced by UVC-irradiated plants alters the response to viral infection in naïve neighboring plants.

    Science.gov (United States)

    Yao, Youli; Danna, Cristian H; Ausubel, Frederick M; Kovalchuk, Igor

    2012-07-01

    Interplant communication of stress via volatile signals is a well-known phenomenon. It has been shown that plants undergoing stress caused by pathogenic bacteria or insects generate volatile signals that elicit defense response in neighboring naïve plants. Similarly, we have recently shown that naïve plants sharing the same gaseous environment with UVC-exposed plants exhibit similar changes in genome instability as UVC-exposed plants. We found that methyl salicylate (MeSA) and methyl jasmonate (MeJA) serve as volatile signals communicating genome instability (as measured by an increase in the homologous recombination frequency). UVC-exposed plants produce high levels of MeSA and MeJA, a response that is missing in an npr1 mutant. Concomitantly, npr1 mutants are impaired in communicating the signal leading to genome instability, presumably because this mutant does not develop new necrotic lesion after UVC irradiation as observed in wt plants. To analyze the potential biological significance of such plant-plant communication, we have now determined whether bystander plants that receive volatile signals from UVC-irradiated plants, become more resistant to UVC irradiation or infection with oilseed rape mosaic virus (ORMV). Specifically, we analyzed the number of UVC-elicited necrotic lesions, the level of anthocyanin pigments, and the mRNA levels corresponding to ORMV coat protein and the NPR1-regulated pathogenesis-related protein PR1 in the irradiated or virus-infected bystander plants that have been previously exposed to volatiles produced by UVC-irradiated plants. These experiments showed that the bystander plants responded similarly to control plants following UVC irradiation. Interestingly, however, the bystander plants appeared to be more susceptible to ORMV infection, even though PR1 mRNA levels in systemic tissue were significantly higher than in the control plants, which indicates that bystander plants could be primed to strongly respond to bacterial

  7. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants.

    Science.gov (United States)

    Ceretti, E; Zani, C; Zerbini, I; Viola, G; Moretti, M; Villarini, M; Dominici, L; Monarca, S; Feretti, D

    2015-02-01

    Urban air contains many mutagenic pollutants. This research aimed to investigate the presence of mutagens in the air by short-term mutagenicity tests using bacteria, human cells and plants. Inflorescences of Tradescantia were exposed to air in situ for 6h, once a month from January to May, to monitor volatile compounds and micronuclei frequency was computed. On the same days PM10 was collected continuously for 24h. Half of each filter was extracted with organic solvents and studied by means of the Ames test, using Salmonella typhimurium TA98 and TA100 strains, and the comet assay on human leukocytes. A quarter of each filter was extracted with distilled water in which Tradescantia was exposed. PM10 concentration was particularly high in the winter season (> 50 μg/m(3)). In situ exposure of inflorescences to urban air induced a significant increase in micronuclei frequency at all the sites considered, but only in January (p bacteria, human cells and plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at t...... concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results....... that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC...

  9. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    Directory of Open Access Journals (Sweden)

    María José Campos-Navarrete

    Full Text Available Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD and genotypic diversity (GD on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.

  10. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    Science.gov (United States)

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  11. Plant responses to insect egg deposition

    NARCIS (Netherlands)

    Hilker, M.; Fatouros, N.E.

    2015-01-01

    Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect

  12. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Science.gov (United States)

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  13. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  14. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  15. Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries

    Science.gov (United States)

    Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) that has shown potential in attracting natural enemies. Here, we conducted a meta-analysis to evaluate the magnitude of natural enemy response to MeSA in the field, and tested its attractiveness to insect predators in commercial...

  16. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    Science.gov (United States)

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  17. Seasonal phenology of interactions involving short-lived annual plants, a multivoltine herbivore and its endoparasitoid wasp.

    Science.gov (United States)

    Fei, Minghui; Gols, Rieta; Harvey, Jeffrey A

    2014-01-01

    Spatial-temporal realism is often missing in many studies of multitrophic interactions, which are conducted at a single time frame and/or involving interactions between insects with a single species of plant. In this scenario, an underlying assumption is that the host-plant species is ubiquitous throughout the season and that the insects always interact with it. We studied interactions involving three naturally occurring wild species of cruciferous plants, Brassica rapa, Sinapis arvensis and Brassica nigra, that exhibit different seasonal phenologies, and a multivoltine herbivore, the large cabbage white butterfly, Pieris brassicae, and its gregarious endoparasitoid wasp, Cotesia glomerata. The three plants have very short life cycles. In central Europe, B. rapa grows in early spring, S. arvensis in late spring and early summer, and B. nigra in mid to late summer. P. brassicae generally has three generations per year, and C. glomerata at least two. This means that different generations of the insects must find and exploit different plant species that may differ in quality and which may be found some distance from one another. Insects were either reared on each of the three plant species for three successive generations or shifted between generations from B. rapa to S. arvensis to B. nigra. Development time from neonate to pupation and pupal fresh mass were determined in P. brassicae and egg-to-adult development time and body mass in C. glomerata. Overall, herbivores performed marginally better on S. arvensis and B. nigra plants than on B. rapa plants. Parasitoids performance was closely tailored with that of the host. Irrespective as to whether the insects were shifted to a new plant in successive generations or not, development time of P. brassicae and C. glomerata decreased dramatically over time. Our results show that there were some differences in insect development on different plant species and when transferred from one species to another. However, all three

  18. Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium.

    Science.gov (United States)

    Brody, Alison K; Palmer, Todd M; Fox-Dobbs, Kena; Doak, Dan F

    2010-02-01

    In African savannas, vertebrate herbivores are often identified as key determinants of plant growth, survivorship, and reproduction. However, plant reproduction is likely to be the product of responses to a suite of abiotic and biotic factors, including nutrient availability and interactions with antagonists and mutualists. In a relatively simple system, we examined the role of termites (which act as ecosystem engineers--modifying physical habitat and creating islands of high soil fertility), vertebrate herbivores, and symbiotic ants, on the fruiting success of a dominant plant, Acacia drepanolobium, in East African savannas. Using observational data, large-scale experimental manipulations, and analysis of foliar N, we found that Acacia drepanolobium trees growing at the edge of termite mounds were more likely to reproduce than those growing farther away, in off-mound soils. Although vertebrate herbivores preferentially used termite mounds as demonstrated by dung deposits, long-term exclusion of mammalian grazers did not significantly reduce A. drepanolobium fruit production. Leaf N was significantly greater in trees growing next to mounds than in those growing farther away, and this pattern was unaffected by exclusion of vertebrates. Thus, soil enrichment by termites, rather than through dung and urine deposition by large herbivores, is of primary importance to fruit production near mounds. Across all mound-herbivore treatment combinations, trees that harbored Crematogaster sjostedti were more likely to fruit than those that harbored one of the other three ant species. Although C. sjostedti is less aggressive than the other ants, it tends to inhabit large, old trees near termite mounds which are more likely to fruit than smaller ones. Termites play a key role in generating patches of nutrient-rich habitat important to the reproductive success of A. drepanolobium in East African savannas. Enhanced nutrient acquisition from termite mounds appears to allow plants to

  19. Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data

    Czech Academy of Sciences Publication Activity Database

    Rokaya, Maan Bahadur; Dostálek, T.; Münzbergová, Z.

    2016-01-01

    Roč. 77, nov (2016), s. 168-175 ISSN 1146-609X Institutional support: RVO:67179843 Keywords : Anti-herbivore defence * Altitude * Herbivore damage * Himalayan region * Lamiaceae Subject RIV: EF - Botanics Impact factor: 1.652, year: 2016

  20. VOCs-Mediated Location of Olive Fly Larvae by the Braconid Parasitoid Psyttalia concolor: A Multivariate Comparison among VOC Bouquets from Three Olive Cultivars

    Directory of Open Access Journals (Sweden)

    Giulia Giunti

    2016-01-01

    Full Text Available Herbivorous activity induces plant indirect defenses, as the emission of herbivorous-induced plant volatiles (HIPVs, which could be used by parasitoids for host location. Psyttalia concolor is a larval pupal endoparasitoid, attacking a number of tephritid flies including B. oleae. In this research, we investigated the olfactory cues routing host location behavior of P. concolor towards B. oleae larvae infesting three different olive cultivars. VOCs from infested and healthy fruits were identified using GC-MS analyses. In two-choice behavioral assays, P. concolor females preferred infested olive cues, which also evoked ovipositional probing by female wasps. GC-MS analysis showed qualitative and quantitative differences among volatiles emitted by infested and healthy olives. Volatile emissions were peculiar for each cultivar analyzed. Two putative HIPVs were detected in infested fruits, regardless of the cultivar, the monoterpene (E-β-ocimene, and the sesquiterpene (E-E-α-farnesene. Our study adds basic knowledge to the behavioral ecology of P. concolor. From an applied point of view, the field application of the above-mentioned VOCs may help to enhance effectiveness of biological control programs and parasitoid mass-rearing techniques.

  1. Challenges in the nutrition and management of herbivores in the temperate zone

    NARCIS (Netherlands)

    Vuuren, van A.M.; Chilibroste, P.

    2013-01-01

    The expected higher global demand for animal proteins and the competition for starch and sugars between food, fuel and feed seem to favour herbivores that convert solar energy captured in fibrous plants into animal products. However, the required higher production level of herbivores questions the

  2. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences

    Directory of Open Access Journals (Sweden)

    Gunbharpur Singh Gill

    2016-03-01

    Full Text Available Low elevation “trailing edge” range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts.

  3. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.

  4. Herbivore handling of a plant's trichome: the case of Heliconius charithonia (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Marcio Z. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Biociencias. Dept. de Botanica, Ecologia e Zoologia]. E-mail: mzc@cb.ufrn.br

    2008-05-15

    Trichomes reduce herbivore attack on plants by physically and/or chemically inhibiting movement or other activities. Despite evidence that herbivores are negatively affected by trichomes there also reports of insect counter-adaptations that circumvent the plant's defense. This paper reports on a study that investigated the likely mechanisms employed by larvae of the nymphalid butterfly, Heliconius charithonia (L.), that allow it to feed on a host that is presumably protected by hooked trichomes (Passiflora lobata (Killip) Hutch). Evidence were gathered using data from direct observations of larval movement and behavior, faeces analysis, scanning electron microscopy of plant surface and experimental analysis of larval movement on plants with and without trichomes (manually removed). The latter involved a comparison with a non specialist congener, Heliconius pachinus Salvin. Observations showed that H. charithonia larvae are capable of freeing themselves from entrapment on trichome tips by physical force. Moreover, wandering larvae lay silk mats on the trichomes and remove their tips by biting. In fact, trichome tips were found in the faeces. Experimental removal of trichomes aided in the movement of the non specialist but had no noticeable effect on the specialist larvae. These results support the suggestion that trichomes are capable of deterring a non specialist herbivore (H. pachinus). The precise mechanisms that allow the success of H. charithonia are not known, but I suggest that a blend of behavioral as well as physical resistance mechanisms is involved. Future studies should ascertain whether larval integument provides physical resistance to trichomes. (author)

  5. Chemical investigations of volatile kairomones produced by Hyphantria cunea (Drury), a host of the parasitoid Chouioia cunea Yang.

    Science.gov (United States)

    Zhu, G; Pan, L; Zhao, Y; Zhang, X; Wang, F; Yu, Y; Fan, W; Liu, Q; Zhang, S; Li, M

    2017-04-01

    In tritrophic 'plants-herbivores-natural enemies' systems, there are relatively few reports concerning the role(s) of kairomones in pupal parasitism. Chouioia cunea Yang (Hymenoptera: Eulophidae), an endoparasitic chalcid wasp, parasitizes pupae of the fall webworm (Hyphantria cunea Drury). The role of host-related kairomones was investigated using electroantennogram (EAG) and behavioral techniques. Chemicals from some host stages (pupae) and host by-products (frass), induced arrestment behavior of female parasitoids, while chemicals from prepupae, were inactive. Gas chromatography-mass spectrometry analysis of volatiles collected from pupae, frass and prepupae using solid-phase microextration revealed seven compounds with carbon chain lengths ranging from C4 to C20. All of the chemicals elicited significant EAG responses in C. cunea. Y-tube olfactometer bioassays demonstrated a significant positive response of mated female C. cunea to 1-dodecene. These data provide a better understanding of the host location mechanisms of pupal parasitoid.

  6. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  7. Dietary patterns of two herbivorous rodents: and Parotomys brantsii ...

    African Journals Online (AJOL)

    Frequency of occurrence of plant species in the diets were compared with availability of the plants in the rodents' habitats. Both rodents are generalist herbivores, eating plants species in proportion to the availability in their habitats. Dietary patterns, diversity of diet and degree of overlap between rodent's diets are a function ...

  8. Large herbivore population performance and climate in a South African semi-arid savanna

    Directory of Open Access Journals (Sweden)

    Armin H. Seydack

    2012-02-01

    Interpretation according to a climate–vegetation response model suggested that acclimation of forage plants to increasing temperature had resulted in temperature-enhanced plant productivity, initially increasing food availability and supporting transient synchronous increases in population abundance of both blue wildebeest and zebra, and selective grazers. As acclimation of plants to concurrently rising minimum (nocturnal temperature (Tmin took effect, adjustments in metabolic functionality occurred involving accelerated growth activity at the cost of storage-based metabolism. Growth-linked nitrogen dilution and reduced carbon-nutrient quality of forage then resulted in phases of subsequently declining herbivore populations. Over the long term (1910–2010, progressive plant functionality shifts towards accelerated metabolic growth rather than storage priority occurred in response to Tmin rising faster than maximum temperature (Tmax, thereby cumulatively compromising the carbon-nutrient quality of forage, a key resource for selective grazers. The results of analyses thus revealed consistency between herbivore population trends and levels of forage quantity and quality congruent with expected plant metabolic responses to climate effects. Thus, according to the climate-vegetation response model, climate effects were implicated as the ultimate cause of large herbivore population performance in space and over time. Conservation implications: In its broadest sense, the objective of this study was to contribute towards the enhanced understanding of landscape-scale functioning of savanna systems with regard to the interplay between climate, vegetation and herbivore population dynamics.

  9. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Science.gov (United States)

    Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  10. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Directory of Open Access Journals (Sweden)

    Liuhua Yan

    Full Text Available In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs in tomato (Solanum lycopersicum provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA. The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8 mutant, which was isolated as a suppressor of (prosystemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against

  11. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Science.gov (United States)

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  13. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Directory of Open Access Journals (Sweden)

    Ole Rechner

    Full Text Available Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm, violet (420 nm, blue (470 nm, or green (515 nm. We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates, and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants over control plants.

  14. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    Science.gov (United States)

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  15. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna.

    Science.gov (United States)

    Palmer, Todd M; Stanton, Maureen L; Young, Truman P; Goheen, Jacob R; Pringle, Robert M; Karban, Richard

    2008-01-11

    Mutualisms are key components of biodiversity and ecosystem function, yet the forces maintaining them are poorly understood. We investigated the effects of removing large mammals on an ant-Acacia mutualism in an African savanna. Ten years of large-herbivore exclusion reduced the nectar and housing provided by plants to ants, increasing antagonistic behavior by a mutualistic ant associate and shifting competitive dominance within the plant-ant community from this nectar-dependent mutualist to an antagonistic species that does not depend on plant rewards. Trees occupied by this antagonist suffered increased attack by stem-boring beetles, grew more slowly, and experienced doubled mortality relative to trees occupied by the mutualistic ant. These results show that large mammals maintain cooperation within a widespread symbiosis and suggest complex cascading effects of megafaunal extinction.

  16. Effects of airborne volatile organic compounds on plants

    International Nuclear Information System (INIS)

    Cape, J.N.

    2003-01-01

    Possible adverse effects of VOCs on vegetation in urban areas cannot be rejected. - Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in

  17. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  18. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator.

    Science.gov (United States)

    Ozawa, Rika; Nishimura, Osamu; Yazawa, Shigenobu; Muroi, Atsushi; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-11-01

    Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent. © 2012 Blackwell Publishing Ltd.

  19. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-01-01

    Full Text Available Green leaf volatiles (GLV prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA. In maize this response is specifically linked to insect elicitor (IE-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA, caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA.

  20. Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity

    OpenAIRE

    Bichlmeier, Marlies

    2017-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), which is essential for SAR signalling. In contrast to SAR, local resistance remains intact in Arabidopsis (Arabidopsis thaliana) eds1-2 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. I utilized the SAR-specific phenotype of the eds1-2 mutant to identify volatile organic compounds (VOCs) related to SAR. To this end, SAR was indu...

  1. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    Science.gov (United States)

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2018-01-01

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community.

    Science.gov (United States)

    Waterton, Joseph; Cleland, Elsa E

    2016-12-01

    Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean-climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early-season growth can enable exotic annual species to preempt space and resources, competitively suppressing later-emerging native species; however, early-emerging individuals may also be more apparent to herbivores. This suggests a potential trade-off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier-emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early-season herbivory on early-active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later-emerging natives. Such a trade-off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous-dominated ecosystems. These results also show how herbivore exclusion favors early-active exotic species in this system, with important implications for management in many areas invaded

  3. Cry-wolf signals emerging from coevolutionary feedbacks in a tritrophic system

    Science.gov (United States)

    Yamauchi, Atsushi; van Baalen, Minus; Kobayashi, Yutaka; Takabayashi, Junji; Shiojiri, Kaori; Sabelis, Maurice W.

    2015-01-01

    For a communication system to be stable, senders should convey honest information. Providing dishonest information, however, can be advantageous to senders, which imposes a constraint on the evolution of communication systems. Beyond single populations and bitrophic systems, one may ask whether stable communication systems can evolve in multitrophic systems. Consider cross-species signalling where herbivore-induced plant volatiles (HIPVs) attract predators to reduce the damage from arthropod herbivores. Such plant signals may be honest and help predators to identify profitable prey/plant types via HIPV composition and to assess prey density via the amount of HIPVs. There could be selection for dishonest signals that attract predators for protection from possible future herbivory. Recently, we described a case in which plants release a fixed, high amount of HIPVs independent of herbivore load, adopting what we labelled a ‘cry-wolf’ strategy. To understand when such signals evolve, we model coevolutionary interactions between plants, herbivores and predators, and show that both ‘honest’ and ‘cry-wolf’ types can emerge, depending on the assumed plant–herbivore encounter rates and herbivore population density. It is suggested that the ‘cry-wolf’ strategy may have evolved to reduce the risk of heavy damage in the future. Our model suggests that eco-evolutionary feedback loops involving a third species may have important consequences for the stability of this outcome. PMID:26538597

  4. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  5. assimilation efficiency in two herbivores, oreochromis niloticus and ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The abilities of two herbivorous animals (Oreochromis niloticus and the larva ... improved lyses of algal cells. ... Thus, more studies to understand how these and other factors affect ... as plant cells are surrounded by cell wall, and.

  6. Complexity of plant volatile-mediated interactions beyond the third trophic level

    NARCIS (Netherlands)

    Poelman, E.H.; Kos, M.

    2016-01-01

    Food chains of plant-associated communities typically reach beyond three trophic levels. The predators and parasitoids in the third trophic level are under attack by top predators or parasitised by hyperparasitoids. These higher trophic level organisms respond to plant volatiles in search of their

  7. PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae)

    NARCIS (Netherlands)

    Gols, R.; Schütte, C.; Stouthamer, R.; Dicke, M.

    2007-01-01

    The predatory mite, Phytoseiulus persimilis is an important biological control agent of herbivorous spider mites. This species is also intensively used in the study of tritrophic effects of plant volatiles in interactions involving plants, herbivores, and their natural enemies. Recently, a novel

  8. 40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Plant volatiles and pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the... pheromone Z-2-isopropenyl-1-methylcyclobutaneethanol; Z-3,3-dimethyl-Δ1,β-cyclohexaneethanol; Z-3,3-dimethyl...

  9. Chronic impacts of invasive herbivores on a foundational forest species: a whole-tree perspective.

    Science.gov (United States)

    Wilson, Claire M; Schaeffer, Robert N; Hickin, Mauri L; Rigsby, Chad M; Sommi, Amanda F; Thornber, Carol S; Orians, Colin M; Preisser, Evan L

    2018-05-05

    Forests make up a large portion of terrestrial plant biomass, and the long-lived woody plants that dominate them possess an array of traits that deter consumption by forest pests. Although often extremely effective against native consumers, invasive species that avoid or overcome these defenses can wreak havoc on trees and surrounding ecosystems. This is especially true when multiple invasive species co-occur, since interactions between invasive herbivores may yield non-additive effects on the host. While the threat posed by invasive forest pests is well known, long-term field experiments are necessary to explore these consumer-host interactions at appropriate spatial and temporal scales. Moreover, it is important to measure multiple variables to get a 'whole-plant' picture of their combined impact. We report the results of a four-year field experiment addressing the individual and combined impacts of two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia externa), on native eastern hemlock (Tsuga canadensis) in southern New England. In 2011, we planted 200 hemlock saplings into a temperate forest understory and experimentally manipulated the presence/absence of both herbivore species; in 2015, we harvested the 88 remaining saplings and assessed plant physiology, growth, and resource allocation. Adelgids strongly affected hemlock growth: infested saplings had lower above/belowground biomass ratios, more needle loss, and produced fewer new needles than control saplings. Hemlock scale did not alter plant biomass allocation or growth, and its co-occurrence did not alter the impact of adelgid. While both adelgid and scale impacted the concentrations of primary metabolites, adelgid effects were more pronounced. Adelgid feeding simultaneously increased free amino acids local to feeding sites and a ~30% reduction in starch. The cumulative impact of adelgid-induced needle loss, manipulation of nitrogen pools, and the loss

  10. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens.

    Science.gov (United States)

    Hol, W H Gera; Bezemer, T Martijn; Biere, Arjen

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens) on plants through induced plant defense. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defense. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defense when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal), plant pathogens (bacterial or fungal), bacterivores (nematode or protozoa), and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defense traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defenses are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens-plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production and defense.

  11. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    Science.gov (United States)

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  12. Olfactory antennal responses of the black vine weevil (Otiorhynchus sulcatus) to plant volatiles

    NARCIS (Netherlands)

    Tol, van R.W.H.M.; Visser, J.H.

    2002-01-01

    Electroantennograms (EAGs) were recorded from the vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) to a broad range of volatile plant compounds. The response profile is restricted to a small number of volatiles that evoke substantial EAGs. Large EAG responses were particularly found

  13. Reduction in health risk induced by semi-volatile organic compounds and metals in a drinking water treatment plant

    International Nuclear Information System (INIS)

    Zhao, F.; Yin, J.; Zhang, X. X.; Chen, Y.; Zhang, Y.; Wu, B.; Li, M.

    2015-01-01

    This study investigated health risk reduction in a drinking water treatment plant of Nanjing City (China) based on chemical detection of 22 semi-volatile organic compounds (SVOCs) and 24 metallic elements in source water and drinking water during 2009–2011. Chemical analysis showed that 15 SVOCs and 9 metals were present in the water. Health risk assessment revealed that hazard quotient of each pollutant and hazard index (HI) of all the detectable pollutants were below 1.00, indicating that the chemicals posed negligible non-carcinogenic risk to local residents. Benzo(a)pyrene may induce carcinogenic risk since its risk index via both oral and dermal exposure exceeded the safety level (1.00E-6), but other SVOCs induced no carcinogenic risk. Total HI of the SVOCs was 1.08E-3 for the source water and 1.56E-3 for the drinking water, suggesting that the used conventional treatment processes (coagulation/sedimentation, sand filtration and chlorine disinfection) cannot effectively reduce the non-carcinogenic risk. The source water had higher carcinogenic risk than the drinking water, but risk index of the drinking water still exceeded 1.00E-6. This study might serve as a basis for health risk assessment of drinking water and also as a benchmark for the authorities to reduce health risk arising from trace-level hazardous pollutants.

  14. Interaction Effect Between Herbivory and Plant Fertilization on Extrafloral Nectar Production and on Seed Traits: An Experimental Study With Ricinus communis (Euphorbiaceae).

    Science.gov (United States)

    De Sibio, P R; Rossi, M N

    2016-08-01

    It is known that the release of volatile chemicals by many plants can attract the natural enemies of herbivorous insects. Such indirect interactions are likely when plants produce nectar from their extrafloral nectaries, and particularly when the production of extrafloral nectar (EFN) is induced by herbivory. In the present study, we conducted experiments to test whether foliar herbivory inflicted by Spodoptera frugiperda Smith (Noctuidae) increases nectar production by extrafloral nectaries on one of its host plants, Ricinus communis L. (Euphorbiaceae). Due to the current economic importance of R. communis, we also investigated whether the following seed traits-water content, dry mass, and essential oil production-are negatively affected by herbivory. Finally, we tested whether or not nectar production and seed traits are influenced by plant fertilization (plant quality). We found that nectar production was increased after herbivory, but it was not affected by the type of fertilization. Seed dry mass was higher in plants that were subjected to full fertilization, without herbivory; plants maintained in low fertilization conditions, however, had higher seed mass when subjected to herbivory. The same inverted pattern was observed for oil production. Therefore, our results suggest that EFN production in R. communis may act as an indirect defense strategy against herbivores, and that there is a trade-off between reproduction and plant growth when low-fertilized plants are subjected to herbivory. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Multi-factor climate change effects on insect herbivore performance

    DEFF Research Database (Denmark)

    Scherber, Christoph; Gladbach, David J; Stevnbak, Karen

    2013-01-01

    The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO...... suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under...... the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen...

  16. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    International Nuclear Information System (INIS)

    Akandeh, M.; Kocheili, F.; Rasekh, A.; Soufbaf, M.

    2017-01-01

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  17. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Akandeh, M.; Kocheili, F.; Rasekh, A. [Dept. of Entomology, Shahid Chamran Univ of Ahvaz (Iran, Islamic Republic of); Soufbaf, M., E-mail: msoufbaf@nrcam.org [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2017-06-15

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  18. Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis.

    Science.gov (United States)

    Krips, O E; Willems, P E; Gols, R; Posthumus, M A; Gort, G; Dicke, M

    2001-07-01

    We investigated whether volatiles produced by spider mite-damaged plants of four gerbera cultivars differ in attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites, and how the mite-induced odor blends differ in chemical composition. The gerbera cultivars differed in resistance, as expressed in terms of spider mite intrinsic rate of population increase (rm). In order of increasing resistance these were Sirtaki, Rondena, Fame, and Bianca. To correct for differences in damage inflicted on the cultivars, we developed a method to compare the attractiveness of the blends, based on the assumption that a larger amount of spider mite damage leads to higher attraction of P persimilis. Spider mite-induced volatiles of cultivars Rondena and Bianca were preferred over those of cultivar Sirtaki. Spider mite-induced volatiles of cultivars Sirtaki and Fame did not differ in attractiveness to P. persimilis. Sirtaki plants had a lower relative production of terpenes than the other three cultivars. This was attributed to a low production of cis-alpha-bergamotene, trans-alpha-bergamotene, trans-beta-bergamotene, and (E)-beta-farnesene. The emission of (E)-beta-ocimene and linalool was lower in Sirtaki and Fame leaves than in Bianca and Rondena. The importance of these chemical differences in the differential attraction of predatory mites is discussed.

  19. An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses

    Science.gov (United States)

    Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. Curiously, attack by even closely related insect pests can result in distinctive levels of induced plant defenses. Despite the...

  20. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Directory of Open Access Journals (Sweden)

    Mitra Shariatinajafabadi

    Full Text Available Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI, has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7. Data were collected over three years (2008-2010. Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%, while the Greenland geese followed an earlier stage (GWI 20-40%. Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration, thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  1. Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods.

    Science.gov (United States)

    Schmidt, Niels M; Mosbacher, Jesper B; Vesterinen, Eero J; Roslin, Tomas; Michelsen, Anders

    2018-04-26

    Snow may prevent Arctic herbivores from accessing their forage in winter, forcing them to aggregate in the few patches with limited snow. In High Arctic Greenland, Arctic hare and rock ptarmigan often forage in muskox feeding craters. We therefore hypothesized that due to limited availability of forage, the dietary niches of these resident herbivores overlap considerably, and that the overlap increases as winter progresses. To test this, we analyzed fecal samples collected in early and late winter. We used molecular analysis to identify the plant taxa consumed, and stable isotope ratios of carbon and nitrogen to quantify the dietary niche breadth and dietary overlap. The plant taxa found indicated only limited dietary differentiation between the herbivores. As expected, dietary niches exhibited a strong contraction from early to late winter, especially for rock ptarmigan. This may indicate increasing reliance on particular plant resources as winter progresses. In early winter, the diet of rock ptarmigan overlapped slightly with that of muskox and Arctic hare. Contrary to our expectations, no inter-specific dietary niche overlap was observed in late winter. This overall pattern was specifically revealed by combined analysis of molecular data and stable isotope contents. Hence, despite foraging in the same areas and generally feeding on the same plant taxa, the quantitative dietary overlap between the three herbivores was limited. This may be attributable to species-specific consumption rates of plant taxa. Yet, Arctic hare and rock ptarmigan may benefit from muskox opening up the snow pack, thereby allowing them to access the plants.

  2. Duration of plant damage by host larvae affects attraction of two parasitoid species (Microplitis croceipes and Cotesia marginiventris) to cotton: implications for interspecific competition.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2014-12-01

    Volatile organic compounds (VOCs) released by herbivore-damaged plants can guide parasitoids to their hosts. The quantity and quality of VOC blends emitted by plants may be affected by the duration of plant damage by herbivores, which could have potential ramifications on the recruitment of competing parasitoids. We used two parasitoid species, Microplitis croceipes and Cotesia marginiventris (Hymenoptera: Braconidae), to address the question of whether duration of plant damage affects parasitoid use of plant VOCs for host location. Both wasp species are larval endoparasitoids of Heliothis virescens (Lepidoptera: Noctuidae), an important pest of cotton. Attraction of the two parasitoid species to odors emitted by undamaged (UD), fresh (6 h infestation) damage (FD), and old (24 h infestation) damage (OD) cotton plants infested by H. virescens larvae was investigated using a headspace volatile collection system coupled with four-choice olfactometer bioassay. Both sexes of M. croceipes showed a preference for FD- and OD-plant odors over UD-plants. On the other hand, more C. marginiventris females were attracted to UD- and FD-plants than to OD-plants. GC/MS analyses showed qualitative and quantitative differences in the VOC profiles of UD, FD, and OD-plants, which may explain the observed preferences of the parasitoids. These results suggest a temporal partitioning in the recruitment of M. croceipes and C. marginiventris to H. virescens-damaged cotton, and may have potential implications for interspecific competition between the two parasitoid species.

  3. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    Science.gov (United States)

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  4. Ecosystem Responses To Plant Phenology Across Scales And Trophic Levels

    Science.gov (United States)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2015-12-01

    Plant phenology in arid and semi-arid ecoregions is constrained by water availability and governs the life history characteristics of primary and secondary consumers. We related the behavior, demography, and distribution of mammalian herbivores and their principal predator to remotely sensed vegetation and climatological indices across the western United States for the period 2000-2014. Across scales, terrain and topographic position moderates the effects of climatological drought on primary productivity, resulting in differential susceptibility among plant functional types to water stress. At broad scales, herbivores tie parturition to moist sites during the period of maximum increase in local forage production. Consequently, juvenile mortality is highest in regions of extreme phenological variability. Although decoupled from primary production by one or more trophic levels, carnivore home range size and density is negatively correlated to plant productivity and growing season length. At the finest scales, predation influences the behavior of herbivore prey through compromised habitat selection, in which maternal females trade nutritional benefits of high plant biomass for reduced mortality risk associated with increased visibility. Climate projections for the western United States predict warming combined with shifts in the timing and form of precipitation. Our analyses suggest that these changes will propagate through trophic levels as increased phenological variability and shifts in plant distributions, larger consumer home ranges, altered migration behavior, and generally higher volatility in wildlife populations. Combined with expansion and intensification of human land use across the region, these changes will likely have economic implications stemming from increased human-wildlife conflict (e.g., crop damage, vehicle collisions) and changes in wildlife-related tourism.

  5. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.

    Science.gov (United States)

    Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen

    2015-05-01

    Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.

  6. Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone.

    Science.gov (United States)

    Sunohara, Yukari; Baba, Yohei; Matsuyama, Shigeru; Fujimura, Kaori; Matsumoto, Hiroshi

    2015-07-01

    Screening and identification of phytotoxic volatile compounds were performed using 71 medicinal plant species to find new natural compounds, and the characterization of the promising compound was investigated to understand the mode of action. The volatile compounds from Asarum sieboldii Miq. showed the strongest inhibitory effect on the hypocotyl growth of lettuce seedlings (Lactuca sativa L.cv. Great Lakes 366), followed by those from Schizonepeta tenuifolia Briquet and Zanthoxylum piperitum (L.) DC.. Gas chromatography-mass spectrometry (GC/MS) identified four volatile compounds, α-pinene (2,6,6-trimethylbicyclo[3.1.1]hept-2-ene), β-pinene (6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane), 3-carene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene), and eucarvone (2,6,6-trimethy-2,4-cycloheptadien-1-one), from A. sieboldii, and three volatile compounds, limonene (1-methyl-4-(1-methylethenyl)-cyclohexene), menthone (5-methyl-2-(propan-2-yl)cyclohexan-1-one), and pulegone (5-methyl-2-propan-2-ylidenecyclohexan-1-one), from S. tenuifolia. Among these volatile compounds, eucarvone, menthone, and pulegone exhibited strong inhibitory effects on both the root and shoot growth of lettuce seedlings. Eucarvone-induced growth inhibition was species-selective. Cell death, the generation of reactive oxygen species (ROS), and lipid peroxidation were induced in susceptible finger millet seedlings by eucarvone treatment, whereas this compound (≤158 μM) did not cause the increase of lipid peroxidation and ROS production in tolerant maize. The results of the present study show that eucarvone can have strong phytotoxic activity, which may be due to ROS overproduction and subsequent oxidative damage in finger millet seedlings.

  7. Herbaceous forage and selection patterns by ungulates across varying herbivore assemblages in a South African savanna

    NARCIS (Netherlands)

    Treydte, A.C.; Baumgartner, S.; Heitkonig, I.M.A.; Grant, C.C.; Getz, W.M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African

  8. Plant stress signalling: understanding and exploiting plant-plant interactions.

    Science.gov (United States)

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  9. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Tom O G Tytgat

    Full Text Available Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA. Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.

  10. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    Directory of Open Access Journals (Sweden)

    Pengyong Zhou

    2018-04-01

    Full Text Available Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA, jasmonoyl-isoleucine conjugate (JA-Ile, ethylene and H2O2 but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants. White-backed planthopper (WBPH, Sogatella furcifera nymphs and gravid females showed a preference for feeding and/or oviposition on control plants: survival rates were better and more eggs were laid than on bismerthiazol-treated plants. Moreover, bismerthiazol treatment also increased both the parasitism rate of WBPH eggs laid on plants in the field by Anagrus nilaparvatae, and also the resistance of rice to the brown planthopper (BPH Nilaparvata lugens and the striped stem borer (SSB Chilo suppressalis. These findings suggest that the bactericide bismerthiazol can induce the direct and/or indirect resistance of rice to multiple insect pests, and so can be used as a broad-spectrum chemical elicitor.

  11. Feeding the enemy: loss of nectar and nectaries to herbivores reduces tepal damage and increases pollinator attraction in Iris bulleyana.

    Science.gov (United States)

    Zhu, Ya-Ru; Yang, Min; Vamosi, Jana C; Armbruster, W Scott; Wan, Tao; Gong, Yan-Bing

    2017-08-01

    Floral nectar usually functions as a pollinator reward, yet it may also attract herbivores. However, the effects of herbivore consumption of nectar or nectaries on pollination have rarely been tested. We investigated Iris bulleyana , an alpine plant that has showy tepals and abundant nectar, in the Hengduan Mountains of SW China. In this region, flowers are visited mainly by pollen-collecting pollinators and nectarivorous herbivores. We tested the hypothesis that, in I. bulleyana , sacrificing nectar and nectaries to herbivores protects tepals and thus enhances pollinator attraction. We compared rates of pollination and herbivory on different floral tissues in plants with flowers protected from nectar and nectary consumption with rates in unprotected control plants. We found that nectar and nectaries suffered more herbivore damage than did tepals in natural conditions. However, the amount of tepal damage was significantly greater in the flowers with protected nectaries than in the controls; this resulted in significant differences in pollinator visitation rates. These results provide the first evidence that floral nectar and nectaries may be 'sacrificed' to herbivores, leading to reduced damage to other floral tissues that are more important for reproduction. © 2017 The Author(s).

  12. Novel bioassay demonstrates attraction of the white potato cyst nematode Globodera pallida (Stone) to non-volatile and volatile host plant cues.

    Science.gov (United States)

    Farnier, Kevin; Bengtsson, Marie; Becher, Paul G; Witzell, Johanna; Witzgall, Peter; Manduríc, Sanja

    2012-06-01

    Potato cyst nematodes (PCNs) are a major pest of solanaceous crops such as potatoes, tomatoes, and eggplants and have been widely studied over the last 30 years, with the majority of earlier studies focusing on the identification of natural hatching factors. As a novel approach, we focused instead on chemicals involved in nematode orientation towards its host plant. A new dual choice sand bioassay was designed to study nematode responses to potato root exudates (PRE). This bioassay, conducted together with a traditional hatching bioassay, showed that biologically active compounds that induce both hatching and attraction of PCNs can be collected by water extraction of incised potato roots. Furthermore, our results demonstrated that PCN also were attracted by potato root volatiles. Further work is needed to fully understand how PCNs use host plant chemical cues to orientate towards hosts. Nevertheless, the simple attraction assay used in this study provides an important tool for the identification of host-emitted attractants.

  13. Neimark-Sacker Bifurcation and Chaos Control in a Fractional-Order Plant-Herbivore Model

    Directory of Open Access Journals (Sweden)

    Qamar Din

    2017-01-01

    Full Text Available This work is related to dynamics of a discrete-time 3-dimensional plant-herbivore model. We investigate existence and uniqueness of positive equilibrium and parametric conditions for local asymptotic stability of positive equilibrium point of this model. Moreover, it is also proved that the system undergoes Neimark-Sacker bifurcation for positive equilibrium with the help of an explicit criterion for Neimark-Sacker bifurcation. The chaos control in the model is discussed through implementation of two feedback control strategies, that is, pole-placement technique and hybrid control methodology. Finally, numerical simulations are provided to illustrate theoretical results. These results of numerical simulations demonstrate chaotic long-term behavior over a broad range of parameters. The computation of the maximum Lyapunov exponents confirms the presence of chaotic behavior in the model.

  14. Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores.

    Science.gov (United States)

    Berenbaum, M

    1978-08-11

    When the linear furanocoumarin xanthotoxin, found in many plants of the families Rutaceae and Umbelliferae, was administered to larvae of Spodoptera eridania, a generalist insect herbivore, it displayed toxic properties lacking in its biosynthetic precursor umbelliferone. Reduced toxicity observed in the absence of ultraviolet light is consistent with the known mechanism of photoinactivation of DNA by furanocoumarins through ultraviolet-catalyzed cross-linkage of strands. Thus, the ability of a plant to convert umbelliferone to linear furanocoumarins appears to confer broader protection against insect herbivores.

  15. Tracking the elusive history of diversification in plant-herbivorous insect-parasitoid food webs: insights from figs and fig wasps.

    Science.gov (United States)

    Kjellberg, Finn; Proffit, Magali

    2016-02-01

    The food webs consisting of plants, herbivorous insects and their insect parasitoids are a major component of terrestrial biodiversity. They play a central role in the functioning of all terrestrial ecosystems, and the number of species involved is mind-blowing (Nyman et al. 2015). Nevertheless, our understanding of the evolutionary and ecological determinants of their diversity is still in its infancy. In this issue of Molecular Ecology, Sutton et al. (2016) open a window into the comparative analysis of spatial genetic structuring in a set of comparable multitrophic models, involving highly species-specific interactions: figs and fig wasps. This is the first study to compare genetic structure using population genetics tools in a fig-pollinating wasp (Pleistodontes imperialis sp1) and its main parasitoid (Sycoscapter sp.A). The fig-pollinating wasp has a discontinuous spatial distribution that correlates with genetic differentiation, while the parasitoid bridges the discontinuity by parasitizing other pollinator species on the same host fig tree and presents basically no spatial genetic structure. The full implications of these results for our general understanding of plant-herbivorous insect-insect parasitoids diversification become apparent when envisioned within the framework of recent advances in fig and fig wasp biology. © 2016 John Wiley & Sons Ltd.

  16. Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses

    NARCIS (Netherlands)

    Takayama, K.; Jansen, R.M.C.; Henten, van E.J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Nishina, H.

    2012-01-01

    Measurement of volatile organic compounds (VOCs) emitted by plants allows us to monitor plant health status without touching the plant. To bring this technique a step further towards a practical plant diagnosis technique for greenhouse crop production, we have defined a numerical index named

  17. Time-scale effects in the interaction between a large and a small herbivore

    NARCIS (Netherlands)

    Kuijper, D. P. J.; Beek, P.; van Wieren, S.E.; Bakker, J. P.

    2008-01-01

    In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition

  18. Is the Performance of a Specialist Herbivore Affected by Female Choices and the Adaptability of the Offspring?

    Directory of Open Access Journals (Sweden)

    Tarcísio Visintin da Silva Galdino

    Full Text Available The performance of herbivorous insects is related to the locations of defenses and nutrients found in the different plant organs on which they feed. In this context, the females of herbivorous insect species select certain parts of the plant where their offspring can develop well. In addition, their offspring can adapt to plant defenses. A system where these ecological relationships can be studied occurs in the specialist herbivore, Tuta absoluta, on tomato plants. In our experiments we evaluated: (i the performance of the herbivore T. absoluta in relation to the tomato plant parts on which their offspring had fed, (ii the spatial distribution of the insect stages on the plant canopy and (iii the larval resistance to starvation and their walking speed at different instar stages. We found that the T. absoluta females preferred to lay their eggs in the tomato plant parts where their offspring had greater chances of success. We verified that the T. absoluta females laid their eggs on both sides of the leaves to better exploit resources. We also observed that the older larvae (3rd and 4th instars moved to the most nutritious parts of the plant, thus increasing their performance. The T. absoluta females and offspring (larvae were capable of identifying plant sites where their chances of better performance were higher. Additionally, their offspring (larvae spread across the plant to better exploit the available plant nutrients. These behavioral strategies of T. absoluta facilitate improvement in their performance after acquiring better resources, which help reduce their mortality by preventing the stimulation of plant defense compounds and the action of natural enemies.

  19. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense

    Science.gov (United States)

    Sugimoto, Koichi; Matsui, Kenji; Iijima, Yoko; Akakabe, Yoshihiko; Muramoto, Shoko; Ozawa, Rika; Uefune, Masayoshi; Sasaki, Ryosuke; Alamgir, Kabir Md.; Akitake, Shota; Nobuke, Tatsunori; Galis, Ivan; Aoki, Koh; Shibata, Daisuke; Takabayashi, Junji

    2014-01-01

    Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense. PMID:24778218

  20. The importance of ecological costs for the evolution of plant defense against herbivory.

    Science.gov (United States)

    van Velzen, Ellen; Etienne, Rampal S

    2015-05-07

    Plant defense against herbivory comes at a cost, which can be either direct (reducing resources available for growth and reproduction) or indirect (through reducing ecological performance, for example intraspecific competitiveness). While direct costs have been well studied in theoretical models, ecological costs have received almost no attention. In this study we compare models with a direct trade-off (reduced growth rate) to models with an ecological trade-off (reduced competitive ability), using a combination of adaptive dynamics and simulations. In addition, we study the dependence of the level of defense that can evolve on the type of defense (directly by reducing consumption, or indirectly by inducing herbivore mortality (toxicity)), and on the type of herbivore against which the plant is defending itself (generalists or specialists). We find three major results: First, for both direct and ecological costs, defense only evolves if the benefit to the plant is direct (through reducing consumption). Second, the type of cost has a major effect on the evolutionary dynamics: direct costs always lead to a single optimal strategy against herbivores, but ecological costs can lead to branching and the coexistence of non-defending and defending plants; however, coexistence is only possible when defending against generalist herbivores. Finally, we find that fast-growing plants invest less than slow-growing plants when defending against generalist herbivores, as predicted by the Resource Availability Hypothesis, but invest more than slow-growing plants when defending against specialists. Our results clearly show that assumptions about ecological interactions are crucial for understanding the evolution of defense against herbivores. Copyright © 2015 Elsevier Ltd. All rights reserved.