WorldWideScience

Sample records for hemoglobin-mediated lipid oxidation

  1. Iron-mediated lipid oxidation in 70% fish oil-in-ater emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2012-01-01

    The objective of this study was to investigate the protective effect of five different emulsifiers on iron‐mediated lipid oxidation in 70% fish oil‐in‐water emulsions. The emulsifiers were either based on protein (whey protein isolate and sodium caseinate) or based on phospholipid (soy lecithin...... and two milk phospholipids with different phospholipid contents, MPL20 and MPL75). Lipid oxidation was studied at pH 4.5 and 7.0, and results were compared to lipid oxidation in neat fish oil. Results showed that all emulsions oxidised more than neat oil. Furthermore, emulsions prepared with proteins...

  2. The dynamic of lipid oxidation in human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    Both endogenous and exogenous lipid levels may be regulators of total lipid oxidation in skeletal muscles. We studied the dynamics of lipid oxidation in human myotubes established from healthy, lean subjects exposed to acutely and chronically increased palmitate concentrations. The intramyocellular...... triacylglycerol content increased with chronic palmitate exposure. Both, ectopically increased intracellular and extracellular lipid levels were simultaneously oxidized and could partly suppress each other's oxidation. Overall, the highest acute palmitate treatments stimulated fatty acid oxidation whilst...... the highest chronic treatments decreased total lipid oxidation. Intracellular lipids showed a more complete oxidation than exogenous lipids. Endogenous lipids reduced insulin-mediated glucose oxidation. Thus, both endogenous and exogenous lipid concentrations regulated each other's oxidation and total lipid...

  3. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss.

    Science.gov (United States)

    Graham, Lucia S; Parhami, Farhad; Tintut, Yin; Kitchen, Christina M R; Demer, Linda L; Effros, Rita B

    2009-11-01

    Osteoporosis is a systemic disease that is associated with increased morbidity, mortality and health care costs. Whereas osteoclasts and osteoblasts are the main regulators of bone homeostasis, recent studies underscore a key role for the immune system, particularly via activation-induced T lymphocyte production of receptor activator of NFkappaB ligand (RANKL). Well-documented as a mediator of T lymphocyte/dendritic cell interactions, RANKL also stimulates the maturation and activation of bone-resorbing osteoclasts. Given that lipid oxidation products mediate inflammatory and metabolic disorders such as osteoporosis and atherosclerosis, and since oxidized lipids affect several T lymphocyte functions, we hypothesized that RANKL production might also be subject to modulation by oxidized lipids. Here, we show that short term exposure of both unstimulated and activated human T lymphocytes to minimally oxidized low density lipoprotein (LDL), but not native LDL, significantly enhances RANKL production and promotes expression of the lectin-like oxidized LDL receptor-1 (LOX-1). The effect, which is also observed with 8-iso-Prostaglandin E2, an inflammatory isoprostane produced by lipid peroxidation, is mediated via the NFkappaB pathway, and involves increased RANKL mRNA expression. The link between oxidized lipids and T lymphocytes is further reinforced by analysis of hyperlipidemic mice, in which bone loss is associated with increased RANKL mRNA in T lymphocytes and elevated RANKL serum levels. Our results suggest a novel pathway by which T lymphocytes contribute to bone changes, namely, via oxidized lipid enhancement of RANKL production. These findings may help elucidate clinical associations between cardiovascular disease and decreased bone mass, and may also lead to new immune-based approaches to osteoporosis.

  4. β-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins

    Directory of Open Access Journals (Sweden)

    Khan Tayeba

    2004-11-01

    Full Text Available Abstract Background Recent studies suggest that hypercholesterolemia, an established risk factor for atherosclerosis, is also a risk factor for Alzheimer's disease. The myeloid scavenger receptor CD36 binds oxidized lipoproteins that accumulate with hypercholesterolemia and mediates their clearance from the circulation and peripheral tissues. Recently, we demonstrated that CD36 also binds fibrillar β-amyloid and initiates a signaling cascade that regulates microglial recruitment and activation. As increased lipoprotein oxidation and accumulation of lipid peroxidation products have been reported in Alzheimer's disease, we investigated whether β-amyloid altered oxidized lipoprotein clearance via CD36. Methods The availability of mice genetically deficient in class A (SRAI & II and class B (CD36 scavenger receptors has facilitated studies to discriminate their individual actions. Using primary microglia and macrophages, we assessed the impact of Aβ on: (a cholesterol ester accumulation by GC-MS and neutral lipid staining, (b binding, uptake and degradation of 125I-labeled oxidized lipoproteins via CD36, SR-A and CD36/SR-A-independent pathways, (c expression of SR-A and CD36. In addition, using mice with targeted deletions in essential kinases in the CD36-signaling cascade, we investigated whether Aβ-CD36 signaling altered metabolism of oxidized lipoproteins. Results In primary microglia and macrophages, Aβ inhibited binding, uptake and degradation of oxidized low density lipoprotein (oxLDL in a dose-dependent manner. While untreated cells accumulated abundant cholesterol ester in the presence of oxLDL, cells treated with Aβ were devoid of cholesterol ester. Pretreatment of cells with Aβ did not affect subsequent degradation of oxidized lipoproteins, indicating that lysosomal accumulation of Aβ did not disrupt this degradation pathway. Using mice with targeted deletions of the scavenger receptors, we demonstrated that Aβ inhibited oxidized

  5. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  6. Oxidative stress and hemoglobin-cholesterol adduct in renal patients with different LDL phenotypes.

    Science.gov (United States)

    Miljkovic, Milica; Kotur-Stevuljevic, Jelena; Stefanovic, Aleksandra; Zeljkovic, Aleksandra; Vekic, Jelena; Gojkovic, Tamara; Bogavac-Stanojevic, Natasa; Nikolic, Milan; Simic-Ogrizovic, Sanja; Spasojevic-Kalimanovska, Vesna; Jelic-Ivanovic, Zorana

    2016-10-01

    Unfavorable lipid profile is a major risk factor for cardiovascular disease in renal pathology. In this study, we compared chronic renal patients and healthy controls with different LDL phenotypes (A or B) in respect of various biochemical parameters related to cardiovascular disease. Oxidative stress and anti-oxidative defense parameters [thiobarbituric acid-reacting substances (TBARS), total oxidative status (TOS), total anti-oxidative status (TAS), total protein sulfhydryl (-SH) groups], as well as red blood cell cholesterol distribution were assessed in 40 renal patients and 40 control subjects by standardized assays. LDL particle diameters were determined by polyacrylamide gradient gel electrophoresis. LDL particles are subdivided according to their size into large LDL A phenotype (diameter >25.5 nm) and small LDL B phenotype (diameter ≤25.5 nm). Renal patients with LDL A phenotype had increased oxidative stress (TOS: p LDL phenotype. A notable decrease in hemoglobin-cholesterol adduct was detected in patients with LDL A phenotype (p LDL B phenotype (p LDL B phenotype was characterized with increased TBARS (p LDL A phenotype in control group. Increased oxidative stress, decreased anti-oxidative defense followed with unfavorable changes in hemoglobin-cholesterol binding capacity, could have important influence on cardiovascular disease risk in renal patients regardless of LDL phenotype.

  7. Oxidative stress in preeclampsia and the role of free fetal hemoglobin

    Directory of Open Access Journals (Sweden)

    Stefan Rocco Hansson

    2015-01-01

    Full Text Available Preeclampsia is a leading cause of pregnancy complications and affects 3–7 % of pregnant women. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on hemoglobin-induced oxidative stress. Furthermore, we also suggest hemoglobin as a potential target for therapy. Gene and protein profiling studies have shown increased expression and accumulation of free fetal hemoglobin in the preeclamptic placenta. Predominantly due to oxidative damage to the placental barrier, fetal hemoglobin leaks over to the maternal circulation. Free hemoglobin and its metabolites are toxic in several ways; a ferrous hemoglobin (Fe2+ binds strongly to the vasodilator nitric oxide and reduces the availability of free nitric oxide, which results in vasoconstriction, b hemoglobin (Fe2+ with bound oxygen spontaneously generates free oxygen radicals and c the heme groups create an inflammatory response by inducing activation of neutrophils and cytokine production. The endogenous protein α1-microglobulin, with radical and heme binding properties, has shown both ex vivo and in vivo to have the ability to counteract free hemoglobin-induced placental and kidney damage. Oxidative stress in general, and more specifically fetal hemoglobin-induced oxidative stress, could play a key role in the pathology of preeclampsia seen both in the placenta and ultimately in the maternal endothelium.

  8. Biphasic oxidation of oxy-hemoglobin in bloodstains

    NARCIS (Netherlands)

    Bremmer, Rolf H.; de Bruin, Daniel M.; de Joode, Maarten; Buma, Wybren Jan; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2)) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of

  9. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    NARCIS (Netherlands)

    Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G.

    2011-01-01

    Background In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions

  10. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  11. An Efficient Glycoblotting-Based Analysis of Oxidized Lipids in Liposomes and a Lipoprotein.

    Science.gov (United States)

    Furukawa, Takayuki; Hinou, Hiroshi; Takeda, Seiji; Chiba, Hitoshi; Nishimura, Shin-Ichiro; Hui, Shu-Ping

    2017-10-05

    Although widely occurring lipid oxidation, which is triggered by reactive oxygen species (ROS), produces a variety of oxidized lipids, practical methods to efficiently analyze oxidized lipids remain elusive. Herein, it is shown that the glycoblotting platform can be used to analyze oxidized lipids. Analysis is based on the principle that lipid aldehydes, one of the oxidized lipid species, can be captured selectively, enriched, and detected. Moreover, 3-methyl-1-p-tolyltriazene (MTT) methylates phosphoric and carboxylic acids, and this MTT-mediated methylation is, in combination with conventional tandem mass spectrometry (MS/MS) analysis, an effective method for the structural analysis of oxidized lipids. By using three classes of standards, liposomes, and a lipoprotein, it is demonstrated that glycoblotting represents a powerful approach for focused lipidomics, even in complex macromolecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Receptor targeting of hemoglobin mediated by the haptoglobins

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Moestrup, Søren Kragh

    2009-01-01

    Haptoglobin, the haptoglobin-hemoglobin receptor CD163, and the heme oxygenase-1 are proteins with a well-established function in the clearance and metabolism of "free" hemoglobin released during intravascular hemolysis. This scavenging system counteracts the potentially harmful oxidative and NO......-scavenging effects associated with "free" hemoglobin, and, furthermore, elicits an anti-inflammatory response. In the late primate evolution, haptoglobin variants with distinct functions have arisen, including haptoglobin polymers and the haptoglobin-related protein. The latter associates with a subspecies of high......-density lipoprotein (HDL) particles playing a crucial role in the innate immunity against certain trypanosome parasites. Recent studies have elucidated this fairly sophisticated immune defense mechanism that takes advantage of a trypanosomal haptoglobin-hemoglobin receptor evolved to supply the parasite with heme...

  13. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria.

    Science.gov (United States)

    Xiao, Mengqing; Zhong, Huiqin; Xia, Lin; Tao, Yongzhen; Yin, Huiyong

    2017-10-01

    Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin.

    Science.gov (United States)

    Taverne, Yannick J; de Wijs-Meijler, Daphne; Te Lintel Hekkert, Maaike; Moon-Massat, Paula F; Dubé, Gregory P; Duncker, Dirk J; Merkus, Daphne

    2017-05-01

    Hemoglobin-based oxygen carrier (HBOC)-201 is a cell-free modified hemoglobin solution potentially facilitating oxygen uptake and delivery in cardiovascular disorders and hemorrhagic shock. Clinical use has been hampered by vasoconstriction in the systemic and pulmonary beds. Therefore, we aimed to 1 ) determine the possibility of counteracting HBOC-201-induced pressor effects with either adenosine (ADO) or nitroglycerin (NTG); 2 ) assess the potential roles of nitric oxide (NO) scavenging, reactive oxygen species (ROS), and endothelin (ET) in mediating the observed vasoconstriction; and 3 ) compare these effects in resting and exercising swine. Chronically instrumented swine were studied at rest and during exercise after administration of HBOC-201 alone or in combination with ADO. The role of NO was assessed by supplementation with NTG or administration of the eNOS inhibitor N ω -nitro-l-arginine. Alternative vasoactive pathways were investigated via intravenous administration of the ET A /ET B receptor blocker tezosentan or a mixture of ROS scavengers. The systemic and to a lesser extent the pulmonary pressor effects of HBOC-201 could be counteracted by ADO; however, dosage titration was very important to avoid systemic hypotension. Similarly, supplementation of NO with NTG negated the pressor effects but also required titration of the dose. The pressor response to HBOC-201 was reduced after eNOS inhibition and abolished by simultaneous ET A /ET B receptor blockade, while ROS scavenging had no effect. In conclusion, the pressor response to HBOC-201 is mediated by vasoconstriction due to NO scavenging and production of ET. Further research should explore the effect of longer-acting ET receptor blockers to counteract the side effect of hemoglobin-based oxygen carriers. NEW & NOTEWORTHY Hemoglobin-based oxygen carrier (HBOC)-201 can disrupt hemodynamic homeostasis, mimicking some aspects of endothelial dysfunction, resulting in elevated systemic and pulmonary blood

  15. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  16. Molecular Mechanism of AHSP-Mediated Stabilization of Alpha-Hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Feng,L.; Gell, D.; Zhou, S.; Gu, L.; Kong, Y.; Li, J.; Hu, M.; Yan, N.; Lee, C.; et al.

    2005-01-01

    Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.

  17. Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Mur, Luis A J

    2011-01-01

    Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have...... at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses....

  18. Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor.

    Science.gov (United States)

    Liu, Hui; Guo, Kai; Duan, Congyue; Dong, Xiaonan; Gao, Jiaojiao

    2017-01-15

    Hollow TiO 2 modified reduced graphene oxide microspheres (hollow TiO 2 -rGO microspheres or H-TiO 2 -rGO MS) have been synthesized and then be used to immobilize hemoglobin (Hb) to fabricate a mediator-free biosensor. The morphology and structure of hollow TiO 2 -rGO microspheres were characterized by scanning electron microscopy, transmission electronic microscopy and X-ray diffraction. Results of spectroscopy and electrochemistry tests revealed that hollow TiO 2 -rGO microsphere is an excellent immobilization matrix with biocompatibility for redox protein, affording good protein bioactivity and stability. The hollow TiO 2 -rGO microspheres with special structure and component enhance the immobilization efficiency of proteins and facilitate the direct electron transfer, which result in the better H 2 O 2 detection performance-the wide linear range of 0.1-360μM for H 2 O 2 (sensitivity of 417.6 μA mM -1 cm -2 ) and the extremely low detection limit of 10nM for H 2 O 2 . Moreover, the hollow microsphere can provide a protective microenvironment for Hb to make the as-prepared biosensor improve long-term stability. The as-prepared biosensor retains 95.4% of the initial response to H 2 O 2 after 60-d storage. Hence, this work suggests that if can be fabricated a mediator-free biosensor, hollow TiO 2 -rGO microspheres will find wide potential applications in environmental analysis and biomedical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    Science.gov (United States)

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  20. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays.

    Directory of Open Access Journals (Sweden)

    Hock Eng Khoo

    Full Text Available Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.

  1. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    Science.gov (United States)

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  2. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Science.gov (United States)

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Biphasic oxidation of oxy-hemoglobin in bloodstains.

    Directory of Open Access Journals (Sweden)

    Rolf H Bremmer

    Full Text Available BACKGROUND: In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2 to met-hemoglobin (met-Hb and hemichrome (HC. The fractions of HbO(2, met-Hb and HC in a bloodstain can be used for age determination of bloodstains. In this study, we further analyze the conversion of HbO(2 to met-Hb and HC, and determine the effect of temperature and humidity on the conversion rates. METHODOLOGY: The fractions of HbO(2, met-Hb and HC in a bloodstain, as determined by quantitative analysis of optical reflectance spectra (450-800 nm, were measured as function of age, temperature and humidity. Additionally, Optical Coherence Tomography around 1300 nm was used to confirm quantitative spectral analysis approach. CONCLUSIONS: The oxidation rate of HbO(2 in bloodstains is biphasic. At first, the oxidation of HbO(2 is rapid, but slows down after a few hours. These oxidation rates are strongly temperature dependent. However, the oxidation of HbO(2 seems to be independent of humidity, whereas the transition of met-Hb into HC strongly depends on humidity. Knowledge of these decay rates is indispensable for translating laboratory results into forensic practice, and to enable bloodstain age determination on the crime scene.

  4. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins

    DEFF Research Database (Denmark)

    Pattison, David I; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Oxidation of low-density lipoproteins (LDL) is believed to contribute to the increased uptake of LDL by macrophages, which is an early event in atherosclerosis. Hypochlorous acid (HOCl) has been implicated as one of the major oxidants involved in these processes. In a previous study, the rates...... of reaction of HOCl with the reactive sites in proteins were investigated (Pattison, D. I., and Davies, M. J. (2001) Chem. Res. Toxicol. 14, 1453-1464). The work presented here expands on those studies to determine absolute second-order rate constants for the reactions of HOCl with various lipid components...... nitrogen- and carbon-centered radicals. Subsequent reactions of these species may induce oxidation of the LDL lipid component. In contrast, phosphoryl-choline reacted much more slowly (k Reaction of HOCl with 3-pentenoic acid was used as a model of lipid double bonds...

  5. The Mediator Complex and Lipid Metabolism.

    Science.gov (United States)

    Zhang, Yi; Xiaoli; Zhao, Xiaoping; Yang, Fajun

    2013-03-01

    The precise control of gene expression is essential for all biological processes. In addition to DNA-binding transcription factors, numerous transcription cofactors contribute another layer of regulation of gene transcription in eukaryotic cells. One of such transcription cofactors is the highly conserved Mediator complex, which has multiple subunits and is involved in various biological processes through directly interacting with relevant transcription factors. Although the current understanding on the biological functions of Mediator remains incomplete, research in the past decade has revealed an important role of Mediator in regulating lipid metabolism. Such function of Mediator is dependent on specific transcription factors, including peroxisome proliferator-activated receptor-gamma (PPARγ) and sterol regulatory element-binding proteins (SREBPs), which represent the master regulators of lipid metabolism. The medical significance of these findings is apparent, as aberrant lipid metabolism is intimately linked to major human diseases, such as type 2 diabetes and cardiovascular disease. Here, we briefly review the functions and molecular mechanisms of Mediator in regulation of lipid metabolism.

  6. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid...

  7. Biochemistry and pathology of radical-mediated protein oxidation

    DEFF Research Database (Denmark)

    Dean, R T; Fu, S; Stocker, R

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several catego...

  8. Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic.

    Science.gov (United States)

    Tu, Jing; Bussmann, Jeroen; Du, Guangsheng; Gao, Yue; Bouwstra, Joke A; Kros, Alexander

    2018-05-30

    Hemoglobin (Hb)-loaded mesoporous silica nanoparticles (MSNs) coated with a lipid bilayer (LB-MSNs) were investigated as an erythrocyte mimic. MSNs with a large average pore size (10 nm) act as a rigid core and provide a protective environment for Hb encapsulated inside the pores. The colloidal stability of Hb-loaded MSNs was enhanced upon the application of a lipid bilayer, through fusion of PEGylated liposomes onto the exterior surface of Hb-loaded MSNs. The morphology and mesostructure of the MSNs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and surface area analysis. The Hb loading capacity (mg/g) in MSNs was studied by thermogravimetric analysis (TGA). UV-Vis absorption spectroscopy revealed that Hb inside MSNs had an identical, but slightly broadened peak in the Soret region compared to free Hb. Furthermore the encapsulated Hb exhibits similar peroxidase-like activity in catalyzing the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) with hydrogen peroxide. The introduction of a supported lipid bilayer (LB) demonstrated the potential to prevent premature Hb release (the burst release decreased from 25.50 ± 0.33% to 6.73 ± 0.83%) and increased the colloidal stability of the Hb-loaded MSNs (hydrodynamic diameter remained ∼250 nm for at least one week). The in vivo systemic circulation and biodistribution of LB-MSNs were studied in optically transparent zebrafish embryos, revealing that LB-MSNs have the potential to act as an erythrocyte mimic in transfusion therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane.

    Science.gov (United States)

    Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu

    2010-12-01

    Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.

  10. Hydroxylamine-induced oxidation of ferrous carbonylated truncated hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni is limited by carbon monoxide dissociation.

    Science.gov (United States)

    Ascenzi, Paolo; Ciaccio, Chiara; Gasperi, Tecla; Pesce, Alessandra; Caporaso, Lucia; Coletta, Massimo

    2017-08-01

    Hydroxylamine (HA) is an oxidant of ferrous globins and its action has been reported to be inhibited by CO, even though this mechanism has not been clarified. Here, kinetics of the HA-mediated oxidation of ferrous carbonylated Mycobacterium tuberculosis truncated hemoglobin N and O (Mt-trHbN(II)-CO and Mt-trHbO(II)-CO, respectively) and Campylobacter jejuni truncated hemoglobin P (Cj-trHbP(II)-CO), at pH 7.2 and 20.0 °C, are reported. Mixing Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO solution with the HA solution brings about absorption spectral changes reflecting the disappearance of the ferrous carbonylated derivatives with the concomitant formation of the ferric species. HA oxidizes irreversibly Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO with the 1:2 stoichiometry. The dissociation of CO turns out to be the rate-limiting step for the oxidation of Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO by HA. Values of the second-order rate constant for HA-mediated oxidation of Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO range between 8.8 × 10 4 and 8.6 × 10 7 M -1 s -1 , reflecting different structural features of the heme distal pocket. This study (1) demonstrates that the inhibitory effect of CO is linked to the dissociation of this ligand, giving a functional basis to previous studies, (2) represents the first comparative investigation of the oxidation of ferrous carbonylated bacterial 2/2 globins belonging to the N, O, and P groups by HA, (3) casts light on the correlation between kinetics of HA-mediated oxidation and carbonylation of globins, and (4) focuses on structural determinants modulating the HA-induced oxidation process.

  11. Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins

    NARCIS (Netherlands)

    Neumann, S.

    2008-01-01

    Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins In this thesis, I studied the intra- and intercellular transport of lipidic molecules, in particular glycosphingolipids and lipid-modified proteins. The first part focuses on the intracellular transport of

  12. The Nernst equation applied to oxidation-reduction reactions in myoglobin and hemoglobin. Evaluation of the parameters.

    Science.gov (United States)

    Saroff, Harry A

    Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.

  13. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  14. The role of nitric oxide and hemoglobin in plant development and morphogenesis

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Shah, Jay K; Igamberdiev, Abir U

    2013-01-01

    effects on control of plant growth and development, such as shoot and root architecture. All plants are able to express non-symbiotic hemoglobins at low concentration. Their function is generally not related to oxygen transport or storage; instead they effectively oxidize NO to NO3– and thereby control...... the local cellular NO concentration. In this review, we analyze available data on the role of NO and plant hemoglobins in morphogenetic processes in plants. The comparison of the data suggests that hemoglobin gene expression in plants modulates development and morphogenesis of organs, such as roots...... and shoots, through the localized control of NO, and that hemoglobin gene expression should always be considered a modulating factor in processes controlled directly or indirectly by NO in plants....

  15. Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State

    Directory of Open Access Journals (Sweden)

    Orn-uma Yanpanitch

    2015-01-01

    Full Text Available Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE, which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR or vitamin E (Vit-E, and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P<0.01 in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE.

  16. Study of inhibition on lipid oxidation of irradiated pork

    International Nuclear Information System (INIS)

    Ha Yiming

    2006-03-01

    It was studied that the effect factors of irradiation dose, preservation temperature, oxygen content and antioxidant on lipid oxidation of irradiated pork. A mechanism was explained on lipid oxidation of irradiated pork. The results showed that irradiation might aggravate lipid oxidation of pork and that decreased preservation temperature and oxygen content of the packaging, added antioxidant also could effectively inhibit lipid oxidation of irradiated pork. (authors)

  17. Surface Lipids as Multifunctional Mediators of Skin Responses to Environmental Stimuli

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2010-01-01

    Full Text Available Skin surface lipid (SSL film is a mixture of sebum and keratinocyte membrane lipids, protecting skin from environment. Its composition is unique for the high percentage of long chain fatty acids, and of the polyterpenoid squalene, absent in other human tissues, and in non-human Primates sebum. Here, the still incomplete body of information on SSL as mediators of external chemical, physical, and microbial signals and stressors is revised, focusing on the central event of the continuous oxidative modification induced by the metabolic activity of residential and pathological microbial flora, natural or iatrogenic UV irradiation, exposure to chemicals and cosmetics. Once alpha-tocopherol and ubiquinol-10 antioxidant defences of SSL are overcome, oxidation of squalene and cholesterol gives rise to reactive by-products penetrating deeper into skin layers, to mediate local defensive inflammatory, photo-protective, immune reactions or, at higher concentrations, inducing local but also systemic immune depression, ultimately implicating skin cancerogenesis. Qualitative modifications of SSL represent a pathogenetic sign of diagnostic value in dermatological disorders involving altered sebum production, like pytiriasis versicolor, acne, atopic or seborrheic dermatitis, as well as photo-aging. Achievements of nutriceutical interventions aimed at restoring normal SSL composition and homeostasis are discussed, as feasible therapeutic goals and major means of photo-protection.

  18. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice.

    Directory of Open Access Journals (Sweden)

    Marco Sisignano

    Full Text Available Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs. However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.

  19. Radiation induced lipid oxidation in fish

    International Nuclear Information System (INIS)

    Snauwaert, F.; Tobback, P.; Maes, E.; Thyssen, J.

    1977-01-01

    Oxidative rancidity in herring and redfish was studied as a function of the applied irradiation dose, the storage time and storage temperature and the packaging conditions. - Measurements of the TBA (thiobarbituric acid) value and the peroxide value were used to evaluate the degree of oxidation of lipids, and were related with sensory scores. - Especially for the fatty fish species (herring) irradiation accelerated lipid oxidation and induced oxidative rancidity. Irradiation of vacuum-packed herring fillets and subsequent storage at +2 C seems to be an interesting process. For the experiments conducted on a semi-fatty fish (redfish), oxidative rancidity was never the limiting factor for organoleptic acceptability. (orig.) [de

  20. Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin

    Science.gov (United States)

    Wang, Xiaoguang; Hargrove, Mark S.

    2013-01-01

    Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554

  1. Combined crystallographic and spectroscopic analysis of Trematomus bernacchii hemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins.

    Science.gov (United States)

    Merlino, Antonello; Vitagliano, Luigi; Howes, Barry D; Verde, Cinzia; di Prisco, Guido; Smulevich, Giulietta; Sica, Filomena; Vergara, Alessandro

    2009-12-01

    Recent studies have demonstrated that hemoglobins isolated from Antarctic fish undergo peculiar oxidation processes. Here we show, by combining crystallographic and spectroscopic data, that the oxidation pathway of Trematomus bernacchii hemoglobin (HbTb) is distinct from that observed for the major component of Trematomus newnesi (Hb1Tn), despite the high sequence identity of the two proteins and structural similarity of their ferrous and fully oxidized states. Resonance Raman analysis of HbTb autoxidation upon air-exposure reveals the absence of the oxidized pentacoordinated state that was observed for Hb1Tn. The HbTb oxidation pathway is characterized by two ferric species: an aquo hexacoordinated high spin state and a bis-histidyl hexacoordinated low spin form, which appear in the early stages of the oxidation process. The high resolution structure of an intermediate along the oxidation pathway has been determined at 1.4 A resolution. The analysis of the electron density of the heme pocket shows, for both the alpha and the beta iron, the coexistence of multiple binding states. In this partially oxidized form, HbTb exhibits significant deviations from the canonical R state both at the local and global level. The analysis of these modifications highlights the structural correlation between key functional regions of the protein.

  2. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)

    2017-02-17

    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  3. FET immunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers

    International Nuclear Information System (INIS)

    Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S.

    2012-01-01

    A micro FET-based immunosensor was developed for the determination of hemoglobin-A1c (HbA1c). The HbA1c/hemoglobin ratio is an important index in diabetes control. The sensor was fabricated by Complementary Metal-Oxide-Semiconductor Transistor (CMOS) and Micro Electronic Mechanical System (MEMS) techniques. The antibodies were immobilized via mixed self-assembled monolayers (SAMs) on a gold nanofilm. The nanofilm was deposited on a gold electrode by seed-mediated growth and gave a uniform and well distributed coverage. Nonspecific sites and interferences by noise were eliminated by covering the AuNPs with mixed SAMs. Compared to the immunosensor fabricated via the mixed SAMs method without gold nanofilm, the immunosensor displays a more than 2-fold sensitivity. The immunosensor is capable of detecting HbA1c and hemoglobin in hemolyzed and diluted whole blood, and results showed good agreement with the established clinical method. (author)

  4. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    , but the mechanisms regulating fuel preferences remain unclear. During intense exercise, oxidation of long-chain fatty acids (LCFAs) decreases, and the major control is likely to be at the mitochondrial level. Potential mitochondrial sites for control of lipid oxidation include transport of LCFAs into mitochondrial......-oxidation by redox state is thought to be an important mechanism for the slowing of lipid oxidation during intensive exercise....

  5. Host Lipid Mediators in Leprosy: The Hypothesized Contributions to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Silva

    2018-02-01

    Full Text Available The spectrum of clinical forms observed in leprosy and its pathogenesis are dictated by the host’s immune response against Mycobacterium leprae, the etiological agent of leprosy. Previous results, based on metabolomics studies, demonstrated a strong relationship between clinical manifestations of leprosy and alterations in the metabolism of ω3 and ω6 polyunsaturated fatty acids (PUFAs, and the diverse set of lipid mediators derived from PUFAs. PUFA-derived lipid mediators provide multiple functions during acute inflammation, and some lipid mediators are able to induce both pro- and anti-inflammatory responses as determined by the cell surface receptors being expressed, as well as the cell type expressing the receptors. However, little is known about how these compounds influence cellular immune activities during chronic granulomatous infectious diseases, such as leprosy. Current evidence suggests that specialized pro-resolving lipid mediators (SPMs are involved in the down-modulation of the innate and adaptive immune response against M. leprae and that alteration in the homeostasis of pro-inflammatory lipid mediators versus SPMs is associated with dramatic shifts in the pathogenesis of leprosy. In this review, we discuss the possible consequences and present new hypotheses for the involvement of ω3 and ω6 PUFA metabolism in the pathogenesis of leprosy. A specific emphasis is placed on developing models of lipid mediator interactions with the innate and adaptive immune responses and the influence of these interactions on the outcome of leprosy.

  6. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation.

    Science.gov (United States)

    Miller, Yury I; Shyy, John Y-J

    2017-02-01

    Oxidized low-density lipoprotein (OxLDL), which contains hundreds of different oxidized lipid molecules, is a hallmark of hyperlipidemia and atherosclerosis. The same oxidized lipids found in OxLDL are also formed in apoptotic cells, and are present in tissues as well as in the circulation under pathological conditions. In many disease contexts, oxidized lipids constitute damage signals, or patterns, that activate pattern-recognition receptors (PRRs) and significantly contribute to inflammation. Here, we review recent discoveries and emerging trends in the field of oxidized lipids and the regulation of inflammation, focusing on oxidation products of polyunsaturated fatty acids esterified into cholesteryl esters (CEs) and phospholipids (PLs). We also highlight context-dependent activation and biased agonism of Toll-like receptor-4 (TLR4) and the NLRP3 inflammasome, among other signaling pathways activated by oxidized lipids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2011-01-01

    Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid......, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within...... a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation....

  8. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s

    DEFF Research Database (Denmark)

    Pattison, David I; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur in the pres......Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur...... in the presence of molecular O(2) and redox-active metal ions (e.g. Fe(3+), Cu(2+), Cr(6+)), which are known to increase the rate of DOPA oxidation. The majority of oxidative damage appears to be mediated by reactive oxygen species (ROS) such as superoxide and HO(.) radicals, though other DOPA oxidation products...

  9. Effect of combined gliclazide/metformin treatment on oxidative stress, lipid profile, and hepatorenal functions in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Mansour Alsharidah

    2018-01-01

    Full Text Available Background: Type 2 diabetes is a chronic condition that requires pharmacotherapy interventions. Metformin and gliclazide are widely used drugs in monotherapy. However, their complementary action made utilization of the combination of these drugs an appealing approach. Aims: The study compared major therapeutic potentials of combined metformin/gliclazide treatment over metformin monotherapy based on the following parameters: oxidative stress, lipid profile, and hepatorenal functions. Subjects and methods: This is a comparative study was conducted from March 2015 to March 2016. The study screened 80 type 2 diabetic patients, of which 40 patients underwent combined metformin + gliclazide therapy (500 mg BD + 80 mg OD, respectively. The other 40 were matched for age and duration of diabetes mellitus with the previous group and received metformin monotherapy (500 mg BD. The levels of fasting blood glucose (FBG, total glycated hemoglobin (HbA1c, lipid peroxidation, total antioxidant capacity, serum creatinine, aspartate and alanine transaminases, total cholesterol, triglycerides, high-density lipoproteins, and low-density lipoproteins were measured according to the standard methods. Results: Oxidative stress, lipid profile, and hepatorenal functions were comparable in patients of both groups. However, patients on metformin treatment showed significantly lower levels of FBG [7.61 (6.70–8.89 mmol/L vs. 9.00 (7.30–10.68 mmol/L; P = .022] and HBA1c [7.00 (6.40–7.65% vs. 8.20 (7.20–9.75%; P < .001] compared to those on combined therapy. Conclusion: Oxidative stress, lipids profile, and hepatorenal functions were not different in patients who were on combined metformin/gliclazide therapy and compared to those metformin alone. In contrast, glycemic control was poor in the diabetic patients undergoing combined therapy. Keywords: Diabetes mellitus, Gliclazide, Glucose, Lipids, Metformin, Oxidative stress

  10. Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast

    Science.gov (United States)

    Guggenheim, James A.; Allen, Thomas J.; Plumb, Andrew; Zhang, Edward Z.; Rodriguez-Justo, Manuel; Punwani, Shonit; Beard, Paul C.

    2015-05-01

    Lymph nodes play a central role in metastatic cancer spread and are a key clinical assessment target. Abnormal node vascularization, morphology, and size may be indicative of disease but can be difficult to visualize with sufficient accuracy using existing clinical imaging modalities. To explore the potential utility of photoacoustic imaging for the assessment of lymph nodes, images of ex vivo samples were obtained at multiple wavelengths using a high-resolution three-dimensional photoacoustic scanner. These images showed that hemoglobin based contrast reveals nodal vasculature and lipid-based contrast reveals the exterior node size, shape, and boundary integrity. These two sources of complementary contrast may allow indirect observation of cancer, suggesting a future role for photoacoustic imaging as a tool for the clinical assessment of lymph nodes.

  11. Effect of low levels of lipid oxidation on the curvature, dynamics, and permeability of lipid bilayers and their interactions with cationic nanoparticles

    Science.gov (United States)

    Lee, Hwankyu; Malmstadt, Noah

    2018-04-01

    Lipid bilayers composed of saturated and unsaturated lipids, oxidized lipids, and cholesterol at concentrations of 0–18 mol% oxidized lipid were simulated, showing that the presence of oxidized lipid increases bilayer disorder, curvature, and lateral dynamics at low oxidized-lipid concentrations of 18 mol% or less. The aldehyde terminal of a shortened oxidized-lipid tail tends to interact with water and thus bends toward the bilayer-water interface, in agreement with previous experiments and simulations. In particular, water molecules pass through the oxidized bilayer without pore formation, implying passive permeability. A single nanoparticle, which consists of 300 polystyrene (PS) chains with cationic terminals, added to this bilayer simulation induces negative bilayer curvature and inserts to the bilayer, regardless of the oxidized-lipid concentration. Hydrophobic monomers and cationic terminals of the PS particle interact respectively with lipid tails and headgroups, leading to the wrapping of either lipid monolayer or bilayer along the particle surface. These results indicate that lipid oxidation increases membrane curvature and permeability even at such a low concentration of oxidized lipid, which supports the experimental observations regarding the passive permeability of oxidized bilayer, and also that oxidized lipids of low concentration do not significantly influence the insertion of a cationic PS particle to the bilayer.

  12. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

    Science.gov (United States)

    Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P

    2015-12-01

    Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.

  13. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  14. Lipid oxidation in omega-3 emulsions prepared with milk proteins

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    An increasing body of evidence supports the health beneficial effects of omega-3 polyunsaturated fatty acids. Therefore, incorporation of marine oils into foods has also gained an increasing interest. However, the highly unsaturated lipids present in marine oils are prone to lipid oxidation......, and their addition to foods is therefore limited by the development of unpleasant off-flavors. Hence, efficient strategies are necessary to protect the lipids and thereby make fish oil-enriched food products successful in the marketplace. In an attempt to increase the oxidative stability of fish oil-enriched food...... stable product. Thus, a better understanding of factors influencing lipid oxidation in delivery emulsions themselves is therefore needed to understand the differences observed between food systems. In oil-in-water emulsions, lipid oxidation is expected to be initiated at the oil-water interface...

  15. The antidiabetic effect of L-carnitine in rats: the role of nitric oxide system

    Directory of Open Access Journals (Sweden)

    Shaghayegh Hajian-Shahri

    2017-11-01

    Full Text Available Background: Nowadays, the use of L-carnitine in the treatment of diabetes is increasing. This study was conducted to investigate the effect of co-administration of L-arginine (precursor for the synthesis of nitric oxide and nitro-L-arginine (nitric oxide synthesis inhibitor on antidiabetic activity of L-carnitine in diabetic rats. Materials and Methods: In this study, 50 male rats weighing 180-201g were divided into five groups: (1 non diabetic control rats; (2 untreated diabetic rats; (3 diabetic rats treated with L-carnitine 300 mg/kg (4; diabetic rats treated with L-carnitine 300 mg/kg + L-arginine 300 mg/kg; and (5 diabetic rats treated with L-carnitine (300 mg/kg + nitro-L-arginine (1mg/kg. Type 1 diabetes was induced by a single intraperitoneal injection of 110 mg/kg body weight alloxan. After 30 days, liver malondialdehyde levels, lipid profile, serum glucose, and glycated hemoglobin serum levels were measured. Results: Blood glucose, liver enzymes, glycated hemoglobin, and liver malondialdehyde levels significantly decreased in diabetic rats treated with L-carnitine compared to the untreated diabetic group (P<0.05. The co-administration of L-arginine and L-carnitine led to a significant decrease in glycated hemoglobin levels and serum glucose, in a manner similar to the group received only L-carnitine. Also, L-arginine and nitro-l-arginine had similar effects on liver lipid peroxidation and serum biochemical parameters. Conclusion: The results suggest that the hypoglycemic effect of L-carnitine is mediated independently from nitric oxide pathways. The interaction between L-carnitine and L-arginine may not be synergistic. So, their combined administration is not recommended for the diabetic patients.

  16. Personal PM2.5 exposure and markers of oxidative stress in blood

    DEFF Research Database (Denmark)

    Sørensen, Mette; Daneshvar, Bahram; Hansen, Max

    2003-01-01

    Ambient particulate air pollution assessed as outdoor concentrations of particulate matter less than or equal to 2.5 micro m in diameter (PM(2.5)) in urban background has been associated with cardiovascular diseases at the population level. However, the significance of individual exposure...... and the involved mechanisms remain uncertain. We measured personal PM(2.5) and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We...... analyzed protein oxidation in terms of gamma-glutamyl semialdehyde in hemoglobin (HBGGS) and 2-aminoadipic semialdehyde in hemoglobin (HBAAS) and plasma proteins (PLAAS), and lipid peroxidation was measured as malondialdehyde (MDA) in plasma. Median exposures were 16.1 micro g/m(3) for personal PM(2.5...

  17. Personal PM2.5 exposure and markers of oxidative stress in blood

    DEFF Research Database (Denmark)

    Sørensen, Mettte; Daneshvar, Bahram; Hansen, Max

    2003-01-01

    wAmbient particulate air pollution assessed as outdoor concentrations of particulate matter less than or equal to 2.5 mum in diameter (PM2.5) in urban background has been associated with cardiovascular diseases at the population level. However, the significance of individual exposure...... and the involved mechanisms remain uncertain. We measured personal PM2.5 and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We...... analyzed protein oxidation in terms of gamma-glutamyl semialdehyde in hemoglobin (HBGGS) and 2-aminoadipic semialdehyde in hemoglobin (HBAAS) and plasma proteins (PLAAS), and lipid peroxidation was measured as malondialdehyde (MDA) in plasma. Median exposures were 16.1 mug/m(3) for personal PM2.5 exposure...

  18. The dual effects of nitrite on hemoglobin-dependent redox reactions.

    Science.gov (United States)

    Lu, Naihao; Chen, Chao; He, Yingjie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2014-08-31

    Evidence to support the role of heme proteins-dependent reactions as major inducers of oxidative damage is increasingly present. Nitrite (NO2(-)) is one of the major end products of NO metabolism, and from the daily consumption. Although the biological significance of heme proteins/NO2(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO2(-) on heme proteins-dependent redox reactions have been greatly underestimated. In this study, we investigated the influence of NO2(-) on met-hemoglobin (Hb)-dependent oxidative and nitrative stress. It was found that NO2(-) effectively reduced cytotoxic ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. However, the presence of NO2(-) surprisingly exerted pro-oxidant effect on Hb-H2O2-induced protein (bovine serum albumin, enolase) oxidation at low concentrations and enhanced the loss of HepG2 cell viability. In the reduction of ferryl Hb to ferric state, NO2(-) was decreased and oxidized to a nitrating agent NO2, Tyr12 and Tyr191 in enolase were subsequently nitrated. In contrast to the frequently inhibitive effect of nitrotyrosine, NO2(-)-triggered tyrosine nitration might play an important role in enolase activation. These data provided novel evidence that the dietary intake and potential therapeutic application of NO2(-) would possess anti- and pro-oxidant activities through interfering in hemoglobin-dependent redox reactions. Besides the classic role in protein tyrosine nitration, the dual effects on hemoglobin-triggered oxidative stress may provide new insights into the physiological and toxicological implications of NO2(-) with heme proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    Energy Technology Data Exchange (ETDEWEB)

    Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P. [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Kovalevsky, Andrey Y. [Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Guo, Jingshu; Seaver, Sean [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Langan, Paul [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hanson, B. Leif [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States)

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.

  20. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    Science.gov (United States)

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  1. Oxygen binding to nitric oxide marked hemoglobin

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Ribeiro, P.C.; Bemski, G.

    1979-04-01

    Electron spin resonance spectra of organic phosphate free human hemoglobin marked with nitric oxide at the sixth coordination position of one of the four hemes allow to observe the transition from the tense (T) to the relaxed (R) conformation, as a function of parcial oxygen pressure. The spectra are composites of contributions from α sub(T), α sub(R) and β chains spectra, showing the presence of only two conformations: T and R. In the absence of organic phosphates NO binds to α and β chains with the same probability, but in the presence of phosphates NO combines preferentially with α chains. The dissociation of NO proceeds at least an order of magnitude faster in T than in R configuration. (author) [pt

  2. Effects of atopic dermatitis and gender on sebum lipid mediator and fatty acid profiles

    Science.gov (United States)

    Lipid mediator metabolism in skin is altered in some diseases. If mediators in skin secretions are influenced by skin health, they may provide useful clinical matrices with low subject burden. While lipid mediators in sweat can be altered by disease, the influences of skin diseases on sebum lipid me...

  3. [Effects of a lipid-based nutrient supplement on hemoglobin levels and anthropometric indicators in children from five districts in Huánuco Peru].

    Science.gov (United States)

    Vargas-Vásquez, Alejandro; Bado, Ricardo; Alcázar, Lorena; Aquino, Oscar; Rodríguez, Amelia; Novalbos, José Pedro

    2015-01-01

    Objectives . To determine the effect of consumption of a lipid-based nutrient supplement (LNS) on hemoglobin levels, anemia and anthropometric indicators in children aged six to eleven months old in five districts in the province of Ambo in the region of Huanuco, Peru. A pre-experimental, pre-post study was performed. The study population included children aged six to eleven months old in 19 health facilities in five districts with very high vulnerability to chronic malnutrition in the province of Ambo, Huanuco. Data from 147 children who received the lipid-based nutrient supplement (LNS) from six to eleven months old were obtained. The mean hemoglobin significantly increased by 0.67 g/dL (panemia dropped by 27 percentage points (panemia in children under twelve months, which might constitute an effective alternative to prevent and control childhood anemia.

  4. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean...... both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous...... lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between beta-oxidation and citric acid cycle in obese diabetic myotubes....

  5. Control of lipid oxidation in extruded salmon jerky snacks.

    Science.gov (United States)

    Kong, Jian; Perkins, L Brian; Dougherty, Michael P; Camire, Mary Ellen

    2011-01-01

    A shelf-life study was conducted to evaluate the effect of antioxidants on oxidative stability of extruded jerky-style salmon snacks. Deterioration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) due to lipid oxidation is a major concern for this healthy snack. A control jerky with no added antioxidants and 4 jerkies with antioxidants (rosemary, mixed tocopherols, tertiary butylhydroquinone, and ascorbyl palmitate) added as 0.02% of the lipid content were extruded in duplicate in a Coperion ZSK-25 twin screw extruder. Salmon jerkies from each formulation were placed in 3 mil barrier pouches, flushed with nitrogen, and stored at 35 °C and 75% relative humidity. Lipid oxidation was evaluated as by peroxide value and malonaldehyde content. Other chemical analyses included total fatty acid composition, lipid content, moisture, water activity, pH, and salt. Astaxanthin and CIE L*, a*, b* color were also analyzed at 4-wk intervals. Rosemary inhibited peroxide formation better than did other antioxidants at week 8; no treatment inhibited malonaldehyde levels. All jerkies had lower astaxanthin levels after 8 wk, but rosemary-treated jerky had higher pigment concentrations than did the control at weeks 4 and 8. Protection of omega-3 lipids in these extruded jerkies must be improved to offer consumers a convenient source of these healthful lipids. Practical Application: Salmon flesh can be extruded to produce a jerky that provides 410 mg of omega-3 lipids per serving. Natural antioxidants such as rosemary should be added at levels over 0.02% of the lipid content to help control lipid oxidation. Astaxanthin and CIE a* values correlated well with lipid stability and could be used to monitor quality during storage if initial values are known.

  6. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  7. Myotoxic reactions to lipid-lowering therapy are associated with altered oxidation of fatty acids.

    Science.gov (United States)

    Phillips, Paul S; Ciaraldi, Theodore P; Kim, Dong-Lim; Verity, M Anthony; Wolfson, Tanya; Henry, Robert R

    2009-02-01

    Despite exceptional efficacy and safety, fear of muscle toxicity remains a major reason statins are underutilized. Evidence suggests that statin muscle toxicity may be mediated by abnormalities in lipid metabolism. To test the hypothesis that myotubes from patients intolerant of lipid-lowering therapies have abnormal fatty acid oxidation (FAO) responses we compared muscle from 11 subjects with statin intolerance (Intolerant) with muscle from seven statin-naive volunteers undergoing knee arthroplasty (Comparator). Gross muscle pathology was graded and skeletal muscle cell cultures were produced from each subject. FAO was assessed following treatment with increasing statin concentrations. There was no difference in muscle biopsy myopathy scores between the groups. Basal octanoate oxidation was greater in Intolerant than in Comparator subjects (P = 0.03). Lovastatin-stimulated palmitate oxidation tended to be greater for Intolerant compared to Control subjects' myotubes (P = 0.07 for 5 microM and P = 0.06 for 20 microM lovastatin). In conclusion abnormalities in FAO of Intolerant subjects appear to be an intrinsic characteristic of these subjects that can be measured in their cultured myotubes.

  8. Direct sGC activation bypasses no scavenging reactions of intravascular free oxy-hemoglobin and limits vasoconstriction

    NARCIS (Netherlands)

    N.J.H. Raat (Nicolaas); D.M. Tabima (D. Marcela); P. Specht (Patricia); J. Tejero (Jesús); M.P. Champion (Michael); D.B. Kim-Shapiro (Daniel); J.G. Baust (John ); E.G. Mik (Egbert); M. Hildesheim (Mariana); J.-P. Stasch (Johannes-Peter); E.-M. Becker (Eva-Maria); H. Truebel (Hubert); M.T. Gladwin (Mark)

    2013-01-01

    textabstractAims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by

  9. Hemoglobin binding of aromatic amines: molecular dosimetry and quantitative structure-activity relationships for N-oxidation.

    Science.gov (United States)

    Sabbioni, G

    1993-01-01

    Aromatic amines are important intermediates in industrial manufacturing. N-Oxidation to N-hydroxyarylamines is a key step in determining the genotoxic properties of aromatic amines. N-Hydroxyarylamines can form adducts with DNA, with tissue proteins, and with the blood proteins albumin and hemoglobin in a dose-dependent manner. The determination of hemoglobin adducts is a useful tool for biomonitoring exposed populations. We have established the hemoglobin binding index (HBI) [(mmole compound/mole hemoglobin)/(mmole compound/kg body weight)] of several aromatic amines in female Wistar rats. Including the values from other researchers obtained in the same rat strain, the logarithm of hemoglobin binding (logHBI) was plotted against the following parameters: the sum of the Hammett constants(sigma sigma = sigma p + sigma m), pKa, logP (octanol/water), the half-wave oxidation potential (E1/2), and the electronic descriptors of the amines and their corresponding nitrenium ions obtained by semi-empirical calculations (MNDO, AMI, and PM3), such as atomic charge densities, energies of the highest occupied molecular orbit and lowest occupied molecular orbit and their coefficients, the bond order of C-N, the dipole moments, and the reaction enthalpy [MNDOHF, AM1HF or PM3HF = Hf(nitrenium) - Hf(amine)]. The correlation coefficients were determined from the plots of all parameters against log HBI for all amines by means of linear regression analysis. The amines were classified in three groups: group 1, all parasubstituted amines (maximum, n = 9); group 2, all amines with halogens (maximun, n = 11); and group 3, all amines with alkyl groups (maximum, n = 13).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319626

  10. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    OpenAIRE

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respo...

  11. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response

    International Nuclear Information System (INIS)

    Wang Gangduo; Cai Ping; Ansari, G.A.S.; Khan, M. Firoze

    2007-01-01

    Reactive oxygen and nitrogen species (RONS) are implicated in the pathogenesis of several autoimmune diseases. Also, increased lipid peroxidation and protein nitration are reported in systemic autoimmune diseases. Lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind proteins covalently, but their potential to elicit an autoimmune response and contribution to disease pathogenesis remain unclear. Similarly, nitration of protein could also contribute to disease pathogenesis. To assess the status of lipid peroxidation and/or RONS, autoimmune-prone female MRL+/+ mice (5-week old) were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 48 weeks (0.5 mg/ml via drinking water), and formation of antibodies to LPDA-protein adducts was followed in the sera of control and TCE-treated mice. TCE treatment led to greater formation of both anti-MDA- and -HNE-protein adduct antibodies and higher serum iNOS and nitrotyrosine levels. The increase in TCE-induced oxidative stress was associated with increases in anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies. These findings suggest that TCE exposure not only leads to oxidative/nitrosative stress, but is also associated with induction/exacerbation of autoimmune response in MRL+/+ mice. Further interventional studies are needed to establish a causal role of RONS in TCE-mediated autoimmunity

  12. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  13. Lipid Oxidation in Carriers of Lecithin: Cholesterol Acyltransferase Gene Mutations

    NARCIS (Netherlands)

    Holleboom, Adriaan G.; Daniil, Georgios; Fu, Xiaoming; Zhang, Renliang; Hovingh, G. Kees; Schimmel, Alinda W.; Kastelein, John J. P.; Stroes, Erik S. G.; Witztum, Joseph L.; Hutten, Barbara A.; Tsimikas, Sotirios; Hazen, Stanley L.; Chroni, Angeliki; Kuivenhoven, Jan Albert

    2012-01-01

    Objective-Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT

  14. Lipid Oxidation in Carriers of Lecithin : Cholesterol Acyltransferase Gene Mutations

    NARCIS (Netherlands)

    Holleboom, Adriaan G.; Daniil, Georgios; Fu, Xiaoming; Zhang, Renliang; Hovingh, G. Kees; Schimmel, Alinda W.; Kastelein, John J. P.; Stroes, Erik S. G.; Witztum, Joseph L.; Hutten, Barbara A.; Tsimikas, Sotirios; Hazen, Stanley L.; Chroni, Angeliki; Kuivenhoven, Jan Albert

    2012-01-01

    OBJECTIVE: Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT

  15. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The relationship between vegetables and fruits intake and glycosylated hemoglobin values, lipids profiles and nitrogen status in type II inactive diabetic patients

    Directory of Open Access Journals (Sweden)

    Marjan Tabesh

    2013-01-01

    Conclusions : Intake of vegetables and fruits may reduce the glycosylated hemoglobin, therefore choosing the appropriate diet with high fruits and vegetables may help to develop antioxidant defense and reduce the HbA1C in diabetic patients but it did not have any impact on lipids profiles, BUN/creatinine and urine protein 24 h.

  17. Zinc in the prevention of Fe2initiated lipid and protein oxidation

    Directory of Open Access Journals (Sweden)

    M. PAOLA ZAGO

    2000-01-01

    Full Text Available In the present study we characterized the capacity of zinc to protect lipids and proteins from Fe2+-initiated oxidative damage. The effects of zinc on lipid oxidation were investigated in liposomes composed of brain phosphatidylcholine (PC and phosphatidylserine (PS at a molar relationship of 60:40 (PC:PS, 60:40. Lipid oxidation was evaluated as the oxidation of cis-parinaric acid or as the formation of 2-thiobarbituric acid-reactive substances (TBARS. Zinc protected liposomes from Fe2+ (2.5-50 muM-supported lipid oxidation. However, zinc (50 muM did not prevent the oxidative inactivation of glutamine synthelase and glucose 6-phosphate dehydrogenase when rat brain superntants were oxidized in the presence of 5 muM Fe2+ and 0.5 mM H2O2 .We also studied the interactions of zinc with epicatechin in the prevention of liid oxidation in liposomes. The simulaneous addition of 0.5 muM epicatechin (EC and 50 muM zinc or EC separately. Zinc (50 muM also protecte liposomes from the stimulatory effect of aluminum on Fe2+-initiated lipid oxidation. Zinc could play an important role as an antioxidant in biological systems, replacing iron and other metals with pro-oxidant activity from binding sites and interacting with other components of the oxidant defense system.

  18. Characteristic emission in glutaraldehyde polymerized hemoglobin

    International Nuclear Information System (INIS)

    Ma Li; Wang Xiaojun

    2011-01-01

    Hemoglobin with different modifications has been investigated using spectroscopic techniques. A new emission at around 371 nm has been observed under excitation of 305 nm from glutaraldehyde polymerized human hemoglobin. Intensity and peak position of the emission are dependent on both oxidation state and ligand environment and the emission has been identified from the hemoglobin oligomer.

  19. Development of Volatile Compounds during Hydrolysis of Porcine Hemoglobin with Papain

    Directory of Open Access Journals (Sweden)

    Kathrine Holmgaard Bak

    2018-02-01

    Full Text Available There is a growing market for the use of hydrolysates from animal side-streams for production of high-protein supplements. However, there can be issues with development of off-flavors, either due to the raw material in question or due to the hydrolysis process itself. This study examined the development of volatile compounds during hydrolysis of hemoglobin. Briefly, porcine hemoglobin was hydrolyzed by 0.5% papain for up to 5 h, and the development of volatile compounds was analyzed via gas chromatography-mass spectrometry. The results showed that there was significant development of a number of volatile compounds with time, e.g., certain Maillard reaction and lipid oxidation products, which are likely candidates for the aroma development during hydrolysis. Furthermore, it was shown that development of a number of the volatiles was due to the hydrolysis process, as these compounds were not found in a control without enzyme.

  20. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment

    Science.gov (United States)

    Markworth, James F.; Vella, Luke; Lingard, Benjamin S.; Tull, Dedreia L.; Rupasinghe, Thusitha W.; Sinclair, Andrew J.; Maddipati, Krishna Rao

    2013-01-01

    Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0–3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a

  1. Mediator oxidation systems in organic electrosynthesis

    International Nuclear Information System (INIS)

    Ogibin, Yurii N; Elinson, Michail N; Nikishin, Gennady I

    2009-01-01

    The data on the use of mediator oxidation systems activated by electric current (anodic or parallel anodic and cathodic) in organic electrosynthesis are considered and generalised. Electrochemical activation of these systems permits successful application of catalytic versions and easy scaling of mediator-promoted processes. Chemical and environmental advantages of electrochemical processes catalysed by mediator oxidation systems are demonstrated. Examples of the application of organic and inorganic mediators for the oxidation of various classes of organic compounds under conditions of electrolysis are given.

  2. Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase.

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2015-02-01

    We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. Published by Elsevier Ireland Ltd.

  3. Insulin-like Growth Factor I Reduces Lipid Oxidation and Foam Cell Formation via Downregulation of 12/15-lipoxygenase

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2014-01-01

    Objective We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe−/− mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. Approach and Results We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe−/− mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Conclusions Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. PMID:25549319

  4. Packaging and irradiation effects on lipid oxidation and volatiles in pork patties

    International Nuclear Information System (INIS)

    Ahn, D.U.; Olson, D.G.; Lee, J.I.; Jo, C.; Wu, C.; Chen, X.

    1998-01-01

    Raw-meat patties were prepared from three pork muscles, irradiated in different packaging environments, and stored for 0 or 3 days before cooking. Lipid oxidation by-products were formed in the raw meat during storage and the baseline lipid oxidation data of raw meat was used to measure the progression of lipid oxidation after cooking. Thiobarbituric acid-reactive substances (TBARS) and volatiles data indicated that preventing oxygen exposure after cooking was more important for cooked meat quality than packaging, irradiation, or storage conditions of raw meat. Propanal, pentanal, hexanal, 1-pentanol, and total volatiles correlated highly (P 0.01) with TBARS values of cooked meat. Hexanal and total volatiles represented the lipid oxidation status better than any other individual volatile components

  5. Investigation of Lipid Oxidation in the Raw Materials of a Topical Skin Formulation: A Topical Skin Formulation Containing a High Lipid Content

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Taylor, Richard; Madsen, Robert

    2018-01-01

    Several studies have demonstrated that lipid oxidation often occurs in topical skin formulations which can affect product odor (both positively and negatively). Furthermore, odor detection threshold values and odor descriptors of identified volatile oxidation products in cleansing and skin cream...... formulation prototypes were recently determined by a trained sensory panel at the Technical University of Denmark in the Division of Food Technology. In this study, we investigated lipid oxidation in a prototype skin cream formulation as well as in selected cosmetic skin care raw materials. Lipid oxidation...... was also identified. In addition, the concentrations of several well-known lipid oxidation products increased during storage and were suggested to originate primarily from rice bran wax, which oxidized more readily than other raw materials due to its unsaturated nature....

  6. Advances in NMR Spectroscopy for Lipid Oxidation Assessment

    Science.gov (United States)

    Although there are many analytical methods developed for the assessment of lipid oxidation, different analytical methods often give different, sometimes even contradictory, results. The reason for this inconsistency is that although there are many different kinds of oxidation products, most methods ...

  7. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... by affecting the preferential adsorption of whey protein components at the interface. The aim of the study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared with 1% whey protein having either a high concentration of α-lactalbumin, a high concentration of β-lactoglobulin or equal...... amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative...

  8. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    Science.gov (United States)

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Hoon [Cheongju Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.

  10. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    International Nuclear Information System (INIS)

    Kang, Jung Hoon

    2013-01-01

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD

  11. Lipid fluidity at different regions in LDL and HDL of β-thalassemia/Hb E patients

    International Nuclear Information System (INIS)

    Morales, Noppawan Phumala; Charlermchoung, Chalermkhwan; Luechapudiporn, Rataya; Yamanont, Paveena; Fucharoen, Suthat; Chantharaksri, Udom

    2006-01-01

    Atherosclerosis-related vascular complications in β-thalassemia/hemoglobin E (β-thal/Hb E) patients may result from iron induced oxidation of lipoproteins. To identify the specific site of oxidative damage, changes in lipid fluidity at different regions in LDL and HDL particle were investigated using two fluorescence probes and two ESR spin probes. The magnitude of increased lipid fluidity in thalassemic lipoproteins was dependent on the location of the probes. In hydrophobic region, the rotational correlation times for 16-doxyl stearic acid and DPH anisotropy were markedly changed in LDL and HDL of the patients. In the surface region, there was only a slight change in the order parameter (S) for 5-doxyl stearic acid and TMA-DPH anisotropy. Lipid fluidity at the core of LDL and HDL showed good correlation with oxidative stress markers, the ratio of CL/CO, and the level of α-tocopherol, suggesting that hydrophobic region of thalassemic lipoprotein was a target site for oxidative damage

  12. Structure Annotation and Quantification of Wheat Seed Oxidized Lipids by High-Resolution LC-MS/MS.

    Science.gov (United States)

    Riewe, David; Wiebach, Janine; Altmann, Thomas

    2017-10-01

    Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat ( Triticum aestivum ) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions. © 2017 The author(s). All Rights Reserved.

  13. Molecular controls of the oxygenation and redox reactions of hemoglobin.

    Science.gov (United States)

    Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L

    2013-06-10

    The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.

  14. Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia.

    Directory of Open Access Journals (Sweden)

    Ramon Reigada

    Full Text Available The molecular mechanism of general anesthesia is still a controversial issue. Direct effect by linking of anesthetics to proteins and indirect action on the lipid membrane properties are the two hypotheses in conflict. Atomistic simulations of different lipid membranes subjected to the effect of small volatile organohalogen compounds are used to explore plausible lipid-mediated mechanisms. Simulations of homogeneous membranes reveal that electrostatic potential and lateral pressure transversal profiles are affected differently by chloroform (anesthetic and carbon tetrachloride (non-anesthetic. Simulations of structured membranes that combine ordered and disordered regions show that chloroform molecules accumulate preferentially in highly disordered lipid domains, suggesting that the combination of both lateral and transversal partitioning of chloroform in the cell membrane could be responsible of its anesthetic action.

  15. The choice of homogenisation equipment affects lipid oxidation in emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    2012-01-01

    in emulsions has been shown to be affected by the emulsification conditions. The objective of this study was to investigate the influence of homogenisation equipment (microfluidizer vs. two-stage valve homogeniser) on lipid oxidation in 10% fish oil-in-water emulsions prepared with two different milk proteins....... Emulsions were prepared at pH 7 with similar droplet sizes. Results showed that the oxidative stability of emulsions prepared with sodium caseinate was not influenced by the type of homogeniser used. In contrast, the type of homogenisation equipment significantly influenced lipid oxidation when whey protein...

  16. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  17. Effects of diet, packaging, and irradiation on protein oxidation, lipid oxidation, and color of raw broiler thigh meat during refrigerated storage.

    Science.gov (United States)

    Xiao, S; Zhang, W G; Lee, E J; Ma, C W; Ahn, D U

    2011-06-01

    This study was designed to evaluate the effects of dietary treatment, packaging, and irradiation singly or in combination on the oxidative stability of broiler chicken thigh meat. A total of 120 four-week-old chickens were divided into 12 pens (10 birds/pen), and 4 pens of broilers were randomly assigned to a control oxidized diet (5% oxidized oil) or an antioxidant-added diet [500 IU of vitamin E + 200 mg/kg of butylated hydroxyanisole (BHA)] and fed for 2 wk. After slaughter, thigh meats were separated, ground, packaged in either oxygen-permeable or oxygen-impermeable vacuum bags, and irradiated at 0 or 3 kGy. Lipid oxidation (TBA-reactive substances), protein oxidation (carbonyl), and color of the meat were measured at 1, 4, and 7 d of refrigerated storage. The lipid and protein oxidation of thigh meats from birds fed the diet supplemented with antioxidants (vitamin E + BHA) was significantly lower than the lipid and protein oxidation of birds fed the control diet, whereas the lipid and protein oxidation of broilers fed the oxidized oil diet was higher than that of birds fed the control diet. Vacuum packaging slowed, but irradiation accelerated, the lipid and protein oxidation of thigh meat during storage. Dietary antioxidants (vitamin E + BHA) and irradiation treatments showed a stronger effect on lipid oxidation than on protein oxidation. A significant correlation between lipid and protein oxidation in meat was found during storage. Dietary supplementation of vitamin E + BHA and the irradiation treatment increased the lightness and redness of thigh meat, respectively. It is suggested that appropriate use of dietary antioxidants in combination with packaging could be effective in minimizing oxidative changes in irradiated raw chicken thigh meat.

  18. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  19. Effect of conventional cooking methods on lipid oxidation indices in lamb meat

    Directory of Open Access Journals (Sweden)

    A Pourkhalili

    2012-05-01

    Full Text Available Lipid oxidation is one of the most deteriorative reactions occurred in foodstuff which has harmful impacts on the both food quality and consumer's health. This study was designed to speculate the influence of three conventional cooking methods including boiling, frying and grilling on lipid oxidation parameters in cooked lamb meat. Sections of lamb meat from longissimus dorsi muscle, taken from native Lori-Bakhtiary sheep species were cut into uniform pieces and cooked using boiling, frying and roasting methods according to the cooking routine and tradition in Iranian society, in terms of temperature and time. Proximate compositions (moisture, lipid, ash and protein in the raw and cooked meat were determined using the standard methods of analysis. Moreover, weight loss was measured after each treatment. Lipid oxidation parameters such as peroxide value, conjugated diene and TBARS indices were measured in the raw and cooked samples. Evaluation of lipid oxidation parameters showed that peroxide value was significantly decreased in all cooked samples. In contrast, conjugated diene value was significantly increased in the fried and grilled samples (p

  20. Aspirin and lipid mediators in the cardiovascular system.

    Science.gov (United States)

    Schrör, Karsten; Rauch, Bernhard H

    2015-09-01

    Aspirin is an unique compound because it bears two active moieties within one and the same molecule: a reactive acetyl group and the salicylate metabolite. Salicylate has some effects similar to aspirin, however only at higher concentrations, usually in the millimolar range, which are not obtained at conventional antiplatelet aspirin doses of 100-300 mg/day. Pharmacological actions of aspirin in the cardiovascular system at these doses are largely if not entirely due to target structure acetylation. Several classes of lipid mediators become affected: Best known is the cyclooxygenase-1 (COX-1) in platelets with subsequent inhibition of thromboxane and, possibly, thrombin formation. By this action, aspirin also inhibits paracrine thromboxane functions on other lipid mediators, such as the platelet storage product sphingosine-1-phosphate (S1P), an inflammatory mediator. Acetylation of COX-2 allows for generation of 15-(R)HETE and subsequent formation of "aspirin-triggered lipoxin" (ATL) by interaction with white cell lipoxygenases. In the cardiovascular system, aspirin also acetylates eNOS with subsequent upregulation of NO formation and enhanced expression of the antioxidans heme-oxygenase-1. This action is possibly also COX-2/ATL mediated. Many more acetylation targets have been identified in live cells by quantitative acid-cleavable activity-based protein profiling and might result in discovery of even more aspirin targets in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation

    Science.gov (United States)

    Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng

    2015-01-01

    Abstract Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. Innovation and Conclusions: This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant

  2. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid...

  3. Nitric oxide formation from the reaction of nitrite with carp and rabbit hemoglobin at intermediate oxygen saturations

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2008-01-01

    The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit...... hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote...... NO generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction...

  4. Effect of combined gliclazide/metformin treatment on oxidative stress, lipid profile, and hepatorenal functions in type 2 diabetic patients.

    Science.gov (United States)

    Alsharidah, Mansour; Algeffari, Metab; Abdel-Moneim, Abdel-Moneim Hafez; Lutfi, Mohamed Faisal; Alshelowi, Haila

    2018-01-01

    Type 2 diabetes is a chronic condition that requires pharmacotherapy interventions. Metformin and gliclazide are widely used drugs in monotherapy. However, their complementary action made utilization of the combination of these drugs an appealing approach. The study compared major therapeutic potentials of combined metformin/gliclazide treatment over metformin monotherapy based on the following parameters: oxidative stress, lipid profile, and hepatorenal functions. This is a comparative study was conducted from March 2015 to March 2016. The study screened 80 type 2 diabetic patients, of which 40 patients underwent combined metformin + gliclazide therapy (500 mg BD + 80 mg OD, respectively). The other 40 were matched for age and duration of diabetes mellitus with the previous group and received metformin monotherapy (500 mg BD). The levels of fasting blood glucose (FBG), total glycated hemoglobin (HbA1c), lipid peroxidation, total antioxidant capacity, serum creatinine, aspartate and alanine transaminases, total cholesterol, triglycerides, high-density lipoproteins, and low-density lipoproteins were measured according to the standard methods. Oxidative stress, lipid profile, and hepatorenal functions were comparable in patients of both groups. However, patients on metformin treatment showed significantly lower levels of FBG [7.61 (6.70-8.89) mmol/L vs. 9.00 (7.30-10.68) mmol/L; P = .022] and HBA1c [7.00 (6.40-7.65)% vs. 8.20 (7.20-9.75)%; P metformin/gliclazide therapy and compared to those metformin alone. In contrast, glycemic control was poor in the diabetic patients undergoing combined therapy.

  5. Assessment of serum lipid metabolism index and cytokine levels in patients with type 2 diabetes mellitus complicated by coronary heart disease after telmisartan combined with lipid-lowering drug treatment

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-07-01

    Full Text Available Objective: To study the effect of telmisartan combined with lipid-lowering drug therapy on serum lipid metabolism index and cytokine levels in patients with type 2 diabetes mellitus complicated by coronary heart disease. Methods: A total of 106 patients with type 2 diabetes mellitus complicated by coronary heart disease who were treated in our hospital between September 2013 and October 2016 were collected and then divided into the control group (n=55 who received conventional treatment + lipid-lowering drug treatment and the observation group (n=51 who received conventional treatment + lipid-lowering drug + telmisartan treatment after the therapies were reviewed. Before and after treatment, serum levels of lipid metabolism indexes, inflammatory mediators and oxidative stress indexes were compared between two groups of patients. Results: Before treatment, the differences in serum levels of lipid metabolism indexes, inflammatory mediators and oxidative stress indexes were not statistically significant between two groups of patients. After treatment, serum TG and LDL-C levels in observation group were lower than those in control group while HDL-C level was higher than that in control group; serum inflammatory mediators IL-6, IL-8, HMGB1 and TNF-α levels were lower than those in control group; serum oxidative stress indexes MDA and ROS levels were lower than those in control group while GSH-Px level was higher than that in control group. Conclusion: Telmisartan combined with lipid-lowering drug therapy can effectively optimize the lipid metabolism and reduce the systemic inflammatory response and oxidative stress response in patients with type 2 diabetes mellitus complicated by coronary heart disease.

  6. ILDR2: an endoplasmic reticulum resident molecule mediating hepatic lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Kazuhisa Watanabe

    Full Text Available Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting "relief" of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time

  7. Lipid-mediated protein functionalization of electrospun polycaprolactone fibers

    Directory of Open Access Journals (Sweden)

    C. Cohn

    2016-05-01

    Full Text Available In this study, electrospun polycaprolactone (PCL fibers are plasma-treated and chemically conjugated with cholesteryl succinyl silane (CSS. In addition to Raman spectroscopy, an immobilization study of DiO as a fluorescent probe of lipid membranes provides evidence supporting the CSS coating of plasma-treated PCL fibers. Further, anti-CD20 antibodies are used as a model protein to evaluate the potential of lipid-mediated protein immobilization as a mechanism to functionalize the CSS-PCL fiber scaffolds. Upon anti-CD20 functionalization, the CSS-PCL fiber scaffolds capture Granta-22 cells 2.4 times more than the PCL control does, although the two fiber scaffolds immobilize a comparable amount of anti-CD20. Taken together, results from the present study demonstrate that the CSS coating and CSS-mediated antibody immobilization offers an appealing strategy to functionalize electrospun synthetic polymer fibers and confer cell-specific functions on the fiber scaffolds, which can be mechanically robust but often lack biological functions.

  8. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  9. The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in Drosophila

    Directory of Open Access Journals (Sweden)

    Juan C. Paredes

    2016-07-01

    Full Text Available Insects commonly harbor facultative bacterial endosymbionts, such as Wolbachia and Spiroplasma species, that are vertically transmitted from mothers to their offspring. These endosymbiontic bacteria increase their propagation by manipulating host reproduction or by protecting their hosts against natural enemies. While an increasing number of studies have reported endosymbiont-mediated protection, little is known about the mechanisms underlying this protection. Here, we analyze the mechanisms underlying protection from parasitoid wasps in Drosophila melanogaster mediated by its facultative endosymbiont Spiroplasma poulsonii. Our results indicate that S. poulsonii exerts protection against two distantly related wasp species, Leptopilina boulardi and Asobara tabida. S. poulsonii-mediated protection against parasitoid wasps takes place at the pupal stage and is not associated with an increased cellular immune response. In this work, we provide three important observations that support the notion that S. poulsonii bacteria and wasp larvae compete for host lipids and that this competition underlies symbiont-mediated protection. First, lipid quantification shows that both S. poulsonii and parasitoid wasps deplete D. melanogaster hemolymph lipids. Second, the depletion of hemolymphatic lipids using the Lpp RNA interference (Lpp RNAi construct reduces wasp success in larvae that are not infected with S. poulsonii and blocks S. poulsonii growth. Third, we show that the growth of S. poulsonii bacteria is not affected by the presence of the wasps, indicating that when S. poulsonii is present, larval wasps will develop in a lipid-depleted environment. We propose that competition for host lipids may be relevant to endosymbiont-mediated protection in other systems and could explain the broad spectrum of protection provided.

  10. Protein aggregation in food models: effect of γ-irradiation and lipid oxidation

    International Nuclear Information System (INIS)

    Delincee, H.; Paul, P.

    1981-01-01

    Myoglobin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, and the yield of protein aggregates has been determined by gel filtration. With myoglobin the formation of aggregates evolving from the reaction with oxidizing lipids was observed, which was not found for serum albumin. The production of protein-lipid complexes, in which lipid material was occluded in the high-molecular aggregates by physical forces was demonstrated. Gel filtration and gel electrophoresis, both in the presence of SDS, and thin-layer isoelectric focusing revealed distinct structural differenes between the protein aggregates induced by irradiation and the aggregates formed by interaction with oxidizing lipids

  11. Variables affecting lipid oxidation in dried microencapsulated oils

    Directory of Open Access Journals (Sweden)

    Márquez-Ruiz, Gloria

    2003-09-01

    Full Text Available Dried microencapsulated oils are powdery foods or ingredients, prepared by drying natural or formulated emulsions, wherein the oil globules are dispersed in a matrix of saccharides and/or proteins. The study of lipid oxidation in microencapsulated oils is a very difficult task since, in addition to the numerous variables normally involved in lipid oxidation, mainly unsaturation degree, oxygen, light, temperature, prooxidants and antioxidants, other factors exert an important influence in these heterophasic lipid systems. In this paper, the present state of the art on lipid oxidation in dried microencapsulated oils is reviewed, focused on the variables specifically involved in oxidation of these lipid systems. Such variables include those pertaining to the preparation process (type and concentration of the matrix components and drying procedure and those related to the physicochemical properties of microencapsulated oils (particle size, oil globule size, lipid distribution, water activity, pH and interactions between matrix components.Los aceites microencapsulados son alimentos o ingredientes en polvo preparados mediante secado de emulsiones naturales o formuladas, donde los glóbulos de aceite se encuentran dispersos en una matriz de hidratos de carbono y/o proteínas. El estudio de la oxidación lipídica en aceites microencapsulados es muy difícil ya que, además de las numerosas variables implicadas normalmente en la oxidación lipídica, principalmente el grado de insaturación, oxígeno, luz, temperatura, prooxidantes y antioxidantes, en estos sistemas lipídicos heterofásicos existen otros factores que ejercen una importante influencia. En este trabajo, se revisa la situación actual del conocimiento sobre oxidación lipídica en aceites microencapsulados en relación con las variables que intervienen específicamente en la oxidación de estos sistemas lipídicos. Concretamente, dichas variables incluyen las implicadas en el proceso de

  12. Formation of Poultry Meat Flavor by Heating Process and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Maijon Purba

    2014-09-01

    Full Text Available Flavor is an important factor in the acceptance of food. Flavor of poultry meat is naturally formed through a specific process of heating, where various chemical reactions complex occurred among nonvolatile precursors in fatty tissue or in lean tissue. The main flavor in the form of volatile and nonvolatile components play a major influence on the acceptance of various processed meat, especially the taste. Removal of sulfur components decreases meat flavor (meaty, while removal of carbonyl compounds decrease the specific flavor and increases common flavor of the meat. Poultry meat has a fairly high fat content that easily generates lipid oxidation. Lipid oxidation in poultry meat is a sign that the meat was damaged and caused off odor. Addition of antioxidants in the diet can inhibit lipid oxidation in the meat. Lipids interaction with proteins and carbohydrates is unavoidable during the thermal processing of food, causing the appearance of volatile components. The main reaction in meat flavor formation mechanism is Maillard reaction followed by Stecker reaction and degradation of lipids and thiamine. They involve in the reaction between carbonyl and amine components to form flavor compounds, which enhance the flavor of poultry meat.

  13. Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin

    Science.gov (United States)

    Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.

    2013-01-01

    Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874

  14. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  15. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life.

    Science.gov (United States)

    Citta, Anna; Folda, Alessandra; Scalcon, Valeria; Scutari, Guido; Bindoli, Alberto; Bellamio, Marco; Feller, Emiliano; Rigobello, Maria Pia

    2017-11-01

    Oxidation processes in milk and yogurt during the shelf life can result in an alteration of protein and lipid constituents. Therefore, the antioxidant properties of yogurt in standard conditions of preservation were evaluated. Total phenols, free radical scavenger activity, degree of lipid peroxidation, and protein oxidation were determined in plain and skim yogurts with or without fruit puree. After production, plain, skim, plain berries, and skim berries yogurts were compared during the shelf life up to 9 weeks. All types of yogurts revealed a basal antioxidant activity that was higher when a fruit puree was present but gradually decreased during the shelf life. However, after 5-8 weeks, antioxidant activity increased again. Both in plain and berries yogurts lipid peroxidation increased until the seventh week of shelf life and after decreased, whereas protein oxidation of all yogurts was similar either in the absence or presence of berries and increased during shelf life. During the shelf life, a different behavior between lipid and protein oxidation takes place and the presence of berries determines a protection only against lipid peroxidation.

  16. Oxidative stress-mediated mouse liver lesions caused by Clonorchis sinensis infection.

    Science.gov (United States)

    Maeng, Sejung; Lee, Hye Won; Bashir, Qudsia; Kim, Tae Im; Hong, Sung-Jong; Lee, Tae Jin; Sohn, Woon-Mok; Na, Byoung-Kuk; Kim, Tong-Soo; Pak, Jhang Ho

    2016-03-01

    Clonorchis sinensis is a high-risk pathogenic helminth that strongly provokes inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma in chronically infected individuals. Chronic inflammation is associated with an increased risk of various cancers due to the disruption of redox homeostasis. Accordingly, the present study was conducted to examine the time course relationship between histopathological changes and the appearance of oxidative stress markers, including lipid peroxidation, enzymes involved in lipid peroxidation, and mutagenic DNA adducts in the livers of mice infected with C. sinensis, as well as proinflammatory cytokines in infected mouse sera. Histopathological phenotypes such as bile duct epithelial hyperplasia, periductal fibrosis, edema and inflammatory infiltration increased in infected livers in a time-dependent manner. Intense immunoreactivity of lipid peroxidation products (4-hydroxy-2-nonenal; malondialdehyde), cyclooxygenase-2, 5-lipoxygenase and 8-oxo-7,8-dihydro-2'-deoxyguanosine were concomitantly observed in these injured regions. We also found elevated expressions of cyclooxygenase-2 and 5-lipoxygenase in C. sinensis excretory-secretory product-treated cholangiocarcinoma cells. Moreover, the levels of proinflammatory cytokines such as TNF-α, ILβ-1 and IL-6 were differentially upregulated in infected sera. With regard to oxidative stress-mediated carcinogenesis, our findings suggest that C. sinensis infestation may disrupt host redox homeostasis, creating a damaging environment that favors the development of advanced hepatobiliary diseases such as clonorchiasis-associated cholangiocarcinoma. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  17. Blocked muscle fat oxidation during exercise in neutral lipid storage disease

    DEFF Research Database (Denmark)

    Laforêt, Pascal; Ørngreen, Mette; Preisler, Nicolai

    2012-01-01

    To determine whether impaired exercise capacity in neutral lipid storage disease with myopathy is solely caused by muscle weakness or whether a defect in energy metabolism (blocked fat oxidation) may also play a role.......To determine whether impaired exercise capacity in neutral lipid storage disease with myopathy is solely caused by muscle weakness or whether a defect in energy metabolism (blocked fat oxidation) may also play a role....

  18. LKB1 regulates lipid oxidation during exercise independently of AMPK

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Fuglsbjerg; Maarbjerg, Stine Just; Jordy, Andreas Børsting

    2013-01-01

    Lipid metabolism is important for health and insulin action, yet the fundamental process of regulating lipid metabolism during muscle contraction is incompletely understood. Here, we show that LKB1 muscle-specific knockout (LKB1 MKO) mice display decreased fatty acid (FA) oxidation during treadmi...

  19. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  20. Selective identification of specialized pro-resolving lipid mediators from their biosynthetic double di-oxygenation isomers.

    Science.gov (United States)

    Hansen, Trond V; Dalli, Jesmond; Serhan, Charles N

    The n-3 polyunsaturated fatty acids are substrates for lipoxygenases and cyclooxygenases. During inflammatory processes, these enzymes form several distinct families of oxygenated polyunsaturated fatty acids coined specialized pro-resolving lipid mediators. Structural elucidation of these natural products using LC-MS/MS based metabololipidomics with the pico- to nanogram amounts of biosynthetic material available have been performed. The specialized pro-resolving lipid mediators display stereospecific and potent anti-inflammatory and pro-resolving actions. Most often the different families among these mediators are chemically characterized by two or three chiral, secondary alcohols, separated by either an E,E,Z -triene or an E,Z,E,E -tetraenemoiety. The lipoxygenases also form other oxygenated polyunsaturated natural products, coined double di-oxygenation products, that are constitutional isomers of the protectin and maresin families of specialized pro-resolving lipid mediators. Very often these products exhibit similar chromatographic properties and mass spectrometrical fragment ions as the pro-resolving mediators. In addition, the double di-oxygenation products are sometimes formed in larger amounts than the specialized pro-resolving lipid mediators. Thus, it is not always possible to distinguish between the specialized pro-resolving mediators and their double di-oxygenation isomers in biological systems, using LC/MS-based techniques. Herein, a convenient and easy-to-use protocol to meet this challenge is presented.

  1. Lipid oxidation in fish oil enriched mayonnaise : Calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Thomsen, Mikael Holm

    2001-01-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA...... acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter...

  2. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II

    DEFF Research Database (Denmark)

    Dahl, Morten; Bauer, Alison K; Arredouani, Mohamed

    2007-01-01

    Alveolar macrophages (AMs) express the class A scavenger receptors (SRAs) macrophage receptor with collagenous structure (MARCO) and scavenger receptor AI/II (SRA-I/II), which recognize oxidized lipids and provide innate defense against inhaled pathogens and particles. Increased MARCO expression...... in lungs of ozone-resistant mice suggested an additional role protecting against inhaled oxidants. After ozone exposure, MARCO-/- mice showed greater lung injury than did MARCO+/+ mice. Ozone is known to generate oxidized, proinflammatory lipids in lung lining fluid, such as 5beta,6beta......-epoxycholesterol (beta-epoxide) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (PON-GPC). Intratracheal instillation of either lipid caused substantial neutrophil influx in MARCO-/- mice, but had no effect in MARCO+/+ mice. Normal AMs showed greater uptake in vitro of beta-epoxide compared with MARCO-/- AMs...

  3. Effect of soy sauce on lipid oxidation of irradiated pork patties

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang; Choi, Ji-Hun; Lee, Mi-Ai; Song, Dong-Heon; Kim, Hack-Youn; Lee, Ju-Woon; Kim, Cheon-Jei

    2013-01-01

    This study was conducted to find out the antioxidant effect of the soy sauce on lipid oxidation of electron beam irradiated pork patties. The pork patties prepared with sodium chloride or soy sauce solution at identical salt concentrations were irradiated at 0 or 5 kGy, and peroxide value, conjugated diene, 2-thiobarbituric acid, and free fatty acid values were evaluated for 10 days (4 °C). The irradiated pork patties treated with soy sauce showed the lowest peroxide value and 2-thiobarbituric acid value at the end of storage compared to those prepared with sodium chloride. The irradiated pork patties formulated with soy sauce and 0.5% ascorbic acid had similar 2-thiobarbituric acid and free fatty acid values compared to those of the non-irradiated pork patties treated with sodium chloride. Our results suggested that the soy sauce can retard the lipid oxidation of irradiated pork patty, and a synergistic effect between soy sauce and ascorbic acid was observed. - Highlights: • Antioxidant effect of soy sauce on irradiated pork patties was studied. • The soy sauce can retard lipid oxidation of the irradiated pork patties. • A synergistic effect of ascorbic acid for preventing lipid oxidation was observed

  4. Inhibition effect on lipid oxidation of irradiated pork by adding hawthorn flavonoid extract

    International Nuclear Information System (INIS)

    Wang Xiaoming; Liu Chao; Cao Lei; Li Kexi

    2011-01-01

    The antioxidant activity of hawthorn flavonoid extract and its inhibition effect on irradiated pork lipid oxidant were investigated. The results showed that hawthorn flavonoids had efficient scavenging effect on DPPH free radicals (DPPH ·), and the scavenging rate reached 56% while 2 ml of 0.035 mg/ml hawthorn flavonoid extract was added. Hawthorn flavonoid extract can inhibition the lipid oxidation of irradiated pork effectively and it showed a stronger inhibition ability while the hawthorn flavonoid extract were used together with Vc. It is concluded that can decrease the lipid oxidation of pork, hawthorn flavonoid extract is a remarkable natural antioxidant. (authors)

  5. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    Science.gov (United States)

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models

    DEFF Research Database (Denmark)

    Møller, Peter; Risom, Lotte; Lundby, Carsten

    2008-01-01

    The objective of this review was to evaluate the association between hypoxia and oxidative damage to DNA and lipids. Evaluation criteria encompassed specificity and validation status of the biomarkers, study design, strength of the association, dose-response relationship, biological plausibility......, analogous exposures, and effect modification by intervention. The collective interpretation indicates persuasive evidence from the studies in humans for an association between hypoxia and elevated levels of oxidative damage to DNA and lipids. The levels of oxidatively generated DNA lesions and lipid...... in subjects at high altitude. Most of the animal experimental models should be interpreted with caution because the assays for assessment of lipid peroxidation products have suboptimal validity....

  7. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  8. [Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin].

    Science.gov (United States)

    Barsukova, M E; Tokareva, A I; Buslova, T S; Malinina, L I; Veselova, I A; Shekhovtsova, T N

    2017-01-01

    The kinetics of oxidation reactions of flavonoids, quercetin, dihydroquercetin, and epicatechin has been studied in the presence of biocatalysts of different natures: horseradish peroxidase, mushroom tyrosinase, and hemoglobin from bull blood. Comparison of the kinetic parameters of the oxidation reaction showed that peroxidase appeared to be the most effective biocatalyst in these processes. The specificity of the enzyme for quercetin increased with increasing the polarity of the solvent in a series of ethanol–acetonitrile–dimethyl sulfoxide.

  9. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  10. Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin

    International Nuclear Information System (INIS)

    Fan Chunhai; Liu Xinjian; Pang Jiantao; Li Genxi; Scheer, Hugo

    2004-01-01

    Although heme protein-based, amperometric nitric oxide (NO) biosensors have been well documented in previous studies, most have been conducted in anaerobic conditions. Herein we report a novel hemoglobin-based NO biosensor that is not only very sensitive but also usable in air. The heme protein was entrapped in a sodium montmorillonite film, which was immobilized at a pyrolytic graphite electrode surface. Film-entrapped hemoglobin can directly exchange electrons with the electrode, and this process has proven to favor the catalytic reduction of oxygen. In addition, NO induced a cathodic potential shift of the catalytic reduction peak of oxygen. This potential shift was proportional to the logarithm of NO concentration ranging from 4.0 x 10 -11 to 5.0 x 10 -6 mol/L. The detection limit has been estimated to be 20 pM, approximately four orders lower than previously reported amperometric detectors

  11. Testosterone therapy increased muscle mass and lipid oxidation in aging men

    DEFF Research Database (Denmark)

    Frederiksen, Louise; Højlund, Kurt; Hougaard, David M

    2011-01-01

    The indication for testosterone therapy in aging hypogonadal men without hypothalamic, pituitary, or testicular disease remains to be elucidated. The aim of this study was to investigate the effect of testosterone therapy on insulin sensitivity, substrate metabolism, body composition, and lipids...... lipid oxidation (b = 5.65 mg/min/m(2), p = 0.045) increased and basal glucose oxidation (b = -9.71 mg/min/m(2), p = 0.046) decreased in response to testosterone therapy even when corrected for changes in LBM. No significant changes in insulin-stimulated Rd was observed (b = -0.01mg/min/m(2), p = 0.......92). Testosterone therapy increased muscle mass and lipid oxidation in aging men with low normal bioavailable testosterone levels; however, our data did not support an effect of testosterone on whole-body insulin sensitivity using the euglycemic hyperinsulinemic clamp technique....

  12. Semiconductor particle mediated photoelectron transfers in bilayer lipid membranes

    International Nuclear Information System (INIS)

    Fendler, J.H.; Baral, S.

    1989-01-01

    This paper discusses semiconductor particles in situ generated on the cis surface of glyceryl monooleate (GMO) bilayer lipid membranes (BLMs), that have been used to mediate photoelectric effects. The presence of semiconductors on the BLM surface is addressed. The observed photoelectric effects are rationalized and presented

  13. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    International Nuclear Information System (INIS)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2014-01-01

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C 60 or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C 60 , diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered expression

  14. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Energy Technology Data Exchange (ETDEWEB)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter, E-mail: pemo@sund.ku.dk

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  15. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat.

    Science.gov (United States)

    Wang, Lin-Lin; Yu, Qun-Li; Han, Ling; Ma, Xiu-Li; Song, Ren-De; Zhao, Suo-Nan; Zhang, Wen-Hua

    2018-04-01

    This study investigated the effect of reactive oxygen species-mediated oxidative stress on activation of mitochondrial apoptosis and tenderness of yak meat during postmortem ageing. Oxidative stress degree, Ca 2+ levels, membrane permeability transition pore opening, mitochondrial membrane potential, apoptotic factors and the shear force were examined. Results showed that the ROS generated by H 2 O 2 significantly increased mitochondrial oxidative stress by decreasing the activities of superoxide dismutase, catalase and glutathione peroxidase, and increasing lipid peroxidation. Furthermore, oxidative stress enhanced Ca 2+ production and cytochrome c release, changed the levels of Bcl-2 family proteins and activated caspase-9 and -3 activities. Ultimately, oxidative stress increased the apoptosis rate and tenderness of yak meat. These observations confirmed that ROS-mediated oxidative stress participates in the activation of the apoptotic cascade reaction involving Ca 2+ and Bcl-2 family proteins. The results further suggested that ROS-mediated oxidative stress plays a significant role in meat tenderization through the mitochondrial apoptotic pathway. Copyright © 2017. Published by Elsevier Ltd.

  16. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  17. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....... of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...

  18. Anti-oxidative stress regulator NF-E2-related factor 2 mediates the adaptive induction of antioxidant and detoxifying enzymes by lipid peroxidation metabolite 4-hydroxynonenal

    Directory of Open Access Journals (Sweden)

    Huang Ying

    2012-11-01

    Full Text Available Abstract Background NF-E2-related factor 2 (NRF2 regulates a battery of antioxidative and phase II drug metabolizing/detoxifying genes through binding to the antioxidant response elements (ARE. NRF2-ARE signaling plays a central role in protecting cells from a wide spectrum of reactive toxic species including reactive oxygen/nitrogen species (RONS. 4-hydroxylnonenal (4-HNE is a major end product from lipid peroxidation of omega-6 polyunsaturated fatty acids (PUFA induced by oxidative stress, and it is highly reactive to nucleophilic sites in DNA and proteins, causing cytotoxicity and genotoxicity. In this study, we examined the role of NRF2 in regulating the 4-HNE induced gene expression of antioxidant and detoxifying enzymes. Results When HeLa cells were treated with 4-HNE, NRF2 rapidly transloated into the nucleus, as determined by the distribution of NRF2 tagged with the enhanced green fluorescent protein (EGFP and increased NRF2 protein in the nuclear fraction. Transcriptional activity of ARE-luciferase was significantly induced by 0.01-10 μM of 4-HNE in a dose-dependent manner, and the induction could be blocked by pretreatment with glutathione (GSH. 4-HNE induced transcriptional expression of glutathione S-transferase (GST A4, aldoketone reductase (AKR 1C1 and heme oxygenase-1 (HO-1, and the induction was attenuated by knocking down NRF2 using small interfering RNA. Conclusions NRF2 is critical in mediating 4-HNE induced expression of antioxidant and detoxifying genes. This may account for one of the major cellular defense mechanisms against reactive metabolites of lipids peroxidation induced by oxidative stress and protect cells from cytotoxicity.

  19. Phenolic extract of Parkia biglobosa fruit pulp stalls aflatoxin B1 – mediated oxidative rout in the liver of male rats

    Directory of Open Access Journals (Sweden)

    Taofeek O. Ajiboye

    Full Text Available The effect of phenolic extract of Parkia biglobosa (Jacq. R. Br. ex G. Don, Fabaceae, pulp on aflatoxin B1 induced oxidative imbalance in rat liver was evaluated. Thirty-five male rats were randomized into seven groups of five animals each. Rats in group A served as control and received vehicle for drug administration (0.5% DMSO once daily at 24 h intervals for six weeks. Rats in groups B, D, E, F and G, received aflatoxin B1 (167 μg/kg body weight in 0.5% DMSO for three weeks, starting from the third week of the experimental period. Rats in Group C received 400 mg/kg bodyweight of the extract for six weeks, while groups D, E and F rats were treated with 100, 200 and 400 mg/kg bodyweight of the extract for six weeks respectively. Group G rats received 100 mg/kg body weight of vitamin C. Aflatoxin B1-mediated decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase were significantly attenuated. Aflatoxin B1 mediated the elevation in malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and significantly lowered DNA fragmentation percentage. Overall, the phenolic extract of P. biglobosa pulp stalls aflatoxin B1-mediated oxidative rout by enhancing antioxidant enzyme activities leading to decreased lipid peroxidation, protein oxidation and DNA fragmentation.

  20. 1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish

    Directory of Open Access Journals (Sweden)

    Kyung-Hyun Cho1,2,*

    2012-10-01

    Full Text Available We recently reported that a water extract of laurel or turmeric,1,8-cineole enriched fractions, showed hypolipidemic activityin the zebrafish model. Therefore, the present study investigatedthe cineole’s anti-oxidant and anti-inflammatory activitiesin lipoprotein metabolism in vitro and in vivo. Cineolehad inhibitory effects on cupric ion-mediated oxidation of lipoproteinsin general, while simultaneously enhancing ferric ionremoval ability in high-density lipoprotein (HDL. Hypercholesterolemiawas induced in zebrafish using cholesterol-feedingtreatment, 4% cholesterol, for 3 weeks. After feeding with orwithout the addition of cineole, the results revealed that cineolepossessed lipid-lowering and anti-inflammatory activitiesin hypercholesterolemic zebrafish. In addition, serum amyloidA and interleukin-6 levels were lowered and lipid accumulationwas decreased in the liver. Conclusively, 1,8-cineole wasfound to have anti-oxidant activities in lipoprotein metabolismboth in vitro and in vivo with simultaneous reduction of lipidaccumulation in the liver of zebrafish.

  1. The influence of hydroxyurea on oxidative stress in sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Lidiane de Souza Torres

    2012-01-01

    Full Text Available OBJECTIVE: The oxidative stress in 20 sickle cell anemia patients taking hydroxyurea and 13 sickle cell anemia patients who did not take hydroxyurea was compared with a control group of 96 individuals without any hemoglobinopathy. METHODS: Oxidative stress was assessed by thiobarbituric acid reactive species production, the Trolox-equivalent antioxidant capacity and plasma glutathione levels. RESULTS: Thiobarbituric acid reactive species values were higher in patients without specific medication, followed by patients taking hydroxyurea and the Control Group (p < 0.0001. The antioxidant capacity was higher in patients taking hydroxyurea and lower in the Control Group (p = 0.0002 for Trolox-equivalent antioxidant capacity and p < 0.0292 for plasma glutathione. Thiobarbituric acid reactive species levels were correlated with higher hemoglobin S levels (r = 0.55; p = 0.0040 and lower hemoglobin F concentrations(r = -0.52; p = 0.0067. On the other hand, plasma glutathione levels were negatively correlated with hemoglobin S levels (r = -0.49; p = 0.0111 and positively associated with hemoglobin F values (r = 0.56; p = 0.0031. CONCLUSION: Sickle cell anemia patients have high oxidative stress and, conversely, increased antioxidant activity. The increase in hemoglobin F levels provided by hydroxyurea and its antioxidant action may explain the reduction in lipid peroxidation and increased antioxidant defenses in these individuals.

  2. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  3. Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma.

    Science.gov (United States)

    Sánchez-Illana, Ángel; Thayyil, Sudhin; Montaldo, Paolo; Jenkins, Dorothea; Quintás, Guillermo; Oger, Camille; Galano, Jean-Marie; Vigor, Claire; Durand, Thierry; Vento, Máximo; Kuligowski, Julia

    2017-12-15

    Oxidative stress derived from perinatal asphyxia appears to be closely linked to neonatal brain damage and lipid peroxidation biomarkers have shown to provide predictive power of oxidative stress related pathologies in situations of hypoxia and reoxygenation in the newborn. The objective of this work was to develop and validate of a comprehensive liquid chromatography tandem mass spectrometry approach for the quantitative profiling of 28 isoprostanoids in newborn plasma samples covering a broad range of lipid peroxidation product classes. The method was developed taking into account the specific requirements for its use in neonatology (i.e. limited sample volumes, straightforward sample processing and high analytical throughput). The method was validated following stringent FDA guidelines and was then applied to the analysis of 150 plasma samples collected from newborns. Information obtained from the quantitative analysis of isoprostanoids was critically compared to that provided by a previously developed approach aiming at the semi-quantitative detection of total parameters of fatty acid derived lipid peroxidation biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of salt on lipid oxidation in meat and seafood products: A review.

    Science.gov (United States)

    Mariutti, Lilian R B; Bragagnolo, Neura

    2017-04-01

    Sodium chloride, commonly known as salt, is a widely used additive in food industry due to its preservation and antimicrobial properties provided by its ability to reduce water activity. Moreover, the addition of salt to meat and seafood aims at improving water retention capacity and enhancing flavor due to its influence on the activity of some enzymes responsible for flavor development. On the other hand, salt added in meat and seafood can favor lipid oxidation, which is one of the main responsibles for quality losses in the food industry. In this review, the main mechanisms of fatty acids and cholesterol oxidation are described as well as the influence of salt on lipid oxidation in meat and seafood. Besides, the possible mechanisms of the pro-oxidant action of sodium chloride are presented and potential solutions to inhibit the salt action in lipid oxidation and decrease the salt content in food are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Ruidong Li

    2016-01-01

    Full Text Available Maresin 1 (MaR 1 was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb and mitogen-activated protein kinases (MAPKs in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway.

  6. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    Science.gov (United States)

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  7. The results of the lipids peroxidation products on the DNA bases as biological markers of the oxidative stress

    International Nuclear Information System (INIS)

    Falletti, O.

    2007-10-01

    Different ways of DNA damages have been studied, among these ones the direct way of DNA damages formation by the reactive oxygen species (R.O.S.). This way leads to the formation of oxidative DNA damages. In 1990, works have suggested an indirect way of DNA damages formation, the lipids peroxidation. Instead of oxidizing directly DNA, the R.O.S. oxide the lipids present in the cells and their membranes; The products coming from this degradation are able to provoke DNA damages. This way has not been studied very much. The work of this thesis is axed on this DNA theme and lipids peroxidation. In the first chapter, we begin by presenting DNA and the direct way of oxidative damages formation by the R.O.S.Then, we speak about the cell lipids suffering oxidation reactions and the different ways of lipids oxidation. Then, we present how the lipid peroxidation is a source of damages for DNA. (N.C.)

  8. Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation

    Directory of Open Access Journals (Sweden)

    Agnieszka Gęgotek

    2017-01-01

    Full Text Available Background. Rutin is a natural nutraceutical that is a promising compound for the prevention of UV-induced metabolic changes in skin cells. The aim of this study was to examine the effects of rutin on redox and endocannabinoid systems, as well as proinflammatory and proapoptotic processes, in UV-irradiated fibroblasts. Methods. Fibroblasts exposed to UVA and UVB radiation were treated with rutin. The activities and levels of oxidants/antioxidants and endocannabinoid system components, as well as lipid, DNA, and protein oxidation products, and the proinflammatory and pro/antiapoptotic proteins expression were measured. Results. Rutin reduced UV-induced proinflammatory response and ROS generation and enhanced the activity/levels of antioxidants (SOD, GSH-Px, vitamin E, GSH, and Trx. Rutin also normalized UV-induced Nrf2 expression. Its biological activity prevented changes in the levels of the lipid mediators: MDA, 4-HNE, and endocannabinoids, as well as the endocannabinoid receptors CB1/2, VR1, and GPR55 expression. Furthermore, rutin prevented the protein modifications (tyrosine derivatives formation in particular and decreased the levels of the proapoptotic markers—caspase-3 and cytochrome c. Conclusion. Rutin prevents UV-induced inflammation and redox imbalance at protein and transcriptional level which favors lipid, protein, and DNA protection. In consequence rutin regulates endocannabinoid system and apoptotic balance.

  9. Therapeutic Applicability of Anti-Inflammatory and Proresolving Polyunsaturated Fatty Acid-Derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Gerard L. Bannenberg

    2010-01-01

    Full Text Available The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PGD2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4 and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.

  10. Effect of conventional cooking methods on lipid oxidation indices in lamb meat

    OpenAIRE

    A Pourkhalili; M Mirlohi; E Rahimi; M Hojatoleslami

    2012-01-01

    Lipid oxidation is one of the most deteriorative reactions occurred in foodstuff which has harmful impacts on the both food quality and consumer's health. This study was designed to speculate the influence of three conventional cooking methods including boiling, frying and grilling on lipid oxidation parameters in cooked lamb meat. Sections of lamb meat from longissimus dorsi muscle, taken from native Lori-Bakhtiary sheep species were cut into uniform pieces and cooked using boiling, frying a...

  11. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won; Lim, JitKang

    2014-01-01

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO 2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO 2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO 2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO 2 (5 g/L TiO 2 ) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO 2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO 2 /UV-A inducing oxidative stress (0.1 g/L TiO 2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO 2 /UV-A

  12. Postprandial oxidative stress in response to dextrose and lipid meals of differing size.

    Science.gov (United States)

    Bloomer, Richard J; Kabir, Mohammad M; Marshall, Kate E; Canale, Robert E; Farney, Tyler M

    2010-07-27

    We have recently noted that ingestion of dietary lipid (in the form of heavy whipping cream) leads to greater oxidative stress than dietary carbohydrate (in the form of dextrose), when consumed in isocaloric amounts. In the present investigation we attempted to replicate our work and also to determine the oxidative stress response to dextrose and lipid meals of two different kilocalorie (kcal) amounts. Nine young (22 +/- 2 years), healthy men consumed in a random order, cross-over design one of four meals/drinks: dextrose at 75 g (300 kcals), dextrose at 150 g (600 kcals), lipid at 33 g (300 kcals), lipid at 66 g (600 kcals). Blood samples were collected Pre meal, and at 30 min, 60 min, 120 min, and 180 min post meal. Samples were assayed for glucose, triglycerides (TAG), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Area under the curve (AUC) was calculated for each variable, and a 4 x 5 ANOVA was utilized to further analyze data. A meal x time effect (p = 0.0002) and a time effect was noted for glucose (p Pre, 1 hr, 2 hr, and 3 hr). The dextrose meals primarily contributed to this time effect. No other effects were noted for glucose (p > 0.05). A meal effect was noted for TAG (p = 0.01; 66 g lipid meal > 75 g and 150 g dextrose meals). No other effects were noted for TAG (p > 0.05). An AUC effect was noted for MDA (p = 0.04; 66 g lipid meal > 75 g and 150 g dextrose meals). A meal x time effect (p = 0.02) and a meal effect was noted for MDA (p = 0.004; 66 g lipid meal > 75 g and 150 g dextrose meals). No time effect was noted for MDA (p = 0.72). An AUC effect was noted for H2O2 (p = 0.0001; 66 g lipid meal > 33 g lipid meal and 75 g and 150 g dextrose meals). A meal x time effect (p = 0.0002), a meal effect (p 33 g lipid meal and 75 g and 150 g dextrose meals), and a time effect was noted for H2O2 (p Pre, 30 min, and 1 hr; 3 hr > Pre). The time effect for H2O2 was primarily influenced by the 66 g lipid meal. These data indicate that 1) minimal oxidative

  13. Postprandial oxidative stress in response to dextrose and lipid meals of differing size

    Directory of Open Access Journals (Sweden)

    Canale Robert E

    2010-07-01

    Full Text Available Abstract We have recently noted that ingestion of dietary lipid (in the form of heavy whipping cream leads to greater oxidative stress than dietary carbohydrate (in the form of dextrose, when consumed in isocaloric amounts. Objective In the present investigation we attempted to replicate our work and also to determine the oxidative stress response to dextrose and lipid meals of two different kilocalorie (kcal amounts. Design Nine young (22 ± 2 years, healthy men consumed in a random order, cross-over design one of four meals/drinks: dextrose at 75 g (300 kcals, dextrose at 150 g (600 kcals, lipid at 33 g (300 kcals, lipid at 66 g (600 kcals. Blood samples were collected Pre meal, and at 30 min, 60 min, 120 min, and 180 min post meal. Samples were assayed for glucose, triglycerides (TAG, malondialdehyde (MDA, and hydrogen peroxide (H2O2. Area under the curve (AUC was calculated for each variable, and a 4 × 5 ANOVA was utilized to further analyze data. Results A meal × time effect (p = 0.0002 and a time effect was noted for glucose (p Pre, 1 hr, 2 hr, and 3 hr. The dextrose meals primarily contributed to this time effect. No other effects were noted for glucose (p > 0.05. A meal effect was noted for TAG (p = 0.01; 66 g lipid meal > 75 g and 150 g dextrose meals. No other effects were noted for TAG (p > 0.05. An AUC effect was noted for MDA (p = 0.04; 66 g lipid meal > 75 g and 150 g dextrose meals. A meal × time effect (p = 0.02 and a meal effect was noted for MDA (p = 0.004; 66 g lipid meal > 75 g and 150 g dextrose meals. No time effect was noted for MDA (p = 0.72. An AUC effect was noted for H2O2 (p = 0.0001; 66 g lipid meal > 33 g lipid meal and 75 g and 150 g dextrose meals. A meal × time effect (p = 0.0002, a meal effect (p 33 g lipid meal and 75 g and 150 g dextrose meals, and a time effect was noted for H2O2 (p Pre, 30 min, and 1 hr; 3 hr > Pre. The time effect for H2O2 was primarily influenced by the 66 g lipid meal. Conclusions

  14. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers...... of biologically effective dose in studies of the health effects of exposure to particulate matter (PM) from combustion processes. DATA SOURCES: We identified publications that reported estimated associations between environmental exposure to PM and oxidative damage to DNA and lipids in PubMed and EMBASE. We also...... identified publications from reference lists and articles cited in the Web of Science. DATA EXTRACTION: For each study, we obtained information on the estimated effect size to calculate the standardized mean difference (unitless) and determined the potential for errors in exposure assessment and analysis...

  15. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy

    International Nuclear Information System (INIS)

    Horton, Jureta W.

    2003-01-01

    Burn trauma produces significant fluid shifts that, in turn, reduce cardiac output and tissue perfusion. Treatment approaches to major burn injury include administration of crystalloid solutions to correct hypovolemia and to restore peripheral perfusion. While this aggressive postburn volume replacement increases oxygen delivery to previously ischemic tissue, this restoration of oxygen delivery is thought to initiate a series of deleterious events that exacerbate ischemia-related tissue injury. While persistent hypoperfusion after burn trauma would produce cell death, volume resuscitation may exacerbate the tissue injury that occurred during low flow state. It is clear that after burn trauma, tissue adenosine triphosphate (ATP) levels gradually fall, and increased adenosine monophosphate (AMP) is converted to hypoxanthine, providing substrate for xanthine oxidase. These complicated reactions produce hydrogen peroxide and superoxide, clearly recognized deleterious free radicals. In addition to xanthine oxidase related free radical generation in burn trauma, adherent-activated neutrophils produce additional free radicals. Enhanced free radical production is paralleled by impaired antioxidant mechanisms; as indicated by burn-related decreases in superoxide dismutase, catalase, glutathione, alpha tocopherol, and ascorbic acid levels. Burn related upregulation of inducible nitric oxide synthase (iNOS) may produce peripheral vasodilatation, upregulate the transcription factor nuclear factor kappa B (NF-κB), and promote transcription and translation of numerous inflammatory cytokines. NO may also interact with the superoxide radical to yield peroxynitrite, a highly reactive mediator of tissue injury. Free radical mediated cell injury has been supported by postburn increases in systemic and tissue levels of lipid peroxidation products such as conjugated dienes, thiobarbituric acid reaction products, or malondialdehyde (MDA) levels. Antioxidant therapy in burn therapy

  16. Physicochemical Characteristics and Lipid Oxidation of Chicken Inner Fillets Subjected to Different Thermal Processing Types

    Directory of Open Access Journals (Sweden)

    NN Arguelo

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of different types of thermal processing on the physiochemical characteristics and lipid oxidation of chicken inner fillets. The study was divided into three assays. In the first assay, 50 chicken inner fillets were divided into five treatments, totaling 10 samples per treatment. Treatments consisted in cooking in water bath, electric oven, microwave oven, deep frying, or grilling. The analyzed variables were: cooking weight loss (CWL and lipid oxidation determined by thiobarbituric acid reactive substances (TBARS. In the second assay, 50 chicken inner fillets were divided into five treatments, totaling 10 samples per treatment. Each treatment consisted of the same cooking methods applied in the first assay, and storage for 48 hours under refrigeration and reheating in a microwave oven. The variable analyzed in the second assay was lipid oxidation (TBARS. In the third assay, 30 samples of chicken inner fillets were subjected to one, four and eight freeze-thaw cycles, after which meat pH, myofibrillar fragmentation index (MFI, water retention capacity (WRC, and lipid oxidation (TBARS were determined. Chicken inner fillets submitted to deep frying and cooked in a microwave oven presented greater lipid oxidation than the other cooking methods, and deep frying resulted in the highest cooking weight loss. Reheating chicken inner fillets in a microwave oven caused the highest meat lipid oxidation. Increasing the number of freeze-thaw cycles increases the pH, MFI, WRC and TBARS values of chicken inner fillets.

  17. Impact of food supplements on hemoglobin, iron status, and inflammation in children with moderate acute malnutrition

    DEFF Research Database (Denmark)

    Cichon, Bernardette; Fabiansen, Christian; Iuel-Brockdorf, Ann-Sophie Julie D

    2018-01-01

    Background: Children with moderate acute malnutrition (MAM) are treated with lipid-based nutrient supplements (LNSs) or corn-soy blends (CSBs) but little is known about the impact of these supplements on hemoglobin, iron status, and inflammation. Objective: The objective of this study was to inve......Background: Children with moderate acute malnutrition (MAM) are treated with lipid-based nutrient supplements (LNSs) or corn-soy blends (CSBs) but little is known about the impact of these supplements on hemoglobin, iron status, and inflammation. Objective: The objective of this study...

  18. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  20. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties

    DEFF Research Database (Denmark)

    Bolumar Garcia, Jose Tomas; Lapena Gomez, David; Skibsted, Leif Horsfelt

    2016-01-01

    Three different packaging systems: vacuum packaging, rosemary active packaging, and oxygen scavenger packaging were compared for their ability to counteract lipid oxidation in pork patties upon storage at 5 °C for 60 days following high pressure processing (HPP) (700 MPa, 10 min, 5 °C). Lipid...... oxidation was studied at the surface and the inner part by measuring secondary lipid oxidation products (TBARs) and the tendency to form radicals by electron spin resonance (ESR) spectroscopy. Lipid oxidation was lower in the inner part than at the surface for all three packaging systems. Rosemary active...... packaging was the most effective method to protect pork patties from the HPP-induced lipid oxidation, while oxygen scavenger packaging was not effective since residual oxygen remained in the package in the initial period of storage. The kinetics of the oxygen trapping by oxygen scavengers appears...

  1. Oxidative stability of mayonnaise and milk drink produced with structured lipids based on fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2004-01-01

    The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg...... not be ascribed to a single factor, but was most likely influenced by the structure of the lipids and differences in the processes used to produce and purify the lipids. In milk drinks based on SFO, EDTA slightly reduced oxidation, while lactoferrin did not exert a distinct antioxidative effect....../kg) or lactoferrin (1000 mg/kg) to the milk drink based on SFO was investigated. The lipid type significantly affected the oxidative stability of both mayonnaises and milk drinks: The oxidative stability decreased in the order RFO>FO>SFO. The reduced oxidative stability in the SFO food emulsions could...

  2. Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury

    DEFF Research Database (Denmark)

    Owen, Michael C; Kulig, Waldemar; Rog, Tomasz

    2018-01-01

    In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC...... in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also...... resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does...

  3. Generalized Anxiety Disorder (GAD) and Comorbid Major Depression with GAD Are Characterized by Enhanced Nitro-oxidative Stress, Increased Lipid Peroxidation, and Lowered Lipid-Associated Antioxidant Defenses.

    Science.gov (United States)

    Maes, Michael; Bonifacio, Kamila Landucci; Morelli, Nayara Rampazzo; Vargas, Heber Odebrecht; Moreira, Estefânia Gastaldello; St Stoyanov, Drozdstoy; Barbosa, Décio Sabbatini; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-05-07

    Accumulating evidence shows that nitro-oxidative pathways play an important role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD) and maybe anxiety disorders. The current study aims to examine superoxide dismutase (SOD1), catalase, lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), advanced oxidation protein products (AOPP), malondialdehyde (MDA), glutathione (GSH), paraoxonase 1 (PON1), high-density lipoprotein cholesterol (HDL), and uric acid (UA) in participants with and without generalized anxiety disorder (GAD) co-occurring or not with BD, MDD, or tobacco use disorder. Z unit-weighted composite scores were computed as indices of nitro-oxidative stress driving lipid and protein oxidation. SOD1, LOOH, NOx, and uric acid were significantly higher and HDL and PON1 significantly lower in participants with GAD than in those without GAD. GAD was more adequately predicted by increased SOD + LOOH + NOx and lowered HDL + PON1 composite scores. Composite scores of nitro-oxidative stress coupled with aldehyde and AOPP production were significantly increased in participants with comorbid GAD + MDD as compared with all other study groups, namely MDD, GAD + BD, BD, GAD, and healthy controls. In conclusion, GAD is characterized by increased nitro-oxidative stress and lipid peroxidation and lowered lipid-associated antioxidant defenses, while increased uric acid levels in GAD may protect against aldehyde production and protein oxidation. This study suggests that increased nitro-oxidative stress and especially increased SOD1 activity, NO production, and lipid peroxidation as well as lowered HDL-cholesterol and PON1 activity could be novel drug targets for GAD especially when comorbid with MDD.

  4. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains.

    Science.gov (United States)

    Benseny-Cases, Núria; Klementieva, Oxana; Cotte, Marine; Ferrer, Isidre; Cladera, Josep

    2014-12-16

    Amyloid peptides are the main component of one of the characteristic pathological hallmarks of Alzheimer's disease (AD): senile plaques. According to the amyloid cascade hypothesis, amyloid peptides may play a central role in the sequence of events that leads to neurodegeneration. However, there are other factors, such as oxidative stress, that may be crucial for the development of the disease. In the present paper, we show that it is possible, by using Fourier tranform infrared (FTIR) microscopy, to co-localize amyloid deposits and lipid peroxidation in tissue slides from patients affected by Alzheimer's disease. Plaques and lipids can be analyzed in the same sample, making use of the characteristic infrared bands for peptide aggregation and lipid oxidation. The results show that, in samples from patients diagnosed with AD, the plaques and their immediate surroundings are always characterized by the presence of oxidized lipids. As for samples from non-AD individuals, those without amyloid plaques show a lower level of lipid oxidation than AD individuals. However, it is known that plaques can be detected in the brains of some non-AD individuals. Our results show that, in such cases, the lipid in the plaques and their surroundings display oxidation levels that are similar to those of tissues with no plaques. These results point to lipid oxidation as a possible key factor in the path that goes from showing the typical neurophatological hallmarks to suffering from dementia. In this process, the oxidative power of the amyloid peptide, possibly in the form of nonfibrillar aggregates, could play a central role.

  5. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Mogensen, Martin; Petersen, Ingrid

    2005-01-01

    In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms...

  6. Low-fat frankfurters formulated with a healthier lipid combination as functional ingredient: microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation.

    Science.gov (United States)

    Delgado-Pando, Gonzalo; Cofrades, Susana; Ruiz-Capillas, Claudia; Solas, Maria Teresa; Triki, Mehdi; Jiménez-Colmenero, Francisco

    2011-09-01

    Oil (healthier lipid combination of olive, linseed and fish oils)-in-water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI), and microbial transglutaminase (MTG)) were used as pork backfat replacers in low-fat frankfurters. Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation of frankfurters were analyzed and found to be affected by the type of oil-in-water emulsion and by chilling storage (2° C, 41 days). Although the lipid oxidation levels attained were low, replacement of animal fat by healthier oil combinations in frankfurter formulation did promote a slight increase in lipid oxidation. Residual nitrite was affected (P nitrite was detectable in the product after processing and 17-46% at the end of storage. The microbial population was low in all formulations during chilling storage. Spermine was the most abundant amine (19-20 mg/kg), but similar in level to all samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of irradiation on color and lipid oxidation of prosciutto

    International Nuclear Information System (INIS)

    Kong Qiulian; Qi Wenyuan; Yue Ling; Chen Zhijun; Bao Yingzi; Dai Xudong; Xu Yun

    2011-01-01

    This study dealt with the effect of irradiation on the color, ordor and lipid oxidation of prosciutto crudo. The hams were irradiated by γ-ray and electronic beam (EB). Changes of color, ordor, TBA value (TBARS), peroxide value (POV), carbonyl value and conjugated diene value were analyzed and compared with nonirradiated hams. Results showed that color index (a * ) of control, γ-ray irradiated and EB irradiated were 14.39, 9.45 and 11.71 respectively. γ-ray irradiation had been shown to have apparently detrimental effect on the color and ordor of hams, while EB irradiation had little detrimental effect. Irradiation increased POV and conjugated diene value, but the amounts of lipid oxidation products (TBARS, carbonyl value) were less than nonirradiated hams. (authors)

  8. Optimization of cationic lipid mediated gene transfer: structure-function, physico-chemical, and cellular studies.

    Science.gov (United States)

    Carrière, Marie; Tranchant, Isabelle; Niore, Pierre-Antoine; Byk, Gerardo; Mignet, Nathalie; Escriou, Virginie; Scherman, Daniel; Herscovici, Jean

    2002-01-01

    The rationale design aimed at the enhancement of cationic lipid mediated gene transfer is discussed. These improvements are based on the straight evaluation of the structure-activity relationship and on the introduction of new structures. Much attention have been given to the supramolecular structures of the lipid/DNA complexes, to the effect of serum on gene transfer and to the intracellular trafficking of the lipoplexes. Finally new avenue using reducible cationic lipids has been discussed.

  9. Lipid binding to cytoglobin leads to a change in haem co-ordination: a role for cytoglobin in lipid signalling of oxidative stress.

    Science.gov (United States)

    Reeder, Brandon J; Svistunenko, Dimitri A; Wilson, Michael T

    2011-03-15

    Cytoglobin is a recently discovered hexa-co-ordinate haemoglobin that does not appear to function as a classical oxygen-binding protein. Its function is unknown and studies on the effects of changes in its expression have not decisively determined its role within the cell. In the present paper, we report that the protein is transformed from hexa-co-ordinate to penta-co-ordinate on binding a lipid molecule. This transformation occurs with the ferric oxidation state of the protein, but not the ferrous state, indicating that this process only occurs under an oxidative environment and may thus be related to redox-linked cell signalling mechanisms. Oleate binds to the protein in a 1:1 stoichiometry and with high affinity (K(d)=0.7 μM); however, stopped-flow kinetic measurements yield a K(d) value of 110 μM. The discrepancy between these K(d) values may be rationalized by recognizing that cytoglobin is a disulfide-linked dimer and invoking co-operativity in oleate binding. The lipid-induced transformation of cytoglobin from hexa-co-ordinate to penta-co-ordinate does not occur with similar hexa-co-ordinate haemoglobins such as neuroglobin, and therefore appears to be a unique property of cytoglobin among the haemoglobin superfamily. The lipid-derived transformation may explain why cytoglobin has enhanced peroxidatic activity, converting lipids into various oxidized products, a property virtually absent from neuroglobin and much decreased in myoglobin. We propose that the binding of ferric cytoglobin to lipids and their subsequent transformation may be integral to the physiological function of cytoglobin, generating cell signalling lipid molecules under an oxidative environment.

  10. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won [Daejeon, Daejeon (Korea, Republic of); Lim, JitKang [Universiti Sains Malaysia, Penang (Malaysia)

    2014-05-15

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO{sub 2} nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO{sub 2} ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO{sub 2} concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO{sub 2} (5 g/L TiO{sub 2}) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO{sub 2} (0.1 g/L) and a short induction time (two days). The controlled condition of TiO{sub 2}/UV-A inducing oxidative stress (0.1 g/L TiO{sub 2} and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO{sub 2}/UV-A.

  11. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Science.gov (United States)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  12. Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage

    DEFF Research Database (Denmark)

    Eymard, Sylvie; Baron, Caroline; Jacobsen, Charlotte

    2009-01-01

    : M1, M2 and M3, with one, two and three washing steps, respectively. The different products were characterised (i.e. lipid content, protein, water, iron, fatty acid profile and tocopherol content) and analysed for protein and lipid oxidation in order to investigate the impact of the washing steps...... was followed by determination of protein solubility, protein thiol groups and protein carbonyl groups using colorimetric methods as well as western blotting for protein carbonyl groups. Lipid and protein oxidation markers indicated that both lipid and protein oxidation took place during processing...

  13. Glutathione delays varies as-tocopherol oxidation and subsequent lipid peroxidation in rat liver microsomes

    International Nuclear Information System (INIS)

    Robey, S.; Mavis, R.

    1986-01-01

    A method has been developed for in vitro trace radiolabeling of rat liver microsomes with 3 H-α-tocopherol (αT*) which allows virtually complete oxidation of the αT* under oxidizing conditions. The supernatant of a 16,000 xg centrifugation of homogenized rat liver, containing the cytosolic rat liver vitamin E (VE) transfer protein, was incubated with an ethanolic solution of αT* for 10 minutes at 37 0 C. Labeled microsomes were collected in the washed 100,000 xg pellet. Microsomes were then incubated with 30 μM Fe 2+ in an NADPH-generating system, and both production of malondialdehyde (MDA) (a product of lipid peroxidation) and oxidation of αT* were monitored over a time course in the presence and absence of glutathione (GSH). The results indicate virtually complete oxidation of αT* precedes significant membrane lipid peroxidation, and that addition of 5 mM GSH delays both αT* oxidation and subsequent MDA production. This suggests that the previously observed VE-dependent heat labile inhibition of microsomal lipid peroxidation by GSH involves maintaining membrane levels of α-tocopherol

  14. Effect of irradiation on lipid oxidation in eviscerated chicken carcasses during storage

    International Nuclear Information System (INIS)

    Hassan, I.M.; Hussein, M.F.; Mahmoud, A.A.; Hegazy, R.A.

    1988-01-01

    Oxidative changes induced in pectoralis major muscle of chicken after irradiation treatments with 0,6,10 and 20 KGy in both non frozen or frozen conditions during subsequent storage were investigated. Ultraviolet (UV) absorption, peroxides and thiobarbituric reactive substances increased in chicken lipids with increasing irradiation doses. These oxidative changes are greater in irradiated refrigerated (4 ± 1°C) than in irradiated frozen (-20°C) chicken lipids during storage. It was found the peroxides and TBA reactive substances do not accumulate as a stable end products of fat oxidation but reach a maximum during storage followed by gradual declining. The UV absorption provides an objective measure of chicken lipids autoxidation suitable for following the progress of autoxidation of irradiated chicken during subsequent non frozen (4 ± 1°C) or frozen (-20°C) storage. The extent of Maillard-like browning was followed in both unirradiated and irradiated samples during storage. All tested objective parameters correlated well with sensory assessment of odour particularly when irradiation dose was increased as well as in frozen samples

  15. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2

    DEFF Research Database (Denmark)

    Witting, P K; Willhite, C A; Davies, Michael Jonathan

    1999-01-01

    Metmyoglobin (metMb) and H(2)O(2) can oxidize low-density lipoprotein (LDL) in vitro, and oxidized LDL may be atherogenic. The role of alpha-tocopherol (alpha-TOH) in LDL oxidation by peroxidases such as metMb is unclear. Herein, we show that during metMb/H(2)O(2)-induced oxidation of native LDL...... of CE-O(O)H is dependent on, and correlates with, LDL's alpha-TOH content, yet does not require preformed lipid hydroperoxides or H(2)O(2). This indicates that in native LDL alpha-TOH can act as a phase-transfer agent and alpha-TO(*) as a chain-transfer agent propagating LDL lipid peroxidation via...

  16. Review Article: Dyslipidaemia, Lipid Oxidation, And Free Radicals In ...

    African Journals Online (AJOL)

    Diabetes mellitus is frequently associated with dyslipidaemia evidenced by high prevalence rate that range from 16%-40%, and chronically elevated level of plasma lipids, low-density lipoprotein in particular, leads to modification of structures, importantly through oxidative processes. Renal tissue particularly in diabetes ...

  17. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    Science.gov (United States)

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane

  18. Development of Liposome Encapsulated Hemoglobin (LEH) and Studies of Hemorrhagic Shock by Use of Imaging Studies with Oxygen-15 and Other Radiotracers

    National Research Council Canada - National Science Library

    Phillips, William T; Goins, Beth; Awasthi, Vibhudutta

    2004-01-01

    .... Encapsulating hemoglobin inside a protective lipid membrane, which mimics a red blood cell, has the advantages of decreasing the toxicity of the free hemoglobin, increasing its circulation time...

  19. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation.

    Science.gov (United States)

    Liu, Yong; He, Yizhou; Jin, Aiwen; Tikunov, Andrey P; Zhou, Lishi; Tollini, Laura A; Leslie, Patrick; Kim, Tae-Hyung; Li, Lei O; Coleman, Rosalind A; Gu, Zhennan; Chen, Yong Q; Macdonald, Jeffrey M; Graves, Lee M; Zhang, Yanping

    2014-06-10

    The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2(C305F)), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP-Mdm2-p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2(C305F) mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP-Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2(C305F) mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP-Mdm2-p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion.

  20. Association between oxidative stress index and serum lipid levels in healthy young adults

    International Nuclear Information System (INIS)

    Turkdogan, K.E.

    2014-01-01

    Objectives: To investigate the relationship between lipid levels and oxidative stress index in healthy young adults. Methods: The study was camed out at the Department of Emergency Service, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey, between January 2011 and July 2012. A total of 100 healthy adult volunteers were enrolled in the study. Venous blood samples (10 ml) were collected from all individuals, and serum lipid parameters, total antioxidant capacity and total oxidative levels were studied. SPSS 15 was used for statistical analysis. Results: Overall, there were 84 (84%) males and 16 (16%) females. The mean age of the male population was 30+-3 years, while that of the females was 31+-3 years. Overall age ranged from 25 to 35 years. A statistically significant correlation was found between the oxidative stress index and serum cholesterol (p<0.001; r=0.596), triglyceride (p<0.001; r=0.476) and low-density lipoprotein levels (p<0.001; r=0.318). However, no significant correlation was found between oxidative stress index and serum high-density lipoprotein levels (p=0.564; r=0.058). Conclusion: The results showed that even at an early age, there is a direct linear correlation between oxidative stress and serum lipid levels. (author)

  1. Modification of Casein by the Lipid Oxidation Product Malondialdehyde

    NARCIS (Netherlands)

    Adams, A.; Kimpe, de N.; Boekel, van T.

    2008-01-01

    The reaction of malondialdehyde with casein was studied in aqueous solution to evaluate the impact of this lipid oxidation product on food protein modification. By using multiresponse modeling, a kinetic model was developed for this reaction. The influence of temperature and pH on protein browning

  2. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids

    Science.gov (United States)

    An experiment was conducted to evaluate the impact of lipid source on GE and ether extract (EE) digestibility, oxidative stress, and gut integrity in nursery pigs fed diets containing 10% of soybean oil (SO), choice white grease (CWG), palm oil (PO), or 2 different distillers corn oils (DCO-1 and DC...

  3. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik

    2015-07-01

    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  4. Controlling lipid oxidation via a biomimetic iron chelating active packaging material.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-12-18

    Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.

  5. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Ursolic acid attenuates oxidative stress-mediated hepatocellular carcinoma induction by diethylnitrosamine in male Wistar rats.

    Science.gov (United States)

    Gayathri, Renganathan; Priya, D Kalpana Deepa; Gunassekaran, G R; Sakthisekaran, Dhanapal

    2009-01-01

    Hepatocellular carcinoma is the most common primary cancer of the liver in Asian countries. For more than a decade natural dietary agents including fruits, vegetables and spices have drawn a great deal of attention in the prevention of diseases, preferably cancer. Ursolic acid is a natural triterpenoid widely found in food, medicinal herbs, apple peel and other products it has been extensively studied for its anticancer and antioxidant properties. The purpose of this study was to evaluate the effect of ursolic acid in diethylnitrosamine (DEN) induced and phenobarbital promoted hepatocarcinogenesis in male Wistar rats. Antioxidant status was assessed by alterations in level of lipid peroxides and protein carbonyls. Damage to plasma membranes was assessed by levels of membrane and tissue ATPases. Liver tissue was homogenized and utilized for estimation of lipid peroxides, protein carbonyls and glycoproteins. Anticoagulated blood was utilized for erythrocyte membrane isolation. Oral administration of UA 20 mg/kg bodyweight for 6 weeks decreased the levels of lipid peroxides and protein carbonyls at a significance of pmembrane and tissue ATPases returned to normal after UA administration. Levels of glycoproteins were also restored after treatment. Histopathological observations were recorded. The findings from the above study suggest the effectiveness of UA in reducing the oxidative stress mediated changes in liver of rats. Since UA has been found to be a potent antioxidant, it can be suggested as an excellent chemopreventive agent in overcoming diseases like cancer which are mediated by free radicals.

  7. Oxidative Stress Measures of Lipid and DNA Damage in Human Tears.

    Science.gov (United States)

    Haworth, Kristina M; Chandler, Heather L

    2017-05-01

    We evaluate feasibility and repeatability of measures for lipid peroxidation and DNA oxidation in human tears, as well as relationships between outcome variables, and compared our findings to previously reported methods of evaluation for ocular sun exposure. A total of 50 volunteers were seen for 2 visits 14 ± 2 days apart. Tear samples were collected from the inferior tear meniscus using a glass microcapillary tube. Oxidative stress biomarkers were quantified using enzyme-linked immunosorbent assay (ELISA): lipid peroxidation by measurement of hexanoyl-lysine (HEL) expression; DNA oxidation by measurement of 8-oxo-2'-deoxyguinosone (8OHdG) expression. Descriptive statistics were generated. Repeatability estimates were made using Bland-Altman plots with mean differences and 95% limits of agreement were calculated. Linear regression was conducted to evaluate relationships between measures. Mean (±SD) values for tear HEL and 8OHdG expression were 17368.02 (±9878.42) nmol/L and 66.13 (±19.99) ng/mL, respectively. Repeatability was found to be acceptable for both HEL and 8OHdG expression. Univariate linear regression supported tear 8OHdG expression and spring season of collection to be predictors of higher tear HEL expression; tear HEL expression was confirmed as a predictor of higher tear 8OHdG expression. We demonstrate feasibility and repeatability of estimating previously unreported tear 8OHdG expression. Seasonal temperature variation and other factors may influence tear lipid peroxidation. Support is demonstrated to suggest lipid damage and DNA damage occur concurrently on the human ocular surface.

  8. ( Citrus maxima ) peel powder on lipid oxidation of

    African Journals Online (AJOL)

    The presence of phenolic compounds in Shaddock peel powder (SPP) and its effect on lipid oxidation in cooked and raw semimembranosus (SM) muscle in goats were examined. The SPP was applied to cooked and raw minced SM at the rate of 0, 0.5, 1.0 and 1.5% of the weight of the meat and compared with 0.01% ...

  9. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    International Nuclear Information System (INIS)

    Feng, Xi; Ahn, Dong Uk

    2016-01-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant. - Highlights: • Irradiation had little effects on lipid oxidation of ready-to-eat cured turkey. • 4.5 kGy irradiation increased protein oxidation. • Irradiated samples were isolated due to Strecker/radiolytic degradation products. • 1.5 kGy irradiation had limited effects on the volatile profile of turkey sausages. • Dimethyl disulfide can be used as a potential marker for irradiated meat products.

  10. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    Science.gov (United States)

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  11. Porphyromonas endodontalis binds, reduces and grows on human hemoglobin.

    Science.gov (United States)

    Zerr, M; Drake, D; Johnson, W; Cox, C D

    2001-08-01

    Porphyromonas endodontalis is a black-pigmented, obligate anaerobic rod-shaped bacterium implicated as playing a major role in endodontic infections. We have previously shown that P. endodontalis requires the porphyrin nucleus, preferably supplied as hemoglobin, as a growth supplement. The bacteria also actively transport free iron, although this activity does not support growth in the absence of a porphyrin source. The purpose of this study was to further investigate the binding and subsequent utilization of human hemoglobin by P. endodontalis. P. endodontalis binds hemoglobin and reduces the Fe(III) porphyrin, resulting in a steady accumulation of ferrous hemoglobin. Reduction of methemoglobin was similar to the extracellular reduction of nitrobluetetrazolium in the presence of oxidizable substrate. Turbidimetric and viable cell determinations showed that P. endodontalis grew when supplied only hemoglobin. Therefore, we conclude that hemoglobin appears to serve as a sole carbon and nitrogen source, and that these bacteria reduce extracellular compounds at the expense of oxidized substrates.

  12. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungkon [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: koguma@snu.ac.kr; Park, Yena [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: elohim@snu.ac.kr; Choi, Kyungho [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: kyungho@snu.ac.kr

    2009-01-18

    Sulfonamide antibiotics frequently occur in aquatic environments. In this study, phototoxicity of sulfathiazole (STZ) and its mechanism of action were investigated using Daphnia magna. We evaluated the changes of molecular level stress responses by assessing gene expression, enzyme induction and lipid peroxidation, and the related organism-level effects in D. magna. In the presence of ultraviolet B (UV-B) light (continuous irradiation with 13.8 {+-} 1.0 {mu}W cm{sup -2} d{sup -1}), STZ (at the nominal concentration of 94.9 mg/L) caused a significant increase in reactive oxygen species (ROS) generation and lipid peroxidation. Catalase (CAT) and glutathione S-transferase (GST) showed concentration-dependent increases caused by the exposure. Exposure to STZ and UV-B light caused apparent up-regulation of {alpha}-esterase, hemoglobin, and vitellogenin mRNA. The survival of daphnids was significantly affected by the co-exposure to STZ and UV-B. The biochemical and molecular level observations in combination with organism-level effects suggest that the phototoxicity of STZ was mediated in part by ROS generated by oxidative stress in D. magna.

  13. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Kim, Jungkon; Park, Yena; Choi, Kyungho

    2009-01-01

    Sulfonamide antibiotics frequently occur in aquatic environments. In this study, phototoxicity of sulfathiazole (STZ) and its mechanism of action were investigated using Daphnia magna. We evaluated the changes of molecular level stress responses by assessing gene expression, enzyme induction and lipid peroxidation, and the related organism-level effects in D. magna. In the presence of ultraviolet B (UV-B) light (continuous irradiation with 13.8 ± 1.0 μW cm -2 d -1 ), STZ (at the nominal concentration of 94.9 mg/L) caused a significant increase in reactive oxygen species (ROS) generation and lipid peroxidation. Catalase (CAT) and glutathione S-transferase (GST) showed concentration-dependent increases caused by the exposure. Exposure to STZ and UV-B light caused apparent up-regulation of α-esterase, hemoglobin, and vitellogenin mRNA. The survival of daphnids was significantly affected by the co-exposure to STZ and UV-B. The biochemical and molecular level observations in combination with organism-level effects suggest that the phototoxicity of STZ was mediated in part by ROS generated by oxidative stress in D. magna

  14. Effects of garlic extract on color, lipid oxidation and oxidative breakdown products in raw ground beef during refrigerated storage

    Directory of Open Access Journals (Sweden)

    XINZHUANG ZHANG

    2016-03-01

    Full Text Available The study aims to investigate the effects of garlic extracts on color, lipid oxidation, and oxidative breakdown products in raw ground beef during refrigerated storage. The two treatments were:control group (C, with no addition and experiment group (D, 50 mg garlic extracts added to 100 g beef. Adding garlic extracts significant increased a* value (PA ≤ 0.05, and significant decreased TBARS and PV values (PA ≤ 0.05. The pH and –SH value of D group had a decreasing tendency (PA=0.0522 and an increasing tendency (PA=0.0636 respectively compared to C group. Garlic extracts protected phospholipids, fatty acids and polypeptides from oxidation. The results indicatethat garlic extracts have the antioxidant activity, helping maintain the meat color, inhibiting lipid oxidation and protein degradation of raw ground beef during refrigerated storage.

  15. Rapid and Sensitive Determination of Lipid Oxidation Using the Reagent Kit Based on Spectrophotometry (FOODLABfat System

    Directory of Open Access Journals (Sweden)

    Chang Woo Kwon

    2016-01-01

    Full Text Available The reliability and availability of FOODLABfat system for determining acid value (AV and peroxide value (POV were assessed during the hydrolytic rancidification and lipid oxidation of edible oils. This reagent kit based on spectrophotometry was compared to the official methods (ISO 660 and 3960 protocols based on manual titration employing the standard mixture for the simulated oxidation models and edible oils during the thermally induced oxidation at 180°C. The linear regression line of standard mixture and the significant difference of thermally oxidized time course study determined between them showed high correlations (R2=0.998 and p<0.05 in both AVs and POVs. Considering ISO protocols with a probability of human error in manual titration, the rapidness and simplicity of the reagent kit based on spectrophotometry make it a promising alternative to monitor the lipid oxidation of edible oils and lipid-containing foods.

  16. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The relationship between Type D personality, affective symptoms and hemoglobin levels in chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Nina Kupper

    Full Text Available BACKGROUND: Anemia is associated with poor prognosis in heart failure (HF patients. Contributors to the risk of anemia in HF include hemodilution, renal dysfunction and inflammation. Hemoglobin levels may also be negatively affected by alterations in stress regulatory systems. Therefore, psychological distress characterized by such alterations may adversely affect hemoglobin in HF. The association between hemoglobin and Type D personality and affective symptomatology in the context of HF is poorly understood. AIM: To examine the relationship between Type D personality and affective symptomatology with hemoglobin levels at inclusion and 12-month follow-up, controlling for relevant clinical factors. METHODS: Plasma levels of hemoglobin and creatinine were assessed in 264 HF patients at inclusion and at 12-month follow-up. Type D personality and affective symptomatology were assessed at inclusion. RESULTS: At inclusion, hemoglobin levels were similar for Type D and non-Type D HF patients (p = .23, and were moderately associated with affective symptomatology (r = -.14, p = .02. Multivariable regression showed that Type D personality (β = -.15; p = .02, was independently associated with future hemoglobin levels, while controlling for renal dysfunction, gender, NYHA class, time since diagnosis, BMI, the use of angiotensin-related medication, and levels of affective symptomatology. Change in renal function was associated with Type D personality (β = .20 and hemoglobin at 12 months (β = -.25. Sobel mediation analysis showed significant partial mediation of the Type D - hemoglobin association by renal function deterioration (p = .01. Anemia prevalence increased over time, especially in Type D patients. Female gender, poorer baseline renal function, deterioration of renal function and a longer HF history predicted the observed increase in anemia prevalence over time, while higher baseline hemoglobin was protective

  18. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silence...... suggests that 3-on-3 hemoglobins apart from a role in hypoxic stress play a general role under non-stressed conditions where they are essential for normal development by controlling the level of NO which tends to accumulate in floral buds and leaf hydathodes of plants......In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...

  19. Conformations of double-headed, triple-tailed phospholipid oxidation lipid products in model membranes

    DEFF Research Database (Denmark)

    Hermetter, Albin; Kopec, Wojciech; Khandelia, Himanshu

    2013-01-01

    Products of phospholipid oxidation can produce lipids with a carbonyl moiety at the end of a shortened lipid acyl tail, such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC). The carbonyl tail of POVPC can covalently bond to the free tertiary amine of a phosphatidylethanolamine...

  20. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size – implication for FasR-associated apoptosis

    Science.gov (United States)

    Gilbert, Stéphane; Loranger, Anne; Omary, M. Bishr

    2016-01-01

    ABSTRACT Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  1. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation

    Directory of Open Access Journals (Sweden)

    Yosuke eIsobe

    2012-08-01

    Full Text Available Acute inflammation and its resolution are essential processes for tissue protection and homeostasis. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programs that enable inflamed tissues to return to homeostasis. The mechanisms by which acute inflammation is resolved are of interest, and research in recent years has uncovered new endogenous anti-inflammatory and pro-resolving lipid mediators (i.e. lipoxins, resolvins, protectin, and maresin generated from polyunsaturated fatty acids (PUFAs. This review presents new insights into the cellular and molecular mechanisms of inflammatory resolution, especially the roles of eosinophils, and a series of omega-3 PUFA derived anti-inflammatory lipid mediators that they generate.

  2. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.

    Science.gov (United States)

    Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S

    2016-11-01

    The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage.

    Science.gov (United States)

    Mahmoodani, Fatemeh; Perera, Conrad O; Abernethy, Grant; Fedrizzi, Bruno; Chen, Hong

    2018-09-30

    Vitamin D3 levels are known to sometimes decline in fortified products, which could be due to its degradation, although the exact mechanism is unknown. In this study, the influence of processing and storage conditions on lipid oxidation and vitamin D3 degradation were studied. Simulated whole milk powders with and without heat treatment were stored for 12 months at two different storage temperatures (20 °C and 40 °C). Stored samples without heat treatment showed higher lipid oxidation products analyzed by PV and TBARS values compared to those with heat treatment. Higher storage temperature also resulted in higher levels of lipid oxidation products. The concentration of vitamin D3 was also analyzed using UHPLC-MS/MS after PTAD derivatization in stored samples. An inverse relationship was observed between lipid oxidation products and vitamin D3 content. Finally, previtamin D3 and vitamin D3 oxidation products were quantified in stored samples using MRM analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products.

    Science.gov (United States)

    Hęś, Marzanna; Szwengiel, Artur; Dziedzic, Krzysztof; Le Thanh-Blicharz, Joanna; Kmiecik, Dominik; Górecka, Danuta

    2017-04-01

    This study investigated the effect of antioxidants on lipid stability of frozen-stored meat products. Buckwheat hull extract was used to enrich fried meatballs made from ground pork. During 180-d storage of meat products, lipid oxidation (peroxide and 2-thiobarbituric acid reactive substances [TBARS] value) was periodically monitored. The results were compared with butylated hydroxytoluene (BHT). The addition of antioxidants decreased lipid oxidation in stored meatballs. The highest ability to control peroxide and TBARS values was demonstrated for buckwheat hull extract. Moreover, buckwheat hull extract showed a higher 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity as well as higher Fe(II) ion chelating ability, as compared with BHT. The total content of phenolic compounds are highly correlated to the individual polyphenols in extract of buckwheat hull, among which the following were assayed: 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, gallic acid, isovanillic acid and p-coumaric acid, and flavonoids: isoorientin, quercetin, quercetin 3-d-glucoside, rutin, and vitexin. These results indicate that plant extracts can be used to prolong shelf life of products by protecting them against lipid oxidation and deterioration of their nutritional quality. © 2017 Institute of Food Technologists®.

  5. Dose dependent oxidation kinetics of lipids in fish during irradiation processing

    International Nuclear Information System (INIS)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T.; Bicer, A.; Pamuk, V.

    1997-01-01

    Kinetic aspects of the development of lipid oxidation in complex foods as fish in the course of irradiation were analyzed with respect to the associated formation of malonaldehyde (MA) through the reactions modified so as to be consistent with those in complex foods as fish. Air-packed anchovy (Engraulis encrasicholus) samples in polyethylene pouches were irradiated at the doses of 1, 2, 5, 10, 15,20 and 25 kGy at 20 o C in a Cs-137 gamma irradiator of 1.806 kGy/h dose rate. Immediately after each irradiation, MA contents of irradiated and unirradiated samples were determined by thiobarbituric acid test. Based on the MA formation, a kinetic model to simulate the apparent oxidation of lipid in fish as a function of irradiation dose was derived from the rate equations consistent with modified reactions. Kinetic parameters and simulation were related to conditions of lipid oxidation, and associated rancidity state of fish with respect to the doses applied in different irradiation-preservation processes. Numerical values of kinetic parameters based on the MA formation were found as a threshold dose of 0.375 kGy, an apparent yield of 1.871 μmol/kg kGy, and a maximum attainable concentration of 15.853 μmol/kg which may be used for process control and dosimetry. (author)

  6. Effects of different rearing and feeding systems on lipid oxidation and antioxidant capacity of freeze-dried egg yolks.

    Science.gov (United States)

    Pignoli, Giovanni; Rodriguez-Estrada, Maria Teresa; Mandrioli, Mara; Barbanti, Lorenzo; Rizzi, Laura; Lercker, Giovanni

    2009-12-23

    Lipid oxidation and antioxidant capacity of freeze-dried egg yolks produced with two rearing systems (battery cages and free-range) and two types of feedings (conventional and organic) were studied. Nine fresh egg yolks of each crossed treatment were pooled, frozen for a month, freeze-dried, vacuum-packed, and kept at -18 degrees C until analysis. No significant differences were observed in the lipid (58.0-62.1%) and total sterol contents (33.0-35.5 g/kg of lipids) of the freeze-dried egg yolks. Free rearing and conventional feeding systems resulted in significantly higher total tocopherol, alpha-tocopherol, and lutein contents, as compared to the battery cage and the organic feed, respectively. However, no significant differences were found in lipid oxidation (peroxide value = 0.7-0.9 mequiv of O(2)/kg of fat; thiobarbituric reactive substances = 1.0-1.3 mg of malonylaldehyde/kg of sample) and cholesterol oxidation (28.8-43.5 mg of cholesterol oxidation products/kg of lipids; 0.08-0.12% oxidized cholesterol) of freeze-dried egg yolks except for 7alpha-hydroxycholesterol, which was significantly lower in samples obtained with organic feed.

  7. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Singaravelu, Ragunath [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Lyn, Rodney K. [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Srinivasan, Prashanth [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Delcorde, Julie [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Steenbergen, Rineke H.; Tyrrell, D. Lorne [Department of Medical Microbiology and Immunology, University of Alberta (Canada); Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2S2 (Canada); Pezacki, John P., E-mail: John.Pezacki@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2013-11-15

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.

  8. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    International Nuclear Information System (INIS)

    Singaravelu, Ragunath; Lyn, Rodney K.; Srinivasan, Prashanth; Delcorde, Julie; Steenbergen, Rineke H.; Tyrrell, D. Lorne; Pezacki, John P.

    2013-01-01

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway

  9. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    International Nuclear Information System (INIS)

    Jo, Cheo Run; Byun, Myung Woo

    2000-01-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7α- and 7β- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions

  10. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements.

    Science.gov (United States)

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. The peroxide values were in the range 1.04-10.38 meq/kg for omega-3 supplements and in the range 0.60-5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23-932.19 nmol/mL for omega-3 supplements and 33.24-119.04 nmol/mL for vegetable oils. After heating, a 2.9-11.2 fold increase in alkenal concentration was observed for vegetable oils. The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  11. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE AND 1,4-BENZOQUINONE AFTER ADMINISTRATION OF BENZENE TO F344 RATS

    Science.gov (United States)

    The stability of cysteinyl adducts of benzene oxide (BO) and mono-S-substituted cysteinyl adducts of 1,4-benzoquinone (1,4-BQ) was investigated in both hemoglobin (Hb) and albumin (Alb) following administration of a single oral dose of 400 mg [U-14C/13C6]benzene/kg body weight ...

  12. PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism

    NARCIS (Netherlands)

    Diepen, van J.A.; Jansen, P.A.; Ballak, D.B.; Hijmans, A.; Hooiveld, G.J.E.J.; Rommelaere, S.; Kersten, A.H.; Stienstra, R.

    2014-01-01

    Background & Aims Peroxisome proliferator-activated receptor alpha (PPARa) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARa target gene in liver, but its function in hepatic lipid metabolism is unknown.

  13. Methods to assess secondary volatile lipid oxidation products in complex food matrices

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Yesiltas, Betül

    A range of different methods are available to determine secondary volatile lipid oxidation products. These methods include e.g. spectrophotometric determination of anisidine values and TBARS as well as GC based methods for determination of specific volatile oxidation products such as pentanal...... headspace methods on the same food matrices will be presented....

  14. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.

    2014-01-01

    was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature......The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil...

  15. Effect of emulsifiers and physical structure on lipid oxidation in omega-3 emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    The body of evidence supporting health beneficial effects of long-chain omega-3 polyunsaturated fatty acids has increased over the last decades. Consequently, the interest in fish oil-enriched foods has also increased. However, addition of these highly unsaturated fatty acids to foods also adds...... the challenge of lipid oxidation. In order to limit lipid oxidation and the consecutive development of unpleasant off-flavours, the manner in which the fish oil is introduced to the food product should be carefully considered, e.g. an emulsion could be used as delivery system for the omega-3s. The aim...

  16. Biogeochemical evidence that thermophilic Archaea mediate the anaerobic oxidation of methane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Wakeham, S.G.; Hopmans, E.C.

    2003-01-01

    Distributions and isotopic analyses of lipids from sediment cores at a hydrothermally active site in the Guaymas Basin with a steep sedimentary temperature gradient revealed the presence of archaea that oxidize methane anaerobically. The presence of strongly 13C-depleted lipids at greater depths in

  17. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Frederic T Billings

    Full Text Available Cardiopulmonary bypass (CPB lyses erythrocytes and induces lipid peroxidation, indicated by increasing plasma concentrations of free hemoglobin, F2-isoprostanes, and isofurans. Acetaminophen attenuates hemeprotein-mediated lipid peroxidation, reduces plasma and urine concentrations of F2-isoprostanes, and preserves kidney function in an animal model of rhabdomyolysis. Acetaminophen also attenuates plasma concentrations of isofurans in children undergoing CPB. The effect of acetaminophen on lipid peroxidation in adults has not been studied. This was a pilot study designed to test the hypothesis that acetaminophen attenuates lipid peroxidation in adults undergoing CPB and to generate data for a clinical trial aimed to reduce acute kidney injury following cardiac surgery.In a prospective double-blind placebo-controlled clinical trial, sixty adult patients were randomized to receive intravenous acetaminophen or placebo starting prior to initiation of CPB and for every 6 hours for 4 doses. Acetaminophen concentrations measured 30 min into CPB and post-CPB were 11.9 ± 0.6 μg/mL (78.9 ± 3.9 μM and 8.7 ± 0.3 μg/mL (57.6 ± 2.0 μM, respectively. Plasma free hemoglobin increased more than 15-fold during CPB, and haptoglobin decreased 73%, indicating hemolysis. Plasma and urinary markers of lipid peroxidation also increased during CPB but returned to baseline by the first postoperative day. Acetaminophen reduced plasma isofuran concentrations over the duration of the study (P = 0.05, and the intraoperative plasma isofuran concentrations that corresponded to peak hemolysis were attenuated in those subjects randomized to acetaminophen (P = 0.03. Perioperative acetaminophen did not affect plasma concentrations of F2-isoprostanes or urinary markers of lipid peroxidation.Intravenous acetaminophen attenuates the increase in intraoperative plasma isofuran concentrations that occurs during CPB, while urinary markers were unaffected.ClinicalTrials.gov NCT

  18. Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2011-04-01

    Full Text Available Salinity stress is an important environmental constraint limiting the productivity of many crops worldwide. In this report, experiments were conducted to investigate the effects of seed presoaking by bovine hemoglobin, an inducer of heme oxygenase-1 (HO-1, on salinity tolerance in rice (Oryza sativa plants. The results showed that different concentrations of the hemoglobin (0.01, 0.05, 0.2, 1.0, and 5.0 g/L differentially alleviated the inhibition of rice seed germination and thereafter seedling shoot growth caused by 100 mM NaCl stress, and the responses of 1.0 g/L hemoglobin was the most obvious. Further analyses showed that application of hemoglobin not only increased the HO-1 gene expression, but also differentially induced catalase (CAT, ascorbate peroxidase (APX, and superoxide dismutase (SOD activities or transcripts, thus decreasing the lipid peroxidation in germinating rice seeds subjected to salt stress. Compared with non-hemoglobin treatment, hemoglobin presoaking also increased the potassium (K to sodium (Na ratio both in the root and shoot parts after salinity stress. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX blocked the positive actions of hemoglobin on seed germination and seedling shoot growth. Overall, these results suggested that hemoglobin performs an advantageous role in enhancement of salinity tolerance during rice seed germination.

  19. Lipid oxidation in buffalo meat from animals with dietary supplementation of vitamin E

    Directory of Open Access Journals (Sweden)

    L. Chianese

    2010-02-01

    Full Text Available Buffalo (Bubalus bubalis meat is not widely used in the diet, but it is recently reconsidered due to its valuable nutritional qualities. New strategies aiming to improve the quality of buffalo meat have to be applied particularly to face the problem of lipid peroxidation, one of the most important causes of meat food deterioration. The aim of this study was to evaluate the lipid oxidation of buffalo meat (muscles Caput longum tricipitis brachii, Longissimus dorsi and Semimembranosus, coming from animals fed with two different amount of vitamin E (600 IU/die and 1500 IU/die for 102 -123 days considering, as markers for lipid oxidation, the concentration of malondialdehyde (MDA by HPLC-UV and TBA test. Moreover it was evaluated, by HPLC-DAD, vitamin E concentration in the meat samples. Muscles coming from animals with vitamin E supplementation were in mean 2 times more enriched of vitamin E than control (p < 0.05. Meat from buffalo fed with 600 IU/die vitamin E had significant lower MDA concentration in comparison with control (in mean -53%, n= 4. Both for MDA and vitamin E concentrations not significant differences were found between the supplementation of 600 IU/die and 1500 IU/die. It is concluded that dietary supplementation with Vitamin E is a promising strategy to prevent lipid oxidation of buffalo meat and to prolong its shelf-life.

  20. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    Science.gov (United States)

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effects of irradiation on color and lipid oxidation of prosciutto

    International Nuclear Information System (INIS)

    Kong Qiulian; Qi Wenyuan; Yue Ling; Chen Zhijun; Bao Yingzi; Dai Xudong; Xu Yun

    2012-01-01

    This study dealt with the effect of irradiation on the color, irradiation odor and lipid oxidation of prosciutto crudo. The hams were irradiated by γ-ray and electronic beam (EB). Changes of color, irradiation odor, TBA value (TBARS), peroxide value (POV), carbonyl value and conjugated diene value were analyzed and compared with non-irradiated hams. Results showed that color index (a * ) of control, γ-ray irradiated and EB irradiated were 14.39, 9.45 and 11.71 respectively. The ratios of a * /b * were different with the type of rays. The ratio of a * /b * of EB irradiation was same with control, while that of γ-ray irradiation was decreased apparently. γ-ray irradiation had been shown to have apparently detrimental effect on the color and odor of hams, while EB irradiation had little detrimental effect. Irradiation increased POV and conjugated diene value, but the amounts of lipid oxidation products (TBARS, carbonyl value) were less than nonirradiated hams. (authors)

  2. Effect of dietary fat source on fatty acid profile and lipid oxidation of ...

    African Journals Online (AJOL)

    This study investigated the effects of supplementary dietary lipid sources on the fatty acid profile and lipid oxidation of eggs. Five isoenergetic (12.6 MJ AME/kg DM) and isonitrogenous (170 g CP/kg DM) diets were formulated, using a control diet (50 : 50 blend of fish- and linseed oil), fish oil, sunflower oil, high oleic acid ...

  3. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Neutral lipids associated with haemozoin mediate efficient and rapid β-haematin formation at physiological pH, temperature and ionic composition

    Directory of Open Access Journals (Sweden)

    Ambele Melvin A

    2012-10-01

    Full Text Available Abstract Background The malaria parasite disposes of host-derived ferrihaem (iron(IIIprotoporphyrin IX, Fe(IIIPPIX by conversion to crystalline haemozoin in close association with neutral lipids. Lipids mediate synthetic haemozoin (β-haematin formation very efficiently. However, the effect on reaction rates of concentrations of lipid, Fe(IIIPPIX and physiologically relevant ions and biomolecules are unknown. Methods Lipid emulsions containing Fe(IIIPPIX were prepared in aqueous medium (pH 4.8, 37°C to mediate β-haematin formation. The reaction was quenched at various times and free Fe(IIIPPIX measured colorimetrically as a pyridine complex and the kinetics and yields analysed. Products were also characterized by FTIR, TEM and electron diffraction. Autofluorescence was also used to monitor β-haematin formation by confocal microscopy. Results At fixed Fe(IIIPPIX concentration, β-haematin yields remained constant with decreasing lipid concentration until a cut-off ratio was reached whereupon efficiency decreased dramatically. For the haemozoin-associated neutral lipid blend (NLB and monopalmitoylglycerol (MPG, this occurred below a lipid/Fe(IIIPPIX (L/H ratio of 0.54. Rate constants were found to increase with L/H ratio above the cut-off. At 16 μM MPG, Fe(IIIPPIX concentration could be raised until the L/H ratio reached the same ratio before a sudden decline in yield was observed. MPG-mediated β-haematin formation was relatively insensitive to biologically relevant cations (Na+, K+, Mg2+, Ca2+, or anions (H2PO4−, HCO3−, ATP, 2,3-diphosphoglycerate, glutathione. Confocal microscopy demonstrated β-haematin formation occurs in association with the lipid particles. Conclusions Kinetics of β-haematin formation have shown that haemozoin-associated neutral lipids alone are capable of mediating β-haematin formation at adequate rates under physiologically realistic conditions of ion concentrations to account for haemozoin formation.

  5. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  6. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Ding, Zhao-Peng; Wang, Shi-Wen; Shen, Wei; Min, Ling-Jiang; Hao, Zhi-Hui

    2016-04-01

    This investigation was designed to explore the effects of Zinc Oxide Nanoparticles (ZnO NP) on egg quality and the mechanism of decreasing of yolk lipids. Different concentration of ZnO NP and ZnSO4 were used to treat hens for 24 weeks. The body weight and egg laying frequency were recorded and analyzed. Albumen height, Haugh unit, and yolk color score were analyzed by an Egg Multi Tester. Breaking strength was determined by an Egg Force Reader. Egg shell thickness was measured using an Egg Shell Thickness Gouge. Shell color was detected by a spectrophotometer. Egg shape index was measured by Egg Form Coefficient Measuring Instrument. Albumen and yolk protein was determined by the Kjeldahl method. Amino acids were determined by an amino acids analyzer. Trace elements Zn, Fe, Cu, and P (mg/kg wet mass) were determined in digested solutions using Inductively Coupled Plasma-Optical Emission Spectrometry. TC and TG were measured using commercial analytical kits. Yolk triglyceride, total cholesterol, pancreatic lipase, and phospholipids were determined by appropriate kits. β-carotene was determined by spectrophotometry. Lipid metabolism was also investigated with liver, plasma, and ovary samples. ZnO NP did not change the body weight of hens during the treatment period. ZnO NP slowed down egg laying frequency at the beginning of egg laying period but not at later time. ZnO NP did not affect egg protein or water contents, slightly decreased egg physical parameters (12 to 30%) and trace elements (20 to 35%) after 24 weeks treatment. However, yolk lipids content were significantly decreased by ZnO NP (20 to 35%). The mechanism of Zinc oxide nanoparticles decreasing yolk lipids was that they decreased the synthesis of lipids and increased lipid digestion. These data suggested ZnO NP affected egg quality and specifically regulated lipids metabolism in hens through altering the function of hen's ovary and liver. © 2016 Poultry Science Association Inc.

  7. Percutaneous Mitral Valve Repair in Mitral Regurgitation Reduces Cell-Free Hemoglobin and Improves Endothelial Function.

    Directory of Open Access Journals (Sweden)

    Christos Rammos

    Full Text Available Endothelial dysfunction is predictive for cardiovascular events and may be caused by decreased bioavailability of nitric oxide (NO. NO is scavenged by cell-free hemoglobin with reduction of bioavailable NO up to 70% subsequently deteriorating vascular function. While patients with mitral regurgitation (MR suffer from an impaired prognosis, mechanisms relating to coexistent vascular dysfunctions have not been described yet. Therapy of MR using a percutaneous mitral valve repair (PMVR approach has been shown to lead to significant clinical benefits. We here sought to investigate the role of endothelial function in MR and the potential impact of PMVR.Twenty-seven patients with moderate-to-severe MR treated with the MitraClip® device were enrolled in an open-label single-center observational study. Patients underwent clinical assessment, conventional echocardiography, and determination of endothelial function by measuring flow-mediated dilation (FMD of the brachial artery using high-resolution ultrasound at baseline and at 3-month follow-up. Patients with MR demonstrated decompartmentalized hemoglobin and reduced endothelial function (cell-free plasma hemoglobin in heme 28.9±3.8 μM, FMD 3.9±0.9%. Three months post-procedure, PMVR improved ejection fraction (from 41±3% to 46±3%, p = 0.03 and NYHA functional class (from 3.0±0.1 to 1.9±1.7, p<0.001. PMVR was associated with a decrease in cell free plasma hemoglobin (22.3±2.4 μM, p = 0.02 and improved endothelial functions (FMD 4.8±1.0%, p<0.0001.We demonstrate here that plasma from patients with MR contains significant amounts of cell-free hemoglobin, which is accompanied by endothelial dysfunction. PMVR therapy is associated with an improved hemoglobin decompartmentalization and vascular function.

  8. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil.

    Science.gov (United States)

    Qiu, Xujian; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2018-10-15

    Lipid oxidation of fish oil enriched cow milk and soy milk supplemented with rosemary extract stored at 2 °C was studied. Both peroxide value and volatile secondary lipid oxidation products were determined to monitor the progress of lipid oxidation. Rosemary extract inhibited lipid oxidation in fish oil enriched cow milk. In contrast, soy milk samples having much higher unsaturated fatty acid content showed higher lipid oxidation stability compared to cow milk. Reduction in the content of chlorogenic acid during storage suggested that this compound may contribute to the lipid oxidation stability of fish oil enriched soy milk product. Total carnosic acid and carnosol concentration declined much faster in soy milk than in cow milk. It is suggested from the results that food components could have significant impact on the fate of bioactive antioxidant compounds in a specific food product during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The effect of electron beam irradiation on lipid oxidation in sausages

    Directory of Open Access Journals (Sweden)

    atefeh yousefi

    2017-09-01

    Full Text Available Introduction: Irradiation treatment is one of the best techniques to extend the shelf-life of meat, without emerging the nutritional properties and sensory quality of irradiated meat products.  However electron -beam  may cause transformations in foods but has been known as to the most easily-applied irradiation technique in food industries. Electron-beam irradiation is an environment friendly, low cost and time effective alternative to other decontamination technologies. Lipid oxidation could produce of irradiated meat. This study aimed at evaluating the state of lipid oxidation of irradiated sausages. Its findings could help the control, improve food safety and quality properties to food industries. Methods: Sausages were purchased in a local supermarket, minced sausages blended for thiobarbituric acid reactive substances (TBARS analysis and divided into 25 g pieces. The samples including one control group and four case groups. Packaged sausage were exposed at doses of 0 (control, 1, 2, 3 and 5 kGy and analyzed on various days 0, 5, 10 and 30. Results: Thiobarbituric acid reactive substances (TBARS has increased as time goes on (P<0.05. A significant relationship was observed on different Doses. But, the maximum of TBARS was observed in 3 kGy. Conclusion: Utilizing of Electron-beam irradiation in low doses does not have significant difference on lipid oxidation. Irradiating of meat products by addition of antioxidants can minimize or avoid the development of rancidity.

  10. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    Directory of Open Access Journals (Sweden)

    Rune Blomhoff

    2011-06-01

    Full Text Available Background : There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective : To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design : A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C and time (25 minutes resembling conditions typically used during cooking. Results : The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions : The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  11. Oxidative Stress Induced Lipid Peroxidation And DNA Adduct Formation In The Pathogenesis Of Multiple Myeloma And Lymphoma

    Directory of Open Access Journals (Sweden)

    Tandon, Ravi

    2013-02-01

    Full Text Available Objective: To access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and DNA breakdown products generated during DNA damage in the blood serum of multiple myeloma and lymphoma patients.Material & Methods: Case control study comprised of 40 patients of multiple myeloma and 20 patients of lymphoma along with 20 age and sex-matched healthy subjects as controls. Levels of Malondialdehyde and 8-hydroxy-2-deoxy-Guanosine were measured to study the oxidative stress status in the study subjects.Results: The level of markers of DNA damage and lipid peroxidation were found to be raised significantly in the study subjects in comparison to healthy controls. The results indicate oxidative stress and DNA damage activity increase progressively with the progression of disease.Conclusion: Oxidative stress causes DNA damage and Lipid peroxidation which results in the formation of DNA adducts leading to mutations thereby indicate the role of oxidative stress in the pathogenesis of multiple myeloma and lymphoma.

  12. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  13. Color stability and lipid oxidation of broiler breast meat from animals raised on organic versus non-organic production systems.

    Science.gov (United States)

    Viana, F M; Canto, A C V C S; Costa-Lima, B R C; Salim, A P A A; Conte-Junior, C A

    2017-03-01

    The aim of the present research was to evaluate the influence of organic and non-organic production systems on color stability and lipid oxidation of broiler meat Pectoralis major (PM) stored under refrigeration (4°C) for 9 days. PM samples from organic (ORG) and non-organic (NORG) production systems were compared based on physicochemical analyses (instrumental color, myoglobin concentration, metmyoglobin reducing activity (MRA), pH, and lipid oxidation) performed in 4 different trials (n = 4). In general, NORG broilers demonstrated higher (P color stability observed in NORG samples can be partly due to lipid oxidation. Therefore, the production system can affect color and lipid stability of broiler breast meat during storage. © 2016 Poultry Science Association Inc.

  14. Effec t of Freeze-Thaw Cycles on Lipid Oxidation and Myowater in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    S Ali

    2016-03-01

    Full Text Available ABSTRACT The present study was carried out to investigate the influence of freezing-thawing cycles (0, 2, 4 and 6 on lipid oxidation and myowater contents and distribution. Nine replicates of chicken breast meat samples were used for each cycle. Lipid oxidation was determined by measuring peroxide value, and malondialdehyde (MDA concentrations, which reflect thiobarbituric acid reactive substance (TBARS. Color was determined with a digital colorimeter. Muscle moisture contents were determined by drip loss and thawing loss, water holding capacity, and nuclear magnetic resonance (NMR. The results showed that, as the number of freeze-thaw cycles increased, meat redness decreased and MDA and peroxide values increased. Drip loss and thawing loss tended to decreasing as the number of freeze-thaw cycles increased. Water holding capacity also decreased as a function of increasing freeze-thaw cycles. NMR relaxometry profile showed freeze-thaw cycles change the water distribution of meat subjected to multiple freeze-thaw cycles. In conclusion, multiple freezing and thawing rate (6 cycles increased lipid oxidation, decreased myowater, and impaired the color of chicken meat.

  15. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Haffar, T. [Université de Montreal (Canada); Montreal Heart Institute (Canada); Bérubé-Simard, F. [Montreal Heart Institute (Canada); Bousette, N., E-mail: nicolas.bousette@umontreal.ca [Université de Montreal (Canada); Montreal Heart Institute (Canada)

    2015-12-04

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring {sup 14}C–CO{sub 2} production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO

  16. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    International Nuclear Information System (INIS)

    Haffar, T.; Bérubé-Simard, F.; Bousette, N.

    2015-01-01

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring "1"4C–CO_2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO attenuated

  17. Determination of endogenous inflammation-related lipid mediators in ischemic stroke rats using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Yang, Yang; Zhong, Qisheng; Mo, Canlong; Zhang, Hao; Zhou, Ting; Tan, Wen

    2017-11-01

    Accurate and reliable quantification of endogenous lipid mediators in complex biological samples is a daunting challenge. In this study, a robust and direct endogenous quantitative method using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry was first developed for the determination of endogenous lipid mediators in ischemic stroke rats. Absolute quantification without surrogate matrix could be achieved by using background subtracting calibration curves, which were corrected and verified from standard curves constructed on original matrix. The recoveries of this method were in the range of 50.3-98.3%, the precision with the relative standard deviation was less than 13.8%, and the accuracy with the relative error was within ± 15.0%. In addition, background subtracting calibration curves were further verified by validation factors ranging from 90.3 to 110.9%. This validated method has been successfully applied to the analysis of seven endogenous inflammation-related lipid mediators in the brain tissues of ischemic stroke rats. The results indicated that prostaglandins as inflammatory factors and some lipid mediators with neuroprotective effects increased apparently (p endogenous compounds in the complex biological samples. Graphical abstract The analysis procedure of determining endogenous inflammation-related lipid mediators using BSCC by LC-MS/MS.

  18. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Danielsen, Pernille H; Folkmann, Janne K

    2014-01-01

    exposure to 6.4mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because...... and subsequently incubated for another 18h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid...... there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes....

  19. The effect of hematocrit and hemoglobin on the risk of ischemic heart disease: A Mendelian randomization study.

    Science.gov (United States)

    Zhong, Y; Lin, S L; Schooling, C M

    2016-10-01

    Hematocrit and hemoglobin affect viscosity, and have been considered as risk factors for ischemic heart disease (IHD), although observations are inconsistent; randomized controlled trials targeting hematocrit or hemoglobin have not been definitive. To clarify their role, the risk of IHD was assessed according to genetically determined hematocrit and hemoglobin. We applied single nucleotide polymorphisms (SNPs) strongly determining hematocrit and hemoglobin, from a genome wide association study, to a large case (64,746) control (130,681) study of coronary artery disease, CARDIoGRAMplusC4D, to obtain unconfounded estimates using instrumental variable analysis by combining the Wald estimators for each SNP taking into account any correlation between SNPs using weighted generalized linear regression. Hematocrit was positively associated with IHD, odds ratio (OR) 1.07 per %, 95% confidence interval (CI) 1.03 to 1.11, before and after excluding SNPs from gene regions directly functionally relevant to IHD. However, hematocrit was not associated with IHD (OR 0.99, 0.94 to 1.04) after also excluding SNPs associated with lipids at genome wide significance. Hemoglobin was not associated with IHD (OR 1.06 per g/dL, 0.97 to 1.15) which was similar (OR 1.02, 0.94 to 1.11) after excluding SNPs from gene regions directly functionally relevant to IHD. Hemoglobin was negatively associated with IHD after also excluding SNPs associated with lipids at genome wide significance (OR 0.86, 0.78 to 0.94). In conclusion, hematocrit shares genetic determinants with IHD, but whether the genes contribute to IHD via hematocrit or other mechanisms is not entirely clear. Higher Hemoglobin is unlikely to cause IHD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin

    DEFF Research Database (Denmark)

    Gburek, Jakub; Verroust, Pierre J; Willnow, Thomas E

    2002-01-01

    -Sepharose affinity chromatography of solubilized renal brush-border membranes. Apparent dissociation constants of 1.7 microM for megalin and 4.1 microM for cubilin were determined by surface plasmon resonance analysis. The binding was calcium dependent in both cases. Uptake of fluorescence-labeled hemoglobin by BN......The kidney is the main site of hemoglobin clearance and degradation in conditions of severe hemolysis. Herein it is reported that megalin and cubilin, two epithelial endocytic receptors, mediate the uptake of hemoglobin in renal proximal tubules. Both receptors were purified by use of hemoglobin...... not affect the uptake. By use of immunohistochemistry, it was demonstrated that uptake of hemoglobin in proximal tubules of rat, mouse, and dog kidneys occurs under physiologic conditions. Studies on normal and megalin knockout mouse kidney sections showed that megalin is responsible for physiologic...

  1. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron...

  2. Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide

    Science.gov (United States)

    Hemschemeier, Anja; Düner, Melis; Casero, David; Merchant, Sabeeha S.; Winkler, Martin; Happe, Thomas

    2013-01-01

    Hemoglobins are recognized today as a diverse family of proteins present in all kingdoms of life and performing multiple reactions beyond O2 chemistry. The physiological roles of most hemoglobins remain elusive. Here, we show that a 2-on-2 (“truncated”) hemoglobin, termed THB8, is required for hypoxic growth and the expression of anaerobic genes in Chlamydomonas reinhardtii. THB8 is 1 of 12 2-on-2 hemoglobins in this species. It belongs to a subclass within the 2-on-2 hemoglobin class I family whose members feature a remarkable variety of domain arrangements and lengths. Posttranscriptional silencing of the THB8 gene results in the mis-regulation of several genes and a growth defect under hypoxic conditions. The latter is intensified in the presence of an NO scavenger, which also impairs growth of wild-type cells. As recombinant THB8 furthermore reacts with NO, the results of this study indicate that THB8 is part of an NO-dependent signaling pathway. PMID:23754374

  3. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  4. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Soyer, Ayla; Işıkçı, Fatma

    2016-06-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation was investigated in meatballs during refrigerated storage at 4±1°C. Concentrated lyophilised water extract of pomegranate peel was incorporated into freshly minced beef meat at 0.5% and 1% concentrations and compared with 0.01% butylated hydroxytoluene (BHT) as a reference and control (without any antioxidant). PE showed high phenolic content and antioxidant activity. In PE added samples, thiobarbituric acid reactive substances (TBARS) value, peroxide formation, loss of sulfhydryl groups and formation of protein carbonyls were lower than control (Pmeatballs prolonged the refrigerated storage up to 8 days. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells

    International Nuclear Information System (INIS)

    Sekiya, Mika; Hiraishi, Ako; Touyama, Maiko; Sakamoto, Kazuichi

    2008-01-01

    SREBP1c (sterol regulatory element-binding protein 1c) is a metabolic-syndrome-associated transcription factor that controls fatty acid biosynthesis under glucose/insulin stimulation. Oxidative stress increases lipid accumulation, which promotes the generation of reactive oxygen species (ROS). However, we know little about the role of oxidative stress in fatty acid biosynthesis. To clarify the action of oxidative stress in lipid accumulation via SREBP1c, we examined SREBP1c activity in H 2 O 2 -treated mammalian cells. We introduced a luciferase reporter plasmid carrying the SREBP1c-binding site into HepG2 or COS-7 cells. With increasing H 2 O 2 dose, SREBP1c transcriptional activity increased in HepG2 cells but declined in COS-7 cells. RT-PCR analysis revealed that mRNA expression of SREBP1c gene or of SREBP1c-regulated genes rose H 2 O 2 dose-dependently in HepG2 cells but dropped in COS-7 cells. Lipid accumulation and levels of the nuclear form of SREBP1c increased in H 2 O 2 -stimulated HepG2 cells. ROS may stimulate lipid accumulation in HepG2 cells via SREBP1c activation

  6. Effect of soy sauce on lipid oxidation of irradiated pork patties

    Science.gov (United States)

    Kim, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang; Choi, Ji-Hun; Lee, Mi-Ai; Song, Dong-Heon; Kim, Hack-Youn; Lee, Ju-Woon; Kim, Cheon-Jei

    2013-09-01

    This study was conducted to find out the antioxidant effect of the soy sauce on lipid oxidation of electron beam irradiated pork patties. The pork patties prepared with sodium chloride or soy sauce solution at identical salt concentrations were irradiated at 0 or 5 kGy, and peroxide value, conjugated diene, 2-thiobarbituric acid, and free fatty acid values were evaluated for 10 days (4 °C). The irradiated pork patties treated with soy sauce showed the lowest peroxide value and 2-thiobarbituric acid value at the end of storage compared to those prepared with sodium chloride. The irradiated pork patties formulated with soy sauce and 0.5% ascorbic acid had similar 2-thiobarbituric acid and free fatty acid values compared to those of the non-irradiated pork patties treated with sodium chloride. Our results suggested that the soy sauce can retard the lipid oxidation of irradiated pork patty, and a synergistic effect between soy sauce and ascorbic acid was observed.

  7. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    The aim of the present study was to investigate the seasonal variability of markers of oxidative damage to lipids (15-F2t-isoprostane, 15-F2t-IsoP) and proteins (protein carbonyl levels) in 50 bus drivers and 50 controls from Prague, Czech Republic, and to identify factors affecting oxidative stress markers. The samples were collected in three seasons with different levels of air pollution. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter, PM2.5 and PM10, and volatile organic compounds, VOC) was monitored by personal and/or stationary monitors. For the analysis of both markers, ELISA techniques were used. The median levels of individual markers in bus drivers versus controls were as follows: 15-F2t-IsoP (nmol/mmol creatinine): winter 2005, 0.81 versus 0.68 (pbus drivers in winter seasons, but not in summer. Lipid peroxidation was positively correlated with c-PAHs and PM exposure; protein oxidation correlated negatively and was highest in summer suggesting another factor(s) affecting protein carbonyl levels.

  8. Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Esmeralda Parra-Peralbo

    2011-02-01

    Full Text Available Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2, two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR-like proteins in this process.

  9. Fiber in Diet Is Associated with Improvement of Glycated Hemoglobin and Lipid Profile in Mexican Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Lubia Velázquez-López

    2016-01-01

    Full Text Available Objective. To assess the association of dietary fiber on current everyday diet and other dietary components with glycated hemoglobin levels (HbA1c, glucose, lipids profile, and body weight body weight, in patients with type 2 diabetes. Methods. A cross-sectional survey of 395 patients with type 2 diabetes was performed. HbA1c, fasting glucose, triglycerides, and lipids profile were measured. Weight, waist circumference, blood pressure, and body composition were measured. Everyday diet with a semiquantitative food frequency questionnaire was evaluated. ANOVA, Kruskal-Wallis, chi-square tests and multivariate logistic regression were used in statistical analysis. Results. Higher fiber intake was associated with a low HbA1c, high HDL-c levels, low weight, and waist circumference. The highest tertile of calories consumption was associated with a higher fasting glucose level and weight. The highest tertile of carbohydrate consumption was associated with a lower weight. The lowest tertile of total fat and saturated fat was associated with the highest tertile of HDL-c levels, and lower saturated fat intake was associated with lower weight (p<0.05. Conclusions. A higher content of fiber in the diet reduces HbA1c and triglycerides, while improving HDL-c levels. Increasing fiber consumption while lowering calorie consumption seems to be an appropriate strategy to reduce body weight and promote blood glucose control.

  10. Carp (Cyprinus carpio L. lipid oxidation during cold storage

    Directory of Open Access Journals (Sweden)

    Ochrem Andrzej S.

    2015-06-01

    Full Text Available After meat and dairy products, fish meat is one of the greatest sources of animal protein, but it is also probably the most susceptible to oxidation. The study material consisted of carp, Cyprinus carpio L., meat. The left and right sides of the fillet were divided into three parts, the head, abdomen, and tail. On the first day of the study, the anisidine value ranged from 0.21-1.70, and did not differ significantly among the body parts. Peroxide values fluctuated frequently during the study. Lipid oxidation depended on the part of the fish the meat came from and the structure of the meat, either fillets or ground meat.

  11. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  12. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-01-01

    Highlights: → Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). → ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. → ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. → Exposure of human adipocytes to fatty acids and (TNFα) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator

  13. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    Science.gov (United States)

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin. © Society for Leukocyte Biology.

  14. Hemoglobin C disease

    Science.gov (United States)

    Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is ... Americans. You are more likely to have hemoglobin C disease if someone in your family has had ...

  15. Does Physical Activity Mediate the Associations Between Local-Area Descriptive Norms, Built Environment Walkability, and Glycosylated Hemoglobin?

    Science.gov (United States)

    Carroll, Suzanne J; Niyonsenga, Theo; Coffee, Neil T; Taylor, Anne W; Daniel, Mark

    2017-08-23

    Associations between local-area residential features and glycosylated hemoglobin (HbA 1c ) may be mediated by individual-level health behaviors. Such indirect effects have rarely been tested. This study assessed whether individual-level self-reported physical activity mediated the influence of local-area descriptive norms and objectively expressed walkability on 10-year change in HbA 1c . HbA 1c was assessed three times for adults in a 10-year population-based biomedical cohort ( n = 4056). Local-area norms specific to each participant were calculated, aggregating responses from a separate statewide surveillance survey for 1600 m road-network buffers centered on participant addresses (local prevalence of overweight/obesity (body mass index ≥25 kg/m²) and physical inactivity (Walkability was directly and indirectly protective of worsening HbA 1c . Local-area descriptive norms and walkability influence cardiometabolic risk trajectory through individual-level physical activity. Efforts to reduce population cardiometabolic risk should consider the extent of local-area unhealthful behavioral norms and walkability in tailoring strategies to improve physical activity.

  16. Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2016-02-01

    Full Text Available Abstract The kinetics of astaxanthin degradation and lipid oxidation in shrimp oil from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei as affected by storage temperature were studied. When shrimp oil was incubated at different temperatures (4, 30, 45 and 60 °C for 16 h, the rate constants (k of astaxanthin degradation and lipid oxidation in shrimp oil increased with increasing temperatures (p < 0.05. Thus, astaxanthin degradation and lipid oxidation in shrimp oil were augmented at high temperature. When shrimp oils with different storage conditions (illumination, oxygen availability and temperature were stored for up to 40 days, astaxanthin contents in all samples decreased throughout storage (p < 0.05. All factors were able to enhance astaxanthin degradation during 40 days of storage. With increasing storage time, the progressive formation of primary and secondary oxidation products were found in all samples as evidenced by the increases in both peroxide values (PV and thiobarbituric acid reactive substances (TBARS (p < 0.05. Light, air and temperatures therefore had the marked effect on astaxanthin degradation and lipid oxidation in shrimp oils during the extended storage.

  17. Altered colonic mucosal Polyunsaturated Fatty Acid (PUFA derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology.

    Directory of Open Access Journals (Sweden)

    Mojgan Masoodi

    Full Text Available Ulcerative colitis (UC is a relapsing inflammatory disorder of unconfirmed aetiology, variable severity and clinical course, characterised by progressive histological inflammation and with elevation of eicosanoids which have a known pathophysiological role in inflammation. Therapeutic interventions targetting eicosanoids (5-aminosalicylates (ASA are effective first line and adjunctive treatments in mild-moderate UC for achieving and sustaining clinical remission. However, the variable clinical response to 5-ASA and frequent deterioration in response to cyclo-oxygenase (COX inhibitors, has prompted an in depth simultaneous evaluation of multiple lipid mediators (including eicosanoids within the inflammatory milieu in UC. We hypothesised that severity of inflammation is associated with alteration of lipid mediators, in relapsing UC.Study was case-control design. Mucosal lipid mediators were determined by LC-MS/MS lipidomics analysis on mucosal biopsies taken from patients attending outpatients with relapsing UC. Univariate and multivariate statistical analyses were used to investigate the association of mucosal lipid mediators, with the disease state and severity graded histologically.Levels of PGE2, PGD2, TXB2, 5-HETE, 11-HETE, 12-HETE and 15-HETE are significantly elevated in inflamed mucosa and correlate with severity of inflammation, determined using validated histological scoring systems.Our approach of capturing inflammatory mediator signature at different stages of UC by combining comprehensive lipidomics analysis and computational modelling could be used to classify and predict mild-moderate inflammation; however, predictive index is diminished in severe inflammation. This new technical approach could be developed to tailor drug treatments to patients with active UC, based on the mucosal lipid mediator profile.

  18. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder.

    Science.gov (United States)

    Siriamornpun, Sirithon; Tangkhawanit, Ekkarat; Kaewseejan, Niwat

    2016-06-15

    Green and ripe mango peel powders (MPP) were added to normal rice flour (NRF) and glutinous rice flour (GRF) at three levels (400, 800 and 1200 ppm) and their effects on physicochemical properties and lipid oxidation inhibition were investigated. Overall, MPP increased the breakdown viscosity and reduced the final viscosity in rice flours when compared to the control. Decreasing in retrogradation was observed in both NRF and GRF with MPP added of all levels. MPP addition also significantly inhibited the lipid oxidation of all flours during storage (30 days). Retrogradation values were strongly negatively correlated with total phenolic and flavonoid contents, but not with fiber content. The hydrogen bonds and hydrophilic interactions between phenolic compounds with amylopectin molecule may be involved the decrease of starch retrogradation, especially GRF. We suggest that the addition of MPP not only reduced the retrogradation but also inhibited the lipid oxidation of rice flour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  20. Obesity, lipid profiles and oxidative stress in children after liver transplantation.

    Science.gov (United States)

    Czubkowski, Piotr; Wierzbicka, Aldona; Pawłowska, Joanna; Jankowska, Irena; Socha, Piotr

    2017-01-01

    In adult liver transplant recipients, coronary artery disease and congestive heart failure are significant cause of morbidity and mortality. This may be attributed to the long-term immunosuppressive treatment, mostly with calcineurin inhibitors and steroids, which in long-term may be associated with hyperlipidemia, oxidative stress and cardiovascular complications. Since such data for children is sparse, the aim of this study was to assess the lipid and oxidative stress markers after pediatric liver transplantation (LTx). We performed prospective analysis of 74 children, at the median age of 7.9 (2.8-11.6) years, 3.2 (1.2-4.3) years after LTx. We assessed the BMI Z-scores, cholesterol fractions (LDLc, HDLc, VLDLc), triglicerides, apolipoproteins (ApoAI, ApoB, ApoE), LCAT, insulin resistance by HOMA-IR and markers of oxidative stress and atherosclerosis: glutathione (GSH), glutathione peroxidase (GPx), asymmetrical dimethyl arginine (ADMA) and oxidized low-density lipoprotein (oxyLDL). At baseline, the results were compared with a healthy age-and-sex matched control group. After 3.1±0.3 year follow-up we repeated all investigations and compared them with the baseline results. At the baseline, we investigated 74 patients 3.2 (1.2-4.3) years after LTx, at the median age of 7.9 (2.8-11.6) years. The prevalence of overweight or obesity (BMI >85 th percentile) was 23% and was more common in girls (24% vs 20%). Fourteen patients had TCH >200 mg%, 9 patients had LDLc >130 mg% and TG were at normal levels in all patients. Compared to the controls, there were no significant differences in lipid profiles but we found decreased GSH (p95 th and >85 Th percentile was present in 8% and 14% respectively. ADMA and oxyLDL decreased, whilst GSH and GPx increased when compared to the baseline. There was also significant decrease in apoB and Lp(a). Children after LTx had normal lipid profiles when compared to controls, however there is a tendency for hypercholesterolemia and obesity

  1. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins.

    Science.gov (United States)

    Florens, Nans; Calzada, Catherine; Lyasko, Egor; Juillard, Laurent; Soulage, Christophe O

    2016-12-16

    Chronic kidney disease (CKD) is associated with an enhanced oxidative stress and deep modifications in lipid and lipoprotein metabolism. First, many oxidized lipids accumulate in CKD and were shown to exert toxic effects on cells and tissues. These lipids are known to interfere with many cell functions and to be pro-apoptotic and pro-inflammatory, especially in the cardiovascular system. Some, like F2-isoprostanes, are directly correlated with CKD progression. Their accumulation, added to their noxious effects, rendered their nomination as uremic toxins credible. Similarly, lipoproteins are deeply altered by CKD modifications, either in their metabolism or composition. These impairments lead to impaired effects of HDL on their normal effectors and may strongly participate in accelerated atherosclerosis and failure of statins in end-stage renal disease patients. This review describes the impact of oxidized lipids and other modifications in the natural history of CKD and its complications. Moreover, this review focuses on the modifications of lipoproteins and their impact on the emergence of cardiovascular diseases in CKD as well as the appropriateness of considering them as actual mediators of uremic toxicity.

  2. Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Vidhi Gaur

    2016-09-01

    Full Text Available Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex. Adaptations include increased metabolic gene expression, mitochondrial capacity, and lipid oxidation. An existing HDAC inhibitor, Scriptaid, had similar phenotypic effects through disruption of the class IIa HDAC corepressor complex. Acute Scriptaid administration to mice increased the expression of metabolic genes, which required an intact class IIa HDAC corepressor complex. Chronic Scriptaid administration increased exercise capacity, whole-body energy expenditure and lipid oxidation, and reduced fasting blood lipids and glucose. Therefore, compounds that disrupt class IIa HDAC function could be used to enhance metabolic health in chronic diseases driven by physical inactivity.

  3. Role of lipid peroxidation and oxidative stress in 3-methylindole pneumotoxicity

    International Nuclear Information System (INIS)

    Cary, M.G.

    1985-01-01

    The cytochrome P-450-catalyzed metabolism of 3-methylindole (3-MI) results in acute lung injury in ruminants and horses. Experiments were conducted to determine the role of lipid peroxidation and oxidative stress in 3-MI pneumotoxicity in goats. Goats were given methylethylketone peroxide (MEKP), a potent peroxidant, 3-MI, indole, or cremophor-EL vehicle. The levels of shortchain hydrocarbons in expired air were measured for 6 hours post-dosing by gas chromatography. Exhaled hydrocarbons increased 20 to 30 fold within 1 hour in goats given MEKP. No significant changes were seen in goats given 3-Mi, indole or cremophor-EL. Levels of thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, were significantly increased in lung tissue from goats given MEKP. In goats given 3-MI, indole or cremophor-EL, the levels were not significantly different from each other. Goats were killed at 6 hours post-dosing and examined post mortem. Bronchiolar epithelial necrosis was seen in goats given 3-MI but there were not lung lesions in other groups. The role of oxygen radicals in 3-MI pneumotoxicity was examined in a goat lung explant system using 51 Cr release as an indicator of cytotoxicity. The results of these studies provide no evidence to support the view that 3-MI pneumotoxicity involves lipid peroxidation or oxidative stress as a result of formation of oxygen or xenobiotic radicals

  4. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    Science.gov (United States)

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.

  5. Mercury distribution and lipid oxidation in fish muscle: Effects of washing and isoelectric protein precipitation

    Science.gov (United States)

    Gong, Y.; Krabbenhoft, D.P.; Ren, L.; Egelandsdal, B.; Richards, M.P.

    2011-01-01

    Nearly all the mercury (Hg) in whole muscle from whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) was present as methyl mercury (MeHg). The Hg content in whole muscle from whitefish and walleye was 0.04-0.09 and 0.14-0.81 ppm, respectively. The myofibril fraction contained approximately three-fourths of the Hg in whitefish and walleye whole muscle. The sarcoplasmic protein fraction (e.g., press juice) was the next most abundant source of Hg. Isolated myosin, triacylglycerols, and cellular membranes contained the least Hg. Protein isolates prepared by pH shifting in the presence of citric acid did not decrease Hg levels. Addition of cysteine during washing decreased the Hg content in washed muscle probably through the interaction of the sulfhydryl group in cysteine with MeHg. Primary and secondary lipid oxidation products were lower during 2 ??C storage in isolates prepared by pH shifting compared to those of washed or unwashed mince from whole muscle. This was attributed to removing some of the cellular membranes by pH shifting. Washing the mince accelerated lipid peroxide formation but decreased secondary lipid oxidation products compared to that of the unwashed mince. This suggested that there was a lipid hydroperoxide generating system that was active upon dilution of aqueous antioxidants and pro-oxidants. ?? 2011 American Chemical Society.

  6. MR imaging of abscess by use of lipid-coated iron oxide particles

    International Nuclear Information System (INIS)

    Chan, T.W.; Eley, C.G.S.; Kressel, H.Y.

    1990-01-01

    The authors of this paper investigate the potential application of lipid-coated iron oxide particles as an MR contrast agent for imaging inflammatory process by using a rat subcutaneous abscess model induced by turpentine. Ten male Sprague-Dawley rats received subcutaneous injections of 0.1 mL of turpentine in the flank. At 24-36 hours later, the rats developed a subcutaneous abscess of 1-1.8 cm. An intravenous injection of lipid-coated iron oxide particles, Ferrosome (Vestar) at doses of 25, 40, 100, 200 μg/kg was administered. The animals were imaged at 12-24 hours later on a 1.5-T magnet using a 3-inch (7.62-cm) surface coil. Two animals were also imaged 5 days later. T1-weighted, T2-weighted, and multiplanar gradient-recalled (MPGR) sequences were obtained. The abscess was then excised and examined with routine H-E and iron staining

  7. Nutritionally Mediated Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz

    2013-01-01

    Full Text Available There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation.

  8. Sulfite induces release of lipid mediators by alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Beck-Speier, I.; Dayal, N.; Maier, L. [GSF - National Research Center for Environment and Health, Neuherberg (Germany). Inst. for Inhalation Biology; Denzlinger, C. [Tuebingen Univ. (Germany). Dept. II, Medical Clinic; Haberl, C. [Tuebingen Univ. (Germany). Dept. III, Medical Clinic

    1998-03-01

    Air pollutants are supposed to modulate physiological responses of alveolar macrophages (AM). This study was addressed to the question whether at neutral pH sulfur(IV) species in comparison to sulfur(VI) species cause AM to release proinflammatory mediators and which pathways are involved in their generation. Supernatants obtained from canine AM treated with sulfite (0.1 mM to 2 mM) enhanced the respiratory burst of canine neutrophils, measured by lucigenin-dependent chemiluminescence, whereas supernatants derived from AM treated with sulfate (1 mM) did not. The neutrophil-stimulating activity released by sulfite-treated AM consisted of platelet-activating factor (PAF) and leukotriene B{sub 4} (LTB{sub 4}) as shown by desensitization of the platelet-activating factor (PAF) and leukotriene B{sub 4} (LTB{sub 4}) as shown by desensitization of the corresponding receptors. Inhibitors of phospholipase A{sub 2} substantially suppressed release of neutrophil-stimulating activity by sulfite-treated AM. Inhibition of 5-lipoxygenase in sulfite-treated AM also reduced neutrophil-stimulating activity, while inhibition of cyclooxygenase had no effect. In conclusion, sulfite induces AM to release lipid mediators via phospholipase A{sub 2}- and 5-lipoxygenase-dependent pathways. These mediators activate neutrophils via the receptors for PAF and LTB{sub 4}. (orig.)

  9. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    Science.gov (United States)

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  11. Effects of stimulation technique, anatomical region and time on human sweat lipid mediator profiles.

    Science.gov (United States)

    Few studies compare sampling protocol effect on sweat composition. Here we evaluate the impact of sweat stimulation mode and site of collection on lipid mediator composition. Sweat from healthy males (n = 7) was collected weekly for three weeks from the volar forearm following either pilocarpine ion...

  12. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: a prospective study.

    Science.gov (United States)

    Sari, Ibrahim; Baltaci, Yasemin; Bagci, Cahit; Davutoglu, Vedat; Erel, Ozcan; Celik, Hakim; Ozer, Orhan; Aksoy, Nur; Aksoy, Mehmet

    2010-04-01

    Recent studies have suggested that nuts have favorable effects beyond lipid lowering. We aimed to investigate effect of the Antep pistachio (Pistacia vera L.) on blood glucose, lipid parameters, endothelial function, inflammation, and oxidation in healthy young men living in a controlled environment. A Mediterranean diet was administered to normolipidemic 32 healthy young men (mean age 22 y, range 21-24) for 4 wk. After 4 wk, participants continued to receive the Mediterranean diet but pistachio was added for 4 wk by replacing the monounsaturated fat content constituting approximately 20% of daily caloric intake. Fasting blood samples and brachial endothelial function measurements were performed at baseline and after each diet. Compared with the Mediterranean diet, the pistachio diet decreased glucose (Ppistachio diet significantly improved endothelium-dependent vasodilation (P=0.002, 30% relative increase), decreased serum interleukin-6, total oxidant status, lipid hydroperoxide, and malondialdehyde and increased superoxide dismutase (Ppistachio diet improved blood glucose level, endothelial function, and some indices of inflammation and oxidative status in healthy young men. These findings are in accordance with the idea that nuts, in particular pistachio nuts, have favorable effects beyond lipid lowering that deserve to be evaluated with prospective follow-up studies. Copyright 2010. Published by Elsevier Inc.

  13. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn 2-position - as bulk lipids and in milk drinks

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Nielsen, Nina Skall; Xu, Xuebing

    2004-01-01

    In this study, we compared the oxidative stability of a specific structured lipid (SL) containing conjugated linoleic acid (CLA) in the sn2-position with SL containing other C18 fatty acids of different degree of unsaturation (stearic, oleic, linoleic or linolenic acid). SL was produced...... by enzymatic interesterification with caprylic acid. Oxidative stability was compared in the five lipids themselves and in milk drinks containing 5% of the different SL. During storage, samples were taken for chemical and physical analyses. Moreover, sensory assessments were performed on milk drinks....... The oxidative stability of our SL was very different when comparing (a) bulk lipids and milk drink and (b) the five different batches of each product. SL based on oleic acid was the most unstable as bulk lipid, while SL based on linoleic acid was the most unstable in milk drink. SL based on CLA was the second...

  14. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Juan M Sandoval

    Full Text Available The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH, which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH. Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P, suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH, better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress.

  15. Facile Interfacial Electron Transfer of Hemoglobin

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2005-12-01

    Full Text Available Abstract: We herein describe a method of depositing hemoglobin (Hb and sulfonated polyaniline (SPAN on GC electrodes that facilitate interfacial protein electron transfer. Well-defined, reproducible, chemically reversible peaks of Hb and SPAN can be obtained in our experiments. We also observed enhanced peroxidase activity of Hb in SPAN films. These results clearly showed that SPAN worked as molecular wires and effectively exchanged electrons between Hb and electrodes.Mediated by Conjugated Polymers

  16. Dietary Brazilian red pepper essential oil on pork meat quality and lipid oxidation

    Directory of Open Access Journals (Sweden)

    Franz Dias Gois

    Full Text Available ABSTRACT: The purpose of this study was to evaluate the effects of feeding pigs with diets containing increasing levels of Brazilian red pepper essential oil ( Schinus terebinthifolius Raddi on the physical attributes, fatty acid profile and oxidative stability of precooked meat. Seventy-two weanling pigs (5.7±0.8kg were allotted in a completely randomized block design experiment with four treatments, six replicates per treatment, and three animals per experimental unit (pen. Animals were fed with a basal diet supplemented with 0, 500, 1,000, or 1,500mg kg-1 Brazilian red pepper essential oil during the 35-d experimental period. At the end of the experiment, one animal per experimental unit (16.4±2.2kg was slaughtered to sample Longissimus dorsi muscle for analysis. Dietary supplementation of Brazilian red pepper had no effect (P>0.05 on pork meat color, pH, cooking loss and shear force. Inclusion of essential oil in the diet provided a linear increase (P<0.05 of the saturated fatty acids content of L. dorsi, especially myristic (C14:0 and stearic (C18:0 fatty acids. Utilization of essential oil in pig diets reduced significantly the production of secondary lipid oxidation compounds measured as TBARS in raw pork meat (P<0.001 and immediately after cooking (P<0.001. However, during 8-d storage assay, the addition of essential oil in the diet did not protect pork meat lipids from oxidation. Therefore, Brazilian red pepper added to pig diets increased the saturated fatty acids content and reduced lipid oxidation in fresh meat and short-term heat treatment without affecting pork meat physical attributes.

  17. Oxidation of Marine Omega-3 Supplements and Human Health

    Directory of Open Access Journals (Sweden)

    Benjamin B. Albert

    2013-01-01

    Full Text Available Marine omega-3 rich oils are used by more than a third of American adults for a wide range of purported benefits including prevention of cardiovascular disease. These oils are highly prone to oxidation to lipid peroxides and other secondary oxidation products. Oxidized oils may have altered biological activity making them ineffective or harmful, though there is also evidence that some beneficial effects of marine oils could be mediated through lipid peroxides. To date, human clinical trials have not reported the oxidative status of the trial oil. This makes it impossible to understand the importance of oxidation to efficacy or harm. However, animal studies show that oxidized lipid products can cause harm. Oxidation of trial oils may be responsible for the conflicting omega-3 trial literature, including the prevention of cardiovascular disease. The oxidative state of an oil can be simply determined by the peroxide value and anisidine value assays. We recommend that all clinical trials investigating omega-3 harms or benefits report the results of these assays; this will enable better understanding of the benefits and harms of omega-3 and the clinical importance of oxidized supplements.

  18. Combined effects of gamma radiation doses and sodium nitrite content on the lipid oxidation and color of mortadella.

    Science.gov (United States)

    Dutra, Monalisa Pereira; Cardoso, Giselle Pereira; Fontes, Paulo Rogério; Silva, Douglas Roberto Guimarães; Pereira, Marcio Tadeu; Ramos, Alcinéia de Lemos Souza; Ramos, Eduardo Mendes

    2017-12-15

    The effects of different doses of gamma radiation (0-20kGy) on the color and lipid oxidation of mortadella prepared with increasing nitrite levels (0-300ppm) were evaluated using a central composite rotatable design. Higher radiation doses increased the redox potential, promoted the lipid oxidation and elevating the hue color of the mortadellas. Nevertheless, higher addition of sodium nitrite elevated the residual nitrite content, reduced the lipid oxidation and promoted the increase of redness and the reduce of hue color of the mortadellas, regardless of the radiation dose applied. Nitrite addition had a greater effect than irradiation on the quality parameters evaluated, and even at low levels (∼75ppm), its use decreased the deleterious effects of irradiation at doses as high as 20kGy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  20. Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil-water interface

    NARCIS (Netherlands)

    Berton-Carabin, Claire C.; Schroder, Anja; Rovalino-Cordova, Ana; Schroën, Karin; Sagis, Leonard

    2016-01-01

    Protein and lipid oxidation are prevailing issues that negatively affect the nutritional and sensory quality of food emulsions. It is probable that such oxidative modifications affect the functional properties of proteins, and in particular their ability to form densely packed, interconnected

  1. Prevention of lipid oxidation in omega-3 enriched oofds by antioxidants and the use of delivery systems

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    Due to the health beneficial effects of marine omega-3 fatty acids there is an increasing interest in developing functional foods containing these healthy fatty acids. However, such foods are very susceptible to lipid oxidation, which will give rise to undesirable off-flavours and unhealthy...... oxidation products. Efficients strategies to prevent lipid oxidation are therefore required. Such strategies include addition of antioxidants or the use of omega-3 delivery emulsions. However, antioxidant efficacy in complex omega-3 enriched foods are influenced by many factors including the lipophilicity...... of the antioxidants. Selection of the optimal antioxidant system is therefore a major challenge. Likewise, a range of factors can influence the ability of omega-3 delivery systems to protect the omega-3 fatty acids against oxidation after addition to food systems. These challenges will be discussed...

  2. Erectile dysfunction and diabetes: Association with the impairment of lipid metabolism and oxidative stress.

    Science.gov (United States)

    Belba, Arben; Cortelazzo, Alessio; Andrea, Giansanti; Durante, Jacopo; Nigi, Laura; Dotta, Francesco; Timperio, Anna Maria; Zolla, Lello; Leoncini, Roberto; Guerranti, Roberto; Ponchietti, Roberto

    2016-01-01

    To test the hypothesis that exists an association of non-diabetic and diabetic patients suffering from erectile dysfunction (ED) with lipid metabolism and oxidative stress. Clinical and laboratory characteristics in non-diabetic (n = 30, middle age range: 41–55.5 years; n = 25, old age range: 55.5–73), diabetic ED patients (n = 30, age range: 55.5–75 years) and diabetic patients (n = 25, age range: 56–73.25), were investigated. Proteomic analysis was performed to identify differentially expressed plasma proteins and to evaluate their oxidative posttranslational modifications. A decreased level of high-density lipoproteins in all ED patients (P < 0.001, C.I. 0.046–0.10), was detected by routine laboratory tests. Proteomic analysis showed a significant decreased expression (P < 0.05) of 5 apolipoproteins (i.e. apolipoprotein H, apolipoprotein A4, apolipoprotein J, apolipoprotein E and apolipoprotein A1) and zinc-alpha-2-glycoprotein, 50% of which are more oxidized proteins. Exclusively for diabetic ED patients, oxidative posttranslational modifications for prealbumin, serum albumin, serum transferrin and haptoglobin markedly increased. Showing evidence for decreased expression of apolipoproteins in ED and the remarkable enhancement of oxidative posttranslational modifications in diabetes-associated ED, considering type 2 diabetes mellitus and age as independent risk factors involved in the ED pathogenesis, lipid metabolism and oxidative stress appear to exert a complex interplay in the disease.

  3. Optimization of the C11-BODIPY581/591 Dye for the Determination of Lipid Oxidation in Chlamydomonas reinhardtii by Flow Cytometry

    OpenAIRE

    CHELONI Giulia

    2013-01-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof of concept work we examined the potential of the fluorescent dye C11 BODIPY591/581 to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11...

  4. Modeling hemoglobin and hemoglobin:haptoglobin complex clearance in a non-rodent species–pharmacokinetic and therapeutic implications

    OpenAIRE

    Boretti, Felicitas S.; Baek, Jin Hyen; Palmer, Andre F.; Schaer, Dominik J.; Buehler, Paul W.

    2014-01-01

    Background: Haptoglobin (Hp) prevents hemoglobin (Hb) extravasation and attenuates Hb induced tissue oxidation and vasoconstriction. Small animal models such as mouse, rat and guinea pig appear to demonstrate proof-of-concept for Hb neutralization by Hp in diverse pre-clinical conditions. However, these species differ significantly from humans in the clearance of Hb:Hp and demonstrate long persistence of circulating Hb:Hp complexes. Objective: The focus of this study is to understand Hb:Hp...

  5. Application of lipid peroxidation and protein oxidation biomarkers for oxidative damage in mammalian cells. A comparison with two fluorescent probes

    NARCIS (Netherlands)

    Orhan, H.; Gurer-Orhan, H.; Vriese, E.; Vermeulen, N.P.E.; Meerman, J.H.N.

    2006-01-01

    We recently developed two biomarker sets for oxidative damage: one for determination of lipid peroxidation (LPO) degradation products; acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, malondialdehyde and acetone, by a gas chromatography-electron capture detection

  6. Optimization of the C11-BODIPY(581/591) dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry.

    Science.gov (United States)

    Cheloni, Giulia; Slaveykova, Vera I

    2013-10-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore, the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof-of-concept work, we examined the potential of the fluorescent dye C11-BODIPY(591/581) to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11-BODIPY(591/581) staining was combined with flow cytometry measurements to obtain multiparameter information on cellular features and oxidative stress damage within single cells. First, staining conditions were optimized by exploring the capability of the dye to stain algal cells under increasing cell and dye concentrations and different staining procedures. Then lipid oxidation in algae induced by short- and long-term exposures to the three metallic micropollutants, copper, mercury, and nanoparticulate copper oxide, and the two organic contaminants, diethyldithiocarbamate (DDC) and diuron was determined. In this work we pointed out C11-BODIPY(591/581) applicability in a wide range of exposure conditions, including studies of oxidation as a function of time and that it is suitable for in vivo measurements of lipid oxidation due to its high permeation and stability in cells and its low interference with algal autofluorescence. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  7. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  8. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Jaya Kumar

    2017-09-01

    Full Text Available Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.

  9. Kolaviron and vitamin E ameliorate hematotoxicity and oxidative stress in brains of prepubertal rats treated with an anticonvulsant phenytoin.

    Science.gov (United States)

    Owoeye, Olatunde; Adedara, Isaac A; Bakare, Oluwafemi S; Adeyemo, Oluwatobi A; Egun, Christa; Farombi, Ebenezer O

    2014-06-01

    Phenytoin (PHT), an anticonvulsant agent, widely used for the treatment of epilepsy has been reported to exhibit toxic side effects. The present study investigated the protective effects of kolaviron and vitamin E on hematotoxicity and neurotoxicity induced by phenytoin, in prepubertal male rats. The animals were treated with PHT (75 mg/kg) separately or in combination with either kolaviron (200 mg/kg) or vitamin E (500 mg/kg) for 14 days. Phenytoin treatment significantly decreased the hemoglobin, white blood cells, lymphocytes and mean corpuscular volume levels without affecting red blood cell, packed cell volume, neutrophils, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration when compared with the control rats. There was a significant increase in lipid peroxidation and hydrogen peroxide levels with marked depletion in antioxidant status in brains of PHT-treated rats when compared with the control. Although PHT treatment had no effect on the granular layer, widest diameter of Purkinje cells and Purkinje layer of the cerebellum, it significantly reduced its molecular layer and the density of Purkinje cell. Administration of PHT significantly reduced the densities of the granule cells of the dentate gyrus and the pyramidal neurons of the cornu ammonis of hippocampus proper. Co-treatment with kolaviron and vitamin E effectively reversed the PHT-mediated alterations in the hematology, brain antioxidant status and histomorphometry when compared to PHT only. Taken together, the present data indicate the abilities of kolaviron and vitamin E to ameliorate phenytoin-induced hematotoxicity and oxidative stress in brains of rats.

  10. Nitric oxide induces segregation of decay accelerating factor (DAF or CD55) from the membrane lipid-rafts and its internalization in human endometrial cells.

    Science.gov (United States)

    Banadakoppa, Manu; Goluszko, Pawel; Liebenthal, Daniel; Yallampalli, Chandra

    2012-10-01

    Recent studies suggest that DAF (decay accelerating factor), a complement regulatory protein, present in lipid rafts, is utilized by Dr fimbriated Escherichia coli for their binding and internalization. Previous studies in our laboratory have shown that NO (nitric oxide) can reduce the invasion of Dr(+) E. coli and the severity of uterine infection in pregnant rats. Also, the expression level of DAF both at the mRNA and protein levels has been shown to be reduced by NO. Therefore NO mediated down-regulation of DAF appears to be an important factor in reducing the susceptibility to E. coli infection. However, it is unclear if NO can actually modulate the membrane association of DAF and therefore initial bacterial binding to cells. We found that NO induces the delocalization of DAF from the G(M1)-rich lipid rafts. Using biochemical and cell biological approaches in a uterine epithelial cell model (Ishikawa cells), DAF accumulates in caveolae upon exposure to NO. Interaction of DAF with the caveolar protein, caveolin1, leads to their internalization by endosomes. NO-induced delocalization of DAF from the lipid raft and its accumulation in caveolae are mediated through a cGMP (cyclic guanosine monophosphate) pathway. The acute localized synthesis of NO and its influence on DAF localization may represent an important unrecognized phenomenon of host defence against Dr(+) E. coli bacteria, as well as many disease conditions that involve complement system.

  11. Hemichrome formation during hemoglobin Zurich denaturation

    International Nuclear Information System (INIS)

    Zago, M.A.; Costa, F.F.; Botura, C.; Baffa, O.

    1988-01-01

    Electron paramagnetic resonance (EPR)spectrum of hemoglobin Zurich, after oxidation, storage and heating, showed several absorption derives in the high field region (g ≅ 2) which are indicative of hemichrome formation. Characteristic visible spectra of hemichromes were observed for oxidized Hb Zurich and for its spontaneous precipitate. The proportional increase of EPR signals at g ≅ 2 and decrease at g = 6.37, the constant ratio of absorbance at 540 nm to 280 nm during heating, and the similarity of this ratio for spontaneously precipitated HbA and for Hb Zurich indicate that heme is not lost during the first steps of Hb Zurich denaturation. (author) [pt

  12. Terminalia arjuna: A novel natural preservative for improved lipid oxidative stability and storage quality of muscle foods

    Directory of Open Access Journals (Sweden)

    Insha Kousar Kalem

    2017-12-01

    Full Text Available The study was conducted to explore the possibility of utilization of Terminalia arjuna as a novel natural preservative in meat products by using chevon sausages as a model system. Chevon sausages were prepared by incorporating different levels of T. arjuna viz. T1 (0.25%, T2 (0.50% and T3 (0.75% and were assessed for various lipid oxidative stability and storage quality parameters under refrigerated (4 ± 1 °C conditions. T. arjuna showed a significant (p < 0.05 effect on the lipid oxidative stability as the treated products exhibited significantly (p < 0.05 lower TBARS (mg malonaldehyde/kg values in comparison to control. A significant (p < 0.05 effect was also observed on the microbial stability as T. arjuna incorporated products showed significantly (p < 0.05 lower values for total plate count (log cfu/g, psychrophilic count (log cfu/g, yeast and mould count (log cfu/g and FFA (% oleic acid values. Significantly (p < 0.05 higher scores were observed for various sensory parameters of the products incorporated with T. arjuna during refrigerated storage. T. arjuna successfully improved the lipid oxidative stability and storage quality of the model meat product and may be commercially exploited as a novel preservative in muscle foods. Keywords: Terminalia arjuna, Chevon sausages, Natural preservative, Lipid oxidation, Storage quality

  13. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  14. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  15. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins

    Directory of Open Access Journals (Sweden)

    Nans Florens

    2016-12-01

    Full Text Available Chronic kidney disease (CKD is associated with an enhanced oxidative stress and deep modifications in lipid and lipoprotein metabolism. First, many oxidized lipids accumulate in CKD and were shown to exert toxic effects on cells and tissues. These lipids are known to interfere with many cell functions and to be pro-apoptotic and pro-inflammatory, especially in the cardiovascular system. Some, like F2-isoprostanes, are directly correlated with CKD progression. Their accumulation, added to their noxious effects, rendered their nomination as uremic toxins credible. Similarly, lipoproteins are deeply altered by CKD modifications, either in their metabolism or composition. These impairments lead to impaired effects of HDL on their normal effectors and may strongly participate in accelerated atherosclerosis and failure of statins in end-stage renal disease patients. This review describes the impact of oxidized lipids and other modifications in the natural history of CKD and its complications. Moreover, this review focuses on the modifications of lipoproteins and their impact on the emergence of cardiovascular diseases in CKD as well as the appropriateness of considering them as actual mediators of uremic toxicity.

  16. Peroxometal-mediated oxidation of bromine leading to ...

    Indian Academy of Sciences (India)

    Administrator

    Peroxometal-mediated oxidation of bromine leading to environmentally favourable protocol for selective bromination of organic substrates: Implications for vanadium bromo peroxidase (VBrPO). SIDDHARTHA D DHAR and MIHIR K CHAUDHURI. Department of Chemistry, Indian Institute of Technology,. Guwahati 781 001 ...

  17. Cleavage of olefinic double bonds by mediated anodic oxidation

    International Nuclear Information System (INIS)

    Baeumer, U.-St.; Schaefer, H.J.

    2003-01-01

    Seven alkenes, e.g. 1-decene, methyl oleate, cyclododecene, norbornene, are cleaved by indirect anodic oxidation with IO 4 - /RuCl 3 as mediator to carboxylic acids. The best performance was achieved with two alternative ex cell-methods. Periodate is regenerated from iodate in a divided cell at a PbO 2 /Ti-anode. In the chemical reactor alkene and the produced carboxylic acid are immobilized in a chromatography column on Chromosorb W and oxidized with IO 4 - /RuO 4 in CH 3 CN/water. In the alternative version the alkene is oxidized in an emulsion generated by sonication and the organic phase is retained in the reactor by a separator. Acids and diacids are obtained in 61-91% chemical yield and good current yields. The amount of consumed periodate can be reduced to less than 5% of the amount needed for the chemical oxidation. The mediated anodic cleavage of alkenes is altogether an interesting alternative to ozonolysis

  18. Lipolysis and lipid oxidation in fermented sausages depending on different processing conditions and different antioxidants.

    Science.gov (United States)

    Zanardi, Emanuela; Ghidini, Sergio; Battaglia, Alessandra; Chizzolini, Roberto

    2004-02-01

    Lipolysis and lipid oxidation in Mediterranean and North Europe type sausages were studied in relation to raw material, processing conditions and additives. In particular the effect of ascorbic acid, nitrites and spices was evaluated. Lipolysis was measured by the determination of total and free fatty acids of fresh minces and matured products and lipid oxidation was evaluated by thiobarbituric acid reactive substances and cholesterol oxidation products. The increase of free fatty acids during maturation appears to be independent from processing conditions and the differences in polyunsaturated fatty acids increment found among the formulations appear to be due to inherent variations of raw materials. The presence of ascorbic acid and/or nitrite seems important for cholesterol protection and, as a consequence, for the safety of fermented meat products while spices at doses up to 0.1% do not seem to have a remarkable effect. The effect on fatty acid oxidation of the same additives and of the different processing technologies is not significantly different and the variations linked to raw material may play the greatest role.

  19. Analysis of hemoglobin adducts from acrylamide, glycidamide, and ethylene oxide in paired mother/cord blood samples from Denmark

    DEFF Research Database (Denmark)

    von Stedingk, Hans; Vikström, Anna C; Rydberg, Per

    2011-01-01

    The knowledge about fetal exposure to acrylamide/glycidamide from the maternal exposure through food is limited. Acrylamide, glycidamide, and ethylene oxide are electrophiles and form adducts with hemoglobin (Hb), which could be used for in vivo dose measurement. In this study, a method.......20-0.73) for glycidamide, and 0.43 (range 0.17-1.34) for ethylene oxide. In vitro studies with acrylamide and glycidamide showed a lower (0.38-0.48) rate of adduct formation with Hb in cord blood than with Hb in maternal blood, which is compatible with the structural differences in fetal and adult Hb. Together...... for analysis of Hb adducts by liquid chromatography-mass spectrometry, the adduct FIRE procedure, was applied to measurements of adducts from these compounds in maternal blood samples (n = 87) and umbilical cord blood samples (n = 219). The adduct levels from the three compounds, acrylamide, glycidamide...

  20. Dietary vitamin E affects lipid oxidation and total volatiles of irradiated raw turkey meat

    International Nuclear Information System (INIS)

    Ahn, D.U.; Sell, J.L.; Jeffery, M.; Jo, C.; Chen, X.; Lee, J.I.

    1997-01-01

    Breast and leg meat patties, prepared from turkeys fed diets containing 25, 200, 400 or 600 IU of dl-alpha-tocopheryl acetate (TA) per kg diet, were irradiated at 0 or 2.5 kGy with vacuum or loose packaging. The effects of dietary TA on storage stability and production of volatiles in irradiated raw turkey meat were determined. Dietary TA at 200 IU/kg decreased lipid oxidation and reduced total volatiles of raw turkey patties after 7-days of storage. However, the antioxidant effects of dietary TA were more notable when the patties were loosely packaged than when vacuum-packaged. Irradiation increased lipid oxidation of raw turkey meats only when loosely packaged but had limited effects on formation of total volatiles after storage at 4 degrees C for 7 days or longer

  1. Site-specific semisynthetic variant of human hemoglobin

    International Nuclear Information System (INIS)

    Hefta, S.A.; Lyle, S.B.; Busch, M.R.; Harris, D.E.; Matthew, J.B.; Gurd, F.R.N.

    1988-01-01

    A single round of Edman degradation was employed to remove the NH 2 -terminal valine from isolated α chains of human hemoglobin. Reconstitution of normal β chains with truncated or substituted α chains was used to form truncated (des-Val 1 -α1) and substituted ([[1- 13 C]Gly 1 ]α1) tetrameric hemoglobin analogs. Structural homology of the analogs with untreated native hemoglobin was established by using several spectroscopic and physical methods. Functional studies indicate that the reconstituted tetrameric protein containing des-Val 1 -α chains has a higher affinity for oxygen, is less influenced by chloride ions or 2,3-biphosphoglycerate, and shows lower cooperativity than native hemoglobin. These results confirm the key functional role of the α-chain NH 2 terminus in mediating cooperative oxygen binding across the dimer interface. The NH 2 -terminal pK/sub 1/2/ value was determined for the [ 13 C]glycine-substituted analog to be 7.46 +/- 0.09 at 15 0 C in the carbon monoxide-liganded form. This value, measured directly by 13 C NMR, agrees with the determination made by the less-direct 13 CO 2 method and confirms the role of this residue as a contributor to the alkaline Bohr effect; however, it is consistent with the presence of an NH 2 -terminal salt bridge to the carboxylate of Arg-141 of the α chain in the liganded form

  2. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...... lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results...

  3. Propanil-induced methemoglobinemia and hemoglobin binding in the rat

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, D.C.; McRae, T.A.; Hinson, J.A. (National Center for Toxicological Research, Jefferson, AR (USA))

    1990-09-15

    Administration of (ring-U-14C)propanil (3,4-dichloropropionanilide) to male Sprague-Dawley rats (30, 100, and 300 mg/kg, ip) increased the formation of methemoglobin at the two highest doses. Following a propanil dose of 100 mg/kg, methemoglobin formation attained a maximum level of 5% by 1.5 hr and declined to normal levels (approximately 2.5%) by 12 hr. Hemoglobin binding attained a maximum level of 50 pmol/mg protein by 12 hr, and remained constant for 24 hr. Following a propanil dose of 300 mg/kg, methemoglobin formation attained a maximum level of 24% by 4.5 hr, and declined to a level of 5% by 24 hr. Hemoglobin binding attained a maximum level of 425 pmol/mg protein by 12 hr, and remained constant for 24 hr. Hemoglobin binding was also detected at the lowest propanil dose (10 pmol/mg protein) even though methemoglobin formation was not observed. HPLC analysis of alkaline-treated hemoglobin from propanil-treated rats indicated the presence of one radiolabeled compound with the same HPLC retention time as 3,4-dichloraniline. These data are consistent with the concept that propanil is converted to N-hydroxy-3,4-dichloroaniline in the liver. Subsequently, this metabolite enters the erythrocyte and is oxidized by hemoglobin to 3,4-dichloronitrosobenzene with concomitant conversion of oxyhemoglobin to methemoglobin. The 3,4-dichloronitrosobenzene binds to cysteine residues on hemoglobin as the corresponding sulfinic acid amide adduct. These data suggest that human exposure to propanil may be monitored in the absence of observable toxicity by the analysis of propanil metabolites bound to hemoglobin.

  4. The effects of Bifidobacteria on the lipid profile and oxidative stress biomarkers of male rats fed thermally oxidized soybean oil.

    Science.gov (United States)

    Awney, Hala A

    2011-08-01

    Over the years, there has been concern about the changes taking place in heated oils and the effects on individuals consuming them. The present study investigated the effects of a diet containing thermally oxidized soybean oil (TO) or TO supplemented with probiotic Bifidobacteria (TO+Pro) on the serum lipid profile and oxidative stress biomarkers of male rats. The data showed several indicators of oil deterioration after thermal processing, including high levels of % free fatty acid (FFA; 15-fold), acid value (AV; 14-fold), peroxide value (8-fold), p-anisidine value (AnV; 39-fold), total oxidation value (TOTOX; 19-fold), thiobarbituric acid-reactive substances (TBARS) value (8.5-fold), and trans-FA (TFA) isomers (2.5-fold) compared to the control. The rats that were fed a diet containing TO showed a significant (p blood serum samples. High levels of TBARS, superoxide dismutase (SOD), and glutathione reductase (GR) activities were also detected in the livers, kidneys, testes, and brains of rats. Interestingly, a diet containing TO+Pro restored all biological parameters to their control values. The present data suggested that Bifidobacteria may ameliorate the serum lipid profile and oxidative stress biomarkers that are generated in animals that are fed a TO diet.

  5. Anti-radical power gives insight into early lipid oxidation events during frying

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2006-01-01

    The aim of this research was to use anti-radical power (ARP) to study early lipid oxidation events during frying. The 2,2-diphenyl-1-picrylhydrazyl radical (DPPH¿) test was used to determine the ARP. As oil does not dissolve completely in methanol, which is generally used for the DPPH¿ test, butanol

  6. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    Science.gov (United States)

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  7. Benzyl Alcohol-Mediated Versatile Method to Fabricate Nonstoichiometric Metal Oxide Nanostructures.

    Science.gov (United States)

    Qamar, Mohammad; Adam, Alaaldin; Azad, Abdul-Majeed; Kim, Yong-Wah

    2017-11-22

    Nanostructured metal oxides with cationic or anionic deficiency find applications in a wide range of technological areas including the energy sector and environment. However, a facile route to prepare such materials in bulk with acceptable reproducibility is still lacking; many synthesis techniques are still only bench-top and cannot be easily scaled-up. Here, we report that the benzyl alcohol (BA)-mediated method is capable of producing a host of nanostructured metal oxides (MO x , where M = Ti, Zn, Ce, Sn, In, Ga, or Fe) with inherent nonstoichiometry. It employs multifunctional BA as a solvent, a reducing agent, and a structure-directing agent. Depending on the oxidation states of metal, elemental or nonstoichiometric oxide forms are obtained. Augmented photoelectrochemical oxidation of water under visible light by some of these nonstoichiometric oxides highlights the versatility of the BA-mediated synthesis protocol.

  8. Effects of microwave cooking and refrigerated storage of main broiler parts on lipid oxidation in chicken muscle and skin

    International Nuclear Information System (INIS)

    Pikul, J.; Kummerow, F.A.

    1990-01-01

    From a total of 78 chickens, 24 carcasses were used to estimate the percentage for the individual cuts and their composition. Fifty-four carcasses were cut vertically into halves of which two-thirds were quartered, yielding front and hind quarters (Cuts 2 and 3). Half of these quarters were cut into individual pieces, yielding breasts and thighs with back ribs, drumsticks, and wings. The muscles and skin of one-third from each of the seven different cuts described above were analyzed raw for lipid oxidation products; while the remaining two-thirds were microwaved. Half of the microwaved cuts were analyzed 2 hours after cooking; the other half, after 4 days of storage at 4 C. The results indicated that the absolute amount of lipid oxidation products in chicken muscles and skin after microwave cooking and refrigerated storage was affected by the initial level of those products in the raw samples and by the particular cut of meat Cooking the different cuts of chicken carcasses by microwave significantly increased the amount of malonaldehyde (MA) and lipid-oxidation fluorescent products (LOFP) in the aqueous phase of Folch-extracted muscles and skin and in the organic phase of Folch-extracted skin lipids. Microwave cooking for the separate broiler parts (especially the drumsticks and wings, as compared to halves or quarters) produced the lowest amount of lipid oxidation products due to the shorter cooking time. Refrigerated storage of broiler parts cooked by microwave produced substantial amounts of MA and LOFP in the aqueous phase of the Folch extracted skin and in the organic phase of the Folch-extracted lipids from the muscles. (author)

  9. Intensity of lipid oxidation and formation of cholesterol oxidation products during frozen storage of raw and cooked chicken

    OpenAIRE

    Conchillo, A. (Ana); Ansorena, D. (Diana); Astiasarán, I. (Iciar)

    2004-01-01

    Raw and cooked chicken breasts were stored at −18 °C for 3 months under aerobic and vacuum conditions, and the intensity of lipid oxidation and the formation of COP (cholesterol oxidation products) were studied. Raw samples showed low COP levels (4.60–7.40 µg g−1 fat), TBARS (thiobarbituric acid reactive substances) levels (0.01–0.03 mg kg−1) and peroxide values (not detected) under both aerobic and vacuum conditions. Cooked samples (grilled and roasted) showed TBARS levels of 0.36–0.99 mg kg...

  10. The effect of virtual cross linking on the oxidative stability and lipid uptake of aliphatic poly(urethane urea).

    Science.gov (United States)

    Thomas, Vinoy; Jayabalan, Muthu

    2002-01-01

    In vitro oxidative degradation and lipid sorption of aliphatic, low elastic modulus and virtually cross-linked poly(urethane urea)s based on 4,4' methylene bis(cyclohexyl isocyanate), hydroxy terminated poly butadiene and hexamethylene diamine were evaluated. The aged samples revealed no weight loss in the oxidation medium. The IR spectral analyses revealed the stability of unsaturated double bonds at 964 cm(-1) (characteristic for polybutadiene soft segment) with no change in peak intensity. The poly(tetramethylene glycol) (PTMG)-added poly(ether urethane urea) polymer also revealed no disappearance of IR peaks for ether and unsaturated double bonds in samples aged in vitro oxidation medium. All the polymers have shown increase in weight due to lipid up take in lipid-rich medium (palm oil) but it was rather low in Dulbecco's modified eagle medium (DMEM) cholesterol. The slight change in mechanical properties of the present polymers in oxidation and DMEM is due to the rearrangement of molecular structure with virtual cross links of hydrogen bonding (physical cross linking) without degradation and plasticization effect of lipid. The influence of these media on the rearrangement of virtual cross links has been observed. Higher the virtual cross-link density, lesser is the loss of tensile properties of poly(urethane urea)s in the oxidation medium and vice versa. On the other hand, higher the virtual cross-link density of poly(urethane urea), higher is the loss of ultimate tensile strength and stress at 100% strain and vice versa in DMEM medium.

  11. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  12. The Reaction of Oxy Hemoglobin with Nitrite

    DEFF Research Database (Denmark)

    Hathazi, Denisa; Scurtu, Florina; Bischin, Cristina

    2018-01-01

    The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high...... to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations......-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp...

  13. Hemoglobin (image)

    Science.gov (United States)

    Hemoglobin is the most important component of red blood cells. It is composed of a protein called ... exchanged for carbon dioxide. Abnormalities of an individual's hemoglobin value can indicate defects in the normal balance ...

  14. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  15. Isotope effects in the non enzymic glucation of hemoglobin catalyzed by phosphate

    International Nuclear Information System (INIS)

    Gil, H.; Mata-Segreda, J.; Schowen, R.

    1991-01-01

    The reaction of hemoglobin, mainly at the N-terminal valine, with glucose exhibits identical rates in protium and deuterium oxides, both for the buffer-independent rate and for the first-order rate in phosphate buffer. Under the conditions employed, imine formation is relatively rapid and events in the course of the Amadori rearrangement must limit the rate. A very-slow, phosphate-induced reorganization of hemoglobin-glucose imine may be the most likely candidate for the rate-limiting step. (author)

  16. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Conor McClean

    2015-01-01

    Full Text Available Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild; 20 minutes at 75% V˙O2max (moderate; or 5 minutes at 100% V˙O2max (maximal in random order. Brachial artery flow-mediated dilation (FMD was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1, lipid hydroperoxides (LOOHs, and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P0.05. Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD.

  17. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  18. Protective effect of taurine against potassium bromate-induced hemoglobin oxidation, oxidative stress, and impairment of antioxidant defense system in blood.

    Science.gov (United States)

    Ahmad, Mir Kaisar; Mahmood, Riaz

    2016-03-01

    Potassium bromate (KBrO3 ) is widely used as a food-additive and is a major water disinfection by-product. KBrO3 causes severe toxicity in humans and experimental animals. Bromate is considered a probable human carcinogen and a complete carcinogen in animals. We have investigated the potential role of taurine in protecting against KBrO3 -induced oxidative stress in rat blood. Animals were given taurine for 5 days prior to KBrO3 and then sacrificed. Blood was collected and used to prepare hemolysates and plasma, which were then used for the analysis of several biochemical parameters. Administration of single oral dose of KBrO3 alone induced hepato- and nephro-toxicity as evident by elevated marker levels in plasma. Lipid peroxidation and protein oxidation were increased both in plasma and erythrocytes, suggesting the induction of oxidative stress. KBrO3 increased methemoglobin, nitric oxide, and hydrogen peroxide levels. It also altered the activities of the major antioxidant enzymes and lowered the antioxidant power of blood. Administration of taurine, prior to treatment with KBrO3 , resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. These results show that taurine is effective in mitigating the oxidative insult induced in rat blood by KBrO3 . © 2014 Wiley Periodicals, Inc.

  19. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    Science.gov (United States)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P 0.931.

  20. Effect of clorophilic juice from germinated corn on seric lipids, hemoglobin, and uric acid Efecto del germinado de maíz sobre el perfil lipídico, la hemoglobina y la uricemia

    Directory of Open Access Journals (Sweden)

    María Luisa Bravo Aguiar

    1998-01-01

    Full Text Available The effect was studied of clorophilic juice from germinated corn on blood seric lipids, uric acid, glucose, hemoglobine and hematocrite. Nine adults with average age 44 years and who presented hypertriglyceridemia received daily 30 ml doses of the juice during 2 months. Initial average concentrations in mg/dl were 6.9 (uric acid, 259 (triglycerides and 199 (total cholesterol; they decreased progressively and significantly at 30, 45 and 60 days of treatment reaching values of 5.0, 171 and 169 respectively (p:0.01 0,0.015 and 0.034. Hemoglobin increased significantly (p:0.008. This natural treatment could be useful in regulating blood lipids and other biologic risk factors for coronary arteriosclerosis, without the toxic efects shown by some lipid control drugs. Se investigó el efecto del jugo clorofílico de germinado de maíz, con una dosis de 30 ml diarios durante dos meses, sobre el perfil lipídico, la glicemia, la uricemia, la hemoglobina y el hematocrito, en nueve adultos con edad promedio de 44 años y que presentaban hipertrigliceridemia como trastorno principal. Las concentraciones promedio iniciales en mgl dl que eran de 6.9 (ácido úrico, 259 (triglicéridos y 199 (colesterol total descendieron en forma progresiva y significativa a los 30, 45 y 60 días de tratamiento hasta valores respectivos de 5.0, 171 y 169 (p = 0.010,0.015 y 0.034 respectivamente. La hemoglobina ascendió de manera progresiva y significativa (p = 0.008 durante el experimento. Este tratamiento natural podría ser útil en la regulación de los lípidos sanguíneos y otros factores biológicos de riesgo para el desarrollo de ateromatosis coronaría, sin los efectos tóxicos que se han demostrado con algunas drogas hipolipemiantes.

  1. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.

    Science.gov (United States)

    Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza

    2009-10-01

    Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.

  2. Effects of vitamin C and L-carnitine on lipid profile and oxidative ...

    African Journals Online (AJOL)

    The roles of vitamin C and L-carnitine on lipid profile and oxidative stress parameters in the brain of rats during fasting and re-feeding were investigated. Sixty male Sprague-Dawley rats (170-180 g) were divided into four groups of control, fasting, fasting + vitamin C and fasting + L-carnitine. The test groups were further ...

  3. Multicenter, randomized, placebo-controlled study of the nitric oxide scavenger pyridoxalated hemoglobin polyoxyethylene in distributive shock.

    Science.gov (United States)

    Kinasewitz, Gary T; Privalle, Christopher T; Imm, Amy; Steingrub, Jay S; Malcynski, John T; Balk, Robert A; DeAngelo, Joseph

    2008-07-01

    To assess the safety and efficacy of the hemoglobin-based nitric oxide scavenger, pyridoxalated hemoglobin polyoxyethylene (PHP), in patients with distributive shock. Phase II multicenter, randomized (1:1), placebo-controlled study. Fifteen intensive care units in North America. Sixty-two patients with distributive shock, > or = 2 systemic inflammatory response syndrome criteria, and persistent catecholamine dependence despite adequate fluid resuscitation (pulmonary capillary wedge pressure > or = 12). Patients were randomized to PHP at 0.25 mL/kg/hr (20 mg/kg/hr), or an equal volume of placebo, infused for up to 100 hrs, in addition to conventional vasopressor therapy. Because treatment could not be blinded, vasopressors and ventilatory support were weaned by protocol. Sixty-two patients were randomized to PHP (n = 33) or placebo (n = 29). Age, sex, etiology of shock (sepsis in 94%), and Acute Physiology and Chronic Health Evaluation II scores (33.1 +/- 8.3 vs. 30 +/- 7) were similar in PHP and placebo patients, respectively. Baseline plasma nitrite and nitrate levels were markedly elevated in both groups. PHP infusion increased systemic blood pressure within minutes. Overall 28-day mortality was similar (58% PHP vs. 59% placebo), but PHP survivors were weaned off vasopressors faster (13.7 +/- 8.2 vs. 26.3 +/- 21.4 hrs; p = .07) and spent less time on mechanical ventilation (10.4 +/- 10.2 vs. 17.4 +/- 9.9 days; p = .21). The risk ratio (PHP/placebo) for mortality was .79 (95% confidence interval, .39-1.59) when adjusted for age, sex, Acute Physiology and Chronic Health Evaluation II score, and etiology of sepsis. No excess medical interventions were noted with PHP use. PHP survivors left the intensive care unit earlier (13.6 +/- 8.6 vs. 17.9 +/- 8.2 days; p = .21) and more were discharged by day 28 (57.1 vs. 41.7%). PHP is a hemodynamically active nitric oxide scavenger. The role of PHP in distributive shock remains to be determined.

  4. Additions of caffeic acid, ascorbyl palmitate or gamma-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    The objectives of the study were to investigate the effects of caffeic acid, ascorbyl palmitate and gamma-tocopherol on protection of fish oil-enriched energy bars against lipid oxidation during storage for 10 weeks at room temperature. The lipophilic gamma-tocopherol reduced lipid oxidation during...... storage when added at a concentration above 440 mu g/g fish oil. However, the best antioxidative effect was observed when it was added at a concentration of 660 mu g/g fish oil. In contrast, prooxidative effects were observed when using either gamma-tocopherol at concentrations below 220 mu g/g fish oil......, or the hydrophilic caffeic acid, or the amphiphilic ascorbyl palmitate at concentrations of 75, 150 and 300 mu g/g fish oil. Prooxidative effects were observed as an increase in the formation of lipid hydroperoxides and volatile secondary oxidation products, as well as the development of rancid off...

  5. Nitric Oxide, Inflammation, Lipid Profile, and Cortisol in Normal- and Overweight Women With Fibromyalgia.

    Science.gov (United States)

    Rus, Alma; Molina, Francisco; Gassó, Manuela; Camacho, Maria Victoria; Peinado, Maria Ángeles; del Moral, Maria Luisa

    2016-03-01

    Research has identified many factors associated with fibromyalgia (FM), but findings have been inconsistent. This study aimed to investigate changes in levels of nitric oxide (NO), inflammatory markers, lipid profile, and cortisol in normal- and overweight patients with FM and controls. Since most patients with FM are overweight, we explored possible changes in these markers according to body mass index (BMI). This preliminary study was performed on serum samples of women with FM and age-matched controls, grouped according to their BMI: 12 normal-weight patients and 12 controls and 13 overweight patients and 8 controls. Ozone-based chemiluminescence assay was used to measure NO. Inflammatory mediators and cortisol were determined by immunoassay. Lipid profile was measured by a spectrophotometric procedure. Functional capacity was assessed by the fibromyalgia impact questionnaire (FIQ). Normal-weight patients showed higher levels of C-reactive protein (CRP) and apolipoprotein B compared to controls (both p < .05). CRP, apolipoprotein B, and triglycerides were higher in overweight patients versus overweight controls (all p < .05) and in overweight versus normal-weight patients (CRP p < .01; apolipoprotein B, triglycerides p < .05). The other markers were unaffected. Apolipoprotein B (r = .762; p < .05) and NO (r = -.921; p < .05) levels correlated with FIQ score in normal-weight patients. CRP level correlated with FIQ (r = .912; p < .05) in overweight patients. CRP and apolipoprotein B, biomarkers linked to cardiovascular events, may be associated with FM-related dysfunction in normal- and overweight women with FM. Their increased levels in these patients may indicate an increased risk of cardiovascular disease. © The Author(s) 2015.

  6. Hemoglobin

    Science.gov (United States)

    1993-03-08

    affinity, which is less at low levels of hemoglobin saturation, increases markedly as fractional saturation increases. Thus, high affinity for 02 at... diphosphoglycerate (2,3-DPG), and carbon dioxide (Co 2). Since they are linked to 02 binding, they are called oxygen-linked effectors. The oxygen...hemoglobin molecule because of the negative charge of the ions. 2,3- Diphosphoglycerate is a molecule formed during the breakdown of sugar in normal human

  7. Oxidative stability of the lipid fraction in cookies – the EPR study

    Directory of Open Access Journals (Sweden)

    Zawada Katarzyna

    2015-07-01

    Full Text Available Cookies are a group of convenient food products that are popular among consumers. They may contain high amounts of fats, which can be prone to oxidation. To retard the oxidative deterioration, synthetic and natural antioxidants may be added. Herb and spice extracts can be sources of natural biologically active substances with antioxidant activity. In this work, electron paramagnetic resonance spectroscopy was used to monitor the lipid oxidation in cookies with rosemary and thyme extracts subjected to the storage in elevated temperature. It was shown that thyme extract can be used as a natural antioxidant source for the preparation of bakery products, while the rosemary extract should be used with care in fat-rich products exposed to high temperatures.

  8. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  9. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ

    2000-01-01

    microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria(5-7). Here we provide microscopic...... cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.......A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...

  10. Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training

    DEFF Research Database (Denmark)

    Mogensen, M; Vind, B F; Højlund, K

    2009-01-01

    AIM: Insulin resistance in subjects with type 2 diabetes (T2D) and obesity is associated with an imbalance between the availability and the oxidation of lipids. We hypothesized that maximal whole-body lipid oxidation during exercise (FATmax) is reduced and that training-induced metabolic adaptation...... in response to aerobic training in obese subjects with and without T2D. These metabolic adaptations to training seem to be unrelated to changes in insulin sensitivity and indicate that an impaired capacity for lipid oxidation is not a major cause of insulin resistance in T2D....... subjects after training (all p Insulin-stimulated glucose disappearance rate (Rd) was lower in T2D vs. control subjects both before and after training. Rd increased...

  11. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Science.gov (United States)

    Chen, Hui; Zhang, Liang; Li, Xinwei; Li, Xiaobing; Sun, Guoquan; Yuan, Xue; Lei, Liancheng; Liu, Juxiong; Yin, Liheng; Deng, Qinghua; Wang, Jianguo; Liu, Zhaoxi; Yang, Wentao; Wang, Zhe; Zhang, Hui; Liu, Guowen

    2013-11-01

    Adiponectin (Ad) plays a crucial role in hepatic lipid metabolism. However, the regulating mechanism of hepatic lipid metabolism by Ad in dairy cows is unclear. Hepatocytes from a newborn female calf were cultured in vitro and treated with different concentrations of Ad and BML-275 (an AMPKα inhibitor). The results showed that Ad significantly increased the expression of two Ad receptors. Furthermore, the phosphorylation and activity of AMPKα, as well as the expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) and its target genes involved in lipid oxidation, showed a corresponding trend of upregulation. However, the expression levels and transcriptional activity of sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) decreased in a similar manner. When BML-275 was added, the p-AMPKα level as well as the expression and activity of PPARα and its target genes were significantly decreased. However, the expression levels of SREBP-1c, ChREBP and their target genes showed a trend of upregulation. Furthermore, the triglyceride (TG) content was significantly decreased in the Ad-treated groups. These results indicate that Ad activates the AMPK signaling pathway and mediates lipid metabolism in bovine hepatocytes cultured in vitro by promoting lipid oxidation, suppressing lipid synthesis and reducing hepatic lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  13. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors

    DEFF Research Database (Denmark)

    Sahlin, K; Harris, R C

    2008-01-01

    Despite considerable progress during recent years our understanding of how lipid oxidation (LOx) is controlled during exercise remains incomplete. This review focuses on the role of mitochondria and energy state in the control of LOx. LOx increases in parallel with increased energy demand up...... to an exercise intensity of about 50-60% of VO(2max) after which the contribution of lipid decreases. The switch from lipid to carbohydrate (CHO) is of energetic advantage due to the increased ATP/O(2) yield. In the low-intensity domain (energy state will stimulate both LOx...... during high-intensity exercise. Another potential mechanism, suggested in this review, is that Acyl-CoA synthetase (ACS), an initial step in LCFA catabolism, functions as a regulator of LOx. ACS activity is suggested to be under control of CoASH and energy state. Furthermore, evidence exists...

  14. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    Science.gov (United States)

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P chicken compared to 74 and 71 °C (P chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  15. Relationship between lipid and hematological profiles with adiposity in obese adolescents.

    Science.gov (United States)

    Ferreira, Lisianny Camilla Cocri do Nascimento; da Silva, Humberto José Gomes; Lins, Tatiana Acioli; do Prado, Wagner Luiz

    2013-01-01

    An excess of weight including obesity have reached epidemic rates in all age groups, both in developed and developing countries. It is notable that overweight children and adolescents have a higher likelihood of becoming obese adults and to present health-related problems early in life. [corrected] To verify associations of the lipid and hematological profiles with adiposity in obese adolescents beginning multidisciplinary weight loss therapy. This cross-sectional study was conducted with 85 adolescents of both genders, aged 12-19 years (Tanner staging 3 or 4) and body mass index greater than the 95(th) percentile. The sum of the triceps, subscapular and calf skinfolds and the waist circumference were used to estimate adiposity. Blood samples were collected from all patients after overnight fasting to analyze blood lipids (total cholesterol, high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein and triglycerides), blood sugar and the hematological profile (hemoglobin, platelets and red blood cells). The Kolmogorov-Smirnov test and Spearman and Pearson correlation coefficients were used for statistical analysis with significance set for p-values ≤ 0.05. There were statistical differences between genders for red blood cells (p-value = 0.000), hemoglobin (p-value = 0.000) and platelets (p-value = 0.002). Positive correlations were found for red blood cells (p-value = 0.031) and hemoglobin (p-value = 0.024) with waist circumference. There was a negative correlation between hemoglobin and the sum of skinfolds (p-value = 0.022). The results demonstrate an association between the lipid and hematological profiles and body adiposity in obese adolescents thus reinforcing the importance of treating obese adolescents early to prevent health related problems in adult life.

  16. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  17. Lipid metabolism in cancer cachexia.

    OpenAIRE

    Mulligan, H. D.; Beck, S. A.; Tisdale, M. J.

    1992-01-01

    The effect of cancer cachexia on the oxidative metabolism of lipids has been studied in mice transplanted either with the MAC16 adenocarcinoma, which induces profound loss of body weight and depletion of lipid stores, or the MAC13 adenocarcinoma, which is the same histological type, but which grows without an effect on host body weight or lipid stores. While oxidation of D-[U-14C]glucose did not differ between animals bearing tumours of either type and non-tumour bearing controls, oxidation o...

  18. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae), Stigma maydis

    Science.gov (United States)

    Sabiu, S.; O'Neill, F. H.

    2016-01-01

    This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048

  19. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae, Stigma maydis

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2016-01-01

    Full Text Available This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction’s ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.

  20. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.

    Science.gov (United States)

    Furlan, Aurélien L; Jobin, Marie-Lise; Buchoux, Sébastien; Grélard, Axelle; Dufourc, Erick J; Géan, Julie

    2014-12-01

    Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Işıkçı, Fatma; Soyer, Ayla

    2017-07-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation in beef meatballs was investigated during frozen storage at -18±1°C. Concentrated and freeze dried aqueous extract of pomegranate peel was incorporated into freshly prepared meatball mix at 0.5% and 1.0% concentrations, and compared with 0.01% butylated hydroxytoluene (BHT) and control (without any antioxidant). In PE treated samples, particularly in high PE concentration, peroxide, malondialdehyde and carbonyl formation, loss of total protein solubility and sulfhydryl groups were significantly lower than control after 6months of storage. A diminution of both myofibrillar (MP) and sarcoplasmic (SP) proteins of high molecular weight was detected after 6months of the storage according to gel electrophoresis patterns. The 1.0% PE led to maintain colour intensity (C) and hue (h°) value. The results from sensory analyses revealed that PE addition to meatballs was effective on preventing rancid odour formation. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  3. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

    Science.gov (United States)

    Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N

    2014-06-01

    Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine.

    Science.gov (United States)

    Rodrigo, Ramón; Rivera, Gonzalo

    2002-08-01

    Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.

  5. Determination of extinction coefficients of human hemoglobin in various redox states.

    Science.gov (United States)

    Meng, Fantao; Alayash, Abdu I

    2017-03-15

    The role of hemoglobin (Hb) redox forms in tissue and organ toxicities remain ambiguous despite the well-documented contribution of Hb redox reactivity to cellular and subcellular oxidative changes. Moreover, several recent studies, in which Hb toxicity were investigated, have shown conflicting outcomes. Uncertainties over the potential role of these species may in part be due to the protein preparation method of choice, the use of published extinction coefficients and the lack of suitable controls for Hb oxidation and heme loss. Highly purified and well characterized redox forms of human Hb were used in this study and the extinction coefficients of each Hb species (ferrous/oxy, ferric/met and ferryl) were determined. A new set of equations were established to improve accuracy in determining the transient ferryl Hb species. Additionally, heme concentrations in solutions and in human plasma were determined using a novel reversed phase HPLC method in conjugation with our photometric measurements. The use of more accurate redox-specific extinction coefficients and method calculations will be an invaluable tool for both in vitro and in vivo experiments aimed at determining the role of Hb-mediated vascular pathology in hemolytic anemias and when Hb is used as oxygen therapeutics. Published by Elsevier Inc.

  6. Beta-glucan ameliorates gamma-rays induced oxidative injury in male Swiss albino rats

    International Nuclear Information System (INIS)

    Salama, S.F.

    2011-01-01

    1,3-beta-D-Glucan is a natural polysaccharide derived from the cell walls of bakers yeast Saccharomyces cerevsiae with immunoenhancing and potent antioxidant effects. This study investigated the pathways through which beta-glucan gavage treatment (50mg/kg) exerts its effect on radiation-induced oxidative damage in male rats. Beta-glucan was given orally to male rats; 3 hours post gamma-irradiation at dose 5Gy, for 10 and 20 days post-irradiation level were assayed, being remarkable indicators in cell oxidative stress. Results pointed out that irradiation at 5Gy significantly depressed all blood parameters, such as erythrocytes count (RBCs), hemoglobin content (Hb), hematocrit value (Hct), total leucocytes count and absolute lymphocytes and neutrophils counts, blood glutathione (GSH) level and conversely elevated level of serum ascorbyl radical (AsR), product of lipid peroxidation (MDA melanodialdehyde), triglycerides and cholesterol. Total leucocytes count and absolute lymphocytes and neutrophils counts, RBCs, Hb, Hct, blood GSH and serum MDA of irradiated animals receiving beta-glucan administration were exhibited significant differences compared to the irradiated group. Marrow count and the percentage of viability and spleenocytes viability were also significantly decreased. Beta-glucan treatment accelerates recovery of cell damage induced by ionizing irradiation through its potential immune-enhancing activity and free radical scavenging ability that is partially mediated through stimulation of immunohaematological system thus could play a role in regulating irradiation complications

  7. Pathophysiological consequences of hemolysis. Role of cell-free hemoglobin

    Directory of Open Access Journals (Sweden)

    Tomasz Misztal

    2011-09-01

    Full Text Available Abundant hemolysis is associated with a number of inherent and acquired diseases including sickle-cell disease (SCD, polycythemia, paroxysmal nocturnal hemoglobinuria (PNH and drug-induced hemolytic anemia. Despite different etiopathology of hemolytic diseases, many concomitant symptoms are comparable and include e.g. hypertension, hemoglobinuria and hypercoagulation state. Studies in the last years have shown a growing list of mechanisms lying at the basis of those symptoms, in particular irreversible reaction between cell-free hemoglobin (Hb and nitric oxide (NO – endogenous vasorelaxant and anti-thrombotic agent. Saturation of protective physiological cell-free Hb-scavenging mechanisms results in accumulation of Hb in plasma and hemoglobinemia. Extensive hemoglobinemia subsequently leads to hemoglobinuria, which may cause kidney damage and development of Fanconi syndrome. A severe problem in patients with SCD and PNH is pulmonary and systemic hypertension. It may lead to circulation failure, including stroke, and it is related to abolition of NO bioavailability for vascular smooth muscle cells. Thrombotic events are the major cause of death in SCD and PNH. It ensues from lack of platelet inhibition evoked by Hb-mediated NO scavenging. A serious complication that affects patients with excessive hemolysis is erectile dysfunction. Also direct cytotoxic, prooxidant and proinflammatory effects of cell-free hemoglobin and heme compose the clinical picture of hemolytic diseases. The pathophysiological role of plasma Hb, mechanisms of its elimination, and direct and indirect (via NO scavenging deleterious effects of cell-free Hb are presented in detail in this review. Understanding the critical role of hemolysis and cell-free Hb is important in the perspective of treating patients with hemolytic diseases and to design new effective therapies in future.

  8. Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions.

    Science.gov (United States)

    Kik, Richard A; Leermakers, Frans A M; Kleijn, J Mieke

    2010-02-01

    We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphatidylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that span biological membranes, are rigid rods (radius R ) with a hydrophobic surface and hydrophilic end caps. The insertion free energy Omega of an individual rod is strongly regulated by the affinity between its hydrophobic surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with that of the bilayer. The line tension tau(=Omega/2piR) is practically independent of R . The perturbations in the bilayer as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay length are related to the elastic properties of the bilayer and do not depend on R . These results are used to analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons considering the limit of R-->infinity . Contributions on different length scales can be distinguished: (i) a long-range elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion attraction if there is no affinity between the tails and the inclusions' surface or, otherwise, as an oscillatory structural force.

  9. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging

    DEFF Research Database (Denmark)

    Thomsen, Jens Haugbølle; Etzerodt, Anders; Svendsen, Pia

    2013-01-01

    The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex...

  10. Radioimmunochemical characterization of hemoglobins Lepore and Kenya: unique antigenic determinants located on hybrid hemoglobins

    International Nuclear Information System (INIS)

    Garver, F.A.; Altay, G.; Baker, M.M.; Gravely, M.; Huisman, T.H.J.

    1978-01-01

    Antisera were produced in rabbits to the three known types of Lepore hemoglobins, which contain hybrid delta-β non-α-chains, and to hemoglobin Kenya, which has a hybrid γ-β non-α-chain. By using a sensitive radioimmunoassay technique, the absorbed antisera were shown to contain an antibody population that was specific for the hybrid hemoglobin and did not cross-react with normal hemoglobins. However, with the absorbed Lepore-specific antisera, the three known types of Lepore hemoglobins were antigenically indistinguishable from each other, suggesting that antibodies are not produced to the primary structural differences which define the three non-α-chains of the Lepore hemoglobins. These studies demonstrate that the non-α-subunits of hemoglobins Lepore and Kenya possess unique antigenic determinant sites, evidently resulting from an altered polypeptide conformation

  11. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  12. Using AFM to probe the complexation of DNA with anionic lipids mediated by Ca(2+): the role of surface pressure.

    Science.gov (United States)

    Luque-Caballero, Germán; Martín-Molina, Alberto; Sánchez-Treviño, Alda Yadira; Rodríguez-Valverde, Miguel A; Cabrerizo-Vílchez, Miguel A; Maldonado-Valderrama, Julia

    2014-04-28

    Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery. Precisely, the lower cytotoxicity of anionic lipids accounts for their use as a promising alternative. However, the complexation of DNA with anionic lipids (mediated by cations) is still in early stages and is not yet well understood. In order to explore the molecular mechanisms underlying the complexation of anionic lipids and DNA we proposed a combined methodology based on the surface pressure-area isotherms, Gibbs elasticity and Atomic Force Microscopy (AFM). These techniques allow elucidation of the role of the surface pressure in the complexation and visualization of the interfacial aggregates for the first time. We demonstrate that the DNA complexes with negatively charged model monolayers (DPPC/DPPS 4 : 1) only in the presence of Ca(2+), but is expelled at very high surface pressures. Also, according to the Gibbs elasticity plot, the complexation of lipids and DNA implies a whole fluidisation of the monolayer and a completely different phase transition map in the presence of DNA and Ca(2+). AFM imaging allows identification for the first time of specific morphologies associated with different packing densities. At low surface coverage, a branched net like structure is observed whereas at high surface pressure fibers formed of interfacial aggregates appear. In summary, Ca(2+) mediates the interaction between DNA and negatively charged lipids and also the conformation of the ternary system depends on the surface pressure. Such observations are important new generic features of the interaction between DNA and anionic lipids.

  13. NITRITE REDUCTASE ACTIVITY OF NON-SYMBIOTIC HEMOGLOBINS FROM ARABIDOPSIS THALIANA†

    Science.gov (United States)

    Tiso, Mauro; Tejero, Jesús; Kenney, Claire; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Plant non-symbiotic hemoglobins possess hexa-coordinate heme geometry similar to the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana non-symbiotic hemoglobins class 1 and 2 (AHb1 and AHb2) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for nitrite reduction to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M−1s−1, at pH = 7.4 and 25°C, respectively. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. Release of free NO gas during reaction in anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in water submerged species, non-symbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction. PMID:22620259

  14. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  15. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model

    Science.gov (United States)

    Mano, Camila M.; Cardozo, Karina H. M.; Colepicolo, Pio; Bechara, Etelvino J. H.

    2018-01-01

    Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a “mitochondrial-targeted” action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes. PMID:29649159

  16. Mangiferin Reduces Oxidative Stress-mediated Renal Injury in γ-radiated Mice

    International Nuclear Information System (INIS)

    El-Kabany, H.; Lotfi, S.A.

    2012-01-01

    Whole body exposure to ionizing radiation induces the formation of reactive oxygen species in different tissues provoking oxidative damage and tissue injury. Mangiferin (MGN), 1,3,6,7-tetra hydroxyxanthone-C 2 -β-D-glucoside, a naturally occurring polyphenol, present in Mangifera indica (M. indica) in large amounts in the leaves and edible mango fruits has been reported to possess antioxidant properties. The purpose of this study was to evaluate the role of MGN on radiation-induced oxidative stress and histological changes in the kidney of mice. MGN (20 mg/ kg body weight) was administrated to male albino mice via gavages during 15 successive days before whole body exposures to gamma rays (4 Gy). The animals were sacrificed 48 hours post irradiation. Biochemical analysis in the kidney of irradiated mice revealed an imbalance between oxidant and antioxidant species. A significant increase was recorded in the level of lipid peroxidation products; thiobarbituric acid reactive substances (TBARs) and lipid hydroperoxides (HDPx), in addition to a significant increase in the level of protein carbonyl content (PC) , marker of protein oxidation. The increase of oxidative markers was accompanied by a significant decrease in the contents of total sulphydryl (SH) group ,glutathione (GSH) content, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity. Moreover, irradiation induced a significant decrease in the activity of glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD). Histological observations in the kidney of irradiated mice revealed tubular necrosis, degeneration, dilatation, desquamation, thickening of basement membrane and luminal cast formation. MGN pre-treatment has significantly improved the oxidant /antioxidant status, which was associated with significant regeneration of the kidney tissue. Based on these results, it is concluded that the natural dietary antioxidant M GN m ight

  17. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    Science.gov (United States)

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  18. An update on oxidative stress-mediated organ pathophysiology.

    Science.gov (United States)

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Lipid oxidation in fresh and stored eggs enriched with dietary w 3 ...

    African Journals Online (AJOL)

    Two experiments were planned to study the influence of dietary fat sources (fish oil (FO) or sunflower oil (SO)) and dietary doses of -tocopheryl acetate (-TA) (0, 60 and 120 mg/kg of feed) and vitamin A (0 IU, 10000 IU and 20000 IU) on lipid oxidation of stored eggs in three stages of 0 or fresh, 1 and 2 months of storage time.

  20. Effect of ethanolic flax (Linum usitatissimum L.) extracts on lipid oxidation and changes in nutritive value of frozen-stored meat products.

    Science.gov (United States)

    Waszkowiak, Katarzyna; Szymandera-Buszka, Krystyna; Hęś, Marzanna

    2014-01-01

    Flaxseed (Linum usitatissimum L.) is an important source of phenolic compounds, mainly lignans. Antioxidant capacities of flaxseed extracts that contain the compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in meat products. Therefore, the effect of ethanolic flaxseed extracts (EFEs) on lipid stability and changes in nutritive value of frozen-stored meat products (pork meatballs and burgers) was determined. EFEs from three Polish flax varieties (Szafir, Oliwin, Jantarol) were applied in the study. During 150-day storage of meat products, the lipid oxidation (peroxide and TBARS value) and thiamine retention were periodically monitored, alongside with methionine and lysine availability and protein digestibility. The addition of EFEs significantly limited lipid oxidation in stored meatballs and burgers. EFE from brown seeds of Szafir var. was superior to the others from golden seeds of Jantarol and Oliwin. Moreover, the extracts reduced changes in thiamine and available lysine content, as well as protein digestibility, during storage time. The effect of EFE addition on available methionine retention was limited. The ethanolic flaxseed extracts exhibit antioxidant activity during frozen storage of meat products. They can be utilized to prolong shelf-life of the products by protecting them against lipid oxidation and deterioration of their nutritional quality. However, antioxidant efficiency of the extracts seems to depend on chemical composition of raw material (flax variety). Further investigations should be carried on to explain the issue.

  1. Impaired CD163-mediated hemoglobin-scavenging and severe toxic symptoms in patients treated with gemtuzumab ozogamicin

    DEFF Research Database (Denmark)

    Maniecki, M.B.; Hasle, H.; Friis-Hansen, L.

    2008-01-01

    , and low bilirubin after septicemia-induced intravascular hemolysis indicated abrogated clearance of haptoglobin-hemoglobin complexes. This was further supported by low levels of plasma soluble CD163 and a concordant low number of CD163-expressing monocytes. We show that CD163 positive monocytes...... and macrophages from liver, spleen, and bone marrow coexpress CD33, thus suggesting that the GO-induced cellular cytotoxicity of CD33 positive cells eradicates a significant part of the CD163 positive monocytes and macrophages. The risk of severe toxic symptoms from plasma hemoglobin should be considered after CD......33-targeted chemotherapy when the disease is complicated by a pathologic intravascular hemolysis. Furthermore, the cases provide further circumstantial evidence of a key role of (CD163-expressing) monocytes/macrophages in plasma hemoglobin clearance in vivo Udgivelsesdato: 2008/8/15...

  2. Fish hemoglobins

    Directory of Open Access Journals (Sweden)

    P.C. de Souza

    2007-06-01

    Full Text Available Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. On the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.

  3. Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone

    DEFF Research Database (Denmark)

    Petersson, Stine J; Christensen, Louise L; Kristensen, Jonas M

    2014-01-01

    therapy on regulators of mitochondrial biogenesis and markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels. METHODS: Skeletal muscle biopsies were obtained before and after treatment with either testosterone gel (n=12) or placebo (n=13......) for 6 months. Insulin sensitivity and substrate oxidation were assessed by euglycemic-hyperinsulinemic clamp and indirect calorimetry. Muscle mRNA levels and protein abundance and phosphorylation of enzymes involved in mitochondrial biogenesis, OxPhos, and lipid metabolism were examined by quantitative......: The beneficial effect of testosterone treatment on lipid oxidation is not explained by increased abundance or phosphorylation-dependent activity of enzymes known to regulate mitochondrial biogenesis or markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable...

  4. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.

    Science.gov (United States)

    Bowen, T Scott; Eisenkolb, Sophia; Drobner, Juliane; Fischer, Tina; Werner, Sarah; Linke, Axel; Mangner, Norman; Schuler, Gerhard; Adams, Volker

    2017-01-01

    Hypertension is a key risk factor for heart failure, with the latter characterized by diaphragm muscle weakness that is mediated in part by increased oxidative stress. In the present study, we used a deoxycorticosterone acetate (DOCA)-salt mouse model to determine whether hypertension could independently induce diaphragm dysfunction and further investigated the effects of high-intensity interval training (HIIT). Sham-treated (n = 11), DOCA-salt-treated (n = 11), and DOCA-salt+HIIT-treated (n = 15) mice were studied over 4 wk. Diaphragm contractile function, protein expression, enzyme activity, and fiber cross-sectional area and type were subsequently determined. Elevated blood pressure confirmed hypertension in DOCA-salt mice independent of HIIT (P HIIT. Myosin heavy chain (MyHC) protein expression tended to decrease (∼30%; P = 0.06) in DOCA-salt vs. sham- and DOCA-salt+HIIT mice, whereas oxidative stress increased (P HIIT further prevented direct oxidant-mediated diaphragm contractile dysfunction (P hypertension induces diaphragm contractile dysfunction via an oxidant-mediated mechanism that is prevented by HIIT.-Bowen, T. S., Eisenkolb, S., Drobner, J., Fischer, T., Werner, S., Linke, A., Mangner, N., Schuler, G., Adams, V. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice. © FASEB.

  5. Curcumin prevents the oxidation and lipid modification of LDL and its inhibition of prostacyclin generation by endothelial cells in culture.

    Science.gov (United States)

    Mahfouz, Mohamedain M; Zhou, Sherry Q; Kummerow, Fred A

    2009-11-01

    Low-density lipoprotein (LDL) was isolated from human plasma and oxidized by 5microM copper sulfate for 4h at 37 degrees C in the absence and presence of 1, 3, 5, 10, or 20microM of curcumin. LDL oxidized in the absence of curcumin (oxLDL) showed an increased levels of conjugated dienes, lipid peroxides (TBARS) and lysolecithin (lysoPC) and a significant loss of polyunsaturated fatty acids (PUFA). LDL oxidized with 5microM copper sulfate in the presence of curcumin caused a significant decrease of conjugated diene, lipid peroxides, lysoPC and significant increase of PUFA compared to oxLDL. These changes were dose dependent and reached a maximum at 5microM curcumin. Incubation of human endothelial cells (EC) with 200microg protein/ml of oxLDL caused a significant decrease of prostacyclin (PGI(2)) generation. LDL oxidized in presence of 5microM curcumin did not show any inhibition of PGI(2) generation compared to the control cells. These results indicate that curcumin is an effective chain-breaking antioxidant which prevents oxidation and lipid modification of LDL. The inhibition of oxLDL on PGI(2) is considered a contributing factor in the pathogenesis of thrombosis and atherosclerosis. Curcumin supplementation could be an effective strategy in preventing LDL oxidation and its impact on atherosclerosis and lesion formation.

  6. Relationship between lipid and hematological profiles with adiposity in obese adolescents

    Directory of Open Access Journals (Sweden)

    Lisianny Camilla Cocri do Nascimento Ferreira

    2013-06-01

    Full Text Available Background: An excess of weight including obesity have reached epidemic rates in all age groups, both in developed and developing countries. It is notable that overweight children and adolescents have a higher likelihood of becoming obese adults and to present health-related problems early in life. Objetives: To verify associations of the lipid and hematological profiles with adiposity in obese adolescents beginning multidisciplinary weight loss therapy. Methods: This cross-sectional study was conducted with 85 adolescents of both genders, aged 12-19 years (Tanner staging 3 or 4 and body mass index greater than the 95th percentile. The sum of the triceps, subscapular and calf skinfolds and the waist circumference were used to estimate adiposity. Blood samples were collected from all patients after overnight fasting to analyze blood lipids (total cholesterol, high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein and triglycerides, blood sugar and the hematological profile (hemoglobin, platelets and red blood cells. The Kolmogorov-Smirnov test and Spearman and Pearson correlation coefficients were used for statistical analysis with significance set for p-values ≤ 0.05. Results: There were statistical differences between genders for red blood cells (p-value = 0.000, hemoglobin (p-value = 0.000 and platelets (p-value = 0.002. Positive correlations were found for red blood cells (p-value = 0.031 and hemoglobin (p-value = 0.024 with waist circumference. There was a negative correlation between hemoglobin and the sum of skinfolds (p-value = 0.022. Conclusion: The results demonstrate an association between the lipid and hematological profiles and body adiposity in obese adolescents thus reinforcing the importance of treating obese adolescents early to prevent health related problems in adult life.

  7. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    International Nuclear Information System (INIS)

    Duan Li; He Qiang; Yan Xuehai; Cui Yue; Wang Kewei; Li Junbai

    2007-01-01

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabrication remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules

  8. Waste treatment in NUCEF facility with silver mediated electrochemical oxidation technique

    International Nuclear Information System (INIS)

    Umeda, M.; Sugikawa, S.

    2000-01-01

    Silver mediated electrochemical oxidation technique has been considered one of promising candidates for alpha-bearing waste treatment. Destruction tests of organic compounds, such as insoluble tannin, TBP and dodecane, were carried out by this technique and the experimental data such as destruction rates, current efficiencies and intermediates were obtained. These compounds could be completely mineralized without the formation of reactive organic nitrate associated to safety hazards. On the basis of these results, the applicability of silver mediated electrochemical oxidation technique to waste treatment in NUCEF was evaluated. (authors)

  9. CREBH Regulates Systemic Glucose and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Yoshimi Nakagawa

    2018-05-01

    Full Text Available The cyclic adenosine monophosphate (cAMP-responsive element-binding protein H (CREBH, encoded by CREB3L3 is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα, has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.

  10. Lipid oxidation and volatile production in irradiated raw pork batters prepared with commercial soybean oil containing vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Cheorun; Ahn, D.U.; Byun, M.W. E-mail: mwbyun@kaeri.re.kr

    2001-04-01

    An emulsion-type raw pork batter was prepared using 10% (meat weight) of backfat or commercial soybean oil enriched with vitamin E to determine the effect of irradiation on lipid oxidation and volatile production during storage. Batters (approximately 100 g) were vacuum- or aerobically packaged and irradiated at 0, 2.5 or 4.5 kGy. Irradiation increased lipid oxidation of aerobically packaged raw pork batters prepared with both backfat and soybean oil. Lipid oxidation of vacuum-packaged pork batters was not influenced by irradiation except for the batter prepared with backfat at day 0. Aerobically packaged batters prepared with soybean oil had lower (P<0.05) TBARS than that with backfat, but vacuum-packaged ones were not different. The sum of volatile compounds with short retention time (<1.80) increased by irradiation, and with storage time except for aerobic packaging at day 7. The amount of total volatile compounds had an increasing trend until day 3, but not at day 7. Irradiation increased the production of total volatile compounds in the batters prepared with soybean oil and vacuum packaged, but irradiation effect on volatile production was not consistent with other treatments.

  11. Lipid oxidation and volatile production in irradiated raw pork batters prepared with commercial soybean oil containing vitamin E

    International Nuclear Information System (INIS)

    Jo, Cheorun; Ahn, D.U.; Byun, M.W.

    2001-01-01

    An emulsion-type raw pork batter was prepared using 10% (meat weight) of backfat or commercial soybean oil enriched with vitamin E to determine the effect of irradiation on lipid oxidation and volatile production during storage. Batters (approximately 100 g) were vacuum- or aerobically packaged and irradiated at 0, 2.5 or 4.5 kGy. Irradiation increased lipid oxidation of aerobically packaged raw pork batters prepared with both backfat and soybean oil. Lipid oxidation of vacuum-packaged pork batters was not influenced by irradiation except for the batter prepared with backfat at day 0. Aerobically packaged batters prepared with soybean oil had lower (P<0.05) TBARS than that with backfat, but vacuum-packaged ones were not different. The sum of volatile compounds with short retention time (<1.80) increased by irradiation, and with storage time except for aerobic packaging at day 7. The amount of total volatile compounds had an increasing trend until day 3, but not at day 7. Irradiation increased the production of total volatile compounds in the batters prepared with soybean oil and vacuum packaged, but irradiation effect on volatile production was not consistent with other treatments

  12. Oxidative quality of commercial fried nuts: evaluation of a surface and an internal lipid fraction

    Directory of Open Access Journals (Sweden)

    Dobarganes, M. C.

    2006-09-01

    Full Text Available The oxidative quality of commercial fried nuts was evaluated by independent analyses of two lipid fractions, the surface oil, and the internal lipid fraction. The nuts studied were 6 samples of almonds, 10 samples of peanuts, 4 samples of sunflower seeds and 2 samples of cashew nuts. The oil content, peroxide value, polymer content, and fatty acid composition were analyzed. The results showed two lipid fractions with different oxidation status. Higher oxidation levels were normally found in the oil fraction more exposed  to air, although considerably higher oxidation status in the internal oil was also detected in various samples. Oxidative quality was also evaluated in selected samples of each nut after 1 year of storage at room temperature, in the dark . Only the almonds and cashew nuts exhibited acceptable oxidative quality after storage. In addition, a study on the changes due to frying and the contribution of the frying oil to the lipids in the final product showed that the composition of the surface oil can be changed by the incorporation of substantial contents of the frying fat. Consequently, the frying fat may exert some effect on the oxidative quality and oxidative stability of the surface oil.En este estudio se evalúa la calidad oxidativa de muestras comerciales de frutos secos fritos mediante el análisis independiente de dos fracciones lipídicas, el aceite superficial, fácilmente extraíble con disolventes orgánicos, y la fracción de lípidos internos. Las muestras estudiadas fueron 6 muestras de almendras, 10 muestras de cacahuetes, 4 muestras de pipas de girasol y 2 muestras de anacardos. Se analizaron el contenido de aceite, el índice de peróxidos, el contenido de polímeros y la composición de ácidos grasos. Los resultados mostraron dos fracciones lipídicas con diferente estado de oxidación. Mayores niveles de oxidación fueron normalmente encontrados en la fracción más expuesta al aire, aunque estados de oxidaci

  13. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  14. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program.

    Science.gov (United States)

    Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato

    2013-01-01

    To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  15. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Nida Ambreen

    2013-07-01

    Full Text Available Hypervalent iodine(III/TEMPO-mediated oxidation of various aliphatic, aromatic and allylic alcohols to their corresponding carbonyl compounds was successfully achieved by using microreactor technology. This method can be used as an alternative for the oxidation of various alcohols achieving excellent yields and selectivities in significantly shortened reaction times.

  16. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine

    DEFF Research Database (Denmark)

    Baekmark, T. R.; Pedersen, S.; Jorgensen, K.

    1997-01-01

    oxide moity, anchored to the bilayer by a 1,2-dioctadecanoyl-s,n-glycero-3-phosphoethanolamine (DC18PE) lipid. The second type, which is a novel type of membrane-spanning object, is an amphiphilic tri-block copolymer composed of two hydrophilic stretches of polyethylene oxide separated by a hydrophobic...... stretch of polystyrene. Hence the tri-block copolymer may act as a membrane-spanning macromolecule mimicking an amphiphilic protein or polypeptide. Differential scanning calorimetry is used to determine a partial phase diagram for the lipopolymer systems and to assess the amount of lipopolymer that can...... be loaded into DC16PC lipid bilayers before micellization takes place. Unilamellar and micellar phase structures are investigated by fluorescence quenching using bilayer permeating dithionite. The chain length-dependent critical lipopolymer concentration, denoting the lamellar-to-micellar phase transition...

  17. Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests

    Science.gov (United States)

    Carter, Tamar E.; von Fricken, Michael; Romain, Jean R.; Memnon, Gladys; St. Victor, Yves; Schick, Laura; Okech, Bernard A.; Mulligan, Connie J.

    2014-01-01

    Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti. PMID:24957539

  18. Oxidative stress and S-100B protein in children with bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Hamed Enas A

    2009-10-01

    Full Text Available Abstract Background Bacterial meningitis is often associated with cerebral compromise which may be responsible for neurological sequelae in nearly half of the survivors. Little is known about the mechanisms of CNS involvement in bacterial meningitis. Several studies have provided substantial evidence for the key role of nitric oxide (NO and reactive oxygen species in the complex pathophysiology of bacterial meningitis. Methods In the present study, serum and CSF levels of NO, lipid peroxide (LPO (mediators for oxidative stress and lipid peroxidation; total thiol, superoxide dismutase (SOD (antioxidant mediators and S-100B protein (mediator of astrocytes activation and injury, were investigated in children with bacterial meningitis (n = 40. Albumin ratio (CSF/serum is a marker of blood-CSF barriers integrity, while mediator index (mediator ratio/albumin ratio is indicative of intrathecal synthesis. Results Compared to normal children (n = 20, patients had lower serum albumin but higher NO, LPO, total thiol, SOD and S-100B. The ratios and indices of NO and LPO indicate blood-CSF barriers dysfunction, while the ratio of S-100B indicates intrathecal synthesis. Changes were marked among patients with positive culture and those with neurological complications. Positive correlation was found between NO index with CSF WBCs (r = 0.319, p Conclusion This study suggests that loss of integrity of brain-CSF barriers, oxidative stress and S-100B may contribute to the severity and neurological complications of bacterial meningitis.

  19. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium.

    Science.gov (United States)

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S; Han, Zhong

    2016-08-22

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0-4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms.

  20. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program

    Directory of Open Access Journals (Sweden)

    Marcilene Rezende Silva

    2013-01-01

    Full Text Available OBJECTIVE: To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. METHODS: βS allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. RESULTS: The following alpha chain variants were found: seven children with hemoglobin Hasharon [alpha2 47(CE5 Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13 Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2 Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5 Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. CONCLUSION: Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  1. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    Science.gov (United States)

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  2. Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages.

    Science.gov (United States)

    Rombaldova, Martina; Janovska, Petra; Kopecky, Jan; Kuda, Ondrej

    2017-08-26

    It is becoming increasingly apparent that mutual interactions between adipocytes and immune cells are key to the integrated control of adipose tissue inflammation and lipid metabolism in obesity, but little is known about the non-inflammatory functions of adipose tissue macrophages (ATMs) and how they might be impacted by neighboring adipocytes. In the current study we used metabolipidomic analysis to examine the adaptations to lipid overload of M1 or M2 polarized macrophages co-incubated with adipocytes and explored potential benefits of omega-3 polyunsaturated fatty acids (PUFA). Macrophages adjust their metabolism to process excess lipids and M2 macrophages in turn modulate lipolysis and fatty acids (FA) re-esterification of adipocytes. While M1 macrophages tend to store surplus FA as triacylglycerols and cholesteryl esters in lipid droplets, M2 macrophages channel FA toward re-esterification and β-oxidation. Dietary omega-3 PUFA enhance β-oxidation in both M1 and M2. Our data document that ATMs contribute to lipid trafficking in adipose tissue and that omega-3 PUFA could modulate FA metabolism of ATMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Peanut skin extract reduces lipid oxidation in cooked chicken patties.

    Science.gov (United States)

    Munekata, P E S; Calomeni, A V; Rodrigues, C E C; Fávaro-Trindade, C S; Alencar, S M; Trindade, M A

    2015-03-01

    The objectives of this study were to evaluate the antioxidant capacity of peanut skin extract and its effect on the color and lipid oxidation of cooked chicken patties over 15 d of refrigerated storage. The extract was obtained using 80% ethanol and evaluated in terms of total phenolic content, reducing power based on the ferric reducing ability of plasma (FRAP) reagent, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The patties were made with ground thigh fillets, chicken skin, and 2% salt. They were homogenized and divided into the following two groups: a control treatment without antioxidants and a peanut skin treatment with 70 mg gallic acid equivalent (GAE)/kg per patty. Analyses of the fatty acid profiles, instrumental colors (L*, a*, and b*) and thiobarbituric acid reactive substances (TBARS) were performed on d 1, 8, and 15 of storage at 1±1ºC. The peanut skin extract resulted in a phenolic content of 32.6±0.7 mg GAE/g dry skin, an antioxidant activity (FRAP) of 26.5±0.8 6 μmol Trolox equivalent/g dry skin, and an efficient concentration (EC50) of 46.5 μg/mL. The total unsaturated fatty acid was approximately 73%, and 39% of this fatty acid content was monounsaturated. The peanut skin extract slowed the decrease in the a* values (Pcooked chicken patties because it efficiently inhibits lipid oxidation in this product during refrigerated storage. © 2015 Poultry Science Association Inc.

  4. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment

    International Nuclear Information System (INIS)

    Taguchi, Kazuaki; Miyasato, Mayumi; Ujihira, Hayato; Watanabe, Hiroshi; Kadowaki, Daisuke; Sakai, Hiromi; Tsuchida, Eishun; Horinouchi, Hirohisa; Kobayashi, Koichi; Maruyama, Toru; Otagiri, Masaki

    2010-01-01

    The hemoglobin vesicle (HbV) is an artificial oxygen carrier in which a concentrated Hb solution is encapsulated in lipid vesicles. Our previous studies demonstrated that HbV is metabolized by the mononuclear phagocyte system, and the lipid components are excreted from the liver. It is well-known that many hepatically-metabolized and -excreted drugs show altered pharmaceutics under conditions of liver impairment, which results in adverse effects. The aim of this study was to determine whether the administration of HbV causes toxicity in rats with carbon tetrachloride induced liver cirrhosis. Changes in plasma biochemical parameters, histological staining and the pharmacokinetic distribution of HbV were evaluated after an HbV injection of the above model rats at a putative clinical dose (1400 mgHb/kg). Plasma biochemical parameters were not significantly affected, except for a transient elevation of lipase, lipid components and bilirubin, which recovered within 14 days after an HbV infusion. Negligible morphological changes were observed in the kidney, liver, spleen, lung and heart. Hemosiderin, a marker of iron accumulation in organs, was observed in the liver and spleen up to 14 days after HbV treatment, but no evidence of oxidative stress in the plasma and liver were observed. HbV is mainly distributed in the liver and spleen, and the lipid components are excreted into feces within 7 days. In conclusion, even under conditions of hepatic cirrhosis, HbV and its components exhibit the favorable metabolic and excretion profile at the putative clinical dose. These findings provide further support for the safety and effectiveness of HbV in clinical settings.

  5. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  6. Hemoglobin Wayne Trait with Incidental Polycythemia.

    Science.gov (United States)

    Ambelil, Manju; Nguyen, Nghia; Dasgupta, Amitava; Risin, Semyon; Wahed, Amer

    2017-01-01

    Hemoglobinopathies, caused by mutations in the globin genes, are one of the most common inherited disorders. Many of the hemoglobin variants can be identified by hemoglobin analysis using conventional electrophoresis and high performance liquid chromatography; however hemoglobin DNA analysis may be necessary in other cases for confirmation. Here, we report a case of a rare alpha chain hemoglobin variant, hemoglobin Wayne, in a 47-year-old man who presented with secondary polycythemia. Capillary zone electrophoresis and high performance liquid chromatography revealed a significant amount of a hemoglobin variant, which was further confirmed by hemoglobin DNA sequencing as hemoglobin Wayne. Since the patient was not homozygous for hemoglobin Wayne, which is associated with secondary polycythemia, the laboratory diagnosis in this case was critical in ruling out hemoglobinopathy as the etiology of his polycythemia. © 2017 by the Association of Clinical Scientists, Inc.

  7. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    DEFF Research Database (Denmark)

    Corpeleijn, Eva; Hessvik, Nina P; Bakke, Siril S

    2010-01-01

    Obesity and insulin resistance are related to both enlarged intramyocellular triacylglycerol stores and accumulation of lipid intermediates. We investigated how lipid overflow can change the oxidation of intramyocellular lipids (ICL(OX)) and intramyocellular lipid storage (ICL). These experiments...... were extended by comparing these processes in primary cultured myotubes established from healthy lean and obese type 2 diabetic (T2D) individuals, two extremes in a range of metabolic phenotypes. ICLs were prelabeled for 2 days with 100 microM [(14)C]oleic acid (OA). ICL(OX) was studied using a (14)CO......(2) trapping system and measured under various conditions of extracellular OA (5 or 100 microM) and glucose (0.1 or 5.0 mM) and the absence or presence of mitochondrial uncoupling [carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)]. First, increased extracellular OA availability (5 vs. 100...

  8. The Hemoglobin E Thalassemias

    Science.gov (United States)

    Fucharoen, Suthat; Weatherall, David J.

    2012-01-01

    Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199

  9. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    International Nuclear Information System (INIS)

    Balazs, G.B.; Lewis, P.R.

    1999-01-01

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs

  10. Lipid metabolism and body composition in Gclm(−/−) mice

    International Nuclear Information System (INIS)

    Kendig, Eric L.; Chen, Ying; Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N.; Genter, Mary Beth; Nebert, Daniel W.; Shertzer, Howard G.

    2011-01-01

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate–cysteine ligase modifier subunit gene (Gclm(−/−)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(−/−) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(−/−) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(−/−) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(−/−) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(−/−) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(−/−) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(−/−) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: ► A high fat diet does not produce body weight and fat gain in Gclm(−/−) mice. ► A high fat diet does not induce steatosis or insulin resistance in Gclm(−/−) mice. ► Gclm(−/−) mice have high basal metabolism and mitochondrial oxygen consumption.

  11. EPR spectral changes of nitrosil hemes and their relation to the hemoglobin T-R transition

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Ribeiro, P.C.; Bemski, G.

    1980-09-01

    EPR spectra of nitrosil-hemes were used to study the quaternary structure of hemoglobin. Human adult hemoglobin has been titrated with nitric oxide at pH 7.0 and 25 0 C. After the equilibration of NO among the α and β subunits the samples were frozen for EPR measurements. The spectra were fitted by linear combinations of three standard signals: the first arising from NO - β hemes and the other two arising from NO - α hemes of molecules in the high and low affinity conformations. The fractional amounts of α subunits exhibiting the high affinity spectrum fitted the two-state model with L = 7 x 10 6 , and csup(α) sub(NO) and csup(β) sub(NO) approximately 0.01. Hemoglobin has been marked with nitric oxide at one chain using low-saturation amounts of nitric oxide. The EPR spectra were studied as a function of oxygen saturation. Linear combinations of the three standard signals above fitted these spectra. The fractions of molecules exhibiting the high affinity spectrum fitted the two-state model with L = 7 x 10 6 , csub(O 2 ) = 0.0033 and csup(α) sub(NO) = 0.08, instead of csup(α) sub(NO) = 0.01.Thus, the two state model is not adequate to describe the conformational transition of these hybrids. The results are evidence of the nonequivalence between oxygen and nitric oxide as ligands. (Author) [pt

  12. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment.

    Science.gov (United States)

    Sibi, G

    2015-01-01

    pathogen could be reduced by the inhibiting the production of ROS and inflammatory mediators TNF-α and exposes new frontiers on the antiacne activities of Chlorella lipid extracts.

  13. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    Directory of Open Access Journals (Sweden)

    G Sibi

    2015-01-01

    by the pathogen could be reduced by the inhibiting the production of ROS and inflammatory mediators TNF-α and exposes new frontiers on the antiacne activities of Chlorella lipid extracts.

  14. Effect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Panchamoorthy Rajasekar

    2007-01-01

    Full Text Available There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet displayed decreased glucose/insulin (G/I ratio and insulin sensitivity index (ISI0,120 indicating the development of insulin resistance. Rats showed alterations in the levels of triglycerides, free fatty acids, cholesterol, and phospholipids in skeletal muscle. The condition was associated with oxidative stress as evidenced by the accumulation of lipid peroxidation products, protein carbonyls, and aldehydes along with depletion of both enzymic and nonenzymic antioxidants. Simultaneous intraperitoneal administration of CAR (300 mg/kg/day to fructose-fed rats alleviated the effects of fructose. These rats showed near-normal levels of the parameters studied. The effects of CAR in this model suggest that CAR supplementation may have some benefits in patients suffering from insulin resistance.

  15. Tumor necrosis factor alpha is associated with insulin-mediated suppression of free fatty acids and net lipid oxidation in HIV-infected patients with lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, SB; Andersen, O; Pedersen, Steen Bønløkke

    2006-01-01

    Tumor necrosis factor alpha (TNF-alpha) stimulates lipolysis in man. We examined whether plasma TNF-alpha is associated with the degree by which insulin suppresses markers of lipolysis, for example, plasma free fatty acid (FFA) and net lipid oxidation (LIPOX) rate in HIV-infected patients...... with lipodystrophy (LIPO) and those without (controls). LIPOX was estimated by indirect calorimetry during fasting and steady state of a hyperinsulinemic euglycemic clamp in 36 (18 LIPO and 18 controls) normoglycemic HIV-infected men on highly active antiretroviral therapy. In LIPO, TNF-alpha correlated with clamp...... were significant in controls. In all patients, TNF-alpha correlated with clamp FFA (r = 0.61, P

  16. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    International Nuclear Information System (INIS)

    Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice

    2011-01-01

    Highlights: → Toxicological implications associated with the use of NaNO 2 therapy to treat systemic cell-free Hb exposure are not well-defined. → Systemic Hb exposure followed by NaNO 2 infusion induces acute CNS toxicities in guinea pigs. → These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO 2 alone. → NaNO 2 -mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO 2 ) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO 2 with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO 2 on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO 2 , at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO 2 alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  17. Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells

    International Nuclear Information System (INIS)

    Moench, I.; Meye, A.; Leonhardt, A.; Kraemer, K.; Kozhuharova, R.; Gemming, T.; Wirth, M.P.; Buechner, B.

    2005-01-01

    We describe the synthesis and the properties of Fe-filled multi-walled carbon nanotubes (MWNTs) and nanoparticles (NP) produced by chemical vapor deposition (CVD). We have employed ferrocene as a starting substance and oxidized Si-wafers as substrates. The magnetic properties and the interaction of the material with bladder cancer cells were determined. After the addition of NP suspensions to cultured cells, no adhesion of the nanoparticles/nanotubes (NT/NP) to the cell membrane and also no cellular uptake were observed. However, the preincubation of the (NT/NP) suspension with cationic lipid caused an efficient delivery of the lipid-nanostructure complexes into the cytoplasm within 2 h after adding to the culture medium

  18. Effect of immunological castration management strategy on lipid oxidation and sensory characteristics of bacon stored under simulated food service conditions.

    Science.gov (United States)

    Herrick, R T; Tavárez, M A; Harsh, B N; Mellencamp, M A; Boler, D D; Dilger, A C

    2016-07-01

    The objectives of this study were to determine the effect of 1) immunological castration (Improvest, a gonadotropin releasing factor analog-diphtheria toxoid conjugate) management strategy (age at slaughter and time of slaughter after second dose) and 2) sex on lipid oxidation and sensory characteristics of bacon stored under simulated food service conditions. For Objective 1, immunological castration management strategies included 24-wk-old immunologically castrated (IC) barrows 4, 6, 8, or 10 wk after the second Improvest dose (ASD); 26-wk-old IC barrows 6 wk ASD; and 28-wk-old IC barrows 8 wk ASD ( = 63). Objective 2 ( = 97) included IC barrows, physically castrated (PC) barrows, and gilts slaughtered at 24, 26, and 28 wks of age. Bellies from 2 slaughter dates were manufactured into bacon under commercial conditions. Bacon slices were laid out on parchment paper, packaged in oxygen-permeable poly-vinyl-lined boxes, and frozen (-33°C) for 1, 4, 8, or 12 wk to simulate food service conditions. At the end of each storage period, bacon was evaluated for lipid oxidation, moisture and lipid content, and sensory characteristics. Data from both objectives were analyzed using the MIXED procedure in SAS with belly as the experimental unit. For both objectives, as storage time increased, lipid oxidation of bacon increased ( 0.05). After 12 wk of frozen storage, lipid oxidation values for IC barrows, PC barrows, and gilts were still below 0.5 mg malondialdehyde/kg of meat, the threshold at which trained panelists may deem a food to be rancid. In conclusion, bacon shelf life characteristics were not altered by the immunological castration management strategy and bacon from IC barrows was similar to bacon from gilts. Therefore, bacon from IC barrows would result in shelf life and sensory quality similar to PC barrows and gilts.

  19. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    Science.gov (United States)

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  20. Nutritional history does not modulate hepatic oxidative status of European sea bass (Dicentrarchus labrax) submitted to handling stress.

    Science.gov (United States)

    Castro, Carolina; Peréz-Jiménez, Amalia; Coutinho, Filipe; Corraze, Geneviève; Panserat, Stéphane; Peres, Helena; Teles, Aires Oliva; Enes, Paula

    2018-02-19

    The aim of the present study was to assess the impact of an acute handling stress on hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed diets differing in lipid so urce and carbohydrate content. For that purpose, four diets were formulated with fish oil (FO) and vegetable oils (VO) as lipid source and with 20 or 0% gelatinized starch as carbohydrate source. Triplicate groups of fish with 74 g were fed each diet during 13 weeks and then subjected to an acute handling stress. Stress exposure decreased hematocrit (Ht) and hemoglobin (Hb) levels. Independent of dietary treatment, stress exposure increased hepatic lipid peroxidation (LPO). Stressed fish exhibited lower glucose 6-phosphate dehydrogenase (G6PD), catalase (CAT), and superoxide dismutase (SOD) activities, independent of previous nutritional history. In the VO groups, stress exposure increased glutathione peroxidase (GPX) activity. Diet composition had no effect on Ht and Hb levels. In contrast, dietary carbohydrate decreased hepatic LPO and CAT activity and increased glutathione reductase (GR) and G6PD activities. Dietary lipids had no effect on LPO. Fish fed the VO diets exhibited higher G6PD activity than fish fed the FO diets. In conclusion, dietary carbohydrates contributed to the reduction of oxidative stress in fish. However, under the imposed handling stress conditions, liver enzymatic antioxidant mechanisms were not enhanced, which may explain the overall increased oxidative stress.

  1. Phylogeny of Echinoderm Hemoglobins.

    Directory of Open Access Journals (Sweden)

    Ana B Christensen

    Full Text Available Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.

  2. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  3. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content

    International Nuclear Information System (INIS)

    Viquez, Olga M.; Lai, Barry; Ahn, Jae Hee; Does, Mark D.; Valentine, Holly L.; Valentine, William M.

    2009-01-01

    Dithiocarbamates are a commercially important class of compounds that can produce peripheral neuropathy in humans and experimental animals. Previous studies have supported a requirement for copper accumulation and enhanced lipid peroxidation in dithiocarbamate-mediated myelinopathy. The study presented here extends previous investigations in two areas. Firstly, although total copper levels have been shown to increase within the nerve it has not been determined whether copper is increased within the myelin compartment, the primary site of lesion development. Therefore, the distribution of copper in sciatic nerve was characterized using synchrotron X-ray fluorescence microscopy to determine whether the neurotoxic dithiocarbamate, N,N-diethyldithiocarbamate, increases copper levels in myelin. Secondly, because lipid peroxidation is an ongoing process in normal nerve and the levels of lipid peroxidation products produced by dithiocarbamate exposure demonstrated an unusual cumulative dose response in previous studies the biological impact of dithiocarbamate-mediated lipid peroxidation was evaluated. Experiments were performed to determine whether dithiocarbamate-mediated lipid peroxidation products elicit an antioxidant response through measuring the protein expression levels of three enzymes, superoxide dismutase 1, heme oxygenase 1, and glutathione transferase α, that are linked to the antioxidant response element promoter. To establish the potential of oxidative injury to contribute to myelin injury the temporal relationship of the antioxidant response to myelin injury was determined. Myelin structure in peripheral nerve was assessed using multi-exponential transverse relaxation measurements (MET 2 ) as a function of exposure duration, and the temporal relationship of protein expression changes relative to the onset of changes in myelin integrity were determined. Initial assessments were also performed to explore the potential contribution of dithiocarbamate-mediated

  4. Lipid oxidation in milk, yoghurt, and salad dressing enriched with neat fish oil or pre-emulsified fish oil

    DEFF Research Database (Denmark)

    Bruni Let, Mette; Jacobsen, Charlotte; Meyer, Anne S.

    2007-01-01

    stability than fish-oil-enriched dressings, irrespective of the mode of fish oil addition. Yoghurt thus seemed to be a good delivery system of lipids containing n-3 polyunsaturated fatty acids. Different effects of adding fish oil either as neat fish oil or as a fish-oil-in-water emulsion were observed...... of neat fish oil was a good option for preserving the final quality in yoghurt and dressings, but a pre-emulsion may still be considered for the fish oil enrichment of certain food products, for example, milk. Keywords: Fish oil; lipid oxidation; oil-in-water emulsion; n-3 PUFA; milk; yoghurt; salad......Abstract: This study compared the oxidative stabilities of fish-oil-enriched milk, yoghurt, and salad dressing and investigated the effects on oxidation of adding either neat fish oil or a fish-oil-in-water emulsion to these products. Milk emulsions had higher levels of a fishy off...

  5. Experimental studies on anti-oxidants reducing lipid peroxidation of irradiated mice

    International Nuclear Information System (INIS)

    Du Zeji; Liu Keliang; Su Liaoyuan

    1993-08-01

    The free radical plays an important role in the irradiation damage. The irradiation damage would be reduced if anti-oxidants is used, because anti-oxidants can scavenge free radicals and suppress lipid peroxidation. In the study, a fluoro-spectrophotometer was used to determine the changes of MDA levels in mice tissues and serum after irradiation and the protective effect of anti-oxidants of Vit E and DMSO on damage caused by free radicals. The results are as follows: (1) The highest MDA level was at 12 to 24 hours after irradiation dose of 3.0 Gy. (2) The MDA level is increasing with the increasing of irradiation dose. It means the MDA level can indicate the extent of irradiation damage. (3) Both Vit E and DMSO had a powerful effect on reducing MDA level, but the effect of DMSO was stronger than Vit E. The optimum doses of them were 0.25 mg/g body weight and 10 mg/g body weight respectively. (4) The best effect obtained was to use Vit E and DMSO simultaneously

  6. Oxidative status and lipid profile in metabolic syndrome: gender differences.

    Science.gov (United States)

    Kaya, Aysem; Uzunhasan, Isil; Baskurt, Murat; Ozkan, Alev; Ataoglu, Esra; Okcun, Baris; Yigit, Zerrin

    2010-02-01

    Metabolic syndrome is associated with cardiovascular disease and oxidative stress. The aim of this study was to investigate the differences of novel oxidative stress parameters and lipid profiles in men and women with metabolic syndrome. The study population included 88 patients with metabolic syndrome, consisting of 48 postmenauposal women (group I) and 40 men (group II). Premenauposal women were excluded. Plasma levels of total antioxidant status (TAS) and total oxidative status (TOS) were determined by using the Erel automated measurement method, and oxidative stress index (OSI) was calculated. To perform the calculation, the resulting unit of TAS, mmol Trolox equivalent/L, was converted to micromol equivalent/L and the OSI value was calculated as: OSI = [(TOS, micromol/L)/(TAS, mmol Trolox equivalent/L) x 100]. The Student t-test, Mann-Whitney-U test, and chi-squared test were used for statistical analysis; the Pearson correlation coefficient and Spearman rank test were used for correlation analysis. P women and men had similar properties regarding demographic characteristics and biochemical work up. Group II had significantly lower levels of antioxidant levels of TAS and lower levels of TOS and OSI compared with group I (P = 0.0001, P = 0.0035, and P = 0,0001). Apolipoprotein A (ApoA) levels were significantly higher in group I compared with group II. Our findings indicate that women with metabolic syndrome have a better antioxidant status and higher ApoA levels compared with men. Our findings suggest the existence of a higher oxidative stress index in men with metabolic syndrome. Considering the higher risk of atherosclerosis associated with men, these novel oxidative stress parameters may be valuable in the evaluation of patients with metabolic sydrome.

  7. Statins and oxidative stress in the cardiovascular system.

    Science.gov (United States)

    Margaritis, Marios; Sanna, Fabio; Antoniades, Charalambos

    2017-09-26

    Statins are widely established as an important class of medications for primary and secondary prevention of cardiovascular disease. In addition to their lipid-lowering effects, mounting evidence suggests that statins exhibit non-lipid-lowering mediated effects in the cardiovascular system. These so called "pleiotropic" effects are partly due to antioxidant properties of statins. These are mediated by inhibition of the mevalonate pathway, which interferes with small GTP-ase protein prenylation. This, in turn, leads to anti-oxidant effects of statins via a plethora of mechanisms. Statins prevent the activation of the pro-oxidant enzyme NADPH-oxidase by interfering with Rac1 activation and translocation to the membrane, as well as reducing expression of crucial subunits of NADPH-oxidase. Statins also enhance the expression, enzymatic activity and coupling of endothelial nitric oxide synthase (eNOS), through mevalonate-dependent effects. The net result is a restoration of the redox balance in the cardiovascular system, with subsequent anti-atherosclerotic and cardioprotective effects. While the evidence from basic science studies and animal models is strong, more clinical trials are required to establish the relevance of these pleiotropic effects to human cardiovascular disease and potentially lead to expanded indications for statin treatment or alternative therapeutic strategies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5.

    Science.gov (United States)

    Gao, Xing; Nan, Yang; Zhao, Yuanlin; Yuan, Yuan; Ren, Bincheng; Sun, Chao; Cao, Kaiyu; Yu, Ming; Feng, Xuyang; Ye, Jing

    2017-12-01

    Statins have been proven to be effective in treating non-alcoholic fatty liver disease (NAFLD). Recently, it was reported that statins decreased the hepatic expression of perilipin 5 (Plin5), a lipid droplet (LD)-associated protein, which plays critical roles in regulating lipid accumulation and lipolysis in liver. However, the function and regulation mechanism of Plin5 have not yet been well-established in NAFLD treatment with statins. In this study, we observed that atorvastatin moderately reduced the expression of Plin5 in livers without changing the protein level of Plin5 in the hepatic LD fraction of mice fed with high-fat diet (HFD). Intriguingly, atorvastatin stimulated the PKA-mediated phosphorylation of Plin5 and reduced the triglyceride (TG) accumulation in hepatocytes with overexpression of wide type (Plin5-WT) compared to serine-155 mutant Plin5 (Plin5-S155A). Moreover, PKA-stimulated FA release of purified LDs carrying Plin5-WT but not Plin5-S155A. Glucagon, a PKA activator, stimulated the phosphorylation of Plin5-WT and inhibited its interaction with CGI-58. The results indicated that atorvastatin promoted lipolysis and reduced TG accumulation in the liver by increasing PKA-mediated phosphorylation of Plin5. This new mechanism of lipid-lowering effects of atorvastatin might provide a new strategy for NAFLD treatment. Copyright © 2017. Published by Elsevier B.V.

  9. Effects of Exogenous Melatonin on Methyl Viologen-Mediated Oxidative Stress in Apple Leaf

    Directory of Open Access Journals (Sweden)

    Zhiwei Wei

    2018-01-01

    Full Text Available Oxidative stress is a major source of damage of plants exposed to adverse environments. We examined the effect of exogenous melatonin (MT in limiting of oxidative stress caused by methyl viologen (MV; paraquatin in apple leaves (Malus domestica Borkh.. When detached leaves were pre-treated with melatonin, their level of stress tolerance increased. Under MV treatment, melatonin effectively alleviated the decrease in chlorophyll concentrations and maximum potential Photosystem II efficiency while also mitigating membrane damage and lipid peroxidation when compared with control leaves that were sprayed only with water prior to the stress experiment. The melatonin-treated leaves also showed higher activities and transcripts of antioxidant enzymes superoxide dismutase, peroxidase, and catalase. In addition, the expression of genes for those enzymes was upregulated. Melatonin-synthesis genes MdTDC1, MdT5H4, MdAANAT2, and MdASMT1 were also upregulated under oxidative stress in leaves but that expression was suppressed in response to 1 mM melatonin pretreatment during the MV treatments. Therefore, we conclude that exogenous melatonin mitigates the detrimental effects of oxidative stress, perhaps by slowing the decline in chlorophyll concentrations, moderating membrane damage and lipid peroxidation, increasing the activities of antioxidant enzymes, and changing the expression of genes for melatonin synthesis.

  10. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-01-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation. - Highlights: • Soy sauce (SS) could inhibit volatiles cooked irradiated beef patties. • Vacuum packaging and SS treatment is effective to prevent lipid oxidation. • Hexanal content was highly correlated with TBA value of the irradiated beef patties

  11. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog

    Directory of Open Access Journals (Sweden)

    Vanessa R Biegen

    2015-11-01

    Full Text Available A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurologic examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurologic signs have been described in humans with this group of diseases, descriptions of advanced imaging and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.

  12. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  13. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  14. Fish hemoglobins

    OpenAIRE

    Souza,P.C. de; Bonilla-Rodriguez,G.O.

    2007-01-01

    Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta) and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemica...

  15. Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation.

    Science.gov (United States)

    Lachili, B; Hininger, I; Faure, H; Arnaud, J; Richard, M J; Favier, A; Roussel, A M

    2001-11-01

    Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitamin E, (beta-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n = 27) was compared to a control group (n = 27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90 +/- 5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p cell antioxidant metalloenzymes. Furthermore, the alpha-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.

  16. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    Science.gov (United States)

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.

    2013-01-01

    Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon

  17. The Effect of High-Flux Hemodialysis on Hemoglobin Concentrations in Patients with CKD: Results of the MINOXIS Study

    Science.gov (United States)

    Schneider, Andreas; Drechsler, Christiane; Krane, Vera; Krieter, Detlef H.; Scharnagl, Hubert; Schneider, Markus P.; Wanner, Christoph

    2012-01-01

    Summary Background and objectives Hemodialysis treatment induces markers of inflammation and oxidative stress, which could affect hemoglobin levels and the response to erythropoietin use. This study sought to determine whether high-flux dialysis would help improve markers of renal anemia, inflammation, and oxidative stress compared with low-flux dialysis. Design, settings, participants, & measurements In a prospective, controlled study, 221 patients undergoing maintenance hemodialysis and receiving darbepoetin-alfa treatment (mean age, 66 years; 55% male) from 19 centers were screened in a 20-week run-in period of low-flux hemodialysis with a synthetic dialysis membrane. Thereafter, 166 patients were enrolled and randomly assigned to receive a synthetic high-flux membrane or to continue on low-flux dialysis for 52 weeks. Data on myeloperoxidase, oxidized LDL, high-sensitivity C-reactive protein, and the Malnutrition Inflammation Score were collected at baseline and after 52 weeks; routine laboratory data, such as hemoglobin, ferritin, and albumin, and the use of darbepoetin-alfa, were also measured in the run-in period. Results After 52 weeks, the low-flux and the high-flux groups did not differ with respect to hemoglobin (mean ± SD, 11.7±0.9 g/dl versus 11.7±1.1 g/dl; P=0.62) or use of darbepoetin-alfa (mean dosage ± SD, 29.8±24.8 μg/wk versus 26.0±31.1 μg/wk; P=0.85). Markers of inflammation, oxidative stress, or nutritional status also did not differ between groups. Conclusion Over 1 year, high-flux dialysis had no superior effects on hemoglobin levels or markers of inflammation, oxidative stress, and nutritional status. These data do not support the hypothesis that enhanced convective toxin removal would improve patient outcome. PMID:22096040

  18. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2013-12-01

    Full Text Available Reactive oxygen species (ROS generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H₂O₂ and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O₂− and H₂O₂ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H₂O₂and sodium nitroprusside (SNP nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H₂O₂and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10⁶ and 10⁷ cfu/ml of R. solanacearum. H₂O₂- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC’ was calculated to compare disease protection by H₂O₂ and/or SNP with untreated control. Neither H₂O₂ nor SNP protect the tomato seedlings from the bacterial wilt, but H₂O₂+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H₂O₂ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

  19. Effect of Spirulina Intervention on Oxidative Stress, Antioxidant Status, and Lipid Profile in Chronic Obstructive Pulmonary Disease Patients

    Directory of Open Access Journals (Sweden)

    Md. Ismail

    2015-01-01

    Full Text Available Background and Objective. Oxidative stress is intimately associated with many diseases, including chronic obstructive pulmonary disease (COPD. Study objectives include a comparison of the oxidative stress, antioxidant status, and lipid profile between COPD patients and controls and evaluation of the effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile of COPD patients. Methods. 30 patients with COPD and 20 controls with no respiratory problems were selected. Global Initiative for Chronic Obstructive Lung Disease criteria were served as the basis of COPD diagnosis. The serum content of malondialdehyde (MDA, lipid hydroperoxide, glutathione (GSH, vitamin C, cholesterol, triglyceride (TG, and high density lipoprotein (HDL was measured. The activity of superoxide dismutase (SOD, catalase (CAT, and glutathione-s-transferase (GST was also measured. Two different doses, (500 × 2 mg and (500 × 4 mg spirulina, were given to two groups, each of which comprises 15 COPD patients. Results. All targeted blood parameters have significant difference (P=0.000 between COPD patients and controls except triglyceride (TG. Spirulina intake for 30 and 60 days at (500 × 2 mg dose has significantly reduced serum content of MDA, lipid hydroperoxide, and cholesterol (P=0.000 while increasing GSH, Vit C level (P=0.000, and the activity of SOD (P=0.000 and GST (P=0.038. At the same time, spirulina intake for 30 and 60 days at (500 × 4 mg dose has favorable significant effect (P=0.000 on all targeted blood parameters except for HDL (P=0.163.

  20. Association of diabetes-related distress, depression, medication adherence, and health-related quality of life with glycated hemoglobin, blood pressure, and lipids in adult patients with type 2 diabetes: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Chew BH

    2015-04-01

    Full Text Available Boon-How Chew,1 Mohd-Sidik Sherina,2 Noor-Hasliza Hassan3 1Department of Family Medicine, 2Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang; 3Klinik Kesihatan Dengkil, Jalan Dengkil, Malaysia Abstract: This study examined the associations of diabetes-related distress (DRD, depressive symptoms, health-related quality of life (HRQoL, and medication adherence with glycemia, blood pressure (BP, and lipid biomarkers in adults with type 2 diabetes mellitus (T2D. This cross-sectional study was conducted in three Malaysian public health clinics in 2012–2013, recruited adult patients (aged ≥30 years with T2D who had been diagnosed for more than one year, were on active follow-up, and had recent blood test results. Univariable and multivariable analyses were performed to identify significant associated factors for glycated hemoglobin (HbA1c BP, and lipids. The response rate was 93.1% (700/752. The majority were females (52.8%, Malay (52.4%, and married (78.7%. DRD correlated with systolic BP (r= -0.16; depressive symptoms correlated with low-density lipoprotein cholesterol (r=0.12 and total cholesterol (r=0.13; medication adherence correlated with HbA1c (r= -0.14 and low-density lipoprotein cholesterol (r= -0.11; and HRQoL correlated with casual blood glucose (r= -0.11, high-density lipoprotein cholesterol (r= -0.13, and total cholesterol (r= -0.08. Multivariable analyses showed that HRQoL was significantly associated with casual blood glucose (adjusted B= -0.06, P=0.024; DRD was associated with systolic BP (adjusted B= -0.08, P=0.066; depressive symptoms were associated with low-density lipoprotein cholesterol (adjusted B=0.02, P=0.061, and medication adherence was associated with HbA1c (adjusted B= -0.11, P=0.082 and total cholesterol (adjusted B= -0.06, P=0.086. There were significant and distinctive associations of DRD, depressive symptoms, HRQoL, and medication adherence with

  1. Effects of rutin on the redox reactions of hemoglobin.

    Science.gov (United States)

    Lu, Naihao; Ding, Yun; Yang, Zhen; Gao, Pingzhang

    2016-08-01

    Flavonoids are widely used to attenuate oxidative damage in vitro and in vivo. In this study, we investigated the influence of rutin (quercetin-3-rhamnosylglucoside) on hemoglobin (Hb)- dependent redox reactions, i.e. oxidative stability of Hb and its cytotoxic ferryl intermediate. It was found that rutin induced generation of H2O2, which in turn oxidized Hb rapidly. Meanwhile, rutin exhibited anti-oxidant effect by effectively reducing ferryl intermediate back to ferric Hb at physiological pH. In comparison with quercetin, rutin had stronger capability on reducing ferryl species while lesser pro-oxidant effect on H2O2 generation, thus it exhibited more protective effect on H2O2-induced Hb oxidation. Circular dichroism spectrum showed no significant change in the secondary structure of Hb after flavonoid addition, while molecular docking revealed different binding modes of quercetin and rutin with Hb. These results might provide new insights into the potential nutritional and physiological implications of rutin and quercetin with redox active heme proteins regarding their ani- and pro-oxidant effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera".

    Science.gov (United States)

    Kool, Dorien M; Zhu, Baoli; Rijpstra, W Irene C; Jetten, Mike S M; Ettwig, Katharina F; Sinninghe Damsté, Jaap S

    2012-12-01

    The recently described bacterium "Candidatus Methylomirabilis oxyfera" couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of "Ca. Methylomirabilis oxyfera" is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of "Ca. Methylomirabilis oxyfera" to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple "Ca. Methylomirabilis oxyfera" enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC(16:0)). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC(16:1Δ7)), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC(16:0) and 10MeC(16:1Δ7) are key and characteristic components of the lipid profile of "Ca. Methylomirabilis oxyfera." The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment.

  3. Hemoglobin C, S-C, and E Diseases

    Science.gov (United States)

    ... quickly than others, resulting in chronic anemia. Hemoglobin C disease Hemoglobin C disease occurs mostly in blacks. ... a common complication of hemoglobin C disease. Hemoglobin S-C disease Hemoglobin S-C disease occurs in people who ...

  4. Lipid oxidation in fish oil enriched oil-in-water emulsions and cream cheese with pre-emulsified fish oil is affected differently by the emulsifier used

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    It is well-documented that a high intake of long chain omega-3 polyunsaturated fatty acids has several health beneficial effects in humans. Consequently, the interest in food products enriched with marine oils has increased during recent years. However, addition of these highly unsaturated fatty...... will include results from studies on lipid oxidation in simple oil-in-water emulsions prepared with milk proteins alone or combinations of milk proteins and phospholipids. In addition, a study on fish oil enriched cream cheese will be presented. In this study, the cream cheese was enriched with either neat...... acids to foods invariably increases the risk of lipid oxidation. A possible strategy to avoid lipid oxidation and the consecutive development of unpleasant off-flavours is to protect the oil in a delivery emulsion in which the oil droplets are shielded from its possible pro-oxidative surroundings...

  5. Influence of the Siberian larch extract on the processes of peroxide oxidation of lipids in experiment

    Directory of Open Access Journals (Sweden)

    Pateyuk Andrey

    2016-03-01

    Full Text Available In modern conditions wood processing is one of the primary branches of production in Transbaikal region. In connection with big squares of logging the question of processing and utilizing waste products directly on the spot is particularly acute. We researched the activity of water extract from sawdust of Siberian larch "Ekstrapinus" on the power exchange and processes of peroxide oxidation of lipids against immobilized stress in experiment. The data provided in the article prove that the use of Ekstrapinus extract reduces the pathological violations arising under stress. So, Ekstrapinus extract restores energy potential of cages when modeling stress, restores energy potential of cells, normalizes balance in the system "peroxide oxidation of lipids – antioxidant protection" and supports the balance of tiol in an animal organism in the state of stress. Considering absence of toxicity in the recommended doses, it is possible to recommend their application under stress.

  6. Possible role of Arthrospira platensis in reversing oxidative stress-mediated liver damage in rats exposed to lead.

    Science.gov (United States)

    Khalil, Samah R; Elhady, Walaa M; Elewa, Yaser H A; Abd El-Hameed, Noura E; Ali, Sozan A

    2018-01-01

    Environmental pollutants, particularly metallic elements, mobilized and released into the environment, eventually accumulate in the food chain and thus pose a serious threat to human and animal health. In the present study, the role of Arthrospira (Spirulina platensis; SP) as a protector against oxidative stress-mediated liver damage induced by an exposure to lead acetate (LA; as a metallic pollutant) was assessed. To achieve this aim, rats were orally administered with 300 mg/kg bw SP for 15 days, before and concurrently with an intraperitoneal injection of 50 mg/kg bw LA (6 injections throughout 15 days). As a result, co-administration of SP with LA reduced the amount of lead that accumulated in both blood and liver tissue of the exposed rats and minimized the increased levels of lipid peroxidation, protein oxidation, DNA oxidative damage, and liver enzyme endpoints. In addition, because of SP administration, the levels of depleted biomarkers of antioxidant status and total antioxidant capacity in LA-exposed rats improved. Moreover, SP protected the liver tissue against the changes caused by LA exposure and also decreased the reactivity of HSP70 in the cytoplasm of hepatocytes. Collectively, our data suggest that SP has a potential use as a food supplement in the regions highly polluted with heavy metals such as lead. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  8. Part II: Effects of gamma irradiation on lipid and cholesterol oxidation in mechanically deboned turkey meat

    International Nuclear Information System (INIS)

    Farkas, J.; Andrassy, E.; Meszaros, L.; Beczner, J.; Polyak-Feher, K.; Gaal, O.; Lebovics, V.K.; Lugasi, A.

    2009-01-01

    The pasteurizing effect of a 2 kGy radiation dose on non-frozen mechanically deboned turkey meat was achieved without increase in cholesterol oxidation products or increases in thiobarbituric acid reactive substance values during 15 d of chilled storage following the treatments, while untreated samples were spoiled. The addition of antioxidants, such as thyme oil or α-tocopherol plus ascorbic acid, significantly inhibited the oxidative changes of cholesterol and lipids during 3 kGy treatment. (author)

  9. Combined effect of cooking (grilling and roasting) and chilling storage (with and without air) on lipid and cholesterol oxidation in chicken breast.

    Science.gov (United States)

    Conchillo, Ana; Ansorena, Diana; Astiasarán, Iciar

    2003-05-01

    The oxidation of the lipid fraction and cholesterol in raw and cooked chicken breast samples stored for 0 and 6 days at 4 degrees C under aerobic conditions and in vacuum packaging was studied. The multivariate statistical analysis showed significant effects of both culinary process and storage conditions on the lipid and cholesterol oxidation process, with a significant interaction between the two variables. Aerobic storage increased thiobarbituric acid reactive substances (TBA) from 0.04 to 0.06 ppm for raw samples, from 0.21 to 1.20 ppm for grilled samples, and from 0.24 to 1.62 ppm for roasted samples. During vacuum storage, only roasted samples showed significant increases in TBA. Levels of total cholesterol oxidation products (COP) remained low (2.88 to 4.35 microg/g of lipid) for all raw samples. Cooking increased COP levels to 12.85 and 11.54 microg/ g of lipid for grilled and roasted samples, respectively. Total COP and all individual COP except for cholestanetriol were significantly correlated with TBA and the peroxide index. However, the most extensive effect was attributable to the aerobic storage of cooked samples, which led to COP levels of 92.35 and 88.60 microg/g of lipid in grilled and roasted samples, respectively. Vacuum packaging did not increase COP levels for cooked samples.

  10. Ramadan fasting ameliorates arterial pulse pressure and lipid profile, and alleviates oxidative stress in hypertensive patients.

    Science.gov (United States)

    Al-Shafei, Ahmad I M

    2014-06-01

    Effects of Ramadan fasting on health are important. Its effects on arterial pulse pressure (PP), lipid profile and oxidative stress were characterized in hypertensives. PP, indices of lipid profile and oxidative stress were measured pre-, during and post-fasting in equal (40 each), sex- and age-matched groups (age 55 ± 5 years) of hypertensives (HT) and controls (C). Fasting reduced PP significantly by 17.2% and insignificantly by 9.3% in the HT and C groups, respectively. Total cholesterol (TC) was lowered insignificantly by 11.7% and 4.7% in the HT and C patients, respectively. Triglycerides (TG) and malondialdehyde (MDA) were significantly lowered by: TG: 24.5% and 22.8%; MDA: 45.6% and 54.3%; while glutathione (GSH) elevated by 56.8% and 52.6% in the HT and C groups, respectively. High-density lipoproteins (HDL) were raised significantly by 33.3% and insignificantly by 6.7%, whereas low-density lipoproteins (LDL) decreased significantly by 17.7% and insignificantly by 4.0% in the HT and C groups, respectively. At 6 weeks post-fasting, MDA remained significantly lower than the pre-fasting level by 24.3% and 25.7%, and GSH higher by 30.2% and 26.3% in the HT and C groups, respectively, while PP and TC returned to pre-fasting values in both groups. The post-fasting, HDL was significantly higher by 20.3% and LDL lower by 12.0% than the fasting levels in the HT patients. Fasting improves PP and lipids profile and ameliorates oxidative stress in hypertensives.

  11. Effect of different antioxidants on lipid oxidation of irradiated cooked streaky pork

    International Nuclear Information System (INIS)

    Guo Shuzhen; Ha Yiming; Zhang Haiwei; Wang Feng; Liu Shuliang

    2008-01-01

    The effects of antioxidants on lipid oxidation of vacuum packaged irradiated cooked streaky pork were studied. The cooked streaky pork were added with 0.02% TeaPolyphenols (TP), rosemary, Tertiary butylhydroquinone (TBHQ), Butylated hydroxytoluene (BHT) and vitamin E separately, then were irradiated with 6 kGy, and stored at 4 degree C. The results showed that antioxidants can reduce the value of TBA, POV value of irradiated cooked streaky pork, and the effects of TBHQ and TP were better, than other antiatidins. (authors)

  12. Oxidation reactions of 1,3-diphenylpropane-1,3-dione

    Indian Academy of Sciences (India)

    Formation of a stable product with a broad absorption band starting from 400 nm and cut off at 230 nm was observed in the oxidation of 1 with ∙ OH and ∙ N3 radicals. In a biological system also, 1 showed significant inhibitory activity against Fe2+-mediated lipid peroxidation. Based on these observations, a suitable ...

  13. [Association of high altitude-induced hypoxemia to lipid profile and glycemia in men and women living at 4,100m in the Peruvian Central Andes].

    Science.gov (United States)

    Gonzales, Gustavo F; Tapia, Vilma

    2013-02-01

    At a same altitude, people with greater hypoxemia would have higher hemoglobin (Hb) levels than less hypoxemic patients. It is not known whether higher hypoxemia levels (as measured by higher Hb values) affect basal glucose and lipid profile at an altitude of 4,100mg (Carhuamayo and Junln). Glucose, lipid, and hemoglobin levels and body mass index (BMI) were assessed in 158 males and 348 females aged 35 to 75 years. Association of lipid and glucose levels with systolic and diastolic blood pressure (SBP and DBP) was also assessed. Results were analyzed using Student's t test, Chi-square test, analysis of variance, correlations, and linear multivariate analyses adjusted for age, sex, BMI, smoking, and education. Higher hemoglobin levels were directly associated to higher levels of total cholesterol (P0.05). Levels of total cholesterol, high density lipoprotein cholesterol, triglycerides, low density lipoprotein cholesterol, and blood glucose were directly associated to DBP. In people living at high altitude (4100m), the non-HDL cholesterol fraction and triglycerides are directly associated to hemoglobin value, and increases in them are in turn associated to higher DBP. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  14. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  15. Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tschiersch Henning

    2011-03-01

    Full Text Available Abstract Background Seed metabolism is dynamically adjusted to oxygen availability. Processes underlying this auto-regulatory mechanism control the metabolic efficiency under changing environmental conditions/stress and thus, are of relevance for biotechnology. Non-symbiotic hemoglobins have been shown to be involved in scavenging of nitric oxide (NO molecules, which play a key role in oxygen sensing/balancing in plants and animals. Steady state levels of NO are suggested to act as an integrator of energy and carbon metabolism and subsequently, influence energy-demanding growth processes in plants. Results We aimed to manipulate oxygen stress perception in Arabidopsis seeds by overexpression of the non-symbiotic hemoglobin AtHb1 under the control of the seed-specific LeB4 promoter. Seeds of transgenic AtHb1 plants did not accumulate NO under transient hypoxic stress treatment, showed higher respiratory activity and energy status compared to the wild type. Global transcript profiling of seeds/siliques from wild type and transgenic plants under transient hypoxic and standard conditions using Affymetrix ATH1 chips revealed a rearrangement of transcriptional networks by AtHb1 overexpression under non-stress conditions, which included the induction of transcripts related to ABA synthesis and signaling, receptor-like kinase- and MAP kinase-mediated signaling pathways, WRKY transcription factors and ROS metabolism. Overexpression of AtHb1 shifted seed metabolism to an energy-saving mode with the most prominent alterations occurring in cell wall metabolism. In combination with metabolite and physiological measurements, these data demonstrate that AtHb1 overexpression improves oxidative stress tolerance compared to the wild type where a strong transcriptional and metabolic reconfiguration was observed in the hypoxic response. Conclusions AtHb1 overexpression mediates a pre-adaptation to hypoxic stress. Under transient stress conditions transgenic seeds

  16. Argan Oil Exerts an Antiatherogenic Effect by Improving Lipids and Susceptibility of LDL to Oxidation in Type 2 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    M. M. Ould Mohamedou

    2011-01-01

    Full Text Available In this study, we investigate the effect of argan oil consumption on serum lipids, apolipoproteins (AI and B, CRP, and LDL susceptibility to oxidation in type 2 diabetic patients which are known to have a high level of cardiovascular risk due to lipid abnormalities and lipid peroxidation. For that, 86 type 2 diabetic patients with dyslipidemia were randomized to one group consuming 25 mL/day of argan oil during 3 weeks and control group consuming 20 g/day of butter in breakfast. After argan oil intervention, serum triglycerides decreased by 11.84%, (P=0.001, total chol by 9.13%, (P=0.01, and LDL-chol by 11.81%, (P=0.02. However, HDL-chol and Apo AI increased (10.51%, P=0.01 and 9.40%,  P=0.045, resp.. Susceptibility of LDL to lipid peroxidation was significantly reduced by increasing of 20.95%, (P=0.038 in lag phase after argan oil consumption. In conclusion, we show for the first time that consumption of argan oil may have an antiatherogenic effect by improving lipids, and the susceptibility of LDL to oxidation in type 2 diabetes patients with dyslipidemia, and can therefore be recommended in the nutritional management of type 2 diabetes.

  17. Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse

    Directory of Open Access Journals (Sweden)

    Sophie A. Bradley

    2016-01-01

    Full Text Available Nitric oxide (NO is an important gasotransmitter molecule that is involved in numerous physiological processes throughout the nervous system. In addition to its involvement in physiological plasticity processes (long-term potentiation, LTP; long-term depression, LTD which can include NMDAR-mediated calcium-dependent activation of neuronal nitric oxide synthase (nNOS, new insights into physiological and pathological consequences of nitrergic signalling have recently emerged. In addition to the canonical cGMP-mediated signalling, NO is also implicated in numerous pathways involving posttranslational modifications. In this review we discuss the multiple effects of S-nitrosylation and 3-nitrotyrosination on proteins with potential modulation of function but limit the analyses to signalling involved in synaptic transmission and vesicular release. Here, crucial proteins which mediate synaptic transmission can undergo posttranslational modifications with either pre- or postsynaptic origin. During normal brain function, both pathways serve as important cellular signalling cascades that modulate a diverse array of physiological processes, including synaptic plasticity, transcriptional activity, and neuronal survival. In contrast, evidence suggests that aging and disease can induce nitrosative stress via excessive NO production. Consequently, uncontrolled S-nitrosylation/3-nitrotyrosination can occur and represent pathological features that contribute to the onset and progression of various neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and Huntington’s.

  18. The role of the kidney in lipid metabolism

    DEFF Research Database (Denmark)

    Moestrup, Søren K; Nielsen, Lars Bo

    2005-01-01

    PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma...... proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid......-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential...

  19. Polyphenols of virgin coconut oil prevent pro-oxidant mediated cell death.

    Science.gov (United States)

    Illam, Soorya Parathodi; Narayanankutty, Arunaksharan; Raghavamenon, Achuthan C

    2017-07-01

    Virgin coconut oil (VCO), extracted from the fresh coconut kernel, is a food supplement enriched with medium chain saturated fatty acids and polyphenolic antioxidants. It is reported to have several health benefits including lipid lowering, antioxidant and anti-inflammatory activities. The pharmacological benefits of VCO have been attributed to its polyphenol content (VCOP), the mechanistic basis of which is less explored. Liquid chromatography/mass spectroscopy (LC/MS) analysis of VCOP documented the presence of gallic acid, ferulic acid (FA), quercetin, methyl catechin, dihydrokaempferol and myricetin glycoside. Pre-treatment of VCOP at different concentrations (25-100 μg/mL) significantly reduced the H 2 O 2 and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced cell death in HCT-15 cells. Giving further insight to its mechanistic basis, oxidative stress induced alterations in glutathione (GSH) levels and activities of GR (Glutathione-Reductase), GPx (Glutathione-Peroxidase), GST (Glutathione-S-Transferase) and catalase (CAT) were restored to near-normal by VCOP, concomitantly reducing lipid peroxidation. The efficacy of VCOP was similar to that of Trolox and FA added in culture. The study thus suggests that VCOP protects cells from pro-oxidant insults by modulating cellular antioxidant status.

  20. Analysis of Lipoplex Structure and Lipid Phase Changes

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana

    2012-07-18

    Efficient delivery of genetic material to cells is needed for tasks of utmost importance in the laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising nonviral gene carriers. They form complexes (lipoplexes) with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection) is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for a rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. A viewpoint now emerging is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar phase transition upon mixing with cellular lipids and were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release. Thus, understanding the lipoplex structure and the phase changes upon interacting with membrane lipids is important for the successful application of the cationic lipids as gene carriers.

  1. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.

    Science.gov (United States)

    Gaede, Holly C; Luckett, Keith M; Polozov, Ivan V; Gawrisch, Klaus

    2004-08-31

    Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.

  2. Ascorbyl palmitate, gamma-tocopherol, and EDTA affect lipid oxidation in fish oil enriched salad dressing differently

    DEFF Research Database (Denmark)

    Let, M.B.; Jacobsen, Charlotte; Meyer, Anne S.

    2007-01-01

    The aim of the study was to investigate the ability of γ-tocopherol, ethylenediaminetetraacetate (EDTA), and ascorbyl palmitate to protect fish oil enriched salad dressing against oxidation during a 6 week storage period at room temperature. The lipid-soluble γ-tocopherol (220 and 880 µg g-1...

  3. Water extractable phytochemicals from Capsicum pubescens (tree pepper) inhibit lipid peroxidation induced by different pro-oxidant agents in brain

    International Nuclear Information System (INIS)

    Oboh, G.; Rocha, J.B.T.

    2006-03-01

    Reactive oxygen species (ROS) is the cause of neurodegenerative disorders such as Lou Gehrig's disease, Parkinson's disease and Huntington's disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). In this study, the antioxidant and neuroprotective properties of aqueous extract of ripe and unripe Capsicum pubescens (popularly known as tree pepper) on different pro-oxidant induced lipid peroxidation in Rat's brain (in vitro) is been investigated. Aqueous extract of freshly harvested pepper was prepared, and the total phenol content, vitamin C, ferric reducing antioxidant property (FRAP) and Fe (II) chelating ability was determined. In addition, the ability of the extracts to protect the Rat's brain against some pro-oxidant FeSO 4 , Sodium nitroprusside and Quinolinic acid) - induced oxidative stress was also determined. The results of the study revealed that ripe Capsicum pubescens had a significantly higher (P 2 O 2 induced decomposition of deoxyribose. Therefore, ripe and unripe Capsicum pubescens would inhibit lipid peroxidation in vitro. However, the ripe potent was a more potent inhibitor of lipid peroxidation, which is probably due to its higher vitamin C and phenol content, reducing power and Fe (II) chelating ability. (author)

  4. Interaction of thyroid hormone and hemoglobin: nature of the interaction and effect of hemoglobin on thyroid hormone radioimmunoassay

    International Nuclear Information System (INIS)

    Davis, P.J.; Yoshida, K.; Schoenl, M.

    1980-01-01

    Gel filtration of human erythrocyte (RBC) lysate incubated with labeled thyroxine (Tu) or triiodothyronine (Tt) revealed co-elution of a major iodothyronine-binding fraction (R-2) and hemoglobin. Solutions of purified human hemoglobin and Tt also showed co-elution of hormone and hemoglobin. Because hematin and protoporphyrin were shown to bind labeled Tt, the oxygen-binding site on hemoglobin was excluded as the site of iodothyronine-hemoglobin interaction. Analysis of hormone binding by heme and globin moieties showed Tt binding to be limited to the heme fraction. Addition of excess unlabeled Tt to hemoglobin or heme incubated with labeled Tt indicated 75% to 90% of hormone binding was poorly dissociable. These observations suggested that the presence of hemoglobin in RBC lysate or in serum could influence the measurement of Tu and Tt by specific radioimmunoassay (RIA). Subsequent studies of the addition to serum of human hemoglobin revealed a significant reduction in Tt and Tu detectable by RIA in the presence of this protein. The effect was influenced by the concentration of hemoglobin and by duration and temperature of incubations of hemoglobin and serum prior to RIA

  5. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Jensen, Erik Østergaard

    2008-01-01

    -symbiotic hemoglobin gene, GLB2, in Arabidopsis thaliana. Lines with GLB1 silencing had a significant delay of bolting and after bolting, shoots reverted to the rosette vegetative phase by formation of aerial rosettes at lateral meristems. Lines with overexpression of GLB1 or GLB2 bolted earlier than wild type plants....... By germinating the lines in a medium containing the nitric oxide (NO) donor, sodium nitroprusside (SNP), it was demonstrated that both GLB1 and GLB2 promote bolting by antagonizing the effect of NO, suggesting that non-symbiotic plant hemoglobin controls bolting by scavenging the floral transition signal...... molecule, NO. So far, NO scavenging has only been demonstrated for class 1 non-symbiotic hemoglobins. A direct assay in Arabidopsis leaf cells shows that GLB1 as well as the class 2 non-symbiotic hemoglobin, GLB2, scavenge NO in vivo. NO has also been demonstrated to be a growth stimulating signal...

  6. Comparison of Performance, Meat Lipids and Oxidative Status of Pigs from Commercial Breed and Organic Crossbreed

    Directory of Open Access Journals (Sweden)

    Giuseppe Martino

    2014-06-01

    Full Text Available The aim of this research was to determine the effect of rearing systems for pig production, as concerns performance, meat lipid content, the fatty acid profile, histidinic antioxidants, coenzyme Q10, and TBARs. One hundred pigs were assigned to one of three treatments: intensively reared commercial hybrid pig (I, free range commercial hybrid pig (FR or organically reared crossbred pig (O, according to organic EU Regulations. I pigs showed the best productive performance, but FR and O increased: C20:1n9, Δ9-desaturase (C18 and thioesterase indices in meat. Lipid, dipeptides and CoQ10 appeared correlated to glycolytic and oxidative metabolic pathways. We can conclude that all studied parameters were influenced by the rearing system used, and that differences were particularly evident in the O system, which produced leaner meat with higher oxidative stability. In this respect, the organic pig rearing system promotes and enhances biodiversity, environmental sustainability and food quality.

  7. Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults

    Science.gov (United States)

    Lin, Chien-Yu; Chen, Pau-Chung; Hsieh, Chia-Jung; Chen, Chao-Yu; Hu, Anren; Sung, Fung-Chang; Lee, Hui-Ling; Su, Ta-Chen

    2017-03-01

    Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12-30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress.

  8. Lipid oxidative changes in traditional dry fermented sausage Petrovská klobása during storage

    Directory of Open Access Journals (Sweden)

    Šojić Branislav V.

    2014-01-01

    Full Text Available The influence of drying and ripeninig conditions (traditional and industrial in the production of dry fermented sausage Petrovská klobása, on fatty-acid composition and oxidative changes in lipids, during 7 months of storage, was investigated. During the storage period, the sum of unsaturated fatty acids and the content of free fatty acids were significantly higher (p<0.05, while the content of malondialdehyde was significantly lower in the sausage subjected to traditional conditions of drying and ripening. At the end of the storage period, contents of pentanal and hexanal in the sausage subjected to traditional conditions of drying and ripening (4.03 μg/g and 1.67 μg/g, respectively were significantly lower (p<0.05 in comparison with these contents in the sausage subjected to industrial conditions of drying and ripening. Traditional conditions of drying and ripening at lower temperatures have led to lower oxidative changes in lipids in traditional dry fermented sausage Petrovská klobása during storage period. [Projekat Ministarstva nauke Republike Srbije, br. TR31032

  9. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  10. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. New insight on biological interaction analysis: new nanocrystalline mixed metal oxide SPME fiber for GC-FID analysis of BTEX and its application in human hemoglobin-benzene interaction studies.

    Directory of Open Access Journals (Sweden)

    Reza Hosseinzadeh

    Full Text Available Nanocrystalline mixed metal oxides (MMO of various metal cations were synthesized and were used for coating a piece of copper wire as a new high sensitive solid phase micro extraction (SPME fiber in extraction and determination of BTEX compounds from the headspace of aqueous samples prior to GC-FID analysis. Under optimum extraction conditions, the proposed fiber exhibited low detection limits, and quantification limits, good reproducibility, simple and fast preparation method, high fiber capacity and high thermal and mechanical durability. These are some of the most important advantages of the new fiber. The proposed fiber was used for human hemoglobin upon interaction with benzene. Binding isotherm, Scatchard and Klotz logarithmic plots were constructed using HS-SPME-GC data, accurately. The obtained binding isotherm analyzed using Hill method. The Hill parameters have been obtained by calculating saturation parameter from the ratio of measured chromatographic peak areas in the presence and absence of hemoglobin. In this interaction, Hill coefficient and Hill constant determined as (nH = 6.14 and log KH = 6.47 respectively. These results reveal the cooperativity of hemoglobin upon interaction with benzene.

  12. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity. modulatory effect of fenugreek seeds

    Directory of Open Access Journals (Sweden)

    Belaïd-Nouira Yosra

    2012-01-01

    Full Text Available Abstract Background Peroxidation of lipid (LPO membrane and cholesterol metabolism have been involved in the physiopathology of many diseases of aging brain. Therefore, this prospective animal study was carried firstly to find out the correlation between LPO in posterior brain and plasmatic cholesterol along with lipoprotein levels after chronic intoxication by aluminium chloride (AlCl3. Chronic aluminum-induced neurotoxicity has been in fact related to enhanced brain lipid peroxidation together with hypercholesterolemia and hypertriglyceridemia, despite its controversial etiological role in neurodegenerative diseases. Secondly an evaluation of the effectiveness of fenugreek seeds in alleviating the engendered toxicity through these biochemical parameters was made. Results Oral administration of AlCl3 to rats during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via the drinking water enhanced the levels of LPO in posterior brain, liver and plasma together with lactate dehydrogenase (LDH activities, total cholesterol (TC, triglycerides (TG and LDL-C (Low Density Lipoproteins levels. All these parameters were decreased following fenugreek seeds supplementation either as fenugreek seed powder (FSP or fenugreek seed extract (FSE. A notable significant correlation was observed between LPObrain and LDL-C on one hand and LDHliver on the other hand. This latter was found to correlate positively with TC, TG and LDL-C. Furthermore, high significant correlations were observed between LDHbrain and TC, TG, LDL-C, LPObrain as well as LDHliver. Conclusion Aluminium-induced LPO in brain could arise from alteration of lipid metabolism particularly altered lipoprotein metabolism rather than a direct effect of cholesterol oxidation. Fenugreek seeds could play an anti-peroxidative role in brain which may be attributed in part to its modulatory effect on plasmatic lipid metabolism.

  13. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Paul W.; Butt, Omer I. [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); D' Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-06-10

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  14. Fatty-acid oxidation and calcium homeostasis are involved in the rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats.

    Science.gov (United States)

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-08-01

    Lipid emulsion has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty-acid oxidation is required for rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore opening in bupivacaine-induced cardiac arrest before and after resuscitation with lipid emulsion. Prospective, randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. Asystole was achieved with a single dose of bupivacaine (10 mg/kg over 20 secs, intravenously) and 20% lipid emulsion infusion (5 mL/kg bolus, and 0.5 mL/kg/min maintenance), and cardiac massage started immediately. The rats in CVT-4325 (CVT) group were pretreated with a single dose of fatty-acid oxidation inhibitor CVT (0.5, 0.25, 0.125, or 0.0625 mg/kg bolus intravenously) 5 mins prior to inducing asystole by bupivacaine overdose. Heart rate, ejection fraction, fractional shortening, the threshold for opening of mitochondrial permeability transition pore, oxygen consumption, and membrane potential were measured. The values are mean ± SEM. Administration of bupivacaine resulted in asystole. Lipid Emulsion infusion improved the cardiac function gradually as the ejection fraction was fully recovered within 5 mins (ejection fraction=64±4% and fractional shortening=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10 mins. Lipid emulsion was only able to rescue rats pretreated with low dose of CVT (0.0625 mg/kg; heart rate~181±11 beats/min at 10 mins, recovery of 56%; ejection fraction=50±1%; fractional shortening=26±0.6% at 5 mins, n=3), but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25, or 0.125 mg/kg). The calcium-retention capacity in response to Ca²⁺ overload was significantly higher in cardiac

  15. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Huatao Li

    2016-09-01

    Full Text Available This study explored the effects of butylated hydroxytoluene (BHT and ethoxyquin (EQ and ethyl ether extracts, ethyl acetate extracts (EAE, acetone extracts, ethanol extracts and aqueous extracts of Ginkgo biloba leaves (EGbs on lipid oxidation in a linoleic acid emulsion, fish flesh and fish feed and in hydroxyl radical (·OH-treated carp erythrocytes. The linoleic acid, fish flesh and fish feed were incubated with BHT, EQ and EGbs at 45°C for 8 d, respectively, except for the control group. The lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed was then measured by the ferric thiocyanate method or thiobarbituric acid method. The carp erythrocytes were treated with BHT, EQ or EGbs in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37°C for 6 h, except for the control group. Oxidative stress and apoptosis parameters in carp erythrocytes were then evaluated by the commercial kit. The results showed that BHT, EQ and EGbs inhibited lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed and ·OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis in carp erythrocytes. Furthermore, BHT, EQ and EGbs decreased the generation of reactive oxygen species (ROS, inhibited the oxidation of cellular components and restored the activities of enzymatic antioxidants in ·OH-treated carp erythrocytes. Of all examined EGbs, EAE showed the strongest effects. The effects of EAE on lipid oxidation in the linoleic acid emulsion and on superoxide anion and malonaldehyde levels, catalase activity and apoptosis in ·OH-treated carp erythrocytes were equivalent to or stronger than those of BHT. Moreover, these results indicated that the inhibition order of EGbs on the generation of ROS and oxidation of cellular components in fish erythrocytes approximately agreed with that for the food and feed materials tested above. And, the antioxidative and anti-apoptotic effects of EGbs were

  16. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    International Nuclear Information System (INIS)

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-01-01

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  17. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  18. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    Science.gov (United States)

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Textural attributes and oxidative stability of pork longissimus muscle injected with marbling-like emulsified lipids.

    Science.gov (United States)

    Ma, Lizhen; Xiong, Youling L

    2011-10-01

    The objective of the study was to create marbling-like fat in lean pork with acceptable oxidative stability through the injection of canola/olive oil-substituted emulsions. Pork loins were injected with 5% water as control (CW) or 5% emulsion containing no tocopherols (E) or 0.07% tocopherols (ET) and stored at 2 °C in an oxygen-enriched package for up to 3 weeks. Lipid oxidation was totally inhibited in ET pork but increased 3-fold to 0.20mg malonaldehyde/kg in CW and E pork after 3 weeks. ET treatment also had a positive effect on meat red color. Emulsion-containing pork, showing less protein oxidation (carbonyl and disulfide formation), had reduced drip loss and shear force than CW samples (Pemulsions could create marbling-like texture in lean pork without compromising oxidative stability. Copyright © 2011. Published by Elsevier Ltd.

  20. Lipid oxidative changes in traditional dry fermented sausage Petrovská klobása during storage

    OpenAIRE

    Šojić, Branislav V.; Petrović, Ljiljana S.; Mandić, Anamarija I.; Sedej, Ivana J.; Džinić, Natalija R.; Tomović, Vladimir M.; Jokanović, Marija R.; Tasić, Tatjana A.; Škaljac, Snežana B.; Ikonić, Predrag M.

    2014-01-01

    The influence of drying and ripeninig conditions (traditional and industrial) in the production of dry fermented sausage Petrovská klobása, on fatty-acid composition and oxidative changes in lipids, during 7 months of storage, was investigated. During the storage period, the sum of unsaturated fatty acids and the content of free fatty acids were significantly higher (p

  1. Hemoglobin Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/hemoglobintest.html Hemoglobin Test To use the sharing features on this page, please enable JavaScript. What is a Hemoglobin Test? A hemoglobin test measures the levels of hemoglobin ...

  2. Changes in LDL fatty acid composition as a response to olive oil treatment are inversely related to lipid oxidative damage: The EUROLIVE study

    DEFF Research Database (Denmark)

    Cicero, Arrigo F G; Nascetti, Simona; López-Sabater, Maria C

    2008-01-01

    The aim of our study was to assess the changes in the fatty acid composition of low density lipoproteins (LDL) after sustained consumption of olive oil at real-life doses (25 mL/day) and their relationship with lipid oxidative damage.......The aim of our study was to assess the changes in the fatty acid composition of low density lipoproteins (LDL) after sustained consumption of olive oil at real-life doses (25 mL/day) and their relationship with lipid oxidative damage....

  3. The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation.

    Science.gov (United States)

    Sharma, Hari; Zhang, Xiaoying; Dwivedi, Chandradhar

    2010-04-01

    Ghee, also known as clarified butter, has been utilized for thousands of years in Ayurveda as a therapeutic agent. In ancient India, ghee was the preferred cooking oil. In the last several decades, ghee has been implicated in the increased prevalence of coronary artery disease (CAD) in Asian Indians due to its content of saturated fatty acids and cholesterol and, in heated ghee, cholesterol oxidation products. Our previous research on Sprague-Dawley outbred rats, which serve as a model for the general population, showed no effect of 5 and 10% ghee-supplemented diets on serum cholesterol and triglycerides. However, in Fischer inbred rats, which serve as a model for genetic predisposition to diseases, results of our previous research showed an increase in serum total cholesterol and triglyceride levels when fed a 10% ghee-supplemented diet. In the present study, we investigated the effect of 10% dietary ghee on microsomal lipid peroxidation, as well as serum lipid levels in Fischer inbred rats to assess the effect of ghee on free radical mediated processes that are implicated in many chronic diseases including cardiovascular disease. Results showed that 10% dietary ghee fed for 4 weeks did not have any significant effect on levels of serum total cholesterol, but did increase triglyceride levels in Fischer inbred rats. Ghee at a level of 10% in the diet did not increase liver microsomal lipid peroxidation or liver microsomal lipid peroxide levels. Animal studies have demonstrated many beneficial effects of ghee, including dose-dependent decreases in serum total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL), and triglycerides; decreased liver total cholesterol, triglycerides, and cholesterol esters; and a lower level of nonenzymatic-induced lipid peroxidation in liver homogenate. Similar results were seen with heated (oxidized) ghee which contains cholesterol oxidation products. A preliminary clinical study showed that high doses of

  4. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Akkarach Bumrungpert

    2018-06-01

    Full Text Available Ferulic acid is the most abundant phenolic compound found in vegetables and cereal grains. In vitro and animal studies have shown ferulic acid has anti-hyperlipidemic, anti-oxidative, and anti-inflammatory effects. The objective of this study is to investigate the effects of ferulic acid supplementation on lipid profiles, oxidative stress, and inflammatory status in hyperlipidemia. The study design is a randomized, double-blind, placebo-controlled trial. Subjects with hyperlipidemia were randomly divided into two groups. The treatment group (n = 24 was given ferulic acid (1000 mg daily and the control group (n = 24 was provided with a placebo for six weeks. Lipid profiles, biomarkers of oxidative stress and inflammation were assessed before and after the intervention. Ferulic acid supplementation demonstrated a statistically significant decrease in total cholesterol (8.1%; p = 0.001, LDL-C (9.3%; p < 0.001, triglyceride (12.1%; p = 0.049, and increased HDL-C (4.3%; p = 0.045 compared with the placebo. Ferulic acid also significantly decreased the oxidative stress biomarker, MDA (24.5%; p < 0.001. Moreover, oxidized LDL-C was significantly decreased in the ferulic acid group (7.1%; p = 0.002 compared with the placebo group. In addition, ferulic acid supplementation demonstrated a statistically significant reduction in the inflammatory markers hs-CRP (32.66%; p < 0.001 and TNF-α (13.06%; p < 0.001. These data indicate ferulic acid supplementation can improve lipid profiles and oxidative stress, oxidized LDL-C, and inflammation in hyperlipidemic subjects. Therefore, ferulic acid has the potential to reduce cardiovascular disease risk factors.

  5. IBX-mediated oxidation of unactivated cyclic amines: application in highly diastereoselective oxidative Ugi-type and aza-Friedel-Crafts reactions.

    Science.gov (United States)

    de Graaff, C; Bensch, L; van Lint, Matthijs J; Ruijter, E; Orru, R V A

    2015-10-28

    The first o-iodoxybenzoic acid (IBX) mediated oxidation of unactivated amines to imines is described. A range of meso-pyrrolidines were shown to be suitable substrates. The chemical space was further explored with one-pot oxidative Ugi-type and aza-Friedel-Crafts reactions, which proved to be highly diastereoselective.

  6. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases, s...... flippase activities in the plasma membrane of cells, using yeast as an example.......P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases......, studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  7. Formation of supported lipid bilayers of charged E. coli lipids on modified gold by vesicle fusion

    Directory of Open Access Journals (Sweden)

    Ileana F. Márquez

    2017-01-01

    Full Text Available We describe a simple way of fusing E. coli lipid vesicles onto a gold surface. Supported lipid bilayers on metal surfaces are interesting for several reasons: transducing a biological signal to an electric readout, using surface analytical tools such as Surface Plasmon Resonance (SPR, Infrared Reflection Absorption Spectroscopy, Neutron Reflectivity or Electrochemistry. The most widely used method to prepare supported lipid membranes is fusion of preexisting liposomes. It is quite efficient on hydrophilic surfaces such as glass, mica or SiO2, but vesicle fusion on metals and metal oxide surfaces (as gold, titanium oxide or indium tin oxide, remains a challenge, particularly for vesicles containing charged lipids, as is the case of bacterial lipids. We describe a simple method based on modifying the gold surface with a charged mercaptopropionic acid self-assembled monolayer and liposomes partially solubilized with detergent. The formed bilayers were characterized using a Quartz Crystal Microbalance with dissipation (QCM-D and Atomic Force Microscopy (AFM. Some advantages of this protocol are that the stability of the self-assembled monolayer allows for repeated use of the substrate after detergent removal of the bilayer and that the amount of detergent required for optimal fusion can be determined previously using the lipid-detergent solubility curve.

  8. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin

    Directory of Open Access Journals (Sweden)

    Danielle Ayr Tavares de Almeida

    2012-08-01

    Full Text Available The present study investigated the effect of supplementation of vitamin E on streptozotocin (STZ-induced diabetic rats by measuring blood glucose, changes in body weight, food and water intake, lipid profile, serum urea and creatinine level, and antioxidant enzyme activity. Male Wistar rats were divided into four groups: control rats (GI; rats receiving vitamin E (GII; STZ-induced diabetic rats (GIII and STZ-induced diabetic rats treated with vitamin E (GIV. Vitamin E reduced (p<0.05 blood glucose and urea, improved the lipid profile (decreased the serum levels of total cholesterol, LDL cholesterol, VLDL cholesterol and triacylglycerols, and increased HDL cholesterol and increased total protein in STZ-induced diabetic rats (GIV. Vitamin prevented changes in the activity of SOD and GSH-Px and in the concentration of lipid hydroperoxide. These results suggested that vitamin E improved hyperglycaemia and dyslipidaemia while inhibiting the progression of oxidative stress in STZ-induced diabetic rats.

  9. A new hemoglobin gene from soybean: a role for hemoglobin in all plants

    DEFF Research Database (Denmark)

    Anderson, C R; Jensen, E O; LLewellyn, D J

    1996-01-01

    We have isolated a new hemoglobin gene from soybean. It is expressed in cotyledons, stems of seedlings, roots, young leaves, and in some cells in the nodules that are associated with the nitrogen-fixing Bradyrhizobium symbiont. This contrasts with the expression of the leghemoglobins, which...... are active only in the infected cells of the nodules. The deduced protein sequence of the new gene shows only 58% similarity to one of the soybean leghemoglobins, but 85-87% similarity to hemoglobins from the nonlegumes Parasponia, Casuarina, and barley. The pattern of expression and the gene sequence...... indicate that this new gene is a nonsymbiotic legume hemoglobin. The finding of this gene in legumes and similar genes in other species strengthens our previous suggestion that genomes of all plants contain hemoglobin genes. The specialized leghemoglobin gene family may have arisen from a preexisting...

  10. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    International Nuclear Information System (INIS)

    Ahn, D.U.; Nam, K.C.

    2004-01-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  11. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  12. Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: Interplay between nanostructure and composition

    Science.gov (United States)

    Pozzi, D.; Marchini, C.; Cardarelli, F.; Salomone, F.; Coppola, S.; Montani, M.; Zabaleta, M. Elexpuru; Digman, M.A.; Gratton, E.; Colapicchioni, V.; Caracciolo, G.

    2014-01-01

    Here we present a quantitative mechanism-based investigation aimed at comparing the cell uptake, intracellular trafficking, endosomal escape and final fate of lipoplexes and lipid–protamine/deoxyribonucleic acid (DNA) (LPD) nanoparticles (NPs) in living Chinese hamster ovary (CHO) cells. As a model, two lipid formulations were used for comparison. The first formulation is made of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic lipid dioleoylphosphocholine (DOPC), while the second mixture is made of the cationic 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE). Our findings indicate that lipoplexes are efficiently taken up through fluid-phase macropinocytosis, while a less efficient uptake of LPD NPs occurs through a combination of both macropinocytosis and clathrin-dependent pathways. Inside the cell, both lipoplexes and LPD NPs are actively transported towards the cell nucleus, as quantitatively addressed by spatio-temporal image correlation spectroscopy (STICS). For each lipid formulation, LPD NPs escape from endosomes more efficiently than lipoplexes. When cells were treated with DOTAP–DOPC-containing systems the majority of the DNA was trapped in the lysosome compartment, suggesting that extensive lysosomal degradation was the rate-limiting factors in DOTAP–DOPC-mediated transfection. On the other side, escape from endosomes is large for DC-Chol–DOPE-containing systems most likely due to DOPE and cholesterol-like molecules, which are able to destabilize the endosomal membrane. The lipid-dependent and structure-dependent enhancement of transfection activity suggests that DNA is delivered to the nucleus synergistically: the process requires both the membrane-fusogenic activity of the nanocarrier envelope and the employment of lipid species with intrinsic endosomal rupture ability. PMID:24296066

  13. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation.

    Science.gov (United States)

    Oboh, Ganiyu; Olasehinde, Tosin A; Ademosun, Ayokunle O

    2014-01-01

    This study sought to investigate the effects of essential oil from lemon (Citrus limoni) peels on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. The essential oil was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography. Antioxidant properties of the oil and inhibition of pro-oxidant-induced lipid peroxidation in rats brain homogenate were also assessed. The essential oil inhibited AChE and BChE activities in a concentration-dependent manner. GC analysis revealed the presence of sabinene, limonene, α-pinene, β-pinene, neral, geranial, 1,8-cineole, linalool, borneol, α-terpineol, terpinen-4-ol, linalyl acetate and β-caryophyllene. Furthermore, the essential oil exhibited antioxidant activities as typified by ferric reducing property, Fe(2+)-chelation and radicals [DPPH, ABTS, OH, NO] scavenging abilities. The inhibition of AChE and BChE activities, inhibition of pro-oxidant induced lipid peroxidation and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress-induced neurodegeneration.

  14. A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Science.gov (United States)

    Bernard, Kristine E.; Parkes, Tony L.; Merritt, Thomas J. S.

    2011-01-01

    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain. PMID

  15. Direct Electrochemistry of Hemoglobin at a Graphene Gold Nanoparticle Composite Film for Nitric Oxide Biosensing

    Directory of Open Access Journals (Sweden)

    Guang-Chao Zhao

    2013-06-01

    Full Text Available A simple two-step method was employed for preparing nano-sized gold nanoparticles-graphene composite to construct a GNPs-GR-SDS modified electrode. Hemoglobin (Hb was successfully immobilized on the surface of a basal plane graphite (BPG electrode through a simple dropping technique. Direct electrochemistry and electrocatalysis of the hemoglobin-modified electrode was investigated. The as-prepared composites showed an obvious promotion of the direct electro-transfer between hemoglobin and the electrode. A couple of well-defined and quasi-reversible Hb CV peaks can be observed in a phosphate buffer solution (pH 7.0. The separation of anodic and cathodic peak potentials is 81 mV, indicating a fast electron transfer reaction. The experimental results also clarified that the immobilized Hb retained its biological activity for the catalysis toward NO. The biosensor showed high sensitivity and fast response upon the addition of NO, under the conditions of pH 7.0, potential ‒0.82 V. The time to reach the stable-state current was less than 3 s, and the linear response range of NO was 0.72–7.92 μM, with a correlation coefficient of 0.9991.

  16. Impact of green tea extract addition on oxidative changes in the lipid fraction of pastry products.

    Science.gov (United States)

    Żbikowska, Anna; Kowalska, Małgorzata; Rutkowska, Jarosława; Kozłowska, Mariola; Onacik-Gür, Sylwia

    2017-01-01

    Alongside flour, fat is the key ingredient of sponge cakes, including those with long shelf lives. It is an unstable food component, whose quality and nutritional safety depend on the composition and pres- ence of oxidation products. Consumption of fat oxidation products adversely affects the human body and contributes to the incidence of a number of medical conditions. Qualitative changes in fats extracted from thermostat sponge cakes with and without antioxidant additions were determined in this study. In the study, two types of antioxidant were used: natural - green tea extract in three doses (0.02%; 0.2% and 1.0%) and synthetic BHA (0.02%) and 100%, solid bakery shortening. Sponge-cakes were thermostatted at temperatures 63°C after twenty-eight days. In this study, the quality of the lipid fraction was analyzed. The amount of primary (PV) and secondary (AnV) oxidation products was determined, and   a Rancimat test was performed. Adding antioxidants to fats varied in the degree to which oxidation processes of lipids fractions were inhibited. The peroxide value after twenty-eight days of thermostatting ranged from 3.57 meq O/kg (BHA) and 11.14 O meq/kg (extract content - 1%) to 62.85 meq O/kg (control sample). In turn, the value of AnV after the storage period ranged from 4.84 (BHA) and 6.71 (extract content - 1%) to 16.83 (control sample). The best protective effects in the process of oxidation was achieved by BHA. The longest in- duction time and the lowest peroxide value and anisidine value were obtained for this antioxidant. It was achieved after twenty-eight days of fat thermostatting. Nonetheless, the results demonstrated it is possible to use the commercially available green tea extract to slow the adverse process of fat oxidation in sponge cake products.

  17. Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Yan-Song; Li, Wen-Juan; Zhang, Xian-Yi; Yan, Yu-Xin; Nie, Shao-Ping; Gong, De-Ming; Tang, Xiao-Fang; He, Ming; Xie, Ming-Yong

    2017-05-01

    Ganoderma atrum polysaccharide (PSG-1), a main polysaccharide from Ganoderma atrum, possesses potent antioxidant capacity and cardiovascular benefits. The aim of this study was to investigate the role of PSG-1 in oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs) under anoxia/reoxygenation (A/R) injury conditions. The results showed that exposure of HUVECs to A/R triggered cell death and apoptosis. Administration of PSG-1 significantly inhibited A/R-induced cell death and apoptosis in HUVECs. PSG-1-reduced A/R injury was mediated via mitochondrial apoptotic pathway, as evidenced by elevation of mitochondrial Bcl-2 protein and mitochondrial membrane potential, and attenuation of Bax translocation, cytochrome c release and caspases activation. Furthermore, PSG-1 enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase and glutathione content, and concomitantly attenuated reactive oxygen species generation, lipid peroxidation and glutathione disulfide content. The antioxidant, N-acetyl-l-cysteine, significantly ameliorated all of these endothelial injuries caused by A/R, suggesting that antioxidant activities might play a key role in PSG-1-induced endothelial protection. Taken together, these findings suggested that PSG-1 could be as a promising adjuvant against endothelial dysfunction through ameliorating oxidative stress and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  19. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Bollano, Entela; Lindegaard, Marie L S

    2003-01-01

    Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport....../ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased...... across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P hearts. Histological examinations...

  20. Radiation-induced oxidative injury of the ileum and colon is alleviated by glucagon-like peptide-1 and -2

    Directory of Open Access Journals (Sweden)

    Mustafa Deniz

    2015-04-01

    Conclusion: Current findings suggest that GLP-1 and GLP-2 appear to have protective roles in the irradiation-induced oxidative damage of the gut by inhibiting neutrophil infiltration and subsequent activation of inflammatory mediators that induce lipid peroxidation.

  1. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  2. Cell type-specific modulation of lipid mediator's formation in murine adipose tissue by omega-3 fatty acids

    Czech Academy of Sciences Publication Activity Database

    Kuda, Ondřej; Rombaldová, Martina; Janovská, Petra; Flachs, Pavel; Kopecký, Jan

    2016-01-01

    Roč. 469, č. 3 (2016), s. 731-736 ISSN 0006-291X R&D Projects: GA ČR(CZ) GP13-04449P; GA ČR(CZ) GA13-00871S; GA MŠk(CZ) LH14040 Institutional support: RVO:67985823 Keywords : adipose tissue macrophages * omega-3 PUFA * protectin D1 * lipid mediators * lipidomics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.466, year: 2016

  3. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Effect of dietary alpha-tocopherol supplementation and gamma-irradiation on alpha-tocopherol retention and lipid oxidation in cooked minced chicken

    International Nuclear Information System (INIS)

    Galvin, K.; Morrissey, P.A.; Buckley, D.J.

    1998-01-01

    The effects of dietary alpha-tocopherol supplementation and gamma-irradiation on alpha-tocopherol retention and lipid oxidation in cooked minced chicken during refrigerated storage were studied. Minced breast and thigh meat from broilers fed diets supplemented with 100, 200 or 400 mg alpha-tocopheryl acetate/kg feed was irradiated at 2.5 or 4.0 kGy. Cooked irradiated and unirradiated meat was stored at 4 degrees C for 5 days. alpha-Tocopherol concentrations increased with increasing dietary supplementation. Concentrations decreased during storage, but retention was not affected by irradiation. Lipid stability was determined by measuring the formation of thiobarbituric acid-reacting substances (TBARS) and cholesterol oxidation products (COPs) during storage. TBARS and COPs increased during storage and were reduced by increasing levels of dietary alpha-tocopheryl acetate supplementation. Irradiation accelerated TBARS formation during storage, but this was prevented by supplementation with 200 mg alpha-tocopheryl acetate/kg feed. Irradiation tended to increase COPs during storage, although no consistent effects were observed. In general supplementation with over 400 mg alpha-tocopheryl acetate/kg feed may be required to control cholesterol oxidation in minced chicken. The results suggest that, overall, irradiation had little effect on lipid stability in alpha-tocopherol-supplemented meat following cooking and storage

  5. The Effects of Isoflavone Supplementation Plus Combined Exercise on Lipid Levels, and Inflammatory and Oxidative Stress Markers in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Jéssica S. Giolo

    2018-03-01

    Full Text Available This study tested the effect of isoflavone supplementation in addition to combined exercise training on plasma lipid levels, inflammatory markers and oxidative stress in postmenopausal women. Thirty-two healthy and non-obese postmenopausal women without hormone therapy were randomly assigned to exercise + placebo (PLA; n = 15 or exercise + isoflavone supplementation (ISO; n = 17 groups. They performed 30 sessions of combined exercises (aerobic plus resistance over ten weeks and consumed 100 mg of isoflavone supplementation or placebo. Blood samples were collected after an overnight fast to analyze the lipid profile, interleukin-6 (IL-6, interleukin-8 (IL-8, superoxide dismutase (SOD, total antioxidant capacity (FRAP, and thiobarbituric acid reactive substances (TBARS, before and after ten weeks of the intervention. There were no differences in the changes (pre vs. post between groups for any of the inflammatory markers, oxidative stress markers or lipid profile variables. However, interleukin-8 was different between pre- and post-tests (p < 0.001 in both groups (Δ = 7.61 and 5.61 pg/mL as were cholesterol levels (p < 0.05, with no interaction between groups. The combination of isoflavone supplementation and exercise training did not alter oxidative stress markers in postmenopausal women, but exercise training alone may increase IL-8 and decrease total cholesterol levels.

  6. Blood Test: Hemoglobin A1C

    Science.gov (United States)

    ... Why Are Hemoglobin A1c Tests Done? When a child has diabetes, hemoglobin A1c levels are followed to see how well medicines are working. If a child with diabetes has a high hemoglobin A1c level, it may ...

  7. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting

    Directory of Open Access Journals (Sweden)

    Idriss Ali

    2011-04-01

    Full Text Available Abstract Background In resource poor settings where automated hematology analyzers are not available, the Cyanmethemoglobin method is often used. This method though cheaper, takes more time. In blood donations, the semi-quantitative gravimetric copper sulfate method which is very easy and inexpensive may be used but does not provide an acceptable degree of accuracy. The HemoCue® hemoglobin photometer has been used for these purposes. This study was conducted to generate data to support or refute its use as a point-of-care device for hemoglobin estimation in mobile blood donations and critical care areas in health facilities. Method EDTA blood was collected from study participants drawn from five groups: pre-school children, school children, pregnant women, non-pregnant women and men. Blood collected was immediately processed to estimate the hemoglobin concentration using three different methods (HemoCue®, Sysmex KX21N and Cyanmethemoglobin. Agreement between the test methods was assessed by the method of Bland and Altman. The Intraclass correlation coefficient (ICC was used to determine the within subject variability of measured hemoglobin. Results Of 398 subjects, 42% were males with the overall mean age being 19.4 years. The overall mean hemoglobin as estimated by each method was 10.4 g/dl for HemoCue, 10.3 g/dl for Sysmex KX21N and 10.3 g/dl for Cyanmethemoglobin. Pairwise analysis revealed that the hemoglobin determined by the HemoCue method was higher than that measured by the KX21N and Cyanmethemoglobin. Comparing the hemoglobin determined by the HemoCue to Cyanmethemoglobin, the concordance correlation coefficient was 0.995 (95% CI: 0.994-0.996, p Conclusion Hemoglobin determined by the HemoCue method is comparable to that determined by the other methods. The HemoCue photometer is therefore recommended for use as on-the-spot device for determining hemoglobin in resource poor setting.

  8. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Langkilde, Annette Eva

    2014-01-01

    Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molec......Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including...... the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution...... small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein...

  9. Elastin aging and lipid oxidation products in human aorta

    Directory of Open Access Journals (Sweden)

    Kamelija Zarkovic

    2015-04-01

    Full Text Available Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA, (4-hydroxynonenal, malondialdehyde, acrolein, form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development.

  10. Lipid stability in meat and meat products.

    Science.gov (United States)

    Morrissey, P A; Sheehy, P J; Galvin, K; Kerry, J P; Buckley, D J

    1998-01-01

    Lipid oxidation is one of the main factors limiting the quality and acceptability of meats and meat products. Oxidative damage to lipids occurs in the living animal because of an imbalance between the production of reactive oxygen species and the animal's defence mechanisms. This may be brought about by a high intake of oxidized lipids or poly-unsaturated fatty acids, or a low intake of nutrients involved in the antioxidant defence system. Damage to lipids may be accentuated in the immediate post-slaughter period and, in particular, during handling, processing, storage and cooking. In recent years, pressure to reduce artificial additive use in foods has led to attempts to increase meat stability by dietary strategies. These include supplementation of animal diets with vitamin E, ascorbic acid, or carotenoids, or withdrawal of trace mineral supplements. Dietary vitamin E supplementation reduces lipid and myoglobin oxidation, and, in certain situations, drip losses in meats. However, vitamin C supplementation appears to have little, if any, beneficial effects on meat stability. The effect of feeding higher levels of carotenoids on meat stability requires further study. Some studies have demonstrated that reducing the iron and copper content of feeds improves meat stability. Post-slaughter carnosine addition may be an effective means of improving lipid stability in processed meats, perhaps in combination with dietary vitamin E supplementation.

  11. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil

    DEFF Research Database (Denmark)

    Qiu, Xujian; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2018-01-01

    in fish oil enriched cow milk. In contrast, soy milk samples having much higher unsaturated fatty acid content showed higher lipid oxidation stability compared to cow milk. Reduction in the content of chlorogenic acid during storage suggested that this compound may contribute to the lipid oxidation...... stability of fish oil enriched soy milk product. Total carnosic acid and carnosol concentration declined much faster in soy milk than in cow milk. It is suggested from the results that food components could have significant impact on the fate of bioactive antioxidant compounds in a specific food product...

  12. Plasma lipid oxidation predicts atherosclerotic status better than cholesterol in diabetic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Petersen, Karen Ekkelund; Lykkesfeldt, Jens; Raun, Kirsten

    2017-01-01

    Increased levels of oxidative stress have been suggested to play a detrimental role in the development of diabetes-related vascular complications. Here, we investigated whether the concentration of malondialdehyde, a marker of lipid oxidation correlated to the degree of aortic plaque lesions...... in a proatherogenic diabetic mouse model. Three groups of apolipoprotein E knockout mice were studied for 20 weeks, a control, a streptozotocin-induced diabetic, and a diabetic enalapril-treated group. Enalapril was hypothesized to lower oxidative stress level and thus the plaque burden. Both diabetic groups were...... significantly different from the control group as they had higher blood glucose, HbA1c, total cholesterol, low-density lipoprotein, very low-density lipoprotein, together with a lower high-density lipoprotein concentration and body weight. Animals in the diabetic group had significantly higher plaque area...

  13. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy.

    Science.gov (United States)

    Chen, Qingmin; Xie, Yunfei; Xi, Jinzhong; Guo, Yahui; Qian, He; Cheng, Yuliang; Chen, Yi; Yao, Weirong

    2018-03-15

    In this study, electron spin resonance (ESR) and Raman spectroscopy were applied to characterize lipid oxidation of beef during repeated freeze-thaw (RFT). Besides the conventional indexes including peroxide values (PV), thiobarbituric acid-reactive substances (TBARS) and acid values (AV) were evaluated, the radical and molecular structure changes were also measured by ESR and Raman spectroscopy. The results showed that PV, TBARS and AV were increased (PRaman intensity of ν(CC) stretching region (1655cm -1 ) was decreased during RFT. Furthermore, lower Raman intensity ratio of I 1655 /I 1442 , I 1655 /I 1745 that determine total unsaturation was also observed. Significant correlations (pRaman spectroscopy. Our result has proved that ESR and Raman spectroscopy showed great potential in characterizing lipid oxidation process of beef during RFT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electrodiffusion of Lipids on Membrane Surfaces

    OpenAIRE

    Zhou, Y. C.

    2011-01-01

    Random lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when this lateral random diffusion is mediated by the electrostatic interactions and membrane curvature. Though the lateral diffusion rates of lipids on membrane of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregati...

  15. Determination Of Ph Including Hemoglobin Correction

    Science.gov (United States)

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  16. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluation of Biofuel Cells with Hemoglobin as Cathodic Electrocatalysts for Hydrogen Peroxide Reduction on Bare Indium-Tin-Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Yusuke Ayato

    2013-12-01

    Full Text Available A biofuel cell (BFC cathode has been developed based on direct electron transfer (DET of hemoglobin (Hb molecules with an indium-tin-oxide (ITO electrode and their electrocatalysis for reduction of hydrogen peroxide (H2O2. In this study, the ITO-coated glass plates or porous glasses were prepared by using a chemical vapor deposition (CVD method and examined the electrochemical characteristics of the formed ITO in pH 7.4 of phosphate buffered saline (PBS solutions containing and not containing Hb. In half-cell measurements, the reduction current of H2O2 due to the electrocatalytic activity of Hb increased with decreasing electrode potential from around 0.1 V versus Ag|AgCl|KCl(satd. in the PBS solution. The practical open-circuit voltage (OCV on BFCs utilizing H2O2 reduction at the Hb-ITO cathode with a hydrogen (H2 oxidation anode at a platinum (Pt electrode was expected to be at least 0.74 V from the theoretical H2 oxidation potential of −0.64 V versus Ag|AgCl|KCl(satd. in pH 7.4. The assembled single cell using the ITO-coated glass plate showed the OCV of 0.72 V and the maximum power density of 3.1 µW cm−2. The maximum power per single cell was recorded at 21.5 µW by using the ITO-coated porous glass.

  18. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord.

    Science.gov (United States)

    Hamann, Kristin; Nehrt, Genevieve; Ouyang, Hui; Duerstock, Brad; Shi, Riyi

    2008-02-01

    We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo, and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, where lipid peroxidation is known to be involved. The current study demonstrates that the acrolein scavenger hydralazine protects against not only acrolein-mediated injury, but also compression in guinea pig spinal cord ex vivo. Specifically, hydralazine (500 mumol/L to 1 mmol/L) can significantly alleviate acrolein (100-500 mumol/L)-induced superoxide production, glutathione depletion, mitochondrial dysfunction, loss of membrane integrity, and reduced compound action potential conduction. Additionally, 500 mumol/L hydralazine significantly attenuated compression-mediated membrane disruptions at 2 and 3 h following injury. This was consistent with our findings that acrolein-lys adducts were increased following compression injury ex vivo, an effect that was prevented by hydralazine treatment. These findings provide further evidence for the role of acrolein in spinal cord injury, and suggest that acrolein-scavenging drugs such as hydralazine may represent a novel therapy to effectively reduce oxidative stress in disorders such as spinal cord injury and neurodegenerative diseases, where oxidative stress is known to play a role.

  19. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  20. Radioiodine remnant ablation of differentiated thyroid cancer does not further increase oxidative damage to membrane lipids - early effect

    Directory of Open Access Journals (Sweden)

    Makarewicz Jacek

    2010-10-01

    Full Text Available Abstract Introduction Radioiodine (131I therapy is widely accepted as an essential part of therapeutic regimens in many cases of differentiated thyroid cancer. Radiation-induced oxidative damage to macromolecules is a well known phenomenon. Frequently examined process to evaluate oxidative damage to macromolecules is lipid peroxidation (LPO, resulting from oxidative damage to membrane lipids. The aim of the study was to examine serum LPO level in hypothyroid (after total thyroidectomy cancer patients subjected to ablative activities of 131I. Materials and methods The study was carried out in 21 patients (18 females and 3 males, average age 52.4 ± 16.5 years after total thyroidectomy for papillary (17 patients or follicular (4 patients thyroid carcinoma. Hypothyroidism was confirmed by increased TSH blood concentration (BRAHMS, Germany, measured before 131I therapy. Activity of 2.8 - 6.9 GBq of 131I was administered to the patients orally as sodium iodide (OBRI, Poland. Concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA, as an index of LPO (LPO-586 kit, Calbiochem, USA, were measured in blood serum just before 131I administration (day "0" and on the days 1-4 after 131I therapy. Sera from 23 euthyroid patients served as controls. Correlations between LPO and TSH or 131I activity were calculated. Results Expectedly, serum LPO level, when measured before 131I therapy, was several times higher (p 131I therapy. LPO did not correlate with TSH concentration. In turn, negative correlation was found between 131I activity and LPO level on the day "2" after radioiodine treatment. Conclusions Radioiodine remnant ablation of differentiated thyroid cancer does not further increase oxidative damage to membrane lipids, at least early, after therapy.