WorldWideScience

Sample records for hemispheroidal dielectric resonator

  1. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequen......The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs...

  2. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  3. Normal modes and quality factors of spherical dielectric resonators: I ...

    Indian Academy of Sciences (India)

    Eigenmodes; spherical resonators; spherical dielectric resonators; quality factors. PACS No. 42.50. .... Alternatively, introducing the angular momentum operator L defined as, L = (1/j)( r × ∇) ...... referee of the article for some helpful comments.

  4. Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    OpenAIRE

    Krasnok, Alex; Caldarola, Martin; Bonod, Nicolas; Alú, Andrea

    2017-01-01

    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effec...

  5. Analysis of a shielded TE011 mode composite dielectric resonator ...

    Indian Academy of Sciences (India)

    Abstract. Analysis of a TE011 mode composite sapphire–rutile dielectric resonator has been car- ried out to study the temperature variation of resonance frequency, close to the Cs atomic clock hyperfine frequency of 9.192 GHz. The complementary behavior of dielectric permittivity with tem- perature of the composite has ...

  6. Dielectric studies of fluids with reentrant resonators

    International Nuclear Information System (INIS)

    Goodwin, A.R.H.; Moldover, M.R.

    1993-01-01

    The authors have used a reentrant radio-frequency (rf) cavity as a resonator operating near 375 MHz to measure changes in the dielectric constant of fluids within it. The utility of these measurements was demonstrated by determining the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate replacement refrigerant (denoted R236ea) and by detecting the phase boundaries in the mixture [(1-x)C 2 H 6 + xCO 2 ], for the mole fraction x = 0.492. The densities of the coexisting phases of the mixture were determined using the Clausius-Mossotti relation which has errors on the order of 0.5% in this application. To test the accuracy of the present techniques, the rf resonator was calibrated with helium and then used to redetermine the molar polarizability A e of argon. The results were in excellent agreement with published values. The design of the reentrant resonator makes it suitable for use with corrosive fluids at temperature up to 400 degrees C

  7. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  8. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  9. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  10. Investigations on perturbations of microwave dielectric resonator thermometer

    International Nuclear Information System (INIS)

    Yu, Lili; Zhang, Guangming; Fernicola, V; Lu, Jinchuan

    2017-01-01

    Investigations of antenna probe length, antenna-dielectric distance, cavity filling and humidity on microwave resonator thermometer with respect to Q , spurious mode depression, coupling strength, accuracy, shock resistance or sensitivity were carried out in order to improve the dielectric resonator thermometer performance. Significant improvement of Q and depression of spurious mode coupling were obtained when the antenna length was reduced. It also turns out that the Q and spurious mode coupling strength vary with the distance between dielectric and antenna pin, as well under appropriate antenna length. Filling the cavity with nitrogen increases coupling strength but decrease frequency-temperature sensitivity compared to a vacuum-pumped cavity. Besides, preliminary results on the microwave resonator sensitivity to air humidity were obtained. (technical note)

  11. Longitudinally mounted light emitting plasma in a dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Gilliard, Richard; DeVincentis, Marc; Hafidi, Abdeslam; O' Hare, Daniel; Hollingsworth, Gregg [LUXIM Corporation, 1171 Borregas Avenue, Sunnyvale, CA 94089 (United States)

    2011-06-08

    Methods for coupling power from a dielectric resonator to a light-emitting plasma have been previously described (Gilliard et al IEEE Trans. Plasma Sci. at press). Inevitably, regardless of the efficiency of power transfer, much of the emitted light is absorbed in the resonator itself which physically surrounds much if not all of the radiating material. An investigation into a method is presented here for efficiently coupling power to a longitudinally mounted plasma vessel which is mounted on the surface of the dielectric material of the resonator, thereby eliminating significant absorption of light within the resonator structure. The topology of the resonator and its physical properties as well as those of the metal halide plasma are presented. Results of basic models of the field configuration and plasma are shown as well as a configuration suitable as a practical light source.

  12. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  13. Robust design of microlenses arrays employing dielectric resonators metasurfaces

    NARCIS (Netherlands)

    Silvestri, F.; Gerini, G.; Bäumer, S.M.B.

    2017-01-01

    In the last years, much interest has grown around the concept of optical surfaces employing high contrast dielectric resonators. However, a systematic approach for the design of this optical surfaces under particular requirements has never been proposed. In this contribution, we describe this

  14. Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators

    Science.gov (United States)

    Ruytenberg, Thomas; Webb, Andrew G.

    2017-11-01

    Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.

  15. Manipulation of plasmonic resonances in graphene coated dielectric cylinders

    KAUST Repository

    Ge, Lixin

    2016-11-16

    Graphene sheets can support surface plasmon as the Dirac electrons oscillate collectively with electromagnetic waves. Compared with the surface plasmon in conventional metal (e.g., Ag and Au), graphene plasmonic owns many remarkable merits especially in Terahertz and far infrared frequencies, such as deep sub-wavelength, low loss, and high tunability. For graphene coated dielectric nano-scatters, localized surface plasmon (LSP)exist and can be excited under specific conditions. The LSPs are associated with the Mie resonance modes, leading to extraordinary large scattering and absorption cross section. In this work, we study systematically the optical scattering properties for graphene coated dielectric cylinders. It is found that the LSP can be manipulated by geometrical parameters and external electric gating. Generally, the resonance frequencies for different resonance modes are not the same. However, under proper design, we show that different resonance modes (e.g., dipole mode, quadruple mode etc.) can be excited at the same frequency. Thus, the scattering and absorption by graphene coated dielectric cylinders can indeed overcome the single channel limit. Our finding may open up new avenues in applications for the graphene-based THz optoelectronic devices.

  16. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  17. Complex permittivity measurements of ferroelectric employing composite dielectric resonator technique

    Czech Academy of Sciences Publication Activity Database

    Krupka, J.; Zychowicz, T.; Bovtun, Viktor; Veljko, Sergiy

    2006-01-01

    Roč. 53, č. 10 (2006), s. 1883-1888 ISSN 0885-3010 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric resonator * ferroelectrics * microwave measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.729, year: 2006

  18. Multipolar modes in dielectric disk resonator for wireless power transfer

    Science.gov (United States)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2017-09-01

    We demonstrate a magnetic resonant WPT system based on dielectric disk resonators and investigated the WPT efficiency as a function of separation. It has been demonstrated that the power transfer can be achieved at different multipolar modes. The numerical study shows that the highest WPT efficiency of 99% can be obtained for the MQ mode in an ideal case. However, the efficiency of MQ mode decays much faster than the MD mode which suggests that a trade-off has to be made in the practical WPT system design.

  19. Finite-size resonance dielectric cylinder in a rectangular waveguide

    International Nuclear Information System (INIS)

    Chuprina, V.N.; Khizhnyak, N.A.

    1988-01-01

    The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted

  20. Oblate hemispheroidal Large Ruthenium Particles Supported on Calcium Amide as Efficient Catalysts for Ammonia Decomposition.

    Science.gov (United States)

    Kishida, Kazuhisa; Kitano, Masaaki; Inoue, Yasunori; Sasase, Masato; Nakao, Takuya; Tada, Tomofumi; Abe, Hitoshi; Niwa, Yasuhiro; Yokoyama, Toshiharu; Hara, Michikazu; Hosono, Hideo

    2018-03-30

    Ammonia decomposition is positioned as an important technology for abstracting hydrogen from ammonia toward the realization of a hydrogen economy. Here, we report that oblate hemispheroidal large Ru particles on Ca(NH₂)₂ function as efficient catalysts for ammonia decomposition. The turnover frequency (TOF) of Ru/Ca(NH₂)₂ increased by two orders of magnitude as the Ru particle size was increased from 1.5 to 8.4 nm. More than 90% ammonia decomposition was achieved over Ru/Ca(NH₂)₂ with oblate hemispheroidal large Ru particles at 360 ºC, which is comparable to that of alkali-promoted Ru catalysts with small Ru particle sizes. XAFS analyses revealed that Ru particles are immobilized on Ca(NH₂)₂ by Ru-N bonding formed at the metal-support interface, which leads to oblate hemispheroidal Ru particles. Such a strong metal-support interaction in the Ru/Ca(NH₂)₂ is also substantiated by density functional theory calculations. The high activity of Ru/Ca(NH₂)₂ with large Ru particles primarily originates from the shape and appropriate size of Ru particles with a high density of active sites rather than the electron-donating ability of Ca(NH₂)₂. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances

    International Nuclear Information System (INIS)

    Zhu, Lei; Dong, Liang

    2014-01-01

    We numerically demonstrate that a broadband electromagnetically induced transparency–like (EIT-like) effect can be achieved in an all-dielectric microstructure consisting of a dielectric bar and six dielectric bricks. With proper excitations, the dielectric bar and bricks serve as bright and dark elements via the Mie electric and magnetic resonances, respectively. In particular, the mutual couplings between the Mie electric and magnetic resonances induce a broad transparency window. The nature of resonances of the broadband EIT-like effect in an all-dielectric microstructure is investigated by numerical simulation and a coupled oscillator model. Results reveal that significant enhancement of coupling interactions between dielectric resonators leads to a broadband EIT-like effect. Such a dielectric EIT-like structure is promising for future applications in nonlinear optics, slow light devices, and filters. (paper)

  2. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  3. HTS microstrip disk resonator with an upper dielectric layer for 4GHz

    International Nuclear Information System (INIS)

    Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru

    2006-01-01

    We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power

  4. Dielectric resonance in ErFeO3 in the region of spin reorientation

    International Nuclear Information System (INIS)

    Dan'shin, N.K.; Kovtun, N.M.; Sdvizhkov, M.A.

    1984-01-01

    In the region of spin reorientation in ErFeO 3 in the millimetre wave range a dielectric resonance has been found - excitation of electromaqnetic field natural oscillations in spherical samples. The fregurncies of dielectric resonance in samples from ErFeO 3 possess strong independence of temperature and magnetic field in the vicinity of the spin reorientation for account of a strong growth in the magnetic susceptibility. The frequencies change most considerably in the region of low-temperature spin reorientation related to antiferromagnetic rare earth ordering. Strong anisotropy of magnetic susceptibility cases various temperature and field dependences of the dielectric resonance frequencies at different orientations of the exciting electromagnetic field relative to the crystal axes. It is shown that the method of dielectric resonance permits to determine with high accuracy the temperatures of spontaneous - and crystal fields of induced phase transformations. The crystal dielectric permittivity and magnetic permeability dispersion are determined

  5. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    Science.gov (United States)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  6. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  7. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    Science.gov (United States)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  8. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    Science.gov (United States)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  9. Whispering-gallery-mode resonance sensor for dielectric sensing of drug tablets

    International Nuclear Information System (INIS)

    Neshat, Mohammad; Chen, Huanyu; Safavi-Naeini, Safieddin; Gigoyan, Suren; Saeedkia, Daryoosh

    2010-01-01

    We propose, for the first time, the application of whispering gallery mode (WGM) perturbation technique in dielectric analysis of disk shape pharmaceutical tablets. Based on WGM resonance, a low-cost high sensitivity sensor in milllimeter-wave frequency range is presented. A comprehensive sensitivity analysis was performed to show that a change in the order of 10 −4 in the sample permittivity can be detected by the proposed sensor. The results of various experiments carried out on drug tablets are reported to demonstrate the potential multifunctional capabilities of the sensor in moisture sensing, counterfeit drug detection and contamination screening. Analytically, two sample placement configurations, i.e. a tablet placed on top of a dielectric disk resonator and inside a dielectric ring resonator, have been studied to predict the resonance frequency and Q-factor of the combined sample-resonator structure. The accuracy of the analytical model was tested against full-wave simulations and experimental data

  10. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  11. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    International Nuclear Information System (INIS)

    Mazierska, Janina; Ledenyov, Dimitri; Jacob, Mohan V; Krupka, Jerzy

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO 3 post dielectric resonator with DyBa 2 Cu 3 O 7 end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10 -6 . The tested MgO substrates exhibited the average relative permittivity of 9.63 and tanδ from 3.7 x 10 -7 to 2 x 10 -5 at frequency of 10.5 GHz in the temperature range from 14 to 80 K

  12. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Mazierska, Janina [Institute of Information Sciences and Technology, Massey University, Palmerston North, P. Bag 11222 (New Zealand); Ledenyov, Dimitri [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Jacob, Mohan V [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Krupka, Jerzy [Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej, Koszykowa 75, 00-662 Warsaw (Poland)

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO{sub 3} post dielectric resonator with DyBa{sub 2}Cu{sub 3}O{sub 7} end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10{sup -6}. The tested MgO substrates exhibited the average relative permittivity of 9.63 and tan{delta} from 3.7 x 10{sup -7} to 2 x 10{sup -5} at frequency of 10.5 GHz in the temperature range from 14 to 80 K.

  13. Light Scattering by a Dielectric Sphere: Perspectives on the Mie Resonances

    Directory of Open Access Journals (Sweden)

    Dimitrios Tzarouchis

    2018-01-01

    Full Text Available Light scattering by a small spherical particle, a central topic for electromagnetic scattering theory, is here considered. In this short review, some of the basic features of its resonant scattering behavior are covered. First, a general physical picture is described by a full electrodynamic perspective, the Lorenz–Mie theory. The resonant spectrum of a dielectric sphere reveals the existence of two distinctive types of polarization enhancement: the plasmonic and the dielectric resonances. The corresponding electrostatic (Rayleigh picture is analyzed and the polarizability of a homogeneous spherical inclusion is extracted. This description facilitates the identification of the first type of resonance, i.e., the localized surface plasmon (plasmonic resonance, as a function of the permittivity. Moreover, the electrostatic picture is linked with the plasmon hybridization model through the case of a step-inhomogeneous structure, i.e., a core–shell sphere. The connections between the electrostatic and electrodynamic models are reviewed in the small size limit and details on size-induced aspects, such as the dynamic depolarization and the radiation reaction on a small sphere are exposed through the newly introduced Mie–Padé approximative perspective. The applicability of this approximation is further expanded including the second type of resonances, i.e., the dielectric resonances. For this type of resonances, the Mie–Padé approximation reveals the main character of the two different cases of resonances of either magnetic or electric origin. A unified picture is therefore described encompassing both plasmonic and dielectric resonances, and the resonant conditions of all three different types are extracted as functions of the permittivity and the size of the sphere. Lastly, the directional scattering behavior of the first two dielectric resonances is exposed in a simple manner, namely the Kerker conditions for maximum forward and

  14. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  15. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    Directory of Open Access Journals (Sweden)

    S. Coco

    2008-01-01

    Full Text Available This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase noise performance is obtained by using a very high Q dielectric resonator.

  16. Mode selection in two-dimensional Bragg resonators based on planar dielectric waveguides

    International Nuclear Information System (INIS)

    Baryshev, V R; Ginzburg, N S; Zaslavskii, V Yu; Malkin, A M; Sergeev, A S; Thumm, M

    2009-01-01

    Two-dimensional Bragg resonators based on planar dielectric waveguides are analysed. It is shown that the doubly periodic corrugation deposited on the dielectric surface in the form of two gratings with translational vectors directed perpendicular to each other ensures effective selection of modes along two coordinates at large Fresnel parameters. This result is obtained both by the method of coupled waves (geometrical optics approximation) and by the direct numerical simulations. Two-dimensional Bragg resonators make it possible to fabricate two-dimensional distributed feedback lasers and to provide generation of spatially coherent radiation in large-volume active media. (waveguides)

  17. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface.

    Science.gov (United States)

    Debu, Desalegn T; Bauman, Stephen J; French, David; Churchill, Hugh O H; Herzog, Joseph B

    2018-02-19

    We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

  18. Design of microwave dielectric resonator antenna using MZTO-CSTO composite

    Czech Academy of Sciences Publication Activity Database

    Rajput, S.S.; Keshri, S.; Gupta, V.R.; Gupta, N.; Bovtun, Viktor; Petzelt, Jan

    2012-01-01

    Roč. 38, č. 3 (2012), s. 2355-2362 ISSN 0272-8842 Institutional research plan: CEZ:AV0Z10100520 Keywords : composites * permittivity * dielectric resonator antenna * radiation pattern Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.789, year: 2012

  19. All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region

    DEFF Research Database (Denmark)

    Tian, Jingyi; Yang, Yuanqing; Qiu, Min

    2017-01-01

    We employ ferroelectrics to study the multipolar scattering in all-dielectric metasurfaces based on KTiOPO4 (KTP) micro-disks for efficient manipulation of electromagnetic waves in the THz spectral region (0.6-1.5 THz). By adjusting the aspect ratio of the disks near the multipolar resonances, we...

  20. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  1. Experimental and Theoretical Researches of a Resonator Concept of a Dielectric Wakefield Accelerator

    International Nuclear Information System (INIS)

    Onishchenko, I.N.; Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Sotnikov, G.V.; Uskov, V.V.

    2006-01-01

    Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches foe application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac 'ALMAZ-2' (4.5 MeV, 6.10 3 bunches of duration 60 ps and charge 0.32 nC each)

  2. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    Science.gov (United States)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  3. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low residual resistance ratio (RRR) niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR = 190 niobium increased noticeably from the theoretical value if the cooling rate was slower than ∼ 10 K/min. (author)

  4. Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler

    International Nuclear Information System (INIS)

    Han Cheng, Bo; Lan, Yung-Chiang

    2013-01-01

    This work develops the plasmonic microdisk filter/coupler, whose effectiveness is evaluated by finite-difference time-domain simulation and theoretical analyses. Multi-layer dielectric cladding is used to prevent the scattering of surface plasmons (SPs) from a silver microdisk. This method allows devices that efficiently perform filter/coupler functions to be developed. The resonant conditions and the effective refractive index of bounded SP modes on the microdisk are determined herein. The waveguide-to-microdisk distance barely influences the resonant wavelength but it is inversely related to the bandwidth. These findings are consistent with predictions made using the typical ring resonator model.

  5. Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories.

    Science.gov (United States)

    Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro

    2003-09-01

    We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by

  6. A hollow coaxial cable Fabry-Pérot resonator for liquid dielectric constant measurement

    Science.gov (United States)

    Zhu, Chen; Zhuang, Yiyang; Chen, Yizheng; Huang, Jie

    2018-04-01

    We report, for the first time, a low-cost and robust homemade hollow coaxial cable Fabry-Pérot resonator (HCC-FPR) for measuring liquid dielectric constant. In the HCC design, the traditional dielectric insulating layer is replaced by air. A metal disk is welded onto the end of the HCC serving as a highly reflective reflector, and an open cavity is engineered on the HCC. After the open cavity is filled with the liquid analyte (e.g., water), the air-liquid interface acts as a highly reflective reflector due to large impedance mismatch. As a result, an HCC-FPR is formed by the two highly reflective reflectors, i.e., the air-liquid interface and the metal disk. We measured the room temperature dielectric constant for ethanol/water mixtures with different concentrations using this homemade HCC-FPR. Monitoring the evaporation of ethanol in ethanol/water mixtures was also conducted to demonstrate the ability of the sensor for continuously monitoring the change in dielectric constant. The results revealed that the HCC-FPR could be a promising evaporation rate detection platform with high performance. Due to its great advantages, such as high robustness, simple configuration, and ease of fabrication, the novel HCC-FPR based liquid dielectric constant sensor is believed to be of high interest in various fields.

  7. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    Science.gov (United States)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  8. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials

    OpenAIRE

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B.; Fujii, Minoru; Hayashi, Shinji

    2008-01-01

    We report resonant photon tunneling (RPT) through onedimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that t...

  9. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  10. An electromagnetic induced transparency-like scheme for wireless power transfer using dielectric resonators

    Science.gov (United States)

    Elnaggar, Sameh Y.

    2017-02-01

    Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces

  11. Throughput Measurement of a Dual-Band MIMO Rectangular Dielectric Resonator Antenna for LTE Applications.

    Science.gov (United States)

    Nasir, Jamal; Jamaluddin, Mohd Haizal; Ahmad Khan, Aftab; Kamarudin, Muhammad Ramlee; Yen, Bruce Leow Chee; Owais, Owais

    2017-01-13

    An L-shaped dual-band multiple-input multiple-output (MIMO) rectangular dielectric resonator antenna (RDRA) for long term evolution (LTE) applications is proposed. The presented antenna can transmit and receive information independently using fundamental TE 111 and higher order TE 121 modes of the DRA. TE 111 degenerate mode covers LTE band 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz), and 9 (1.7499-1.7849 GHz) at f r = 1.8 GHz whereas TE 121 covers LTE band 7 (2.5-2.69 GHz) at f r = 2.6 GHz, respectively. An efficient design method has been used to reduce mutual coupling between ports by changing the effective permittivity values of DRA by introducing a cylindrical air-gap at an optimal position in the dielectric resonator. This air-gap along with matching strips at the corners of the dielectric resonator keeps the isolation at a value more than 17 dB at both the bands. The diversity performance has also been evaluated by calculating the envelope correlation coefficient, diversity gain, and mean effective gain of the proposed design. MIMO performance has been evaluated by measuring the throughput of the proposed MIMO antenna. Experimental results successfully validate the presented design methodology in this work.

  12. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  13. Resonant frequencies and Q factors of dielectric parallelepipeds by measurement and by FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Trueman, C.W. [Concordia Univ., Montreal, Quebec (Canada); Mishra, S.R.; Larose, C.L. [David Florida Lab., Ottawa (Canada)] [and others

    1994-12-31

    This paper describes the measurement and computation of the resonant frequencies and the associated Q factors of dielectric parallelepipeds made of high-permittivity, low-loss ceramic materials. Each resonance peak is measured separately with a fine frequency step. A curve-fitting method is used to accurately estimate the resonant frequency and 3 dB bandwidth from the somewhat noisy measured data. The finite-difference time-domain method is used to compute the initial portion of the backscattered field due to a Gaussian pulse plane wave. The time response is then extended to zero value by Prony`s method. The measured and computed data is compared for a parallelepiped resonator of permittivity 37.84.

  14. Symposium KK, Resonant Optics in Dielectric and Metallic Structures: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Larouche, Stephane [Duke Univ., Durham, NC (United States); Caldwell, Joshua [Naval Research Lab. (NRL), Washington, DC (United States)

    2016-09-06

    Symposium KK focused on the design, fabrication, characterization of novel nanoscale optical resonators and alternative materials for sub-diffraction scale resonant particles. Contributions discussed all aspects of this field, and the organizers had more than 130 contributing participants to this session alone, spanning North America, Europe, Asia and Australia. Participants discussed cutting edge research results focused on the structure, physical and optical properties, and ultrafast dynamic response of nanoscale resonators such as plasmonic and dielectric nanoparticles. A strong focus on state-of-the-art characterization and fabrication approaches, as well as presentations on novel materials for sub-diffraction resonators took place. As expected, the sessions provided strong interdisciplinary interactions and lively debate among presenters and participants.

  15. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia; Zwart, Jacco A. de; Gelderen, Peter van [Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Sodickson, Daniel K.; Brown, Ryan [The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016 (United States)

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  16. Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle

    International Nuclear Information System (INIS)

    Jian-Peng, Wang; Yun-Xia, Jin; Jian-Yong, Ma; Jian-Da, Shao; Zheng-Xiu, Fan

    2010-01-01

    Guided-mode resonance in a diffraction band of multilayer dielectric gratings may lead to a catastrophic result in laser system, especially in the ultrashort pulse laser system, so the inhibition of guided-mode resonance is very important. In this paper the characteristics of guided-mode resonance in multilayer dielectric grating are studied with the aim of better understanding the physical process of guided-mode resonance and designing a broadband multilayer dielectric grating with no guided-mode resonance. By employing waveguide theory, all guided-wave modes appearing in multilayer dielectric grating are found, and the incident conditions, separately, corresponding to each guided-wave mode are also obtained. The electric field enhancement in multilayer dielectric grating is shown obviously. Furthermore, from the detailed analyses on the guided-mode resonance conditions, it is found that the reduction of the grating period would effectively avoid the appearing of guided-mode resonance. And the expressions for calculating maximum periods, which ensure that no guided-mode resonance occurs in the requiring broad angle or wavelength range, are first reported. The above results calculated by waveguide theory and Fourier mode method are compared with each other, and they are coincident completely. Moreover, the method that relies on waveguide theory is more helpful for understanding the guided-mode resonance excited process and analyzing how each parameter affects the characteristic of guided-mode resonance. Therefore, the effects of multilayer dielectric grating parameters, such as period, fill factor, thickness of grating layer, et al., on the guided-mode resonance characteristic are discussed in detail based on waveguide theory, and some meaningful results are obtained. (classical areas of phenomenology)

  17. Single and multiple electromagnetic scattering by dielectric obstacles from a resonance perspective

    International Nuclear Information System (INIS)

    Riley, D.J.

    1987-03-01

    A new application of the singularity expansion method (SEM) is explored. This application combines the classical theory of wave propagation through a multiple-scattering environment and the SEM. Because the SEM is generally considered to be a theory for describing surface currents on conducting scatters, extensions are made which permit, under certain conditions, a singularity expansion representation for the electromagnetic field scattered by a dielectric scatterer. Application of this expansion is then made to the multiple-scattering case using both single and multiple interactions. A resonance scattering tensor form is used for the SEM description which leds to an associated tensor form for the solution to the multiple-scattering problem with each SEM pole effect appearing explicitly. The coherent field is determined for both spatial and SEM parameter random variations. A numerical example for the case of an ensemble of dielectric spheres which possess frequency-dependent loss is also made. Accurate resonance expansions for the single-scattering problem are derived, and resonance trajectories based on the Debye relaxation model for the refractive index are introduced. Application of these resonance expansions is then made to the multiple-scattering results for a slab containing a distribution of spheres with varying radii. Conditions are discussed which describe when the hybrid theory is appropriate. 53 refs., 21 figs., 9 tabs

  18. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  19. Properties and applications of HTS-shielded dielectric resonators: A state-of-the-art report

    International Nuclear Information System (INIS)

    Klein, N.; Scholen, A.; Tellmann, N.; Zuccaro, C.; Urban, K.W.

    1996-01-01

    High temperature superconductor (HTS) shielded dielectric resonators (DRs) have demonstrated to provide quality factors Q between 5 x 10 5 and several 10 6 at frequencies up to 20 GHz and levels of dissipated rf power in the range of Watts. As dielectric materials, high purity single crystals of sapphire, LaAlO 3 , and rutile exhibit sufficiently low microwave losses. There are two main areas of application which are considered to benefit from HTS-shielded DRs, namely low-phase-noise oscillators for radar systems and digital communication, and high-power filters for satellite communication. Projections for phase noise are -145 dBc/Hz at 1 kHz offset from the carrier frequency, a value of -110 dBc/Hz at 1 kHz was measured recently for an oscillator with a carrier frequency of 5.6 GHz. Modeling of filters based on resonators with Qs in the 10 6 range indicates their ability to reduce the rf power dissipation apparent in the output multiplexers of communication satellite payloads. Presently, schemes for resonator coupling and tuning while maintaining high Qs are under development

  20. Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron

    International Nuclear Information System (INIS)

    Chen Xiaoan; Liu Gaofeng; Tang Changjian

    2010-01-01

    A novel resonant cavity composed of a periodic, multilayer, dielectric photonic crystal is proposed. Using the transfer matrix method and the Bloch theorem for periodic systems, an analysis on the band-gap property of such a structure is made, and the basic electromagnetic property of the photonic-band-gap resonant cavity (PBGC) is preliminarily exhibited. The theoretical studies and the cold cavity simulation results obtained from a high-frequency structure simulator are presented. On the basis of the present research, such a PBGC is quite similar to the two-dimensional PBGC made of triangular lattices of metal rods with a defect at its centre, in which a frequency selectivity is similarly demonstrated. Because of its unique electromagnetic property, the cavity has many promising applications in active and passive devices operating in the millimetre, sub-millimetre, and even THz wave range. As a specific application, the feasibility of substituting the traditional cylindrical resonant cavity loaded in a gyrotron for a dielectric PBGC to achieve a transverse high-order operation is discussed under the consideration of the electromagnetic features of the cavity. The study shows the great potential value of such a cavity for gyrotron devices.

  1. Acceleration of electrons at wakefield excitation by a sequence of relativistic electron bunches in dielectric resonator

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2009-01-01

    Method is proposed to divide a regular sequence of electron bunches into parts of bunches driving wakefield and witness bunches, which should be accelerated. It allows to avoid the necessity of additional electron accelerator for witness bunches producing and the necessity of precision short time techniques of injection phase adjusting. The idea concludes to the frequency detuning between bunches repetition frequency and the frequency of the fundamental mode of excited wakefield. Experiments were carried out on the linear resonant accelerator 'Almaz-2', which injected in the dielectric resonator a sequence of 6000 short bunches of relativistic electrons with energy 4.5 MeV, charge 0.16 nC and duration 60 psec each, the repetition interval 360 ps. Frequency detuning was entered by change of frequency of the master generator of the klystron within the limits of one percent so that the phase taper on the length of bunches sequence achieved 2π. Energy spectra of electrons of bunches sequence, which have been propagated through the dielectric resonator are measured and analyzed

  2. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  3. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    Science.gov (United States)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of

  4. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials.

    Science.gov (United States)

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji

    2008-06-23

    We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.

  5. Dielectric function and its predicted effect on localized plasmon resonances of equiatomic Au–Cu

    International Nuclear Information System (INIS)

    De Silva, K S B; Gentle, A; Arnold, M; Cortie, M B; Keast, V J

    2015-01-01

    Equiatomic (Au,Cu) solid solution orders below 658 K to form a tetragonal AuCu (I) phase with significant changes in physical properties and the crystal structure. The effect of ordering on the dielectric function of the material is controversial however, with inconsistent results reported in the literature. Since the nature of any localized surface plasmon resonance (LSPR) in the nanostructures is very sensitive to the dielectric function, this uncertainty hinders the use of AuCu in plasmonic devices or structures. Therefore, we re-examine the question using a combination of measurements and computations. We find that no significant change in the dielectric function occurs when this material becomes ordered, at least over the range of photon energies relevant to LSPRs. The likely properties of LSPRs in plasmonic devices made of AuCu are analyzed. Use of the alloy offers some advantages over pure Cu, however pure Au would still be the superior option in most situations. (paper)

  6. Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light.

    Science.gov (United States)

    Li, Zile; Kim, Inki; Zhang, Lei; Mehmood, Muhammad Q; Anwar, Muhammad S; Saleem, Murtaza; Lee, Dasol; Nam, Ki Tae; Zhang, Shuang; Luk'yanchuk, Boris; Wang, Yu; Zheng, Guoxing; Rho, Junsuk; Qiu, Cheng-Wei

    2017-09-26

    Efficient transmission-type meta-holograms have been demonstrated using high-index dielectric nanostructures based on Huygens' principle. It is crucial that the geometry size of building blocks be judiciously optimized individually for spectral overlap of electric and magnetic dipoles. In contrast, reflection-type meta-holograms using the metal/insulator/metal scheme and geometric phase can be readily achieved with high efficiency and small thickness. Here, we demonstrate a general platform for design of dual magnetic resonance based meta-holograms based on the geometric phase using silicon nanostructures that are quarter wavelength thick for visible light. Significantly, the projected holographic image can be unambiguously observed without a receiving screen even under the illumination of natural light. Within the well-developed semiconductor industry, our ultrathin magnetic resonance-based meta-holograms may have promising applications in anticounterfeiting and information security.

  7. Hyperparametric effects in a whispering-gallery mode rutile dielectric resonator at liquid helium temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nand, Nitin R.; Goryachev, Maxim; Floch, Jean-Michel le; Creedon, Daniel L.; Tobar, Michael E. [ARC Centre for Engineered Quantum Systems, School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia)

    2014-10-07

    We report the first observation of low power drive level sensitivity, hyperparametric amplification, and single-mode hyperparametric oscillations in a dielectric rutile whispering-gallery mode resonator at 4.2 K. The latter gives rise to a comb of sidebands at 19.756 GHz. Whereas, most frequency combs in the literature have been observed in optical systems using an ensemble of equally spaced modes in microresonators or fibers, the present work represents generation of a frequency comb using only a single-mode. The experimental observations are explained by an additional 1/2 degree-of-freedom originating from an intrinsic material nonlinearity at optical frequencies, which affects the microwave properties due to the extremely low loss of rutile. Using a model based on lumped circuits, we demonstrate that the resonance between the photonic and material 1/2 degree-of-freedom, is responsible for the hyperparametric energy transfer in the system.

  8. Resonance dielectric dispersion of TEA-CoCl2Br2 nanocrystals incorporated into the PMMA matrix

    Science.gov (United States)

    Kapustianyk, V.; Shchur, Ya; Kityk, I.; Rudyk, V.; Lach, G.; Laskowski, L.; Tkaczyk, S.; Swiatek, J.; Davydov, V.

    2008-09-01

    The dielectric properties of TEA-CoCl2Br2 nanocrystals incorporated into the polymethylmethacrylate matrix within the frequency range of 3 × 105-2.6 × 109 Hz in the temperature region of 90-300 K were investigated. The considerable difference in the dielectric spectra of the nanocomposite compared to those of the bulk crystal and the pure polymer matrix was observed. The dielectric dispersion of the composite material reveals a resonance type (resonance frequency was found to be near 1.3 GHz) and may be qualitatively explained as the result of piezoelectric resonance on the nanocrystals. The model interpretation of this phenomenon based on the forced-dumped oscillator is presented.

  9. Synthesis, multi-nonlinear dielectric resonance and electromagnetic absorption properties of hcp-cobalt particles

    International Nuclear Information System (INIS)

    Wen, Shulai; Liu, Ying; Zhao, Xiuchen; Cheng, Jingwei; Li, Hong

    2014-01-01

    Hcp-cobalt particles were successfully prepared by a liquid phase reduction method, and the microstructure, static magnetic properties, electromagnetic and microwave absorption properties of the cobalt particles with irregular shape were investigated in detail. The measured results indicate that the saturation magnetization was less than that of hcp-Co single crystals, and the coercivity was larger than that of bulk cobalt crystal. The permittivity presents multi-nonlinear dielectric resonance, which may result from the irregular shape containing parts of cutting angle of dodecahedron of cobalt particles. The real part of permeability decreases with the frequency, and the imaginary part has a wide resonant peak. The paraffin-based composite containing 70 wt% cobalt particles possessed strong absorption characteristics with a minimum RL of −38.97 dB at 10.81 GHz and an absorption band with RL under −10 dB from 8.72 to 13.26 GHz when the thickness is 1.8 mm, which exhibits excellent microwave absorption in middle and high frequency. The architectural design of material morphologies is important for improving microwave absorption properties toward future application. - Highlights: • Hcp-cobalt particles were prepared by a liquid phase reduction method. • The saturation magnetization was less than that of hcp-Co single crystals. • The permittivity presents multi-nonlinear dielectric resonance. • The real part of permeability decreases with frequency, and the imaginary part presents a wide resonant peak. • The paraffin-based composite possessed a minimum RL of −38.97 dB at 10.81 GHz

  10. Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

    Directory of Open Access Journals (Sweden)

    Chunxia Cheng

    2014-01-01

    Full Text Available A triband omnidirectional circularly polarized dielectric resonator antenna with a top-loaded modified Alford loop for GSM, WLAN, and WiMAX applications is proposed. Fed by an axial probe, the DRA (dielectric resonator antenna radiates like a vertically polarized electric monopole. The top-loaded modified Alford loop provides an equivalent horizontally polarized magnetic dipole mode at triband. Omnidirectional CP (circular polarized fields can be obtained when the two orthogonally polarized fields are equal in amplitude with phase quadrature. The antenna has been successfully simulated, fabricated, and measured. The experimental and numerical results exhibit that the antenna can obtain usable CP bandwidths of 1.925–1.955 GHz, 2.36–2.48 GHz, and 3.502–3.53 GHz with return loss larger than 10 dB and axial ratio less than 3 dB. In addition, over the three bands, the antenna obtains very good omnidirectional CP radiation patterns in the azimuth plane. Moreover, an average CP gain in the azimuth plane of 1.2, 1.6, and −1.5 dBic for the lower, middle, and upper bands has been obtained.

  11. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2016-12-01

    Full Text Available The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C.

  12. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low RRR niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR=190 niobium increased noticeably from the theoretical value if the cooling rate was slower than∼10 K/min. Fast-cooled plates subsequently warmed to 130 K, and the recooled, showed a larger increase in R s than plates warmed to either 100 K or 160 K. Both chemically polished, and electropolished RRR=190 plates showed the effects of the 'Q-virus'. A heat treatment of 200 deg C made the RRR=190 plates less susceptible to the 'Q-virus'. RRR=30 niobium plates did not show any increase in R s , regardless of treatment. (author)

  13. Self Oscillating Mixer with Dielectric Resonator for Low Noise Block Application

    Directory of Open Access Journals (Sweden)

    Endon Bharata

    2011-08-01

    Full Text Available In this paper, the development of a self oscillating mixer (SOM as part of a low noise block (LNB for a satellite television receiver is investigated numerically and experimentally. In contrast to other mixers, the developed SOM requires no separate local oscillator as it generates own local oscillator signal. The SOM is developed using a monolithic microwave integrated circuit (MMIC comprised of two bipolar transistors coupled as a Darlington pair and a dielectric resonator to establish a local oscillator signal. The SOM is designed to oscillate at 3.62GHz driven from 50W signal generator. The prototype of SOM is fabricated on a dielectric substrate of glass-reinforced hydrocarbon/ceramic lamination (RO4350B board which has a thickness of 0.762mm and relative permittivity of 3.66. The prototype is then characterized experimentally and exhibits a conversion gain of 8dB with the input and output voltage standing wave ratio (VSWR less than 2 across the 2520MHz to 2670MHz operating frequency band.

  14. High efficiency on-chip Dielectric Resonator Antennna using micromachining technology

    KAUST Repository

    Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; De Raedt, Walter; Sedky, Sherif; Vandenbosch, Guy A. E.; Soliman, Ezzeldin A.

    2015-01-01

    In this paper, a novel cylindrical Dielectric Resonator Antenna (DRA) operating at 60 GHz is introduced. The antenna is fabricated using a high-resistivity silicon wafer. The DR is defined in the wafer using micromachining technology. The feeding network is located at the other side of the wafer. The proposed antenna is simulated using HFSS and the results are verified by measurements. The antenna radiation is mainly along the broadside direction. The measured gain, radiation efficiency, and bandwidth are 7 dBi, 74.65%, and 2.23 GHz respectively. The antenna is characterized by high polarization purity where the maximum cross-polarization is -15 dB. © 2015 IEEE.

  15. A low-cost, Nist-traceable, high performance dielectric resonator Master Oscillator

    International Nuclear Information System (INIS)

    Doolittle, L.R.; Hovater, C.; Merminga, L.; Musson, J.; Wiseman, W.

    1999-01-01

    The current CEBAF Master Oscillator (MO) uses a quartz-based 10 MHz reference to synthesize 70 MHz and 499 MHz, which are then distributed to each of the klystron galleries on site. Due to the specialized nature of CEBAF's MO requirements, it has been determined that an in-house design and fabrication would provide a cost-effective alternative to purchasing or modifying vendor equipment. A Global Positioning System (GPS) disciplined, Direct Digital Synthesis (DDS) based MO is proposed which incorporates low-cost consumer RF components, designed for cellular communications. A 499 MHz Dielectric Resonant Oscillator (DRO) Voltage Controlled Oscillator (VCO) is phase-locked to a GPS-disciplined 10 MHz reference, and micro-tuned via a DDS, in an effort to achieve the lowest phase noise possible

  16. High efficiency on-chip Dielectric Resonator Antennna using micromachining technology

    KAUST Repository

    Sallam, Mai O.

    2015-10-26

    In this paper, a novel cylindrical Dielectric Resonator Antenna (DRA) operating at 60 GHz is introduced. The antenna is fabricated using a high-resistivity silicon wafer. The DR is defined in the wafer using micromachining technology. The feeding network is located at the other side of the wafer. The proposed antenna is simulated using HFSS and the results are verified by measurements. The antenna radiation is mainly along the broadside direction. The measured gain, radiation efficiency, and bandwidth are 7 dBi, 74.65%, and 2.23 GHz respectively. The antenna is characterized by high polarization purity where the maximum cross-polarization is -15 dB. © 2015 IEEE.

  17. Micromachined On-Chip Dielectric Resonator Antenna Operating at 60 GHz

    KAUST Repository

    Sallam, Mai

    2015-06-01

    This paper presents a novel cylindrical Dielectric Resonator Antenna (DRA) suitable for millimeter-wave on-chip systems. The antenna was fabricated from a single high resistivity silicon wafer via micromachining technology. The new antenna was characterized using HFSS and experimentally with good agreement been found between the simulations and experiment. The proposed DRA has good radiation characteristics, where its gain and radiation efficiency are 7 dBi and 79.35%, respectively. These properties are reasonably constant over the working frequency bandwidth of the antenna. The return loss bandwidth was 2.23 GHz, which corresponds to 3.78% around 60 GHz. The antenna was primarily a broadside radiator with -15 dB cross polarization level.

  18. Theoretical investigation of resonance frequencies in long wavelength electromagnetic wave scattering process from plasma prolate and oblate spheroids placed in a dielectric layer

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.

    2014-01-01

    Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.

  19. An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications

    Directory of Open Access Journals (Sweden)

    Izyani Mat Rusni

    2014-07-01

    Full Text Available This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.2 and thickness of 0.787 mm. The final dimension of the proposed sensor was measured at 35 × 14 mm2. Measured results show good agreement with simulated ones as well as exhibiting high Q-factor for use in sensing application. A remarkably shift of resonance frequency is observed upon introduction of several sample with different dielectric value.

  20. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    Science.gov (United States)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  1. Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides

    International Nuclear Information System (INIS)

    Xiang, Yinxiao; Cai, Wei; Wang, Lei; Ying, Cuifeng; Zhang, Xinzheng; Xu, Jingjun

    2014-01-01

    We present a bistable device consisting of a Bragg grating resonator with a Kerr medium sandwiched between two dielectric slab waveguides. The resonator is situated in a nanometer-scaled metal–insulator–metal plasmonic waveguide. Due to the dimensional confinement from the dielectric waveguide to the nanoscaled plasmonic waveguide, electric fields are enhanced greatly, which will further reduce the threshold value. Moreover, a semi-analytic method, based on the impedance theory and the transfer matrix method, is developed to study the transmission and reflection spectra as well as the bistability loop of such a switch. Our method is fast and accurate, as confirmed by the finite-difference time-domain simulation. (invited paper)

  2. Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: Electrostatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Nilesh Kumar; Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology, Delhi-110016 (India)

    2016-05-23

    We have systematically study the nano-plasmonic coupling to the perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) dielectric media in terms of surface plasmon resonance. The surface plasmon resonances are exhibited by the metal nanoparticles which is the electromagnetic excitation conduction electron when it is irradiated by incident light photon. Tunable behaviour of SPRs can be utilized to enhance the absorption of photon inside the surrounding environment in the wavelength range 300 to 800 nm. We have been selected two different types of nanogeometry such as coated and non-coated metal nanoparticles (radii ranges from 10 to 15 nm) to understand the plasmonic interaction to the dielectric media. Finally, we have observed that the coated nanogeometry is more preferable as compared to non-coated system to analyse the tunability of SPR peaks.

  3. Enhancing the Performance of the Microwave Absorbing Materials by Using Dielectric Resonator Arrays

    Directory of Open Access Journals (Sweden)

    Omar H. Al-Zoubi

    2017-01-01

    Full Text Available We present a technique for enhancing the performance of microwave absorbing materials in terms of weight, thickness, and bandwidth. The introduced technique is based on fabricating the microwave absorbing (MA material in a structure comprised of an array of circular cylinder dielectric resonators (CDR backed by a perfect electric conductor (PEC ground plane. Numerical electromagnetic methods are employed to study the properties of the proposed MA array structures, where 3D full wave simulation using finite-element method is implemented. The obtained results show that the performance of the MA-CDR arrays significantly outperforms that of a flat layer composed of the same material and having equivalent thickness. A flat layer of MA material with thickness of 5 mm backed by perfect electric conductor (PEC shows as low as -50 dB reflection loss (RL peak and ~3 GHz 10-dB bandwidth, whereas an MA-CDR array, composed of the same MA material, of height of 4 mm can achieve as low as ~−50 dB RL peak and ~12 GHz 10-dB RL bandwidth.

  4. Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Waleed Tariq Sethi

    2015-01-01

    Full Text Available The last decade has witnessed a remarkable growth in the telecommunication industry. With the introduction of smart gadgets, the demand for high data rate and bandwidth for wireless applications have increased exponentially at the cost of exponential consumption of energy. The latter is pushing the research and industry communities to devise green communication solutions that require the design of energy saving devices and techniques in one part and ambient energy harvesting techniques in the other part. With the advent of nanocomponents fabrication technology, researchers are now able to tap into the THz frequency regime and fabricate optical low profile antennas at a nanoscale. Optical antennas have proved their potential and are revolutionizing a class of novel optical detectors, interconnectors, sensors, and energy harvesting related fields. Authors in this paper propose an equilateral triangular dielectric resonator nantenna (ETDRNA working at 193.5 THz standard optical frequency. The simulated antenna achieves an impedance bandwidth from 192.3 THz to 197.3 THz with an end-fire directivity of 8.6 dBi, covering the entire standard optical window of C-band. Numerical demonstrations prove the efficiency of the nantenna at the frequencies of interest, making it a viable candidate for future green energy harvesting and high speed optical applications.

  5. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  6. Ferromagnetic resonance in a single crystal of iron borate and magnetic field tuning of hybrid oscillations in a composite structure with a dielectric: Experiment and theory

    International Nuclear Information System (INIS)

    Popov, M. A.; Zavislyak, I. V.; Chumak, H. L.; Strugatsky, M. B.; Yagupov, S. V.; Srinivasan, G.

    2015-01-01

    The high-frequency properties of a composite resonator comprised single crystal iron borate (FeBO 3 ), a canted antiferromagnet with a weak ferromagnetic moment, and a polycrystalline dielectric were investigated at 9–10 GHz. Ferromagnetic resonance in this frequency range was observed in FeBO 3 for bias magnetic fields of ∼250 Oe. In the composite resonator, the magnetic mode in iron borate and dielectric mode are found to hybridize strongly. It is shown that the hybrid mode can be tuned with a static magnetic field. Our studies indicate that coupling between the magnetic mode and the dielectric resonance can be altered from maximum hybridization to a minimum by adjusting the position of resonator inside the waveguide. Magnetic field tuning of the resonance frequency by a maximum of 145 MHz and a change in the transmitted microwave power by as much as 16 dB have been observed for a bias field of 250 Oe. A model is discussed for the magnetic field tuning of the composite resonator and theoretical estimates are in reasonable agreement with the data. The composite resonator with a weak ferromagnet and a dielectric is of interest for application in frequency agile devices with electronically tunable electrodynamic characteristics for the mm and sub-mm wave bands

  7. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method

    International Nuclear Information System (INIS)

    Ma Ye-Wan; Wu Zhao-Wang; Zhang Li-Hua; Liu Wan-Fang; Zhang Jie

    2015-01-01

    The local surface plasmon resonances (LSPRs) of dielectric-Ag core-shell nanospheres are studied by the discretedipole approximation method. The result shows that LSPRs are sensitive to the surrounding medium refractive index, which shows a clear red-shift with the increasing surrounding medium refractive index. A dielectric-Ag core-shell nanosphere exhibits a strong coupling between the core and shell plasmon resonance modes. LSPRs depend on the shell thickness and the composition of dielectric-core and metal-shell. LSPRs can be tuned over a longer wavelength range by changing the ratio of core to shell value. The lower energy mode ω_− shows a red-shift with the increasing dielectric-core value and the inner core radius, while blue-shifted with the increasing outer shell thickness. The underlying mechanisms are analyzed with the plasmon hybridization theory and the phase retardation effect. (paper)

  8. A Series-Fed Linear Substrate-Integrated Dielectric Resonator Antenna Array for Millimeter-Wave Applications

    Directory of Open Access Journals (Sweden)

    Ke Gong

    2018-01-01

    Full Text Available A series-fed linear substrate-integrated dielectric resonator antenna array (SIDRAA is presented for millimeter-wave applications, in which the substrate-integrated dielectric resonator antenna (SIDRA elements and the feeding structure can be codesigned and fabricated using the same planar process. A prototype 4 × 1 SIDRAA is designed at Ka-band and fabricated with a two-layer printed circuit board (PCB technology. Four SIDRAs are implemented in the Rogers RT6010 substrate using the perforation technique and fed by a compact substrate-integrated waveguide (SIW through four longitudinal coupling slots within the Rogers RT5880 substrate. The return loss, radiation patterns, and antenna gain were experimentally studied, and good agreement between the measured and simulated results is observed. The SIDRAA example provides a bandwidth of about 10% around 34.5 GHz for 10 dB return loss and stable broadside radiation patterns with the peak gain of 10.5–11.5 dBi across the band.

  9. Resonant laser printing of structural colors on high-index dielectric metasurfaces

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Levy, Uriel

    2017-01-01

    -dependent resonances. Strong on-resonance energy absorption under pulsed laser irradiation locally elevates the lattice temperature (exceeding 1200 K) in an ultrashort time scale (1 ns). This forms the basis for resonant laser printing, where rapid melting allows for surface energy-driven morphology changes...

  10. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  11. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Novikov, S. M.; Zywietz, U.

    2012-01-01

    Strong resonant light scattering by individual spherical Si nanoparticles is experimentally demonstrated, revealing pronounced resonances associated with the excitation of magnetic and electric modes in these nanoparticles. It is shown that the low-frequency resonance corresponds to the magnetic...... dipole excitation. Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of similar to 200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in the visible region....

  12. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures.

    Science.gov (United States)

    Maksymov, Ivan S

    2015-04-09

    A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  13. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2015-04-01

    Full Text Available A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  14. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Directory of Open Access Journals (Sweden)

    Ironside James W

    2007-08-01

    Full Text Available Abstract Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc, although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS, which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems.

  15. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    Science.gov (United States)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  16. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Science.gov (United States)

    Fagge, Timothy J; Barclay, G Robin; Stove, G Colin; Stove, Gordon; Robinson, Michael J; Head, Mark W; Ironside, James W; Turner, Marc L

    2007-01-01

    Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD) infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc), although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS), which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems. PMID:17760958

  17. Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO)

    International Nuclear Information System (INIS)

    Almeida, A.F.L.; Silva, R.R.; Rocha, H.H.B.; Fechine, P.B.A.; Cavalcanti, F.S.A.; Valente, M.A.; Freire, F.N.A.; Sohn, R.S.T.M.

    2008-01-01

    In this study, the CaCu 3 Ti 4 O 12 (CCTO) ceramic phase was synthesized by microwave heating in a much shorter time compared to the conventional heating methods. The results indicate that microwave processing is a promising method for preparing CCTO ceramics. CCTO was prepared using a domestic microwave oven operated at 2.45 GHz with 800 W. After a few minutes of microwave irradiation the formation of CCTO was confirmed by X-ray powder diffraction. The CCTO ceramic was studied in the medium-frequency (MF) range (100 Hz-1 MHz) and in the microwave range of frequencies. The experimental and theoretical characteristics of the dielectric resonator antenna are investigated

  18. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.

  19. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures

    International Nuclear Information System (INIS)

    Schachter, L.; Dobrescu, S.; Stiebing, K. E.

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut fuer Kernphysik der Universitaet Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the 'MD source' as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an ''all stainless steel'' ECRIS.

  20. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5

  1. Experimental and Simulation Investigation of Tri-Sector Cylindrical Dielectric Resonator Antenna in composite forms for Wireless Applications

    Science.gov (United States)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2016-11-01

    In this article, a tri-sector cylindrical dielectric resonator antenna (t-CDRA) has been introduced by splitting CDRA into three uniform sectors and all three uniform sectors are packed together in a compact way on a metallic ground plane. A coaxial probe feed is used to excite the proposed composite t-CDRA at the center position. Multi-segmentation approach has been applied for further improvement in bandwidth of proposed t-CDRA. The proposed composite t-CDRA has been designed using HFSS simulation software and analyzed using theoretical analysis. The prototype of t-CDRA, three elements t-CDRA and three elements dual segment t-CDRA has been fabricated for measurement. The input characteristics, near field, far field distribution of the proposed t-CDRAs have been studied through HFSS simulation software and their results are compared with corresponding experimental results. Proposed segmented t-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 85 % with monopole-like radiation pattern. The peak gain of segmented t-CDRA has 5.1 dBi with 98.5 % radiation efficiency. The proposed segmented t-CDRA may find suitable applications in 5.0 GHz WLAN and WiMAX band.

  2. Fano-like resonance and scattering in dielectric(core)–metal(shell) composites embedded in active host matrices

    CSIR Research Space (South Africa)

    Jule, L

    2015-07-01

    Full Text Available We investigate light scattering by core–shell consisting of metal/dielectric composites considering spherical and cylindrical nanoinclusions, within the framework of the conventional Rayleigh approximation. By writing the electric potential...

  3. Dynamics of asymmetric non-polymeric binary glass formers—A nuclear magnetic resonance and dielectric spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Pötzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)

    2015-10-21

    We study a dynamically asymmetric binary glass former with the low-T{sub g} component m-tri-cresyl phosphate (m-TCP: T{sub g} = 206 K) and a spirobichroman derivative as a non-polymeric high-T{sub g} component (T{sub g} = 382 K) by means of {sup 1}H nuclear magnetic resonance (NMR), {sup 31}P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two T{sub g} are identified, T{sub g1} and T{sub g2}. The slower one is attributed to the high-T{sub g} component (α{sub 1}-process), and the faster one is related to the m-TCP molecules (α{sub 2}-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α{sub 1}-process. While the α{sub 1}-relaxation only weakly broadens upon adding m-TCP, the α{sub 2}-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by {sup 31}P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α{sub 2}-process and it reflects an isotropic, liquid-like motion which is observed even below T{sub g1}, i.e., in the matrix of the arrested high-T{sub g} molecules. As proven by 2D {sup 31}P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτ{sub α2}). At T{sub g1} a crossover is found for the temperature dependence of (mean) τ{sub α2}(T) from non-Arrhenius above to Arrhenius below T{sub g1} which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of T{sub g2}(c{sub m−TCP}) at low concentration c{sub m−TCP}, i.e., a maximum is observed in T{sub g2}(c{sub m−TCP}) while T{sub g1}(c{sub m−TCP}) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously

  4. A simple solution for reducing artefacts due to conductive and dielectric effects in clinical magnetic resonance imaging at 3 T

    International Nuclear Information System (INIS)

    Sreenivas, M.; Lowry, M.; Gibbs, P.; Pickles, M.; Turnbull, L.W.

    2007-01-01

    The quality of imaging obtained at high magnetic field strengths can be degraded by various artefacts due to conductive and dielectric effects, which leads to loss of signal. Various methods have been described and used to improve the quality of the image affected by such artefacts. In this article, we describe the construction and use of a simple solution that can be used to diminish artefacts due to conductive and dielectric effects in clinical imaging at 3 T field strength and thereby improve the diagnostic quality of the images obtained

  5. A simple solution for reducing artefacts due to conductive and dielectric effects in clinical magnetic resonance imaging at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas, M. [Department of Radiology (Yorkshire Deanery-East), Hull Royal Infirmary, Anlaby Road, Hull HU3 2JZ (United Kingdom)]. E-mail: aprilsreenivas@hotmail.com; Lowry, M. [Centre for Magnetic Resonance Investigations, University of Hull, Hull Royal Infirmary, Anlaby Road, 1PR, Hull HU3 2JZ (United Kingdom); Gibbs, P. [Centre for Magnetic Resonance Investigations, University of Hull, Hull Royal Infirmary, Anlaby Road, 1PR, Hull HU3 2JZ (United Kingdom); Pickles, M. [Centre for Magnetic Resonance Investigations, University of Hull, Hull Royal Infirmary, Anlaby Road, 1PR, Hull HU3 2JZ (United Kingdom); Turnbull, L.W. [Centre for Magnetic Resonance Investigations, University of Hull, Hull Royal Infirmary, Anlaby Road, 1PR, Hull HU3 2JZ (United Kingdom)

    2007-04-15

    The quality of imaging obtained at high magnetic field strengths can be degraded by various artefacts due to conductive and dielectric effects, which leads to loss of signal. Various methods have been described and used to improve the quality of the image affected by such artefacts. In this article, we describe the construction and use of a simple solution that can be used to diminish artefacts due to conductive and dielectric effects in clinical imaging at 3 T field strength and thereby improve the diagnostic quality of the images obtained.

  6. Elementary electron-molecule interactions and negative ion resonances at subexcitation energies and their significance in gaseous dielectrics

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1977-01-01

    Recent knowledge on low-energy (mostly approximately less than 10 eV) electron-molecule interaction processes in dilute and in dense gases is synthesized, discussed, and related to the breakdown strength of gaseous dielectrics. Optimal design of multicomponent gaseous insulators can be made on the basis of such knowledge

  7. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil

  8. Three-dimensional visualization and analysis of a dual-disk resonator with dielectric misalignment and surface anomaly using edge finite elements

    Science.gov (United States)

    Villalva, Gustavo Jose

    The search for life in other planets and solar systems by scientists and engineers brings about an effort to design and develop equipment of high standards which extend the capability to listen for signals which have been traveling in space many light years. In this study the purpose was to provide a more realistic and illustrative scientific understanding of one such piece of precision equipment, the dielectric resonator, which designers seek to extend its frequency stability below 10-15. At such tolerances special cryogenic cooling procedures are required. Due to its accuracy it can be used to set short term time and frequency standards to correct the atomic clock. A theoretical means of studying this type of resonant device is necessary. One contribution made in extending the current understanding of such a device is the scientific tool developed specifically for this dissertation. It applies the Minimum Theorem from variational calculus using edge finite elements for numerical modeling. The use of quasi-linear vector basis functions allowed an implementation of Helmholtz's three-dimensional equation without a penalty term. Furthermore, the intermixing of spurious solutions with the true ones due to a nodal basis was eliminated. Calculation of the average edge electric fields was made possible by applying the Rayleigh-Ritz criterion. Model enclosure was provided by a cylindrical metal shield situated in a rectangular coordinate system. Linear, homogeneous, nonmagnetic, lossless, uniaxial, and anisotropic media were considered. Integration of NASA's Unix Lanczos eigensolver permitted the accurate estimation of the smaller eigenvalues and associated vectors for large matrices on workstations and personal computers in relatively short computational times. Calculation of the lower frequency modes demonstrated the ability to address device imperfections for two selected cases. Both were influenced by problems encountered in the use of crystals constrained by cost, or

  9. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  10. Dielectric Wakefield Researches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Uskov, V.V.; Marshall, T.C.

    2006-01-01

    Excitation of wakefield in cylindrical dielectric waveguide/resonator by a sequence of relativistic electron bunches was investigated using an electron linac 'Almaz-2' (4.5 MeV, 6·10 3 bunches of duration 60 ps and charge 0.32 nC each). Energy spectrum of electrons, radial topography and longitudinal distribution of wakefield, and total energy of excited wakefield were measured by means of magnetic analyzer, high frequency probe, and a sensitive calorimeter

  11. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  12. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  13. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  14. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Mics, Zoltán; Ma, Guohong

    2013-01-01

    We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively by the ma...... polarization of the THz oscillation at the spin resonance frequency, suggests a key role of magnon–phonon coupling in spin-wave energy dissipation....

  15. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  16. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  17. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  18. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....

  19. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  20. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  1. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  2. Dielectric nanostructures for broadband light trapping in organic solar cells

    KAUST Repository

    Raman, Aaswath; Yu, Zongfu; Fan, Shanhui

    2011-01-01

    or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D

  3. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  4. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants.

    Science.gov (United States)

    Rodilla, H; Kim, A A; Jeffries, G D M; Vukusic, J; Jesorka, A; Stake, J

    2016-01-20

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz - 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively.

  5. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  6. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  7. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  8. Dielectric loss against piezoelectric power harvesting

    Science.gov (United States)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  9. Gold nanoparticles extraction from dielectric scattering background

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  10. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  11. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  12. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  13. Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger; Qiu, M.

    2007-01-01

    resonances attributing to the enhanced transmission: the localized waveguide resonance and periodic surface plasmon resonances. For the film coated with dielectric layers, calculated results show that in the wavelength region of interest the localized waveguide resonant mode attributes to sensing rather than...

  14. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  15. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  16. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  17. Dielectric Modulated FET (DMFET)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the nanogap cavity leads to change in effective gate capacitance and thus gate bias for FET. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the ...

  18. Thermal dielectric function

    International Nuclear Information System (INIS)

    Moneta, M.

    1999-01-01

    Thermal dielectric functions ε(k,ω) for homogeneous electron gas were determined and discussed. The ground state of the gas is described by the Fermi-Dirac momentum distribution. The low and high temperature limits of ε(k,ω) were related to the Lindhard dielectric function and to ε(k, omega) derived for Boltzmann and for classical momentum distributions, respectively. (author)

  19. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  20. Imaging performance of an isotropic negative dielectric constant slab.

    Science.gov (United States)

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  1. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  2. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  3. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  4. Improved Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  5. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  6. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  7. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    Directory of Open Access Journals (Sweden)

    Liyang Li

    2015-03-01

    Full Text Available In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  8. Dielectric loss against piezoelectric power harvesting

    International Nuclear Information System (INIS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-01-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems. (fast track communications)

  9. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  10. Slots in dielectric image line as mode launchers and circuit elements

    Science.gov (United States)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  11. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  12. All-dielectric band stop filter at terahertz frequencies

    Science.gov (United States)

    Yin, Shan; Chen, Lin

    2018-01-01

    We design all-dielectric band stop filters with silicon subwavelength rod and block arrays at terahertz frequencies. Supporting magnetic dipole resonances originated from the Mia resonance, the all-dielectric filters can modulate the working band by simply varying the structural geometry, while eliminating the ohmic loss induced by the traditional metallic metamaterials and uninvolved with the complicated mechanism. The nature of the resonance in the silicon arrays is clarified, which is attributed to the destructive interference between the directly transmitted waves and the waves emitted from the magnetic dipole resonances, and the resonance frequency is determined by the dielectric structure. By particularly designing the geometrical parameters, the profile of the transmission spectrum can be tailored, and the step-like band edge can be obtained. The all-dielectric filters can realize 93% modulation of the transmission within 0.04 THz, and maintain the bandwidth of 0.05 THz. This work provides a method to develop THz functional devices, such as filters, switches and sensors.

  13. Testing quantised inertia on emdrives with dielectrics

    Science.gov (United States)

    McCulloch, M. E.

    2017-05-01

    Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.

  14. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  15. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  16. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  17. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available Two-dimensional metasurfaces are widely focused on for their ability for flexible light manipulation (phase, amplitude, polarization over sub-wavelength propagation distances. Most of the metasurfaces can be divided into two categories by the material type of unit structure, i.e., plasmonic metasurfaces and dielectric metasurfaces. For plasmonic metasurfaces, they are made on the basis of metallic meta-atoms whose optical responses are driven by the plasmon resonances supported by metallic particles. For dielectric metasurfaces, the unit structure is constructed with high refractive index dielectric resonators, such as silicon, germanium or tellurium, which can support electric and magnetic dipole responses based on Mie resonances. The responses of plasmonic and dielectric metasurfaces are all relevant to the characteristics of unit structure, such as dimensions and materials. One can manipulate the electromagnetic field of light wave scattered by the metasurfaces through designing the dimension parameters of each unit structure in the metasurfaces. In this review article, we give a brief overview of our recent progress in plasmonic and dielectric metasurface-assisted nanophotonic devices and their design, fabrication and applications, including the metasurface-based broadband and the selective generation of orbital angular momentum (OAM carrying vector beams, N-fold OAM multicasting using a V-shaped antenna array, a metasurface on conventional optical fiber facet for linearly-polarized mode (LP11 generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale

  18. Dielectric Constant Measurements of Solid 4He

    Science.gov (United States)

    Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.

    2011-03-01

    Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.

  19. Artificial magnetism and left-handed media from dielectric rings and rods

    International Nuclear Information System (INIS)

    Jelinek, L; Marques, R

    2010-01-01

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  20. Artificial magnetism and left-handed media from dielectric rings and rods

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, L [Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague (Czech Republic); Marques, R, E-mail: l_jelinek@us.e [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla (Spain)

    2010-01-20

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  1. Electromagnetic spin–orbit interaction and giant spin-Hall effect in dielectric particle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yineng [Department of Physics, Beijing Normal University, Beijing 100875 (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics and Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, 100081, Beijing (China)

    2013-12-09

    We report a phenomenon that electromagnetic spin–orbit interactions can be tailored by dielectric nanoparticles, and self-similar giant spin-Hall effect has been observed in the dielectric particle cluster. The near-field phase singularities and phase vorticity in the longitudinal component of scattered field can also be controlled by such a dielectric structure. The origin of phenomena is believed to be due to the collective resonance excitation in the dielectric particle cluster. It is expected to find applications in optics information processing and designing new nanophotonic devices.

  2. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  3. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  4. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  5. Dielectric permittivity of a plasma in an external electric field

    International Nuclear Information System (INIS)

    Schweigert, V.A.

    2001-01-01

    The ion contribution to the dielectric function of a plasma in an external electric field is determined by applying a kinetic approach to the ions in a parent gas in which the main mechanism for ion scattering is resonant charge exchange. The ion scattering frequency is assumed to be constant

  6. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  7. On dielectric breakdown statistics

    International Nuclear Information System (INIS)

    Tuncer, Enis; James, D Randy; Sauers, Isidor; Ellis, Alvin R; Pace, Marshall O

    2006-01-01

    In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones

  8. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids

    Science.gov (United States)

    Awang, Robiatun A.; Tovar-Lopez, Francisco J.; Baum, Thomas; Sriram, Sharath; Rowe, Wayne S. T.

    2017-03-01

    High sensitivity microwave frequency microfluidic sensing is gaining popularity in chemical and biosensing applications for evaluating the dielectric properties of liquid samples. Here, we show that a tiny microfluidic channel positioned in the gaps of a dual-gap meta-atom split-ring resonator can exploit the electric field sensitivity to predict the dielectric properties of liquid samples. Employing an empirical relation between resonant characteristics of the fabricated sensor and the complex permittivity of water-ethanol or water-methanol mixtures produces good congruence to standardized values from the literature. This microfluidic sensor offers a potential lab-on-chip solution for liquid dielectric characterization without external electrical connections.

  9. Wakefield accelerator with hybrid plasma-dielectric structure of rectangular cross-section

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2010-01-01

    Increase of wakefield intensity at its excitation by a long train of relativistic electron bunches in the rectangular dielectric structure when it is filled with plasma of resonant density was experimentally observed. The first portion of the bunches, produced by electron linac 'Almaz-2', ionizes gas at atmospheric pressure so that plasma frequency becomes equal to bunch repetition frequency and to the frequency of principal Eigen mode of the dielectric structure. Excitation enhancement at such resonant conditions is being studied taking into account the improvement of bunch train propagation in the transit channel caused by charge compensation with plasma and the electrodynamics change of the dielectric structure at filling with plasma.

  10. Study of HV Dielectrics for High Frequency Operation in Linear & Nonlinear Transmission Lines & Simulation & Development of Hybrid Nonlinear Lines for RF Generation

    Science.gov (United States)

    2015-08-27

    As shown in [4], [5], the capacitors based on PZT (lead-zirconate- titanate) and BT dielectrics have dielectric BD strength of the order of 50 kV/cm...results. Depending on the nonlinearity properties of the capacitor dielectric , input pulse rise time, output pulse sharpening and or RF soliton... capacitors in a frequency range up to 2 MHz, below the resonant frequency of the both dielectrics . As seen in Fig. 1, PZTs have better performance than

  11. Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure

    CERN Document Server

    Kanareykin, Alex; Karmanenko, Sergei F; Nenasheva, Elisaveta; Power, John G; Schoessow, Paul; Semenov, Alexei

    2005-01-01

    Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

  12. Mechanical property changes in porous low-k dielectric thin films during processing

    Energy Technology Data Exchange (ETDEWEB)

    Stan, G., E-mail: gheorghe.stan@nist.gov; Gates, R. S. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Kavuri, P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Torres, J.; Michalak, D.; Ege, C.; Bielefeld, J.; King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2014-10-13

    The design of future generations of Cu-low-k dielectric interconnects with reduced electronic crosstalk often requires engineering materials with an optimal trade off between their dielectric constant and elastic modulus. This is because the benefits associated with the reduction of the dielectric constant by increasing the porosity of materials, for example, can adversely affect their mechanical integrity during processing. By using load-dependent contact-resonance atomic force microscopy, the changes in the elastic modulus of low-k dielectric materials due to processing were accurately measured. These changes were linked to alterations sustained by the structure of low-k dielectric films during processing. A two-phase model was used for quantitative assessments of the elastic modulus changes undergone by the organosilicate skeleton of the structure of porous and pore-filled dielectrics.

  13. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-01-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  14. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  15. Center for dielectric studies

    Science.gov (United States)

    Cross, L. E.; Newnham, R. E.; Biggers, J. V.

    1984-05-01

    This report focuses upon the parts of the Center program which have drawn most extensively upon Navy funds. In the basic study of polarization processes in high K dielectrics, major progress has been made in understanding the mechanisms in relaxor ferroelectric in the perovskite structure families. A new effort is also being mounted to obtain more precise evaluation of the internal stress effects in fine grained barium titanate. Related to reliability, studies of the effects of induced macro-defects are described, and preparation for the evaluation of space charge by internal potential distribution measurements discussed. To develop new processing methods for very thin dielectric layers, a new type of single barrier layer multilayer is discussed, and work on the thermal evaporation of oriented crystalline antimony sulphur iodide describe.

  16. Dielectric properties of polyethylene

    International Nuclear Information System (INIS)

    Darwish, S.; Riad, A.S.; El-Shabasy, M.

    2005-01-01

    The temperature dependence of dielectric properties in polyethylene was measured in the frequency range from 10 to 105 Hz. The frequency dependence of the complex impedance in the complex plane could be fitted by semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with parallel surface resistance-capacitance combination. The relaxation time, has been evaluated from experimental results. Results reveal that the temperature dependence, is a thermally activated process

  17. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  18. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1983-06-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  19. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  20. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  1. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  2. Magnetodielectric effect of Mn–Zn ferrite at resonant frequency

    International Nuclear Information System (INIS)

    Pengfei, Pan; Ning, Zhang

    2016-01-01

    The dielectric properties and the magnetodielectric effect in Mn–Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn–Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect. - Highlights: • Dimensional resonance was measured in dielectric spectrum at f≈1 MHz. • The MD ratio of 4500% was induced by H = 3.5 kOe at resonant frequency. • The magnetostriction effect leads to the large MD effect at resonant frequency.

  3. Optical Properties of Metal-Dielectric Structures Based on Photon-Crystal Opal Matrices

    Science.gov (United States)

    Vanin, A. I.; Lukin, A. E.; Romanov, S. G.; Solovyev, V. G.; Khanin, S. D.; Yanikov, M. V.

    2018-04-01

    Optical properties of novel metal-dielectric nanocomposite materials based on opal matrices have been investigated. The position of optical resonances of nanocomposites, obtained by embedding of silver into the opal matrix by the electrothermodiffusion method, is explained by the Bragg diffraction, and an asymmetric form of resonance curves is attributed to the Fano resonance. An anomalous transmission and absorption of light by hybrid plasmon-photonic layered heterostructures, which is apparently associated with excitation of surface plasmon-polaritons, propagating along "metal-dielectric" interfaces, was revealed.

  4. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  5. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Krogh, M.; Williams, C.; Trimble, D.; Sampayan, S.; Caporaso, G.

    2003-01-01

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed

  6. Plasmonic versus dielectric enhancement in thin-film solar cells

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    to its metallic counterpart. We show that the enhanced normalized short-circuit current for a cell with silicon strips can be increased 4 times compared to the best performance for strips of silver, gold, or aluminium. For this particular case, the simple dielectric grating may outperform its plasmonic......Several studies have indicated that broadband absorption of thin-film solar cells can be enhanced by use of surface-plasmon induced resonances of metallic parts like strips or particles. The metallic parts may create localized modes or scatter incoming light to increase absorption in thin......-film semiconducting material. For a particular case, we show that coupling to the same type of localized slab-waveguide modes can be obtained by a surface modulation consisting of purely dielectric strips. The purely dielectric device turns out to have a significantly higher broadband enhancement factor compared...

  7. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  8. Dielectric Properties Of Nanoferrites

    International Nuclear Information System (INIS)

    Jankov, Stevan B.; Cvejic, Zeljka N.; Rakic, Srdjan; Srdic, Vladimir

    2007-01-01

    Dielectric properties: permittivity, loss factor, tan delta and ionic conductivity of nanostructured ferrites have been measured. Samples used were nickel, zinc and yttrium doped ferrites mixed in various ratios. The synthesis has been performed using precipitation method and obtained powders were pressed in pellets under varying pressure. X-ray diffractography approach for the refinement of structure and microstructural analysis has been performed. All parameters have been measured in 1 Hz to 100 kHz frequency range and 30 deg. C to 80 deg. C temperature range. Significant improvements in permittivity, loss factor and ionic conductivity comparing to bulk samples have been observed

  9. Dielectric materials and electrostatics

    CERN Document Server

    Gallot-Lavalle, Olivier

    2013-01-01

    An introduction to the physics of electrical insulation, this book presents the physical foundations of this discipline and the resulting applications. It is structured in two parts. The first part presents a mathematical and intuitive approach to dielectrics; various concepts, including polarization, induction, forces and losses are discussed. The second part provides readers with the keys to understanding the physics of solid, liquid and gas insulation. It comprises a phenomenological description of discharges in gas and its resulting applications. Finally, the main electrical properties

  10. Optical and microwave dielectric properties of pulsed laser deposited Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James [School of Physics, University of Hyderabad, Hyderabad, Telangana 500046 (India); Emani, Sivanagi Reddy [Advanced Center of Research in High Energy Materials (ACRHEM), School of Physics, University of Hyderabad, Telangana 500046 (India)

    2016-05-23

    Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.

  11. PARAMETERS OPTIMIZATION OF METAL-DIELECTRIC NANOSTRUCTURES FOR SENSOR APPLICATIONS

    Directory of Open Access Journals (Sweden)

    V. I. Egorov

    2014-07-01

    Full Text Available We present calculation results of optical properties of silver nanoparticles with dielectric shell in relation to their applications in chemical and biosensors. Absorption cross-section calculation for spherical silver nanoparticles was performed by quasi static dipole approximation. It is shown that dielectric shell thickness equal to 2-3 nm and its refraction index equal to 1,5-1,75 are optimal. Calculation results were compared to experimental data. Experimental investigation of metal-dielectric nanostructures sensitivity to external refraction index was performed. Synthesis of silver nanoparticles with dielectric shell on glass surface was performed by nanosecond laser ablation method in near-surface glass layer at 1,06 μm wavelength (Solar LQ129. Synthesis of silver nanoparticles without a shell on the glass surface with silver ions was performed using thermal treatment in wet atmosphere. Spectrophotometer Cary 500 (Varyan was used for spectral measurements. In case of laser ablation method application, external refraction index changes from 1 (the air to 1,33 (water and plasmon resonance band shift for 6 nm occurs. In case of another method application at the same conditions the registered shift was equal to 13 nm. However, in the latter case the particles can be easily removed from the substrate surface. Obtained results will be useful for developing chemical and biological sensors based on plasmon resonance band shift.

  12. Method to characterize dielectric properties of powdery substances

    Science.gov (United States)

    Tuhkala, M.; Juuti, J.; Jantunen, H.

    2013-07-01

    An open ended coaxial cavity method for dielectric characterization of powdery substance operating at 4.5 GHz in TEM mode is presented. Classical mixing rules and electromagnetic modeling were utilized with measured effective permittivities and Q factors to determine the relative permittivity and dielectric loss tangent of different powders with ɛr up to 30. The modeling enabled determination of the correction factor for the simplified equation for the relative permittivity of an open ended coaxial resonator and mixing rules having the best correlation with experiments. SiO2, Al2O3, LTCC CT 2000, ZrO2, and La2O3 powders were used in the experiments. Based on the measured properties and Bruggeman symmetric and Looyenga mixing rules, the determined dielectric characteristics of the powders exhibited good correlation with values in the literature. The presented characterization method enabled the determination of dielectric properties of powdery substances within the presented range, and therefore could be applied to various research fields and applications where dielectric properties of powders need to be known and controlled.

  13. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  14. Discharge ignition near a dielectric

    NARCIS (Netherlands)

    Sobota, A.; Veldhuizen, van E.M.; Stoffels, W.W.

    2008-01-01

    Electrical breakdown in noble gas near a dielectric is an important issue in lighting industry. In order to investigate the influence of the dielectric on the ignition process, we perform measurements in argon, with pressure varying from 0.1 to 1 bar, using a pin–pin electrode geometry. Here, we

  15. Generalized dielectric permittivity tensor

    International Nuclear Information System (INIS)

    Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.

    1986-01-01

    The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form

  16. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  17. The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere

    Science.gov (United States)

    Mason, V. B.

    1973-01-01

    In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.

  18. Efective infrared reflectivity and dielectric function of polycrystalline alumina ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Borodavka, Fedir; Vaněk, Přemysl; Šimek, Daniel; Trunec, D.; Maca, K.

    2017-01-01

    Roč. 254, č. 5 (2017), s. 1-8, č. článku 1600607. ISSN 0370-1972 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : alumina * ceramics * effective dielectric function * effective medium approximation * geometrical resonances * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  19. Dielectric metasurfaces solve differential and integro-differential equations.

    Science.gov (United States)

    Abdollahramezani, Sajjad; Chizari, Ata; Dorche, Ali Eshaghian; Jamali, Mohammad Vahid; Salehi, Jawad A

    2017-04-01

    Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.

  20. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  1. Angle-selective all-dielectric Huygens’ metasurfaces

    Science.gov (United States)

    Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.

    2017-11-01

    We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.

  2. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    Science.gov (United States)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  3. Laser amplification in excited dielectrics

    DEFF Research Database (Denmark)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using...... these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400nm femtosecond laser pulse is coherently...

  4. Microwave dielectric absorption spectroscopy aiming at novel dosimetry using DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshinobu; Hirayama, Makoto; Matuo, Youichirou [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2017-03-15

    We are developing L-band and S-band microwave dielectric absorption systems aiming novel dosimetry using DNAs, such as plasmid DNA and genomic DNA, and microwave technology. Each system is composed of a cavity resonator, analog signal generator, circulator, power meter, and oscilloscope. Since the cavity resonator is sensitive to temperature change, we have made great efforts to prevent the fluctuation of temperature. We have developed software for controlling and measurement. By using this system, we can measure the resonance frequency, f, and ΔQ (Q is a dimensionless parameter that describes how under-damped an oscillator or resonator is, and characterizes a resonator’s bandwidth relative to its center frequency) within about 3 minutes with high accuracy. This system will be expected to be applicable to DNAs evaluations and to novel dosimetric system.

  5. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    International Nuclear Information System (INIS)

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-01

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  6. Dielectric inspection of erythrocyte morphology

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  7. Dielectric inspection of erythrocyte morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  8. Silicone-based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    Efficient conversion of energy from one form to another (transduction) is an important topic in our daily day, and it is a necessity in moving away from the fossil based society. Dielectric elastomers hold great promise as soft transducers, since they are compliant and light-weight amongst many...... energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... elastomer transducers. The subject of this thesis is improvement of properties of silicone-based dielectric elastomers with special focus on design guides towards electrically, mechanically, and electromechanically reliable elastomers. Strategies for improving dielectric elastomer performance are widely...

  9. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  10. Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors

    Directory of Open Access Journals (Sweden)

    Yongyao Chen

    2012-06-01

    Full Text Available We investigate the resonant properties of high quality-factor membrane-based metamaterial resonators functioning in the terahertz regime. A number of factors, including the resonator geometry, dielectric loss, and most importantly the membrane thickness are found to extensively influence the resonance strength and quality factor of the sharp resonance. Further studies on the membrane thickness-dependent-sensitivity for sensing applications reveal that high quality-factor membrane metamaterials with a moderate thickness ranging from 10 to 50 μm are the most promising option towards developing realistic integrated terahertz filters and sensors.

  11. Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

    Science.gov (United States)

    Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2018-01-01

    The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is ≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.

  12. Capacitance of circular patch resonator

    International Nuclear Information System (INIS)

    Miano, G.; Verolino, L.; Naples Univ.; Panariello, G.; Vaccaro, V.G.; Naples Univ.

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  13. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  14. Contribution to the microwave characterisation of superconductive materials by means of sapphire resonators

    International Nuclear Information System (INIS)

    Hanus, Xavier

    1993-01-01

    The objective of this research thesis is to find a compact resonant structure which would allow the residual surface impedance of superconductive samples to be simply, quickly and economically characterised. The author first explains why he decided to use a sapphire single-crystal as inner dielectric, given some performance reached by resonant structures equipped with such inner dielectrics, and given constraints adopted from the start. He explains the origin of microwave losses which appear in this type of resonant structure, i.e. respectively the surface impedance as far as metallic losses are concerned, and the sapphire dielectric loss angle for as far as dielectric losses are concerned. The experimental installation and the principle of microwave measurements are described. The performance of different possible solutions of resonant structures from starting criteria is presented. The solution of the cavity-sapphire with a TE 011 resonant mode is derived [fr

  15. Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Directory of Open Access Journals (Sweden)

    M. T. Jilani

    2014-12-01

    Full Text Available This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR, that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit.

  16. Unidirectional emission from circular dielectric microresonators with a point scatterer

    International Nuclear Information System (INIS)

    Dettmann, C. P.; Morozov, G. V.; Sieber, M.; Waalkens, H.

    2009-01-01

    Circular microresonators are micron-sized dielectric disks embedded in material of lower refractive index. They possess modes of extremely high Q-factors (low-lasing thresholds), which makes them ideal candidates for the realization of miniature laser sources. They have, however, the disadvantage of isotropic light emission caused by the rotational symmetry of the system. In order to obtain high directivity of the emission while retaining high Q-factors, we consider a microdisk with a pointlike scatterer placed off-center inside of the disk. We calculate the resulting resonant modes and show that some of them possess both of the desired characteristics. The emission is predominantly in the direction opposite to the scatterer. We show that classical ray optics is a useful guide to optimizing the design parameters of this system. We further find that exceptional points in the resonance spectrum influence how complex resonance wave numbers change if system parameters are varied.

  17. Minimal resonator loss for circuit quantum electrodynamics

    NARCIS (Netherlands)

    Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.

    2010-01-01

    We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the

  18. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  19. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  20. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  1. Dielectric function of semiconductor superlattice

    International Nuclear Information System (INIS)

    Qin Guoyi.

    1990-08-01

    We present a calculation of the dielectric function for semiconductor GaAs/Ga 1-x Al x As superlattice taking account of the extension of the electron envelope function and the difference of both the dielectric constant and width between GaAs and Ga 1-x Al x As layers. In the appropriate limits, our results exactly reduce to the well-known results of the quasi two-dimensional electron gas obtained by Lee and Spector and of the period array of two-dimensional electron layers obtained by Das Sarma and Quinn. By means of the dielectric function of the superlattice, the dispersion relation of the collective excitation and the screening property of semiconductor superlattice are discussed and compared with the results of the quasi two-dimensional system and with the results of the periodic array of the two-dimensional electron layers. (author). 4 refs, 3 figs

  2. Race for novel high-index all-dielectric and hybrid metal-dielectric nanophotonic materials: Pit-stop optical tests

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Ivanova, A. K.; Kudryavtseva, A. D.; Tchiernega, N. V.; Ionin, A. A.; Kuchmizhak, A. A.; Zayarny, D. A.

    2017-09-01

    Magnetic dipolar Mie-resonance of nanodiamonds supports their highly-efficient stimulated low-frequency Raman scattering via nanosecond laser excitation of their fundamental breathing mode, with strong additional plasmonic enhancement of the Raman conversion efficiency upon ablative capping of the resonant nanodiamond core by a silver nanoshell with a broad overlapping electrical dipolar Mie-resonance. Also, crystalline selenium nanoparticles, exhibiting the high refractive index in the visible/near-IR ranges, were demonstrated as promising all-dielectric sensing building nanoblocks in nanophotonics.

  3. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  4. Dielectric behaviour of strontium tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    dielectric loss (tan δ) as functions of frequency and temperature. Ion core type ... Since the data on dielectric properties of strontium tartrate trihydrate (STT) do not ... through 'AE' make 15-amp dimmerstat, the rate of heating was maintained ...

  5. The Dielectric Constant of Lubrication Oils

    National Research Council Canada - National Science Library

    Carey, A

    1998-01-01

    The values of the dielectric constant of simple molecules is discussed first, along with the relationship between the dielectric constant and other physical properties such as boiling point, melting...

  6. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  7. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  8. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  9. Cellulose Triacetate Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  10. Complex dielectric permittivity and dielectric relaxation of heavy water along its curve of existence

    Energy Technology Data Exchange (ETDEWEB)

    Nabokov, O.A.; Lyubimov, Yu.A.

    1985-10-01

    The authors previously studied the complex dielectric permittivity of ordinary water at 70-200/sup 0/C. Similar measurements were performed in this work for D/sub 2/O by incomplete filling of a microwave resonator at a frequency of about 9.3 GHz. Distilled 99.8% D/sub 2/O was used. For D/sub 2/O, the value of tau/sub D/T/eta (where eta is the viscosity) increases with increasing temperature, so that at 140/sup 0/C its change goes beyond the limits of error of the measurement of tau/sub D/ and eta. The gradual increase in tau/sub D/T/eta and tau/sub D/D with temperature indicates weakening of the interaction between orientation and translation movements of the liquid D/sub 2/O molecules with increasing temperature. 11 references, 1 figure.

  11. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  12. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    Unknown

    India's annual coal production is used in about 72 power- generating plants and ... performance of this material as cracking catalyst was investigated with ... Chemically, the FA was silica to an extent of 55–70%, followed by ... Cu, Pb, Cd, Ag, Mn, Fe, Ti, Na, Mo, S, P, Zn and Cl in different ... two-probe method. The dielectric ...

  13. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  14. Improved di-electric composition

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R C

    1915-03-29

    An improved di-electric composition is disclosed composed of pitch or bitumen which is melted, and to which is added, while molten, a quantity of finely ground or pulverized spent shale, the whole being mixed or stirred to make a homogeneous composition, substantially as described.

  15. Determination of the electromagnetic field in a high-Tc linear superconducting resonator

    International Nuclear Information System (INIS)

    Trotel, A.; Sautrot, S.; Pyee, M.

    1994-01-01

    In this paper, the electromagnetic field configuration in a linear SHTC resonator is described. Two areas are considered: 1) the superconducting strip, 2) the dielectric around the strip. The calculation is based on the current density given by Bowers for an infinite superconducting line. The current density in the resonator is defined by these relations and the resonance conditions. (orig.)

  16. Observation of Resonant Behavior in the Energy Velocity of Diffused Light

    International Nuclear Information System (INIS)

    Sapienza, R.; Garcia, P. D.; Blanco, A.; Lopez, C.; Bertolotti, J.; Wiersma, D. S.; Martin, M. D.; Vina, L.

    2007-01-01

    In this Letter we demonstrate Mie resonances mediated transport of light in randomly arranged, monodisperse dielectric spheres packed at high filling fractions. By means of both static and dynamic optical experiments we show resonant behavior in the key transport parameters and, in particular, we find that the energy transport velocity, which is lower than the group velocity, also displays a resonant behavior

  17. A setup for measuring characteristics of microwave electric vacuum devices with open resonance structures

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Ruban, A. I.; Vorob’ev, G. S.

    2015-01-01

    -tuning range, an additional periodic metal–dielectric structure is introduced into the open resonator. The experimental results of investigations of the energy, volt–ampere, and frequency characteristics of the modified diffraction-radiation generator prototype are compared to the characteristics...... of the generator without a metal–dielectric structure....

  18. Investigation of the dielectric properties of shale

    International Nuclear Information System (INIS)

    Martemyanov, Sergey M.

    2011-01-01

    The article is dedicated to investigation of the dielectric properties of oil shale. Investigations for samples prepared from shale mined at the deposit in Jilin Province in China were done. The temperature and frequency dependences of rock characteristics needed to calculate the processes of their thermal processing are investigated. Frequency dependences for the relative dielectric constant and dissipation factor of rock in the frequency range from 0,1 Hz to 1 MHz are investigated. The temperature dependences for rock resistance, dielectric capacitance and dissipation factor in the temperature range from 20 to 600°C are studied. Key words: shale, dielectric properties, relative dielectric constant, dissipation factor, temperature dependence, frequency dependence

  19. Infrared light extinction by charged dielectric core-coat particles

    OpenAIRE

    Thiessen, Elena; Heinisch, Rafael L.; Bronold, Franz X.; Fehske, Holger

    2014-01-01

    We study the effect of surplus electrons on the infrared extinction of dielectric particles with a core-coat structure and propose to use it for an optical measurement of the particle charge in a dusty plasma. The particles consist of an inner core with negative and an outer coat with positive electron affinity. Both the core and the coat give rise to strong transverse optical phonon resonances, leading to anomalous light scattering in the infrared. Due to the radial profile of the electron a...

  20. Directional interacting whispering-gallery modes in coupled dielectric microdisks

    International Nuclear Information System (INIS)

    Ryu, Jung-Wan; Lee, Soo-Young; Kim, Chil-Min; Park, Young-Jai

    2006-01-01

    We study the optical interaction in a coupled dielectric microdisks by investigating the splitting of resonance positions of interacting whispering-gallery modes (WGM's) and their pattern change, depending on the distance between the microdisks. It is shown that the interaction between the WGM's with odd parity about the y axis becomes appreciable at a distance less than a wavelength and causes directional emissions of the resulting interacting WGM's. The directionality of the interacting WGM's can be understood in terms of an effective boundary deformation in ray dynamical analysis. We also discuss the oscillation of the splitting when the distance is greater than a wavelength

  1. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  2. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  3. Manipulation of plasmonic resonances in graphene coated dielectric cylinders

    KAUST Repository

    Ge, Lixin; Han, Dezhuan; Wu, Ying

    2016-01-01

    Graphene sheets can support surface plasmon as the Dirac electrons oscillate collectively with electromagnetic waves. Compared with the surface plasmon in conventional metal (e.g., Ag and Au), graphene plasmonic owns many remarkable merits

  4. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Science.gov (United States)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  5. Existence conditions for bulk large-wavevector waves in metal-dielectric and graphene-dielectric multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We theoretically investigate general existence conditions for broadband bulk large-wavevector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in arbitrary subwavelength periodic multilayers structures. Treating the elementary excitation in the unit cell...... of the structure as a generalized resonance pole of reflection coefficient and using Bloch's theorem, we derive analytical expressions for the band of large-wavevector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metal-dielectric...

  6. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  7. Interrelation between striction forces in dielectrics and optically induced forces in transparent media

    International Nuclear Information System (INIS)

    Torchigin, V P; Torchigin, A V

    2012-01-01

    Optically induced forces applied to a transparent optical medium, which is inserted in a closed plane optical resonator, are calculated by means of an analysis of the changes in the eigenfrequency and energy stored in the resonator at various positions of the medium. These forces are compared with striction forces applied to the medium considered as a dielectric placed in an alternate electrical field within the resonator. It is shown that the optically induced forces are equal to the striction forces. The results of using the classical formula for striction forces in electrostatics are considered. (paper)

  8. Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam

    International Nuclear Information System (INIS)

    Chen Ye; Wan Xiao-Sheng; Zhao Ding; Liu Wen-Xin; Wang Yong

    2012-01-01

    A three-dimensional model of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam for the beam-wave interaction is proposed. Based on this model, the hybrid-mode dispersion equation is derived with the Borgnis potential function by using the field-matching method. Its approximate solution is obtained under the assumption of a dilute electron beam. By using the Ansoft high frequency structural simulator (HFSS) code, the electromagnetic field distribution in the interaction structure is given. Through numerical calculations, the effects of beam thickness, beam and dielectric-layer gap distance, beam voltage, and current density on the resonant growth rate are analysed in detail

  9. Dielectric coatings on metal substrates

    International Nuclear Information System (INIS)

    Glaros, S.S.; Baker, P.; Milam, D.

    1976-01-01

    Large aperture, beryllium substrate-based mirrors have been used to focus high intensity pulsed laser beams. Finished surfaces have high reflectivity, low wavefront distortion, and high laser damage thresholds. This paper describes the development of a series of metallic coatings, surface finishing techniques, and dielectric overcoatings to meet specified performance requirements. Beryllium substrates were coated with copper, diamond-machined to within 5 micro-inches to final contour, nickel plated, and abrasively figured to final contour. Bond strengths for several bonding processes are presented. Dielectric overcoatings were deposited on finished multimetallic substrates to increase both reflectivity and the damage thresholds. Coatings were deposited using both high and low temperature processes which induce varying stresses in the finished coating substrate system. Data are presented to show the evolution of wavefront distortion, reflectivity, and damage thresholds throughout the many steps involved in fabrication

  10. A combination dielectric and acoustic laboratory instrument for petrophysics

    Science.gov (United States)

    Josh, Matthew

    2017-12-01

    Laboratory testing of rock samples is the primary method for establishing the physics models which relate the rock properties (i.e. porosity, fluid permeability, pore-fluid and saturation) essential to evaluating a hydrocarbon reservoir, to the physical properties (resistivity, nuclear magnetic resonance, dielectric permittivity and acoustic properties) which can be measured with borehole logging instrumentation. Rock samples usually require machining to produce a suitable geometry for each test as well as specific sample preparation, e.g. multiple levels of saturation and chemical treatments, and this leads to discrepancies in the condition of the sample between different tests. Ideally, multiphysics testing should occur on one sample simultaneously so that useful correlations between data sets can be more firmly established. The world’s first dielectric and acoustic combination cell has been developed at CSIRO, so that a sample may be machined and prepared, then measured to determine the dielectric and acoustic properties simultaneously before atmospheric conditions in the laboratory affect the level of hydration in the sample. The dielectric measurement is performed using a conventional three-terminal parallel plate capacitor which can operate from 40 Hz up to 110 MHz, with modified electrodes incorporating a 4 MHz P-wave piezo crystal. Approximately 10 (acoustic P-) wavelengths interact with a typical (10 mm thick) sample so that the user may reliably ‘pick’ the P-wave arrival times with acceptable resolution. Experimental evidence indicates that the instrument is able to resolve 0.25 mm thickness in a Teflon sample test piece. For a number of engineering materials including Teflon and glass and also for a geological samples (Donnybrook sandstone from Western Australia) there is a perfectly linear relationship between both capacitance and P-wave arrival time with sample thickness. Donnybrook sandstone has a consistently linear increase in dielectric

  11. Asymmetric Dielectric Elastomer Composite Material

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  12. Coherent multimoded dielectric wakefield accelerators

    International Nuclear Information System (INIS)

    Power, J.

    1998-01-01

    There has recently been a study of the potential uses of multimode dielectric structures for wakefield acceleration [1]. This technique is based on adjusting the wakefield modes of the structure to constructively interfere at certain delays with respect to the drive bunch, thus providing an accelerating gradient enhancement over single mode devices. In this report we examine and attempt to clarify the issues raised by this work in the light of the present state of the art in wakefield acceleration

  13. Light transmission coefficients by subwavelength aluminum gratings with dielectric layers

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L. M., E-mail: lev39blinov@gmail.com; Lazarev, V. V.; Yudin, S. G.; Artemov, V. V.; Palto, S. P.; Gorkunov, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Crystallography and Photonics Federal Research Center) (Russian Federation)

    2016-11-15

    Spectral positions of plasmon resonances related to boundaries between a thin aluminum layer and dielectrics (air, glass, VDF–TrFE 65/35 ferroelectric copolymer, and indium tin oxide (ITO)) have been determined in the transmission spectra of aluminum gratings of three types with 30 × 30 μm{sup 2} dimensions and 350-, 400-, and 450-nm line periods. Experimental results agree well with spectral positions of plasmon resonances calculated for the normal incidence of TM-polarized light. In addition, maximum values of transmission coefficients in the region of λ ≈ 900–950 nm have been determined for glass–Al–copolymer and glass–ITO–Al–copolymer structures. These values are close to 100%, which shows that the effective optical aperture is two times greater than the geometric areas of slits.

  14. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  15. Substrate effects on terahertz metamaterial resonances for various metal thicknesses

    International Nuclear Information System (INIS)

    Park, S. J.; Ahn, Y. H.

    2014-01-01

    We demonstrate dielectric substrate effects on the resonance shift of terahertz metamaterials with various metal thicknesses by using finite-difference time-domain simulations. We found a small red shift in the metamaterial resonance with increasing metal thickness for the free-standing case. Conversely, when the metamaterial pattern was supported by a substrate with a high dielectric constant, the resonant frequency exhibited a large blue shift because the relative contribution of the substrate's refractive index to the resonant frequency decreased drastically as we increased the metal thickness. We determined the substrate's refractive index, 1.26, at which the metamaterial resonance was independent of the metal thickness. We extracted the effective refractive index as a function of the substrate's refractive index explicitly, which was noticeably different for different film thicknesses.

  16. Metal-in-metal localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G B; Earp, A A, E-mail: g.smith@uts.edu.au [Department of Physics and Advanced Materials and Institute of Nanoscale Technology, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2010-01-08

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  17. Metal-in-metal localized surface plasmon resonance

    Science.gov (United States)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  18. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  19. Directional Emission from Dielectric Leaky-Wave Nanoantennas

    Science.gov (United States)

    Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan

    2017-07-01

    An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.

  20. Development of a dielectric ceramic based on diatomite-titania part two: dielectric properties characterization

    Directory of Open Access Journals (Sweden)

    Medeiros Jamilson Pinto

    1998-01-01

    Full Text Available Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.

  1. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  2. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  3. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric...

  4. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    Science.gov (United States)

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  5. Dielectric matrix, dynamical matrix and phonon dispersion in hcp transition metal scandium

    International Nuclear Information System (INIS)

    Singh, Joginder; Singh, Natthi; Prakash, S.

    1976-01-01

    Complete dielectric matrix is evaluated for hcp transition metal scandium using the non-interacting s- and d-band model. The local field corrections which are consequence of the non-diagonal part of the dielectric matrix are calculated explicitly. The free electron approximation is used for the s-electrons and the simple tight-binding approximation is used for the d-electrons. The theory developed by Singh and others is used to invert the dielectric matrix and the explicit expressions for the dynamical matrix are obtained. The phonon dispersion relations are investigated by using the renormalized Animalu transition metal model potential (TMMP) for bare ion potential. The contribution due to non-central forces which arise due to local fields is found to be 20%. The results are found in resonably good agreement with the experimental values. (author)

  6. Estimation of Relative Permittivity of Printed Circuit Board with Fiber Glass Epoxy as Dielectric for UHF Applications

    Directory of Open Access Journals (Sweden)

    Ronal D. Montoya-Montoya

    2013-11-01

    Full Text Available This paper presents the results of measuring relative permittivity of fiber glass printed circuit board (PCB’s, using a rectangular resonant cavity. The relative permittivity is presented as function of frequency. To obtain resonant frequencies, the return loss was measured using a network analyzer. Relative permittivity was calculated by finding frequencies of resonant cavity modes. The results are presented in a frequency span of 1 to 3.5GHz. It was clearly shown the nonlinear behavior of the relative permittivity for the dielectric laminate evaluated, even what happens respect to the frequency of the resonant modes below and above to frequency of 2 GHz.

  7. Features of the effect of the parameters of resonance systems with different configurations on the current-voltage characteristics of resonant-tunneling nanostructures in a subterahertz frequency range

    International Nuclear Information System (INIS)

    Aleksanyan, A.A.; Volchkov, N.A.; Dravin, V.A.; Kazakov, I.P.; Karuzskij, A.L.; Murzin, V.N.; Perestoronin, A.V.; Tskhovrebov, A.M.; Shmelev, S.S.

    2014-01-01

    Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed [ru

  8. Micro-optomechanical trampoline resonators

    Science.gov (United States)

    Pepper, Brian; Kleckner, Dustin; Sonin, Petro; Jeffrey, Evan; Bouwmeester, Dirk

    2011-03-01

    Recently, micro-optomechanical devices have been proposed for implementation of experiments ranging from non-demolition measurements of phonon number to creation of macroscopic quantum superpositions. All have strenuous requirements on optical finesse, mechanical quality factor, and temperature. We present a set of devices composed of dielectric mirrors on Si 3 N4 trampoline resonators. We describe the fabrication process and present data on finesse and quality factor. The authors gratefully acknowledge support from NSF PHY-0804177 and Marie Curie EXT-CT-2006-042580.

  9. L-band Dielectric Constant Measurements of Seawater (Oral presentation and SMOS Poster)

    Science.gov (United States)

    Lang, Roger H.; Utku, Cuneyt; LeVine, David M.

    2003-01-01

    This paper describes a resonant cavity technique for the measurement of the dielectric constant of seawater as a function of its salinity. Accurate relationships between salinity and dielectric constant (which determines emissivity) are needed for sensor systems such as SMOS and Aquarius that will monitor salinity from space in the near future. The purpose of the new measurements is to establish the dependence of the dielectric constant of seawater on salinity in contemporary units (e.g. psu) and to take advantage of modern instrumentation to increase the accuracy of these measurements. The measurement device is a brass cylindrical cavity 16cm in diameter and 7cm in height. The seawater is introduced into the cavity through a slender glass tube having an inner diameter of 0.1 mm. By assuming that this small amount of seawater slightly perturbs the internal fields in the cavity, perturbation theory can be employed. A simple formula results relating the real part of the dielectric constant to the change in resonant frequency of the cavity. In a similar manner, the imaginary part of the dielectric constant is related to the change in the cavity s Q. The expected accuracy of the cavity technique is better than 1% for the real part and 1 to 2% for the imaginary part. Presently, measurements of methanol have been made and agree with precision measurements in the literature to within 1% in both real and imaginary parts. Measurements have been made of the dielectric constant of seawater samples from Ocean Scientific in the United Kingdom with salinities of 10, 30, 35 and 38 psu. All measurements were made at room temperature. Plans to make measurements at a range of temperatures and salinities will be discussed.

  10. Development of a diplexer based on dielectric beam splitters

    International Nuclear Information System (INIS)

    D'Arcangelo, O.; Alessi, E.; Bin, W.; Bruschi, A.; Moro, A.; Muzzini, V.

    2011-01-01

    Controllable power combination and distribution of multiple sources into multiple transmission lines may increase efficiency and flexibility of ECRH systems. A new quasi-optical version of diplexer based on a resonating system, coupling two transmission lines, is under development at IFP-CNR. Two dielectric beam splitters work as input/output ports for the diplexer, which can be thought as a Fabry-Perot resonator. A third beam splitter can be inserted in the middle of the resonator. In this case the diplexer looks like a pair of mirrored resonators coupled by through the central splitter. Each beam splitter is made of a water-free silica layer, three quarter of wavelength thick at 140 GHz. The simulated performances were tested as a function of the frequency on the two splitters simpler model. Preliminary results confirm qualitatively theoretical predictions as well as the good channel separation obtainable with the three splitters version. Present work describes the system realization together with the low power tests performed.

  11. Ferroelectric dielectrics integrated on silicon

    CERN Document Server

    Defay, Emmanuel

    2013-01-01

    This book describes up-to-date technology applied to high-K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies.After detailing the basic thermodynamic theory applied to high-K dielectrics thin films including extrinsic effects, this book emphasizes the specificity of thin films. Deposition and patterning technologies are then presented. A whole chapter is dedicated to the major role played in the field by X-Ray Diffraction characterization, and other characterization techniques are also described such as Radio frequency characterizat

  12. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  13. Broadband cloaking using composite dielectrics

    Directory of Open Access Journals (Sweden)

    Ruey-Bing Hwang

    2011-03-01

    Full Text Available In this paper, we present a novel cloaking structure that is able to make a metallic block invisible in a metallic waveguide. Such a cloak is made up of a stack of commonly used dielectric slabs. We carry out the numerical simulation and observe the detour of the vector Poynting power through the cloak. Moreover, the experiment is conducted for measuring the scattering characteristics including the reflection and transmission coefficients. The great improvement in the transmission coefficient in a broad bandwidth after cloaking is demonstrated. Significantly, the theory of mode conversion is developed for explaining the cloaking phenomenon.

  14. Characterization and study of dielectric and electrical properties of CaBi4Ti4O_1_5 (CBT) added with Bi_2O_3

    International Nuclear Information System (INIS)

    Freitas, D.B.; Campos Filho, M.C.; Sales, J.C.; Silva, P.M.O.; Sombra, A.S.

    2011-01-01

    The ceramic perovskite CaBi_4Ti_4O_1_5 (CBT) of space group A21am, Aurivillius family with deficiency A_5B_4O_1_5 cation has been prepared by solid state method in a planetary ball mill of high energy. The reagents samples were ground and calcined and then added with Bi_2O_3 (2% wt.) This work aims to characterize by X-ray diffraction to study the electrical properties and dielectric properties of (CBT). The x-ray diffraction revealed the formation of single orthorhombic phase. As for the dielectric properties (dielectric constant and dielectric loss) were measured at 30 deg C to 450 deg C, through which can be verified the presence of thermally activated processes. This phase has properties very relevant for possible use in capacitive devices, miniaturized filters, dielectric resonators antennas and oscillators. (author)

  15. Determination of the concentration of alum additive in deep-fried dough sticks using dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenyu Kang

    2015-09-01

    Full Text Available The concentration of alum additive in deep-fried dough sticks (DFDSs was investigated using a coaxial probe method based on dielectric properties in the 0.3–10-GHz frequency range. The dielectric spectra of aqueous solutions with different concentrations of alum, sodium bicarbonate, and mixtures thereof were used. The correspondence between dielectric loss and alum concentration was thereby revealed. A steady, uniform correspondence was successfully established by introducing ω·ε″(ω, the sum of dielectric loss and conductor loss (i.e., total loss, according to the electrical conductivity of the alum-containing aqueous solutions. Specific, resonant-type dielectric dispersion arising from alum due to atomic polarization was identified around 1 GHz. This was used to discriminate the alum additive in the DFDS from other ingredients. A quantitative relationship between alum and sodium bicarbonate concentrations in the aqueous solutions and the differential dielectric loss Δε″(ω at 0.425 GHz was also established with a regression coefficient over 0.99. With the intention of eliminating the effects of the chemical reactions with sodium bicarbonate and the physical processes involved in leavening and frying during preparation, the developed technique was successfully applied to detect the alum dosage in a commercial DFDS (0.9942 g/L. The detected value agreed well with that determined using graphite furnace atomic absorption spectrometry (0.9722 g/L. The relative error was 2.2%. The results show that the proposed dielectric differential dispersion and loss technique is a suitable and effective method for determining the alum content in DFDSs.

  16. High thermal conductivity lossy dielectric using a multi layer configuration

    Science.gov (United States)

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  17. Thermally stimulated discharge current (TSDC) and dielectric ...

    Indian Academy of Sciences (India)

    Unknown

    2001-10-09

    Oct 9, 2001 ... Measurements of TSDC and dielectric constant, ε′, have been ... Keywords. Semiconducting glass; TSDC; trap energy; dielectric constant. 1. ... determination of mean depth of the internal charge, activation ... thermal charging, viz. (i) internal ... the basis of d.c. conductivity and short range Na+ ion motion.

  18. Dielectric spectroscopy of watermelons for quality sensing

    Science.gov (United States)

    Nelson, Stuart O.; Guo, Wen-chuan; Trabelsi, Samir; Kays, Stanley J.

    2007-07-01

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and an impedance analyser over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC. However, SSC prediction from the dielectric properties by this relationship was not as high as expected (coefficient of determination about 0.4). Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for the four melon cultivars and for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which may be attributable to a combination of bound water, Maxwell-Wagner, molecular cluster or ion-related effects, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from their dielectric properties.

  19. Dielectric material options for integrated capacitors

    NARCIS (Netherlands)

    Ruhl, G.; Lehnert, W.; Lukosius, M.; Wenger, C.; Baristiran Kaynak, C.; Blomberg, T.; Haukka, S.; Baumann, P.K.; Besling, W.F.A.; Roest, A.L.; Riou, B.; Lhostis, S.; Halimaou, A.; Roozeboom, F.; Langereis, E.; Kessels, W.M.M.; Zauner, A.; Rushworth, S.A.

    2014-01-01

    Future MIM capacitor generations will require significantly increased specific capacitances by utilization of high-k dielectric materials. In order to achieve high capacitance per chip area, these dielectrics have to be deposited in three-dimensional capacitor structures by ALD or AVD (atomic vapor

  20. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  1. Aging of Dielectric Properties below Tg

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    The dielectric loss at 1Hz in TPP is studied during a temperature step from one equilibrium state to another. In the applied cryostate the temperature can be equilibrated on a timescale of 1 second. The aging time dependence of the dielectric loss is studied below Tg applying temperature steps...

  2. Microscopic resolution broadband dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mukherjee, S; Watson, P; Prance, R J

    2011-01-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  3. Microscopic resolution broadband dielectric spectroscopy

    Science.gov (United States)

    Mukherjee, S.; Watson, P.; Prance, R. J.

    2011-08-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  4. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    Science.gov (United States)

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  5. Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles

    Science.gov (United States)

    Li, Jiaqi; Verellen, Niels; Van Dorpe, Pol

    2018-02-01

    Dielectric nanoparticles with both strong electric and magnetic dipole (ED and MD) resonances offer unique opportunities for efficient manipulation of light-matter interactions. Here, based on numerical simulations, we show far-field diffractive coupling of the ED and MD modes in a periodic rectangular array. By using unequal periodicities in the orthogonal directions, each dipole mode is separately coupled and strongly tuned. With this method, the electric and magnetic response of the dielectric nanoparticles can be deliberately engineered to accomplish various optical functionalities. Remarkably, an ultra-sharp MD resonance with sub-10 nm linewidth is achieved with a large enhancement factor for the magnetic field intensity on the order of ˜103. Our results will find useful applications for the detection of chemical and biological molecules as well as the design of novel photonic metadevices.

  6. Spherical and cylindrical particle resonator as a cloak system

    Science.gov (United States)

    Minin, I. V.; Minin, O. V.; Eremeev, A. I.; Tseplyaev, I. S.

    2018-05-01

    The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place.

  7. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  8. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  9. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  10. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  11. Active resonance tuning of stretchable plasmonic structures

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Mortensen, N. Asger

    2012-01-01

    Active resonance tuning is highly desired for the applications of plasmonic structures, such as optical switches and surface enhanced Raman substrates. In this paper, we demonstrate the active tunable plasmonic structures, which composed of monolayer arrays of metallic semishells with dielectric...... cores on stretchable elastic substrates. These composite structures support Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of these plasmonic structures can be reconfigured from...... applications of the stretch-tunable plasmonic structures in sensing, switching, and filtering....

  12. Plasmon resonant cavities in vertical nanowire arrays

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  13. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  14. Wave propagation near the lower hybrid resonance in toroidal plasmas

    International Nuclear Information System (INIS)

    Ohkubo, K.; Ohasa, K.; Matsuura, K.

    1975-10-01

    Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)

  15. Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si

    Science.gov (United States)

    Biagioni, P.; Sakat, E.; Baldassarre, L.; Calandrini, E.; Samarelli, A.; Gallacher, K.; Frigerio, J.; Isella, G.; Paul, D. J.; Ortolani, M.

    2015-03-01

    We address the behavior of mid-infrared localized plasmon resonances in elongated germanium antennas integrated on silicon substrates. Calculations based on Mie theory and on the experimentally retrieved dielectric constant allow us to study the tunability and the figures of merit of plasmon resonances in heavily-doped germanium and to preliminarily compare them with those of the most established plasmonic material, gold.

  16. Double resonant excitation of the second harmonic of terahertz raditation in dielectricgraphene layered metamaterials

    DEFF Research Database (Denmark)

    Rapoport, Yu; Grimalsky, V.; Lavrinenko, Andrei

    2017-01-01

    to the interfaces, and generation of the p-type second harmonic wave occurs. The original concept is proposed to employ the double resonance arrangement for the effective generation of the second harmonic. The double resonant case can be realized when a high-permittivity dielectric is at the input of the structure...

  17. The color dielectric model of QCD

    International Nuclear Information System (INIS)

    Pirner, H.-J.; Massachusetts Inst. of Tech., Cambridge, MA; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    This paper demonstrates the emergence of valence gluons and their bound states, the glueballs from perturbative quantum chromodynamics (QCD). We discuss the phenomenological constraints and theoretical method needed to generate effective glueballs actions. We show how color dielectric confinement works naively and in the lattice model of color dielectrics. This lattice model is derived for SU(2) color by a blockspinning Monte Carlo renormalization group procedure. We interpret the resulting long-distance as a strongly interacting lattice string theory where the valence link gluon fields randomize in the color dielectric background which mimics the integrated out high-frequency gluon modes in the vacuum. The fluctuations of the color dielectric fields are related to color neutral glueballs modes. We give the extension of this color dielectric SU(2) theory for general SU(N) with quarks and address the problems associated with combining confinement and chiral symmetry breaking. Finally we prove the efficiency of the effective theory in applications to the heavy quark system, the the baryon, to the nucleon-nucleon interaction, to baryon models and the gluon plasma transition. In all those cases the behavior of the higher energy gluons can be monitored via the color dielectric fields. An increase in the energy density from ''deconfining'' the higher frequency modes inside the flux tube or in thermally excited matter shows up as an increase in the value of the color dielectric field and its associated energy density. (Author)

  18. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  19. Virtual gap dielectric wall accelerator

    Science.gov (United States)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  20. Standards for dielectric elastomer transducers

    International Nuclear Information System (INIS)

    Carpi, Federico; Frediani, Gabriele; Anderson, Iain; Bauer, Siegfried; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Pelrine, Ron; Lassen, Benny; Rechenbach, Björn; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O’Brien, Benjamin; Pei, Qibing

    2015-01-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation. (paper)

  1. Standards for dielectric elastomer transducers

    Science.gov (United States)

    Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert

    2015-10-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

  2. Analysis of slotted cylindrical ring resonators | Letsididi | Botswana ...

    African Journals Online (AJOL)

    In this paper the Transmission Line Modeling method is used to determine the effects of using a high dielectric constant material on the size and coupling constant of the resonator. Modeling and simulations are done using Microstripes, a commercial TLM field solver from Flomerics. The paper shows that by placing a high ...

  3. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  4. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  5. A dielectric approach to high temperature superconductivity

    International Nuclear Information System (INIS)

    Mahanty, J.; Das, M.P.

    1989-01-01

    The dielectric response of an electron-ion system to the presence of a pair of charges is investigated. From the nature of the dielectric function, it is shown that a strong attractive pair formation is possible depending on the dispersion of the ion branches. The latter brings a reduction to the sound velocity which is used as a criterion for the superconductivity. By solving the BCS equation with the above dielectric function, we obtain a reasonable value of T/sub c/. 17 refs., 1 fig

  6. Radiation pressure on a dielectric surface

    International Nuclear Information System (INIS)

    Hirose, A.

    2010-01-01

    The radiation pressure on an insulating dielectric medium should be calculable from the force acting on the polarization vector P. The well-known force proposed by Gordon (Phys. Rev. A, 8, 14 (1973) disappears in the case of a steady-state plane wave. A new form of force explicitly involving the polarization vector is proposed and applied to determine the partition of the incident momentum among the reflected and transmitted wave, and the dielectric medium. The momentum of electromagnetic wave in a dielectric medium thus found is consistent with the classical relationship, wave momentum flux density = wave intensity/wave velocity. (author)

  7. Dielectric function of two-phase colloid-polymer nanocomposite.

    Science.gov (United States)

    Mitzscherling, S; Cui, Q; Koopman, W; Bargheer, M

    2015-11-28

    The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell-Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses.

  8. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  9. Dielectric Properties and Oxidation Roasting of Molybdenite Concentrate by Using Microwave Energy at 2.45 GHz Frequency

    Science.gov (United States)

    Yonglin, Jiang; Bingguo, Liu; Peng, Liu; Jinhui, Peng; Libo, Zhang

    2017-12-01

    Conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, determining the dielectric properties of molybdenite concentrate and its microwave power penetration depth in relation to a temperature increment at the commercial frequency of 2.45 GHz is necessary to design industrial microwave processing units. In this study, the dielectric constants increased as the temperature increased in the entire experimental range. The loss factor presented an opposite trend, except for 298 K to 373 K (25 °C to 100 °C) in which a cavity perturbation resonator was used. The plots of nonlinear surface fitting indicate that the increase in dielectric loss causes a considerable decrease in penetration depth, but the dielectric constants exert a small positive effect. The thermogravimetric analysis (TGA-DSC) of the molybdenite concentrate was carried out to track its thermal decomposition process, aim to a dielectric analysis during the microwave heating. MoO3 was prepared from molybdenite concentrate through oxidation roasting in a microwave heating system and a resistance furnace, respectively. The phase transitions and morphology evolutions during oxidation roasting were characterized through X-ray diffraction and scanning electron microscopy. Results show that microwave thermal technique can produce high-purity molybdenum trioxide.

  10. Cooling optically levitated dielectric nanoparticles via parametric feedback

    Science.gov (United States)

    Neukirch, Levi; Rodenburg, Brandon; Bhattacharya, Mishkatul; Vamivakas, Nick

    2015-05-01

    The inability to leverage resonant scattering processes involving internal degrees of freedom differentiates optical cooling experiments performed with levitated dielectric nanoparticles, from similar atomic and molecular traps. Trapping in optical cavities or the application of active feedback techniques have proven to be effective ways to circumvent this limitation. We present our nanoparticle optical cooling apparatus, which is based on parametric feedback modulation of a single-beam gradient force optical trap. This scheme allows us to achieve effective center-of-mass temperatures well below 1 kelvin for our ~ 1 ×10-18 kg particles, at modest vacuum pressures. The method provides a versatile platform, with parameter tunability not found in conventional tethered nanomechanical systems. Potential applications include investigations of nonequilibrium nanoscale thermodynamics, ultra-sensitive force metrology, and mesoscale quantum mechanics and hybrid systems. Supported by the office of Naval Research award number N000141410442.

  11. Identification of structural relaxation in the dielectric response of water

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Kisliuk, Alexander; Solokov, Alexei P.

    2016-01-01

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we...... unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols....

  12. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  13. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  14. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  15. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  16. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  17. Photoconductivity and dielectric studies of potassium pentaborate

    Indian Academy of Sciences (India)

    Single crystal of potassium pentaborate (KB5) has been grown by solution growth ... equipped with the Gunn Oscillator guided with rectangular wave-guide. ... its dielectric behaviour with the change of frequency has also been investigated.

  18. Infrared and THz spectroscopy of nanostructured dielectrics

    Directory of Open Access Journals (Sweden)

    Jan Petzelt

    2009-09-01

    Full Text Available Results achieved using the infrared/THz spectroscopy of various inhomogeneous dielectrics in the Department of Dielectrics, Institute of Physics, Prague, during the last decade are briefly reviewed. The discussion concerns high-permittivity ceramics with inevitable low-permittivity dead layers along the grain boundaries, relaxor ferroelectrics with highly anisotropic polar nano-regions, classical matrix-type composites, core-shell composites, filled nanoporous glasses, polycrystalline and epitaxial thin films, heterostructures and superlattices on dielectric substrates. The analysis using models based on the effective medium approach is discussed. The importance of depolarizing field and of the percolation of components on the effective ac dielectric response and the excitations contributing to it are emphasized.

  19. Organic dielectrics in high voltage cables

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, J

    1962-03-01

    It appears that the limit has been reached in the applicability of oil-impregnated paper as the dielectric for ehv cables, as with rising voltages the prevention of conductor losses becomes increasingly difficult, while the dielectric losses of the insulation, increasing as the square of the voltage, contribute to a greater extent to the temperature rise of the conductor. The power transmitting capacity of ehv cables reaches a maximum at 500 to 600 kV for these reasons. Apart from artificial cooling, a substantial improvement can be obtained only with the use of insulating materials with much lower dielectric losses; these can moreover be applied with a smaller wall thickness, but this means higher field strengths. Synthetic polymer materials meet these requirements but can be used successfully only in the form of lapped film tapes impregnated with suitable liquids. The electrical properties of these heterogeneous dielectrics, in particular, their impulse breakdown strengths are studied in detail.

  20. Confinement in the color dielectric model

    International Nuclear Information System (INIS)

    Pirner, H.J.

    1990-01-01

    The paper consists of several parts. In Section 2, I give an introduction to the main physics of lattice gauge theory. Section 3 gives an outline of the colour dielectric model and first numerical results on the effective action after one block-spinning step. Section 4 reviews some new work on the generalization of the colour dielectric model to SU3 colour . (orig./HSI)

  1. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  2. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  3. New Dielectric Measurement Data to Determine the Permittivity of Seawater at 1.4313 Hz

    Science.gov (United States)

    Lang, R.; Zhou, Y.; Utku, C.; Levine, D.

    2012-01-01

    This paper describes the new measurements - made in 2010-2011 - of the dielectric constant of seawater at 1.413 GHz using a resonant cavity technique. The purpose of these measurements is to develop an accurate relationship concerning the dependence of the dielectric constant of seawater on temperature and salinity for use by the Aquarius inversion algorithm. Aquarius is a NASA/CONAE satellite mission launched in June of 2011 with the primary mission of measuring global sea surface salinity with a 1.413 GHz radiometer to an accuracy of 0.2 psu. A brass microwave cavity resonant at 1.413 GHz has been used to measure the dielectric constant of seawater. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The change of resonant frequency and the cavity Q value are used to determine the real and imaginary parts of the dielectric constant of seawater. Measurements are automated with Visual Basic software developed at the George Washington University. In this paper, new results from measurements made since September 2010 will be presented for salinities of 30, 35 and 38 psu with a temperature range of 0 C to 35 C in intervals of 5 C. These measurements are more accurate than earlier measurements made in 2008. The new results will be compared to the Klein-Swift (KS) and Meissner-Wentz (MW) model functions. The importance of an accurate model function will be illustrated by using these model functions to invert the Aquarius brightness temperature to retrieve the salinity values. The salinity values will be compared to co-located in situ data collected by Argo buoys.

  4. Dielectric properties of PMMA/Soot nanocomposites.

    Science.gov (United States)

    Clayton, Lanetra M; Cinke, Martin; Meyyappan, M; Harmon, Julie P

    2007-07-01

    Dielectric analysis (DEA) of relaxation behavior in poly(methyl methacrylate) (PMMA) soot nanocomposites is described herein. The soot, an inexpensive material, consists of carbon nanotubes, amorphous and graphitic carbon and metal particles. Results are compared to earlier studies on PMMA/multi-walled nanotube (MWNT) composites and PMMA/single-walled nanotube (SWNT) composites. The beta relaxation process appeared to be unaffected by the presence of the soot, as was noted earlier in nanotube composites. The gamma relaxation region in PMMA, normally dielectrically inactive, was "awakened" in the PMMA/soot composite. This occurrence is consistent with previously published data on nanotube composites. The dielectric permittivity, s', increased with soot content. The sample with 1% soot exhibited a permittivity (at 100 Hz and 25 degrees C) of 7.3 as compared to 5.1 for neat PMMA. Soot increased the dielectric strength, deltaE, of the composites. The 1% soot sample exhibited a dielectric strength of 6.38, while the neat PMMA had a value of 2.95 at 40 degrees C. The symmetric broadening term (alpha) was slightly higher for the 1% composite at temperatures near the secondary relaxation and near the primary relaxation, but all samples deviated from symmetrical semi-circular behavior (alpha = 1). The impact of the soot filler is seen more clearly in dielectric properties than in mechanical properties studies conducted earlier.

  5. Dielectric silicone elastomers with mixed ceramic nanoparticles

    International Nuclear Information System (INIS)

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  6. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  7. Electromagnetic properties of metal-dielectric media and their applications

    Science.gov (United States)

    Animilli, Shravan Rakesh

    The main objective of this dissertation is to investigate nano-structured random composite materials, which exhibit anomalous phenomena, such as the extraordinary enhancements of linear and non-linear optical processes due to excitation of collective electronic states, surface plasmons (SP). The main goal is to develop a time and memory efficient novel numerical method to study the properties of these random media in three dimensions (3D) by utilization of multi core processing and packages such as MPI for parallel execution. The developed numerical studies are then utilized to provide a comprehensive characterization and optimization of a surface plasmon enhanced solar cell (SPESC) and to serve as a test bed for enhanced bio and chemical sensing. In this context, this thesis work develops an efficient and exact numerical algorithm here referred to as Block Elimination Method (BE) which provides the unique capability of modeling extremely large scale composite materials (with up to 1 million strongly interacting metal or dielectric particles). This capability is crucial in order to study the electromagnetic response of large scale inhomogeneous (fractal) films and bulk composites at critical concentrations (percolation). The developed numerical method is used to accurately estimate parameters that describe the composite materials, including the effective conductivity and correlation length scaling exponents, as well as density of states and localization length exponents at the band center. This works reveals, for a first time, a unique de-localization mechanism that plays an important role in the excitation of charge-density waves, i.e. surface plasmons (SP), in metal-dielectric composites. It also shows that in 3D metal-dielectric percolation systems the local fields distribution function for frequencies close to the single particle plasmon resonance is log-normal which is a signature of a metal-dielectric phase transition manifested in the optical response of the

  8. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    Science.gov (United States)

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  9. Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg - Zn spinel nanoferrites

    Science.gov (United States)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-03-01

    Cu2+ substituted Mg - Zn nanoferrites is synthesized by low temperature fired sol gel auto combustion method. The spinel nature of nanoferrites was confirmed by lab x-ray technique. Williamson - Hall (W-H) analysis estimate the average crystallite size (22.25-29.19 ± 3 nm) and micro strain induced Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5). Raman scattering measurements confirm presence of four active phonon modes. Red shift is observed with enhanced Cu concentration. Dielectric parameters exhibit a non - monotonous dispersion with Cu concentration and interpreted with the support of hopping mechanism and Maxwell-Wagner type of interfacial polarization. The ac conductivity of nanoferrites increases with raising the frequency. Complex electrical modulus reveals a non - Debye type of dielectric relaxation present in nanoferrites. Reactive impedance (Z″) detected an anomalous behavior and is related with resonance effect. Complex impedance demonstrates one semicircle corresponding to the intergrain (grain boundary) resistance and also explains conducting nature of nanoferrites. For x = 0.2, a large semicircle is observed revealing the ohmic nature (minimum potential drop at electrode surface). Dielectric properties were improved for nanoferrites with x = 0.2 and is due to high dielectric constant, conductivity and minimum loss value (∼0.009) at 1 MHz.

  10. Elastic properties of porous low-k dielectric nano-films

    Science.gov (United States)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  11. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    Science.gov (United States)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  12. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    Science.gov (United States)

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  13. Reversible dielectric property degradation in moisture-contaminated fiber-reinforced laminates

    Science.gov (United States)

    Rodriguez, Luis A.; García, Carla; Fittipaldi, Mauro; Grace, Landon R.

    2016-03-01

    The potential for recovery of dielectric properties of three water-contaminated fiber-reinforced laminates is investigated using a split-post dielectric resonant technique at X-band (10 GHz). The three material systems investigated are bismaleimide (BMI) reinforced with an eight-harness satin weave quartz fabric, an epoxy resin reinforced with an eight- harness satin weave glass fabric (style 7781), and the same epoxy reinforced with a four-harness woven glass fabric (style 4180). A direct correlation between moisture content, dielectric constant, and loss tangent was observed during moisture absorption by immersion in distilled water at 25 °C for five equivalent samples of each material system. This trend is observed through at least 0.72% water content by weight for all three systems. The absorption of water into the BMI, 7781 epoxy, and 4180 epoxy laminates resulted in a 4.66%, 3.35%, and 4.01% increase in dielectric constant for a 0.679%, 0.608%, and 0.719% increase in water content by weight, respectively. Likewise, a significant increase was noticed in loss tangent for each material. The same water content is responsible for a 228%, 71.4%, and 64.1% increase in loss tangent, respectively. Subsequent to full desorption through drying at elevated temperature, the dielectric constant and loss tangent of each laminate exhibited minimal change from the dry, pre-absorption state. The dielectric constant and loss tangent change after the absorption and desorption cycle, relative to the initial state, was 0.144 % and 2.63% in the BMI, 0.084% and 1.71% in the style 7781 epoxy, and 0.003% and 4.51% in the style 4180 epoxy at near-zero moisture content. The similarity of dielectric constant and loss tangent in samples prior to absorption and after desorption suggests that any chemical or morphological changes induced by the presence of water have not caused irreversible changes in the dielectric properties of the laminates.

  14. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

    Science.gov (United States)

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert

    2015-08-12

    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  15. Dielectric Dispersion Studies Indicate Change in Structure of Water by Potentised Homeopathic Medicines

    Science.gov (United States)

    Mahata, C. R.

    2012-12-01

    Response of living bodies to different vastly `diluted' homeopathic medicines are different (rejecting the sceptic's view of `placebo' effect), though they are chemically same. Till now there is no satisfactory answer to how one such medicine differs from another in terms of scientifically measurable parameters. This paper tries to address this basic issue by taking two medicines of the same potency and two different potencies of the same medicine, namely, Arnica Mont 30c, 200c and Anacardium Orient 30c, 200c. These potencies are well above the Avogadro limit. The investigation reported here proceeds with the concept of `induced molecular structure' advanced by a number of scientists. Dielectric dispersion is used as the tool for experimental verification. It is based on the fact that when the exciting frequency of applied electric field equals the characteristic frequency, then macromolecules resonate leading to anomalous dielectric dispersion associated with sharp increase in dielectric loss, the resonance frequencies being different for macromolecules of different structures or dimensions. The results suggest that medicine- and potency-specific attributes are acquired by the vehicle (i.e. water) in the form of macromolecules generated by the potentization process of homeopathy making one medicine structurally different from another.

  16. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    Science.gov (United States)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  17. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  18. Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for RF transmission windows

    International Nuclear Information System (INIS)

    Hazelton, C.; Rice, J.; Snead, L.L.; Zinkle, S.J.

    1998-01-01

    The behavior of electrically insulating ceramics was investigated before and after exposure to neutron radiation. Mechanical, thermal and dielectric specimens were studied after exposure to a fast neutron dose of 0.1 displacements per atom (dpa) at Oak Ridge National Laboratory (ORNL). Four materials were compared to alumina: polycrystalline spinel, aluminum nitride, sialon and silicon nitride. Mechanical bend tests were performed before and after irradiation. Thermal diffusivity was measured using a room temperature laser flash technique. Dielectric loss factor was measured at 105 MHz with a special high resolution resonance cavity. The materials exhibited a significant degradation of thermal diffusivity and an increase in dielectric loss tangent. The flexural strength and physical dimensions were not significantly affected by the 0.1 dpa level of neutron radiation. The aluminum nitride and S silicon nitride showed superior RF window performance over the sialon and the alumina. The results are compared to radiation studies on similar materials

  19. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  20. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  1. Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics

    International Nuclear Information System (INIS)

    Ramarao, S.D.; Murthy, V.R.K.

    2013-01-01

    Graphical abstract: -- The effects of substituting different cations (Mn, Zn, Mg and Co) at the A-site of AZrNb 2 O 8 compounds on structural parameters such as packing fraction and B-site octahedral distortion were studied using X-ray powder diffraction in conjunction with Rietveld refinement. Variations in the dielectric constant (ε r ) were explained by the ionic polarizability of the compositions. The quality factor (Q × f) and temperature coefficient of resonant frequency (τ f ) were correlated with the packing fraction and B-site octahedral distortions (δ) in these compositions, respectively

  2. Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array

    International Nuclear Information System (INIS)

    Liu, Xiaoshan; Liu, Guiqiang; Fu, Guolan; Liu, Mulin; Liu, Zhengqi

    2016-01-01

    Monochromatic filtering with ultra-narrowband and high spectral contrast is desirable for wide applications in display, image, and other optoelectronics. However, owing to the inherent omhic losses in the metallic materials, a broadband spectrum with a low Q-factor down to 10 inevitably limits the device performance. Herein, we for the first time theoretically propose and demonstrate an ultra-narrowband color-filtering platform based on the layered all-dielectric meta-material (LADM), which consists of a triple-layer high/low/high-index dielectrics cavity structure. Owing to the lossless dielectric materials used, sharp resonances with the bandwidth down to sub-10 nm are observed in the sub-wavelength LADM-based filters. A spectral Q-factor of 361.6 is achieved, which is orders of magnitude larger than that of the plasmonic resonators. Moreover, for the other significant factor for evaluation of filtering performance, the spectral contrast reaches 94.5%. These optical properties are the main results of the excitation of the resonant modes in the LADMs. Furthermore, polarization-manipulated light filtering is realized in this LADM. The classical Malus law is also confirmed in the reflective spectrum by tuning the polarization state. More interestingly and importantly, the filtering phenomenon shows novel features of the wavelength-independent and tunable resonant intensity for the reflective spectrum when the LADM-based filter is illuminated under an oblique state. High scalability of the sharp reflective spectrum is obtained by tuning the structural parameters. A single-wavelength reflective filtering window is also achieved in the visible frequencies. These features hold promise for the LADM-based filter with wide applications in color engineering, displaying, imaging, etc. (paper)

  3. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  4. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  5. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  6. High quality-factor fano metasurface comprising a single resonator unit cell

    Science.gov (United States)

    Sinclair, Michael B.; Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Campione, Salvatore; Brener, Igal; Liu, Sheng

    2017-06-20

    A new monolithic resonator metasurface design achieves ultra-high Q-factors while using only one resonator per unit cell. The metasurface relies on breaking the symmetry of otherwise highly symmetric resonators to induce intra-resonator mixing of bright and dark modes (rather than inter-resonator couplings), and is scalable from the near-infrared to radio frequencies and can be easily implemented in dielectric materials. The resulting high-quality-factor Fano metasurface can be used in many sensing, spectral filtering, and modulation applications.

  7. Accelerating Dielectrics Design Using Thinking Machines

    Science.gov (United States)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  8. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  9. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  10. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    A. Artemenko

    2013-04-01

    Full Text Available We report a dielectric relaxation in BaTiO3-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti3+-V(O charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  11. Singularities of the transmission coefficient and anomalous scattering by a dielectric slab

    Science.gov (United States)

    Shestopalov, Yury

    2018-03-01

    We prove the existence and describe the distribution on the complex plane of the singularities, resonant states (RSs), of the transmission coefficient in the problem of the plane wave scattering by a parallel-plate dielectric slab in free space. It is shown that the transmission coefficient has isolated poles all with nonzero imaginary parts that form countable sets in the complex plane of the refraction index or permittivity of the slab with the only accumulation point at infinity. The transmission coefficient never vanishes and anomalous scattering, when its modulus exceeds unity, occurs at arbitrarily small loss of the dielectric filling the layer. These results are extended to the cases of scattering by arbitrary multi-layer parallel-plane media. Connections are established between RSs, spectral singularities, eigenvalues of the associated Sturm-Liouville problems on the line, and zeros of the corresponding Jost function.

  12. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  13. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  14. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  15. Dielectric spectra of proteins in conducting media

    International Nuclear Information System (INIS)

    Ruderman, G.; Xammar Oro, J.R. de

    1990-10-01

    Dielectric measurements of serum albumin and myoglobin in solutions of varying conductivities were performed. The results presented confirm that also for protein solutions, the Maxwell predictions of a threshold frequency in conducting materials holds. The threshold frequency of a serum albumin solution was experimentally determined. Attention should be recalled that, if the dielectric spectra of proteins solutions want to be measured, three distinct frequency regions are to be observed: a low frequency region, where the sample behaves like a conductor; an intermediate region centered around the threshold frequency, where the free charges partially screen the fixed ones; and a high frequency region where the sample behaves like a good dielectric. (author). 8 refs, 5 figs

  16. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    Lately, dielectric elastomers (DEs) which consist of an elastomer sandwiched between electrodes on both sides, have gained interest as materials for actuators, generators, and sensors. An ideal elastomer for DE uses is characterized by high extensibility, flexibility and good mechanical fatigue...... elastomers were prepared by mixing different mass ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6) between long polydimethylsiloxane (PDMS) chains and short PDMS chains. The resulting elastomers were investigated with respect to their rheology, dielectric properties, tensile strength, electrical breakdown, as well.......Moreover, a series of elastomers with the same mass ratio (7:3) between long and short PDMS chains were made at different humidity (90%, 70%, 50%, 30%, 10%) at 23oC. The dielectric and mechincal properties of the resulting elastomers were shown to depend strongly on the atmospheric humidity level.In addition...

  17. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved......, though there are discrepancies. Further analysis suggests that these arise mostly from imperfect manufacture of the actuators, though there is a small contribution from an explicitly electrostrictive behavior of the acrylic adhesive. Measurements of the dielectric constant of stretched polymer reveal...... that the dielectric constant drops, when the polymer is strained, indicating the existence of a small electrostrictive effect. Finally, measurements of the electric breakdown field were made. These also show a dependence upon the strain. In the unstrained state the breakdown field is 20 WV/m, which grows to 218MV...

  18. Electron-beam-induced conduction in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Acris, F C; Davies, P M; Lewis, T J [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-03-14

    A model for the enhanced conduction induced in dielectric films under electron bombardment while electrically stressed is discussed. It is assumed that the beam produces a virtual electrode at the end of its range in the dielectric and, as a consequence, the induced conduction is shown to depend on the properties of that part of the dielectric beyond the range of the beam. This model has also been discussed recently by Nunes de Oliviera and Gross. In the present treatment, it is shown how the model permits investigation of beam scattering and carrier generation and recombination processes. Experiments on electron-bombardment-induced conduction of thin (72 to 360 nm) films of anodic tantalum oxide are reported and it is shown that the theoretical model provides a very satisfactory explanation of all features of the results including the apparent threshold energy for enhanced conduction.

  19. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  20. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  1. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  2. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  3. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  4. Dielectric dispersion, relaxation dynamics and thermodynamic studies of Beta-Alanine in aqueous solutions using picoseconds time domain reflectometry

    Science.gov (United States)

    Vinoth, K.; Ganesh, T.; Senthilkumar, P.; Sylvester, M. Maria; Karunakaran, D. J. S. Anand; Hudge, Praveen; Kumbharkhane, A. C.

    2017-09-01

    The aqueous solution of beta-alanine characterised and studied by their dispersive dielectric properties and relaxation process in the frequency domain of 10×106 Hz to 30×109 Hz with varying concentration in mole fractions and temperatures. The molecular interaction and dielectric parameters are discussed in terms of counter-ion concentration theory. The static permittivity (ε0), high frequency dielectric permittivity (ε∞) and excess dielectric parameters are accomplished by frequency depended physical properties and relaxation time (τ). Molecular orientation, ordering and correlation factors are reported as confirmation of intermolecular interactions. Ionic conductivity and thermo dynamical properties are concluded with the behaviour of the mixture constituents. Solute-solvent, solute-solute interaction, structure making and breaking abilities of the solute in aqueous medium are interpreted. Fourier Transform Infrared (FTIR) spectra of beta- alanine single crystal and liquid state have been studied. The 13C Nuclear Magnetic Resonance (NMR) spectral studies give the signature for resonating frequencies and chemical shifts of beta-alanine.

  5. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  6. Method for fabrication of crack-free ceramic dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2017-12-05

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  7. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  8. Method for fabrication of crack-free ceramic dielectric films

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  9. Growth, characterization and dielectric property studies of gel grown ...

    Indian Academy of Sciences (India)

    Administrator

    chemical reaction method. Plate-like single ... Barium succinate; gel growth; single crystals; dielectric constant; dielectric loss. 1. .... The chemical reaction involved in the birth of a new .... due to the displacement of electrons and ions, respec-.

  10. Effect of deformation and dielectric filling on electromagnetic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    great significance in the development of microwave communication networks and ... media. Rectangular dielectric waveguide structures are analysed by Bierwirth ..... Schweig E, Bridges W B 1984 Computer analysis of dielectric waveguide: A ...

  11. Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting.

    Science.gov (United States)

    Abbarchi, Marco; Naffouti, Meher; Vial, Benjamin; Benkouider, Abdelmalek; Lermusiaux, Laurent; Favre, Luc; Ronda, Antoine; Bidault, Sébastien; Berbezier, Isabelle; Bonod, Nicolas

    2014-11-25

    Subwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy. Homogeneous scattering responses and improved spatial ordering of the Si-based resonators are observed when dewetting is assisted by electron beam lithography. Finally, exploiting different thermal agglomeration regimes, we highlight the versatility of this technique, which, when assisted by focused ion beam nanopatterning, produces monocrystalline nanocrystals with ad hoc size, position, and organization in complex multimers.

  12. Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip

    DEFF Research Database (Denmark)

    Giannoulis, G.; Kalavrouziotis, D.; Apostolopoulos, D.

    2012-01-01

    We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power...

  13. Nanocomposite dielectrics-properties and implications

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J K; Hu, Y [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2005-01-21

    The incorporation of nanoparticles into thermosetting resins is seen to impart desirable dielectric properties when compared with conventional (micron-sized particulates) composites. Although the improvements are accompanied by the mitigation of internal charge in the materials, the nature of the interfacial region is shown to be pivotal in determining the dielectric behaviour. In particular, it is shown that the conditions and enhanced area of the interface changes the bonding that may give rise to an interaction zone, which affects the interfacial polarization through the formation of local conductivity.

  14. Dielectric barrier discharge image processing by Photoshop

    Science.gov (United States)

    Dong, Lifang; Li, Xuechen; Yin, Zengqian; Zhang, Qingli

    2001-09-01

    In this paper, the filamentary pattern of dielectric barrier discharge has been processed by using Photoshop, the coordinates of each filament can also be obtained. By using Photoshop two different ways have been used to analyze the spatial order of the pattern formation in dielectric barrier discharge. The results show that the distance of the neighbor filaments at U equals 14 kV and d equals 0.9 mm is about 1.8 mm. In the scope of the experimental error, the results from the two different methods are similar.

  15. FDTD Method for Piecewise Homogeneous Dielectric Media

    Directory of Open Access Journals (Sweden)

    Zh. O. Dombrovskaya

    2016-01-01

    Full Text Available In this paper, we consider a numerical solution of Maxwell’s curl equations for piecewise uniform dielectric medium by the example of a one-dimensional problem. For obtaining the second order accuracy, the electric field grid node is placed into the permittivity discontinuity point of the medium. If the dielectric permittivity is large, the problem becomes singularly perturbed and a contrast structure appears. We propose a piecewise quasi-uniform mesh which resolves all characteristic solution parts of the problem (regular part, boundary layer and transition zone placed between them in detail. The features of the mesh are discussed. 

  16. Optical dielectric function of intrinsic amorphous silicon

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1978-01-01

    The imaginary part of the optical dielectric function epsilon 2 (ω) has been calculated using a continuous-random-tetrahedral network as the structural model for the atomic positions. Here the electronic energies and wave functions are determined by first-principles calculations with the method of linear combinations of atomic orbitals (LCAO), and the momentum matrix elements are evaluated directly from the LCAO wave functions. The calculated dielectric function is in good overall agreement with experiment. At energies within 1 eV above the threshold, the epsilon 2 curve shows some structures that are due to interband transitions between the localized states near the band gap

  17. Mass of polaritons in different dielectric media

    International Nuclear Information System (INIS)

    Dzedolik, I V; Lapayeva, S N

    2011-01-01

    Some models of electromagnetic field interactions with linear and nonlinear dielectric media based on the approach of polarization and electromagnetic wave propagation in media are considered. It is shown that quasi-particles generated in the dielectric medium, called polaritons, have mass whose quantity depends on the efficiency of the electromagnetic field and interaction with the medium. The mass and velocity of polaritons can be controlled by the external electric field. The value of the mass of polaritons was measured in a transparent crystal

  18. Theory of the dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  19. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    OpenAIRE

    Beloborodov, Roman; Pervukhina, Marina; Han, Tongcheng; Josh, Matthew

    2017-01-01

    High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for t...

  20. Elaboration and dielectric characterization of a doped ferroelectric ...

    African Journals Online (AJOL)

    ... 1150,1180 and 1200 °C successively to optimize the sintering temperature optimal where the density of the sample is maximum (near theoretical density) and therefore the product has better physical quality. The study of dielectric properties of all samples showed a high permittivity dielectric εr = 18018, low dielectric loss: ...

  1. Temperature dependence of the dielectric properties of rubber wood

    Science.gov (United States)

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  2. Analyzing the effect of gate dielectric on the leakage currents

    Directory of Open Access Journals (Sweden)

    Sakshi

    2016-01-01

    Full Text Available An analytical threshold voltage model for MOSFETs has been developed using different gate dielectric oxides by using MATLAB software. This paper explains the dependency of threshold voltage on the dielectric material. The variation in the subthreshold currents with the change in the threshold voltage sue to the change of dielectric material has also been studied.

  3. Note: On the dielectric constant of nanoconfined water

    OpenAIRE

    Zhang, Chao

    2018-01-01

    Investigations of dielectric properties of water in nanoconfinement are highly relevant for various applications. Here, using a simple capacitor model, we show that the low dielectric constant of nanoconfined water found in molecular dynamics simulations can be largely explained by the so-called dielectric dead-layer effect known for ferroelectric nanocapacitors.

  4. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  5. Norbornylene-based polymer systems for dielectric applications

    Science.gov (United States)

    Dirk, Shawn M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2012-07-17

    A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.

  6. Dielectric measurements on PWB materials at microwave frequencies

    Indian Academy of Sciences (India)

    Unknown

    the angular frequency and c0 the velocity of light, c the thickness of the ... Dielectric parameters, absorption index and refractive index for pure PSF and pure PMMA at 8⋅92 GHz frequency and at 35°C temperature. Dielectric. Dielectric. Loss. Relaxation. Conductivity Absorption. Refractive. Thickness, constant loss tangent.

  7. Measurement of the Dielectric Constant of Seawater at L-Band: Techniques and Measurements

    Science.gov (United States)

    Lang, R.; Utku, C.; Tarkocin, Y.; LeVine, D.

    2009-01-01

    Satellite instruments, that will monitor salinity from space in the near future, require an accurate relationship between salinity/temperature and seawater dielectric constant. This paper will review measurements that were made of the dielectric constant of seawater during the past several years. The objective of the measurements is to determine the dependence of the dielectric constant of seawater on salinity and on temperature, more accurately than in the past. by taking advantage of modem instrumentation. The measurements of seawater permittivity have been performed as a function of salinity and temperature using a transmission resonant cavity technique. The measurements have been made in the salinity range of 10 to 38 psu and in the temperature range of IOU C to 35 C. These results will be useful in algorithm development for sensor systems such as SMOS and Aquarius. The measurement system consists of a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The diameter of the tube has been made very small so that the amount of seawater introduced in the cavity is small - thus maintaining the sensitivity of the measurements and allowing the use of perturbation theory predicting the seawater permittivity. The change in resonant frequency and the change in cavity Q can be used to determine the real and imaginary pare of the dielectric constant of seawater introduced into the slender tube. The microwave measurements are made by an HPS722D network analyzer. The cavity has been immersed in a uateriethylene-glycol bath which is connected to a Lauda circulator. The circulator keeps the brass cavity at a temperature constant to within 0.01 degrees. The system is automated using a Visual Basic program to control the analyzer and to collect the data. The results of the dielectric constant measurements of seawater will be presented. The measurement results will be

  8. Dielectric Response at THz Frequencies of Fe Water Complexes and Their Interaction with O3 Calculated by Density Functional Theory

    Science.gov (United States)

    2012-10-24

    geometric arrangement of the atoms in a chemical system , at the maximal peak of the energy surface separating reactants from products . In the...Sonnenberg, M. Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery... using DFT. The calculation of ground state resonance structure is for the construction of parameterized dielectric response functions for excitation

  9. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    Science.gov (United States)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  10. Resonating Statements

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...

  11. Dielectric and photo-dielectric properties of TlGaSeS crystals

    Indian Academy of Sciences (India)

    Administrator

    cDepartment of Physics, Middle East Technical University, 06800 Ankara, Turkey. MS received ... The crystals are observed to exhibit a dark high frequency effective dielectric constant value of ~ 10\\65 x ... communication systems. Keywords.

  12. Ceramic-polymer nanocomposites with increased dielectric permittivity and low dielectric loss

    International Nuclear Information System (INIS)

    Bhardwaj, Sumit; Paul, Joginder; Raina, K. K.; Thakur, N. S.; Kumar, Ravi

    2014-01-01

    The use of lead free materials in device fabrication is very essential from environmental point of view. We have synthesized the lead free ferroelectric polymer nanocomposite films with increased dielectric properties. Lead free bismuth titanate has been used as active ceramic nanofillers having crystallite size 24nm and PVDF as the polymer matrix. Ferroelectric β-phase of the polymer composite films was confirmed by X-ray diffraction pattern. Mapping data confirms the homogeneous dispersion of ceramic particles into the polymer matrix. Frequency dependent dielectric constant increases up to 43.4 at 100Hz, whereas dielectric loss decreases with 7 wt% bismuth titanate loading. This high dielectric constant lead free ferroelectric polymer films can be used for energy density applications

  13. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  14. Structural, dielectric and electrical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    Detailed studies of dielectric properties of the compound as a function of temperature at ... Microscope (Jeol, JSM-840), operated at 20 kV. The sin- tered pellet was .... grain boundaries, and provides the true picture of the electrical properties of ...

  15. Quantum optics of dispersive dielectric media

    International Nuclear Information System (INIS)

    Lenac, Z.

    2003-01-01

    We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion. In our model the medium is described by a Lorenz-type dielectric function ε(r,ω) appropriate, e.g., for ionic crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function, i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion of the total field (transverse and longitudinal) in terms of the coupled (polariton) eigenmodes, and this approach incorporates all previous results derived for similar but restricted systems (e.g., without spatial or frequency dependence of coupled modes). Within the same model, we also quantize the Hamiltonian of a nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogonality and closure relations, which are used in a discussion of the fundamental (equal-time) commutation relations between the conjugate field operators

  16. Partial discharges and bulk dielectric field enhancement

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Johansson, Torben

    2000-01-01

    A consequence of partial discharge activity within a gaseous void is the production of a field enhancement in the solid dielectric in the proximity of the void. This situation arises due to the charge created by the partial discharges accumulating at the void wall. The influence of the spatial...

  17. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  18. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.

  19. Spontaneous emission from active dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    and engineered due to the dependence of the emission rate on the location and polarisation of the emitters in the structure. This paper addresses the methods of quantum electrodynamics of dielectric media which enable calculation of the local rate of spontaneous emission in active microstructures....

  20. Dielectric barrier discharges applied for optical spectrometry

    Czech Academy of Sciences Publication Activity Database

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.241, year: 2016

  1. Test plan for prototype dielectric permittivity sensor

    International Nuclear Information System (INIS)

    Pfeifer, M.C.

    1993-07-01

    The digface characterization project funded by the Buried Waste Integrated Demonstration (BWID) is designed to test a new method of monitoring hazardous conditions during the remediation at waste sites. Often on a large scale, the exact cause of each anomaly is difficult to determine and ambiguities remain in the characterization of a site. The digface characterization concept is designed to alleviate some of this uncertainty by creating systems that monitor small volumes of soil and detect anomalous areas during remediation before they are encountered. The goal of the digface characterization demonstration is to detect changes in the physical properties from one volume to another and relate these changes in physical properties to changes in the level of contamination. Dielectric permittivity mapping is a method that might prove useful in digface characterization. In this project, the role of a dielectric permittivity monitoring device is under investigation. This project addresses two issues: what are the optimal means of mapping dielectric permittivity contrasts and what types of targets can be detected using dielectric permittivity mapping

  2. Thermal aspects of resistors embedded in dielectrics

    International Nuclear Information System (INIS)

    Caprari, R.S.

    1995-10-01

    This note presents a formula for estimating the temperature of a distributed resistor or resistor chain that is immersed in a dielectric medium, which in turn is surrounded by a heat reservoir. An example computation from an actual instrument in included. 6 refs

  3. Characterization of a surface dielectric barrier discharge

    NARCIS (Netherlands)

    Pemen, A.J.M.; Beckers, F.J.C.M.; Heesch, van E.J.M.

    2009-01-01

    A surface dielectric barrier discharge (SDBD) reactor provides a homogeneous plasma over a large surface area. This allows surface treatments of foils, textiles or fibers. Here we present results of a study to characterize the AC and pulsed performance of SDBD with regard to ozone production,

  4. Dielectric image line groove antennas for millimeterwaves

    Science.gov (United States)

    Solbach, K.; Wolff, I.

    Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.

  5. Dielectric barrier discharges applied for optical spectrometry

    Czech Academy of Sciences Publication Activity Database

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.241, year: 2016

  6. Vegetable oil based liquid nanocomposite dielectric

    Directory of Open Access Journals (Sweden)

    Leon Chetty

    2013-01-01

    Full Text Available Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor oil, the DC conduction current increased approximately linearly with the applied DC voltage. In nanomodified linseed oil, the characteristic curve showed two distinct regions: a linear region (at lower applied voltage and a saturation region (at slightly higher voltage. Conversely, in nanomodified castor oil, the characteristic curve showed three distinct regions: a linear region (at lower applied voltage, a saturation region (at intermediate applied voltage and an exponential growth region (at higher applied voltage. The nanomodified linseed oil exhibited a better dielectric performance than the nanomodified castor oil. Overall, the addition of nanodielectrics to vegetable oils decreased the dielectric performance of the vegetable oils. The results of this study contribute to the understanding of the pre-breakdown phenomenon in liquid nanocomposite dielectrics.

  7. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  8. Effects of Radiation on Capacitor Dielectrics

    Science.gov (United States)

    Bouquet, F. L.; Somoano, R. B.; Frickland, P. O.

    1987-01-01

    Data gathered on key design parameters. Report discusses study of electrical and mechanical properties of irradiated polymer dielectric materials. Data compiled for use by designers of high-energy-density capacitors that operate in presence of ionizing radiation. Study focused on polycarbonates, polyetheretherketones, polymethylpentenes, polyimides (including polyetherimide), polyolefins, polysulfones (including polyethersulfone and polyphenylsulfone), and polyvinylidene fluorides.

  9. Polyvinylidene fluoride film as a capacitor dielectric

    Science.gov (United States)

    Dematos, H. V.

    1981-01-01

    Thin strips of polyvinylidene fluoride film (PVDF) with vacuum deposited electrodes were made into capacitors by conventional winding and fabrication techniques. These devices were used to identify and evaluate the performance characteristics offered by the PVDF in metallized film capacitors. Variations in capacitor parameters with temperature and frequence were evaluated and compared with other dielectric films. Their impact on capacitor applications is discussed.

  10. Improvement in the microwave dielectric properties of ...

    Indian Academy of Sciences (India)

    Administrator

    ... linearly with x. Relative permittivity (εr) increased from 47⋅2 to 54⋅5, unloaded ... and are used in the manufacture of DRs for mobile phone handsets and base ... Microwave dielectric properties were measured using a. R3767CH Agilent ...

  11. Conductivity, dielectric behaviour and magnetoelectric effect in ...

    Indian Academy of Sciences (India)

    intensity of the magnetic field. The maximum value of ME coefficient was observed for 75% ferroelectric phase composite. Keywords. Conductivity; dielectric behaviour; magnetoelectric effect; CuFe2O4; BaTiO3. 1. Introduction. Magnetoelectric composites consist of two phases viz. piezoelectric and piezomagnetic. The ME ...

  12. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  13. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  14. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types...

  15. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  16. Vectorial analysis of dielectric photonic crystal VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    A new vertical-cavity surface-emitting laser structure employing a dielectric photonic crystal mirror has been suggested and been numerically investigated. The new structure has a smaller threshold gain, a moderate strength of single-transverse-mode operation, a high quality of emission beam free...

  17. Large scale processing of dielectric electroactive polymers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu

    Efficient processing techniques are vital to the success of any manufacturing industry. The processing techniques determine the quality of the products and thus to a large extent the performance and reliability of the products that are manufactured. The dielectric electroactive polymer (DEAP...

  18. Characterization of dielectric charging in RF MEMS

    NARCIS (Netherlands)

    Herfst, R.W.; Huizing, H.G.A.; Steeneken, P.G.; Schmitz, Jurriaan

    2005-01-01

    Capacitive RF MEMS switches show great promise for use in wireless communication devices such as mobile phones, but the successful application of these switches is hindered by the reliability of the devices: charge injection in the dielectric layer (SiN) can cause irreversible stiction of the moving

  19. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...

  20. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  1. Fundamental and high-order anapoles in all-dielectric metamaterials via Fano–Feshbach modes competition

    KAUST Repository

    Gongora, J. S. Totero

    2017-02-01

    One of the most fascinating possibilities enabled by metamaterials is the strong reduction of the electromagnetic scattering from nanostructures. In dielectric nanoparticles, the formation of a minimal scattering state at specific wavelengths is associated with the excitation of photonic anapoles, which represent a peculiar type of radiationless state and whose existence has been demonstrated experimentally. In this work, we investigate the formation of anapole states in generic dielectric structures by applying a Fano-Feshbach projection scheme, a general technique widely used in the study of quantum mechanical open systems. By expressing the total scattering from the structure in terms of an orthogonal set of internal and external modes, defined in the interior and in the exterior of the dielectric structure, respectively, we show how anapole states are the result of a complex interaction among the resonances of the system and the surrounding environment. We apply our approach to a circular resonator, where we observe the formation of higher-order anapole states, which are originated by the superposition of several internal resonances of the system.

  2. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  3. Preparation and Characterization of Pure Organic Dielectric Composites for Capacitors

    Directory of Open Access Journals (Sweden)

    Mao Xin

    2018-01-01

    Full Text Available This work reports the excellent dielectric composites were prepared from polyimide (PI and poly(vinylidene fluoride (PVDF via solution blending and thermal imidization or chemical imidization. The dielectric and thermal properties of the composites were studied. Results indicated that the dielectric properties of the composites synthesized by these two methods were enhanced through the introduction of PVDF, and the composites exhibited excellent thermal stability. Compared to the thermal imidization, the composites prepared by chemical imidization exhibited superior dielectric properties. This study demonstrated that the PI/PVDF composites were potential dielectric materials in the field of electronics.

  4. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  5. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  6. Laser radiation effect on radiation-induced defects in heavy ion tracks in dielectrics

    International Nuclear Information System (INIS)

    Egorov, A.N.; Zhiryakov, B.M.; Kushin, V.V.; Lyapidevskij, V.K.; Khokhlov, N.B.

    1988-01-01

    Possibility of laser radiation resonance effect on radiation-induced defects in heavy ion tracks in dielectric materials is investigated. Absorption spectra in infrared, visible and ultraviolet ranges for cellulose nitrate samples irradiated by 6 MeV/nucleon 58 Ni ions and reactor gamma radiation are measured. Absorption spectra for irradiated and reference samples are presented. Two absorption bands λ 1 =0.33 μm (E 1 =3.9 eV) and λ 2 =0.72 μm (E 2 =1.7 eV) are detected. Etching rate decrease in a track under laser radiation effect is noticed. 3 refs.; 1 fig

  7. Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography.

    Science.gov (United States)

    Bourke, Levi; Blaikie, Richard J

    2017-12-01

    Dielectric waveguide resonant underlayers are employed in ultra-high NA interference photolithography to effectively double the depth of field. Generally a single high refractive index waveguiding layer is employed. Here multilayer Herpin effective medium methods are explored to develop equivalent multilayer waveguiding layers. Herpin equivalent resonant underlayers are shown to be suitable replacements provided at least one layer within the Herpin trilayer supports propagating fields. In addition, a method of increasing the intensity incident upon the photoresist using resonant overlayers is also developed. This method is shown to greatly enhance the intensity within the photoresist making the use of thicker, safer, non-absorbing, low refractive index matching liquids potentially suitable for large-scale applications.

  8. Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    Nina GRIDINA

    2013-02-01

    Full Text Available Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F in surface plasmon-polariton resonance (SPR realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging and loose solution (whole blood. In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96, thickness of the intermediate layer dm (300…400 nm and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79. Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect.

  9. Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method

    Science.gov (United States)

    Brahmachari, Kaushik; Ghosh, Sharmila; Ray, Mina

    2013-06-01

    The admittance loci method plays an important role in the design of multilayer thin film structures. In this paper, admittance loci method has been explored theoretically for sensing of various chemical and biological samples based on surface plasmon resonance (SPR) phenomenon. A dielectric multilayer structure consisting of a Boro silicate glass (BSG) substrate, calcium fluoride (CaF2) and zirconium dioxide (ZrO2) along with different dielectric layers has been investigated. Moreover, admittance loci as well as SPR curves of metal-dielectric multilayer structure consisting of the BSG substrate, gold metal film and various dielectric samples has been simulated in MATLAB environment. To validate the proposed simulation results, calibration curves have also been provided.

  10. Transient effects of ionizing and displacive radiation on the dielectric properties of ceramics

    Science.gov (United States)

    Goulding, R. H.; Zinkle, S. J.; Rasmussen, D. A.; Stoller, R. E.

    1996-03-01

    A resonant cavity technique was used to measure the dielectric constant and loss tangent of ceramic insulators at a frequency near 100 MHz during pulsed fission reactor irradiation near room temperature. Tests were performed on single crystal and several different grades of polycrystalline Al2O3, MgAl2O4, AlN, and Si3N4. Lead shielding experiments were performed for some of the irradiations in order to examine the importance of gamma ray versus neutron irradiation effects. With the exception of AlN, the dielectric constant of all of the ceramics decreased slightly (irradiation. The dielectric constant of AlN was observed to slightly increase during irradiation. Significant transient increases in the loss tangent to values as high as 6×10-3 occurred during pulsed reactor irradiation with peak ionizing and displacements per atom (dpa) radiation fields of 4.2×104 Gy/s and 2.4×10-6 dpa/s, respectively. The loss tangent measured during irradiation for the different ceramics did not show any correlation with the preirradiation or postirradiation values. Analysis of the results indicates that the transient increases in loss tangent are due to radiation induced increases in the electrical conductivity. The loss tangent increases were proportional to the ionizing dose rate in all materials except for AlN, which exhibited a dose rate exponent of ˜1.6.

  11. Brillouin light scattering studies on the mechanical properties of ultrathin, porous low-K dielectric films

    Science.gov (United States)

    Zhou, Wei; Sooryakumar, R.; King, Sean

    2010-03-01

    Low K dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric material for interconnects in state of the art integrated circuits. To further reduce interconnect resistance-capacitance (RC) delays, additional reductions in the K for these low-K materials is being pursued by the introduction of controlled levels of porosity. The main challenge for porous low-K dielectrics is the substantial reduction in mechanical properties that is accompanied by the increased pore volume content needed to reduce K. We report on the application of the nondestructive Brillouin light scattering technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200 nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for the principal elastic constants that completely characterize the mechanical properties of these porous films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. The resulting elastic constants are compared with corresponding values obtained from other experimental techniques.

  12. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  13. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Hiroyuki, E-mail: hiroyuki.ao@j-parc.jp [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Asano, Hiroyuki [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Naito, Fujio [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ouchi, Nobuo; Tamura, Jun [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Takata, Koji [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-02-11

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al{sub 2}O{sub 3}. The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density.

  14. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    International Nuclear Information System (INIS)

    Ao, Hiroyuki; Asano, Hiroyuki; Naito, Fujio; Ouchi, Nobuo; Tamura, Jun; Takata, Koji

    2014-01-01

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al 2 O 3 . The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density

  15. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  16. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    International Nuclear Information System (INIS)

    Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.; Maqsood, A.

    2016-01-01

    Graphical abstract: Variation of AC conductivity (σ AC ) as a function of natural log of angular frequency (lnω) for Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectric constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr +3 doped Ni-Zn nanoferrite samples with composition Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 (x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr +3 doped Ni-Zn ferrite nanoparticles, as the concentration of Cr +3 increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ AC ) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.

  17. All-Dielectric Full-Color Printing with TiO2 Metasurfaces.

    Science.gov (United States)

    Sun, Shang; Zhou, Zhenxing; Zhang, Chen; Gao, Yisheng; Duan, Zonghui; Xiao, Shumin; Song, Qinghai

    2017-05-23

    Recently, color generation in resonant nanostructures have been intensively studied. Despite of their exciting progresses, the structural colors are usually generated by the plasmonic resonances of metallic nanoparticles. Due to the inherent plasmon damping, such plasmonic nanostructures are usually hard to create very distinct color impressions. Here we utilize the concept of metasurfaces to produce all-dielectric, low-loss, and high-resolution structural colors. We have fabricated TiO 2 metasurfaces with electron-beam lithography and a very simple lift-off process. The optical characterizations showed that the TiO 2 metasurfaces with different unit sizes could generate high reflection peaks at designed wavelengths. The maximal reflectance was as high as 64% with full width at half-maximum (fwhm) around 30 nm. Consequently, distinct colors have been observed in bright field and the generated colors covered the entire visible spectral range. The detailed numerical analysis shows that the distinct colors were generated by the electric resonance and magnetic resonances in TiO 2 metasurfaces. Based on the unique properties of magnetic resonances, distinct colors have been observed in bright field when the metasurfaces were reduced to a 4 × 4 array, giving a spatial resolution around 16000 dpi. Considering the cost, stability, and CMOS-compatibility, this research will be important for the structural colors to reach real-world industrial applications.

  18. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    Energy Technology Data Exchange (ETDEWEB)

    Andueza, Ángel; Sevilla, Joaquín [Dpto. Ing. Eléctrica y Electrónica Universidad Pública de Navarra, 31006 Pamplona (Spain); Smart Cities Institute, Universidad Pública de Navarra, 31006 Pamplona (Spain); Wang, Kang [Laboratoire de Physique des Solides, UMR CNRS/Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Pérez-Conde, Jesús [Dpto. de Física Universidad Pública de Navarra, 31006 Pamplona (Spain)

    2016-08-28

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slab width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.

  19. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  20. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  1. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  2. Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface

    Science.gov (United States)

    Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin

    2018-05-01

    In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.

  3. Resonator graphene microfluidic antenna (RGMA) for blood glucose detection

    Science.gov (United States)

    Jizat, Noorlindawaty Md.; Mohamad, Su Natasha; Ishak, Muhammad Ikman

    2017-09-01

    Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show a resonator graphene microfluidic antenna (RGMA) is used to detect the dielectric properties of aqueous glucose solution which represent the glucose level in blood. Simulation verified the high sensitivity of proposed RGMA made with aqueous glucose solutions at different concentrations. The RGMA yielded a sensor sensitivity of 0.1882GHz/mgml-1 as plotted from the slope of the linear fit from the result averages in S11 and S21 parameter, respectively. This results indicate that the proposed resonator antenna achieves high sensitivity and linear to the changes of glucose concentration.

  4. Information authentication using an optical dielectric metasurface

    International Nuclear Information System (INIS)

    Wang, Xiaogang; Mei, Shengtao

    2017-01-01

    Metasurfaces that consist of a monolayer of photonic artificial atoms are emerging as attractive materials for optical wavefront-shaping and polarization-control devices. By integrating nanophotonics with a phase-encoding technique, we demonstrate theoretically an information authentication method using dielectric metasurfaces that can be verified without information disclosure at visible wavelengths. The required secured diffraction pattern can be simply achieved by a metasurface hologram with a small number of pixels, which means increased efficiency and lower costs of production. Although the decrypted image is noisy, it can be authenticated by recognition algorithms where the primary image is used as a reference. The results show that the dielectric metasurface approach, providing great flexibility in the design of the wavefront of light and compatible with the CMOS technology, can be potentially applied in optical information security. (letter)

  5. Broadband dielectric spectroscopy of oxidized porous silicon

    International Nuclear Information System (INIS)

    Axelrod, Ekaterina; Urbach, Benayahu; Sa'ar, Amir; Feldman, Yuri

    2006-01-01

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals

  6. Colour dielectric model of the proton

    International Nuclear Information System (INIS)

    Jen, P.K.; Pradhan, T.

    1984-01-01

    A model of the proton with its constituent quarks bound in a colour polarizable medium with dielectric constant varying as (a/r - b 2 ) from a fixed centre, is presented. The Dirac equation modified by the colour polarization is solved and the analytic expression for the wavefunction of the quarks obtained shows that quarks with higher energy lie closer to the fixed centre. The energy spectrum is equispaced without any continuum. A semiclassical approximation scheme yields closed orbits for quarks which have smaller size for higher energies and no orbits with size bigger than a certain maximum, thereby rendering the quarks permanently confined. The wavefunctions of the three quarks constituting the proton are used to calculate physical parameters of the proton such as its mass, charge radius and weak coupling constant which with suitable choice of the constants a and b appearing in the dielectric constant agree fairly well with experimental results. (author)

  7. Dielectric response of planar relativistic quantum plasmas

    International Nuclear Information System (INIS)

    Bardos, D.C.; Frankel, N.E.

    1991-01-01

    The dielectric response of planar relativistic charged particle-antiparticle plasmas is investigated, treating Fermi and Bose plasmas. The conductivity tensor in each case is derived in the self-consistent Random Phase Approximation. The tensors are then evaluated at zero temperature for the case of no external fields, leading to explicit dispersion relations for the electrodynamic modes of the plasma. The longitudinal and transverse modes are in general coupled for plasma layers. This coupling vanishes, however, in the zero field case, allowing 'effective' longitudinal and transverse dielectric functions to be defined in terms of components of the conductivity tensor. Solutions to the longitudinal mode equations (i.e. plasmon modes) are exhibited, while purely transverse modes are found not to exist. In the case of the Bose plasma the screening of a test charge is investigated in detail. 41 refs., 1 fig

  8. Broadband dielectric spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, Ekaterina [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Urbach, Benayahu [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Sa' ar, Amir [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Feldman, Yuri [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel)

    2006-04-07

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals.

  9. Enhanced dielectric-wall linear accelerator

    Science.gov (United States)

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  10. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  11. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  12. Carpet cloak with graded dielectric metasurface (Presentation Recording)

    Science.gov (United States)

    Hsu, LiYi; Lepetit, Thomas; Kante, Boubacar

    2015-09-01

    We demonstrate a method to hide a Gaussian-shaped bump on a ground plane from an incoming plane wave. In essence, we use a graded metasurface to shape the wavefronts like those of a flat ground plane[1,2].The metasurface provides additional phase to the electromagnetic field to control the reflection angle. To mimic a flat ground plane, the reflection angle is chosen to be equal to the incident angle. The desired phase distribution is calculated based on generalized Snell's laws[3]. We design our metasurface in the microwave range using sub-wavelength dielectric resonators. We verify the design by full-wave time-domain simulations and show that the result matches our theory well. This approach can be applied to hide any object on a ground plane not only at microwave frequencies but also at higher frequencies up to the infrared. 1. Jensen Li and J. B. Pendry, Hiding under the Carpet: A New Strategy for Cloaking. Phys. Rev. Lett. 101, 203901 (2008) 2. Andrea Alu, Mantle cloak: Invisibility induced by a surface. Phys. Rev. B 80, 245115 (2009) 3. Yu N, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334(6054):333-337 (2011)

  13. Microwave Metamaterial-Based Sensor for Dielectric Characterization of Liquids.

    Science.gov (United States)

    Soffiatti, André; Max, Yuri; G Silva, Sandro; M de Mendonça, Laércio

    2018-05-11

    This article proposed to build a system founded on metamaterial sensor antennas, which can be used to evaluate impurities in aqueous substances according to the quality of transmission between the sensor antennas. In order to do this, a dedicated setup with tests in several frequencies was deployed so as to monitor the behavior of transmission variation between sensors. These sensors are microstrip antennas with a ground plane of resonant cleaved metallic rings; the substrate functions as a metamaterial for the irradiating element. In this study, an analysis was made of transmission between the sensors, looking for variation in angles of incidence of signal and of distance between the antennas. The sensor was tested at various operating frequencies, as such 1.8 GHz, 2.4 GHz, 3.4 GHz and 4.1 GHz, resulting in different values of sensitivity. The prototypes were constructed and tested so as to analyze the dielectric effects of the impurities on NaCl and C₂H₄O₂ substances. The research aims to use these control systems of impurities in industrial premises.

  14. Dielectric nanostructures for broadband light trapping in organic solar cells

    KAUST Repository

    Raman, Aaswath

    2011-09-15

    Organic bulk heterojunction solar cells are a promising candidate for low-cost next-generation photovoltaic systems. However, carrier extraction limitations necessitate thin active layers that sacrifice absorption for internal quantum efficiency or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D and multi-level ITO-air gratings lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model organic solar cell where PCDTBT:PC71BM is the organic semiconductor. Specific to this approach, the active layer itself remains untouched yet receives the benefit of light trapping by nanostructuring the top surface below which it lies. The techniques developed here are broadly applicable to organic semiconductors in general, and enable partial decoupling between active layer thickness and photocurrent generation. © 2011 Optical Society of America.

  15. Dielectric properties of proton irradiated PES

    International Nuclear Information System (INIS)

    Shah, Nilam; Singh, N.L.; Singh, K.P.

    2005-01-01

    Polyethersulfone films were irradiated with 3 MeV proton beam at fluences ranging from 10 13 to 10 15 ions/cm 2 . AC electrical properties of irradiated samples were studied in the frequency range 100 Hz to 1MHz by LCR meter. There is an exponential increase in conductivity with frequency but the effect of irradiation is not significant. The dielectric loss/constant are observed to change with fluence. (author)

  16. Dielectric response in guiding center plasma

    International Nuclear Information System (INIS)

    Krommes, J.A.; Similon, P.

    1979-12-01

    The dielectric function for guiding center plasma is derived from the direct-interaction approximation. For the special case of thermal equilibrium, the reslt agrees with, although is more detailed than, an earlier calculation of Taylor. An explicit formula for the collision operator Σ' is given. The calculation illustrates several important features of renormalized turbulence theory: cancellation between the so-called diffusion and polarization parts of Σ', and the role of the renormalization in providing the proper description of adiabatic response

  17. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  18. Cellulose triacetate, thin film dielectric capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  19. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    Science.gov (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  20. Cordierite Glass-Ceramics for Dielectric Materials

    International Nuclear Information System (INIS)

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  1. Optically-Induced Magnetic Response in All-Dielectric Nanodisk Composite Structures

    Science.gov (United States)

    Chong, Katie Eve

    Optical technologies developed throughout history have been exploiting the electric response in matters in order to control light. However, little has been explored for the magnetic response in matter at optical frequencies due to the lack of magnetic materials in this spectral region. Recently, specially engineered materials, namely metamaterials, have been developed to exploit the magnetic responses in matter for light manipulation. In particular, researchers have made use of the optically-induced magnetic responses (OIMRs) generated in metallic nanostructures to achieve optical effects not seen in nature. Such magnetic responses serve as a second channel to control light, providing an alternative and an addition to the electric responses and leading to novel observations and innovative ideas for light manipulation. This creates many opportunities for the development of the next generation nano-optics and nanophotonic devices. Dielectric nanostructures have recently been discovered to also support OIMR, which is useful for applications requiring low loss and simpler fabrication procedures, such as wavefront control and robust nanoscale sensing. In this thesis, I present the study of OIMR in several all-dielectric systems based on silicon nanodisks, namely single, clusters and regular arrays of nanodisks. The study of these systems provides knowledge for and insight into harnessing the OIMRs in dielectric nanostructures for future applications. Chapter 1 provides a comprehensive introduction to OIMR by presenting a historic overview of the topic and the basic concepts involved for high-index dielectric particles. This is followed by a description of the pioneer works on OIMR in dielectric spherical nanoparticles, including the Mie theory and its recent experimental verification. The similarities and differences between the properties of plasmonic and dielectric nanostructures in the context of metamaterials are also described and explained. Finally, the motivation

  2. Increased Accuracy in the Measurement of the Dielectric Constant of Seawater at 1.413 GHz

    Science.gov (United States)

    Zhou, Y.; Lang R.; Drego, C.; Utku, C.; LeVine, D.

    2012-01-01

    This paper describes the latest results for the measurements of the dielectric constant at 1.413 GHz by using a resonant cavity technique. The purpose of these measurements is to develop an accurate relationship for the dependence of the dielectric constant of sea water on temperature and salinity which is needed by the Aquarius inversion algorithm to retrieve salinity. Aquarius is the major instrument on the Aquarius/SAC-D observatory, a NASA/CONAE satellite mission launched in June of20ll with the primary mission of measuring global sea surface salinity to an accuracy of 0.2 psu. Aquarius measures salinity with a 1.413 GHz radiometer and uses a scatterometer to compensate for the effects of surface roughness. The core part of the seawater dielectric constant measurement system is a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The change of resonance frequency and the cavity Q value are used to determine the real and imaginary parts of the dielectric constant of seawater introduced into the thin tube. Measurements are automated with the help of software developed at the George Washington University. In this talk, new results from measurements made since September 2010 will be presented for salinities 30, 35 and 38 psu with a temperature range of O C to 350 C in intervals of 5 C. These measurements are more accurate than earlier measurements made in 2008 because of a new method for measuring the calibration constant using methanol. In addition, the variance of repeated seawater measurements has been reduced by letting the system stabilize overnight between temperature changes. The new results are compared to the Kline Swift and Meissner Wentz model functions. The importance of an accurate model function will be illustrated by using these model functions to invert the Aquarius brightness temperature to get the salinity values. The salinity values

  3. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  4. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1978-07-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de

  5. A fast 30 kV 5 kHz repetition rate resonant capacitor charger

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Huiskamp, T.; van Heesch, E.J.M.; Pemen, A.J.M.

    2016-01-01

    A novel circuit topology of a fast 30 kV resonant capacitor charger is presented in this paper. The charger is designed for high repetition rate spark gap based pulsed power modulators. A spark gap can fire spontaneously (pre-firing) during charging of a capacitor bank due to poor dielectric

  6. A computational analysis of the carbon-nanotube-based resonant-circuit sensors

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Roy, W.N.

    2004-01-01

    Available values for the molecular polarizability and the dipole moment and the computed adsorption energies to single walled carbon nanotubes (SWCNTs) for a couple of polar (NH 3 and CO) and several non-polar (He, Ar, N 2 and O 2 ) gases are used to help establish a correlation between the adsorbed gas-induced changes in the dielectric constant of the SWCNTs (the sensing material) and the resulting reduction in the resonant frequency of the resonant circuit-based chemical gas sensors. It is found that simple weighting methods which neglect the effect of changes in the electronic structure of the carbon nanotubes during adsorption are generally incapable of predicting correctly the changes in the effective dielectric constant of the carbon nanotubes. Conversely, the use of adsorption-induced changes in the band gap of the carbon nanotubes and a relationship between the band gap and the dielectric constant is found to be a promising approach for assessing the adsorption-induced changes in the effective dielectric constant of the carbon nanotubes and for establishment of their effect on the resonant frequency of resonator-based chemical gas sensors

  7. Foerster resonance energy transfer in inhomogeneous non-dispersive nanophotonic environments

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    A nondispersive inhomogeneous dielectric environment of a donor-acceptor pair of quantum emitters affects their Foerster resonance energy transfer (FRET) rate. We find that this rate does not depend on the emission frequency and hence not on the local optical density of states (LDOS) at that freq...

  8. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  9. The effect of nonlocal dielectric response on the surface-enhanced Raman and fluorescence spectra of molecular systems

    Science.gov (United States)

    Wei, Yong; Pei, Huan; Li, Li; Zhu, Yanying

    2018-06-01

    We present a theoretical study on the influence of the nonlocal dielectric response on surface-enhanced resonant Raman scattering (SERRS) and fluorescence (SEF) spectra of a model molecule confined in the center of a Ag nanoparticle (NP) dimer. In the simulations, the nonlocal dielectric response caused by the electron–hole pair generation in Ag NPs was computed with the d-parameter theory, and the scattering spectra of a model molecule representing the commonly used fluorescent dye rhodamine 6G (R6G) were obtained by density-matrix calculations. The influence of the separation between Ag NP dimers on the damping rate and scattering spectra with and without the nonlocal response were systematically analyzed. The results show that the nonlocal dielectric response is very sensitive to the gap distance of the NP dimers, and it undergoes much faster decay with the increase of the separation than the radiative and energy transfer rates. The Raman and fluorescence peaks as simulated with the nonlocal dielectric response are relative weaker than that without the nonlocal effect for smaller NP separations because the extra decay rates of the nonlocal effect could reduce both the population of the excited state and the interband coherence between the ground and excited states. Our result also indicates that the nonlocal effect is more prominent on the SEF process than the SERRS process.

  10. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  11. Properties of dielectric barrier discharges in different arrangements

    International Nuclear Information System (INIS)

    Pietsch, G.J.

    2001-01-01

    Dielectric barrier discharges (DBDs) occur in arrangements where at least one dielectric is positioned in a gas space in between conducting electrodes. When breakdown field strength is reached in such a device, charge carriers are created in the gas region, accelerated, multiplied and finally collected on the surface(s) of the dielectric(s). The charge accumulation on the dielectric creates a counter field to that resulting from the power supply and as all of these processes are rather fast, the discharge quenches rapidly. The dielectric has two tasks, it limits the transferred charge and by this the energy conversion and distributes the discharge over the electrode area. That is why DBDs are non-thermal discharges which exist even at atmospheric pressure

  12. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  13. Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and Packaging Materials

    Science.gov (United States)

    Motaharifar, E.; Pierce, R. G.; Islam, R.; Henderson, R.; Hsu, J. W. P.; Lee, Mark

    2018-01-01

    In the effort to push the high-frequency performance of electronic circuits and signal interconnects from millimeter waves to beyond 1 THz, a quantitative knowledge of complex refraction index values and dispersion in potential dielectric substrate, encapsulation, waveguide, and packaging materials becomes critical. Here we present very broadband measurements of the real and imaginary index spectra of four polymeric dielectric materials considered for use in high-frequency electronics: benzocyclobutene (BCB), polyethylene naphthalate (PEN), the photoresist SU-8, and polydimethylsiloxane (PDMS). Reflectance and transmittance spectra from 3 to 75 THz were made using a Fourier transform spectrometer on freestanding material samples. These data were quantitatively analyzed, taking into account multiple partial reflections from front and back surfaces and molecular bond resonances, where applicable, to generate real and imaginary parts of the refraction index as a function of frequency. All materials showed signatures of infrared active organic molecular bond resonances between 10 and 50 THz. Low-loss transmission windows as well as anti-window bands of high dispersion and loss can be readily identified and incorporated into high-frequency design models.

  14. Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface

    Science.gov (United States)

    Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong

    2018-02-01

    Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with controllable birefringence is numerically designed. The phenomena of trapped magnetic mode resonance and high Q-factors are modulated by inserting graphene between silicon and silica. This results in a broader transmission wavelength in comparison to the all-dielectric structure without graphene. The birefringence tunability is based on the dimensions of silicon and the Fermi energy of graphene. Consequently, a linear-to-circular polarization conversion is achieved at a high degree of 96%, in the near-infrared. Moreover, the polarization state of the scattered light is switchable between right and left hand circular polarizations, based on an external gate biasing voltage. Unlike in plasmonic metasurfaces, these achievements demonstrate an efficient structure that is free from radiative and ohmic losses. Furthermore, the ultrathin thickness and the compactness of the structure are demonstrated as key components in realizing integrable and CMOS compatible photonic sensors.

  15. Large-scale modulation of left-handed passband in hybrid graphene/dielectric metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuanbao; Bai, Yang; Qiao, Lijie [Key Laboratory of Environmental Fracture (Ministry of Education), University of Science and Technology Beijing (China); Zhou, Ji [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing (China); Zhao, Qian [State Kay Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing (China)

    2017-08-15

    Large-scale modulation of the left-handed transmission with a high quality factor is greatly desired by high-performance optical devices, but the requirements are hard to be satisfied simultaneously. This paper presents a hybrid graphene/dielectric metasurface to realize a large transmission modulation for the left-handed passband at near-infrared frequencies via tuning the Fermi energy of graphene. By splitting the nanoblocks, i.e. introducing an additional symmetry breaking in the unit cell, the metasurface demonstrates an ultrahigh quality factor (Q ∼ 550) of Fano resonance with near-unity transmission and full 2π phase coverage due to the interference between Mie-type magnetic and electric resonances, which induces the negative refraction property. Besides, the split in the nanoblock greatly enhances the local field by increasing the critical coupling area, so the light-graphene interaction is promoted intensively. When the surface conductivity of graphene is electrically tuned, the hybrid graphene/dielectric metasurface exhibits a deep modulation of 85% for the left-handed passband, which is robust even for the highest loss of graphene. Moreover, the simple configuration remarkably reduces the fabrication requirements to facilitate the widespread applications. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    Science.gov (United States)

    Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.

    2014-07-01

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  17. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues

    International Nuclear Information System (INIS)

    Gabriel, S.; Lau, R.W.; Gabriel, C.

    1996-01-01

    A parametric model was developed to describe the variation of dielectric properties of tissues as a function of frequency. The experimental spectrum from 10 Hz to 100 GHz was modelled with four dispersion regions. The development of the model was based on recently acquired data, complemented by data surveyed from the literature. The purpose is to enable the prediction of dielectric data that are in line with those contained in the vast body of literature on the subject. The analysis was carried out on a Microsoft Excel spreadsheet. Parameters are given for 17 tissue types. (author)

  18. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Dielectric properties such as dielectric constant (ε′) and dielectric loss tangent (tan δ) of mixed. Mn–Zn–Er ferrites having the compositional formula Mn0⋅58Zn0⋅37Fe2⋅05–xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were measured at room temperature in the frequency range 1–13 MHz using a HP ...

  19. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  20. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  1. Dielectric characterization of low-loss calcium strontium titanate fibers produced by laser floating zone technique for wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, F. [Department of Physics and I3N, University of Aveiro, 3810-193, Aveiro (Portugal); Polytechnic Institute of Coimbra, 3000-271, Coimbra (Portugal); Valente, M.A.; Costa, L.C.; Costa, F.M. [Department of Physics and I3N, University of Aveiro, 3810-193, Aveiro (Portugal)

    2014-09-15

    Wireless communication technology assisted to a huge development during the last two decades, responding to the growing demand for small size and low weight devices such as cell phones and global positioning systems. The need for miniaturization and higher autonomy resulted in the development of new dielectric oxide ceramics with very specific properties, to be applied as dielectric resonators in filters, oscillators, and antennas. Some crucial properties as a high quality factor, high dielectric constant, and near zero temperature coefficient of resonant frequency must be considered during the selection of the appropriate materials. The present work deals with the preparation of calcium titanate (CaTiO{sub 3}), strontium titanate (SrTiO{sub 3}), and calcium strontium titanate (Ca{sub x}Sr{sub 1-x}TiO{sub 3}) fibers produced by laser floating zone (LFZ) technique. Our results show that fibers grown at lower pulling rates exhibit higher ε', for all the studied frequency range, including the microwave region. Moreover, the quality factor is always high envisaging the possibility to include these materials in future wireless device applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met)

    Science.gov (United States)

    Gamaly, E. G.; Rode, A. V.

    2018-03-01

    Swift excitation of transparent dielectrics by ultrashort and highly intense laser pulse leads to ultra-fast re-structuring of the electronic landscape and generates many transient material states, which are continuously reshaped in accord with the changing pulse intensity. These unconventional transient material states, which exhibit simultaneously both dielectric and metallic properties, we termed here as the `Die-Met' states. The excited material is transparent and conductive at the same time. The real part of permittivity of the excited material changes from positive to negative values with the increase of excitation, which affects strongly the interaction process during the laser pulse. When the incident field has a component along the permittivity gradient, the amplitude of the field increases resonantly near the point of zero permittivity, which dramatically changes the interaction mode and increases absorption in a way that is similar to the resonant absorption in plasma. The complex 3D structure of the permittivity makes a transparent part of the excited dielectric (at ɛ 0 > ɛ re > 0) optically active. The electro-magnetic wave gets a twisted trajectory and accrues the geometric phase while passing through such a medium. Both the phase and the rotation of the polarisation plane depend on the 3D permittivity structure. Measuring the transmission, polarisation and the phase of the probe beam allows one to quantitatively identify these new transient states. We discuss the revelations of this effect in different experimental situations and their possible applications.

  3. Dielectric characterization of low-loss calcium strontium titanate fibers produced by laser floating zone technique for wireless communication

    International Nuclear Information System (INIS)

    Amaral, F.; Valente, M.A.; Costa, L.C.; Costa, F.M.

    2014-01-01

    Wireless communication technology assisted to a huge development during the last two decades, responding to the growing demand for small size and low weight devices such as cell phones and global positioning systems. The need for miniaturization and higher autonomy resulted in the development of new dielectric oxide ceramics with very specific properties, to be applied as dielectric resonators in filters, oscillators, and antennas. Some crucial properties as a high quality factor, high dielectric constant, and near zero temperature coefficient of resonant frequency must be considered during the selection of the appropriate materials. The present work deals with the preparation of calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), and calcium strontium titanate (Ca x Sr 1-x TiO 3 ) fibers produced by laser floating zone (LFZ) technique. Our results show that fibers grown at lower pulling rates exhibit higher ε', for all the studied frequency range, including the microwave region. Moreover, the quality factor is always high envisaging the possibility to include these materials in future wireless device applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Science.gov (United States)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  5. Dielectric constant of ionic solutions: a field-theory approach.

    Science.gov (United States)

    Levy, Amir; Andelman, David; Orland, Henri

    2012-06-01

    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

  6. Improved dielectric functions in metallic films obtained via template stripping

    Science.gov (United States)

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  7. Stretched exponential relaxation and ac universality in disordered dielectrics

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens

    2007-01-01

    This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are stretc......This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues...

  8. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    International Nuclear Information System (INIS)

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  9. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  10. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  11. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  12. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  13. Influence of dielectric polarization upon PD transients: Use of hollow dielectric spheres

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1997-01-01

    Hollow glass spheres have recently been employed to provide a reproducible source of partial discharges. The influence of the shell permittivity upon the PD transients is examined. It is shown that, relative to the non-shell situation, the magnitude of such transients may be increased or decrease......, depending on the ratio of the shell-to-bulk dielectric permittivities....

  14. Stochastic resonance

    International Nuclear Information System (INIS)

    Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas

    2004-01-01

    We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise

  15. Diffraction of electromagnetic waves by a metallic bar grating with a defect in dielectric filling of the slits

    Science.gov (United States)

    Kochetova, Lyudmila A.; Prosvirnin, Sergey L.

    2018-04-01

    The problem of electromagnetic wave diffraction by the metallic bar grating with inhomogeneous dielectric filling of each slit between bars has been investigated by using the mode matching technique. The transmission and the inner field distribution have been analyzed for the structure which has a single defect in the periodic filling of slits. Such periodic structures are of particular interest for applications in optics, as they have the ability to concentrate a strong inner electromagnetic field and are characterized by high-Q transmission resonances. We use a simple approach to control the width and location of the stopband of the structure by placing a defect in the periodic filling of the grating slits. As a result, we observe the narrow resonance of transmission in terms of stopband width of the defect-free grating and confinement of strong inner electromagnetic field. By changing the permittivity of the defect layer we can shift the frequency of the resonant transmission.

  16. Metallic nanoparticles in dielectrics: A comparative study

    KAUST Repository

    Agambayev, Agamyrat; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.

    2017-01-01

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  17. Ionic conductivity and complexation in liquid dielectrics

    International Nuclear Information System (INIS)

    Zhakin, Anatolii I

    2003-01-01

    Electronic and ionic conductivity in nonpolar liquids is reviewed. Theoretical results on ionic complexation (formation of ion pairs and triplets, dipole-dipole chains, ion-dipole clusters) in liquid dielectrics in an intense external electric field are considered, and the relation between the complexation process and ionic conductivity is discussed. Experimental results supporting the possibility of complexation are presented and compared with theoretical calculations. Onsager's theory about the effect of an intense external electric field on ion-pair dissociation is corrected for the finite size of ions. (reviews of topical problems)

  18. Dielectric materials electrization by fast electrons

    International Nuclear Information System (INIS)

    Dyrkov, V.A.; Kononov, B.A.

    1990-01-01

    Electrization of short-circuited high-ohmage targets under irradiation by 50-200 keV electrons non-uniformly by volume is investigated both experimentally and theoretically. The obtained data show that effect of space charge field increases monotonically up to stationary state during irradiation. Time constant for space charge accumulation constitutes 1-10 min and has lower value for polymethylmethacrylate as compared with polyethyleneterephthalate and decreases with increase of beam current density. Good agreement of experimental and theoretical results for both materials confirms the validity of main positions of phonomenological model of space charge formation in dielectric materials under fast electron irradiation

  19. Operation regimes of a dielectric laser accelerator

    Science.gov (United States)

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  20. Monitoring diver kinematics with dielectric elastomer sensors

    Science.gov (United States)

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The