WorldWideScience

Sample records for hemispherical spectral emittance

  1. Total hemispherical emittance measured at high temperatures by the calorimetric method

    International Nuclear Information System (INIS)

    DiFilippo, F.; Mirtich, M.J.; Banks, B.A.; Stidham, C.; Kussmaul, M.

    1994-01-01

    A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements (± 5 percent). The probable error of the CVE measurements was typically less than 1 percent

  2. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  3. Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Campo, L. del [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Emittance of Inconel 718 coated with plasma sprayed yttria stabilized zirconia. Black-Right-Pointing-Pointer The coating is opaque for {lambda} > 9 {mu}m and semi-transparent for {lambda} < 9 {mu}m. Black-Right-Pointing-Pointer In the semi-transparent region the emittance decreases with coating thickness. Black-Right-Pointing-Pointer 300 {mu}m thick coatings are still semi-transparent. Black-Right-Pointing-Pointer In the opaque region the surface roughness determines the emittance level. - Abstract: Knowledge of the radiative behaviour of the yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) is needed to perform radiative heat transfer calculations in industrial applications. In this paper, normal spectral emittance experimental data of atmospheric plasma sprayed (PS) YSZ films layered on Inconel 718 substrates are shown. The spectral emittance was measured between 2.5 and 22 {mu}m on samples with film thicknesses ranging from 20 to 280 {mu}m. The samples were heated in a controlled environment, and the emittance was measured for several temperatures between 330 and 730 Degree-Sign C. The dependence of the spectral emittance with film thickness, surface roughness and temperature has been studied and compared with the available results for YSZ TBCs obtained by electron-beam physical vapour deposition. The PS-TBC samples show a Christiansen point at {lambda} = 12.8 {mu}m. The films are semi-transparent for {lambda} < 9 {mu}m, and opaque for {lambda} > 9 {mu}m. In the semi-transparent region, the contribution of the radiation emitted by the Inconel 718 substrate to the global emittance of the samples is analysed. In addition, the influence of the roughness in the emittance values in the opaque spectral region is discussed. Finally, the total normal emittance is obtained as a function of the TBC thickness.

  4. Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime

    Science.gov (United States)

    Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe

    2018-05-01

    We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.

  5. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  6. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    Science.gov (United States)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  7. Photophysics of GaN single-photon emitters in the visible spectral range

    Science.gov (United States)

    Berhane, Amanuel M.; Jeong, Kwang-Yong; Bradac, Carlo; Walsh, Michael; Englund, Dirk; Toth, Milos; Aharonovich, Igor

    2018-04-01

    In this work, we present a detailed photophysical analysis of recently discovered, optically stable single-photon emitters (SPEs) in gallium nitride (GaN). Temperature-resolved photoluminescence measurements reveal that the emission lines at 4 K are three orders of magnitude broader than the transform-limited width expected from excited-state lifetime measurements. The broadening is ascribed to ultrafast spectral diffusion. The photophysical study on several emitters at room temperature (RT) reveals an average brightness of (427 ±215 )kCounts /s . Finally, polarization measurements from 14 emitters are used to determine visibility as well as dipole orientation of defect systems within the GaN crystal. Our results underpin some of the fundamental properties of SPEs in GaN both at cryogenic and RT, and define the benchmark for future work in GaN-based single-photon technologies.

  8. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    International Nuclear Information System (INIS)

    McDonald, John

    2014-01-01

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ∼< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r

  9. Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 This test method describes an accurate technique for measuring the normal spectral emittance of electrically nonconducting materials in the temperature range from 1000 to 1800 K, and at wavelengths from 1 to 35 μm. It is particularly suitable for measuring the normal spectral emittance of materials such as ceramic oxides, which have relatively low thermal conductivity and are translucent to appreciable depths (several millimetres) below the surface, but which become essentially opaque at thicknesses of 10 mm or less. 1.2 This test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is particularly suitable for research laboratories, where the highest precision and accuracy are desired, and is not recommended for routine production or acceptance testing. Because of its high accuracy, this test method may be used as a reference method to be applied to production and acceptance testing in case of dispute. 1.3 This test metho...

  10. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  11. Titanium-based spectrally selective surfaces for solar thermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A D; Holmes, J P

    1983-10-01

    A study of spectrally selective surfaces based on anodic oxide films on titanium is presented. These surfaces have low values of solar absorptance, 0.77, due to the nonideal optical properties of the anodic TiO2 for antireflection of titanium. A simple chemical etching process is described which gives a textured surface with dimensions similar to the wavelengths of solar radiation, leading to spectral selectivity. The performance of this dark-etched surface can be further improved by anodising, and optimum absorbers have been produced with alpha(s) 0.935 and hemispherical emittances (400 K) 0.23. The surface texturing effects a significant improvement in alpha(s) at oblique incidence.

  12. An inter-hemispheric, statistical study of nightside spectral width distributions from coherent HF scatter radars

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2002-12-01

    Full Text Available A statistical investigation of the Doppler spectral width parameter routinely observed by HF coherent radars has been conducted between the Northern and Southern Hemispheres for the nightside ionosphere. Data from the SuperDARN radars at Thykkvibær, Iceland and Syowa East, Antarctica have been employed for this purpose. Both radars frequently observe regions of high (>200 ms-1 spectral width polewards of low (<200 ms-1 spectral width. Three years of data from both radars have been analysed both for the spectral width and line of sight velocity. The pointing direction of these two radars is such that the flow reversal boundary may be estimated from the velocity data, and therefore, we have an estimate of the open/closed field line boundary location for comparison with the high spectral widths. Five key observations regarding the behaviour of the spectral width on the nightside have been made. These are (i the two radars observe similar characteristics on a statistical basis; (ii a latitudinal dependence related to magnetic local time is found in both hemispheres; (iii a seasonal dependence of the spectral width is observed by both radars, which shows a marked absence of latitudinal dependence during the summer months; (iv in general, the Syowa East spectral width tends to be larger than that from Iceland East, and (v the highest spectral widths seem to appear on both open and closed field lines. Points (i and (ii indicate that the cause of high spectral width is magnetospheric in origin. Point (iii suggests that either the propagation of the HF radio waves to regions of high spectral width or the generating mechanism(s for high spectral width is affected by solar illumination or other seasonal effects. Point (iv suggests that the radar beams from each of the radars are subject either to different instrumental or propagation effects, or different geophysical conditions due to their locations, although we suggest that this result is more likely to

  13. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    Science.gov (United States)

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  14. Standard Test Method for Normal Spectral Emittance at Elevated Temperatures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1972-01-01

    1.1 This test method describes a highly accurate technique for measuring the normal spectral emittance of electrically conducting materials or materials with electrically conducting substrates, in the temperature range from 600 to 1400 K, and at wavelengths from 1 to 35 μm. 1.2 The test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is suitable for research laboratories where the highest precision and accuracy are desired, but is not recommended for routine production or acceptance testing. However, because of its high accuracy this test method can be used as a referee method to be applied to production and acceptance testing in cases of dispute. 1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this stan...

  15. Monte Carlo simulation of the spectral response of beta-particle emitters in LSC systems

    International Nuclear Information System (INIS)

    Ortiz, F.; Los Arcos, J.M.; Grau, A.; Rodriguez, L.

    1992-01-01

    This paper presents a new method to evaluate the counting efficiency and the effective spectra at the output of any dynodic stage, for any pure beta-particle emitter, measured in a liquid scintillation counting system with two photomultipliers working in sum-coincidence mode. The process is carried out by a Monte Carlo simulation procedure that gives the electron distribution, and consequently the counting efficiency, at any dynode, in response to the beta particles emitted, as a function of the figure of merit of the system and the dynodic gains. The spectral outputs for 3 H and 14 C have been computed and compared with experimental data obtained with two sets of quenched radioactive standards of these nuclides. (orig.)

  16. Arc-textured metal surfaces for high thermal emittance space radiators

    International Nuclear Information System (INIS)

    Banks, B.A.; Rutledge, S.K.; Mirtich, M.J.; Behrend, T.; Hotes, D.; Kussmaul, M.; Barry, J.; Stidham, C.; Stueber, T.; DiFilippo, F.

    1994-01-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1% Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 μm were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. Ac arc texturing was found to increase the thermal emittance at 800 K from 0.05. to 0.70

  17. Emittance of a finite scattering medium with refractive index greater than unity

    International Nuclear Information System (INIS)

    Crosbie, A.L.

    1980-01-01

    Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directional emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed

  18. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  19. Generalized superradiant assembly for nanophotonic thermal emitters

    Science.gov (United States)

    Mallawaarachchi, Sudaraka; Gunapala, Sarath D.; Stockman, Mark I.; Premaratne, Malin

    2018-03-01

    Superradiance explains the collective enhancement of emission, observed when nanophotonic emitters are arranged within subwavelength proximity and perfect symmetry. Thermal superradiant emitter assemblies with variable photon far-field coupling rates are known to be capable of outperforming their conventional, nonsuperradiant counterparts. However, due to the inability to account for assemblies comprising emitters with various materials and dimensional configurations, existing thermal superradiant models are inadequate and incongruent. In this paper, a generalized thermal superradiant assembly for nanophotonic emitters is developed from first principles. Spectral analysis shows that not only does the proposed model outperform existing models in power delivery, but also portrays unforeseen and startling characteristics during emission. These electromagnetically induced transparency like (EIT-like) and superscattering-like characteristics are reported here for a superradiant assembly, and the effects escalate as the emitters become increasingly disparate. The fact that the EIT-like characteristics are in close agreement with a recent experimental observation involving the superradiant decay of qubits strongly bolsters the validity of the proposed model.

  20. Cooperative spontaneous emission of nano-emitters with inter-emitter coupling in a leaky microcavity

    International Nuclear Information System (INIS)

    Hong, Suc-Kyoung; Nam, Seog Woo; Yang, Hyung Jin

    2015-01-01

    We study the spontaneous emission from a few two-level nano-emitters placed in a leaky microcavity with Lorentzian spectral density near a critically damped regime. Collective features of the spontaneous emission are investigated by numerical analysis of the excitation dynamics when initially one nano-emitter is totally excited but we do not know which one. The results show that there are three decay rates in the excitation dynamics, two for simple exponential decays and one for damped oscillatory decay. The excitation dynamics is found to critically depend on the regime of the system. It is shown that the spontaneous emission is enhanced or suppressed depending on whether the system is in the underdamped or overdamped regime, respectively. On the other hand, the cooperative spontaneous emission is suppressed in the underdamped while it is enhanced in the overdamped regime. Furthermore, the effect of the direct inter-emitter coupling on the breaking of the cooperativeness of the spontaneous emission is shown as well. (paper)

  1. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    Directory of Open Access Journals (Sweden)

    Arjan de Jong

    2012-12-01

    Full Text Available In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  2. Aluminum oxide film thickness and emittance

    International Nuclear Information System (INIS)

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55 degrees C) moderator for about a year. The average moderator temperature was assumed to be 30 degrees C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 μm ± 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 μm ± 11%. Total hemispherical emittance is predicted to be 0.69 at 96 degrees C, decreasing to 0.45 at 600 degrees C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values

  3. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  4. Measured emittance dependence on injection method in laser plasma accelerators

    Science.gov (United States)

    Barber, Samuel; van Tilborg, Jeroen; Schroeder, Carl; Lehe, Remi; Tsai, Hai-En; Swanson, Kelly; Steinke, Sven; Nakamura, Kei; Geddes, Cameron; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    The success of many laser plasma accelerator (LPA) based applications relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot transverse emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock induced density down-ramp injection. Notably, the measurements reveal that ionization injection results in significantly higher emittance. With the down-ramp injection configuration, emittances less than 1 micron at spectral charge densities up to 2 pC/MeV were measured. This work was supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the NSF under Grant No. PHY-1415596, by the U.S. DOE NNSA, DNN R&D (NA22), and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.

  5. Limitations of two-level emitters as nonlinearities in two-photon controlled-PHASE gates

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara P. S.; Heuck, Mikkel

    2017-01-01

    We investigate the origin of imperfections in the fidelity of a two-photon controlled-PHASE gate based on two-level-emitter nonlinearities. We focus on a passive system that operates without external modulations to enhance its performance. We demonstrate that the fidelity of the gate is limited...... by opposing requirements on the input pulse width for one-and two-photon-scattering events. For one-photon scattering, the spectral pulse width must be narrow compared with the emitter linewidth, while two-photon-scattering processes require the pulse width and emitter linewidth to be comparable. We find...

  6. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    Science.gov (United States)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  7. Toward high performance radioisotope thermophotovoltaic systems using spectral control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawa, E-mail: xiawaw@mit.edu [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Chan, Walker [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Stelmakh, Veronika [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Fisher, Peter [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States)

    2016-12-01

    This work describes RTPV-PhC-1, an initial prototype for a radioisotope thermophotovoltaic (RTPV) system using a two-dimensional photonic crystal emitter and low bandgap thermophotovoltaic (TPV) cell to realize spectral control. We validated a system simulation using the measurements of RTPV-PhC-1 and its comparison setup RTPV-FlatTa-1 with the same configuration except a polished tantalum emitter. The emitter of RTPV-PhC-1 powered by an electric heater providing energy equivalent to one plutonia fuel pellet reached 950 °C with 52 W of thermal input power and produced 208 mW output power from 1 cm{sup 2} TPV cell. We compared the system performance using a photonic crystal emitter to a polished flat tantalum emitter and found that spectral control with the photonic crystal was four times more efficient. Based on the simulation, with more cell areas, better TPV cells, and improved insulation design, the system powered by a fuel pellet equivalent heat source is expected to reach an efficiency of 7.8%.

  8. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  9. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Science.gov (United States)

    Vallone, Fabio; Lai, Stefano; Spalletti, Cristina; Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo

    2016-01-01

    Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance

  10. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Directory of Open Access Journals (Sweden)

    Fabio Vallone

    Full Text Available Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA, generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral.Local field potentials (LFPs were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis.Spectral analysis demonstrated an early decrease (day 9 in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23, inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance.These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating

  11. Emittance preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V; Arduini, G; Goddard, B; Holzer, B J; Jowett, J M; Meddahi, M; Mertens, T; Roncarolo, F; Schaumann, M; Versteegen, R; Wenninger, J [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    Emittance measurements during the LHC proton run 2011 indicated a blow-up of 20 % to 30 % from LHC injection to collisions. This presentation will show the emittance preservation throughout the different parts of the LHC cycle and discuss the current limitations on emittance determination. An overview of emittance preservation through the injector complex as function of bunch intensity will also be given. Possible sources for the observed blow-up and required tests in 2012 will be presented. Possible improvements of emittance diagnostics and analysis tools for 2012 will be shown.

  12. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    Science.gov (United States)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  13. Spectral beam combining of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Ostendorf, Ralf

    2010-01-01

    We demonstrate spectral beam combining of a 980 nm tapered diode laser bar. The combined beam from 12 tapered emitters on the bar yielded an output power of 9.3 W at 30 A of operating current. An M2 value of 5.3 has been achieved along the slow axis. This value is close to that of a free running...... single tapered emitter on the bar at the same current level. The overall spectral beam combining efficiency was measured to be 63%....

  14. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    International Nuclear Information System (INIS)

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  15. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    Science.gov (United States)

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  16. An investigation of models of rhodium emitter used in self-powered neutron detector

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Piontkovskij, Yu.F.; Goranchuk, V.V.

    2017-01-01

    he paper presents the results of MCNP simulation of the self-powered neutron detector (SPND) signal formation as a result of emitter nuclei activation under the irradiation with neutrons generated in the fuel assemblies. To account for the non-uniformity of emitter burnup along the radius, its model was divided radially into 10 layers of equal thickness. It has been shown that the main contribution of about 88 % of SPND signal is provided by the four peripheral emitter layers. The contribution of different parts of emitter to the SPND signal formation throughout the lifetime of the SPND in the In-Core Monitoring System was found. Simulation results allow us to determine the SPND signal when the spectral characteristics of the neutron flux at the detector location change during the fuel campaign. The study has investigated and proposed a SPND model with the higher neutron sensitivity even though a smaller amount of expensive rhodium is used.

  17. Spectral emissivity measurements of liquid refractory metals by spectrometers combined with an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Okada, Junpei T; Paradis, Paul-François; Ito, Yusuke; Masaki, Tadahiko; Watanabe, Yuki

    2012-01-01

    A spectral emissivity measurement system combined with an electrostatic levitator was developed for high-temperature melts. The radiation intensity from a high-temperature sample was measured with a multichannel photospectrometer (MCPD) over the 700–1000 nm spectral range, while a Fourier transform infrared spectrometer (FTIR) measured the radiation over the 1.1–6 µm interval. These spectrometers were calibrated with a blackbody radiation furnace, and the spectral hemispherical emissivity was calculated. The system's capability was evaluated with molten zirconium samples. The spectral hemispherical emissivity of molten zirconium showed a negative wavelength dependence and an almost constant variation over the 1850–2210 K temperature range. The total hemispherical emissivity of zirconium calculated by integrating the spectral hemispherical emissivity was found to be around 0.32, which showed good agreement with the literature values. The constant pressure heat capacity of molten zirconium at melting temperature was calculated to be 40.9 J mol −1 K −1 . (paper)

  18. Shaping the spatial and spectral emissivity at the diffraction limit

    International Nuclear Information System (INIS)

    Makhsiyan, Mathilde; Bouchon, Patrick; Jaeck, Julien; Pelouard, Jean-Luc; Haïdar, Riad

    2015-01-01

    Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelength emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing

  19. Shaping the spatial and spectral emissivity at the diffraction limit

    Energy Technology Data Exchange (ETDEWEB)

    Makhsiyan, Mathilde [MiNaO, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); MiNaO, Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Université Paris-Saclay, route de Nozay, F-91460 Marcoussis (France); Bouchon, Patrick, E-mail: patrick.bouchon@onera.fr; Jaeck, Julien [MiNaO, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Pelouard, Jean-Luc [MiNaO, Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Université Paris-Saclay, route de Nozay, F-91460 Marcoussis (France); Haïdar, Riad [MiNaO, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); École Polytechnique, Département de Physique, 91128 Palaiseau (France)

    2015-12-21

    Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelength emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing.

  20. Total hemispherical emissivity of Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Benjamin P.; Nelson, Shawn E.; Walton, Kyle L.; Ghosh, Tushar K.; Tompson, Robert V.; Loyalka, Sudarshan K., E-mail: LoyalkaS@missouri.edu

    2015-06-15

    Highlights: • We have measured the total hemispherical emissivity for Inconel 718 from about 600–1250 K. • Oxidation in air at 1073 K resulted in an increase in emissivity. • Sandblasting of Inconel 718 was also observed to increase the emissivity. • Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase in the emissivity. • Coating of graphite powder onto the 220 grit sandblasted Inconel 718 did show an increase in emissivity. - Abstract: Total hemispherical emissivity for Inconel 718 was measured in anticipation of its application in Very High Temperature Gas Reactors (VHTRs). A majority of current emissivity data for Inconel 718 is in the form of spectral measurements. The data presented here were obtained with an experimental apparatus based on the standard ASTM C835-06 for total hemispherical emittance. Measurements of Inconel 718 were made for four different surface types including: (i) ‘as-received’ from the manufacturer, (ii) oxidized in air and humidified helium, (iii) sandblasted with aluminum oxide powder, and (iv) with a thin coating of nuclear grade graphite powder (grade NGB-18). The emissivity for the ‘as-received’ sample ranged from 0.21 to 0.28 in the temperature interval from 760 K to 1275 K. Oxidation in air at 1073 K resulted in an increase in emissivity into the range from 0.2 at 650 K to 0.52 at 1200 K. There was no dependence on the oxidation times studied here. Oxidation with humidified helium at 1073 K produced less of an increase in emissivity than the oxidation in air but there was an increase up to the range from 0.2 at 600 K to 0.35 at 1200 K. Sandblasting of Inconel 718 was also observed to increase the emissivity up to the range from 0.43 at 780 K to 0.53 at 1270 K when 60 grit sized powder was used and up to the range from 0.45 at 683 K to 0.57 at 1267 K when 120 and 220 grit sized powders were used. Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase

  1. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  2. Low-emittance Storage Rings

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  3. Computer simulation of the emittance growth due to noise in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.

    1993-03-01

    The problem of emittance growth due to random fluctuations of the magnetic field in a hadron collider is considered. The results of computer simulations are compared with the analytical theory developed earlier. A good agreement was found between the analytical theory predictions and the computer simulations for the collider tunes located far enough from high order betatron resonances. The dependencies of the emittance growth rate on noise spectral density, beam separation at the Interaction Point (IP) and value of beam separation at long range collisions are studied. The results are applicable to the Superconducting Super Collider (SSC)

  4. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  5. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  6. Novel non-intercepting diagnostic techniques for low-emittance relativistic electron beams

    International Nuclear Information System (INIS)

    Moran, M.J.; Chang, B.

    1988-01-01

    Relativistic electron beams are being generated with emittances low enough that diffraction radiation can be used for beam diagnostics. Techniques based on diffraction radiation can be used to measure the beam transverse momentum distribution and to measure the transverse spatial distribution. The radiation is intense and can be in the visible spectral region where optical diagnostic techniques can be used to maximum advantage. 4 refs. 3 figs

  7. Shielding in ungated field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [U.S. Navy Reserve, Navy Operational Support Center New Orleans, New Orleans, Louisiana 70143 (United States); Jensen, K. L. [Code 6854, Naval Research Laboratory, Washington, D.C. 20375 (United States); Shiffler, D. A. [Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117 (United States); Petillo, J. J. [Leidos, Billerica, Massachusetts 01821 (United States)

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  8. Higher-order turbulence statistics of wave–current flow over a submerged hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Krishnendu; Debnath, Koustuv; Mazumder, Bijoy S, E-mail: debnath_koustuv@yahoo.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-15

    Higher-order turbulence characteristics such as turbulence production, turbulence kinetic energy flux, third order moments and velocity spectra associated with turbulent bursting events due to the influence of a submerged hemisphere under wave–current interactions are presented. The velocity components were measured using three dimensional (3D) 16 MHz micro-acoustic Doppler velocimetry (Micro-ADV). In the wave–current interactions, the contributions of turbulent bursting events such as ejections and sweeps significantly reduce in comparison to the current-only case. The distributions of the mean time intervals of ejection and sweeping events are found to alter due to the superposition of surface waves. Results also depict that the turbulence production in the wake region of the hemisphere reduces remarkably, due to the superposition of surface waves on the current. Further, spectral and co-spectral analysis demonstrates that there is a significant reduction of power spectral peak for both longitudinal and bottom-normal velocities upon superposition of surface waves, which signifies a remarkable change in energy distribution between different frequencies of waves. (paper)

  9. Spectral scattering characteristics of space target in near-UV to visible bands.

    Science.gov (United States)

    Bai, Lu; Wu, Zhensen; Cao, Yunhua; Huang, Xun

    2014-04-07

    In this study, the spectral scattering characteristics of a space target are calculated in the near-UV to visible bands on the basis of measured data of spectral hemispheric reflectivity in the upper half space. Further, the bidirectional reflection distribution function (BRDF) model proposed by Davies is modified to describe the light scattering properties of a target surface. This modification aims to improve the characteristics identifying ability for different space targets. By using this modified Davies spectrum BRDF model, the spectral scattering characteristics of each subsurface can be obtained. A mathematical model of spectral scattering properties of the space target is built by summing all the contributing surface grid reflection scattering components, considering the impact of surface shadow effect.Moreover, the spectral scattering characteristics of the space target calculated with both the traditional and modified Davies BRDF models are compared. The results show that in the fixed and modified cases, the hemispheric reflectivity significantly affects the spectral scattering irradiance of the target.

  10. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  11. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  12. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.

    Science.gov (United States)

    Graf, Arko; Murawski, Caroline; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C

    2018-03-01

    While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot-spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT-based OLEDs represent a highly attractive platform for emission across the entire nIR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of a theory of the spectral reflectance of minerals, part 4

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1972-01-01

    A theory of the spectral reflectance or emittance of particulate minerals was developed. The theory is expected to prove invaluable in the interpretation of the remote infrared spectra of planetary surfaces.

  14. FACET Emittance Growth

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, J; Hogan, M.J.; Nosochkov, Y.; Litos, M.D.; Raubenheimer, T.; /SLAC

    2011-04-05

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to {approx}20 {micro}m long and {approx}10 {micro}m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  15. FACET Emittance Growth

    International Nuclear Information System (INIS)

    Frederico, Joel

    2011-01-01

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to ∼20 (micro)m long and ∼10 (micro)m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  16. Low emittance photoinjectors

    International Nuclear Information System (INIS)

    Ferrario, Massimo

    2001-01-01

    Photon colliders require high charge polarized electron beams with very low normalized emittances, possibly lower than the actual damping rings design goals. Recent analytical and numerical efforts in understanding beam dynamics in RF photoinjectors have raised again the question as to whether the performances of an RF electron gun based injector could be competitive with respect to a damping ring. As a matter of discussion we report in this paper the most recent results concerning low emittance photoinjector designs: the production of polarized electron beams by DC and/or RF guns is illustrated together with space charge compensation techniques and thermal emittance effects. New ideas concerning multi-gun injection system and generation of flat beams by RF gun are also discussed

  17. Single-shot measurements of low emittance beams from laser-plasma accelerators comparing two triggered injection methods

    Science.gov (United States)

    van Tilborg, Jeroen

    2017-10-01

    The success of laser plasma accelerator (LPA) based applications, such as a compact x-ray free electron laser (FEL), relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot energy-dispersed emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock-induced density down-ramp injection. Both injection mechanisms have gained in popularity in recent years due to their demonstrated stable LPA performance. For the down-ramp injection configuration, normalized emittances a factor of two lower were recorded: less than 1 micron at spectral charge densities up to 2 pC/MeV. For both injection mechanisms, a contributing correlation of space charge to the emittance was identified. This measurement technique in general, and these results specifically, are critical to the evaluation of LPA injection methods and development of high-quality LPA beam lines worldwide. This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the U.S. DOE NNSA, DNN R&D (NA22), by the National Science Foundation under Grant No. PHY-1415596, and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.

  18. Hemispherical photography to estimate biophysical variables of cotton

    Directory of Open Access Journals (Sweden)

    Ziany N. Brandão

    Full Text Available ABSTRACT The Leaf Area Index (LAI is a key parameter to evaluate the vegetation spectral response, estimating plant nutrition and water requirements. However, in large fields is difficult to obtain accurate data to LAI determination. Therefore, the objective of this study was the estimation of LAI, biomass and yield of irrigated cotton through digital hemispherical photography. The treatments consisted of four nitrogen doses (0, 90, 180 and 270 kg ha-1 and four phosphorus doses (0, 120, 240 and 360 kg ha-1. Digital hemispherical photographs were collected under similar sky brightness conditions at 60 and 75 days after emergence (DAE, performed by the Digital Plant Canopy Imager - CI-110® of CID Inc. Biomass and LAI measurements were made on the same dates. LAI was also determined by destructive and non-destructive methods through a leaf area integrator (LI-COR® -LI-3100C model, and by measurements based on the midrib length of all leaves, respectively. The results indicate that the hemispherical images were appropriate to estimate the LAI and biomass production of irrigated cotton, while for the estimation of yield, more research is needed to improve the method.

  19. Statistical characteristics of Doppler spectral width as observed by the conjugate SuperDARN radars

    Directory of Open Access Journals (Sweden)

    K. Hosokawa

    Full Text Available We performed a statistical analysis of the occurrence distribution of Doppler spectral width around the day-side high-latitude ionosphere using data from the conjugate radar pair composed of the CUTLASS Iceland-East radar in the Northern Hemisphere and the SENSU Syowa-East radar in the Southern Hemisphere. Three types of spectral width distribution were identified: (1 an exponential-like distribution in the lower magnetic latitudes (below 72°, (2 a Gaussian-like distribution around a few degrees magnetic latitude, centered on 78°, and (3 another type of distribution in the higher magnetic latitudes (above 80°. The first two are considered to represent the geophysical regimes such as the LLBL and the cusp, respectively, because they are similar to the spectral width distributions within the LLBL and the cusp, as classified by Baker et al. (1995. The distribution found above 80° magnetic latitude has been clarified for the first time in this study. This distribution has similarities to the exponential-like distribution in the lower latitude part, although clear differences also exist in their characteristics. These three spectral width distributions are commonly identified in conjugate hemispheres. The latitudinal transition from one distribution to another exhibits basically the same trend between two hemispheres. There is, however, an interhemispheric difference in the form of the distribution around the cusp latitudes, such that spectral width values obtained from Syowa-East are larger than those from Iceland-East. On the basis of the spectral width characteristics, the average locations of the cusp and the open/closed field line boundary are estimated statistically.

    Key words. Ionosphere (ionosphere-magnetosphere inter-actions; plasma convection – Magnetospheric physics (magnetopause, cusp, and boundary layers

  20. Spectral line shape simulation for electron stark-broadening of ion emitters in plasmas

    International Nuclear Information System (INIS)

    Dufour, Emmanuelle; Calisti, Annette; Talin, Bernard; Gigosos, Marco A.; Gonzalez, Manuel A.; Dufty, Jim W.

    2002-01-01

    Electron broadening for ions in plasmas is investigated in the framework of a simplified semi-classical model involving an ionic emitter imbedded in an electron gas. A regularized Coulomb potential that removes the divergence at short distances is postulated for the ion-electron interaction. Line shape simulations based on Molecular Dynamics for the ion impurity and the electrons, accounting for all the correlations, are reported. Comparisons with line shapes obtained with a quasi-particle model show expected correlation effects. Through an analysis of the results with the line shape code PPP, it is inferred that the correlation effect results mainly from the microfield dynamic properties

  1. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  2. Discrete quantum dot like emitters in monolayer MoSe{sub 2}: Spatial mapping, magneto-optics, and charge tuning

    Energy Technology Data Exchange (ETDEWEB)

    Branny, Artur; Kumar, Santosh; Gerardot, Brian D., E-mail: b.d.gerardot@hw.ac.uk [Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wang, Gang; Robert, Cedric; Lassagne, Benjamin; Marie, Xavier; Urbaszek, Bernhard, E-mail: urbaszek@insa-toulouse.fr [Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse (France)

    2016-04-04

    Transition metal dichalcogenide monolayers such as MoSe{sub 2}, MoS{sub 2}, and WSe{sub 2} are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report on spectrally sharp, spatially localized emission in monolayer MoSe{sub 2}. We find this quantum dot-like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an exciton g-factor of the discrete emitters close to −4, as for 2D excitons in this material. In a charge tunable sample, we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage.

  3. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  4. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  5. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    Science.gov (United States)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  6. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance

    Directory of Open Access Journals (Sweden)

    Yi Jiao

    2011-05-01

    Full Text Available In the continuing efforts to reduce the beam emittance of an electron storage ring composed of theoretical minimum emittance (TME lattice, down to a level of several tens of picometers, nonlinear dynamics grows to be a great challenge to the performance of the storage ring because of the strong sextupoles needed to compensate for its large global natural chomaticities coupled with its small average dispersion function. To help in dealing with the challenge of nonlinear optimization, we propose a novel variation of theoretical minimum emittance (TME lattice, named as “modified-TME” lattice, with minimal emittance about 3 times of the exact theoretical minimum, while with more compact layout, lower phase advance per cell, smaller natural chromaticities, and more relaxed optical functions than that in a TME cell, by using horizontally defocusing quadrupole closer to the dipole or simply combined-function dipole with horizontally defocusing gradient. We present approximate scaling formulas to describe the relationships of the design parameters in a modified-TME cell. The applications of modified-TME lattice in the PEP-X storage ring design are illustrated and the proposed lattice appears a good candidate for synchrotron radiation light source with extremely low emittance.

  7. A device for electron gun emittance measurement

    International Nuclear Information System (INIS)

    Aune, B.; Corveller, P.; Jablonka, M.; Joly, J.M.

    1985-05-01

    In order to improve the final emittance of the beam delivered by the ALS electron linac a new gun is going to be installed. To measure its emittance and evaluate the contribution of different factors to emittance growth we have developed an emittance measurement device. We describe the experimental and mathematical procedure we have followed, and give some results of measurements

  8. Gamma emitters in Hong Kong water

    International Nuclear Information System (INIS)

    Shun-Yin, L.; Chung-Keung, M.; Wai-Kwok, N.; Shiu-Chun, A.

    1990-01-01

    Radioactivity in water originates from natural and artificial sources. The development of a nuclear powerplant near Hong Kong necessitates that attention be given to formulating techniques to assess the possible resultant environmental radioactive contamination. Water samples collected from various sites in Hong Kong in the spring and summer of 1987, representing seawater, river water, reservoir water, drinking water, and underground water were studied through gamma-ray spectral analysis. Only gamma emitters in the U238 and Th232 series and K40 were detected. No fission product was detected with specific activity above 0.1 Bq/kg. The data could be the baseline for future monitoring of the radioactivity released from a nuclear plant being built at a 50-km distance from Hong Kong. The variation of detected specific activities may be due to geological differences and the effect of plants. 1 ref., 3 tabs

  9. Diamond-based single-photon emitters

    International Nuclear Information System (INIS)

    Aharonovich, I; Castelletto, S; Simpson, D A; Su, C-H; Greentree, A D; Prawer, S

    2011-01-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information-thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  10. Emittance compensation of CW DC-gun photoinjector

    International Nuclear Information System (INIS)

    Li Peng; Wu Dai; Xu Zhou; Li Ming; Yang Xingfan

    2011-01-01

    Emittance growth induced by space charge effect is very important, especially for CW DC-gun photoinjector. In this work, the linear space charge force and its effect on electron beam transverse emittance are studied, and the principle and properties of emittance compensation by solenoid are analyzed. The CAEP DC-gun photoinjector with a solenoid is also simulated by code Parmela. Simulated results indicate that the normalized transverse emittance of an 80 pC bunch at the 350 keV DC-gun ex-it is 5.14 mm · mrad. And after compensated by a solenoid, it becomes 1.27 mm · mrad. The emittance of beam is well compensated. (authors)

  11. A low-emittance lattice for SPEAR

    International Nuclear Information System (INIS)

    Safranek, J.; Wiedemann, H.

    1992-01-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented (J. Safranek, Ph. D. thesis, Stanford University, 1991). The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129 π nm rad, which makes the low emittance lattice the lowest emittance, runnning synchroton radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further incrased by reducing β y at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal despersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave resonable agreement with the design . The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992. (orig.)

  12. Radiation emitter-detector package

    International Nuclear Information System (INIS)

    O'Brien, J.T.; Limm, A.C.; Nyul, P.; Tassia, V.S. Jr.

    1978-01-01

    Mounted on the metallic base of a radiation emitter-detector is a mounting block is a first projection, and a second projection. A radiation detector is on the first projection and a semiconductor electroluminescent device, i.e., a radiation emitter, is on the second projection such that the plane of the recombination region of the electroluminescent device is perpendicular to the radiation incident surface of the radiation detector. The electroluminescent device has a primary emission and a secondary emission in a direction different from the primary emission. A radiation emitter-detector package as described is ideally suited to those applications wherein the secondary radiation of the electroluminescent device is fed into a feedback circuit regulating the biasing current of the electroluminescent device

  13. Emittance investigation of RF photo-injector

    CERN Document Server

    Yang Mao Rong; Li Zheng; Li Ming; Xu Zhou

    2002-01-01

    A high-power laser beam illuminates a photocathode surface placed on an end wall of an RF cavity. The emitted electrons are accelerated immediately to a relativistic energy by the strong RF find in the cavity. But space charge effect induces beam emittance growth especially near the cathode where the electrons are still nonrelativistic. The author analyzes the factors which lead the transverse emittance growth and method how to resolve this problem. After introducing solenoidal focusing near the photocathode, the beam emittance growth is suppressed dramatically. The beam emittance is given also after compensation and simulation results. The measurements show these results are coincident

  14. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.

    Science.gov (United States)

    He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E

    2013-02-07

    According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2

  15. Criteria for emittance compensation in high-brightness photoinjectors

    Directory of Open Access Journals (Sweden)

    Chun-xi Wang

    2007-10-01

    Full Text Available A critical process in high-brightness photoinjectors is emittance compensation, which brings under control the correlated transverse emittance growth due to the linear space-charge force. Although emittance compensation has been used and studied for almost two decades, the exact criteria to achieve emittance compensation is not as clear as it should be. In this paper, a perturbative analysis of slice envelopes and emittance evolution close to any reference envelope is developed, via which space-charge and chromatic effects are investigated. A new criterion for emittance compensation is found, which is complementary to the well-known matching condition for the invariant envelope and agrees very well with simulations.

  16. Diffraction and Smith-Purcell radiation on the hemispherical bulges in a metal plate

    Science.gov (United States)

    Syshchenko, V. V.; Larikova, E. A.; Gladkih, Yu. P.

    2017-12-01

    The radiation resulting from the uniform motion of a charged particle near a hemispheric bulge on a metal plane is considered. The description of the radiation process based on the method of images is developed for the case of non-relativistic particle and a perfectly conducting target. The spectral-angular and spectral densities of the diffraction radiation on the single bulge (as well as the Smith-Purcell radiation on the periodic string of bulges) are computed. The possibility of application of the developed approach to the case of relativistic incident particle is discussed.

  17. The optoelectronic chameleon - GaN-based light emitters from the UV to green

    Energy Technology Data Exchange (ETDEWEB)

    Kneissl, Michael [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany)

    2008-07-01

    Group III-nitrides have evolved into one of the most versatile and important semiconductor materials for optoelectronic devices. GaN-based blue, green and white light emitting diodes have already entered many parts of everyday life and violet lasers are expected to be following soon. However, considering the extraordinary electronic properties and the wide spectral range that is accessible through nitride materials, it appears that it we have just touched the tip of the iceberg. We discuss some of the new fields of research for InAlGaN materials and devices and review progress in the development of near and deep ultraviolet light emitting diodes, as well as growth and optical properties of InN and indium rich InGaN alloys for emitter in the blue-green spectral range and beyond.

  18. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  19. Beam diagnostics using an emittance measurement device

    International Nuclear Information System (INIS)

    Sarstedt, M.; Becker, R.; Klein, H.; Maaser, A.; Mueller, J.; Thomae, R.; Weber, M.

    1995-01-01

    For beam diagnostics aside from Faraday cups for current measurements and analysing magnets for the determination of beam composition and energy the most important tool is an emittance measurement device. With such a system the distribution of the beam particles in phase-space can be determined. This yields information not only on the position of the particles but also on their angle with respect to the beam axis. There are different kinds of emittance measurement devices using either circular holes or slits for separation of part of the beam. The second method (slit-slit measurement), though important for the determination of the rms-emittance, has the disadvantage of integrating over the y- and y'-coordinate (measurement in xx'-plane assumed). This leads to different emittance diagrams than point-point measurements, since in xx'-plane for each two corresponding points of rr'-plane there exists a connecting line. With regard to beam aberrations this makes xx'-emittances harder to interpret. In this paper the two kinds of emittance diagrams are discussed. Additionally the influence of the slit height on the xx'-emittance is considered. The analytical results are compared to experimental measurements in rr'-, rx'- and xx'-phase-space. (orig.)

  20. Hemispheric asymmetries in speech perception: sense, nonsense and modulations.

    Directory of Open Access Journals (Sweden)

    Stuart Rosen

    Full Text Available The well-established left hemisphere specialisation for language processing has long been claimed to be based on a low-level auditory specialization for specific acoustic features in speech, particularly regarding 'rapid temporal processing'.A novel analysis/synthesis technique was used to construct a variety of sounds based on simple sentences which could be manipulated in spectro-temporal complexity, and whether they were intelligible or not. All sounds consisted of two noise-excited spectral prominences (based on the lower two formants in the original speech which could be static or varying in frequency and/or amplitude independently. Dynamically varying both acoustic features based on the same sentence led to intelligible speech but when either or both acoustic features were static, the stimuli were not intelligible. Using the frequency dynamics from one sentence with the amplitude dynamics of another led to unintelligible sounds of comparable spectro-temporal complexity to the intelligible ones. Positron emission tomography (PET was used to compare which brain regions were active when participants listened to the different sounds.Neural activity to spectral and amplitude modulations sufficient to support speech intelligibility (without actually being intelligible was seen bilaterally, with a right temporal lobe dominance. A left dominant response was seen only to intelligible sounds. It thus appears that the left hemisphere specialisation for speech is based on the linguistic properties of utterances, not on particular acoustic features.

  1. Nonintercepting emittance monitor

    International Nuclear Information System (INIS)

    Miller, R.H.; Clendenin, J.E.; James, M.B.; Sheppard, J.C.

    1983-08-01

    A nonintercepting emittance monitor is a helpful device for measuring and improving particle beams in accelerators and storage rings as it allows continuous monitoring of the beam's distribution in phase space, and perhaps closed loop computer control of the distributions. Stripline position monitors are being investigated for use as nonintercepting emittance monitors for a beam focused by a FODO array in the first 100 meters of our linear accelerator. The technique described here uses the signal from the four stripline probes of a single position monitor to measure the quadrupole mode of the wall current in the beam pipe. This current is a function of the quadrupole moment of the beam, sigma 2 /sub x/ - sigma 2 /sub y/. In general, six independent measurements of the quadrupole moment are necessary to determine the beam emittance. This technique is dependent on the characteristically large variations of sigma 2 /sub x/ - sigma 2 /sub y/ in a FODO array. It will not work in a focusing system where the beam is round at each focusing element

  2. Low emittance configuration for spear

    International Nuclear Information System (INIS)

    Blumberg, L.N.; Harris, J.; Stege, R.; Cerino, J.; Hettel, R.; Hofmann, A.; Liu, R.Z.; Wiedemann, H.; Winick, H.

    1985-01-01

    The quality of synchrotron radiation beams from SPEAR, in particular the brilliance of undulator radiation, can be improved significantly by reducing the emittance of the stored electron beam. A reduction of the horizontal emittance by a factor of 3.5 to a value of 130 nanometer-radians (nm-r) at 3 GeV has been achieved by using stronger focussing, mainly in the horizontal plane. The low emittance configuration also reduces the dispersion and vertical beta functions in the straight sections, making them more suitable for wigglers. The higher betatron tunes lead to a larger phase advance between the two kickers, which has to be corrected during injection by shunting current from some quadrupoles. The configuration was optimized within SPEAR hardware limitations and tested for dynamic aperture with the tracking program PATRICIA. After implementation of this scheme, beam was successfully injected and accumulated. The measured emittance of the stored beam was in agreement with calculations. Presently the configuration is being made operational

  3. Emittance measurements by variable quadrupole method

    International Nuclear Information System (INIS)

    Toprek, D.

    2005-01-01

    The beam emittance is a measure of both the beam size and beam divergence, we cannot directly measure its value. If the beam size is measured at different locations or under different focusing conditions such that different parts of the phase space ellipse will be probed by the beam size monitor, the beam emittance can be determined. An emittance measurement can be performed by different methods. Here we will consider the varying quadrupole setting method.

  4. Multinozzle emitter arrays for ultrahigh-throughput nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing; Mao, Pan; Wang, Hung-Ta; Yang, Peidong

    2017-10-17

    The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.

  5. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    Science.gov (United States)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  6. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  7. Emittance measurements of the CLIO electron beam

    Science.gov (United States)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  8. 2-D emittance equation with acceleration and compression

    International Nuclear Information System (INIS)

    Hahn, K.D.; Smith, L.

    1988-10-01

    Since both acceleration and compression are required for an Inertial Fusion Driver, the understanding of their effect on the beam quality, emittance, is important. This report attempts to generalize the usual emittance formula for the drifting beam to include these effects. The derivation of the 2-D emittance equation is carried out and a comparison with the particle code results is given. The 2-D emittance at a given axial location is reasonable to consider for a long beam, particularly with velocity tilt; transverse emittance averaged over the entire bunch is not a useful quantity. 6 refs., 2 figs., 1 tab

  9. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  10. BODIPY associates in organic matrices: Spectral properties, photostability and evaluation as OLED emitters

    Energy Technology Data Exchange (ETDEWEB)

    Merkushev, D.A.; Usoltsev, S.D. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Marfin, Yu.S., E-mail: marfin@isuct.ru [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Pushkarev, A.P., E-mail: pushkarev@iomc.ras.ru [G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinina 49, 603950 Nizhny Novgorod (Russian Federation); Volyniuk, D.; Grazulevicius, J.V. [Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Rumyantsev, E.V. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation)

    2017-02-01

    In the present study four BODIPY (boron dipyrromethene: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes with π-extended substituents in C-8 position were investigated in solvents and polymer mediums. High aggregation degree was observed for the dyes in the solid state. Association and twisted intramolecular charge transfer processes were found to affect the spectral properties of the compounds causing bathochromic shifts in absorption and fluorescence spectra. The extension of substituent π-conjugation gains molecular association evoked presumably by π-π interaction between the substituents of the adjacent molecules. Photostability of the complexes in different forms was analyzed and the distorted form stabilized by polymer matrix was found to be the most stable. The substituent nature did not affect strongly the photostability of dyes. Displacement of monomer-associate equilibrium in hybrid materials with polymethylmethacrylate and poly(9-vinylcarbazole) was exploited for tuning spectral characteristics of the materials. Two dyes readily forming aggregates at the lowest concentrations were applied for the fabrication of organic light-emitting diodes. The fabricated devices exhibited electroluminescence in the appropriate spectral ranges with moderate efficiency. - Highlights: • Four BODIPY dyes with π-extended substituents in 8-position were investigated in solvents and polymers. • Substituent influence on photophysical properties and photostability of the compounds are discussed. • Aggregation induced spectral changes were observed. • Displacement of monomer-aggregate equilibrium was exploited for tuning electroluminescent characteristics of OLED devices.

  11. Production of alpha emitters for therapy

    International Nuclear Information System (INIS)

    Vucina, J.; Orlic, M.; Lukic, D.

    2006-01-01

    The basis for the introduction of alpha emitters into nuclear medical practice are their radiobiological properties. High LET values and short ranges in biological tissues are advantageous in comparison with nowadays most often used beta emitters, primarily 90 Y and 131 I. Given are the most important criteria for the introduction of a given radionuclide in the routine use. Shown are the procedures for the production of the most important alpha emitters 211 At, 212 Bi and 213 Bi. (author)

  12. Minimum emittance in TBA and MBA lattices

    Science.gov (United States)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  13. Minimum emittance in TBA and MBA lattices

    International Nuclear Information System (INIS)

    Xu Gang; Peng Yuemei

    2015-01-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 3 1/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design. (authors)

  14. The properties of the brightest Lyα emitters at z=5.7

    Science.gov (United States)

    Lidman, C.; Hayes, M.; Jones, D. H.; Schaerer, D.; Westra, E.; Tapken, C.; Meisenheimer, K.; Verhamme, A.

    2012-03-01

    We use deep Very Large Telescope (VLT) optical and near-infrared spectroscopy and deep Spitzer/IRAC imaging to examine the properties of two of the most luminous Lyα emitters at z= 5.7. The continuum redward of the Lyα line is clearly detected in both objects, thus facilitating a relatively accurate measurement (10-20 per cent uncertainties) of the observed rest-frame equivalent widths, which are around 160 Å for both objects. Through detailed modelling of the profile of the Lyα line with a 3D Monte Carlo radiative transfer code, we estimate the intrinsic rest-frame equivalent width of Lyα and find values that are around 300 Å, which is at the upper end of the range allowed for very young, moderately metal-poor star-forming galaxies. However, the uncertainties are large and values as high as 700 Å are permitted by the data. Both Lyα emitters are detected at 3.6 ?m in deep images taken with the Spitzer Space Telescope. We use these measurements, the measurement of the continuum redward of Lyα and other photometry to constrain the spectral energy distributions of these very luminous Lyα emitters and to compare them with three similar Lyα emitters from the literature. The contribution from nebular emission is included in our models: excluding it results in significantly higher masses. Four of the five Lyα emitters have masses of the order of ˜109 M⊙ and fairly high specific star formation rates (≳10-100 Gyr-1). While our two Lyα emitters appear similar in terms of the observed Lyα rest-frame equivalent width, they are quite distinct from each other in terms of age, mass and star formation history. Evidence for dust is found in all objects, and emission from nebular lines often makes a dominant contribution to the rest-frame 3.6 ?m flux. Rich in emission lines, these objects are prime targets for the next generation of extremely large telescopes, the James Webb Space Telescope (JWST) and the Atacama Large Millimeter Array (ALMA). a Initial 2σ lower

  15. Cancer from internal emitters

    International Nuclear Information System (INIS)

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-01-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of 226 Ra or medical injections of 224 Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes

  16. Development of Emittance Analysis Software for Ion Beam Characterization

    International Nuclear Information System (INIS)

    Padilla, M.J.; Liu, Yuan

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a figure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally, a high-quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifield Radioactive Ion Beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profiles, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fitting are also incorporated into the software. The software will provide a simplified, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate

  17. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  18. Quantum efficiency and thermal emittance of metal photocathodes

    Directory of Open Access Journals (Sweden)

    David H. Dowell

    2009-07-01

    Full Text Available Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths with major advances occurring since the invention of the photocathode gun and the realization of emittance compensation. These state-of-the-art electron beams are now becoming limited by the intrinsic thermal emittance of the cathode. In both dc and rf photocathode guns details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance for metal cathodes using the Fermi-Dirac model for the electron distribution. We use a consistent theory to derive the quantum efficiency and thermal emittance, and compare our results to those of others.

  19. Beam phase space and emittance

    International Nuclear Information System (INIS)

    Buon, J.

    1990-12-01

    The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation and to treat two particular examples

  20. Airborne spectral measurements of surface anisotropy during SCAR-B

    Science.gov (United States)

    Tsay, Si-Chee; King, Michael D.; Arnold, G. Thomas; Li, Jason Y.

    1998-12-01

    During the Smoke, Clouds, and Radiation-Brazil (SCAR-B) deployment, angular distributions of spectral reflectance for vegetated surfaces and smoke layers were measured using the scanning cloud absorption radiometer (CAR) mounted on the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.3 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track ˜3 km in diameter within about 2 min. Although the CAR measurements are contaminated by minor atmospheric effects, results show distinct spectral characteristics for various types of surfaces. Spectral bidirectional reflectances of three simple and well-defined surfaces are presented: cerrado (August 18, 1995) and dense forest (August 25, 1995), both measured in Brazil under nearly clear-sky conditions, and thick smoke layers over dense forest (September 6 and 11, 1995). The bidirectional reflectances of cerrado and dense forest revealed fairly symmetric patterns along the principal plane, with varying maximal strengths and widths spectrally in the backscattering direction. In the shortwave-infrared region the aerosol effect is very small due to low spectral optical depth. Also, these backscattering maxima can be seen on the bidirectional reflectance of smoke layer over dense forest. These detailed measurements of the angular distribution of spectral reflectance can be parameterized by a few independent variables and utilized to retrieve either surface characteristics or aerosol microphysical and optical properties (e.g., size distribution and single-scattering parameters), if proper physical and radiation models are used. The spectral-hemispherical albedo of these surfaces is obtained directly by integrating all angular measurements and is compared with the measured nadir reflectance

  1. Internal emitter research and standard setting

    International Nuclear Information System (INIS)

    Stannard, J.N.

    1981-01-01

    The history of the use of data from internal emitter research in the derivation of safety standards is reviewed. At first, observed biological effects were correlated with body burdens or exposure levels. This direct approach is illustrated by detailed accounts of the cases of uranium and plutonium. In the 1950's, when it was decided to provide standards for over 200 isotopes, the direct approach was replaced by a system of calculations. This necessitated changes in internal emitter research programs to provide metabolic data, and the development of models such as Reference Man and the Lung and Gastrointestinal Tract models. The continuing contribution of internal emitter research to standard setting can be seen in the references quoted in the metabolic data section of the new ICRP report (ICRP Publication 30). Present trends suggest a possible return to the direct use of internal emitter effects data for obtaining risk estimates. (U.K.)

  2. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  3. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  4. A low emittance configuration for spear

    International Nuclear Information System (INIS)

    Blumberg, L.N.; Cerino, J.; Harris, J.; Hettel, R.; Hofmann, A.; Liu, R.Z.; Stego, R.; Wiedemann, H.; Winick, H.

    1985-01-01

    The quality of synchrotron radiation beams from SPEAR, in particular the brilliance of undulator radiation, can be improved significantly by reducing the emittance of the stored electron beam. A reduction of the horizontal emittance by a factor of 3.5 to a value of 130 nanometer-radians (nm-r) at 3 GeV has been achieved by using stronger focussing, mainly in the horizontal plane. The low emittance configuration also reduces the dispersion and vertical beta functions in the straight sections, making them more suitable for wigglers. The higher betatron tunes lead to a larger phase advance between the two kickers, which has to be corrected during injection by shunting current from some quadrupoles. The configuration was optimized within SPEAR hardware limitations and tested for dynamic aperture with the tracking program PATRICIA. After implementation of this scheme, beam was successfully injected and accumulated. The measured emittance of the stored beam was in agreement with calculations. Presently the configuration is being made operational

  5. Emittance growth rates for displaced beams

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1993-05-01

    Emittance growth rates have been previously analyzed for nonuniform beams in linear channels and for initially uniform mismatched beams in nonlinear channels. These studies were for centered beams. Additional emittance growth can arise in cases where the beam is initially displaced. The purpose of this study is to obtain growth rates for displaced beams. This work differs from studies involving random displacement of electrodes. Our analysis assumes instead that the focusing system is perfectly aligned but that the beam is initially displaced with respect to the equilibrium axis. If the focusing force is slightly nonlinear, we find a gradual transfer of the potential energy of beam displacement into kinetic energy associated with emittance growth. We present explicit results for the emittance growth distance as a function of the nonlinearity of the channel. These results will have practical importance for designers of accelerators and transport systems when setting realistic tolerances for initial beam alignment. These tolerances will depend on the nonlinearity and the length of the system

  6. Emittance variations in current-amplifying ion induction linacs

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1991-01-01

    Since 1985 the Heavy Ion Fusion Accelerator Research program at the Lawrence Berkeley Laboratory has been studying current amplification and emittance variations in MBE-4, a four-cesium-beam induction linac. This experiment models much of the accelerator physics of the electrostatically focused section of a fusion driver. Four space-charge dominated Cs + beams, initially about one meter in length at currents of 5-10 mA, are focused by electrostatic quadrupoles and accelerated in parallel from approximately 200 keV up to one MeV by 24 accelerating gaps. Final currents of 20-40 mA per beam are typical. Recent experiments with extremely low emittance beams (var-epsilon n =0.03 mm-mRad) have investigated variations of transverse and longitudinal normalized emittance for drifting and accelerating beams. These very strongly tune-depressed beams (σ 0 =72 degree, σ∼6 degree) are difficult to match to the accelerator so as to avoid emittance growth during acceleration. During transport strong emittance fluctuations are observed in good qualitative agreement with simulations. Warmer beams with less tune depression exhibit little to no emittance growth, show smaller emittance fluctuations, and are much easier to match. A summary of findings from the MBE-4 studies is presented

  7. Emittance variations in current-amplifying ion induction linacs

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1991-04-01

    Since 1985 the Heavy Ion Fusion Accelerator Research program at the Lawrence Berkeley Laboratory has been studying current amplification and emittance variations in MBE-4, a four-cesium-beam induction linac. This experiment models much of the accelerator physics of the electrostatically focused section of a fusion driver. Four space-charge dominated Cs + beams, initially about one meter in length at currents of 5--10 mA, are focused by electrostatic quadrupoles and accelerated in parallel from approximately 200 keV up to one MeV by 24 accelerating gaps. Final currents of 20--40 mA per beam are typical. Recent experiments with extremely low emittance beams (ε n = 0.03 mm-mRad) have investigated variations of transverse and longitudinal normalized emittance for drifting and accelerating beams. These very strongly tune-depressed beams (σ o = 72 degrees, σ∼6 degree) are difficult to match the accelerator so as to avoid emittance growth during acceleration. During transport strong emittance fluctuations are observed in good qualitative agreement with simulations. Warmer beams with less tune depression exhibit little to no emittance growth, show smaller emittance fluctuations, and are much easier to match. A summary of findings from the MBE-4 studies is presented. 12 refs., 8 figs

  8. Computer generated multi-color graphics in whole body gamma spectral analysis

    International Nuclear Information System (INIS)

    Phillips, W.G.; Curtis, S.P.; Environmental Protection Agency, Las Vegas, NV)

    1984-01-01

    A medium resolution color graphics terminal (512 x 512 pixels) was appended to a computerized gamma spectrometer for the display of whole body counting data. The color display enhances the ability of a spectroscopist to identify at a glance multicolored spectral regions of interest immediate qualitative interpretation. Spectral data from subjects containing low concentrations of gamma emitters obtained by both NaI(T1) and phoswich detectors are viewed by the method. In addition, software generates a multispectral display by which the gross, background, and net spectra are displayed in color simultaneously on a single screen

  9. Gamma flux responsive self-powered detector with a tubular emitter

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A gamma-sensitive flux detector comprises tubular emitter, an insulating core within the emitter and an insulating layer about the emitter, and a tubular conductive collector electrode about the insulating layer. The emitter material may be platinum, lead, bismuth, tantalum, tungsten; platinum preferred

  10. Emittance Growth in the NLCTA First Chicane

    International Nuclear Information System (INIS)

    Sun, Yipeng

    2011-01-01

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance (γε 0 = 5 (micro)m for instance). These simulation results agree with the experimental observations.

  11. A combined emitter threat assessment method based on ICW-RCM

    Science.gov (United States)

    Zhang, Ying; Wang, Hongwei; Guo, Xiaotao; Wang, Yubing

    2017-08-01

    Considering that the tradition al emitter threat assessment methods are difficult to intuitively reflect the degree of target threaten and the deficiency of real-time and complexity, on the basis of radar chart method(RCM), an algorithm of emitter combined threat assessment based on ICW-RCM (improved combination weighting method, ICW) is proposed. The coarse sorting is integrated with fine sorting in emitter combined threat assessment, sequencing the emitter threat level roughly accordance to radar operation mode, and reducing task priority of the low-threat emitter; On the basis of ICW-RCM, sequencing the same radar operation mode emitter roughly, finally, obtain the results of emitter threat assessment through coarse and fine sorting. Simulation analyses show the correctness and effectiveness of this algorithm. Comparing with classical method of emitter threat assessment based on CW-RCM, the algorithm is visual in image and can work quickly with lower complexity.

  12. Homotopic Language Reorganization in the Right Hemisphere after Early Left Hemisphere Injury

    Science.gov (United States)

    Tivarus, Madalina E.; Starling, Sarah J.; Newport, Elissa L.; Langfitt, John T.

    2012-01-01

    To determine the areas involved in reorganization of language to the right hemisphere after early left hemisphere injury, we compared fMRI activation patterns during four production and comprehension tasks in post-surgical epilepsy patients with either left (LH) or right hemisphere (RH) speech dominance (determined by Wada testing) and healthy…

  13. Measurements of Thermal Emittance for Cesium Telluride Photocathodes at PITZ

    CERN Document Server

    Miltchev, V; Grabosch, H J; Han, J H; Krasilnikov, M; Oppelt, A; Petrosian, B; Staykov, L; Stephan, F

    2005-01-01

    The thermal emittance determines the lower emittance limit and its measurement is of high importance to understand the ultimate injector performance. In this contribution we present results of thermal emittance measurements under rf operation conditions for various Cs2Te cathodes and different accelerating gradients. Measurements of thermal emittance scaling with the cathode laser spot size are presented and analysed. The significance of the Schottky effect in the emittance formation process is discussed.

  14. Electron emitter pulsed-type cylindrical IEC

    International Nuclear Information System (INIS)

    Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.

    1997-01-01

    A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented

  15. Emittance and beam size distortion due to linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-01-01

    At injection, the presence of linear coupling may result in an increased beam emittance and in increased beam dimensions. Results for the emittance in the presence of linear coupling will be found. These results for the emittance distortion show that the harmonics of the skew quadrupole field close to ν x + ν y are the important harmonics. Results will be found for the important driving terms for the emittance distortion. It will be shown that if these driving terms are corrected, then the total emittance is unchanged, var-epsilon x + var-epsilon y = var-epsilon 1 + var-epsilon 2 . Also, the increase in the beam dimensions will be limited to a factor which is less than 1.414. If the correction is good enough, see below for details, one can achieve var-epsilon 1 = var-epsilon x , var-epsilon 2 = var-epsilon where var-epsilon 1 , var-epsilon 2 are the emittances in the presence of coupling, and the beam dimensions are unchanged. Global correction of the emittance and beam size distortion appears possible

  16. The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface

    Science.gov (United States)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen

    2015-01-01

    The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.

  17. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    International Nuclear Information System (INIS)

    Dowell, D.

    2009-01-01

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others

  18. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  19. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    Science.gov (United States)

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  20. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  1. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  2. Measured, calculated and predicted Stark widths of the singly ionized C, N, O, F, Ne, Si, P, S, Cl and Ar spectral lines

    Directory of Open Access Journals (Sweden)

    Djeniže S.

    2000-01-01

    Full Text Available In order to find reliable Stark width data, needed in plasma spectroscopy comparision between the existing measured, calculated and predicted Stark width values was performed for ten singly ionized emitters: C, N, O, F, Ne Si, P, S, Cl and Ar in the lower lying 3s - 3p, 3p - 3d and 4s - 4p transitions. These emitters are present in many cosmic light sources. On the basis of the agreement between mentioned values 17 spectral lines from six singly ionized spectra have been recommended, for the first time, for plasma spectroscopy as spectral lines with reliable Stark width data. Critical analysis of the existing Stark width data is also given.

  3. Comparative study of radiometric and calorimetric methods for total hemispherical emissivity measurements

    Science.gov (United States)

    Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves

    2018-05-01

    Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity

  4. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  5. Nanodiamond Emitters of Single Photons

    Directory of Open Access Journals (Sweden)

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  6. Tolerances for the vertical emittance in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1991-11-01

    Future damping rings for linear colliders will need to have very small vertical emittances. In the limit of low beam current, the vertical emittance is primarily determined by the vertical dispersion and the betatron coupling. In this paper, the contributions to these effects from random misalignments are calculated and tolerances are derived to limit the vertical emittance with a 95% confidence level. 10 refs., 5 figs

  7. Beam emittance measurements on multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Lee, Y.; Leung, K.N. [and others

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 {mu}m patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma.

  8. Beam emittance measurements on multicusp ion sources

    International Nuclear Information System (INIS)

    Sarstedt, M.; Lee, Y.; Leung, K.N.

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma

  9. Test results on two thermionic converters with cermet emitters

    International Nuclear Information System (INIS)

    Saunders, M.; Danielson, L.; Huffman, F.

    1983-01-01

    An emitter made of a directionally solidified Mo-Al 2 O 3 , Cr 2 O 3 eutectic was provided by Eindhoven University of Technology in Eindhoven, The Netherlands. Although the high temperature braze cycle used in bonding this electrode to the emitter substrate destroyed its characteristic needle microstructure, the converter gave good performance. Apparently, chemical species evaporated from the emitter onto the collector provided a low collector work function. The resulting low barrier indices suggest that this surface is a promising emitter

  10. Transverse emittance growth in staged laser-wakefield acceleration

    Directory of Open Access Journals (Sweden)

    T. Mehrling

    2012-11-01

    Full Text Available We present a study on the emittance evolution of electron bunches, externally injected into laser-driven plasma waves using the three-dimensional particle-in-cell (PIC code OSIRIS. Results show order-of-magnitude transverse emittance growth during the injection process, if the electron bunch is not matched to its intrinsic betatron motion inside the wakefield. This behavior is supported by analytic theory reproducing the simulation data to a percent level. The length over which the full emittance growth develops is found to be less than or comparable to the typical dimension of a single plasma module in current multistage designs. In addition, the analytic theory enables the quantitative prediction of emittance degradation in two consecutive accelerators coupled by free-drift sections, excluding this as a scheme for effective emittance-growth suppression, and thus suggests the necessity of beam-matching sections between acceleration stages with fundamental implications on the overall design of staged laser-wakefield accelerators.

  11. Emittance measurements in Grumman 1 MeV beamline

    International Nuclear Information System (INIS)

    Debiak, T.; Gammel, G.; Melnychuk, S.

    1992-01-01

    The emittance of a 30 keV H - beam has been measured with an Allison type electrostatic analyser at two positions separated by 85 cm along the Grumman 1 MeV beamline LEBT at low currents (about 4 mA, no Cs 2 O additive in the source) and at higher currents (10-15 mA, with Cs 2 O additive in the source). No emittance growth was observed between the two positions, but, at the higher current level, the emittance was about 60% higher than at the low current level (Σ n ,rms = .0045 π cm-mrad vs. 0070 π cm-mrad). Argon was then introduced up to a partial pressure of 4x10 -5 torr, and the emittance decreased back to a range corresponding to that found at the lower currents. However, beam noise was observed at the downstream position, and there is evidence for a small amount of emittance growth (<20%) between the two positions

  12. Emittance Growth during Bunch Compression in the CTF-II

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, Tor O

    1999-02-26

    Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occurring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause.

  13. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  14. Electrohydrodynamic emitters of ion beams

    International Nuclear Information System (INIS)

    Dudnikov, V.G.; Shabalin, A.L.

    1990-01-01

    Physical processes determining generation of ion beams with high emission current density in electrohydrodynamic emitters are considered. Electrohydrodynamic effects developing in ion emission features and kinetics of ion interaction in beams with high density are discussed. Factors determining the size of the emission zone, emission stability at high and low currents, cluster generation, increase of energy spread and decrease of brightness are analyzed. Problems on practical provision of stable EHD emitter functioning are considered. 94 refs.; 8 figs.; 1 tab

  15. Airborne spectral measurements of surface-atmosphere anisotropy during the SCAR-A, Kuwait oil fire, and TARFOX experiments

    Science.gov (United States)

    Soulen, Peter F.; King, Michael D.; Tsay, Si-Chee; Arnold, G. Thomas; Li, Jason Y.

    2000-04-01

    During the SCAR-A, Kuwait Oil Fire Smoke Experiment, and TARFOX deployments, angular distributions of spectral reflectance for various surfaces were measured using the scanning Cloud Absorption Radiometer (CAR) mounted on the nose of the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.47 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track approximately 3 km in diameter within about 2 min. Spectral bidirectional reflectances of four surfaces are presented: the Great Dismal Swamp in Virginia with overlying haze layer, the Saudi Arabian Desert and the Persian Gulf in the Middle East, and the Atlantic Ocean measured east of Richmond, Virginia. Although the CAR measurements are contaminated by atmospheric effects, results show distinct spectral characteristics for various types of surface-atmosphere systems, including hot spots, limb brightening and darkening, and Sun glint. In addition, the hemispherical albedo of each surface-atmosphere system is calculated directly by integrating over all high angular-resolution CAR measurements for each spectral channel. Comparing the nadir reflectance with the overall hemispherical albedo of each surface, we find that using nadir reflectances as a surrogate for hemispherical albedo can cause albedos to be underestimated by as much as 95% and overestimated by up to 160%, depending on the type of surface and solar zenith angle.

  16. Emittance measurements in low energy ion storage rings

    Science.gov (United States)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  17. Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica (Scutelleridae)

    Science.gov (United States)

    Vigneron, Jean Pol; Ouedraogo, Moussa; Colomer, Jean-François; Rassart, Marie

    2009-02-01

    The African shield-backed bug Calidea panaethiopica is a very colorful insect which produces a range of iridescent yellow, green, and blue reflections. The cuticle of the dorsal side of the insect, on the shield, the prothorax and part of the head, is pricked of uniformly distributed hemispherical hollow cavities a few tens micrometers deep. Under normal illumination and viewing the insect’s muffin-tin shaped surface gives rise to two distinct colors: a yellow spot arising from the bottom of the well and a blue annular cloud that appears to float around the yellow spot. This effect is explained by multiple reflections on a hemispherical Bragg mirror with a mesoscopic curvature. A multiscale computing methodology was found to be needed to evaluate the reflection spectrum for such a curved multilayer. This multiscale approach is very general and should be useful for dealing with visual effects in many natural and artificial systems.

  18. Transverse emittance measurement and preservation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Maria

    2016-06-20

    The Large Hadron Collider (LHC) at CERN is a high energy storage ring that provides proton and heavy ion collisions to study fundamental particle physics. The luminosity production is closely linked to emittance preservation in the accelerator. The transverse emittance is the phase space density of the beam and should be conserved when the particle beam is transformed through the accelerator. Perturbing effects, however, can lead to emittance increase and hence luminosity degradation. Measuring the emittance growth is a complex task with high intensity beams and changing energies. The machine optics and the transverse beam size have to be measured as accurately as possible. Beta function measurements with k-modulation are discussed. With this method the quadrupole focussing strength is varied and the resulting tune change is traced to determine the beta function at the quadrupole. A new k-modulation measurement tool was developed for the LHC. The fully automatic and online measurement system takes constraints of various systems such as tune measurement precision and powering limitations of the LHC superconducting circuits into account. With sinusoidal k-modulation record low beta function measurement uncertainties in the LHC have been reached. 2015 LHC beta function and β*, which is the beta function at the collision point, measurements with k-modulation will be presented. Wire scanners and synchrotron light monitors are presently used in the LHC to measure the transverse beam size. Accuracy and limitations of the LHC transverse profile monitors are discussed. During the 2012 LHC proton run it was found that wire scanner photomultiplier saturation added significant uncertainty on all measurements. A large discrepancy between emittances from wire scanners and luminosity was discovered but not solved. During Long Shutdown 1 the wire scanner system was upgraded with new photomultipliers. A thorough study of LHC wire scanner measurement precision in 2015 is presented

  19. Improvements in emittance wake field optimization for the SLAC Linear Collider

    CERN Document Server

    Decker, Franz Josef

    2003-01-01

    The transverse emittances in the SLAC Linear Collider can be severely diluted by collective wakefield effects and dispersion. For the 1997/98 SLC/SLD run important changes were implemented in the way the emittance is optimized. Early in the linac, where the energy spread is large due to BNS damping, the emittance growth is dominated by dispersion. In this regime emittance tuning bumps may introduce additional wakefield tails and their use is now avoided. At the end of the linac the energy spread is minimal and the emittance measurement is most sensitive to wakefield emittance dilution. In previous years, the emittances were tuned on wire scanners located near but not at the end of the linac (after about 90% of its length). Simulations show that emittance growth of up to 100% can occur in the remaining 10%. In this run wire scanners at the entrance of the Final Focus, the last place where the emittances can be measured, were used for the optimization. Screens at the end of the linac allow additional real time ...

  20. Field emission characteristics of a small number of carbon fiber emitters

    Directory of Open Access Journals (Sweden)

    Wilkin W. Tang

    2016-09-01

    Full Text Available This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  1. Emittance calculations for the Stanford Linear Collider injector

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Helm, R.H.; Lee, M.J.; Miller, R.H.; Blocker, C.A.

    1983-03-01

    A series of measurements have been performed to determine the emittance of the high intensity, single bunch beam that is to be injected into the Stanford Linear Collider. On-line computer programs were used to control the Linac for the purpose of data acquisition and to fit the data to a model in order to deduce the beam emittance. This paper will describe the method of emittance calculation and present some of the measurement results

  2. Beam emittance measurement from CERN thermionic guns

    International Nuclear Information System (INIS)

    Kester, O.; Rao, R.; Rinolfi, L.

    1992-01-01

    In the LEP Injector Linacs (LIL) a thermionic gun provides electron beams with different peak intensities at an energy of 80 keV. The beam emittances were estimated from the EGUN programme. Since the gun is of triode type, the main contribution to the emittance comes from the grid. The simulation programme does not model the real geometry by assuming a cylindrical symmetry, while the grid does not have such symmetry. A Gun Test Facility (GTF), allowing emittance measurements, based on the 3-gradients-method was installed. The experimental results are presented. (author) 6 refs.; 6 figs

  3. Multi-dimensional beam emittance and β-functions

    International Nuclear Information System (INIS)

    Buon, J.

    1993-05-01

    The concept of r.m.s. emittance is extended to the case of several degrees of freedom that are coupled. That multi-dimensional emittance is lower than the product of the emittances attached to each degree of freedom, but is conserved in a linear motion. An envelope-hyperellipsoid is introduced to define the β-functions of the beam envelope. On the contrary of an one-degree of freedom motion, it is emphasized that these envelope functions differ from the amplitude functions of the normal modes of motion as a result of the difference between the Liouville and Lagrange invariants. (author) 4 refs

  4. Beam phase space and emittance

    International Nuclear Information System (INIS)

    Buon, J.

    1992-02-01

    The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation, with three particular examples, and to introduce a beam envelope-ellipse and the β-function, emphasing the statistical features of its properties. (author) 14 refs.; 11 figs

  5. Combustion powered thermophotovoltaic emitter system

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  6. Right hemispheric reversible cerebral vasoconstriction syndrome in a patient with left hemispheric partial seizures.

    Science.gov (United States)

    Perez, Gina S; McCaslin, Justin; Shamim, Sadat

    2017-04-01

    We report a right-handed 19-year-old girl who developed reversible cerebral vasoconstriction syndrome (RCVS) lateralized to the right hemisphere with simultaneous new-onset left hemispheric seizures. RCVS, typically more diffuse, was lateralized to one of the cerebral hemispheres.

  7. Coupling single emitters to quantum plasmonic circuits

    DEFF Research Database (Denmark)

    Huck, Alexander; Andersen, Ulrik Lund

    2016-01-01

    In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters...

  8. A spectral measurement method for determining white OLED average junction temperatures

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah

    2016-09-01

    The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.

  9. Theory and measurements of emittance preservation in plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Joel

    2016-12-01

    In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditions necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.

  10. Measurement of transverse emittance in the Fermilab booster

    Energy Technology Data Exchange (ETDEWEB)

    Graves, William Sproull [Wisconsin U., Madison

    1994-01-01

    A new beam profile monitor has been built and installed in the Fermilab Booster synchrotron. It nondestructively measures the beam's vertical density distribution on a fast turn-by-turn basis. This enables one to measure the beam's transverse emittance and to observe emittance growth as it occurs. For high intensities (>2 times 10^{12 } protons), the normalized 95% emittance was observed to grow from 6pi mm-mrad at injection to 16pi mm-mrad at extraction. The initial (<5 msec) emittance growth and beam losses are shown to be caused by the space charge tune shift onto integer and 1/2 integer resonance lines. The growth near injection accounts for approximately 40% of the observed emittance increase throughout the acceleration cycle. The remaining 60% is due to two factors: slow linear growth due to betatron-motion driven by noise in the rf system; and faster growth after the transition energy that is caused by coupling of the longitudinal beam motion into the transverse planes.

  11. Electromagnetic compatibility of implantable neurostimulators to RFID emitters.

    Science.gov (United States)

    Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W; Witters, Donald M; Sponberg, Curt L

    2011-06-09

    The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters. Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz. The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters.

  12. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  13. Self-powered detectors with thulium emitter

    International Nuclear Information System (INIS)

    Haller, P.; Klar, E.

    1978-01-01

    In addition to fission chambers, prompt-indicating self-powered (SPN) detectors are used for measuring the neutron flux density in the core of power reactors. Although current SPN detectors with a cobalt emitter give satisfactora results, detectors with other emitter materials have been analyzed and tested. The author describes the properties and decay pattern of the nuclide thulium and presents the results of measurements made while testing thulium detectors. (orig.) [de

  14. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    Science.gov (United States)

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  15. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-01-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  16. Innovative energy efficient low-voltage electron beam emitters

    Science.gov (United States)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-03-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates.

  17. Evaluations of carbon nanotube field emitters for electron microscopy

    Science.gov (United States)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  18. Very bright, near-infrared single photon emitters in diamond

    Directory of Open Access Journals (Sweden)

    D. W. M. Lau

    2013-09-01

    Full Text Available We demonstrate activation of bright diamond single photon emitters in the near infrared range by thermal annealing alone, i.e., without ion implantation. The activation is crucially dependent on the annealing ambient. The activation of the single photon emitters is only observed when the sample is annealed in forming gas (4% H2 in Ar above temperatures of 1000 °C. By contrast, no emitters are activated by annealing in vacuum, oxygen, argon or deuterium. The emitters activated by annealing in forming gas exhibit very bright emission in the 730-760 nm wavelength range and have linewidths of ∼1.5-2.5 nm at room temperature.

  19. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  20. Measurement of emittance of metal interface in molten salt

    International Nuclear Information System (INIS)

    Araki, N.; Makino, A.; Nakamura, Y.

    1995-01-01

    A new technique for measuring the total normal emittance of a metal in a semi-transparent liquid has been proposed and this technique has been applied to measure the emittance of stainless steel (SUS304), nickel, and gold in molten potassium nitrate KNO 3 . These emittance data are indispensable to analyzing the radiative heat transfer between a metal and a semitransparent liquid, such as a molten salt

  1. Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter

    Energy Technology Data Exchange (ETDEWEB)

    Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-02-15

    Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surface that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.

  2. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  3. Electromagnetic compatibility of implantable neurostimulators to RFID emitters

    Directory of Open Access Journals (Sweden)

    Guag Joshua W

    2011-06-01

    Full Text Available Abstract Background The objective of this study is to investigate electromagnetic compatibility (EMC of implantable neurostimulators with the emissions from radio frequency identification (RFID emitters. Methods Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz Results The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. Conclusions The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters.

  4. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  5. Emittance growth and tune spectra at PETRA III

    International Nuclear Information System (INIS)

    Wanzenberg, R.

    2011-08-01

    At DESY the PETRA ring has been converted into a synchrotron radiation facility, called PETRA III. 20 damping wigglers have been installed to achieve an emittance of 1 nm. The commissioning with beam started in April 2009 and user runs have been started in 2010. The design current is 100 mA and the bunch to bunch distance is 8 ns for one particular filling pattern with 960 bunches. At a current of about 50 mA a strong vertical emittance increase has been observed. During machine studies it was found that the emittance increase depends strongly on the bunch filling pattern. For the user operation a filling scheme has been found which mitigates the increase of the vertical emittance. In August 2010 PETRA III has been operated without damping wigglers for one week. The vertical emittance growth was not significantly smaller without wigglers. Furthermore tune spectra at PETRA III show characteristic lines which have been observed at other storage rings in the connection with electron clouds. Measurements at PETRA III are presented for different bunch filling patterns and with and without wiggler magnets. (orig.)

  6. A polarization-insensitive plasmonic photoconductive terahertz emitter

    KAUST Repository

    Li, Xurong

    2017-11-16

    We present a polarization-insensitive plasmonic photoconductive terahertz emitter that uses a two-dimensional array of nanoscale cross-shaped apertures as the plasmonic contact electrodes. The geometry of the cross-shaped apertures is set to maximize optical pump absorption in close proximity to the contact electrodes. The two-dimensional symmetry of the cross-shaped apertures offers a polarization-insensitive interaction between the plasmonic contact electrodes and optical pump beam. We experimentally demonstrate a polarization-insensitive terahertz radiation from the presented emitter in response to a femtosecond optical pump beam and similar terahertz radiation powers compared to previously demonstrated polarization-sensitive photoconductive emitters with plasmonic contact electrode gratings at the optimum optical pump polarization.

  7. Emittance measurement for high-brightness electron guns

    International Nuclear Information System (INIS)

    Kobayashi, H.; Kurihara, T.; Sato, I.; Asami, A.; Yamazaki, Y.; Otani, S.; Ishizawa, Y.

    1992-01-01

    An emittance measurement system based on a high-precision pepper-pot technique has been developed for electron guns with low emittance of around πmm-mrad. Electron guns with a 1 mmφ cathode, the material of which is impregnated tungsten or single-crystal lanthanum hexaboride (La 1-x Ce x )B 6 , have been developed. The performance has been evaluated by putting stress on cathode roughness, which gives rise to an angular divergence, according to the precise emittance measurement system. A new type of cathode holder, which is a modified version of the so called Vogel type, was developed and the beam uniformity has been improved. (Author) 5 figs., tab., 9 refs

  8. Evaluations of carbon nanotube field emitters for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Hitoshi, E-mail: nakahara@nagoya-u.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-11-30

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I-V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6x10{sup 9} A/m{sup 2} sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  9. Few emitters in a cavity: from cooperative emission to individualization

    International Nuclear Information System (INIS)

    Auffeves, A; Portolan, S; Gerace, D; Drezet, A; Franca Santos, M

    2011-01-01

    We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increasing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well-distinguished statistical properties of the emitted radiation. For small cavity decay rates, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared with the emitter-cavity coupling) and for a few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady-state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows us to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-the-art techniques of Q-switch of resonant cavities, allied with the recent capability of tuning single emitters in and out of resonance, suggest this system to be a versatile source of different quantum states of light.

  10. Few emitters in a cavity: from cooperative emission to individualization

    Energy Technology Data Exchange (ETDEWEB)

    Auffeves, A; Portolan, S [CEA/CNRS/UJF Joint Team ' Nanophysics and Semiconductors' , Institut Neel-CNRS, BP 166, 25 Rue des Martyrs, 38042 Grenoble Cedex 9 (France); Gerace, D [Dipartimento di Fisica ' Alessandro Volta' and UdR CNISM, Universita di Pavia, via Bassi 6, 27100 Pavia (Italy); Drezet, A [Institut Neel-CNRS, BP 166, 25 Rue des Martyrs, 38042 Grenoble Cedex 9 (France); Franca Santos, M, E-mail: msantos@fisica.ufmg.br [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, CP 702, 30123-970 (Brazil)

    2011-09-15

    We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increasing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well-distinguished statistical properties of the emitted radiation. For small cavity decay rates, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared with the emitter-cavity coupling) and for a few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady-state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows us to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-the-art techniques of Q-switch of resonant cavities, allied with the recent capability of tuning single emitters in and out of resonance, suggest this system to be a versatile source of different quantum states of light.

  11. Emittance formula for slits and pepper-pot measurement

    International Nuclear Information System (INIS)

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed

  12. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  13. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    Science.gov (United States)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and

  14. Alpha-emitters for medical therapy workshop

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; McClure, J.J.

    1996-01-01

    A workshop on ''Alpha-Emitters for Medical Therapy'' was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference

  15. Alpha-emitters for medical therapy workshop

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  16. Experimental investigation of thermal emittance components of copper photocathode

    Directory of Open Access Journals (Sweden)

    H. J. Qian

    2012-04-01

    Full Text Available With progress of photoinjector technology, thermal emittance has become the primary limitation of electron beam brightness. Extensive efforts have been devoted to study thermal emittance, but experiment results differ between research groups and few can be well interpreted. Besides the ambiguity of photoemission mechanism, variations of cathode surface conditions during cathode preparation, such as work function, field enhancement factor, and surface roughness, will cause thermal emittance differences. In this paper, we report an experimental study of electric field dependence of copper cathode quantum efficiency (QE and thermal emittance in a radio frequency (rf gun, through which in situ cathode surface parameters and thermal emittance contributions from photon energy, Schottky effect, and surface roughness are extracted. It is found the QE of a copper cathode illuminated by a 266 nm UV laser increased substantially to 1.5×10^{-4} after cathode cleaning during rf conditioning, and a copper work function of 4.16 eV, which is much lower than nominal value (4.65 eV, was measured. Experimental results also show a thermal emittance growth as much as 0.92  mm mrad/mm at 50  MV/m due to the cathode surface roughness effect, which is consistent with cathode surface morphology measurements.

  17. Design for a practical, low-emittance damping ring

    International Nuclear Information System (INIS)

    Krejcik, P.

    1988-01-01

    The luminosity requirements for future high-energy linear colliders calls for very low emittances in the two beams. These low emittances can be achieved with damping rings, but, in order to reach the design goal of a factor 10 improvement over present day machines, great care must be taken in their design. This paper emphasizes the need to address simultaneously all of the factors which limit the operational emittance in the ring. Particularly since in standard designs there is a conflict between different design parameters which makes it difficult to extrapolate such designs to very low emittances. The approach chosen here is to resolve such conflicts by separating their design solutions. Wigglers are used predominantly in zero-dispersion regions to achieve the desired damping rate, whereas in the arcs high dispersion insertions are made in regions of zero curvature to allow for easier chromaticity control

  18. Design of a minimum emittance nBA lattice

    Science.gov (United States)

    Lee, S. Y.

    1998-04-01

    An attempt to design a minimum emittance n-bend achromat (nBA) lattice has been made. One distinct feature is that dipoles with two different lengths were used. As a multiple bend achromat, five bend achromat lattices with six superperiod were designed. The obtained emittace is three times larger than the theoretical minimum. Tunes were chosen to avoid third order resonances. In order to correct first and second order chromaticities, eight family sextupoles were placed. The obtained emittance of five bend achromat lattices is almost equal to the minimum emittance of five bend achromat lattice consisting of dipoles with equal length.

  19. Remote detection of single emitters via optical waveguides

    Science.gov (United States)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  20. Hemispheric processing asymmetries: implications for memory.

    Science.gov (United States)

    Funnell, M G; Corballis, P M; Gazzaniga, M S

    2001-01-01

    Recent research has demonstrated that memory for words elicits left hemisphere activation, faces right hemisphere activation, and nameable objects bilateral activation. This pattern of results was attributed to dual coding of information, with the left hemisphere employing a verbal code and the right a nonverbal code. Nameable objects can be encoded either verbally or nonverbally and this accounts for their bilateral activation. We investigated this hypothesis in a callosotomy patient. Consistent with dual coding, the left hemisphere was superior to the right in memory for words, whereas the right was superior for faces. Contrary to prediction, performance on nameable pictures was not equivalent in the two hemispheres, but rather resulted in a right hemisphere superiority. In addition, memory for pictures was significantly better than for either words or faces. These findings suggest that the dual code hypothesis is an oversimplification of the processing capabilities of the two hemispheres.

  1. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  2. Jamming of Quantum Emitters by Active Coated Nanoparticles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2013-01-01

    to effectively cloak the emitters to a far-field observer is reported and explained through thorough near- and far-field investigations. This property offers an interesting route toward the jamming of quantum emitters/nanoantennas that might be of potential use, for instance, in biological fluorescence assays...

  3. Transverse Emittance Measurement and Preservation at the LHC

    CERN Document Server

    AUTHOR|(CDS)2082907

    The Large Hadron Collider (LHC) at CERN is a high energy storage ring that provides proton and heavy ion collisions to study fundamental particle physics. The luminosity production is closely linked to emittance preservation in the accelerator. The transverse emittance is the phase space density of the beam and should be conserved when the particle beam is transformed through the accelerator. Perturbing effects, however, can lead to emittance increase and hence luminosity degradation. Measuring the emittance growth is a complex task with high intensity beams and changing energies. The machine optics and the transverse beam size have to be measured as accurately as possible. Beta function measurements with k-modulation will be discussed. With this method the quadrupole focussing strength is varied and the resulting tune change is traced to determine the beta function at the quadrupole. A new k-modulation measurement tool was developed for the LHC. The fully automatic and online measurement system takes constra...

  4. Emittance increase caused by core depletion in collisions

    CERN Document Server

    Bruce, R

    2009-01-01

    A new effect is presented, which changes the emittance during colliding-beam operation in circular colliders. If the initial transverse distribution is Gaussian, the collision probability is much higher for particles in the core of the beam than in the tails. When small-amplitude particles are removed, the remaining ones therefore have a larger transverse emittance. This effect, called core depletion, may cause a decrease in luminosity. An approximate analytic model is developed to study the effect and benchmarked against a multiparticle tracking simulation. Finally, the time evolution of the intensity and emittances of a Pb bunch in the Large Hadron Collider (LHC) at CERN is calculated, taking into account also other processes than collisions. The results show that integrated luminosity drops by 3--4% if core depletion is taken into account. It is also found that core depletion causes the transverse emittance to be larger when more experiments are active. This observation could be checked against experimenta...

  5. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  6. Strong coupling of collection of emitters on hyperbolic meta-material

    Science.gov (United States)

    Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.

    2018-04-01

    Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.

  7. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    Science.gov (United States)

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  8. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    Science.gov (United States)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material

  9. Low emittance lattices for electron storage rings revisited

    International Nuclear Information System (INIS)

    Trbojevic, D.; Courant, E.

    1994-01-01

    Conditions for the lowest possible emittance of the lattice for electron storage rings are obtained by a simplified analytical approach. Examples of electron storage lattices with minimum emittances are presented. A simple graphical presentation in the normalized dispersion space (Floquet's transformation) is used to illustrate the conditions and results

  10. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval

    Science.gov (United States)

    Ries, Stephanie K.; Dronkers, Nina F.; Knight, Robert T.

    2015-01-01

    Language is considered to be one of the most lateralized human brain functions. Left hemisphere dominance for language has been consistently confirmed in clinical and experimental settings and constitutes one of the main axioms of neurology and neuroscience. However, functional neuroimaging studies are finding that the right hemisphere also plays a role in diverse language functions. Critically, the right hemisphere may also compensate for the loss or degradation of language functions following extensive stroke-induced damage to the left hemisphere. Here, we review studies that focus on our ability to choose words as we speak. Although fluidly performed in individuals with intact language, this process is routinely compromised in aphasic patients. We suggest that parceling word retrieval into its sub-processes—lexical activation and lexical selection—and examining which of these can be compensated for after left hemisphere stroke can advance the understanding of the lateralization of word retrieval in speech production. In particular, the domain-general nature of the brain regions associated with each process may be a helpful indicator of the right hemisphere's propensity for compensation. PMID:26766393

  11. Investigation of spectral characteristics of tunnel photodiodes based on DLC nanofilms

    Science.gov (United States)

    Akchurin, Garif G.; Aban'shin, Nickolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Kochubey, Vyacheslav I.; Yakunin, Alexander N.

    2018-04-01

    The tunneling photo effect has been studied in a microdiode with an electrostatic field localized at an emitter based on a nanosized DLC structure. It is established the photocurrent, when the carbon nanoemitter is exposed by laser and tunable low-coherent radiation in the spectral range from UV to near IR with photons of low energy (below work function). A linear dependence of the photocurrent on the level of optical power in the range of micro- and milliwatt power is established. The effect of saturation of the current-voltage characteristics of the tunnel photocurrent associated with a finite concentration of non-equilibrium photoelectrons is observed. The observed spectral Watt-Amper characteristics can be adequately interpreted using a modified Fowler-Nordheim equation for non-equilibrium photoelectrons.

  12. BEAM EMITTANCE MEASUREMENT TOOL FOR CEBAF OPERATIONS

    International Nuclear Information System (INIS)

    Chevtsov, Pavel; Tiefenback, Michael

    2008-01-01

    A new software tool was created at Jefferson Lab to measure the emittance of the CEBAF electron beams. The tool consists of device control and data analysis applications. The device control application handles the work of wire scanners and writes their measurement results as well as the information about accelerator settings during these measurements into wire scanner data files. The data analysis application reads these files and calculates the beam emittance on the basis of a wire scanner data processing model. Both applications are computer platform independent but are mostly used on LINUX PCs recently installed in the accelerator control room. The new tool significantly simplifies beam emittance measurement procedures for accelerator operations and contributes to a very high availability of the CEBAF machine for the nuclear physics program at Jefferson Lab.

  13. Achievement of ultralow emittance coupling in the Australian Synchrotron storage ring

    Directory of Open Access Journals (Sweden)

    R. Dowd

    2011-01-01

    Full Text Available Investigations into producing an electron beam with ultralow vertical emittance have been conducted using the Australian Synchrotron 3 GeV storage ring. A method of tuning the emittance coupling (ϵ_{y}/ϵ_{x} has been developed using a machine model calibrated through the linear optics from closed orbits method. Direct measurements of the beam emittance have not been possible due to diagnostic limitations, however two independent indirect measurements both indicate a vertical emittance of 1.2–1.3 pm rad (ϵ_{y}/ϵ_{x}=0.01%. Other indirect measurements support the validity of these results. This result is the smallest vertical emittance currently achieved in a storage ring.

  14. Measurements of Transverse Emittance for RF Photocathode Gun at the PAL

    CERN Document Server

    Park Jang Ho; Park, Sung-Ju; Soo Ko In; Wang, Xijie; Woon Parc, Yong; Xiang, Dao

    2005-01-01

    A BNL GUN-IV type RF photo-cathode gun is under fabrication for use in the FIR (Far Infra-Red) facility being built at the Pohang Accelerator Laboratory (PAL). Performance test of the gun will include the measurement of transverse emittance profile along the longitudinal direction. Successful measurement of the emittance profile will provide powerful tool for the commissioning of the 4GLS (4th generation light source) injectors based on the emittance compensation principle. We are going to achieve this withthe use of pepper-pot based emittance meters that can be moved along the longitudinal direction. In this article, we present design considerations on the emittance meter with the resolution of 1 mm mrad.

  15. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  16. Internal Auger emitters: effects on spermatogenesis and oogenesis in mice

    International Nuclear Information System (INIS)

    Rao, D.V.; Mylavarapu, V.B.; Sastry, K.S.R.; Howell, R.W.

    1988-01-01

    The in vivo biological effects of Auger emitters are investigated using [A] spermatogenesis in mouse testis, and [B] oogenesis in mouse ovary as experimental models. Spermhead survival and induction of abnormal sperm, following intratesticular administration of radiopharmaceuticals, were the end points in Model A. Of interest in Model B is primary oocyte survival after intraperitoneal injection of the radiochemicals. The effectiveness of the Auger emitter is determined relative to its beta emitting companion or external X-rays in the absence of such an analogue. Results reveal pronounced effects of Auger emitters on all end points, not dependent on mode of administration. The efficacy of the Auger emitter is related intimately to its subcellular distribution, which, is governed by the chemical form of the carrier molecule. Conventional dosimetry is inadequate and biophysically meaningful dosimetric approaches are needed to understand in vivo effects of Auger emitters. (author)

  17. Transverse beam emittance optimization for the injection into BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Felix [Helmholtz Zentrum Berlin, Institut Beschleunigerphysik (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik (Germany)

    2016-07-01

    For top up injection into the storage ring BESSY II an average injection efficiency of at least 90% is required. In low alpha mode the injection efficiency does not meet the requirements. Future BESSY II features will include shorter bunches in the storage ring (VSR) and user transparent injection with a non linear kicker. These will raise the demands on the quality of the injected beam even further. This work investigates the development of transverse emittance over the acceleration cycle in the synchrotron and the possibility of transverse emittance exchange by a sequence of skew quadrupoles in the transfer line. Results of emittance measurements and emittance exchange simulations will be given.

  18. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  19. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ( 211 At) and natural bismuth-212 ( 212 Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ( 223 Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  20. A numerical study of emittance growths in RF guns

    CERN Document Server

    Masuda, K; Sobajima, M; Kitagaki, J; Ohnishi, M; Toku, H; Yoshikawa, K

    1999-01-01

    A beam with greatly reduced emittance is required for further improvements of FELs, in particular, for FELs of shorter wavelengths, and of narrower bandwidths. From this viewpoint, the BNL/SLAC/UCLA 1.6-cell S-band photocathode RF gun performance characteristics were calculated, first in order to evaluate what may contribute to the emittance growths in photocathode RF guns. We developed an RF gun to produce an electron beam with an extremely low emittance, by using a 2-D simulation code. It is found that, by optimizing the laser injection phase, the drive laser spot radius and the cavity shape around the laser spot, the beam emittance by the 1.6-cell RF gun can be greatly reduced to 2.1 pi mm mrad, from the previous 4.4 pi mm mrad of the original shape.

  1. Simulation studies of emittance growth in RMS mismatched beams

    International Nuclear Information System (INIS)

    Cucchetti, A.; Wangler, T.; Reiser, M.

    1991-01-01

    As shown in a separate paper, a charged-particle beam, whose rms size is not matched when injected into a transport channel or accelerator, has excess energy compared with that of a matched beam. If nonlinear space-charge forces are present and the mismatched beam transforms to a matched equilibrium state, rms-emittance growth will occur. The theory yields formulas for the possible rms-emittance growth, but not for the time it takes to achieve this growth. In this paper we present the results of systematic simulation studies for a mismatched 2-D round beam in an ideal transport channel with continuous linear focusing. Emittance growth rates obtained from the simulations for different amounts of mismatch and initial charge will be presented and the emittance growth will be compared with the theory. 6 refs., 7 figs

  2. Low Emittance Tuning Studies for SuperB

    Energy Technology Data Exchange (ETDEWEB)

    Liuzzo, Simone; /INFN, Pisa; Biagini, Maria; /INFN, Rome; Raimondi, Pantaleo; /INFN, Rome; Donald, Martin; /SLAC

    2012-07-06

    SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specify the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.

  3. Impact of water temperature and structural parameters on the hydraulic labyrinth-channel emitter performance

    Directory of Open Access Journals (Sweden)

    Ahmed I. Al-Amoud

    2014-06-01

    Full Text Available The effects of water temperature and structural parameters of a labyrinth emitter on drip irrigation hydraulic performance were investigated. The inside structural parameters of the trapezoidal labyrinth emitter include path width (W and length (L, trapezoidal unit numbers (N, height (H, and spacing (S. Laboratory experiments were conducted using five different types of labyrinth-channel emitters (three non-pressure compensating and two pressure-compensating emitters commonly used for subsurface drip irrigation systems. The water temperature effect on the hydraulic characteristics at various operating pressures was recorded and a comparison was made to identify the most effective structural parameter on emitter performance. The pressure compensating emitter flow exponent (x average was 0.014, while non-pressure compensating emitter’s values average was 0.456, indicating that the sensitivity of non-pressure compensating emitters to pressure variation is an obvious characteristic (p<0.001 of this type of emitters. The effects of water temperature on emitter flow rate were insignificant (p>0.05 at various operating pressures, where the flow rate index values for emitters were around one. The effects of water temperature on manufacturer’s coefficient of variation (CV values for all emitters were insignificant (p>0.05. The CV values of the non-pressure compensating emitters were lower than those of pressure compensating emitters. This is typical for most compensating models because they are manufactured with more elements than non-compensating emitters are. The results of regression analysis indicate that N and H are the essential factors (p<0.001 to affect the hydraulic performance.

  4. Unilateral Hemispheric Encephalitis

    Directory of Open Access Journals (Sweden)

    Mohan Leslie Noone

    2014-10-01

    Full Text Available A 10 year old boy presented with history of mild fever and upper respiratory symptoms followed by recurrent seizures and loss of consciousness on the next day. Normal blood counts and abnormal hepatic transaminases were noted. MRI of the brain, done on the fourth day of illness, showed extensive involvement of the cortex in the right hemisphere. Lumbar CSF was normal. The EEG showed bilateral slowing with frontal sharp wave discharges and marked attenuation over the entire right hemisphere. The patient succumbed to the illness on the ninth day. A similar pattern of acute unilateral hemispheric cortical involvement is described in the hemiconvulsion-hemiplegia-epilepsy (HHE syndrome, which is typically described to occur in children below 4 years of age. This case of fulminant acute unilateral encaphilitic illness could represent the acute phase of HHE syndrome.

  5. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  6. Account of spectral dependence of instrumental factor in quantitative X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Pershin, N.V.; Mosichev, V.I.

    1990-01-01

    A new method for calibration of X-ray fluorescence spectrometers using scanning spectrometric channel is proposed. The method is based on a separate account of matrix and instrumental effects and needs no calibration standards for the element analysed. For calibration in the whole spectral range of XRS (0.03-1.0 nm) it is sufficient to have from 10 to 15 pure element emitters made of most wide spread elements. The method provides rapid development of quantitative analysis for the elements which are not provided with standard samples and preparation of pure element emitters for which is impossible or problematic. The practical verification of the method was made by analysing a set of 146 standard samples covering a wide group of alloys. The mean relative error of the method was 3-5 % in an analytical range of 0.1-3.0 wt %

  7. On the design guideline for the low emittance synchrotron radiation source

    International Nuclear Information System (INIS)

    Kamiya, Y.; Kihara, M.

    1983-09-01

    In this note we will describe how the emittance of the electron storage ring is determined by the orbit parameters of the storage ring and show the lowest value of emittance which is achieved theoretically. Implication of this note with regard to the design of the low emittance storage ring will be discussed. (author)

  8. Homogeneous Gaussian Profile P+-Type Emitters: Updated Parameters and Metal-Grid Optimization

    Directory of Open Access Journals (Sweden)

    M. Cid

    2002-10-01

    Full Text Available P+-type emitters were optimized keeping the base parameters constant. Updated internal parameters were considered. The surface recombination velocity was considered variable with the surface doping level. Passivated homogeneous emitters were found to have low emitter recombination density and high collection efficiency. A complete structure p+nn+ was analyzed, taking into account optimized shadowing and metal-contacted factors for laboratory cells as function of the surface doping level and the emitter thickness. The base parameters were kept constant to make the emitter characteristics evident. The most efficient P+-type passivated homogeneous emitters, provide efficiencies around 21% for a wide range of emitter sheet resistivity (50 -- 500 omega/ with the surface doping levels Ns=1×10(19 cm-3 and 5×10(19 cm-3. The output electrical parameters were evaluated considering the recently proposed value n i=9.65×10(9 (cm-3. A non-significant increase of 0.1% in the efficiency was obtained, validating all the conclusions obtained in this work, considering n i=1×10(10 cm-3.

  9. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  10. Hemispheric Laterality in Music and Math

    Science.gov (United States)

    Szirony, Gary Michael; Burgin, John S.; Pearson, L. Carolyn

    2008-01-01

    Hemispheric laterality may be a useful concept in teaching, learning, training, and in understanding more about human development. To address this issue, a measure of hemispheric laterality was compared to musical and mathematical ability. The Human Information Processing Survey (HIPS) instrument, designed to measure hemispheric laterality, was…

  11. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  12. Emittance measuring unit for 100% duty factor linac injector beams

    Energy Technology Data Exchange (ETDEWEB)

    Shubaly, M R; Pachner, J Jr; Ormrod, J H; Ungrin, J; Schriber, S O [ed.

    1976-11-01

    A description is given of a system to measure the emittance of a 750 keV 100 mA dc proton beam suitable for injection into a 100% duty factor linear accelerator. A relatively slowly pulsed 45/sup 0/ magnet switches the beam to a beam dump inside the emittance measuring unit for approx. 10 s. A fast pulsed 5/sup 0/ magnet then deflects the beam to a multiple aperture ''pepper-pot'' plate for 300 ..mu..s. Beamlets passing through the plate travel 520 mm and produce a pattern on a scintillator screen. A photograph of the pattern is analyzed to determine beam emittance. Preliminary results on low current beams show a gross increase in the emittance in the horizontal plane.

  13. An Online Multisensor Data Fusion Framework for Radar Emitter Classification

    Directory of Open Access Journals (Sweden)

    Dongqing Zhou

    2016-01-01

    Full Text Available Radar emitter classification is a special application of data clustering for classifying unknown radar emitters in airborne electronic support system. In this paper, a novel online multisensor data fusion framework is proposed for radar emitter classification under the background of network centric warfare. The framework is composed of local processing and multisensor fusion processing, from which the rough and precise classification results are obtained, respectively. What is more, the proposed algorithm does not need prior knowledge and training process; it can dynamically update the number of the clusters and the cluster centers when new pulses arrive. At last, the experimental results show that the proposed framework is an efficacious way to solve radar emitter classification problem in networked warfare.

  14. Transverse emittance dilution due to coupler kicks in linear accelerators

    Directory of Open Access Journals (Sweden)

    Brandon Buckley

    2007-11-01

    Full Text Available One of the main concerns in the design of low emittance linear accelerators (linacs is the preservation of beam emittance. Here we discuss one possible source of emittance dilution, the coupler kick, due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. In addition to emittance growth, the coupler kick also produces orbit distortions. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by using two couplers per cavity mounted opposite each other or by having the couplers of successive cavities alternate from above to below the beam pipe so as to cancel each individual kick. While this is correct, including two couplers per cavity or alternating the coupler location requires large technical changes and increased cost for superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We therefore analyze consequences of alternate coupler placements. We show here that alternating the coupler location from above to below compensates the emittance growth as well as the orbit distortions. For sufficiently large Q values, alternating the coupler location from before to after the cavity leads to a cancellation of the orbit distortion but not of the emittance growth, whereas alternating the coupler location from before and above to behind and below the cavity cancels the emittance growth but not the orbit distortion. We show that cancellations hold for sufficiently large Q values. These compensations hold even when each cavity is individually detuned, e.g., by microphonics. Another effective method for reducing coupler kicks that is studied is the optimization of the phase of the coupler kick so as to minimize the effects on emittance from each coupler. This technique is independent of the coupler geometry but relies on operating on crest. A final technique studied is symmetrization of the cavity geometry in the

  15. Emittance and trajectory control in the main linacs of the NLC

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Thompson, K.

    1996-09-01

    The main linacs of the next generation of linear colliders need to accelerate the particle beams to energies of up to 750 GeV while maintaining very small emittances. This paper describes the main mechanisms of static emittance growth in the main linacs of the Next Linear Collider (NLC). The authors present detailed simulations of the trajectory and emittance control algorithms that are foreseen for the NLC. They show that the emittance growth in the main linacs can be corrected down to about 110%. That number is significantly better than required for the NLC design luminosity

  16. Interaction of cerebral hemispheres and artistic thinking

    Science.gov (United States)

    Nikolaenko, Nikolay N.

    1998-07-01

    Study of drawings by patients with local lesions of the right or left hemisphere allows to understand how artistic thinking is supported by brain structures. The role of the right hemisphere is significant at the early stage of creative process. The right hemisphere is a generator of nonverbal visuo-spatial thinking. It operates with blurred nonverbal images and arrange them in a visual space. With the help of iconic signs the right hemisphere reflects the world and creates perceptive visual standards which are stored in the long-term right hemisphere memory. The image, which appeared in the `inner' space, should be transferred into a principally different language, i.e. a left hemispheric sign language. This language operates with a number of discrete units, logical succession and learned grammar rules. This process can be explained by activation (information) transfer from the right hemisphere to the left one. Thus, natural and spontaneous creative process, which is finished by a conscious effort, can be understood as an activation impulse transfer from the right hemisphere to the left one and back.

  17. Internal dynamics and emittance growth in space-charge-dominated beams

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1987-01-01

    Previous analytical studies have related transverse rms emittance growth in nonuniform beams to changes in the beam density profile, but the time evolution of the process has not been analyzed. Our new approach analyzes the internal motion of the beam and from this obtains the explicit time dependence of the rms emittance. It is shown to reach its peak value explosively in about one quarter of a plasma period. The subsequent behavior depends on the uniformity of the initial density profile. We derive a uniformity criterion that determines whether or not the emittance oscillates periodically and present examples of density profiles for which the emittance returns to its initial value and then continues to oscillate. We discuss a class of continuous initial profiles that lead to discontinuous shocklike behavior (with partial irreversibility of the oscillations) and a class of segmented profiles for which the emittance jumps to its maximum value in one fourth of a plasma period and remains at that value with essentially no further change. (author)

  18. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  19. Modular low-voltage electron emitters

    International Nuclear Information System (INIS)

    Berejka, Anthony J.

    2005-01-01

    Modular, low-voltage electron emitters simplify electron beam (EB) technology for many industrial uses and for research and development. Modular electron emitters are produced in quantity as sealed systems that are evacuated at the factory, eliminating the need for vacuum pumps at the point of use. A plug-out-plug-in method of replacement facilitates servicing. By using an ultra-thin 6-7 μm titanium foil window, solid-state power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, these modular units combine ease of use and electrical transfer efficiency at voltages that can be varied between 80 kV and 150 kV with beam currents up to 40 mA per 25 cm across the beam window. These new devices have been made in three widths: 5 cm, 25 cm, and 40 cm. Details of the beam construction and illustrations of industrial uses will be presented. Traditional uses in the graphic arts and coatings areas have welcomed this modular technology as well as uses for surface sterilization. Being compact and lightweight (∼15 kg/emitter), these modular beams have been configured around complex shapes to achieve three-dimensional surface curing at high production rates

  20. Modular low-voltage electron emitters

    Science.gov (United States)

    Berejka, Anthony J.

    2005-12-01

    Modular, low-voltage electron emitters simplify electron beam (EB) technology for many industrial uses and for research and development. Modular electron emitters are produced in quantity as sealed systems that are evacuated at the factory, eliminating the need for vacuum pumps at the point of use. A plug-out-plug-in method of replacement facilitates servicing. By using an ultra-thin 6-7 μm titanium foil window, solid-state power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, these modular units combine ease of use and electrical transfer efficiency at voltages that can be varied between 80 kV and 150 kV with beam currents up to 40 mA per 25 cm across the beam window. These new devices have been made in three widths: 5 cm, 25 cm, and 40 cm. Details of the beam construction and illustrations of industrial uses will be presented. Traditional uses in the graphic arts and coatings areas have welcomed this modular technology as well as uses for surface sterilization. Being compact and lightweight (∼15 kg/emitter), these modular beams have been configured around complex shapes to achieve three-dimensional surface curing at high production rates.

  1. Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (Part II)

    Energy Technology Data Exchange (ETDEWEB)

    Orel, B.; Spreizer, H.; Surca Vuk, A.; Fir, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Merlini, D.; Vodlan, M. [Color d.d., Cesta komandanta Staneta 4, SI-1230 Medvode (Slovenia); Koehl, M. [Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2007-01-23

    Red, green and blue paints were prepared for use as thickness insensitive spectrally selective (TISS) paint coatings for solar facade absorbers. The paints were composed of a polyurethane resin binder in which various pigments were incorporated in such a way that they formed stable paint dispersions, satisfying stability criteria for facade coatings. A low emittance of the paints was achieved by using low-emittance aluminium flake pigments combined with iron oxide (red coloured paints). Black pigment was added to adjust solar absorptance. Blue and green paints were made by the addition of coloured aluminium flake pigment and the solar absorptance was also adjusted by the addition of black pigment. Efficiency for photo-thermal conversion of solar radiation was assessed by evaluation of the corresponding performance criteria, which enabled the selection of paints whose performance criteria values were higher than 0 (spectrally non-selective black coating). The results confirmed that blue and green paints and to minor extent red ones, combined selectivity with colour. The morphology of the paints was assessed, revealing that the colours originated from the deposition of finely dispersed colour and/or black pigment on the surface of the aluminium flakes during paint preparation. (author)

  2. Beam dynamics in rf guns and emittance correction techniques

    International Nuclear Information System (INIS)

    Serafini, L.

    1994-01-01

    In this paper we present a general review of beam dynamics in a laser-driven rf gun. The peculiarity of such an accelerating structure versus other conventional multi-cell linac structures is underlined on the basis of the Panofsky-Wenzel theorem, which is found to give a theoretical background for the well known Kim's model. A basic explanation for some proposed methods to correct rf induced emittance growth is also derived from the theorem. We also present three emittance correction techniques for the recovery of space-charge induced emittance growth, namely the optimum distributed disk-like bunch technique, the use of rf spatial harmonics to correct spherical aberration induced by space charge forces and the technique of emittance filtering by clipping the electron beam. The expected performances regarding the beam quality achievable with different techniques, as predicted by scaling laws and simulations, are analyzed, and, where available, compared to experimental results. (orig.)

  3. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max

    2012-12-15

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  4. Laser-assisted electron emission from gated field-emitters

    CERN Document Server

    Ishizuka, H; Yokoo, K; Mimura, H; Shimawaki, H; Hosono, A

    2002-01-01

    Enhancement of electron emission by illumination of gated field-emitters was studied using a 100 mW cw YAG laser at a wavelength of 532 nm, intensities up to 10 sup 7 W/m sup 2 and mechanically chopped with a rise time of 4 mu s. When shining an array of 640 silicon emitters, the emission current responded quickly to on-off of the laser. The increase of the emission current was proportional to the basic emission current at low gate voltages, but it was saturated at approx 3 mu A as the basic current approached 100 mu A with the increase of gate voltage. The emission increase was proportional to the square root of laser power at low gate voltages and to the laser power at elevated gate voltages. For 1- and 3-tip silicon emitters, the rise and fall of the current due to on-off of the laser showed a significant time lag. The magnitude of emission increase was independent of the position of laser spot on the emitter base and reached 2 mu A at a basic current of 5 mu A without showing signs of saturation. The mech...

  5. Efficient generation of 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Andersen, Peter E.

    We propose an efficient concept increasing the power of diode laser systems in the visible spectral range. In comparison with second harmonic generation of single emitters, spectral beam combining with subsequent sum-frequency generation enhances the available power significantly. Combining two...... 1060 nm tapered diode lasers, we achieve a 2.5-3.2 fold increase of green light with a maximum power of 3.9 Watts in a diffraction-limited beam. At this level, diode lasers have a high application potential, for example, within the biomedical field. In order to enhance the power even further, our...

  6. Preservation of low slice emittance in bunch compressors

    Directory of Open Access Journals (Sweden)

    S. Bettoni

    2016-03-01

    Full Text Available Minimizing the dilution of the electron beam emittance is crucial for the performance of accelerators, in particular for free electron laser facilities, where the length of the machine and the efficiency of the lasing process depend on it. Measurements performed at the SwissFEL Injector Test Facility revealed an increase in slice emittance after compressing the bunch even for moderate compression factors. The phenomenon was experimentally studied by characterizing the dependence of the effect on beam and machine parameters relevant for the bunch compression. The reproduction of these measurements in simulation required the use of a 3D beam dynamics model along the bunch compressor that includes coherent synchrotron radiation. Our investigations identified transverse effects, such as coherent synchrotron radiation and transverse space charge as the sources of the observed emittance dilution, excluding other effects, such as chromatic effects on single slices or spurious dispersion. We also present studies, both experimental and simulation based, on the effect of the optics mismatch of the slices on the variation of the slice emittance along the bunch. After a corresponding reoptimization of the beam optics in the test facility we reached slice emittances below 200 nm for the central slices along the longitudinal dimension with a moderate increase up to 300 nm in the head and tail for a compression factor of 7.5 and a bunch charge of 200 pC, equivalent to a final current of 150 A, at about 230 MeV energy.

  7. Coupling of Quantum Emitters in Nanodiamonds to Plasmonic Structures

    DEFF Research Database (Denmark)

    Kumar, Shailesh

    This PhD thesis describes work towards the enhancement and efficient channeling of photons emitted from a single photon emitter. The emitter used is a defect center, the Nitrogen-Vacancy (NV) center, in diamond. The NV-center has many unique properties, such as long coherence time of its electron...

  8. Emittance growth due to dipole ripple and sextupole

    International Nuclear Information System (INIS)

    Shih, H.J.; Ellison, J.A.; Syphers, M.J.; Newberger, B.S.

    1993-05-01

    Ripple in the power supplies for storage ring magnets can have adverse effects on the circulating beams: orbit distortion and emittance growth from dipole ripple, tune modulation and dynamic aperture reduction from quadrupole ripple, etc. In this paper, we study the effects of ripple in the horizontal bending field of the SSC in the presence of nonlinearity, in particular, the growth in beam emittance

  9. Synthesis and spectral properties of Methyl-Phenyl pyrazoloquinoxaline fluorescence emitters: Experiment and DFT/TDDFT calculations

    Science.gov (United States)

    Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.

    2018-01-01

    Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.

  10. Multibunch emittance growth and its corrections in S-Band linear collider

    International Nuclear Information System (INIS)

    Gao, J.

    1994-11-01

    Multibunch emittance growths caused by long range wake fields with the misalignments of accelerating structures and quadrupoles in S-Band linear collider are studied. Tolerances for the misalignment errors of accelerating structures and quadrupoles are given corresponding to different detuned+damped structures. At the end of main linac, emittance corrector (EC) is proposed to be used to reduce further the multibunch emittance. Numerical simulations show that the effect of EC is obvious (multibunch emittance can be reduced about one order of magnitude), and it is believed that this kind of EC will be necessary for future linear colliders. (author). 16 refs., 21 figs., 4 tabs

  11. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  12. Quadrupole Transfer Function for Emittance Measurement

    CERN Document Server

    Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang

    2008-01-01

    Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.

  13. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao, E-mail: tsong241@gmail.com; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523 (United States); Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-06-21

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C}. These

  14. Ion concentration in micro and nanoscale electrospray emitters.

    Science.gov (United States)

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  15. Hypothalamic digoxin, hemispheric chemical dominance, and eating behavior.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance. The serum HMG CoA reductase activity, RBC membrane Na+-K+ ATPase activity, serum digoxin, magnesium, tryptophan catabolites (serotonin, quinolinic acid, strychnine, and nicotine), and tyrosine catabolites (morphine, dopamine, and noradrenaline) were measured in anorexia nervosa, bulimia nervosa, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. Digoxin synthesis was increased with upregulated tryptophan catabolism and downregulated tyrosine catabolism in those with anorexia nervosa and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism and upregulated tyrosine catabolism in those with bulimia nervosa and left hemispheric chemical dominance. The membrane Na+-K+ ATPase activity and serum magnesium were decreased in anorexia nervosa and right hemispheric chemical dominance while they were increased in bulimia nervosa and left hemispheric chemical dominance. Hypothalamic digoxin and hemispheric chemical dominance play a central role in the regulation of eating behavior. Anorexia nervosa represents the right hemispheric chemically dominant/hyperdigoxinemic state and bulimia nervosa the left hemispheric chemically dominant/hypodigoxinemic state.

  16. MD2065: Emittance exchange with linear coupling

    CERN Document Server

    Carver, Lee Robert; Persson, Tobias Hakan Bjorn; Amorim, David; Levens, Tom; Pesah, Arthur Chalom; CERN. Geneva. ATS Department

    2018-01-01

    In order to better understand the luminosity imbalance between ATLAS and CMS that was observed in 2016, it was proposed to perform a test whereby the horizontal and vertical emittances are exchanged by crossing the tunes in the presence of linear coupling. The luminosity before and after the exchange could be compared to see if the imbalance stems purely from the uneven emittances or if there is an additional mechanism in play. However, due to limited machine availability only tests at injection were able to performed.

  17. Prototype of a subsurface drip irrigation emitter: Manufacturing, hydraulic evaluation and experimental analyses

    Science.gov (United States)

    Souza, Wanderley De Jesus; Rodrigues Sinobas, Leonor; Sánchez, Raúl; Arriel Botrel, Tarlei; Duarte Coelho, Rubens

    2013-04-01

    Root and soil intrusion into the conventional emitters is one of the major disadvantages to obtain a good uniformity of water application in subsurface drip irrigation (SDI). In the last years, there have been different approaches to reduce these problems such as the impregnation of emitters with herbicide, and the search for an emitter geometry impairing the intrusion of small roots. Within the last this study, has developed and evaluated an emitter model which geometry shows specific physical features to prevent emitter clogging. This work was developed at the Biosystems Engineering Department at ESALQ-USP/Brazil, and it is a part of a research in which an innovated emitteŕs model for SDI has been developed to prevent root and soil particles intrusion. An emitter with a mechanical-hydraulic mechanism (opening and closing the water outlet) for SDI was developed and manufactured using a mechanical lathe process. It was composed by a silicon elastic membrane a polyethylene tube and a Vnyl Polychloride membrane protector system. In this study the performance of the developed prototype was assessed in the laboratory and in the field conditions. In the laboratory, uniformity of water application was calculated by the water emission uniformity coefficient (CUE), and the manufacturer's coefficient of variation (CVm). In addition, variation in the membrane diameter submitted to internal pressures; head losses along the membrane, using the energy equation; and, precision and accuracy of the equation model, analyzed by Pearson's correlation coefficient (r), and by Willmott's concordance index (d) were also calculated with samples of the developed emitters. In the field, the emitters were installed in pots with and without sugar cane culture from October 2010 to January 2012. During this time, flow rate in 20 emitters were measured periodically, and the aspects of them about clogging at the end of the experiment. Emitters flow rates were measured quarterly to calculate

  18. Numerical studies of emittance exchange in 2-D charged-particle beams

    International Nuclear Information System (INIS)

    Guy, F.W.

    1986-01-01

    We describe results obtained from a two-dimensional particle-following computer code that simulates a continuous, nonrelativistic, elliptical charged-particle beam with linear continuous focusing. Emittances and focusing strengths can be different in the two transverse directions. The results can be applied, for example, for a quadrupole transport system in a smooth approximation to a real beam with unequal emittances in the two planes. The code was used to study emittance changes caused by kinetic-energy exchange between transverse directions and by shifts in charge distributions. Simulation results for space-charge-dominated beams agree well with analytic formulas. From simulation results, an empirical formula was developed for a ''partition parameter'' (the ratio of kinetic energies in the two directions) as a function of initial conditions and beamline length. Quantitative emittance changes for each transverse direction can be predicted by using this parameter. Simulation results also agree with Hofmann's generalized differential equation relating emittance and field energy

  19. Growth rate of non-thermodynamic emittance of intense electron beams

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1998-01-01

    The nonlinear free-energy concept has been particularly useful in estimating the emittance growth resulting from any excess energy of electron beams in periodic and uniform channels. However, additional emittance growth, that is geometrical rather than thermodynamic in origin, is induced if the particles have different kinetic energies and axial velocities, which is common for mildly relativistic, very intense electron beams. This effect is especially strong if particles lose or gain significant kinetic energy due to the beam's potential depression, as the beam converges and diverges. In this paper we analyze these geometric emittance growth mechanisms for a uniform, continuous, intense electron beam in a focusing transport channel consisting of discrete solenoidal magnets, over distances short enough that the beam does not reach equilibrium. These emittance growth mechanisms are based on the effects of (1) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (2) an axial velocity shear radially along the beam due to the beam's azimuthal motion in the solenoids, and (3) an energy redistribution of the beam as the beam compresses or expands. The geometric emittance growth is compared in magnitude with that resulting from the nonlinear free energy, for the case of a mismatched beam in a uniform channel, and is shown to dominate for certain experimental conditions. Rules for minimizing the emittance along a beamline are outlined. copyright 1998 The American Physical Society

  20. Measurement of the transverse emittance for the NSC Pelletron

    International Nuclear Information System (INIS)

    Rodriques, G.; Mandal, A.; Chopra, S.; Joshi, R.; Datta, S.K.; Roy, A.

    1998-01-01

    The knowledge of the emittance (transverse and longitudinal) of the NSC pelletron is essential for matching the acceptance of the LINAC which is to be installed to augment the pelletron beam energies. The transverse emittance of NSC pelletron has been measured by employing a focussing element and a down-stream beam profile monitor

  1. Low Cost Constant – Head Drip Irrigation Emitter for Climate ...

    African Journals Online (AJOL)

    Low Cost Constant – Head Drip Irrigation Emitter for Climate Change Adaptation in Nigeria: Engineering Design and Calibration. ... The drip system comprises of abarrel, sub-main line, lateral lines, tubes and emitters, it can irrigate140 crop ...

  2. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Science.gov (United States)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  3. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter

    International Nuclear Information System (INIS)

    Chen, Leifeng; He, Hong; Yu, Hua; Cao, Yiqi; Lei, Da; Menggen, QiQiGe; Wu, Chaoxing; Hu, Liqin

    2014-01-01

    The graphene (GP) and multi-walled carbon nanotubes (MCNTs) hybrid nanostructure emitter was constructed by a larger scale electrophoretic deposition (EPD) method. The field emission (FE) performance of the hybrid emitter is greatly improved compared with that of only GP or MCNTs emitter. The low turn-on electric field (EF), the low threshold EF and the reliability FE properties are obtained from the hybrid emitter. The better FE properties result from the improved electrical properties. For further enhancement FE of hybrids, Ag Nanoparticles (NPs) were decorated on the hybrids and FE characteristics were also studied. These studies indicate that we can use the hybrid nanostructure to improve conductivity and contact resistance, which results in enhancement of the FE properties

  4. Studies of emittance growth in the ATF

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-03-01

    Several different mechanisms of emittance growth in the Accelerator Test Facility (ATF) at KEK are investigated: the author calculates rise times of the fast beam-ion instability for the damping ring (DR), and discusses the emittance growth caused by coherent synchrotron radiation in the beam-transport line (BT), the effect of quadrupole wake fields in the injector linac, and, finally, a single-bunch head-tail ion effect that can occur in both the DR and the BT. A first attempt to measure the quadrupole wake on the real machine is also reported

  5. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  6. Experimental and numerical investigations of Si-based photonic crystals with ordered Ge quantum dots emitters

    International Nuclear Information System (INIS)

    Jannesari, R.

    2014-01-01

    ) method. In a novel approach a small imaginary refractive index was artificially assigned to the QD emitters to produce absorption in photonic crystal. In the simulations the photonic crystal was illuminated with plane waves. The calculated absorption then depends on the in-coupling of the plane waves and the guided waves inside the photonic crystal. Using the fact that all materials are reciprocal, the calculated mode spectra in absorption can be interpreted in terms of QD emission. The artificially introduced complex refractive index was either distributed homogenously over a layer to simulate randomly distributed emitters, or in a periodic pattern for the simulation of ordered emitters. Both the simulations and the experiments show that the local position of the emitters inside a photonic crystal can result in different photoluminescence enhancements and radiation patterns. Thus, combining the narrow spectral range of QD emission with high local electric field on certain locations in the unit cell of the photonic crystal can be exploited to tailor the enhancement of spontaneous emission and the far field radiation pattern. (author) [de

  7. Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters.

    Science.gov (United States)

    Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin

    2015-03-12

    Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.

  8. Double-step annealing and ambient effects on phosphorus implanted emitters in silicon

    International Nuclear Information System (INIS)

    Koji, T.; Tseng, W.F.; Mayer, J.W.; Suganuma, T.

    1979-01-01

    Emitters of npn silicon bipolar transistors have been made by a phosphorus implantation at 50 keV P + to a dose of 1 x 10 16 cm -2 . This was followed by high temperature processes to reduce lattice disorder, to drive-in the phosphorus atoms, and to form oxide layers. The first process step was carried out by using single- and double-step anneals in various ambients (dry N 2 , dry 0 2 and steam) while the drive-in and oxidation steps were common for all structures. Electrical measurements on emitter/base leakage current, low frequency (popcorn) noise and current gain showed that the annealing ambient had a major influence. The transistors with implanted emitters annealed in a dry N 2 ambient are comparable to commercial ones with thermally-diffused emitters. Transmission electron microscopy observations on samples annealed in steam ambients revealed dislocations extending into the sidewall of the emitter/base junction. This sidewell penetration of dislocations is the main origin of the degradation of the emitter/base junction characteristics. (author)

  9. Emittance growth in the DARHT Axis-II Downstream Transport

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Martin E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-14

    Using a particle-in-cell (PIC) code, we investigated the possibilities for emittance growth through the quadrupole magnets of the system used to transport the high-current electron beam from an induction accelerator to the bremsstrahlung converter target used for flash radiography. We found that even highly mismatched beams exhibited little emittance growth (< 6%), which we attribute to softening of their initial hard edge current distributions. We also used this PIC code to evaluate the accuracy of emittance measurements using a solenoid focal scan following the quadrupole magnets. If the beam is round after the solenoids, the simulations indicate that the measurement is highly accurate, but it is substantially inaccurate for elliptical beams

  10. Atypical hemispheric dominance for attention: functional MRI topography.

    Science.gov (United States)

    Flöel, Agnes; Jansen, Andreas; Deppe, Michael; Kanowski, Martin; Konrad, Carsten; Sommer, Jens; Knecht, Stefan

    2005-09-01

    The right hemisphere is predominantly involved in tasks associated with spatial attention. However, left hemispheric dominance for spatial attention can be found in healthy individuals, and both spatial attention and language can be lateralized to the same hemisphere. Little is known about the underlying regional distribution of neural activation in these 'atypical' individuals. Previously a large number of healthy subjects were screened for hemispheric dominance of visuospatial attention and language, using functional Doppler ultrasonography. From this group, subjects were chosen who were 'atypical' for hemispheric dominance of visuospatial attention and language, and their pattern of brain activation was studied with functional magnetic resonance imaging during a task probing spatial attention. Right-handed subjects with the 'typical' pattern of brain organization served as control subjects. It was found that subjects with an inverted lateralization of language and spatial attention (language right, attention left) recruited left-hemispheric areas in the attention task, homotopic to those recruited by control subjects in the right hemisphere. Subjects with lateralization of both language and attention to the right hemisphere activated an attentional network in the right hemisphere that was comparable to control subjects. The present findings suggest that not the hemispheric side, but the intrahemispheric pattern of activation is the distinct feature for the neural processes underlying language and attention.

  11. Field emission from optimized structure of carbon nanotube field emitter array

    International Nuclear Information System (INIS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-01-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm"2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  12. Field emission from optimized structure of carbon nanotube field emitter array

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  13. Calculating emittance for Gaussian and Non-Gaussian distributions by the method of correlations for slits

    International Nuclear Information System (INIS)

    Tan, Cheng-Yang; Fermilab

    2006-01-01

    One common way for measuring the emittance of an electron beam is with the slits method. The usual approach for analyzing the data is to calculate an emittance that is a subset of the parent emittance. This paper shows an alternative way by using the method of correlations which ties the parameters derived from the beamlets to the actual parameters of the parent emittance. For parent distributions that are Gaussian, this method yields exact results. For non-Gaussian beam distributions, this method yields an effective emittance that can serve as a yardstick for emittance comparisons

  14. Fabrication of multi-emitter array of CNT for enhancement of current density

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, Vijay, E-mail: vchouhan@post.kek.jp [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); Noguchi, Tsuneyuki [High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan); Kato, Shigeki [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan)

    2011-11-11

    We studied and compared field emission properties of two kinds of emitters of randomly oriented multi-wall carbon nanotubes (MWNTs), viz. continuous film emitter (CFE) and multi-emitter array (MEA). The CFE has a continuous film of MWNTs while the MEA consists of many equidistant small circular emitters. Both types of emitters were prepared by dispersing MWNTs over a titanium (Ti) film (for CFEs) or Ti circular islands (for MEAs) deposited on tantalum (Ta) followed by rooting of MWNTs into the Ti film or the Ti islands at high temperature. Emission properties of both types of emitters were analyzed with changing their emission areas. In case of the CFEs, current density decreased with an increase in emission area whereas consistent current densities were achieved from MEAs with different emission areas. In other words, the total emission current was achieved in proportion to the emission area in the case of MEAs. Additionally a high current density of 22 A/cm{sup 2} was achieved at an electric field of 8 V/{mu}m from MEAs, which was far better than that obtained from CFEs. The high current density in MEAs was attributed to edge effect, in which higher emission current is achieved from the edge of film emitter. The results indicate that the field emission characteristics can be greatly improved if a cathode contains many small equidistant circular emitters instead of a continuous film. The outstanding stability of the CFE and the MEA has been demonstrated for 2100 and 1007 h, respectively.

  15. Emittance growth due to negative-mass instability above transition

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1994-08-01

    Due to space-charge effect, there is a growth of bunch emittance across transition as a result of negative-mass instability. The models of growth at cutoff frequency and growth from high-frequency Schottky noise are reviewed. The difficulties of performing reliable simulations are discussed. An intuitive self-bunching model for estimating emittance growth is presented

  16. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Directory of Open Access Journals (Sweden)

    J. C. T. Thangaraj

    2012-11-01

    Full Text Available One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  17. Analysis of emittance compensation and simulation results to photo-cathode RF gun

    CERN Document Server

    LiuShengGuang

    2002-01-01

    The emittance compensation technology will be used on the photo-cathode RF gun for Shanghai SDUV-FEL. The space charge force and its effect on electron beam transverse emittance in RF gun is studied, the principle of emittance compensation in phase-space is discussed. The authors have designed a compensation solenoid and calculated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emittance for electron beam of 1.5 nC is 1.612 pi mm centre dot mrad, electron energy E = 5.71 MeV

  18. Very low recombination phosphorus emitters for high efficiency crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ortega, P; Vetter, M; Bermejo, S; Alcubilla, R

    2008-01-01

    This work studies low recombination phosphorus emitters on c-Si. The emitters are fabricated by diffusion from solid sources and then passivated by thermal oxide yielding sheet resistances between 15 and 280 Ω/sq. Emitter saturation current densities lie in the 2.5–110 fA cm −2 range, leading to implicit open-circuit voltages between 674 and 725 mV. Bulk lifetime is limited by intrinsic recombination mechanisms. Surface recombination velocities between 80 and 300 cm s −1 have been obtained, appearing among the lowest reported in this range of emitter sheet resistances

  19. Hypothalamic digoxin, hemispheric chemical dominance and sarcoidosis.

    Science.gov (United States)

    Ravi Kumar, A; Kurup, Parameswara Achutha

    2004-06-01

    The isoprenoid pathway produces three key metabolites: endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins) and ubiquinone (free radical scavenger). The role of the isoprenoid pathway in the pathogenesis of sarcoidosis in relation to hemispheric dominance was studied. The isoprenoid pathway-related cascade was assessed in patients with systemic sarcoidosis with pulmonary involvement. The pathway was also assessed in patients with right hemispheric, left hemispheric and bihemispheric dominance for comparison to find out the role of hemispheric dominance in the pathogenesis of sarcoidosis. In patients with sarcoidosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in the cholesterol:phospholipid ratio and a reduction in the glycoconjugate level of red blood cell (RBC) membrane in this group of patients. The same biochemical patterns were obtained in individuals with right hemispheric dominance. In individuals with left hemispheric dominance the patterns were reversed. Endogenous digoxin, by activating the calcineurin signal transduction pathway of T cells, can contribute to immune activation in sarcoidosis. An altered glycoconjugate metabolism can lead to the generation of endogenous self-glycoprotein antigens in the lung as well as other tissues. Increased free radical generation can also lead to immune activation. The role of a dysfunctional isoprenoid pathway and endogenous digoxin in the pathogenesis of sarcoidosis in relation to right hemispheric chemical dominance is discussed. All the patients with sarcoidosis were right-handed/left hemispheric dominant according to the dichotic listening test, but their biochemical patterns

  20. Origins of transverse emittance blow-up during the LHC energy tramp

    CERN Document Server

    Kuhn, M; Arduini, G; Kain, V; Schaumann, M; Tomas, R

    2014-01-01

    During LHC Run 1 about 30 % of the potential peak performance was lost due to transverse emittance blow-up through the LHC cycle. Measurements indicated that the majority of the blow-up occurred during the energy ramp. Until the end of LHC Run 1 this emittance blow-up could not be eliminated. In this paper the measurements and observations of emittance growth through the ramp are summarized. Simulation results for growth due to Intra Beam Scattering will be shown and compared to measurements. A summary of investigations of other possible sources will be given and backed up with simulations where possible. Requirements for commissioning the LHC with beam in 2015 after Long Shutdown 1 to understand and control emittance blow-up will be listed.

  1. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    OpenAIRE

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel coun...

  2. Schottky’s conjecture, field emitters, and the point charge model

    Directory of Open Access Journals (Sweden)

    Kevin L. Jensen

    2016-06-01

    Full Text Available A Point Charge Model of conical field emitters, in which the emitter is defined by an equipotential surface of judiciously placed charges over a planar conductor, is used to confirm Schottky’s conjecture that field enhancement factors are multiplicative for a small protrusion placed on top of a larger base structure. Importantly, it is shown that Schottky’s conjecture for conical / ellipsoidal field emitters remains unexpectedly valid even when the dimensions of the protrusion begin to approach the dimensions of the base structure. The model is analytic and therefore the methodology is extensible to other configurations.

  3. Positioning with stationary emitters in a two-dimensional space-time

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out

  4. Cancer therapy with alpha-emitters labeled peptides.

    Science.gov (United States)

    Dadachova, Ekaterina

    2010-05-01

    Actively targeted alpha-particles offer specific tumor cell killing action with less collateral damage to surrounding normal tissues than beta-emitters. During the last decade, radiolabeled peptides that bind to different receptors on the tumors have been investigated as potential therapeutic agents both in the preclinical and clinical settings. Advantages of radiolabeled peptides over antibodies include relatively straightforward chemical synthesis, versatility, easier radiolabeling, rapid clearance from the circulation, faster penetration and more uniform distribution into tissues, and less immunogenicity. Rapid internalization of the radiolabeled peptides with equally rapid re-expression of the cell surface target is a highly desirable property that enhances the total delivery of these radionuclides into malignant sites. Peptides, such as octreotide, alpha-melanocyte-stimulating hormone analogues, arginine-glycine-aspartic acid-containing peptides, bombesin derivatives, and others may all be feasible for use with alpha-emitters. The on-going preclinical work has primarily concentrated on octreotide and octreotate analogues labeled with Bismuth-213 and Astatine-211. In addition, alpha-melanocyte-stimulating hormone analogue has been labeled with Lead-212/Bismuth-212 in vivo generator and demonstrated the encouraging therapeutic efficacy in treatment of experimental melanoma. Obstacles that continue to obstruct widespread acceptance of alpha-emitter-labeled peptides are primarily the supply of these radionuclides and concerns about potential kidney toxicity. New sources and methods for production of these medically valuable radionuclides and better understanding of mechanisms related to the peptide renal uptake and clearance should speed up the introduction of alpha-emitter-labeled peptides into the clinic. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Right Hemisphere Dominance in Visual Statistical Learning

    Science.gov (United States)

    Roser, Matthew E.; Fiser, Jozsef; Aslin, Richard N.; Gazzaniga, Michael S.

    2011-01-01

    Several studies report a right hemisphere advantage for visuospatial integration and a left hemisphere advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual feature combinations. A split-brain patient and normal control participants viewed…

  6. Laser Process for Selective Emitter Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    G. Poulain

    2012-01-01

    Full Text Available Selective emitter solar cells can provide a significant increase in conversion efficiency. However current approaches need many technological steps and alignment procedures. This paper reports on a preliminary attempt to reduce the number of processing steps and therefore the cost of selective emitter cells. In the developed procedure, a phosphorous glass covered with silicon nitride acts as the doping source. A laser is used to open locally the antireflection coating and at the same time achieve local phosphorus diffusion. In this process the standard chemical etching of the phosphorous glass is avoided. Sheet resistance variation from 100 Ω/sq to 40 Ω/sq is demonstrated with a nanosecond UV laser. Numerical simulation of the laser-matter interaction is discussed to understand the dopant diffusion efficiency. Preliminary solar cells results show a 0.5% improvement compared with a homogeneous emitter structure.

  7. Accurate estimation of the RMS emittance from single current amplifier data

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-01-01

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H - ion source

  8. Hemispherical power asymmetry from scale-dependent modulated reheating

    International Nuclear Information System (INIS)

    McDonald, John

    2013-01-01

    We propose a new model for the hemispherical power asymmetry of the CMB based on modulated reheating. Non-Gaussianity from modulated reheating can be small enough to satisfy the bound from Planck if the dominant modulation of the inflaton decay rate is linear in the modulating field σ. σ must then acquire a spatially-modulated power spectrum with a red scale-dependence. This can be achieved if the primordial perturbation of σ is generated via tachyonic growth of a complex scalar field. Modulated reheating due to σ then produces a spatially modulated and scale-dependent sub-dominant contribution to the adiabatic density perturbation. We show that it is possible to account for the observed asymmetry while remaining consistent with bounds from quasar number counts, non-Gaussianity and the CMB temperature quadupole. The model predicts that the adiabatic perturbation spectral index and its running will be modified by the modulated reheating component

  9. Modulation characteristics of graphene-based thermal emitters

    Science.gov (United States)

    Mahlmeister, Nathan Howard; Lawton, Lorreta Maria; Luxmoore, Isaac John; Nash, Geoffrey Richard

    2016-01-01

    We have investigated the modulation characteristics of the emission from a graphene-based thermal emitter both experimentally and through simulations using finite element method modelling. Measurements were performed on devices containing square multilayer graphene emitting areas, with the devices driven by a pulsed DC drive current over a range of frequencies. Simulations show that the dominant heat path is from the emitter to the underlying substrate, and that the thermal resistance between the graphene and the substrate determines the modulation characteristics. This is confirmed by measurements made on devices in which the emitting area is encapsulated by hexagonal boron nitride.

  10. Relation between field energy and RMS emittance in intense particle beams

    International Nuclear Information System (INIS)

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-01-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance. 15 refs., 4 figs

  11. Beam emittance of the Stony Brook Tandem-LINAC booster

    International Nuclear Information System (INIS)

    Scholldorf, A.H.

    1984-01-01

    This dissertation is primarily a study of the longitudinal and transverse beam emittance of the Stony Brook Heavy Ion Tandem LINAC Accelerator Facility, with a secondary emphasis on the beam dynamical design of two key elements of the system: a low energy double-drift buncher, and an achromatic double-90 0 LINAC injection system. A transverse emittance measuring system consisting of two translation stages controlled by stepper motors is described. Each stage carried a pair of beam defining slits mounted so that both horizontal and vertical emittances could be measured with only linear motion of the stage assembly. Beam currents were measured directly by a low-noise, high-sensitivity electrometer circuit integrated with the second slit-stage assembly. A mini-computer controlled the motors and acquired and displayed the data. Transverse emittance areas of beams of 12 C, 16 O, 32 S, and 58 Ni were measured at ion source extraction potential, after ion source acceleration, after tandem acceleration, and after LINAC acceleration. The results were analyzed in terms of source sputter-cone geometry, angle straggling in gas and foil strippers, and a variety of other factors

  12. Factors Influencing Right Hemisphere Engagement During Metaphor Comprehension

    Science.gov (United States)

    Diaz, Michele T.; Eppes, Anna

    2018-01-01

    Although the left hemisphere is critical for language, clinical, behavioral, and neuroimaging research suggest that the right hemisphere also contributes to language comprehension. In particular, research has suggested that figurative language may be one type of language that preferentially engages right hemisphere regions. However, there is disagreement about whether these regions within the right hemisphere are sensitive to figurative language per se or to other factors that co-vary with figurativeness. In this article, we will review the neuroimaging literature on figurative language processing, focusing on metaphors, within the context of several theoretical perspectives that have been proposed about hemispheric function in language. Then we will examine three factors that may influence right hemisphere engagement: novelty, task difficulty, and context. We propose that factors that increase integration demands drive right hemisphere involvement in language processing, and that such recruitment is not limited to figurative language. PMID:29643825

  13. Comparison between arc drops in ignited thermionic converters with and without ion reflections at the emitter

    International Nuclear Information System (INIS)

    Lundgren, L.

    1985-01-01

    The output performance of two thermionic energy converters is compared. One converter has a normal emitter, working with zero field at the emitter which is close to the optimum working point, and the other has a low work function emitter and ion reflection at the emitter. A simple model of the plasma and the sheaths shows that a converter working with a low work function emitter and ion reflections gives a worse performance than a similar converter with a normal emitter

  14. Long-term hemispheric variation of the flare index

    International Nuclear Information System (INIS)

    Feng Song; Deng Lin-Hua; Xu Shi-Chun

    2013-01-01

    The long-term hemispheric variation of the flare index is investigated. It is found that, (1) the phase difference of the flare index between the northern and southern hemispheres is about 6–7 months, which is near the time delay between flare activity and sunspot activity; (2) both the dominant and phase-leading hemisphere of the flare index is the northern hemisphere in the considered time interval, implying that the hemispheric asynchrony of solar activity has a close connection with the N-S asymmetry of solar activity. (research papers)

  15. Probing the emitter site of Renilla luciferase using small organic molecules; an attempt to understand the molecular architecture of the emitter site.

    Science.gov (United States)

    Salehi, Farajollah; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi

    2016-12-01

    Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the K m changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...

  17. Emittance scans for CMS luminosity calibration in 2017

    CERN Document Server

    CMS Collaboration

    2018-01-01

    Emittance scans are short van der Meer type scans performed at the beginning and at the end of LHC fills. The beams are scanned against each other in X and Y planes in 7 displacement steps. These scans are used for LHC diagnostics and since 2017 for a cross check of the CMS luminosity calibration. An XY pair of scans takes around 3 minutes. The BRIL project provides to LHC three independent online luminosity measurement from the Pixel Luminosity Telescope (PLT), the Fast Beam Condition Monitor (BCM1F) and the Forward calorimeter (HF). The excellent performance of the BRIL detector front-ends, fast back-end electronics and CMS XDAQ based data processing and publication allow the use of emittance scans for linearity and stability studies of the luminometers. Emittance scans became a powerful tool and dramatically improved the understanding of the luminosity measurement during the year. Since each luminometer is independently calibrated in every scan the measurements are independent and ratios of luminometers ca...

  18. Low Emittance Gun Project based on Field Emission

    CERN Document Server

    Ganter, Romain; Dehler, M; Gobrecht, Jens; Gough, Chris; Ingold, Gerhard; Leemann, Simon C; Shing-Bruce-Li, Kevin; Paraliev, Martin; Pedrozzi, Marco; Raguin, Jean Yves; Rivkin, Leonid; Schlott, Volker; Sehr, Harald; Streun, Andreas; Wrulich, Albin F; Zelenika, Sasa

    2004-01-01

    The design of an electron gun capable of producing beam emittance one order of magnitude lower than current technology would reduce considerably the cost and size of a free electron laser emitting at 0.1nm. Field emitter arrays (FEAs) including a gate and a focusing layer are an attractive technology for such high brightness sources. Electrons are extracted from micrometric tips thanks to voltage pulses between gate and tips. The focusing layer should then reduce the initial divergence of each emitted beamlets. This FEA will be inserted in a high gradient diode configuration coupled with a radiofrequency structure. In the diode part very high electric field pulses (several hundreds of MV/m) will limit the degradation of emittance due to space charge effect. This first acceleration will be obtained with high voltage pulses (typically a megavolt in a few hundred of nanoseconds) synchronized with the low voltage pulses applied to the FEA (typically one hundred of volts in one nanosecond at frequency below kilohe...

  19. Control and Data Analysis for Emittance Measuring Devices

    CERN Document Server

    Hoffmann, T

    2001-01-01

    Due to the wide range of heavy ion beam intensities and energies in the GSI linac and the associated transfer channel to the synchrotron, several different types of emittance measurement systems have been established. Many common devices such as slit/grid or dipole-sweep systems are integrated into the GSI control system. Other systems like the single shot pepper pot method using CCD-cameras or stand-alone slit/grid set-ups are connected to personal computers. An overview is given about the various systems and their software integration. Main interest is directed on the software development for emittance front-end control and data analysis such as evaluation algorithms or graphical presentation of the results. In addition, special features for improved usability of the software such as data export, project databases and automatic report generation will be presented. An outlook on a unified evaluation procedure for all different types of emittance measurement is given.

  20. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  1. Nanometer emittance ultralow charge beams from rf photoinjectors

    Directory of Open Access Journals (Sweden)

    R. K. Li

    2012-09-01

    Full Text Available In this paper we discuss the generation of a new class of high brightness relativistic electron beams, characterized by ultralow charge (0.1–1 pC and ultralow normalized emittance (<50  nm. These beams are created in rf photoinjectors when the laser is focused on the cathode to very small transverse sizes (<30  μm rms. In this regime, the charge density at the cathode approaches the limit set by the extraction electric field. By shaping the laser pulse to have a cigarlike aspect ratio (the longitudinal dimension much larger than the transverse dimension and a parabolic temporal profile, the resulting space charge dominated dynamics creates a uniformly filled ellipsoidal distribution and the emittance can be nearly preserved to its thermal value. We also present a new method, based on a variation of the pepper-pot technique, for single shot measurements of the ultralow emittances for this new class of beams.

  2. Graphene field emitters: A review of fabrication, characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leifeng, E-mail: chlf@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yu, Hu; Zhong, Jiasong; Song, Lihui [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Jun, E-mail: wujun@hdu.edu.cn [Institute of Electron Device & Application, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Su, Weitao [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-06-15

    Highlights: • The preparation, characterization and field emission properties for Gs are reviewed. • The review provides an updated progress on design and construction of Gs field emitters. • The review offers fundamental insights into understanding and design of Gs emitters. • The review can broach the subject and inspire readers in field of Gs based emitters. - Abstract: Graphenes are beneficial to electrons field emission due to its high aspect ratio, high carrier density, the larger carrier mobility, excellent electrical and thermal conductivity, excellent mechanical strength and chemical stability. In recent years, graphene or reduced oxide graphene field emitters have been successfully constructed by various methods such as chemical vapor deposition, chemical exfoliation, electrophoretic deposition, screen-printing and chemical synthesis methods. Graphene emitters are tried to construct in distribution with some angles or vertical orientation with respect to the substrate surface. The vertical alignment of graphene sheets or edges arrays can facilitate efficient electron emission from the atomically thick sheets. Therefore they have even more a low turn-on and threshold-field electronic field, high field enhancement factor, high current stability and high luminance. In this review, we shortly survey and discuss recent research progress in graphene field emission properties with particular an emphasis on their preparing method, characterization and applications in devices especially for vertical graphene and single layer graphene, also including their challenges and future prospects.

  3. Hypothalamic digoxin, hemispheric chemical dominance, and sleep.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The isoprenoid path way produces endogenous digoxin, a substance that can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with chronic insomnia. The patterns were compared in those with right hemispheric and left hemispheric dominance. The activity of HMG GoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in individuals with chronic insomnia and in individuals with differing hemispheric dominance. Digoxin synthesis was increased with upregulated tryptophan catabolism (increased levels of serotonin, strychnine, and nicotine), and downregulated tyrosine catabolism (decreased levels of dopamine, noradrenaline, and morphine) in those with chronic insomnia and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism (decreased levels of serotonin, strychnine, and nicotine) and upregulated tyrosine catabolism (increased levels of dopamine, noradrenaline, and morphine) in those with normal sleep patterns and left hemispheric chemical dominance. Hypothalamic digoxin plays a central role in the regulation of sleep behavior. Hemispheric chemical dominance in relation to digoxin status is also crucial.

  4. Hypothalamic digoxin, hemispheric chemical dominance, and spirituality.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-03-01

    The isoprenoid pathway was assessed in atheistic and spiritually inclined individuals. The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance has a correlation with spiritual and atheistic tendency. HMG CoA reductase activity, serum digoxin, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, and tyrosine/tryptophan catabolic patterns were assessed in spiritual/atheistic individuals and in those differing hemispheric dominance. In spiritually-inclined individuals, there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in spiritually-inclined individuals correlated with right hemispheric chemical dominance. In atheistic individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolities (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in atheistic individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to spirituality or atheism.

  5. Studies and calculations of transverse emittance growth in proton storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.; Jackson, G.

    1989-01-01

    When high energy storage rings are used to collide beams of particles and antiparticles for high energy physics experiments, it is important to obtain as high an integrated luminosity as possible. Reduction of integrated luminosity can arise from several factors, in particular from growth of the transverse beam sizes (transverse emittances). We have studied the problem of transverse emittance growth in high energy storage rings caused by random dipole noise kicks to the beam. A theoretical formula for the emittance growth rate is derived, and agreement is obtained with experimental measurements where noise of known amplitude and power spectrum was deliberately injected into the Fermilab Tevatron, to kick the beam randomly. In the experiment, phase noise was introduced into the Tevatron rf system, and the measured dependence of horizontal emittance growth on phase noise amplitude is compared against the theoretically derived response. (orig.)

  6. Hemispheric specialization in dogs for processing different acoustic stimuli.

    Directory of Open Access Journals (Sweden)

    Marcello Siniscalchi

    Full Text Available Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions.

  7. Emittances Studies at the Fermilab/NICADD Photoinjector Laboratory

    CERN Document Server

    Tikhoplav, Rodion; Melissinos, A C; Regis-Guy Piot, Philippe

    2005-01-01

    The Fermilab/NICADD photoinjector incorporates an L-band rf-gun capable of generating 1-10 nC bunches. The bunches are then accelerated to 16 MeV with a TESLA superconducting cavity. In the present paper we present parametric studies of transverse emittances and energy spread for a various operating points of the electron source (RF-gun E-field, laser length and spot size, and solenoid settings). We especially study the impact, on transverse emittance, of Gaussian and Plateau temporal distribution of the photocathode drive-laser.

  8. Simple emittance measurement of H- beams from a large plasma source

    International Nuclear Information System (INIS)

    Guharay, S.K.; Tsumori, K.; Hamabe, M.; Takeiri, Y.; Kaneko, O.; Kuroda, T.

    1996-03-01

    An emittance meter is developed using pepper-pot method. Kapton foils are used to detect intensity distributions of small beamlets at the 'image' plane of the pepper-pot. Emittance of H - beams from a large plasma source for the neutral beam injector of the Large Helical Device (LHD) has been measured. The normalized emittance (95%) of a 6 mA H - beam with emission current density of about 10 mA/cm 2 is ∼0.59 mm mrad. The present system is very simple, and it eliminates many complexities of the existing schemes. (author)

  9. Achievement of ultra-low emittance beam in the ATF damping ring

    CERN Document Server

    Honda, Y; Araki, S; Bane, Karl Leopold Freitag; Brachmann, A; Frisch, J; Fukuda, M; Hasegawa, K; Hayano, H; Hendrickson, L; Higashi, Y; Higo, T; Hirano, K; Hirose, T; Iida, K; Imai, T; Inoue, Y; Karataev, P; Kubo, K; Kurihara, Y; Kuriki, M; Kuroda, R; Kuroda, S; Luo, X; Matsuda, M; McCormick, D; Muto, T; Nakajima, K; Nelson, J; Nomura, M; Ohashi, A; Okugi, T; Omori, T; Ross, M; Sakai, H; Sakai, I; Sasao, N; Smith, S; Suzuki, T; Takano, M; Takashi, N; Taniguchi, T; Terunuma, N; Toge, N; Turner, J; Urakawa, J; Vogel, V; Wolski, A; Woodley, M; Yamazaki, I; Yamazaki, Y; Yocky, J; Young, A; Zimmermann, Frank

    2003-01-01

    We report on the smallest vertical emittance achieved in single-bunch-mode operation of the ATF. The emittances were measured with a laser-wire beam-profile monitor installed in the damping ring. The bunch length and the momentum spread of the beam were also recorded under the same conditions. The smallest vertical rms emittance measured is 4 pm in the limit of zero current. It increases by a factor of 1.5 for a bunch intensity of 10^10 electrons. There are no discrepancies between the measured data and the calculations of intra-beam scattering.

  10. Minimum emittance of isochronus rings for synchrotron light source

    CERN Document Server

    Shoji, Y

    1999-01-01

    Theoretically achievable minimum emittances of isochronus rings for synchrotron light source are calculated. The rings discussed in this paper consist of isochronus and achromatic bending cells, isochronus TBA (triple bend achromat) cells with negative dispersion, isochronus TBA cells with inverse bends or isochronus QBA (four bend achromat) cells. We show that the minimum emittances of these rings are roughly 2 or 3 times of those of the optimized non-isochronus rings.

  11. Emittance growth from rotated quadrupoles in heavy ion accelerators

    International Nuclear Information System (INIS)

    Barnard, J.J.

    1995-01-01

    We derive a set of moment equations which incorporates linear quadrupolar focusing and space-charge defocusing, in the presence of rotational misalignments of the quadrupoles about the direction of beam propagation. Although the usual beam emittance measured relative to fixed transverse x and y coordinate axes is not constant, a conserved emittance-like quantity has been found. Implications for alignment tolerances in accelerators for heavy-ion inertial fusion are discussed

  12. Ghost signals in Allison emittance scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.

    2004-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  13. Ghost Signals In Allison Emittance Scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  14. Computing Eigen-Emittances from Tracking Data

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab

    2014-09-18

    In a strongly nonlinear system the particle distribution in the phase space may develop long tails which contribution to the covariance (sigma) matrix should be suppressed for a correct estimate of the beam emittance. A method is offered based on Gaussian approximation of the original particle distribution in the phase space (Klimontovich distribution) which leads to an equation for the sigma matrix which provides efficient suppression of the tails and cannot be obtained by introducing weights. This equation is easily solved by iterations in the multi-dimensional case. It is also shown how the eigen-emittances and coupled optics functions can be retrieved from the sigma matrix in a strongly coupled system. Finally, the developed algorithm is applied to 6D ionization cooling of muons in HFOFO channel.

  15. Optical characterization of OLED emitter properties by radiation pattern analyses

    Energy Technology Data Exchange (ETDEWEB)

    Flaemmich, Michael

    2011-09-08

    Researches in both, academia and industry are investigating optical loss channels in OLED layered systems by means of optical simulation tools in order to derive promising concepts for a further enhancement of the overall device performance. Besides other factors, the prospects of success of such optimization strategies rely severely on the credibility of the optical input data. The present thesis provides a guideline to measure the active optical properties of OLED emitter materials in situ by radiation pattern analyses. Reliable and widely applicable methods are introduced to determine the internal electroluminescence spectrum, the profile of the emission zone, the dipole emitter orientation, and the internal luminescence quantum efficiency of emissive materials from the optical far field emission of OLEDs in electrical operation. The proposed characterization procedures are applied to sets of OLEDs containing both, fluorescent polymeric materials as well as phosphorescent small-molecular emitters, respectively. On the one hand, quite expected results are obtained. On the other hand, several novel and truly surprising results are found. Most importantly, this thesis contains the first report of a non-isotropic, mainly parallel emitter orientation in a phosphorescent small-molecular guest-host system (Ir(MDQ)2(acac) in a-NPD). Due to the latter result, emitter orientation based optimization of phosphorescent OLEDs seems to be within reach. Since parallel dipoles emit preferably into air, the utilization of smart emissive materials with advantageous molecular orientation is capable to boost the efficiency of phosphorescent OLEDs by 50%. Materials design, the influence of the matrix material and the substrate, as well as film deposition conditions are just a few parameters that need to be studied further in order to exploit the huge potential of the dipole emitter orientation in phosphorescent OLEDs.

  16. Sub-nanometer emittance monitor for high brightness synchrotron radiation source

    International Nuclear Information System (INIS)

    Nakajima, K.

    1991-01-01

    Method of measuring a very small beam emittance in electron storage rings is presented. The monitor can sense an intrinsic emittance of beam particles by detecting the angular distribution of Compton scatterings of laser photons on beam electrons. It is possible to achieve measurement resolution smaller than 10 -9 m-rad without difficulty. (author)

  17. The emittance of high current heavy ion beams

    International Nuclear Information System (INIS)

    White, N.R.; Devaney, A.S.

    1989-01-01

    Ion implantation is the main application for high current heavy ion beams. Transfer ratio is defined as the ratio of the total ion current leaving the ion source to the current delivered to the endstation. This ratio is monitored and logged and its importance is explained. It is also affected by other factors, such as the isotopic and molecular composition of the total ion beam. The transfer ratio reveals the fraction of ions which are intercepted by parts of the beamline system. The effects of these ions are discussed in two categories: processing purity and reliability. In discussing the emittance of ribbon beams, the two orthogonal planes are usually considered separately. Longitudinal emittance is determined by slot length and by plasma ion temperature. It has already been revealed that the longitudinal divergence of the beams from BF3 is perhaps double that of the beam from arsenic vapour or argon, at the same total perveance from the ion source. This poses the question: why is the ion temperature higher for BF3 than for As or Ar? The transverse emittance is in practical terms dominated by the divergence. It is the most fruitful area for improvement in most real-world systems. There is an intrinsic divergence arising from initial ion energies within the plasma, and there is emittance growth that can occur as a result of aberration in the beam extraction optics. (N.K.)

  18. Emittance control and RF bunch compression in the NSRRC photoinjector

    International Nuclear Information System (INIS)

    Lau, W.K.; Hung, S.B.; Lee, A.P.; Chou, C.S.; Huang, N.Y.

    2011-01-01

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  19. Benchmarking of measurement and simulation of transverse rms-emittance growth

    Directory of Open Access Journals (Sweden)

    L. Groening

    2008-09-01

    Full Text Available Transverse emittance growth along the Alvarez drift tube linac (DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth, appropriate tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different transverse phase advances along the DTL. Special emphasis is put on the modeling of the initial distribution for the simulations. The concept of rms equivalence is expanded from full intensity to fractions of less than 100% of the beam. The experimental setup, data reduction, preparation of the simulations, and the evaluation of the simulations are described. In the experiments and in the simulations, a minimum of the rms-emittance growth was observed at zero current phase advances of about 60°. In general, good agreement was found between simulations and experiment for the mean values of horizontal and vertical emittances at the DTL exit.

  20. High efficiency and stable white OLED using a single emitter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian [Arizona State Univ., Tempe, AZ (United States). School of Mechanical, Aerospace, Chemical and Materials Engineering

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-based white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.

  1. Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.

    Science.gov (United States)

    Elleaume, P; Fortgang, C; Penel, C; Tarazona, E

    1995-09-01

    A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.

  2. Auger electron emitters: Insights gained from in vitro experiments

    International Nuclear Information System (INIS)

    Makrigiorgos, G.; Adelstein, S.J.; Kassis, A.I.

    1990-01-01

    This paper outlines the evolution of the current rationale for research into the biological effects of tissue-incorporated Auger electron emitters. The first section is a brief review of the research conducted by several groups in the last fifteen years. The second section describes the in vitro model used in our studies, dosimetric calculations, experimental techniques and recent findings. The third section focuses on the use of Auger electron emitters as in vitro microprobes for the investigation of the radiosensitivity of distinct subcellular components. Examination of the biological effects of the Auger electron emitter 125 I located in different cellular compartments of a single cell line (V 79 hamster lung fibroblast) verifies that DNA is the critical cell structure for radiation damage and that the sensitive sites are of nanometer dimensions. The data from incorporation of several Auger electron emitters at the same location within DNA suggest that there are no saturation effects from the decay of these isotopes (i.e. all the emitted energy is biologically effective) and provide some insight into which of the numerous physical mechanisms accompanying the Auger decay are most important in causing cell damage. Finally the implications of Auger electron emission for radiotherapy and radiation protection in diagnostic nuclear medicine are detailed and further research possibilities are suggested. (orig.)

  3. Beam emittance reduction during operation of Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-11-15

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  4. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters

    Directory of Open Access Journals (Sweden)

    Toan Trong Tran

    2017-11-01

    Full Text Available Single-photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub-GHz optical linewidth at 10 K. The observed zero-phonon line at ∼780 nm is optically stable under low power excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.

  5. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters

    Science.gov (United States)

    Tran, Toan Trong; Kianinia, Mehran; Bray, Kerem; Kim, Sejeong; Xu, Zai-Quan; Gentle, Angus; Sontheimer, Bernd; Bradac, Carlo; Aharonovich, Igor

    2017-11-01

    Single-photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub-GHz optical linewidth at 10 K. The observed zero-phonon line at ˜780 nm is optically stable under low power excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.

  6. Room-temperature deposition of diamond-like carbon field emitter on flexible substrates

    International Nuclear Information System (INIS)

    Chen, H.; Iliev, M.N.; Liu, J.R.; Ma, K.B.; Chu, W.-K.; Badi, N.; Bensaoula, A.; Svedberg, E.B.

    2006-01-01

    Room-temperature fabrication of diamond-like carbon electron field emitters on flexible polyimide substrate is reported. These thin film field emitters are made using an Ar gas cluster ion beam assisted C 6 vapor deposition method. The bond structure of the as-deposited diamond-like carbon film was studied using Raman spectroscopy. The field emission characteristics of the deposited films were also measured. Electron current densities over 15 mA/cm 2 have been recorded under an electrical field of about 65 V/μm. These diamond-like carbon field emitters are easy and inexpensive to fabricate. The results are promising for flexible field-emission fabrication without the need of complex patterning and tip shaping as compared to the Spindt-type field emitters

  7. DC-SC Photoinjector with Low Emittance at Peking University

    CERN Document Server

    Xiang Rong; Hao, J; Huang, Senlin; Lu Xiang Yang; Quan, Shengwen; Zhang, Baocheng; Zhao, Kui

    2005-01-01

    High average power Free Electron Lasers require the high quality electron beams with the low emittance and the sub-picosecond bunches. The design of DC-SC photoinjector, directly combining a DC photoinjector with an SRF cavity, can produce high average current beam with moderate bunch charge and high duty factor. Because of the DC gun, the emittance increases quickly at the beginning, so a carefully design is needed to control that. In this paper, the simulation of an upgraded design has been done to lower the normalized emittance below 1.5mm·mrad. The photoinjector consists of a DC gap and a 2+1/2-cell SRF cavity, and it is designed to produce 4.2 MeV electron beams at 100pC bunch charge and 81.25MHz repetition rate (8 mA average current).

  8. RF emittance in a low energy electron linear accelerator

    Science.gov (United States)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  9. Calculations of emittance and damping time effects in the SLC damping rings

    International Nuclear Information System (INIS)

    Limberg, T.; Moshammer, H.; Raubenheimer, T.; Spencer, J.; Siemann, R.

    1992-03-01

    In a recent NDR machine experiment the transverse emittance was studied as a function of store time and tune. To explain the observed transverse emittance damping time constants, the magnetic measurement data of the longitudinal field of the bending magnets had to be taken into account. The variation of the transverse emittances with tune due to misalignments and the associated anomalous dispersion is studied as well as the effect of synchrobetatron coupling due to dispersion in the RF cavities

  10. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang

    2015-01-23

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  11. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    Directory of Open Access Journals (Sweden)

    L. Shen

    2014-02-01

    Full Text Available Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 1020 cm−3 and 7.78 × 1020 cm−3 and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%abs compared to conventional emitters with 50 Ω/□ sheet resistance.

  12. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang; Ying, Pengzhan; Wang, Lin; Wei, Guodong; Gao, Fengmei; Zheng, Jinju; Shang, Minhui; Yang, Zuobao; Yang, Weiyou; Wu, Tao

    2015-01-01

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  13. Investigations on the transverse phase space at a photo injector for minimized emittance

    Energy Technology Data Exchange (ETDEWEB)

    Miltchev, V.

    2006-08-15

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs{sub 2}Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  14. Investigations on the transverse phase space at a photo injector for minimized emittance

    International Nuclear Information System (INIS)

    Miltchev, V.

    2006-08-01

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs 2 Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  15. Emittance studies of the BNL/SLAC/UCLA 1.6 cell photocathode rf gun

    International Nuclear Information System (INIS)

    Palmer, D.T.; Miller, R.H.; Wang, X.J.

    1997-01-01

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 micros. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, ε o , of the copper cathode has been measured

  16. Growth of GaN-based non- and semipolar heterostructures for high efficiency light emitters

    International Nuclear Information System (INIS)

    Wernicke, Tim

    2010-01-01

    Optoelectronic devices based on GaN and its alloys InGaN and AlGaN are capable of emitting light from the visible to the ultraviolet spectral region. Blue and green lasers have applications in laser projectors, DNA sequencing and spectroscopy. But it is extremely difficult to fabricate green laser diodes. Currently almost all of the light emitting diodes (LEDs) and lasers are grown on GaN crystals that are oriented in the polar (0001) c-plane direction, which provides the most stable growth surface. However the resulting polarization fields on (0001)GaN have detrimental effects on the optical properties of nitride light emitters, e.g. causing significant wavelength shifts and reduced efficiencies in InGaN LEDs. Growth on crystal surfaces with non- and semipolar orientations, e.g. (10 anti 10) m-plane or (11 anti 22), could enable devices with new and improved optical properties. For example, for nonpolar and semipolar LEDs the degree of polarization of the emitted light can be tailored. Furthermore easier to grow devices with green light emission, since the indium incorporation is enhanced for semipolar orientations. In contrast to c-plane GaN there is no polarization field across quantum wells on nonpolar GaN. By reducing the polarization fields an increase in the radiative recombination rate can be expected and would lead to higher LED efficiencies and lower laser thresholds. One of the biggest challenges for the growth of light emitters on non- and semipolar GaN is the choice of a suitable substrate: Heteroepitaxial growth on sapphire or LiAlO 2 allows the deposition of GaN on 2'' diameter wafers and larger. However, these layers show a very high defect density in particular basal plane stacking faults, in comparison to c-plane GaN on sapphire. In order to reduce the defect density we applied successfully epitaxial lateral overgrowth to heteroepitaxial nonpolar a-plane GaN and verified the improvement by spatially and spectrally cathodoluminescence imaging as

  17. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  18. New Method for Determination of Electrically Inactive Phosphorus in n-type Emitters

    OpenAIRE

    Steyer, Michael; Dastgheib-Shirazi, Amir; Hahn, Giso; Terheiden, Barbara

    2015-01-01

    The precise knowledge of the amount and the location in depth of inactive phosphorus in an n-type emitter is still a challenge. As a new approach, we determine the total amount of phosphorus (P dose) in the emitter stepwise in dependence of etching depth with the characterization tool ICP-OES. A comparison of the data with the electrically active P concentration profile measured by ECV allows to determine in which depths electrically inactive phosphorus is present. For a highly doped emitter,...

  19. Emittance compensation with dynamically optimized photoelectron beam profiles

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States)]. E-mail: rosen@physics.ucla.edu; Cook, A.M. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); England, R.J. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); Dunning, M. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); Anderson, S.G. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Ferrario, Massimo [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionale di Frascati, Via E. Fermi 41, Frascati, Rome (Italy)

    2006-02-01

    Much of the theory and experimentation concerning creation of a high-brightness electron beam from a photocathode, and then applying emittance compensation techniques, assumes that one must strive for a uniform density electron beam, having a cylindrical shape. On the other hand, this shape has large nonlinearities in the space-charge field profiles near the beam's longitudinal extrema. These nonlinearities are known to produce both transverse and longitudinal emittance growth. On the other hand, it has recently been shown by Luiten that by illuminating the cathode with an ultra-short laser pulse of appropriate transverse profile, a uniform density, ellipsoidally shaped bunch is dynamically formed, which then has linear space-charge fields in all dimensions inside of the bunch. We study here this process, and its marriage to the standard emittance compensation scenario that is implemented in most recent photoinjectors. It is seen that the two processes are compatible, with simulations indicating a very high brightness beam can be obtained. The robustness of this scheme to systematic errors is examined. Prospects for experimental tests of this scheme are discussed.

  20. Emittance compensation with dynamically optimized photoelectron beam profiles

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Cook, A.M.; England, R.J.; Dunning, M.; Anderson, S.G.; Ferrario, Massimo

    2006-01-01

    Much of the theory and experimentation concerning creation of a high-brightness electron beam from a photocathode, and then applying emittance compensation techniques, assumes that one must strive for a uniform density electron beam, having a cylindrical shape. On the other hand, this shape has large nonlinearities in the space-charge field profiles near the beam's longitudinal extrema. These nonlinearities are known to produce both transverse and longitudinal emittance growth. On the other hand, it has recently been shown by Luiten that by illuminating the cathode with an ultra-short laser pulse of appropriate transverse profile, a uniform density, ellipsoidally shaped bunch is dynamically formed, which then has linear space-charge fields in all dimensions inside of the bunch. We study here this process, and its marriage to the standard emittance compensation scenario that is implemented in most recent photoinjectors. It is seen that the two processes are compatible, with simulations indicating a very high brightness beam can be obtained. The robustness of this scheme to systematic errors is examined. Prospects for experimental tests of this scheme are discussed

  1. Measuring emittances and sigma matrices

    International Nuclear Information System (INIS)

    Rees, J.; Rivkin, L.

    1984-03-01

    The method used for measuring emittance at the SLAC Linac and the linear collider damping ring is described. The basis of the method is derived using one two-by-two matrix to specify the state of the input beam (sigma matrix) and another to describe the lens-drift transport system (R-matrix)

  2. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Science.gov (United States)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  3. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    International Nuclear Information System (INIS)

    Chen Teng; Central Florida Univ., Orlando, FL; Elias, L.R. R.; Central Florida Univ., Orlando, FL

    1995-01-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  4. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen Teng [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics; Elias, L.R. R. [University of Central Florida, Orlando, FL (United States). Center for Research in Electro-Optics and Lasers (CREOL)]|[Central Florida Univ., Orlando, FL (United States). Dept. of Physics

    1995-01-30

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  5. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  6. Internal emitter limits for iodine, radium and radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, R.A.

    1984-08-15

    This paper identifies some of the issues which arise in the consideration of the derivation of new limits on exposure to internal emitters. Basic and secondary radiation protection limits are discussed. Terms are defined and applied to the limitation of risk from stochastic effects. Non-stochastic data for specific internal emitters (/sup 131/I and the radium isotopes) are presented. Emphasis is placed on the quantitative aspects of the limit setting problem. 65 references, 2 figures, 12 tables.

  7. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max; Mayet, Frank; Gruener, Florian [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Floettmann, Klaus [DESY, Hamburg (Germany)

    2013-07-01

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required which can be identified with a small beam emittance. The current method to measure the transverse beam emittance at REGAE and results are presented.

  8. Quantum emitters coupled to surface plasmons of an nanowire

    DEFF Research Database (Denmark)

    Dzsotjan, David; Sørensen, Anders Søndberg; Fleischhauer, Michael

    2010-01-01

    We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nanowire using a Green's function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well......-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling. Udgivelsesdato: 27 August...

  9. Internal emitter limits for iodine, radium and radon daughters

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1984-01-01

    This paper identifies some of the issues which arise in the consideration of the derivation of new limits on exposure to internal emitters. Basic and secondary radiation protection limits are discussed. Terms are defined and applied to the limitation of risk from stochastic effects. Non-stochastic data for specific internal emitters ( 131 I and the radium isotopes) are presented. Emphasis is placed on the quantitative aspects of the limit setting problem. 65 references, 2 figures, 12 tables

  10. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  11. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  12. Hemispheric resource limitations in comprehending ambiguous pictures.

    Science.gov (United States)

    White, H; Minor, S W

    1990-03-01

    Ambiguous pictures (Roschach inkblots) were lateralized for 100 msec vs. 200 msec to the right and left hemispheres (RH and LH) of 32 normal right-handed males who determined which of two previously presented words (an accurate or inaccurate one) better described the inkblot. Over the first 32 trials, subjects receiving each stimulus exposure duration were less accurate when the hemisphere receiving the stimulus also controlled the hand used to register a keypress response (RH-left hand and LH-right hand trials) than when hemispheric resources were shared, i.e., when one hemisphere controlled stimulus processing and the other controlled response programming. These differences were eliminated when the 32 trials were repeated.

  13. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  14. Emittance growth caused by bends in the Los Alamos free-electron laser energy recovery experiment

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1987-01-01

    Experimentally transporting the beam from the wiggler to the decelerators in the energy recovery experiment (ERX) at the Los Alamos National Laboratory free-electron laser was more difficult than expected because of the large initial emittance in the beam. This emittance was apparently caused in an early 60 0 achromatic bend. To get this beam through subsequent bends without wall interception, the quadrupole focusing had to be changed from the design amount; as a result, the emittance grew further. This paper discusses various mechanisms for this emittance growth in the 60 0 bend, including effects caused by path changes in the bend resulting from wake-field-induced energy changes of particles in the beam and examines emittance filters, ranging from a simple aperture near a beam crossover to more complicated telescope schemes designed to regain the original emittance before the 60 0 bend

  15. Description and availability of the SMARTS spectral model for photovoltaic applications

    Science.gov (United States)

    Myers, Daryl R.; Gueymard, Christian A.

    2004-11-01

    Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.

  16. Space-charge driven emittance growth in a 3D mismatched anisotropic beam

    International Nuclear Information System (INIS)

    Qiang, J.; Ryne, R.D.; Hofmann, I.

    2002-01-01

    In this paper we present a 3D simulation study of the emittance growth in a mismatched anisotropic beam. The equipartitioning driven by a 4th order space-charge resonance can be significantly modified by the presence of mismatch oscillation and halo formation. This causes emittance growth in both the longitudinal and transverse directions which could drive the beam even further away from equipartition. The averaged emittance growth per degree freedom follows the upper bound of the 2D free energy limit plus the contributions from equipartitioning

  17. Selección tecnico-economica de emisores Technical and economical selection of emitters

    Directory of Open Access Journals (Sweden)

    Eduardo A. Holzapfel

    2007-12-01

    Full Text Available El presente trabajo tuvo como objetivo estudiar los factores que intervienen en la selección técnico económico de goteros. En el estudio fueron utilizados emisores autocompensados y no autocompensados, considerando a los aspectos técnicos como porcentaje de suelo humedecido, número de emisores por planta y coeficiente de uniformidad y precio y la presión de operación del emisor como aspectos económicos. Los resultados muestran que la presión de operación de los emisores es el factor más importante a considerar en la selección, ya que para valores más bajos de presión de operación se obtuvieron menores valores de costo total anualizado, independiente del tipo de gotero. En general, los goteros no autocompesados presentaron valores de costo anualizado menores, para un rango de presión similar. Finalmente el análisis tecnico-económico en la selección de emisores es un procedimiento importante.The objective of this research was to study the parameters that affect the technical-economical selection of emitters. In the study compensated and non-compensated emitters were used. The technical aspects considered were: percentage of wetted soil, number of emitters per plant and the uniformity coefficient as well as price and operation pressure for economic aspects. The results shows that the operation pressure of emitters is the most important factor to be considered in the selection , with smaller values of pressure giving lower total annual cost, independently of the type of emitter. In general, the non-compensated emitter shows lower annual cost values than for compensated emitters, for a similar range of pressures. Finally the technical-economical analysis in the emitter selection is an important procedure.

  18. Right-hemispheric processing of non-linguistic word features

    DEFF Research Database (Denmark)

    Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig

    2013-01-01

    -hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made...... perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required......, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may...

  19. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  20. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    International Nuclear Information System (INIS)

    Kruit, P.; Bezuijen, M.; Barth, J.E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ''brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed

  1. A Program to Generate a Particle Distribution from Emittance Measurements

    CERN Document Server

    Bouma, DS; Lallement, JB

    2010-01-01

    We have written a program to generate a particle distribution based on emittance measurements in x-x’ and y-y’. The accuracy of this program has been tested using real and constructed emittance measurements. Based on these tests, the distribution generated by the program can be used to accurately simulate the beam in multi-particle tracking codes, as an alternative to a Gaussian or uniform distribution.

  2. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    Science.gov (United States)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  3. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.

    Science.gov (United States)

    Marinica, D C; Lourenço-Martins, H; Aizpurua, J; Borisov, A G

    2013-01-01

    Coupling molecular excitons and localized surface plasmons in hybrid nanostructures leads to appealing, tunable optical properties. In this respect, the knowledge about the excitation dynamics of a quantum emitter close to a plasmonic nanoantenna is of importance from fundamental and practical points of view. We address here the effect of the excited electron tunneling from the emitter into a metallic nanoparticle(s) in the optical response. When close to a plasmonic nanoparticle, the excited state localized on a quantum emitter becomes short-lived because of the electronic coupling with metal conduction band states. We show that as a consequence, the characteristic features associated with the quantum emitter disappear from the optical absorption spectrum. Thus, for the hybrid nanostructure studied here and comprising quantum emitter in the narrow gap of a plasmonic dimer nanoantenna, the quantum tunneling might quench the plexcitonic states. Under certain conditions the optical response of the system approaches that of the individual plasmonic dimer. Excitation decay via resonant electron transfer can play an important role in many situations of interest such as in surface-enhanced spectroscopies, photovoltaics, catalysis, or quantum information, among others.

  4. Galileo's Multiinstrument Spectral View of Europa's Surface Composition

    Science.gov (United States)

    Fanale, F.P.; Granahan, J.C.; McCord, T.B.; Hansen, G.; Hibbitts, C.A.; Carlson, R.; Matson, D.; Ocampo, A.; Kamp, L.; Smythe, W.; Leader, F.; Mehlman, R.; Greeley, R.; Sullivan, R.; Geissler, P.; Barth, C.; Hendrix, A.; Clark, B.; Helfenstein, P.; Veverka, J.; Belton, M.J.S.; Becker, K.; Becker, T.

    1999-01-01

    We have combined spectral reflectance data from the Solid State Imaging (SSI) experiment, the Near-Infrared Mapping Spectrometer (NIMS), and the Ultraviolet Spectrometer (UVS) in an attempt to determine the composition and implied genesis of non-H2O components in the optical surface of Europa. We have considered four terrains: (1) the "dark terrains" on the trailing hemisphere, (2) the "mottled terrain," (3) the linea on the leading hemisphere, and (4) the linea embedded in the dark terrain on the trailing hemisphere. The darker materials in these terrains exhibit remarkably similar spectra in both the visible and near infrared. In the visible, a downturn toward shorter wavelengths has been attributed to sulfur. The broad concentrations of dark material on the trailing hemisphere was originally thought to be indicative of exogenic sulfur implantation. While an exogenic cause is still probable, more recent observations by the UVS team at higher spatial resolution have led to their suggestions that the role of the bombardment may have primarily been to sputter away overlying ice and to reveal underlying endogenic non-H2O contaminants. If so, this might explain why the spectra in all these terrains are so similar despite the fact that the contaminants in the linea are clearly endogenic and those in the mottled terrain are almost certainly so. In the near infrared, all these terrains exhibit much more asymmetrical bands at 1.4 and 2.0 ??m at shorter wavelengths than spectra from elsewhere on Europa. It has been argued that this is because the water molecules are bound in hydrated salts. However, this interpretation has been challenged and it has also been argued that pure coarse ice can exhibit such asymmetric bands under certain conditions. The nature of this controversy is briefly discussed, as are theoretical and experimental studies bearing on this problem. ?? 1999 Academic Press.

  5. Polarization measurements made on LFRA and OASIS emitter arrays

    Science.gov (United States)

    Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James

    2008-04-01

    Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.

  6. Emittance studies of the 2.45 GHz permanent magnet ECR ion source

    Science.gov (United States)

    Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.

    2004-05-01

    During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.

  7. Emittance studies of the 2.45 GHz permanent magnet ECR ion source

    International Nuclear Information System (INIS)

    Zelenak, A.; Bogomolov, S.L.; Yazvitsky, N.Yu.

    2004-01-01

    During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics

  8. Alpha spectral power and coherence in the patients with mild cognitive impairment during a three-level working memory task

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: The functional relationship between calculated alpha band spectral power and inter-/intra-hemispheric coherence during a three-level working memory task of patients with mild cognitive impairment (MCI) was investigated. Methods:Subjects included 35 MCI patients according to the DSM-Ⅳ criteria (mean age: 62.3, SD: 6.5) and 34 healthy controls (mean age:57.4, SD: 4.0) were selected from the community at large. All subjects performed a simple calculation and recall task with three levels of working memory load while electroencephalograph (EEG) signal was recorded. The spectral EEG power was computed over alphal (8.0~10.0 Hz) and alpha2 (10.5~13.0 Hz) frequency bands and was compared between rest stage and working memory processing stage by two-way ANOVA. Post hoc testing analyzed the differences between each two levels of working memory load during task processing. The inter-hemisphere EEG coherence of frontal (F3-F4), central (C3-C4), parietal (P3-P4), temporal (T5-T6) as well as occipital (O1-O2) was compared between MCI patients and normal controls. The EEG signals from F3-C3,F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs resulted from the intra-hemispheric action for alphal and alpha2 frequency bands. Result: There was significantly higher EEG power from MCI patients than from normal controls both at rest and during working memory processing. Significant differences existed between rest condition and three-level working memory tasks (P<0.001). The inter- and intra-hemispheric coherence during working memory tasks showed a "drop to rise" tendency compared to that at rest condition. There was significantly higher coherence in MCI patients than in the controls.When task difficulties increased, the cortical connectivity of intra-hemispheric diminished while the inter-hemispheric connectivity dominantly maintained the cognitive processing in MCI patients. Conclusion: The results of the present study indicate that the

  9. Emittance measuring system on the UNILAC

    International Nuclear Information System (INIS)

    Ehrich, A.; Glatz, J.; Strahl, P.

    A description is given of one of the beam emittance measuring systems designed for the UNILAC at GSI. The measuring system mechanics and the detector system are detailed, and the associated electronics are discussed. Computer programming and data processing and evaluation are described

  10. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    International Nuclear Information System (INIS)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T.; Guharay, S.K.

    1997-01-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H - ) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  11. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  12. Effects of emittance and space-charge in femtosecond bunch compression

    International Nuclear Information System (INIS)

    Kan, K.; Yang, J.; Kondoh, T.; Norizawa, K.; Yoshida, Y.

    2008-01-01

    Ultrashort electron bunches of the order of <100fs are essential for the study of ultrafast reactions and phenomena by means of time-resolved pump-probe experiments. In order to generate such an electron bunch, the effects of emittance, space-charge (SC) and coherent synchrotron radiation (CSR) on the bunch length in a femtosecond magnetic bunch compressor were studied theoretically. It was observed that the bunch length is dominated by the emittance, SC and CSR effects when the electron bunch is compressed into a femtosecond electron bunch. The increases in bunch length due to the transverse emittance, SC and CSR effects in the bunch compressor were 1.7 fs/mm mrad, 107 fs/nC and 72 fs/nC, respectively. Finally, the simulated bunch length was compared with the experimental results.

  13. Emittance growth in coast in the SPS

    CERN Document Server

    Alekou, A; Bartosik, H; Calaga, R

    2017-01-01

    The CERN SPS will be used as a test-bed for the LHCprototype crab-cavities, which will be installed and testedin the SPS in 2018. As the time available for experimen-tal beam dynamics studies with the crab cavities installedin the machine will be limited, a very good preparation isrequired in advance. One of the main concerns is the in-duced emittance growth, driven by phase jitter in the crabcavities. In this respect, several machine development (MD)studies were performed during the past years to quantifyand characterize the emittance evolution of proton beamsin coast in the SPS. In these proceedings, the experimentalobservations from past years are summarized and the MDstudies from 2016 are presented. Finally, a proposal for anexperimental program for 2017 is discussed.

  14. Decoupling Intensity Radiated by the Emitter in Distance Estimation from Camera to IR Emitter

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Luna Vázquez

    2013-05-01

    Full Text Available Various models using radiometric approach have been proposed to solve the problem of estimating the distance between a camera and an infrared emitter diode (IRED. They depend directly on the radiant intensity of the emitter, set by the IRED bias current. As is known, this current presents a drift with temperature, which will be transferred to the distance estimation method. This paper proposes an alternative approach to remove temperature drift in the distance estimation method by eliminating the dependence on radiant intensity. The main aim was to use the relative accumulated energy together with other defined models, such as the zeroth-frequency component of the FFT of the IRED image and the standard deviation of pixel gray level intensities in the region of interest containing the IRED image. By using the abovementioned models, an expression free of IRED radiant intensity was obtained. Furthermore, the final model permitted simultaneous estimation of the distance between the IRED and the camera and the IRED orientation angle. The alternative presented in this paper gave a 3% maximum relative error over a range of distances up to 3 m.

  15. Transverse and longitudinal emittance measurements in the ELSA linac

    International Nuclear Information System (INIS)

    Loulergue, A.; Dowell, D.H.; Joly, S.; De Brion, J.P.; Haouat, G.; Schumann, F.

    1997-01-01

    The ELSA RF linac photoinjector has been designed to deliver high-brightness electron beams. The present paper deals with the transverse and longitudinal emittance measurements, at different locations along the ELSA beam line, and the analysis of their variations as a function of the photoinjector parameters : magnetic field generated by the anode focusing lens, bunch charge and pulse duration. While transverse emittance has been already studied in other similar installations, there has been little study of the electron beam longitudinal dynamics. Experimental results are presented and compared to simulation-code expectations. For 2.0 nC, 85 A electron bunches, a normalized rms emittance of 2 π mm mrad and a brightness of 4.5 x 10 13 A/(π m rad) 2 at the linac exit have been measured as well as less than 10 keV rms energy spread (or less than 0.1% at 16.5 MeV). (orig.)

  16. Hypothalamic digoxin, hemispheric chemical dominance, and creativity.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The human hypothalamus produces an endogenous membrane Na(+)-K+ ATPase inhibitor, digoxin, which regulates neuronal transmission. The digoxin status and neurotransmitter patterns were studied in creative and non-creative individuals, as well as in individuals with differing hemispheric dominance, in order to find out the role of cerebral dominance in this respect. The activity of HMG CoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in creative/non-creative individuals, and in individuals with differing hemispheric dominance. In creative individuals there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in creative individuals correlated with right hemispheric dominance. In non-creative individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in non-creative individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to creative tendency.

  17. Personality, Hemispheric Dominance, and Cognitive Style.

    Science.gov (United States)

    Hylton, Jaime; Hartman, Steve E.

    1997-01-01

    Shows that 154 medical students and 526 undergraduates (samples treated separately) who were judged left- or right-hemisphere dominant (by the Hemispheric Mode Indicator) were found to have very different personalities (as measured by the Myers-Briggs Type Indicator). Considers some of the practical ramifications of the psychometric overlap of…

  18. Simple-to-prepare multipoint field emitter

    Science.gov (United States)

    Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.

    2015-07-01

    We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.

  19. Focal attenuation of specific electroencephalographic power over the right parahippocampal region during transcerebral copper screening in living subjects and hemispheric asymmetric voltages in fixed brain tissue.

    Science.gov (United States)

    Rouleau, Nicolas; Lehman, Brendan; Persinger, Michael A

    2016-08-01

    Covering the heads of human volunteers with a toque lined with copper mesh compared to no mesh resulted in significant diminishments in quantitative electroencephalographic power within theta and beta-gamma bands over the right caudal hemisphere. The effect was most evident in women compared to men. The significant attenuation of power was verified by LORETA (low resolution electromagnetic tomography) within the parahippocampal region of the right hemisphere. Direct measurements of frequency-dependent voltages of coronal section preserved in ethanol-formalin-acetic acid from our human brain collection revealed consistently elevated power (0.2μV(2)Hz(-1)) in right hemispheric structures compared to left. The discrepancy was most pronounced in the grey (cortical) matter of the right parahippocampal region. Probing the superficial convexities of the cerebrum in an unsectioned human brain demonstrated rostrocaudal differences in hemispheric spectral power density asymmetries, particularly over caudal and parahippocampal regions, which were altered as a function of the chemical and spatial contexts imposed upon the tissue. These results indicate that the heterogeneous response of the human cerebrum to covering of the head by a thin conductor could reflect an intrinsic structure and unique electrical property of the (entorhinal) cortices of the right caudal hemisphere that persists in fixed tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhanced activation of the left hemisphere promotes normative decision making.

    Science.gov (United States)

    Corser, Ryan; Jasper, John D

    2014-01-01

    Previous studies have reported that enhanced activation of the left cerebral hemisphere reduces risky-choice, attribute, and goal-framing effects relative to enhanced activation of the right cerebral hemisphere. The present study sought to extend these findings and show that enhanced activation of the left hemisphere also reduces violations of other normative principles, besides the invariance principle. Participants completed ratio bias (Experiment 1, N = 296) and base rate neglect problems (Experiment 2, N = 145) under normal (control) viewing or with the right or left hemisphere primarily activated by imposing a unidirectional gaze. In Experiment 1 we found that enhanced left hemispheric activation reduced the ratio bias relative to normal viewing and a group experiencing enhanced right hemispheric activation. In Experiment 2 enhanced left hemispheric activation resulted in using base rates more than normal viewing, but not significantly more than enhanced right hemispheric activation. Results suggest that hemispheric asymmetries can affect higher-order cognitive processes, such as decision-making biases. Possible theoretical accounts are discussed as well as implications for dual-process theories.

  1. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance.

    Science.gov (United States)

    Wu, Xinyun; Oleschuk, Richard D; Cann, Natalie M

    2012-09-21

    Full-dimensional computational fluid dynamics (CFD) simulations are presented for nano electrospray ionization (ESI) with various emitter designs. Our CFD electrohydrodynamic simulations are based on the Taylor-Melcher leaky-dielectric model, and the volume of fluid technique for tracking the fast-changing liquid-gas interface. The numerical method is first validated for a conventional 20 μm inner diameter capillary emitter. The impact of ESI voltage, flow rate, emitter tapering, surface hydrophobicity, and fluid conductivity on the nano-ESI behavior are thoroughly investigated and compared with experiments. Multi-electrospray is further simulated with 2-hole and 3-hole emitters with the latter having a linear or triangular hole arrangement. The simulations predict multi-electrospray behavior in good agreement with laboratory observations.

  2. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    Science.gov (United States)

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  3. Method validation to determine total alpha beta emitters in water samples using LSC

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Nashawati, A.; Al-akel, B.; Saaid, S.

    2006-06-01

    In this work a method was validated to determine gross alpha and beta emitters in water samples using liquid scintillation counter. 200 ml of water from each sample were evaporated to 20 ml and 8 ml of them were mixed with 12 ml of the suitable cocktail to be measured by liquid scintillation counter Wallac Winspectral 1414. The lower detection limit by this method (LDL) was 0.33 DPM for total alpha emitters and 1.3 DPM for total beta emitters. and the reproducibility limit was (± 2.32 DPM) and (±1.41 DPM) for total alpha and beta emitters respectively, and the repeatability limit was (±2.19 DPM) and (±1.11 DPM) for total alpha and beta emitters respectively. The method is easy and fast because of the simple preparation steps and the large number of samples that can be measured at the same time. In addition, many real samples and standard samples were analyzed by the method and showed accurate results so it was concluded that the method can be used with various water samples. (author)

  4. Mirrorless lasing from light emitters in percolating clusters

    Science.gov (United States)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  5. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  6. Impact of Optics on CSR-Related Emittance Growth in Bunch Compressor Chicanes

    CERN Document Server

    Limberg, Torsten

    2005-01-01

    The dependence of emittance growth due to Coherent Synchrotron Radiation (CSR) in bunch compressor chicanes on optics has been noticed and empirically studied in the past. We revisit the subject, suggesting a model to explain slice emittance growth dependence on chicane optics. A simplified model to calculate projected emittance growth when it is mainly caused by transverse slice centroid offsets is presented. It is then used to find optimal compensation of centroid kicks in the single chicanes of a two-stage compression system by adjusting the phase advance of the transport in between and the ration of the compression factors.

  7. Delusions and the Right Hemisphere: A Review of the Case for the Right Hemisphere as a Mediator of Reality-Based Belief.

    Science.gov (United States)

    Gurin, Lindsey; Blum, Sonja

    2017-01-01

    Delusions are beliefs that remain fixed despite evidence that they are incorrect. Although the precise neural mechanism of delusional belief remains to be elucidated, there is a predominance of right-hemisphere lesions among patients with delusional syndromes accompanied by structural pathology, suggesting that right-hemisphere lesions, or networks with key nodes in the right hemisphere, may be playing a role. The authors discuss the potential theoretical basis and empiric support for a specific right-hemisphere role in delusion production, drawing on its roles in pragmatic communication; perceptual integration; attentional surveillance and anomaly/novelty detection; and belief updating.

  8. Reducing longitudinal emittance growth in RFQ accelerators

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1994-08-01

    Bunching and capture of a monochromatic beam into an rf bucket inevitably lead to substantial emittance growth through the mechanisms of filamentation and non-adiabatic variation of parameters. We describe a three step strategy for minimizing this growth, based on a clear understanding of the non-linear beam dynamics, and apply to acceleration of heavy ions with Z/A = 1/60 (and initial kinetic energy 60 keV/u) in a radio frequency quadrupole (RFQ) operating at 25 MHz. We also describe a scheme, to further reduce the emittance, based upon the use of an external RFQ-type prebuncher before the main accelerator. The external unit permits the bunching voltage to be reduced, to inject into a moving bucket, and to reduce the structure length. (author). 7 refs., 6 figs

  9. Hemispheric asymmetry and theory of mind: is there an association?

    Science.gov (United States)

    Herzig, Daniela A; Sullivan, Sarah; Evans, Jonathan; Corcoran, Rhiannon; Mohr, Christine

    2012-01-01

    In autism and schizophrenia attenuated/atypical functional hemispheric asymmetry and theory of mind impairments have been reported, suggesting common underlying neuroscientific correlates. We here investigated whether impaired theory of mind performance is associated with attenuated/atypical hemispheric asymmetry. An association may explain the co-occurrence of both dysfunctions in psychiatric populations. Healthy participants (n=129) performed a left hemisphere (lateralised lexical decision task) and right hemisphere (lateralised face decision task) dominant task as well as a visual cartoon task to assess theory of mind performance. Linear regression analyses revealed inconsistent associations between theory of mind performance and functional hemisphere asymmetry: enhanced theory of mind performance was only associated with (1) faster right hemisphere language processing, and (2) reduced right hemisphere dominance for face processing (men only). The majority of non-significant findings suggest that theory of mind and functional hemispheric asymmetry are unrelated. Instead of "overinterpreting" the two significant results, discrepancies in the previous literature relating to the problem of the theory of mind concept, the variety of tasks, and the lack of normative data are discussed. We also suggest how future studies could explore a possible link between hemispheric asymmetry and theory of mind.

  10. Hemispheric lateralization in an analysis of speech sounds. Left hemisphere dominance replicated in Japanese subjects.

    Science.gov (United States)

    Koyama, S; Gunji, A; Yabe, H; Oiwa, S; Akahane-Yamada, R; Kakigi, R; Näätänen, R

    2000-09-01

    Evoked magnetic responses to speech sounds [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M. Vainio, P. Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.] were recorded from 13 Japanese subjects (right-handed). Infrequently presented vowels ([o]) among repetitive vowels ([e]) elicited the magnetic counterpart of mismatch negativity, MMNm (Bilateral, nine subjects; Left hemisphere alone, three subjects; Right hemisphere alone, one subject). The estimated source of the MMNm was stronger in the left than in the right auditory cortex. The sources were located posteriorly in the left than in the right auditory cortex. These findings are consistent with the results obtained in Finnish [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M.Vainio, P.Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.][T. Rinne, K. Alho, P. Alku, M. Holi, J. Sinkkonen, J. Virtanen, O. Bertrand and R. Näätänen, Analysis of speech sounds is left-hemisphere predominant at 100-150 ms after sound onset. Neuroreport, 10 (1999) 1113-1117.] and English [K. Alho, J.F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko and R.J. Ilmoniemi, Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 258 (1998) 9-12.] subjects. Instead of the P1m observed in Finnish [M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi and R. Näätänen, Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage, 9 (1999) 330-336.] and English [K. Alho, J. F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko

  11. Integrated circuits with emitter coupling and their application in nanosecond nuclear electronics

    International Nuclear Information System (INIS)

    Basiladze, S.G.

    1976-01-01

    Principal static and dynamic characteristics are considered of integrated circuits with emitter coupling, as well as problems of signal transmission. Diagrams are given of amplifiers, discriminators, time interval drivers, generators, etc. Systems and units of nanosecond electronics employing integrated circuits with emitter coupling are briefly described

  12. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  13. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  14. A dual task priming investigation of right hemisphere inhibition for people with left hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Smith-Conway Erin R

    2012-03-01

    Full Text Available Abstract Background During normal semantic processing, the left hemisphere (LH is suggested to restrict right hemisphere (RH performance via interhemispheric suppression. However, a lesion in the LH or the use of concurrent tasks to overload the LH's attentional resource balance has been reported to result in RH disinhibition with subsequent improvements in RH performance. The current study examines variations in RH semantic processing in the context of unilateral LH lesions and the manipulation of the interhemispheric processing resource balance, in order to explore the relevance of RH disinhibition to hemispheric contributions to semantic processing following a unilateral LH lesion. Methods RH disinhibition was examined for nine participants with a single LH lesion and 13 matched controls using the dual task paradigm. Hemispheric performance on a divided visual field lexical decision semantic priming task was compared over three verbal memory load conditions, of zero-, two- and six-words. Related stimuli consisted of categorically related, associatively related, and categorically and associatively related prime-target pairs. Response time and accuracy data were recorded and analyzed using linear mixed model analysis, and planned contrasts were performed to compare priming effects in both visual fields, for each of the memory load conditions. Results Control participants exhibited significant bilateral visual field priming for all related conditions (p Conclusions The results from the control group are consistent with suggestions of an age related hemispheric asymmetry reduction and indicate that in healthy aging compensatory bilateral activation may reduce the impact of inhibition. In comparison, the results for the LHD group indicate that following a LH lesion RH semantic processing can be manipulated and enhanced by the introduction of a verbal memory task designed to engage LH resources and allow disinhibition of RH processing.

  15. Interindividual variability in the hemispheric organization for speech.

    Science.gov (United States)

    Tzourio-Mazoyer, N; Josse, G; Crivello, F; Mazoyer, B

    2004-01-01

    A PET activation study was designed to investigate hemispheric specialization during speech comprehension and production in right- and left-handed subjects. Normalized regional cerebral blood flow (NrCBF) was repeatedly monitored while subjects either listened to factual stories (Story) or covertly generated verbs semantically related to heard nouns (Gener), using silent resting (Rest) as a common control condition. NrCBF variations in each task, as compared to Rest, as well as functional asymmetry indices (FAI = right minus left NrCBF variations), were computed in anatomical regions of interest (AROIs) defined on the single-subject MNI template. FAIs were predominantly leftward in all regions during both tasks, although larger FAIs were observed during Gener. Subjects were declared "typical" for language hemispheric specialization based on the presence of significant leftward asymmetries (FAI Gener, and in the middle and inferior temporal AROIs during Story. Six subjects (including five LH) showed an atypical language representation. Among them, one presented a right hemisphere specialization during both tasks, another a shift in hemispheric specialization from production to comprehension (left during Gener, right during Story). The group of 14 typical subjects showed significant positive correlation between homologous left and right AROIs NrCBF variations in temporal areas during Story, and in temporal and inferior frontal areas during Gener, almost all regions presenting a leftward FAI. Such correlations were also present in deactivated areas with strong leftward asymmetry (supramarginalis gyrus, inferior parietal region). These results suggest that entry into a language task translates into a hemispheric reconfiguration of lateral cortical areas with global NrCBF increase in the dominant hemisphere and decrease in the minor hemisphere. This can be considered as the setting up of a "language mode", under the control of a mechanism that operates at a perisylvian

  16. Emittance growth in displaced, space-charge-dominated beams with energy spread

    International Nuclear Information System (INIS)

    Barnard, J.J.; Miller, J.; Haber, I.

    1993-01-01

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, they authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of the results is presented. This study is applicable to an inertial fusion reactor driven by a heavy ion accelerator

  17. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps

  18. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  19. Smith-Purcell experiment utilizing a field-emitter array cathode measurements of radiation

    CERN Document Server

    Ishizuka, H; Yokoo, K; Shimawaki, H; Hosono, A

    2001-01-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mmx25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 mu A up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 mu m period, 30 deg. blaze and a 0.2 mu m thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80 deg. relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 ...

  20. Radioactive fallout in the southern hemisphere from nuclear weapons tests

    International Nuclear Information System (INIS)

    Moroney, J.R.

    1979-11-01

    Fallout in the southern hemisphere, and its origins in the national programs of atmospheric nuclear weapons testing in both hemispheres, are reviewed. Of the 390 nuclear tests conducted in the atmosphere to date, 53 were carried out in the southern hemisphere and it is the second phase of these, between 1966 and 1974, that is seen to have been responsible for the main fallout of short-lived fission products in the southern hemisphere. In contrast to this, the programs of atmospheric nuclear testing in the northern hemisphere up to 1962 are shown to have been the main source of long-lived fission products in fallout in the southern hemisphere. The course followed by this contamination through the environment of the southern hemisphere is traced for the national programs of nuclear testing after 1962 taken separately (France, China) and for the earlier national programs taken together (U.S.S.R., U.S.A. and U.K.). The impact on populations in the southern hemisphere of fallout from atmospheric nuclear weapons tests to date is assessed

  1. Radioactive fallout in the southern hemisphere from nuclear weapons tests

    International Nuclear Information System (INIS)

    Moroney, J.R.

    1979-01-01

    Fallout in the southern hemisphere, and its origins in the national programs of atmospheric nuclear weapons testing in both hemispheres, are reviewed. Of the 390 nuclear tests conducted in the atmosphere to date, 53 were carried out in the southern hemisphere and it is the second phase of these, between 1966 and 1974, that is seen to have been responsible for the main fallout of short-lived fission products in the southern hemisphere. In contrast to this, the programs of atmospheric nuclear testing in the northern hemisphere up to 1962 are shown to have been the main source of long-lived fission products in fallout in the southern hemisphere. The course followed by this contamination through the environment of the southern hemisphere is traced for the national programs of nuclear testing after 1962 taken separately (France, China) and for the earlier national programs taken together (U.S.S.R., U.S.A. and U.K.). The impact on populations in the southern hemisphere of fallout from atmospheric nuclear weapons tests to date is assessed. (author)

  2. Biologic data, models, and dosimetric methods for internal emitters

    International Nuclear Information System (INIS)

    Weber, D.A.

    1990-01-01

    The absorbed radiation dose from internal emitters has been and will remain a pivotal factor in assessing risk and therapeutic utility in selecting radiopharmaceuticals for diagnosis and treatment. Although direct measurements of absorbed dose and dose distributions in vivo have been and will continue to be made in limited situations, the measurement of the biodistribution and clearance of radiopharmaceuticals in human subjects and the use of this data is likely to remain the primary means to approach the calculation and estimation of absorbed dose from internal emitters over the next decade. Since several approximations are used in these schema to calculate dose, attention must be given to inspecting and improving the application of this dosimetric method as better techniques are developed to assay body activity and as more experience is gained in applying these schema to calculating absorbed dose. Discussion of the need for considering small scale dosimetry to calculate absorbed dose at the cellular level will be presented in this paper. Other topics include dose estimates for internal emitters, biologic data mathematical models and dosimetric methods employed. 44 refs

  3. Energy dependence of the emittance of damping ring beams

    International Nuclear Information System (INIS)

    Stiening, R.

    1985-01-01

    The energy at which the SLC damping rings are operated was chosen to be 1.21 GeV. At the time that that specification was made, the repetition rate of the SLC was expected to be 180 Hz. It is now anticipated that the repetition rate during the initial year of operation of the SLC will be 120 Hz. The following curves which show the output emittance of the damping rings as a function of input emittance and energy suggest that there is a range of energies over which the rings can be operated without changing the SLC luminosity. It should be noted that in the era of polarized beams, the damping ring energy will be fixed at the design value on account of the spin precession required in the LTR and RTL transport lines. The SLC design output emittance of the damping rings is 3 x 10 -5 radian-meters. Because of space charge disruption and quantum emission downstream of the damping rings, much lower values than the design value may not have a large beneficial effect on the luminosity. 3 figures

  4. Fowler Nordheim theory of carbon nanotube based field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Parveen, Shama; Kumar, Avshish [Department of Physics, Jamia Millia Islamia (Central University), New Delhi (India); Husain, Samina [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), New Delhi (India); Husain, Mushahid, E-mail: mush_reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (Central University), New Delhi (India)

    2017-01-15

    Field emission (FE) phenomena are generally explained in the frame-work of Fowler Nordheim (FN) theory which was given for flat metal surfaces. In this work, an effort has been made to present the field emission mechanism in carbon nanotubes (CNTs) which have tip type geometry at nanoscale. High aspect ratio of CNTs leads to large field enhancement factor and lower operating voltages because the electric field strength in the vicinity of the nanotubes tip can be enhanced by thousand times. The work function of nanostructure by using FN plot has been calculated with reverse engineering. With the help of modified FN equation, an important formula for effective emitting area (active area for emission of electrons) has been derived and employed to calculate the active emitting area for CNT field emitters. Therefore, it is of great interest to present a state of art study on the complete solution of FN equation for CNTs based field emitter displays. This manuscript will also provide a better understanding of calculation of different FE parameters of CNTs field emitters using FN equation.

  5. Nonlinear electrostatic emittance compensation in kA, fs electron bunches

    International Nuclear Information System (INIS)

    Geer, S.B. van der; Loos, M.J. de; Botman, J.I.M.; Luiten, O.J.; Wiel, M.J. van der

    2002-01-01

    Nonlinear space-charge effects play an important role in emittance growth in the production of kA electron bunches with a bunch length much smaller than the bunch diameter. We propose a scheme employing the radial third-order component of an electrostatic acceleration field, to fully compensate the nonlinear space-charge effects. This results in minimal transverse root-mean-square emittance. The principle is demonstrated using our design simulations of a device for the production of high-quality, high-current, subpicosecond electron bunches using electrostatic acceleration in a 1 GV/m field. Simulations using the GPT code produce a bunch of 100 pC and 73 fs full width at half maximum pulse width, resulting in a peak current of about 1.2 kA at an energy of 2 MeV. The compensation scheme reduces the root-mean-square emittance by 34% to 0.4π mm mrad

  6. Low Emittance Growth in a LEBT with Un-Neutralized Section

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel [Fermilab; Carneiro, Jean-Paul [Fermilab; Shemyakin, Alexander [Fermilab

    2016-06-01

    In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam's own space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT that contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report discusses the experimental realization of such a scheme at Fermilab's PXIE, where low beam emittance dilution was demonstrated

  7. Generalized emittance measurements in a beam transport line

    International Nuclear Information System (INIS)

    Skelly, J.; Gardner, C.; Luccio, A.; Kponou, A.; Reece, K.

    1991-01-01

    Motivated by the need to commission 3 beam transport lines for the new AGS Booster project, we have developed a generalized emittance-measurement program; beam line specifics are entirely resident in data tables, not in program code. For instrumentation, the program requires one or more multi-wire profile monitors; one or multiple profiles are acquired from each monitor, corresponding to one or multiple tunes of the transport line. Emittances and Twiss parameters are calculated using generalized algorithms. The required matix descriptions of the beam optics are constructed by an on-line general beam modeling program. Design of the program, its algorithms, and initial experience with it will be described. 4 refs., 2 figs., 1 tab

  8. Tellurium adsorption on tungsten and molybdenum field emitters

    International Nuclear Information System (INIS)

    Collins, R.A.; Kiwanga, C.A.

    1977-01-01

    Studies of the adsorption of tellurium onto tungsten and molybdenum field emitters are described and the results obtained are compared with those obtained in previous work on the adsorption of silicon and selenium. The adsorption of Te onto W was found to be much more uniform than in the case of Se. Although Te is metallic in many of its properties its adsorptive behavior on field emitters is found to be similar to that of selenium and these adsorptive properties are basically common to all semiconductors. The most evident property of these adsorbates is that the work function and emission current decrease simultaneously at coverages of less than half a monolayer and the work function subsequently increases. (B.D.)

  9. Electron Cloud at Low Emittance in CesrTA

    CERN Document Server

    Palmer, Mark; Billing, Michael; Calvey, Joseph; Conolly, Christopher; Crittenden, James; Dobbins, John; Dugan, Gerald; Eggert, Nicholas; Fontes, Ernest; Forster, Michael; Gallagher, Richard; Gray, Steven; Greenwald, Shlomo; Hartill, Donald; Hopkins, Walter; Kreinick, David; Kreis, Benjamin; Leong, Zhidong; Li, Yulin; Liu, Xianghong; Livezey, Jesse; Lyndaker, Aaron; Makita, Junki; McDonald, Michael; Medjidzade, Valeri; Meller, Robert; O'Connell, Tim; Peck, Stuart; Peterson, Daniel; Ramirez, Gabriel; Rendina, Matthew; Revesz, Peter; Rider, Nate; Rice, David; Rubin, David; Sagan, David; Savino, James; Schwartz, Robert; Seeley, Robert; Sexton, James; Shanks, James; Sikora, John; Smith, Eric; Strohman, Charles; Williams, Heather; Antoniou, Fanouria; Calatroni, Sergio; Gasior, Marek; Jones, Owain Rhodri; Papaphilippou, Yannis; Pfingstner, Juergen; Rumolo, Giovanni; Schmickler, Hermann; Taborelli, Mauro; Asner, David; Boon, Laura; Garfinkel, Arthur; Byrd, John; Celata, Christine; Corlett, John; De Santis, Stefano; Furman, Miguel; Jackson, Alan; Kraft, Rick; Munson, Dawn; Penn, Gregory; Plate, David; Venturini, Marco; Carlson, Benjamin; Demma, Theo; Dowd, Rohan; Flanagan, John; Jain, Puneet; Kanazawa, Ken-ichi; Kubo, Kiyoshi; Ohmi, Kazuhito; Sakai, Hiroshi; Shibata, Kyo; Suetsugu, Yusuke; Tobiyama, Makoto; Gonnella, Daniel; Guo, Weiming; Harkay, Katherine; Holtzapple, Robert; Jones, James; Wolski, Andrzej; Kharakh, David; Ng, Johnny; Pivi, Mauro; Wang, Lanfa; Ross, Marc; Tan, Cheng-Yang; Zwaska, Robert; Schachter, Levi; Wilkinson, Eric

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud’s effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results

  10. Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings

    Science.gov (United States)

    Chandrasekhar, Prasanna

    2011-01-01

    One of the last remaining technical hurdles with variable emittance devices or skins based on conducting polymer electrochromics is the high solar absorptance of their top surfaces. This high solar absorptance causes overheating of the skin when facing the Sun in space. Existing technologies such as mechanical louvers or loop heat pipes are virtually inapplicable to micro (solar absorption to Alpha(s) of between 0.30 and 0.46. Coupled with the emittance properties of the variable emittance skins, this lowers the surface temperature of the skins facing the Sun to between 30 and 60 C, which is much lower than previous results of 100 C, and is well within acceptable satellite operations ranges. The performance of this technology is better than that of current new technologies such as microelectromechanical systems (MEMS), electrostatics, and electrophoretics, especially in applications involving micro and nano spacecraft. The coatings are deposited inside a high vacuum, layering multiple coatings onto the top surfaces of variable emittance skins. They are completely transparent in the entire relevant infrared region (about 2 to 45 microns), but highly reflective in the visible-NIR (near infrared) region of relevance to solar absorptance.

  11. A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures

    KAUST Repository

    Chen, Xiankai

    2017-10-17

    In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually translates into a small fluorescence oscillator strength, which can significantly decrease the emission quantum yield and limit efficiency in organic light-emitting diode devices. Here, based on the results of quantum-chemical calculations on TADF emitters composed of carbazole donor and 2,4,6-triphenyl-1,3,5-triazine acceptor moieties, a new strategy is proposed for the molecular design of efficient TADF emitters that combine a small ΔEST with a large fluorescence oscillator strength. Since this strategy goes beyond the traditional framework of structurally twisted, charge-transfer type emitters, importantly, it opens the way for coplanar molecules to be efficient TADF emitters. Here, a new emitter, composed of azatriangulene and diphenyltriazine moieties, is theoretically designed, which is coplanar due to intramolecular H-bonding interactions. The synthesis of this hexamethylazatriangulene-triazine (HMAT-TRZ) emitter and its preliminary photophysical characterizations point to HMAT-TRZ as a potential efficient TADF emitter.

  12. Emittance Growth due to Crab Cavity Ramping for LHC Beam-1 Lattice

    CERN Document Server

    Morita, A

    2008-01-01

    In LHC upgrade scenarios using global crab crossing, it is desired to turn on the crab cavity only at top energy. Turning on the crab cavity could increase the emittance of the stored beam, since the transverse kick of the crab cavity excites betatron oscillations. For a sufficiently slow ramping speed of the crab cavity voltage, however, the changes in z-dependent closed orbit are sufficiently adiabatic that the emittance growth becomes negligible. In order to determine the safe ramping speed of the LHC crab-cavity voltage, the dependence of the emittance growth on the ramping speed is estimated via a 6D particle-tracking simulation.

  13. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, Tor O. [Stanford Univ., CA (United States)

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of γϵx = 3x10-6 m-rad and γϵy = 3x10-8 m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  14. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  15. The generation and acceleration of low emittance flat beams for future linear colliders

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of γε x = 3x10 -6 m-rad and γε y = 3x10 -8 m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ''fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future

  16. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, J.; Sakai, F.; Okada, Y.; Yorozu, M.; Yanagida, T.; Endo, A.

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91±0.28 πmm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac

  17. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  18. Statistical Clustering and Compositional Modeling of Iapetus VIMS Spectral Data

    Science.gov (United States)

    Pinilla-Alonso, N.; Roush, T. L.; Marzo, G.; Dalle Ore, C. M.; Cruikshank, D. P.

    2009-12-01

    It has long been known that the surfaces of Saturn's major satellites are predominantly icy objects [e.g. 1 and references therein]. Since 2004, these bodies have been the subject of observations by the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment [2]. Iapetus has the unique property that the hemisphere centered on the apex of its locked synchronous orbital motion around Saturn has a very low geometrical albedo of 2-6%, while the opposite hemisphere is about 10 times more reflective. The nature and origin of the dark material of Iapetus has remained a question since its discovery [3 and references therein]. The nature of this material and how it is distributed on the surface of this body, can shed new light into the knowledge of the Saturnian system. We apply statistical clustering [4] and theoretical modeling [5,6] to address the surface composition of Iapetus. The VIMS data evaluated were obtained during the second flyby of Iapetus, in September 2007. This close approach allowed VIMS to obtain spectra at relatively high spatial resolution, ~1-22 km/pixel. The data we study sampled the trailing hemisphere and part of the dark leading one. The statistical clustering [4] is used to identify statistically distinct spectra on Iapetus. The composition of these distinct spectra are evaluated using theoretical models [5,6]. We thank Allan Meyer for his help. This research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. [1] A, Coradini et al., 2009, Earth, Moon & Planets, 105, 289-310. [2] Brown et al., 2004, Space Science Reviews, 115, 111-168. [3] Cruikshank, D. et al Icarus, 2008, 193, 334-343. [4] Marzo, G. et al. 2008, Journal of Geophysical Research, 113, E12, CiteID E12009. [5] Hapke, B. 1993, Theory of reflectance and emittance spectroscopy, Cambridge University Press. [6] Shkuratov, Y. et al. 1999, Icarus, 137, 235-246.

  19. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  20. Thermal Emittance Measurement of the Cs2Te Photocathode in FZD Superconducting RF

    CERN Document Server

    Xiang, R; Michel, P; Murcek, P; Teichert, J

    2010-01-01

    The thermal emittance of the photocathode is an interesting physical property for the photoinjector, because it decides the minimum emittance the photoinjector can finally achieve. In this paper we will report the latest results of the thermal emittance of the Cs2Te photocathode in FZD Superconducting RF gun. The measurement is performed with solenoid scan method with very low bunch charge and relative large laser spot on cathode, in order to reduce the space charge effect as much as possible, and meanwhile to eliminate the wake fields and the effect from beam halos.

  1. On the preservation of single- and multi-bunch emittance in linear accelerators

    International Nuclear Information System (INIS)

    Drevlak, M.

    1995-11-01

    This document is concentrated on the investigation of the dynamics of a particle beam in a linear accelerator. We numerically simulate a number of effects and evaluate the severity of their impact on the beam. Furthermore, we examine the applicability of several correction techniques aiming at the suppression or correction of the effects diluting the beam emittance. First, there is the issue of single-bunch dynamics : we see that wake field effects and dispersive errors can cause a significant emittance growth. Secondly, long range dipole wakes and dispersive effects arising from the energy spread between different bunches will cause relative offsets between the individual bunches and likewise result in emittance growth. Finally, we observe interactions between the single-bunch and multi-bunch dynamics in a bunch train, which further aggravate these effects. The corrective measures against emittance growth are first tested with respect to individual effects relating to issues of single- or multi-bunch dynamics. Later, these different correction techniques are joined to one machine tuning procedure that will be applied in order to achieve good emittance preservation for operation of the accelerator with a full beam consisting of the full number of bunches. The performance of this procedure is tested in simulations of the combined single- and multi-bunch dynamics. Finally, tolerances on the machine alignment as well as machine and beam parameters are established. (orig.)

  2. On the standardization of positron emitters by 4πγ counting

    International Nuclear Information System (INIS)

    Garcia-Torano, Eduardo; Peyres, Virginia; Roteta, Miguel

    2007-01-01

    This paper focuses on the application of the method known as ''4πγ counting'' to the standardization of positron emitters. Measurements and Monte Carlo simulations have been used to determine the optimal conditions of application. Two positron emitters ( 22 Na and 18 F) have been standardized, and the results are compared to those obtained by other methods. A good agreement has been found

  3. Colorimetry and efficiency of white LEDs: Spectral width dependence

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Elaine; Edwards, Paul R.; Martin, Robert W. [Department of Physics, SUPA, Strathclyde University, Glasgow (United Kingdom)

    2012-03-15

    The potential colour rendering capability and efficiency of white LEDs constructed by a combination of individual red, green and blue (RGB) LEDs are analysed. The conventional measurement of colour rendering quality, the colour rendering index (CRI), is used as well as a recently proposed colour quality scale (CQS), designed to overcome some of the limitations of CRI when narrow-band emitters are being studied. The colour rendering performance is maximised by variation of the peak emission wavelength and relative intensity of the component LEDs, with the constraint that the spectral widths follow those measured in actual devices. The highest CRI achieved is 89.5, corresponding to a CQS value of 79, colour temperature of 3800 K and a luminous efficacy of radiation (LER) of 365 lm/W. By allowing the spectral width of the green LED to vary the CRI can be raised to 90.9, giving values of 82.5 and 370 lm/W for the CQS and LER, respectively. The significance of these values are discussed in terms of optimising the possible performance of RGB LEDs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...

  5. Hydraulic performance evaluation of pressure compensating (pc) emitters and micro-tubing for drip irrigation system

    International Nuclear Information System (INIS)

    Mangrio, A.G.; Asif, M.; Jahangir, I.

    2013-01-01

    Drip irrigation system is necessary for those areas, where the water scarcity issues are present. The present study was conducted at the field station of Climate Change, Alternate Energy and Water Resources Institute (CAEWRI), National Agricultural Research Center (NARC), Islamabad, during 2013, regarding drip irrigation system. Drip irrigation system depends on uniform emitter application flow. All the emitters were tested and replicated thrice at pressure head (34 to 207Kpa) with an increment of 34 Kpa. The minimum and maximum discharges were 1.32 - 3.52, 3.36 - 5.42, and 43.22 - 100.99 Lph, with an average of 2.42, 4.63 and 73.66 Lph, for Bow Smith, RIS and Micro-tubing, respectively. It indicates that more than 90% of emission uniformity (EU) and uniformity coefficient (CU) for all Emitters, which shows excellent water application with least standard deviation, ranging 0.12 to 2.37, throughout the operating pressure heads in all emitters. An average coefficient of variation (CV) of all emitters were behaving less than 0.07, indicating an excellent class at all operating pressure heads between 34 to 207 Kpa. Moreover, the relationship of discharge and pressure of emitters indicates that discharge increased with the increase of pressure head. The Q-H curve plays key role in the selection of emitters. (author)

  6. Model of emittance growth in a self-pinched beam

    International Nuclear Information System (INIS)

    Lee, E.P.; Yu, S.S.

    1979-01-01

    A semi-phenomenological formula is proposed for the change of emittance of a self-pinched beam which is not matched to its equilibrium radius. Near equilibrium this formula, coupled with an envelope equation, yields the damped sausage oscillations observed in simulation and experiments. For a beam which is injected cold (no transverse velocity spread), the formula coincides with the analytically calculated initial growth of emittance. The basic theory is developed here and used to compute the linear damping rate for several current profiles. The resultant non-linear increase in equilibrium quantities is also calculated in lowest order of the degree of mismatch

  7. Hypothalamic digoxin, hemispheric chemical dominance, and mesenteric artery occlusion.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Paramesware Achutha

    2003-12-01

    The role of the isoprenoid pathway in vascular thrombosis, especially mesenteric artery occlusion and its relation to hemispheric dominance, was assessed in this study. The following parameters were measured in patients with mesenteric artery occlusion and individuals with right hemispheric, left hemispheric, and bihemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition. In patients with mesenteric artery occlusion there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, low ubiquinone, and elevated free radical levels. The RBC membrane Na(+)-K+ ATPase activity and serum magnesium were decreased. There was also an increase in tryptophan catabolites and reduction in tyrosine catabolites in the serum. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these patients. The biochemical patterns obtained in mesenteric artery occlusion is similar to those obtained in left-handed/right hemispheric dominant individuals by the dichotic listening test. But all the patients with mesenteric artery occlusion were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Mesenteric artery occlusion occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function. Hemispheric chemical dominance may thus control the risk for developing vascular thrombosis in individuals.

  8. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  9. Progress on low emittance tuning for the CLIC Damping Rings

    CERN Document Server

    Alabau-Gonzalvo, J; Papaphilippou, Y

    2014-01-01

    In the frame of the CLIC main Damping Ring a study on the sensitivity of the lattice to different sources of misalignment is presented. The minimum equilibrium emittance is simulated and analytically estimated under dipole and quadrupole rolls, and quadrupole and sextupole vertical offsets. The result of this study establishes alignment tolerances to preserve the vertical emittance below the design value (1 pmrad). Non-linear dynamics studies have been done to determine the dynamic aperture in the presence of misalignments.

  10. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  11. Hypothalamic digoxin, hemispheric chemical dominance, and the tridosha theory.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    Ayurveda, the traditional Indian System of Medicine, deals with the theory of the three tridosha states (both physical and psychological): Vata, Pitta, and Kapha. They are the three major human constitutional types that both depend on psychological and physical characteristics. The Pitta state is described as a critical, discriminative, and rational psychological state of mind, while the Kapha state is described as being dominant for emotional stimuli. The Vata state is an intermediate unstable shifting state. The Pitta types are of average height and built with well developed musculature. The Vata types are thin individuals with low body mass index. The Kapha types are short stocky individuals that tend toward obesity, and who are sedentary. The study assessed the biochemical differences between right hemispheric dominant, bihemispheric dominant, and left hemispheric dominant individuals, and then compared this with the patterns obtained in the Vata, Pitta, and Kapha states. The isoprenoid metabolites (digoxin, dolichol, and ubiquinone), glycoconjugate metabolism, free radical metabolism, and the RBC membrane composition were studied. The hemispheric chemical dominance in various systemic diseases and psychological states was also investigated. The results showed that right hemispheric chemically dominant/Kapha state had elevated digoxin levels, increased free radical production and reduced scavenging, increased tryptophan catabolites and reduced tyrosine catabolites, increased glycoconjugate levels and increased cholesterol: phospholipid ratio of RBC membranes. Left hemispheric chemically dominant/Pitta states had the opposite biochemical patterns. The patterns were normal or intermediate in the bihemispheric chemically dominant/Vata state. This pattern could be correlated with various systemic and neuropsychiatric diseases and personality traits. Right hemispheric chemical dominance/Kapha state represents a hyperdigoxinemic state with membrane sodium

  12. Hypothalamic digoxin, hemispheric chemical dominance, and chronic bronchitis emphysema.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-09-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator, and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins), and ubiquinone (free radical scavenger). This was assessed in patients with chronic bronchitis emphysema. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find the role of hemispheric dominance in the pathogenesis of chronic bronchitis emphysema. All the 15 patients with chronic bronchitis emphysema were right-handed/left hemispheric dominant by the dichotic listening test. In patients with chronic bronchitis emphysema there was elevated digoxin synthesis, increased dolichol, and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate levels of RBC membrane in patients with chronic bronchitis emphysema. The same biochemical patterns were obtained in individuals with right hemispheric dominance. Endogenous digoxin by activating the calcineurin signal transduction pathway of T-cell can contribute to immune activation in chronic bronchitis emphysema. Increased free radical generation can also lead to immune activation. Endogenous synthesis of nicotine can contribute to the pathogenesis of the disease. Altered glycoconjugate metabolism and membranogenesis can lead to defective lysosomal stability contributing to the disease process by increased release of lysosomal proteases. The role of an endogenous digoxin and hemispheric dominance in the pathogenesis of chronic bronchitis emphysema and in the regulation of lung structure/function is discussed. The biochemical patterns obtained in chronic bronchitis emphysema is similar to those obtained in left

  13. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Science.gov (United States)

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  14. The "Creative Right Brain" Revisited: Individual Creativity and Associative Priming in the Right Hemisphere Relate to Hemispheric Asymmetries in Reward Brain Function.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2017-10-01

    The idea that creativity resides in the right cerebral hemisphere is persistent in popular science, but has been widely frowned upon by the scientific community due to little empirical support. Yet, creativity is believed to rely on the ability to combine remote concepts into novel and useful ideas, an ability which would depend on associative processing in the right hemisphere. Moreover, associative processing is modulated by dopamine, and asymmetries in dopamine functionality between hemispheres may imbalance the expression of their implemented cognitive functions. Here, by uniting these largely disconnected concepts, we hypothesize that relatively less dopamine function in the right hemisphere boosts creativity by releasing constraining effects of dopamine on remote associations. Indeed, participants with reduced neural responses in the dopaminergic system of the right hemisphere (estimated by functional MRI in a reward task with positive and negative feedback), displayed higher creativity (estimated by convergent and divergent tasks), and increased associative processing in the right hemisphere (estimated by a lateralized lexical decision task). Our findings offer unprecedented empirical support for a crucial and specific contribution of the right hemisphere to creativity. More importantly our study provides a comprehensive view on potential determinants of human creativity, namely dopamine-related activity and associative processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Emittance growth due to noise and its suppression with the Feedback system in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.; Parkhomchuk, V.; Shiltsev, V.; Stupakov, G.

    1993-03-01

    The problem of emittance growth due to random fluctuation of the magnetic field in hadron colliders is considered. Based on a simple one-dimensional linear model, a formula for an emittance growth rate as a function of the noise spectrum is derived. Different sources of the noise are analyzed and their role is estimated for the Superconducting Super Collider (SSC). A theory of feedback suppression of the emittance growth is developed which predicts the residual growth of the emittance in the accelerator with a feedback system

  16. The Effectiveness of 1 Hz rTMS Over the Primary Motor Area of the Unaffected Hemisphere to Improve Hand Function After Stroke Depends on Hemispheric Dominance.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Theilig, Steven; Wiederer, Ralf; Nowak, Dennis Alexander

    2015-01-01

    Inhibition of motor cortex excitability of the contralesional hemisphere may improve dexterity of the affected hand after stroke. 40 patients (17 dominant hemispheric stroke, 23 non-dominant hemispheric stroke) with a mild to moderate upper limb motor impairment were enrolled in a double-blind, randomized, placebo-controlled trial with two parallel-groups. Both groups received 15 daily sessions of motor training preceded by either 1 Hz rTMS or sham rTMS. Behavioral and neurophysiological evaluations were performed at baseline, after the first week and after the third week of treatment, and after a 6 months follow-up. In both groups motor function of the affected hand improved significantly. Patients with stroke of the non-dominant hemisphere made a similar improvement, regardless of whether the motor training was preceded by sham or 1 Hz rTMS. Patients with stroke of the dominant hemisphere had a less favorable improvement than those with stroke of the non-dominant hemisphere after motor training preceded by sham rTMS. However, when 1 Hz rTMS preceded the motor training, patients with stroke of the dominant hemisphere made a similar improvement as those with stroke of the non-dominant hemisphere. Motor recovery of the affected upper limb after stroke is determined by dominance of the affected hemisphere. Stroke of the dominant hemisphere is associated with per se poorer improvement of the affected hand. 1 Hz rTMS over the contralesional M1 significantly improves dexterity of the affected hand in patients with stroke of the dominant hemisphere, but not in those with stroke of the non-dominant hemisphere. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Emittance growth due to beam-gas scattering

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1992-06-01

    The effect of beam-gas scattering on beam emittance is examined by deriving the beam distribution function. The distribution function is found by treating the beam-gas scattering as a filtered Poisson process and calculating the cumulants of the distribution. (author)

  18. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    International Nuclear Information System (INIS)

    Kohmura, Yoshiki; Suzuki, Yoshio; Awaji, Mitsuhiro; Tanaka, Takashi; Hara, Toru; Goto, Shunji; Ishikawa, Tetsuya

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper limit for the vertical emittance of the electron beam could be obtained as 0.14 nmrad

  19. Transverse emittance measurement of high-current single pulse beams using pepper-pot method

    International Nuclear Information System (INIS)

    Ke Jianlin; Zhou Changgeng; Qiu Rui

    2013-01-01

    A pepper pot-imaging plate system has been developed and used to measure the 4-D transverse emittance of a vacuum arc ion source. Single beam pulses of tens to hundreds milliamperes were extracted from the plasma with 64 kV high voltage. An imaging plate was laid after the pepper pot to visualize the ion beamlets passing though the holes on the pepper pot. An application program was developed to show the phase-space distribution and calculate the ellipse and RMS emittances. The normalized RMS emittances are about 6.41 π·mm·mrad in x-direction and 4.61 π·mm·mrad in y-direction. It is shown that the emittance of the vacuum arc ion source is much larger than that of other types of ion sources, which is mainly attributed to the high current and the convex meniscus of this source. (authors)

  20. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  1. Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array

    Science.gov (United States)

    Kintz, Andrew L.

    This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering

  2. Significance of Hemispheric Security for Mexico

    Science.gov (United States)

    2003-04-07

    La Seguridad Internacional, la Nueva Geopolitica Continental y Mexico ,” Seminario Internacional sobre Misiones de Paz, Seguridad y Defensa, Rio de...USAWC STRATEGY RESEARCH PROJECT SIGNIFICANCE OF HEMISPHERIC SECURITY FOR MEXICO by LTC Enrique Garcia Jaramillo Cavalry, Mexican Army COL Joseph R...xx-xx-2002 to xx-xx-2003 4. TITLE AND SUBTITLE Significance of Hemispheric Security for Mexico Unclassified 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  3. Methods of dichotic listening as a research methodology for hemispheric interaction.

    Directory of Open Access Journals (Sweden)

    Kovyazina M.S.

    2014-07-01

    Full Text Available Experimental data was obtained from a dichotic listening test by patients with unilateral brain lesions and corpus callosum pathology (agenesis, cysts, degenerative changes, etc. Efficiency index analysis shows that interhemispheric interaction in the audioverbal sphere depends to a greater extent on the right hemisphere state. The dichotic listening technique is not an informative means of studying hemispheric interaction, since it does not allow a clear distinction between hemispheric symptoms and symptoms of pathology of the corpus callosum. Thus, violations of hemispheric relations caused by disorders of the corpus callosum and cerebral hemispheres change worth more right hemisphere activity.

  4. Emittance Correction in the 2006 ILC Bunch Compressor

    International Nuclear Information System (INIS)

    Tenenbaum, P.; SLAC

    2007-01-01

    A recent study [1] has indicated substantial potential emittance growth in the ILC bunch compressor due to quad misalignments, BPM misalignments, and pitches in the RF cavities. Table 1 summarizes several results from [1]. In this simulation, quad misalignments and cavity pitches are Gaussian distributed and are considered with respect to the nominal survey line; BPM misalignments are also Gaussian-distributed but are considered with respect to the quadrupole axis. It is assumed that the BPM offsets with respect to the quads are found in a previous quad-shunting BBA step which is not simulated. In this study we seek to repeat the studies documented above, and additionally to perform a study in which additional dispersion bumps are used to further reduce the projected emittance

  5. Hemispheric biases and the control of visuospatial attention: an ERP study

    Directory of Open Access Journals (Sweden)

    Banich Marie T

    2005-08-01

    Full Text Available Abstract Background We examined whether individual differences in hemispheric utilization can interact with the intrinsic attentional biases of the cerebral hemispheres. Evidence suggests that the hemispheres have competing biases to direct attention contralaterally, with the left hemisphere (LH having a stronger bias than the right hemisphere. There is also evidence that individuals have characteristic biases to utilize one hemisphere more than the other for processing information, which can induce a bias to direct attention to contralateral space. We predicted that LH-biased individuals would display a strong rightward attentional bias, which would create difficulty in selectively attending to target stimuli in the left visual field (LVF as compared to right in the performance of a bilateral flanker task. Results Consistent with our hypothesis, flanker interference effects were found on the N2c event-related brain potential and error rate for LH-biased individuals in the Attend-LVF condition. The error rate effect was correlated with the degree of hemispheric utilization bias for the LH-Bias group. Conclusion We conclude that hemispheric utilization bias can enhance a hemisphere's contralateral attentional bias, at least for individuals with a LH utilization bias. Hemispheric utilization bias may play an important and largely unrecognized role in visuospatial attention.

  6. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures

  7. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    Science.gov (United States)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  8. Isotopically varying spectral features of silicon-vacancy in diamond

    International Nuclear Information System (INIS)

    Dietrich, Andreas; Jahnke, Kay D; Binder, Jan M; Rogers, Lachlan J; Jelezko, Fedor; Teraji, Tokuyuki; Isoya, Junichi

    2014-01-01

    The silicon-vacancy centre (SiV − ) in diamond has exceptional spectral properties for single-emitter quantum information applications. Most of the fluorescence is concentrated in a strong zero phonon line (ZPL), with a weak phonon sideband extending for 100 nm that contains several clear features. We demonstrate that the ZPL position can be used to reliably identify the silicon isotope present in a single SiV − centre. This is of interest for quantum information applications since only the 29 Si isotope has nuclear spin. In addition, we show that the sharp 64 meV phonon peak is due to a local vibrational mode of the silicon atom. The presence of a local mode suggests a plausible origin of the measured isotopic shift of the ZPL. (paper)

  9. Hypothalamic digoxin, hemispheric chemical dominance, and interstitial lung disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with idiopathic pulmonary fibrosis and in individuals of differing hemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of idiopathic pulmonary fibrosis. All 15 cases of interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. The isoprenoidal metabolites--digoxin, dolichol, and ubiquinone, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, tyrosine/tryptophan catabolic patterns, free radical metabolism, glycoconjugate metabolism, and RBC membrane composition--were assessed in idiopathic pulmonary fibrosis as well as in individuals with differing hemispheric dominance. In patients with idiopathic pulmonary fibrosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in patients with idiopathic pulmonary fibrosis. Isoprenoid pathway dysfunction con tributes to the pathogenesis of idiopathic pulmonary fibrosis. The biochemical patterns obtained in interstitial lung disease are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. However, all the patients with interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Interstitial lung disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  10. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-05-01

    In this paper, we discuss the generation and control of the emittance in a next-generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. The proposed vertical beam sizes at the interaction point are the order of a few nanometers while the horizontal sizes are about a factor of 100 larger. This cross-sectional area is about a factor of 10 4 smaller than the SLC. However, the main question is: what are the tolerances to achieve such a small size, and how do they compare to present techniques for alignment and stability? These tolerances are very design dependent. Alignment tolerances in the linac can vary from 1 μm to 100 μm depending upon the basic approach. In this paper we discuss techniques of emittance generation and control which move alignment tolerances to the 100 μm range

  11. Emittance growth in non-symmetric beam configurations

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1996-06-01

    Emittance growth in intense beams due to nonuniformity, mismatch, and misalignment has been analyzed by Reiser for the special case of axisymmetry. A more complex problem occurs in cases where a number of discrete beamlets are to be merged into a single focusing channel, for example, in designs for Heavy Ion Fusion drivers or Magnetic Fusion negative-ion systems. Celata, assuming the system to be perfectly matched and aligned, analyzed the case of four round beamlets arranged in a square array. We generalize these previous studies and analyze emittance growth in systems that are less symmetric. We include beam systems that are not necessarily matched and where the x and y moments may be unequal. We also include the possibility of initial convergence velocities that may differ in the two planes and allow for misalignment of the beam center-of-mass position and direction

  12. Feasibility Study of Silver as Emitter of In-core Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chi Dong; Lee, Hyun Suk [UNIST, Ulsan (Korea, Republic of); Shin, Ho Cheol; Cha, Kyoon Ho [Korea Hydro and Nuclear Power Corporation, Daejeon (Korea, Republic of); Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The rhodium SPND(rhodium self-powered neutron detectors) provides strong detector signals so that they can be easily detected, but there is an issue the rhodium emitter needs to be replaced frequently because of its fast depletion. As an alternative, the vanadium SPND was designed and evaluated by Lee et al., but it also has an issue the detector signal level is too low. In this work, another material, silver, was introduced as emitter material of in-core detectors because its neutron absorption cross section is bigger than that of vanadium and smaller than rhodium. The feasibility of silver was investigated in comparison with the rhodium and vanadium detectors. The SPND model was designed using a Monte Carlo code MCNP6 and ORIGEN-S in SCALE code package. A silver self-powered neutron detector (SPND) was introduced in this paper, and the feasibility of silver as an emitter material of in-core detectors was investigated. The comparisons with rhodium and vanadium emitters demonstrate that silver has 0.78 years longer lifetime than rhodium and 10 times stronger signal than vanadium. Since a cycle length is generally 1.5 years, silver can be used for three cycles whereas rhodium should be replaced after two cycles.

  13. Decreasing the emittance using a multi-period Robinson wigglers in TPS

    Energy Technology Data Exchange (ETDEWEB)

    Huamg, C. W., E-mail: huang.zw@nsrrc.org.tw [Department of Physics, National Tsing Hua University Hsinchu 30043, Taiwan (China); Hwang, C. S., E-mail: cshwang@nsrrc.org.tw [NSRRC, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Lee, S. Y., E-mail: shylee@indiana.edu [Department of Physics, Indiana University (United States)

    2016-07-27

    The Taiwan Photon Source (TPS) has been successfully commissioned. However, the minimum emittance in the TPS lattice is 1.6 nm rad. In the existing TPS storage ring lattice, it is imperative to reduce the emittance to below 1 nm rad. Therefore, a feasibility study for reducing the effective emittance of the TPS storage ring by using a Robinson wiggler was launched; the reduction is necessary to enhance the photon brilliance. In this study, a permanent-magnet multiperiod Robinson wiggler (MRW) was developed for use instead of the single-period Robinson wiggler. In general, the quadruple field of a combined function magnet in the storage ring is approximately few tesla per meter. According to beam dynamic analysis, we found that it is necessary to adopt a high gradient (40 T/m) combined-function MRW magnet to reduce the emittance effectively. Therefore, a high gradient field strength is required in the combined function MRW magnet. In this study, the quadrupole field strength of the MRW magnet was allowed to be approximately 40 T/m at a magnet gap of 20 mm. The period length of the MRW magnet was 300 mm and the period number was 16. The of MRWs is discussed in regard to the possibility of increasing the photon brilliance from IU22.

  14. Photon scattering from a system of multilevel quantum emitters. I. Formalism

    Science.gov (United States)

    Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.

    2018-04-01

    We introduce a formalism to solve the problem of photon scattering from a system of multilevel quantum emitters. Our approach provides a direct solution of the scattering dynamics. As such the formalism gives the scattered fields' amplitudes in the limit of a weak incident intensity. Our formalism is equipped to treat both multiemitter and multilevel emitter systems, and is applicable to a plethora of photon-scattering problems, including conditional state preparation by photodetection. In this paper, we develop the general formalism for an arbitrary geometry. In the following paper (part II) S. Das et al. [Phys. Rev. A 97, 043838 (2018), 10.1103/PhysRevA.97.043838], we reduce the general photon-scattering formalism to a form that is applicable to one-dimensional waveguides and show its applicability by considering explicit examples with various emitter configurations.

  15. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    Science.gov (United States)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  16. A vision of graded hemispheric specialization.

    Science.gov (United States)

    Behrmann, Marlene; Plaut, David C

    2015-11-01

    Understanding the process by which the cerebral hemispheres reach their mature functional organization remains challenging. We propose a theoretical account in which, in the domain of vision, faces and words come to be represented adjacent to retinotopic cortex by virtue of the need to discriminate among homogeneous exemplars. Orthographic representations are further constrained to be proximal to typically left-lateralized language-related information to minimize connectivity length between visual and language areas. As reading is acquired, orthography comes to rely more heavily (albeit not exclusively) on the left fusiform region to bridge vision and language. Consequently, due to competition from emerging word representations, face representations that were initially bilateral become lateralized to the right fusiform region (albeit, again, not exclusively). We review recent research that describes constraints that give rise to this graded hemispheric arrangement. We then summarize empirical evidence from a variety of studies (behavioral, evoked response potential, functional imaging) across different populations (children, adolescents, and adults; left handers and individuals with developmental dyslexia) that supports the claims that hemispheric lateralization is graded rather than binary and that this graded organization emerges dynamically over the course of development. Perturbations of this system either during development or in adulthood provide further insights into the principles governing hemispheric organization. © 2015 New York Academy of Sciences.

  17. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yiwen; Miao, Hsin-Yuan; Zhang Mei; Liang, Richard; Zhang, Chuck; Wang, Ben [High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310 (United States); Lin, Ryan Jiyao, E-mail: kenymiao@thu.edu.tw, E-mail: mzhang@eng.fsu.edu [Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm{sup -2}, which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  18. Measurement of transverse emittance at the source of spin-polarized electrons at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Barday, Roman; Bonnes, Uwe; Eichhorn, Ralf; Enders, Joachim; Hessler, Christoph; Patalakha, Oleksandr; Platz, Markus; Poltoratska, Yuliya; Rick, Wolfgang [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A new injector concept for 100 keV spin-polarized electrons (SPIN) at the S-DALINAC has been developed. The transverse emittance was measured for beam characterization. The emittance is a quantity concerning the quality of the beam, describing the phase space area. Determination of the emittance requires measurement of the beam profile and knowledge of the focal length of a beam focussing device. A wire scanner unit consisting of two 50 {mu}m diameter tungsten wires is used for the beam-profile measurement. Data analysis is performed by fitting a gaussian model distribution to estimate the 1{sigma} beam radius. Each determined beam width is correlated to the corresponding focal length of a magnetic lens, and a parabola fit is applied to calculate the parameters of the {sigma}-matrix. The square root of the determinant of the {sigma}-matrix defines the emittance. The results of the calculation are presented and the emittance is compared to theoretical estimates.

  19. Reduction in emittance of thermal radiator coatings caused by the accumulation of a Martian dust simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, D. Keith; Witte, Larry C.; Hinke, Jaime [Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4006 (United States); Hurlbert, Kathryn [NASA, Johnson Space Center (United States)

    2006-12-15

    Measurements were made of the effective emittance of three types of radiator coatings as a Martian dust simulant was added to the radiator surfaces. The apparatus consisted of multiple radiator coupons on which Carbondale Red Clay dust was deposited. The coupon design employed guard heating to achieve the accuracy required for acceptable emittance calculations. The apparatus was contained in a vacuum chamber that featured a liquid-nitrogen cooled shroud that simulated the Martian sky temperature. Three high-emittance radiator coatings were tested: two while silicate paints, Z-93P and NS-43G, and a silver Teflon film. Radiator temperatures ranged from 250 to 350K with sky temperatures from 185 to 248K. As dust was added to the radiator surfaces, the effective emittance of all three coatings decreased from initial values near 0.9 to a value near 0.4. A low-emittance control surface, polished aluminum, demonstrated a rise in effective emittance for thin dust layers, and then a decline as the dust layer thickened. This behavior is attributed to the conductive resistance caused by the dust layer. (author)

  20. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  1. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  2. Epitaxial Growth of Germanium on Silicon for Light Emitters

    Directory of Open Access Journals (Sweden)

    Chengzhao Chen

    2012-01-01

    Full Text Available This paper describes the role of Ge as an enabler for light emitters on a Si platform. In spite of the large lattice mismatch of ~4.2% between Ge and Si, high-quality Ge layers can be epitaxially grown on Si by ultrahigh-vacuum chemical vapor deposition. Applications of the Ge layers to near-infrared light emitters with various structures are reviewed, including the tensile-strained Ge epilayer, the Ge epilayer with a delta-doping SiGe layer, and the Ge/SiGe multiple quantum wells on Si. The fundamentals of photoluminescence physics in the different Ge structures are discussed briefly.

  3. Current-Fluctuation Mechanism of Field Emitters Using Metallic Single-Walled Carbon Nanotubes with High Crystallinity

    Directory of Open Access Journals (Sweden)

    Norihiro Shimoi

    2017-12-01

    Full Text Available Field emitters can be used as a cathode electrode in a cathodoluminescence device, and single-walled carbon nanotubes (SWCNTs that are synthesized by arc discharge are expected to exhibit good field emission (FE properties. However, a cathodoluminescence device that uses field emitters radiates rays whose intensity considerably fluctuates at a low frequency, and the radiant fluctuation is caused by FE current fluctuation. To solve this problem, is very important to obtain a stable output for field emitters in a cathodoluminescence device. The authors consider that the electron-emission fluctuation is caused by Fowler–Nordheim electron tunneling and that the electrons in the Fowler–Nordheim regime pass through an inelastic potential barrier. We attempted to develop a theoretical model to analyze the power spectrum of the FE current fluctuation using metallic SWCNTs as field emitters, owing to their electrical conductivity by determining their FE properties. Field emitters that use metallic SWCNTs with high crystallinity were successfully developed to achieve a fluctuating FE current from field emitters at a low frequency by employing inelastic electron tunneling. This paper is the first report of the successful development of an inelastic-electron-tunneling model with a Wentzel–Kramers–Brillouin approximation for metallic SWCNTs based on the evaluation of FE properties.

  4. Tellurium adsorption on single crystal faces of molybdenum and tungsten field emitters

    International Nuclear Information System (INIS)

    Collins, R.A.; Kiwanga, C.A.

    1978-01-01

    The purpose of this letter is to report the extension of previous studies of Te adsorption on Mo and W field emitters to measurements on single crystal planes. The adsorption of semiconductors on metallic emitters has been found to be characterized by simultaneous decreases in emission current and the Fowler-Nordheim work function for adsorbate coverages of less than a monolayer. (Auth.)

  5. Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters

    Science.gov (United States)

    Liao, Zeyang; Nha, Hyunchul; Zubairy, M. Suhail

    2016-11-01

    We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon frequency comb generator.

  6. Hypothalamic digoxin, hemispheric chemical dominance, and peptic ulcer disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin-like factor (EDLF) (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), ubiquinone (free radical scavenger), and dolichol (regulator of glycoconjugate metabolism). The pathway was assessed in peptic ulcer and acid peptic disease and its relation to hemispheric dominance studied. The activity of HMG CoA reductase, serum levels of EDLF, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in acid peptic disease, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. All the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listening test. The pathway was upregulated with increased EDLF synthesis in peptic ulcer disease (PUD). There was increase in tryptophan catabolites and reduction in tyrosine catabolites in these patients. The ubiquinone levels were low and free radical production increased. Dolichol and glycoconjugate levels were increased and lysosomal stability reduced in patients with acid peptic disease (APD). There was increase in cholesterol:phospholipid ratio with decreased glyco conjugate levels in membranes of patients with PUD. Acid peptic disease represents an elevated EDLF state which can modulate gastric acid secretion and the structure of the gastric mucous barrier. It can also lead to persistence of Helicobacter pylori infection. The biochemical pattern obtained in peptic ulcer disease is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listen ing test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Peptic ulcer disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  7. When One Hemisphere Takes Control: Metacontrol in Pigeons (Columba livia)

    Science.gov (United States)

    Adam, Ruth; Güntürkün, Onur

    2009-01-01

    Background Vertebrate brains are composed of two hemispheres that receive input, compute, and interact to form a unified response. How the partially different processes of both hemispheres are integrated to create a single output is largely unknown. In some cases one hemisphere takes charge of the response selection – a process known as metacontrol. Thus far, this phenomenon has only been shown in a handful of studies with primates, mostly conducted in humans. Metacontrol, however, is even more relevant for animals like birds with laterally placed eyes and complete chiasmatic decussation since visual input to the hemispheres is largely different. Methodology/Principal Findings Homing pigeons (Columba livia) were trained with a color discrimination task. Each hemisphere was trained with a different color pair and therefore had a different experience. Subsequently, the pigeons were binocularly examined with two additional stimuli that combined the positive color of one hemisphere with a negative color that had been shown to the other, omitting the availability of a coherent solution and confronting the pigeons with a conflicting situation. Some of the pigeons responded to both stimuli, indicating that none of the hemispheres dominated the overall preference. Some birds, however, responded primarily to one of the conflicting stimuli, showing that they based their choice on the left- or right-monocularly learned color pair, indicating hemispheric metacontrol. Conclusions/Significance We could demonstrate for the first time that metacontrol is a widespread phenomenon that also exists in birds, and thus in principle requires no corpus callosum. Our results are closely similar to those in humans: monocular performance was higher than binocular one and animals displayed different modes of hemispheric dominance. Thus, metacontrol is a dynamic and widely distributed process that possibly constitutes a requirement for all animals with a bipartite brain to confront the

  8. When one hemisphere takes control: metacontrol in pigeons (Columba livia.

    Directory of Open Access Journals (Sweden)

    Ruth Adam

    Full Text Available Vertebrate brains are composed of two hemispheres that receive input, compute, and interact to form a unified response. How the partially different processes of both hemispheres are integrated to create a single output is largely unknown. In some cases one hemisphere takes charge of the response selection--a process known as metacontrol. Thus far, this phenomenon has only been shown in a handful of studies with primates, mostly conducted in humans. Metacontrol, however, is even more relevant for animals like birds with laterally placed eyes and complete chiasmatic decussation since visual input to the hemispheres is largely different.Homing pigeons (Columba livia were trained with a color discrimination task. Each hemisphere was trained with a different color pair and therefore had a different experience. Subsequently, the pigeons were binocularly examined with two additional stimuli that combined the positive color of one hemisphere with a negative color that had been shown to the other, omitting the availability of a coherent solution and confronting the pigeons with a conflicting situation. Some of the pigeons responded to both stimuli, indicating that none of the hemispheres dominated the overall preference. Some birds, however, responded primarily to one of the conflicting stimuli, showing that they based their choice on the left- or right-monocularly learned color pair, indicating hemispheric metacontrol.We could demonstrate for the first time that metacontrol is a widespread phenomenon that also exists in birds, and thus in principle requires no corpus callosum. Our results are closely similar to those in humans: monocular performance was higher than binocular one and animals displayed different modes of hemispheric dominance. Thus, metacontrol is a dynamic and widely distributed process that possibly constitutes a requirement for all animals with a bipartite brain to confront the problem of choosing between two hemisphere

  9. Surface-conduction electron-emitter characteristics and fabrication based on vertically aligned carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Li, Kuan-Wei [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Lin, Pao-Hung; Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2017-06-01

    Graphical abstract: The pattern design provides a new structure of surface-conduction electron-emitter display (SED). Delta-star shaped vertically aligned CNT (VACNT) arrays with 20o tips can simultaneously provide three emitters to bombard the sides of equilateral triangles pattern of VACNT, which produces numerous secondary electrons and enhance the SED efficiency. - Highlights: • The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. • The vertically aligned CNT (VACNT) arrays with 20° tips of the delta-star arrangement are used as cathodes that easily emit electrons. The cathode pattern simultaneously provides three emitters to bombard the sides of equilateral triangles pattern of VACNT. • The VACNT arrays were covered with magnesium oxide (MgO) nanostructures to promote the surface-conduction electron-emitter display (SED) efficiency (η). • The η was stably maintained in the 75–85% range. The proposed design provides a facile new method for developing SED applications. - Abstract: The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. Vertically aligned CNT arrays with a delta-star arrangement were patterned and synthesized onto a quartz substrate using photolithography and thermal chemical vapor deposition. Delta-star shaped VACNT arrays with 20° tips are used as cathodes that easily emit electrons because of their high electrical field gradient. In order to improve the field emission and secondary electrons (SEs) in SCE applications, magnesium oxide (MgO) nanostructures were coated onto the VACNT arrays to promote the surface-conduction electron-emitter display (SED) efficiency (η). According to the definition of η in SCE applications, in this study, the η was stably maintained in the 75–85% range. The proposed design provides a facile new method for

  10. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  11. Fabricating and Characterizing the Microfluidic Solid Phase Extraction Module Coupling with Integrated ESI Emitters

    Directory of Open Access Journals (Sweden)

    Hangbin Tang

    2018-05-01

    Full Text Available Microfluidic chips coupling with mass spectrometry (MS will be of great significance to the development of relevant instruments involving chemical and bio-chemical analysis, drug detection, food and environmental applications and so on. In our previous works, we proposed two types of microfluidic electrospray ionization (ESI chip coupling with MS: the two-phase flow focusing (FF ESI microfluidic chip and the corner-integrated ESI emitter, respectively. However the pretreatment module integrated with these ESI emitters is still a challenging problem. In this paper, we concentrated on integrating the solid phase micro-extraction (SPME module with our previous proposed on-chip ESI emitters; the fabrication processes of such SPME module are fully compatible with our previous proposed ESI emitters based on the multi-layer soft lithography. We optimized the structure of the integrated chip and characterized its performance using standard samples. Furthermore, we verified its abilities of salt removal, extraction of multiple analytes and separation through on-chip elution using mimic biological urine spiked with different drugs. The results indicated that our proposed integrated module with ESI emitters is practical and effective for real biological sample pretreatment and MS detection.

  12. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    Science.gov (United States)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  13. Smartphone based hemispherical photography for canopy structure measurement

    Science.gov (United States)

    Wan, Xuefen; Cui, Jian; Jiang, Xueqin; Zhang, Jingwen; Yang, Yi; Zheng, Tao

    2018-01-01

    The canopy is the most direct and active interface layer of the interaction between plant and environment, and has important influence on energy exchange, biodiversity, ecosystem matter and climate change. The measurement about canopy structure of plant is an important foundation to analyze the pattern, process and operation mechanism of forest ecosystem. Through the study of canopy structure of plant, solar radiation, ambient wind speed, air temperature and humidity, soil evaporation, soil temperature and other forest environmental climate characteristics can be evaluated. Because of its accuracy and effectiveness, canopy structure measurement based on hemispherical photography has been widely studied. However, the traditional method of canopy structure hemispherical photogrammetry based on SLR camera and fisheye lens. This method is expensive and difficult to be used in some low-cost occasions. In recent years, smartphone technology has been developing rapidly. The smartphone not only has excellent image acquisition ability, but also has the considerable computational processing ability. In addition, the gyroscope and positioning function on the smartphone will also help to measure the structure of the canopy. In this paper, we present a smartphone based hemispherical photography system. The system consists of smart phones, low-cost fisheye lenses and PMMA adapters. We designed an Android based App to obtain the canopy hemisphere images through low-cost fisheye lenses and provide horizontal collimation information. In addition, the App will add the acquisition location tag obtained by GPS and auxiliary positioning method in hemisphere image information after the canopy structure hemisphere image acquisition. The system was tested in the urban forest after it was completed. The test results show that the smartphone based hemispherical photography system can effectively collect the high-resolution canopy structure image of the plant.

  14. Common mode noise on the main Tevatron bus and associated beam emittance growth

    International Nuclear Information System (INIS)

    Zhang, P.; Johnson, R.P.; Kuchnir, M.; Siergiej, D.; Wolff, D.

    1991-05-01

    Overlap of betatron tune frequencies with the power supply noise spectrum can cause transverse beam emittance growth in a storage ring. We have studied this effect for tunes near the integer, where the betatron frequency is low. By injecting noise onto the main power supply bus, it was determined that common mode noise was the dominant source of emittance growth. A noise suppression feed-back loop was then used to reduce the noise and the emittance growth. These experiments are described as are investigations of the common mode propagation along the Tevatron bus and measurements of the fields generated by common mode excitation of isolated Tevatron magnets. 3 refs., 4 figs

  15. Development and characterization of a rare earth emitter for a thermophotovoltaic power generator

    Energy Technology Data Exchange (ETDEWEB)

    Durisch, W; Panitz, J C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Energy conversion based on thermophotovoltaic (TPV) methods has recently attracted renewed interest. Efforts at PSI are directed towards the development of a modular TPV system based on existing technology to demonstrate the feasibility of this method. Here, we report first results obtained with a prototype TPV generator based upon a modified rare earth emitter, a heat reflecting filter and commercial silicon solar cells. The preparation of the modified emitter is described, and first results of spectroscopic and electrical characterization of the TPV system are presented. The introduction of the modified emitter leads to an efficiency gain of 30-40%. (author) 3 figs., 4 refs.

  16. High precision wavefront control in point spread function engineering for single emitter localization

    NARCIS (Netherlands)

    Siemons, M.E.; Thorsen, R.Ø; Smith, C.S.; Stallinga, S.

    2018-01-01

    Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can

  17. Method to evaluate steering and alignment algorithms for controlling emittance growth

    International Nuclear Information System (INIS)

    Adolphsen, C.; Raubenheimer, T.

    1993-04-01

    Future linear colliders will likely use sophisticated beam-based alignment and/or steering algorithms to control the growth of the beam emittance in the linac. In this paper, a mathematical framework is presented which simplifies the evaluation of the effectiveness of these algorithms. As an application, a quad alignment that uses beam data taken with the nominal linac optics, and with a scaled optics, is evaluated in terms of the dispersive emittance growth remaining after alignment

  18. The effects of left and right monocular viewing on hemispheric activation.

    Science.gov (United States)

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  19. Low emittance electron beam formation with a 17 GHz RF gun

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2001-08-01

    Full Text Available We report on electron beam quality measurement results from the Massachusetts Institute of Technology 17 GHz RF gun experiment. The 1.5 cell RF gun uses a solenoid for emittance compensation. It has produced bunch charges up to 0.1 nC with beam energies up to 1 MeV. The normalized rms emittance of the beam after 35 cm of transport from the gun has been measured by a slit technique to be 3π mm mrad for a 50 pC bunch. This agrees well with PARMELA simulations at these beam energies. At the exit of the electron gun, we estimate the emittance to be about 1π mm mrad, which corresponds to a beam brightness of about 80 A/(π mm mrad^{2}. Improved beam quality should be possible with a higher energy output electron beam from the gun.

  20. The Influence of Context on Hemispheric Recruitment during Metaphor Processing

    Science.gov (United States)

    Diaz, Michele T.; Hogstrom, Larson J.

    2011-01-01

    Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify…

  1. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  2. 1024x1024 resistive emitter array design and fabrication status

    Science.gov (United States)

    Bryant, Paul T.; Oleson, Jim; McHugh, Stephen W.; Beuville, Eric; Schlesselmann, John D.; Woolaway, James T.; Barskey, Steve; Solomon, Steven L.; Joyner, Thomas W.

    2002-07-01

    Santa Barbara Infrared (SBIR) is producing a high performance 1,024 x 1,024 Large Format Resistive emitter Array (LFRA) for use in the next generation of IR Scene Projectors (IRSPs). LFRA requirements were developed through close cooperation with the Tri-Service IR Scene Projector working group, and through detailed trade studies sponsored by the OSD Central T&E Investment Program (CTEIP) and a Phase I US Navy Small Business Innovative Research (SBIR) contract. The CMOS Read-In Integrated Circuit (RIIC) is being designed by SBIR and Indigo Systems under a Small Business Innovative Research (SBIR) contract. Performance and features include 750 K MWIR maximum apparent temperature, 5 ms radiance rise time, 200 Hz full frame update, and 400 Hz window mode operation. Ten 8-inch CMOS wafers will be fabricated and characterized in mid-2002, followed by emitter fabrication in late 2002. This paper discusses array performance, requirements flow-down, array design, fabrication of 2 X 2-inch CMOS devices, and plans for subsequent RIIC wafer test and emitter pixel fabrication.

  3. Photonic emitters and circuits based on colloidal quantum dot composites

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  4. Low Emittance Growth in a LEBT with Un-Neutralized Section

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. [Fermilab; Carneiro, J.-P. [Fermilab; Shemyakin, A. [Fermilab

    2017-12-20

    In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam’s space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern usually changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT that contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report introduces the rationale for the proposed scheme and formulates the physical arguments for it as well as its limitations. An experimental realization of the scheme was carried out at Fermilab’s PIP2IT where low beam emittance dilution was demonstrated for a 5 mA, 30 keV H- beam.

  5. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    Science.gov (United States)

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  6. Learning-related brain hemispheric dominance in sleeping songbirds

    NARCIS (Netherlands)

    Moorman, Sanne; Gobes, Sharon M H; van de Kamp, Ferdinand C; Zandbergen, Matthijs A; Bolhuis, Johan J

    2015-01-01

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops

  7. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    Science.gov (United States)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  8. Analytical and numerical study of New field emitter processing for superconducting cavities

    Science.gov (United States)

    Volkov, Vladimir; Petrov, Victor

    2018-02-01

    In this article a scientific prove for a new technology to maximize the accelerating gradient in superconducting cavities by processing on higher order mode frequencies is presented. As dominant energy source the heating of field emitters by an induced rf current (rf-heating) is considered. The field emitter structure is assumed to be a chain of conductive particles, which are formed by attractive forces.

  9. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    Science.gov (United States)

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  10. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  11. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    CERN Document Server

    Kohmura, Y; Awaji, M; Tanaka, T; Hara, T; Goto, S; Ishikawa, T

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper li...

  12. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.

    2017-03-01

    We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  13. Characterization of NiSi nanowires as field emitters and limitations of Fowler-Nordheim model at the nanoscale

    Science.gov (United States)

    Belkadi, Amina B.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Nanoscale field emitters are of technological interest because of the anticipated faster turn-on time, better sustainability and compactness. This report focuses on NiSi nanowires as field emitters for two reasons: (a) possible enhancement of field emission in nanoscale field emitters over bulk, and (b) achieving the same field emission properties as in bulk, but at a lower energy cost. To this end, we have grown, fabricated and characterized NiSi nanowires as field emitters. Depending on the geometry of the NiSi nanowires (aspect ratio, shape etc.), the relevant major field emission parameters, such as (1) the turn-on field, (2) the work function, and (3) the field enhancement factor, can be comparable or even superior to other recently explored nanoscale field emitters, such as CdS and ZnO. We also report on a comparative performance of various nanoscale field emitters and on the difficulties in the performance comparison in the light of relatively poor applicability of the standard Folwer-Nordheim model for field emission analysis for the case of the nanoscale field emitters. Proposed modifications are discussed. This work is supported through SRC-ATIC Grant 2011-KJ-2190. We also acknoweldge BNL-CFN and Cornell CNF facilities and staff.

  14. Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hensen, Matthias [Institut; Heilpern, Tal [Center; Gray, Stephen K. [Center; Pfeiffer, Walter [Fakultät

    2017-10-12

    Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.

  15. Motivation, affect, and hemispheric asymmetry: power versus affiliation.

    Science.gov (United States)

    Kuhl, Julius; Kazén, Miguel

    2008-08-01

    In 4 experiments, the authors examined to what extent information related to different social needs (i.e., power vs. affiliation) is associated with hemispheric laterality. Response latencies to a lateralized dot-probe task following lateralized pictures or verbal labels that were associated with positive or negative episodes related to power, affiliation, or achievement revealed clear-cut laterality effects. These effects were a function of need content rather than of valence: Power-related stimuli were associated with right visual field (left hemisphere) superiority, whereas affiliation-related stimuli were associated with left visual field (right hemisphere) superiority. Additional results demonstrated that in contrast to power, affiliation primes were associated with better discrimination between coherent word triads (e.g., goat, pass, and green, all related to mountain) and noncoherent triads, a remote associate task known to activate areas of the right hemisphere. (c) 2008 APA, all rights reserved

  16. Evaluating fMRI methods for assessing hemispheric language dominance in healthy subjects.

    Science.gov (United States)

    Baciu, Monica; Juphard, Alexandra; Cousin, Emilie; Bas, Jean François Le

    2005-08-01

    We evaluated two methods for quantifying the hemispheric language dominance in healthy subjects, by using a rhyme detection (deciding whether couple of words rhyme) and a word fluency (generating words starting with a given letter) task. One of methods called "flip method" (FM) was based on the direct statistical comparison between hemispheres' activity. The second one, the classical lateralization indices method (LIM), was based on calculating lateralization indices by taking into account the number of activated pixels within hemispheres. The main difference between methods is the statistical assessment of the inter-hemispheric difference: while FM shows if the difference between hemispheres' activity is statistically significant, LIM shows only that if there is a difference between hemispheres. The robustness of LIM and FM was assessed by calculating correlation coefficients between LIs obtained with each of these methods and manual lateralization indices MLI obtained with Edinburgh inventory. Our results showed significant correlation between LIs provided by each method and the MIL, suggesting that both methods are robust for quantifying hemispheric dominance for language in healthy subjects. In the present study we also evaluated the effect of spatial normalization, smoothing and "clustering" (NSC) on the intra-hemispheric location of activated regions and inter-hemispheric asymmetry of the activation. Our results have shown that NSC did not affect the hemispheric specialization but increased the value of the inter-hemispheric difference.

  17. Evaluating fMRI methods for assessing hemispheric language dominance in healthy subjects

    International Nuclear Information System (INIS)

    Baciu, Monica; Juphard, Alexandra; Cousin, Emilie; Bas, Jean Francois Le

    2005-01-01

    We evaluated two methods for quantifying the hemispheric language dominance in healthy subjects, by using a rhyme detection (deciding whether couple of words rhyme) and a word fluency (generating words starting with a given letter) task. One of methods called 'flip method' (FM) was based on the direct statistical comparison between hemispheres' activity. The second one, the classical lateralization indices method (LIM), was based on calculating lateralization indices by taking into account the number of activated pixels within hemispheres. The main difference between methods is the statistical assessment of the inter-hemispheric difference: while FM shows if the difference between hemispheres' activity is statistically significant, LIM shows only that if there is a difference between hemispheres. The robustness of LIM and FM was assessed by calculating correlation coefficients between LIs obtained with each of these methods and manual lateralization indices MLI obtained with Edinburgh inventory. Our results showed significant correlation between LIs provided by each method and the MIL, suggesting that both methods are robust for quantifying hemispheric dominance for language in healthy subjects. In the present study we also evaluated the effect of spatial normalization, smoothing and 'clustering' (NSC) on the intra-hemispheric location of activated regions and inter-hemispheric asymmetry of the activation. Our results have shown that NSC did not affect the hemispheric specialization but increased the value of the inter-hemispheric difference

  18. Split-brain, the right hemisphere, and art: fact and fiction.

    Science.gov (United States)

    Zaidel, Dahlia W

    2013-01-01

    The research studies of complete commissurotomy patients (split-brain) in Roger W. Sperry's psychobiology laboratory at Caltech, Pasadena, galvanized the scientific and intellectual world in the 1960s and 1970s. The findings had an important and enduring impact on brain research in countless areas. Interest in hemispheric specialization in particular was sparked by these studies and paved the way for countless discoveries. Right hemisphere specialization for visuospatial functions and facial processing was confirmed with these patients. The further unraveling of right-hemisphere cognition, the "mute" hemisphere, was a major goal in Sperry's laboratory, and much factual knowledge was learned that was not known previously. However, the linking of art and creativity with the right hemisphere was a nonempirically based inference made not by Sperry's lab but rather by others wishing to "assign" functional hemisphericity. The general assumption was that "art" is anchored in spatial cognition, that it is a nonverbal activity requiring imagery and thus must be controlled by the right, nonlanguage hemisphere. To this day, robust evidence that the right specializes in art expression or art perception is yet to be shown, if for no other reason than that art is not a single, unitary form of expression or cognition. The conjectured right hemisphere-art link turned into a popular story that filtered back into science, shaped future research of brain and art, and overlooked other avenues for insights. This chapter traces and explores this background. © 2013 Elsevier B.V. All rights reserved.

  19. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  20. Dosimetry of internal emitters - quo vadis?

    International Nuclear Information System (INIS)

    Reddy, A.R.; Nagaratnam, A.; Jain, S.C.; Gupta, M.M.; Mehta, S.C.

    1999-01-01

    The dosimetry of internally administered radiopharmaceuticals in nuclear medicine procedures using MIRD formalisms and dosimetry in the case of intakes of radionuclides and ICRP methodology for the purpose of radiological protection are well established working practices. It should, however, be remembered that dose or dose coefficients calculated refer to a reference individual, defined in terms of a mathematical phantom established on the basis of certain biokinetic reference parameters. The reference individual represents a typical caucasian adult of West Europe or North American origin. Recently, some attempts have been made to define a Reference Asian and a Reference Indian individual and to assess the effects of anatomical differences and changes in the biokinetics of radiopharmaceuticals and other radionuclides in these different reference individuals on the estimation of dose and dose coefficients in relation to the intake of internal radionuclides. The assessment of doses to the embryo/fetus due to intake of radionuclides by pregnant women, local dose estimates, microdosimetry, radiobiology and radiation protection aspects relating to Auger electron emitters represent other areas of active research in the area of dosimetry of internal emitters. The present review summarises these different aspects of work. (orig.) [de

  1. PHASE RELATIONSHIPS OF SOLAR HEMISPHERIC TOROIDAL AND POLOIDAL CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Muraközy, J., E-mail: murakozy.judit@csfk.mta.hu [Debrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences H-4010 Debrecen P.O.B. 30, H-4010 (Hungary)

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12–23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1–4 and 7–10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12–23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  2. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  3. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  4. Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique

    Science.gov (United States)

    Pakluea, S.; Rimjaem, S.

    2017-09-01

    Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.

  5. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    Liu Shengguang; Masafumi Fukuda; Sakae Araki; Nobuhiro Terunuma; Junji Urakawa

    2010-01-01

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  6. All-optical control and super-resolution imaging of quantum emitters in layered materials.

    Science.gov (United States)

    Kianinia, Mehran; Bradac, Carlo; Sontheimer, Bernd; Wang, Fan; Tran, Toan Trong; Nguyen, Minh; Kim, Sejeong; Xu, Zai-Quan; Jin, Dayong; Schell, Andreas W; Lobo, Charlene J; Aharonovich, Igor; Toth, Milos

    2018-02-28

    Layered van der Waals materials are emerging as compelling two-dimensional platforms for nanophotonics, polaritonics, valleytronics and spintronics, and have the potential to transform applications in sensing, imaging and quantum information processing. Among these, hexagonal boron nitride (hBN) is known to host ultra-bright, room-temperature quantum emitters, whose nature is yet to be fully understood. Here we present a set of measurements that give unique insight into the photophysical properties and level structure of hBN quantum emitters. Specifically, we report the existence of a class of hBN quantum emitters with a fast-decaying intermediate and a long-lived metastable state accessible from the first excited electronic state. Furthermore, by means of a two-laser repumping scheme, we show an enhanced photoluminescence and emission intensity, which can be utilized to realize a new modality of far-field super-resolution imaging. Our findings expand current understanding of quantum emitters in hBN and show new potential ways of harnessing their nonlinear optical properties in sub-diffraction nanoscopy.

  7. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  8. Beam dynamics studies and emittance optimization in the CTF3 linac at CERN

    CERN Document Server

    Urschütz, Peter; Corsini, Roberto; Döbert, Steffen; Ferrari, Arnaud; Tecker, Frank

    2006-01-01

    Small transverse beam emittances and well-known lattice functions are crucial for the 30 GHz power production in the Power Extraction and Transfer Structure (PETS) and for the commissioning of the Delay Loop of the CLIC Test Facility 3 (CTF3). Following beam dynamics simulation results, two additional solenoids were installed in the CTF3 injector in order to improve the emittance. During the runs in 2005 and 2006, an intensive measurement campaign to determine Twiss parameters and beam sizes was launched. The results obtained by means of quadrupole scans for different modes of operation suggest emittances well below the nominal .n,rms = 100 ?Î?Êm and a good agreement with PARMELA simulations.

  9. Emittance growth caused by nonuniform charge distribution of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao; Zhang Zhenhai

    1993-09-01

    The nonlinear space charge effect of bunched beam in linac is one of the important reasons that induces the emittance growth because of the conversion of the field energy to kinetic energy. The authors have worked out the internal field energies associated with some nonuniform space change distributions of a bunched beam, such as Gaussian distribution, waterbag distribution and parabolic distribution. And the emittance growths caused by these nonuniformities are obtained

  10. Holocene sea-level fluctuation in the southern hemisphere

    Science.gov (United States)

    Isla, Federico Ignacio

    If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one. Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed. Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10-9000 BP in the SH. Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere. This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.

  11. Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures

    Science.gov (United States)

    Iliopoulos, Nikos; Thanopulos, Ioannis; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-03-01

    We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters with longer decay times, the Markov approximation proves to be adequate for distances larger than half the nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian character when counter-rotating effects are included. Interesting effects such as entanglement sudden death, periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.

  12. Investment in the Western Hemisphere energy market

    International Nuclear Information System (INIS)

    Gillam, P.J.

    1991-01-01

    This paper reports that the main characteristics of Western Hemisphere energy markets are well known to those in the energy industry. The United States sits in the northern half of the hemisphere, importing more and more oil from the rest of the world. Brazil, with a market one-tenth of the size of the United Sates, sits in the southern half of the hemisphere, importing less and less oil from the rest of the world. Venezuela sits in the center with an eye to the future as a long-term player in the world petroleum industry. Venezuela has 6 or 7 percent of the world's known conventional petroleum reserves, plus an uncountable bitumen resource which is now being commercialized as Orimulsion, a low-emission substitute for coal. The United States is circled by major producing countries with smaller exports, such as Mexico and Canada, and there are smaller producing or consuming countries of which Colombia is the largest exporter and Argentian the largest importer. The United States dominates the numbers. Half of British Petroleum's (BP) investments have been in the energy industry of the Western Hemisphere. We are maintaining that proportion, but opportunities are becoming more difficult to find

  13. Hypothalamic-mediated model for systemic lupus erythematosis: relation to hemispheric chemical dominance.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-11-01

    The isoprenoid pathway including endogenous digoxin was assessed in systemic lupus erythematosis (SLE). All the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. This was also studied for comparison in patients with right hemispheric and left hemispheric dominance. The isoprenoid pathway was upregulated with increased digoxin synthesis in patients with SLE and in those with right hemispheric dominance. In this group of patients (i) the tryptophan catabolites were increased and the tyrosine catabolites reduced, (ii) the dolichol and glycoconjugate levels were elevated, (iii) lysosomal stability was reduced, (iv) ubiquinone levels were low and free radical levels increased, and (v) the membrane cholesterol:phospholipid ratios were increased and membrane glycoconjugates reduced. On the other hand, in patients with left hemispheric dominance the reverse patterns were obtained. The biochemical patterns obtained in SLE is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. SLE occurs in right hemispheric chemically dominant individuals, and is a reflection of altered brain function. The role of the isoprenoid pathway in the pathogenesis of SLE and its relation to hemispheric dominance is discussed.

  14. An Investigation of Emitters Clogging Under Magnetic Field and Water Quality

    Directory of Open Access Journals (Sweden)

    A. Kiani

    2016-02-01

    Full Text Available Introduction: Water scarcity is one of the major problems for crop production. Using drip irrigation as an effective method in the efficient use of water is expanding in arid and semi-arid regions. One of the problems in under pressure irrigation during use of saline, unconventional and waste is emitters clogging. There are several ways to prevent particle deposits in pipes and clogging of emitters. Generally, conventional methods are divided into two categories: physical and chemical methods. In physical method, suspended solids and inorganic materials are removed using particles sediment sand and disc filters. In the chemical method the pH drops by adding acid to water resulting in the dissolution of carbonate sediments. With chlorine handling, organisms (i.e. algae, fungi and bacteria that are the main causes of biological clogging are destroyed. However, the application of these methods is not successful in all cases. It has been observed that the emitters have gradually become obstructed. Magnetic water is obtained by passing water through permanent magnets or through the electromagnets installed in or on a feed pipeline. When a fluid passes through the magnetized field, its structure and some physical characteristic such as density, salt solution capacity, and deposition ratio of solid particles will be changed. An experimental study showed that a relatively weak magnetic influence increases the viscosity of water and consequently causes stronger hydrogen bonds under the magnetic field.There exist very few documented research projects related to the magnetization of water technology and its application to agricultural issues in general and emitter clogging in drip irrigation method, in particular. This technology is already used in some countries, especially in the Persian Gulf states. This research was designed and implemented aimed at increasing knowledge about the application of magnetic technology and its effects on emitters clogging

  15. Reversible hemispheric hypoperfusion in two cases of SMART syndrome.

    Science.gov (United States)

    Wai, Karmen; Balabanski, Anna; Chia, Nicholas; Kleinig, Timothy

    2017-09-01

    Stroke-like migraine attacks after radiation therapy (SMART) syndrome manifests as prolonged episodes of cortical dysfunction, years after cranial irradiation. We present two cases demonstrating reversible hemispheric hypoperfusion. Case 1 presented with left hemispheric symptoms following previous similar episodes. CT perfusion (CTP) demonstrated reversible hemispheric hypoperfusion; subsequent investigations were consistent with SMART syndrome. Case 2 presented following the third episode of a hemispheric syndrome with near-identical CTP abnormalities. L-arginine was administered with rapid reversal of clinical and CTP abnormalities. We conclude that SMART syndrome may demonstrate significant hypoperfusion on hyperacute CTP without subsequent infarction. Impaired cerebrovascular autoregulation probably contributes to cortical dysfunction in SMART syndrome. L-arginine warrants investigation as a potential treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluating fMRI methods for assessing hemispheric language dominance in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Baciu, Monica [Laboratoire de Psychologie et NeuroCognition, UMR 5105 CNRS, Universite Pierre Mendes-France, F38040 Grenoble Cedex 09 (France)]. E-mail: mbaciu@upmf-grenoble.fr; Juphard, Alexandra [Laboratoire de Psychologie et NeuroCognition, UMR 5105 CNRS, Universite Pierre Mendes-France, F38040 Grenoble Cedex 09 (France); Cousin, Emilie [Laboratoire de Psychologie et NeuroCognition, UMR 5105 CNRS, Universite Pierre Mendes-France, F38040 Grenoble Cedex 09 (France); Bas, Jean Francois Le [Unite IRM, CHU Grenoble (France)

    2005-08-01

    We evaluated two methods for quantifying the hemispheric language dominance in healthy subjects, by using a rhyme detection (deciding whether couple of words rhyme) and a word fluency (generating words starting with a given letter) task. One of methods called 'flip method' (FM) was based on the direct statistical comparison between hemispheres' activity. The second one, the classical lateralization indices method (LIM), was based on calculating lateralization indices by taking into account the number of activated pixels within hemispheres. The main difference between methods is the statistical assessment of the inter-hemispheric difference: while FM shows if the difference between hemispheres' activity is statistically significant, LIM shows only that if there is a difference between hemispheres. The robustness of LIM and FM was assessed by calculating correlation coefficients between LIs obtained with each of these methods and manual lateralization indices MLI obtained with Edinburgh inventory. Our results showed significant correlation between LIs provided by each method and the MIL, suggesting that both methods are robust for quantifying hemispheric dominance for language in healthy subjects. In the present study we also evaluated the effect of spatial normalization, smoothing and 'clustering' (NSC) on the intra-hemispheric location of activated regions and inter-hemispheric asymmetry of the activation. Our results have shown that NSC did not affect the hemispheric specialization but increased the value of the inter-hemispheric difference.

  17. Drip irrigation emitter clogging in Dutch greenhouses as affected by methane and organic acids

    NARCIS (Netherlands)

    Kreij, de C.; Burg, van der A.M.M.; Runia, W.T.

    2003-01-01

    It is believed that the serious clogging of drip irrigation emitters in the Dutch greenhouse industry is caused by methane-oxidising bacteria and/or organic acids used as anti-clogging agents. In this study greenhouses with moderate to severe emitter clogging have been examined. High methane

  18. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  20. Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine

    Science.gov (United States)

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380