WorldWideScience

Sample records for hemicellulosic hydrolysate sbhh

  1. Fermentation of pretreated corncob hemicellulose hydrolysate to ...

    African Journals Online (AJOL)

    academicjournal

    single carbon source because the ethanol conversion of glucose was higher than that of xylose. Using parallel fermentation of corncob hemicellulose acid hydrolysate and the artificially prepared hydrolysate, it was found that complex components in the corncob hemicellulose acid hydrolysate probably promoted ethanol ...

  2. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  3. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate

    DEFF Research Database (Denmark)

    López-Linares, Juan Carlos; Romero, Inmaculada; Cara, Cristobal

    2018-01-01

    This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose...

  4. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  5. Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries.

    Science.gov (United States)

    Silva-Fernandes, T; Santos, J C; Hasmann, F; Rodrigues, R C L B; Izario Filho, H J; Felipe, M G A

    2017-11-01

    Among the major challenges for hemicellulosic hydrolysate application in fermentative processes, there is the presence of toxic compounds generated during the pretreatment of the biomass, which can inhibit microbial growth. Therefore, the development of efficient, biodegradable and cost-effective detoxification methods for lignocellulosic hydrolysates is crucial. In this work, two tannin-based biopolymers (called A and B) were tested in the detoxification of sugarcane bagasse hydrolysate for subsequent fermentation by Candida guilliermondii. The effects of biopolymer concentration, pH, temperature, and contact time were studied using a 2 4 experimental design for both biopolymers. Results revealed that the biopolymer concentration and the pH were the most significant factors in the detoxification step. Biopolymer A removed phenolics, 5-hydroxymethylfurfural, and nickel from the hydrolysate more efficiently than biopolymer B, while biopolymer B was efficient to remove chromium at 15% (v/v). Detoxification enhanced the fermentation of sugarcane bagasse hydrolysate, and the biopolymers showed different influences on the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    Science.gov (United States)

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis

    DEFF Research Database (Denmark)

    Garde, Arvid; Jonsson, Gunnar Eigil; Schmidt, A. S.

    2002-01-01

    Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added......% of the theoretical maximum yield after enzymatic, or acid treatment of HH, respectively. Individually, neither of the two strains were able to fully utilize the relatively broad spectra of sugars released by the acid and enzyme treatments; however, lactic acid production increased to 95% of the theoretical maximum...... yield by co-inoculation of both strains. Xylulose was the main sugar released after enzymatic treatment of HH with Celluclast(R). Lb. brevis was able to degrade xylobiose, but was unable to assimilate xylulose, whereas Lb. pentosus was able to assimilate xylulose but unable to degrade xylobiose. (C...

  8. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.

    Science.gov (United States)

    Su, Buli; Wu, Mianbin; Zhang, Zhe; Lin, Jianping; Yang, Lirong

    2015-09-01

    A metabolically engineered Escherichia coli has been constructed for the production of xylitol, one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost no inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. coli allowed production of 172.4 g L(-1) xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L(-1) h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L(-1) xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L(-1) h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Model Study To Assess Softwood Hemicellulose Hydrolysates as the Carbon Source for PHB Production in Paraburkholderia sacchari IPT 101.

    Science.gov (United States)

    Dietrich, Karolin; Dumont, Marie-Josée; Schwinghamer, Timothy; Orsat, Valérie; Del Rio, Luis F

    2018-01-08

    Softwood hemicellulose hydrolysates are a cheap source of sugars that can be used as a feedstock to produce polyhydroxybutyrates (PHB), which are biobased and compostable bacterial polyesters. To assess the potential of the hemicellulosic sugars as a carbon source for PHB production, synthetic media containing softwood hemicellulose sugars (glucose, mannose, galactose, xylose, arabinose) and the potentially inhibitory lignocellulose degradation products (acetic acid, 5-hydroxymethylfurfural (HMF), furfural, and vanillin) were fermented with the model strain Paraburkholderia sacchari IPT 101. Relative to pure glucose, individual fermentation for 24 h with 20 g/L mannose or galactose exhibited maximum specific growth rates of 97% and 60%, respectively. On the other hand, with sugar mixtures of glucose, mannose, galactose, xylose, and arabinose, the strain converted all sugars simultaneously to reach a maximum PHB concentration of 5.72 g/L and 80.5% PHB after 51 h. The addition of the inhibitor mixture at the following concentration, sodium acetate (2.11 g/L), HMF (0.67 g/L), furfural (0.66 g/L), and vanillin (0.93 g/L), to the sugar mixture stopped the growth entirely within 24 h. Individually, the inhibitors either had no effect or only reduced growth. Moreover, it was found that a bacterial inoculum with high initial cell density (optical density, OD ≥ 5.6) could overcome the growth inhibition to yield an OD of 13 within 24 h. Therefore, softwood hemicellulose sugars are viable carbon sources for PHB production. Nevertheless, real softwood hemicellulose hydrolysates need detoxification or a high inoculum to overcome inhibitory effects and allow bacterial growth.

  10. Use of fractional factorial design for selection of nutrients for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolysate

    Directory of Open Access Journals (Sweden)

    J.B. Almeida e Silva

    1998-09-01

    Full Text Available A eucalyptus hemicellulose fraction was hydrolysed by treating eucalyptus wood chips with sulfuric acid. The hydrolysate was used as the substrate to grow Paecilomyces variotii IOC-3764 cultured for 72 or 96 hours. The influence of the inhibitors, nutrients and fermentation time was verified by a 28-4 and, subsequently, a 25-1 fractional factorial design. The effects of the inhibitors (acetic acid and furfural, nutrients (rice bran, urea, potassium nitrate, ammonium sulfate, magnesium sulfate and sodium phosphate and fermentation time were investigated. The highest yield (10.59 g/L of biomass was obtained when the microorganisms were cultivated for 72 hours in a medium composed of 30 g/L rice bran, 9.4 g/L ammonium sulfate (2 g/L nitrogen and 2 g/L sodium phosphate.

  11. Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process.

    Science.gov (United States)

    Baêta, Bruno Eduardo Lobo; Lima, Diego Roberto Sousa; Filho, José Gabriel Balena; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-10-01

    This study aimed at optimizing the net energy recovery from hydrogen and methane production through anaerobic digestion of the hemicellulose hydrolysate (HH) obtained by desirable conditions (DC) of autohydrolysis pretreatment (AH) of sugarcane bagasse (SB). Anaerobic digestion was carried out in a two-stage (acidogenic-methanogenic) batch system where the acidogenic phase worked as a hydrolysis and biodetoxification step. This allowed the utilization of more severe AH pretreatment conditions, i.e. T=178.6°C and t=55min (DC3) and T=182.9°C and t=40.71min (DC4). Such severe conditions resulted in higher extraction of hemicelluloses from SB (DC1=68.07%, DC2=48.99%, DC3=77.40% and DC4=73.90%), which consequently improved the net energy balance of the proposed process. The estimated energy from the combustion of both biogases (H2 and CH4) accumulated during the two-stage anaerobic digestion of HH generated by DC4 condition was capable of producing a net energy of 3.15MJ·kgSB(-1)dry weight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    Science.gov (United States)

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Separation and purification of hemicellulose-derived saccharides from wood hydrolysate by combined process.

    Science.gov (United States)

    Wang, Xiaojun; Zhuang, Jingshun; Jiang, Jungang; Fu, Yingjuan; Qin, Menghua; Wang, Zhaojiang

    2015-11-01

    Prehydrolysis of wood biomass prior to kraft cooking provides a stream containing hemicellulose-derived saccharides (HDSs) but also undesired non-saccharide compounds (NSCs) that were resulted from lignin depolymerization and carbohydrate degradation. In this study, a combined process consisting of lime treatment, resin adsorption, and gel filtration was developed to separate HDSs from NSCs. The macro-lignin impurities that accounted for 32.2% of NSCs were removed by lime treatment at 1.2% dosage with negligible HDSs loss. The majority of NSCs, lignin-derived phenolics, were eliminated by mixed bed ion exchange resin, elevating NSCs removal to 94.0%. The remaining NSCs, furfural and hydroxymethylfurfural, were excluded from HDSs by gel filtration. Chemical composition analysis showed that xylooligosaccharides (XOS) with the degree of depolymerization from 2 to 6 accounted for 28% of the total purified HDSs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  15. Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis.

    Science.gov (United States)

    Shupe, Alan M; Liu, Shijie

    2012-09-01

    Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100 cm(3) and the agitation rate was set to 150 rpm resulting in an overall mass transfer coefficient (K(L)a) of 0.108 min(-1). A maximum ethanol concentration of 29.7 g/L was achieved after 120 h of fermentation; however, after 90 h of fermentation, the ethanol concentration was only slightly lower at 29.1 g/L with a yield of 0.39 g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25 g/g at 50 rpm and 0.30 g/g at 300 rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130 h of fermentation when the agitation rate was set at 50 rpm, whereas the maximum ethanol concentration was reached after only 68.5 h at 300 rpm.

  16. Isolation and Characterization of Yeasts Able to Assimilate Sugarcane Bagasse Hemicellulosic Hydrolysate and Produce Xylitol Associated with Veturius transversus (Passalidae, Coleoptera, and Insecta

    Directory of Open Access Journals (Sweden)

    Italo Thiago Silveira Rocha Matos

    2017-01-01

    Full Text Available Yeasts are an important component of insect gut microbial content, playing roles such as degradation of polymers and toxic compounds, biological control, and hormone, vitamin, and digestive enzyme production. The xylophagous beetle gut is a hyperdiverse habitat and a potential source of new species with industrial abilities such as enzyme production, pentose fermentation, and biodetoxification. In this work, samples of Veturius transversus (Passalidae, Coleoptera, and Insecta were collected from the Central Amazon Rainforest. Their guts were dissected and a total of 20 microbial colonies were isolated using sugarcane bagasse hemicellulosic hydrolysate. They were identified as having 10 distinct biochemical profiles, and genetic analysis allowed identification as three clades in the genera Candida, Williopsis, and Geotrichum. All colonies were able to assimilate D-xylose and 18 were able to produce xylitol, especially a strain of Geotrichum, with a maximum yield of 0.502 g·g−1. These results agree with a previous prediction that the microbial community associated with xylophagous insects is a promising source of species of biotechnological interest.

  17. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.

    Science.gov (United States)

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2012-02-15

    This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design.

    Science.gov (United States)

    Alves, Lourdes A; Vitolo, Michele; Felipe, Maria das Graças A; de Almeida e Silva, João Batista

    2002-01-01

    The sugarcane bagasse hydrolysate, which is rich in xylose, can be used as culture medium for Candida guilliermondii in xylitol production. However, the hydrolysate obtained from bagasse by acid hydrolysis at 120 degrees C for 20 min has by-products (acetic acid and furfural, among others), which are toxic to the yeast over certain concentrations. So, the hydrolysate must be pretreated before using in fermentation. The pretreatment variables considered were: adsorption time (15,37.5, and 60 min), type of acid used (H2So4 and H3Po4), hydrolysate concentration (original, twofold, and fourfold concentrated), and active charcoal (0.5, 1.75 and 3.0%). The suitability of the pretreatment was followed by measuring the xylose reductase (XR) and xylitol dehydrogenase (XD) activity of yeast grown in each treated hydrolysate. The response surface methodology (2(4) full factorial design with a centered face) indicated that the hydrolysate might be concentrated fourfold and the pH adjusted to 7.0 with CaO, followed by reduction to 5.5 with H3PO4. After that it was treated with active charcoal (3.0%) by 60 min. This pretreated hydrolysate attained the high XR/XD ratio of 4.5.

  19. Production of ethanol from hemicellulose fraction of cocksfoot grass using pichia stipitis

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Iversen, Jens Asmus; Uellendahl, Hinrich

    2013-01-01

    liquid hydrolysate to ethanol is essential for economically feasible cellulosic ethanol processes. Fermentation of the separated hemicellulose liquid hydrolysates obtained after the WEx pretreatment was done by Pichia stipitis CBS 6054 (Scheffersomyces stipitis). Results: The fermentation of the WEx...

  20. Liquid fuel production from hemicellulose. 2 Volumes

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Hemicellulose was derived from a variety of pretreated wood substrates. A variety of different fungi was screened for the ability of their culture filtrates to hydrolyse hemicellulose to its composite sugars. Three strains of Clostridia were screened to see which could produce higher amounts of solvents from those sugars. C. acetobutylicum proved to produce highest amounts of butanol and conditions for maximum solvent production by this anaerobe were defined. Six strains of facultative anaerobes were screened for their ability to produce power solvents from hemicellulose derived sugars. Klebsiella pneumoniae could efficiently utilize all the major sugars present in wood hemicellulose with 2,3-butanediol being the major end product. The conditions for maximum diol production by K. pneumoniae grown on sugars normally found in hemicellulose hydrolysates were defined. The utilization of wood hemicellulose hydrolyzates by microorganisms for the production of liquid fuels was investigated. Pretreatment of aspen wood by steam-explosion was optimized with respect to maximizing the pentosan yields in the water-soluble fractions of steam-treated substrates. These fractions were then hydrolyzed by dilute sulphuric acid or by the xylanase enzyme(s) present in the culture filtrates of Trichoderma harzianum. The relative efficiencies of hydrolysis were compared with respect to the release of reducing sugars and monosaccharides. The hemicellulose hydrolyzates were then used as substrates for fermentation. Butanediol yields of 0.4-0.5 g per g of sugar consumed were achieved using K. pneumoniae up to 0.16 g butanol could be attained per g of hemicellulose sugar utilized. 102 refs., 50 figs., 169 tabs.

  1. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  2. Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimised mild organosolv delignification

    NARCIS (Netherlands)

    Moniz, Patrícia; Lino, João; Duarte, Luís C.; Roseiro, Luísa B.; Boeriu, Carmen G.; Pereira, Helena; Carvalheiro, Florbela

    2015-01-01

    An integrated strategy was followed to valorise rice straw, one of the most relevant biomass feedstocks available worldwide, to selectively recover solubilised hemicelluloses and lignin. The pathway encompassed the use of autohydrolysis to hydrolyse the hemicelluloses and an ethanol-based

  3. Hemicellulose conversion by anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S; Honry, M P; Christopher, R W

    1985-01-01

    This research was undertaken to study the digestibility of the hemicellulose fractions of an aquatic biomass, a land-based biomass and a biomass-waste blend under various fermentation conditions. The conversion of hemicellulose was higher than those of cellulose and protein under the mesophilic condition. Hemicellulose was converted at a much lower efficency than cellulose during thermophilic digestion. In contrast, cellulose conversion was about the same under mesophilic and thermophilic conditions. Cellulose was utilized in preference to hemicellulose during mesophilic fermentation of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the pressure of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose required the least investment of enzymes and energy. 4 references.

  4. Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol

    International Nuclear Information System (INIS)

    Boucher, Jérémy; Chirat, Christine; Lachenal, Dominique

    2014-01-01

    Highlights: • Hemicellulosic ethanol from softwood hemicelluloses in a pulp mill. • Comparison of acid hydrolysis and autohydrolysis to extract hemicelluloses. • Effects of the extraction process conditions on inhibitors concentrations. • Effects of inhibitors on fermentation. - Abstract: This study deals with the production of ethanol and paper pulp in a kraft pulp mill. The use of an acid hydrolysis or a two-step treatment composed of an autohydrolysis followed by a secondary acid hydrolysis was studied. Acid hydrolysis allowed the extraction of higher quantities of sugars but led also to higher degradations of these sugars into inhibitors of fermentation. The direct fermentation of a hydrolysate resulting from an acid hydrolysis gave excellent yields after 24 h. However, the fermentation of hydrolysates after their concentration proved to be impossible. The study of the impact of the inhibitors on the fermentations showed that organic acids, and more specifically formic acid and acetic acid were greatly involved in the inhibition

  5. Resistant-hemicelluloses toward successive chemical treatment during cellulose fibre extraction

    Science.gov (United States)

    Naqiya, F. M. Z.; Ahmad, I.; Airianah, O. B.

    2018-04-01

    Lignocellulosic materials have high demand bio-polymers industries as it is rich in cellulose but other residues that still remain in the extracted cellulose might influence the ability of cellulose-rich material to interact with other polymers. In this study, cellulose fibre was extracted from oil palm frond (OPF) using alkali and bleaching treatment. The morphological changes of each sample after every treatment was observed using Scanning Electron Microscope (SEM) and was further chemically extracted and quantitatively evaluated via spectrophotometric method. The non-cellulosic component was found predominantly contained hemicelluloses and these remaining hemicelluloses were hydrolysed and the monosaccharides of hemicelluloses were visualised by Thin Layer Chromatography (TLC). Xylose, arabinose, mannose and glucose were detected and therefore, it is suggested that the plausible type of resistant-hemicelluloses in OPF extracted fibre are arabinoxylan, glucomannan and/or glucan.

  6. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  7. Chemical Synthesis of Hemicellulose Fragments

    DEFF Research Database (Denmark)

    Böhm, Maximilian Felix

    Hemicelluloses constitute a significant part of plant biomass, yet so far it has been difficult to make use of this class of polysaccharides. A lack of access to this class of molecules prevents the use of enzymatic studies to increase our understanding of the biochemical processes relevant to th...

  8. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  9. Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Xia, Liming

    2010-12-15

    Three corn stover hydrolysates, enzymatic hydrolysates prepared from acid and alkaline pretreatments separately and hemicellulosic hydrolysate prepared from acid pretreatment, were evaluated in composition and fermentability. For enzymatic hydrolysate from alkaline pretreatment, ethanol yield on fermentable sugars and fermentation efficiency reached highest among the three hydrolysates; meanwhile, ethanol yield on dry corn stover reached 0.175 g/g, higher than the sum of those of two hydrolysates from acid pretreatment. Fermentation process of the enzymatic hydrolysate from alkaline pretreatment was further investigated using free and immobilized cells of recombinant Saccharomyces cerevisiae ZU-10. Concentrated hydrolysate containing 66.9 g/L glucose and 32.1 g/L xylose was utilized. In the fermentation with free cells, 41.2 g/L ethanol was obtained within 72 h with an ethanol yield on fermentable sugars of 0.416 g/g. Immobilized cells greatly enhanced the ethanol productivity, while the ethanol yield on fermentable sugars of 0.411 g/g could still be reached. Repeated batch fermentation with immobilized cells was further attempted up to six batches. The ethanol yield on fermentable sugars maintained above 0.403 g/g with all glucose and more than 92.83% xylose utilized in each batch. These results demonstrate the feasibility and efficiency of ethanol production from corn stover hydrolysates. (author)

  10. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças de Almeida; Silva, João Batista de Almeida e; Giulietti, Marco

    2010-05-01

    The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

  11. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    Science.gov (United States)

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    Science.gov (United States)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  14. Quantification of solubilized hemicellulose from pretreated lignocellulose by acid hydrolysis and high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Ploeger, A.; Simonsen, T.; Woidemann, A.; Schmidt, A.S.

    1996-11-01

    An investigation of the acid hydrolysis and HPLC analysis have been carried out in order to optimise the quantification of the solubilized hemicellulose fraction from wheat straw lignocellulose after pretreatment. Different acid hydrolyses have been performed to identify which conditions (concentrations of acid and hydrolysis time) gave the maximal quantification of the solubilized hemicellulose (measured as monosaccharides). Four different sugars were identified: xylose, arabinose, glucose and galactose. Some hydrolyses were carried out on aqueous samples and some using freeze-dried samples. The best overall hydrolysis was obtained by treatment of an aqueous sample with 4 %w/v sulfuric acid for 10 minutes. These conditions were not optimal for the determination of glucose, which was estimated by using a correction factor. A purification step was needed following the acid hydrolysis, and included a sulfate precipitation by barium hydroxide and elimination of remaining ions by mixed-bed ion exchange. The level of barium hydroxide addition significantly reduced the recovery of the sugars. Thus, lower than equivalent amounts of barium hydroxide were added in the purification step. For monosaccharide analysis two different HPLC columns, i.e. Aminex HPX-87P and HPX-87H with different resin ionic forms, lead (Pb{sup 2+}) and hydrogen (H{sup +}), respectively. The lead column (HPX-87P) separated all four sugars in the acid hydrolyzates, but sample purification required the removal of all interfering impurities, which resulted in poor reproducibility and a sugar recovery below 50%. The hydrogen column (HPX-87H) separated only glucose, xylose and arabinose, whereas galactose was not separated from xylose; however, the column was less sensitive towards impurities and gave improved recovery and reproducibility. Therefore, the hydrogen column (HPX-87H) was chosen for routine quantification of the hydrolyzed hemicellulose sugars. (au) 11 tabs., 8 ills., 19 refs.

  15. Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentation Processes

    NARCIS (Netherlands)

    Zha, Y.; Muilwijk, B.; Coulier, L.C.; Punt, P.J.

    2012-01-01

    To compare the composition and performance of various lignocellulosic biomass hydrolysates as fermentation media, 8 hydrolysates were generated from a grass-like and a wood biomass. The hydrolysate preparation methods used were 1) dilute acid, 2) mild alkaline, 3) alkaline/peracetic acid, and 4)

  16. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  17. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  18. Bioethanol Production from Sugarcane Bagasse by a Novel Brazilian Pentose Fermenting Yeast Scheffersomyces shehatae UFMG-HM 52.2: Evaluation of Fermentation Medium

    Directory of Open Access Journals (Sweden)

    F. A. F. Antunes

    2014-01-01

    Full Text Available Bioconversion of hemicellulosic sugars into second generation (2G ethanol plays a pivotal role in the overall success of biorefineries. In this study, ethanol production performance of a novel xylose-fermenting yeast, Scheffersomyces shehatae UFMG-HM 52.2, was evaluated under batch fermentation conditions using sugarcane bagasse (SB hemicellulosic hydrolysate as carbon source. Dilute acid hydrolysis of SB was performed to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH. It was concentrated, detoxified, and supplemented with nutrients in different formulations to prepare the fermentation medium to the yeast evaluation performance. S. shehatae UFMG-HM 52.2 (isolated from Brazilian Atlantic rain forest ecosystem was used in fermentations carried out in Erlenmeyer flasks maintained in a rotator shaker at 30°C and 200 rpm for 72 h. The use of a fermentation medium composed of SBHH supplemented with 5 g/L ammonium sulfate, 3 g/L yeast extract, and 3 g/L malt extract resulted in 0.38 g/g of ethanol yield and 0.19 g L.h of volumetric productivity after 48 h of incubation time.

  19. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  20. Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction

    Directory of Open Access Journals (Sweden)

    Bruna Tavares

    Full Text Available ABSTRACT Sunflower is among the major oil seeds crop grown in the world and the by-products generated during the seeds processing represent an attractive source of lignocellulosic biomass for bioprocesses. The conversion of lignocellulosic fibers into fermentable sugars has been considered as a promising alternative to increase the demand for ethanol. The present study aimed to establish the fermentation conditions for ethanol production by Scheffersomyces stipitis ATCC 58376 in sunflower meal hemicellulosic hydrolysate, through a 23 CCRD (Central Composite Rotational Design factorial design. Under the selected conditions (pH 5.25, 29 ºC and 198 rpm the final ethanol concentration was 13.92 g L-1 and the ethanol yield was 0.49 g g-1.

  1. Acid hydrolysis of hemicelluloses in beech sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Hojnos, J

    1977-01-01

    The hemicellulose of beechwood consists mainly of 4-O-methylglucuronoxylan, 92.4 to 94.4% of which is selectively hydrolyzed to D-xylose (1) by exposing moist beechwood sawdust to HCl (g) at 50/sup 0/ for 50 min. The prepn. of 1 in 85.6% yield from beechwood sawdust can also be carried out by heating it at 140/sup 0/ for 70 to 100 min in 3 to 4.5% H/sub 2/SO/sub 3/ soln. Dry SO/sub 2/(g) does not hydrolyze beechwood sawdust.

  2. Cellulose-hemicellulose interaction in wood secondary cell-wall

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Shi; Hong, Yu; Chen, Youping; Xiong, Liming

    2015-01-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose. (paper)

  3. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  4. Lignin- and Hemicellulose-derived Biomass Recalcitrance

    DEFF Research Database (Denmark)

    Deralia, Parveen Kumar

    technology bringing the multitude of chemical and physical changes, which govern the level of biomass recalcitrance. The lignocellulosic biomasses in question are wheat straw and poplar and the hydrothermal pretreatment is used as pretreatment technology. The 2D HSQC NMR and wet chemistry chemical...... degree to the biomass surface, giving a proportional increase in the specific surface area opposite to wheat straw, which has a marked increase in the specific surface area. The distinctly different chemistry of lignin and hemicellulose and different lignin migration and reorganization appear...... to be correlative, helping explain differences in enzymatic saccharification performance across the pretreatment severities and between two biomasses. The main contribution of this work to the current state-of-the-art in the field is the revelation of distinct behaviors of generation of different repolymerized...

  5. Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography.

    Science.gov (United States)

    Lodi, Gabriele; Pellegrini, Laura Annamaria; Aliverti, Alessandro; Rivas Torres, Beatriz; Bernardi, Marco; Morbidelli, Massimo; Storti, Giuseppe

    2017-05-05

    The production of sugars from lignocellulosic biomass is the key to a sustainable, renewable chemical industry. Glucose, xylose and other monosaccharides can be easily produced by hydrolyzing cellulose and hemicellulose, the primary polysaccharides in biomass. However, the hydrolysis of biomass generates byproducts that, together with the mineral acid normally added in the hydrolysis step, have to be removed before the downstream conversion processes. In this work, the recovery of monosaccharides from lignocellulosic hydrolysates by means of Ion Exclusion Chromatography (IEC) has been studied. The analyzed process relies on new pretreatment and hydrolysis steps, involving the neutralization of the hydrolysate with sodium hydroxide. The adsorption behavior of the main components involved in the separation has been experimentally investigated. Pulse tests at the high loading encountered in preparative conditions have been performed for a selected group of model components found in the hydrolysates. For all the electrolytes, the retention volume fraction was always between the interparticle porosity and the total column porosity, confirming that ion exclusion was the dominant retention mechanism. On the other hand, sugars eluted before the total column porosity, indicating partial steric exclusion from the resin pores. This observation was then confirmed by size-exclusion experiments with polyethylene glycol standards, from which the distribution coefficient of the studied sugars has been determined. The comparison between the elution profiles of the same sugars in pure form and as a mixture present in the hydrolysate showed differences in both peak shape and retention times. Therefore, an investigation of the influence of the main electrolytes contained in the hydrolysates on sugars adsorption has been performed through the pulse on a plateau method. The electrolytes were found to enhance the sugars retention by promoting their adsorption onto the resin. However

  6. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  7. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller

    2011-01-01

    Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...

  8. Hypolipidemic effect of hemicellulose component of coconut fiber.

    Science.gov (United States)

    Sindhurani, J A; Rajamohan, T

    1998-08-01

    The neutral detergent fiber (NDF) isolated from coconut kernel was digested with cellulase and hemicellulase and the residual fiber rich in hemicellulose (without cellulose) and cellulose (with out hemicellulose) were fed to rats and compared with a fiber free group. The results indicate that hemicellulose rich fiber showed decreased concentration of total cholesterol, LDL + VLDL cholesterol and increased HDL cholesterol, while cellulose rich fiber showed no significant alteration. There was increased HMG CoA reductase activity and increased incorporation of labeled acetate into free cholesterol. Rats fed hemicellulose rich coconut fiber produced lower concentration of triglycerides and phospholipids and lower release of lipoproteins into circulation. There was increased concentration of hepatic bile acids and increased excretion of faecal sterols and bile acids. These results indicate that the hemicellulose component of coconut fiber was responsible for the observed hypolipidemic effect.

  9. Antioxidative Activity of Tobacco Leaf Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Guohua Rao

    2007-01-01

    Full Text Available Discarded tobacco leaf protein hydrolysate (DTLPH was prepared by enzymatic hydrolysis using papain and then separated using ultrafiltration (UF membranes with molecular mass cut-off (MMCO of 10, 5, 3 and 1 kDa. Four permeate fractions including 10-K, 5-K, 3-K and 1-K (the permeate fractions from 10, 5, 3 and 1 kDa hydrolysate fractions were obtained. The 5-K hydrolysate fraction had high oxidation inhibilitory ratio (42.62 %, which was about twofold higher than the original hydrolysate and as high as that of vitamin E (α-tocopherol. The fractionated hydrolysates were superior to the original hydrolysate in the antioxidative activity tested. Moreover, these separated hydrolysates showed the enhanced functional property. The amino acid composition of 5-K hydrolysate was analyzed and the results show that the high antioxidative activity of 5-K hydrolysate was derived from high content of histidine, methionine, cystine and tryptophan.

  10. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  11. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. CHARACTERISTICS OF CORN STALK HEMICELLULOSE PYROLYSIS IN A TUBULAR REACTOR

    OpenAIRE

    Gao-Jin Lv; Shu-Bin Wu; Rui Lou

    2010-01-01

    Pyrolysis characteristics of corn stalk hemicellulose were investigated in a tubular reactor at different temperatures, with focus mainly on the releasing profiles and forming behaviors of pyrolysis products (gas, char, and tar). The products obtained were further identified using various approaches (including GC, SEM, and GC-MS) to understand the influence of temperature on product properties and compositions. It was found that the devolatilization of hemicellulose mainly occurred at low tem...

  13. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed

  14. Protein Hydrolysates/Peptides in Animal Nutrition

    Science.gov (United States)

    McCalla, Jeff; Waugh, Terry; Lohry, Eric

    The use of protein hydrolysates as an important nutrient for growth and maintenance has been increasing in animal nutrition. Although animal proteins and protein hydrolysates are widely used however, recently vegetable protein hydrolysates are gaining importance. This chapter reviews the use of protein hydrolysates developed by enzyme hydrolysis and by solid state fermentation process in animal nutrition especially for piglets and compares it with the standard products such as plasma and fishmeal.

  15. Mixture of residual fish hydrolysate and fish extract hydrolysate to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... 42°C. Replacement of nutrient broth-starch with residual fish hydrolysate-starch led to the enzyme production to .... Paddy husk, raw unpolished rice, fertilizers such as ..... Saunders BC (eds) Practical Organic Chemistry. 4th.

  16. Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2005-05-01

    Full Text Available Xylitol was produced by Candida guilliermondii from charcoal-treated and untreated rice straw hemicellulosic hydrolysate with or without nutrients (ammonium sulphate, calcium chloride, rice bran extract. Both, xylitol yield and volumetric productivity decreased significantly when the nutrients were added to treated and untreated hydrolysates. In the treated hydrolysate, the efficiency of xylose conversion to xylitol was 79% when the nutrients were omitted. The results demonstrated that rice straw hemicellulosic hydrolysate treated with activated charcoal was a cheap source of xylose and other nutrients for xylitol production by C. guilliermondii. The non-necessity of adding nutrients to the hydrolysate media would be very advantageous since the process becomes less costly.Este trabalho avaliou a produção de xilitol pela levedura Candida guilliermondii, a partir de hidrolisado hemicelulósico de palha de arroz não tratado e tratado com carvão ativo, ambos suplementados ou não com nutrientes (sulfato de amônio, cloreto de cálcio e extrato de farelo de arroz. Os resultados mostraram que tanto o rendimento como a produtividade volumétrica em xilitol diminuíram quando os nutrientes foram adicionados em ambos hidrolisados, tratado e não tratado. Em hidrolisado tratado, a eficiência de conversão de xilose em xilitol foi de 79% quando em ausência de nutrientes. Estes resultados mostram que o hidrolisado hemicelulósico de palha de arroz tratado com carvão ativo é uma fonte barata de xilose e outros nutrientes, para a produção de xilitol por Candida guilliermondii. A não necessidade de adicionar nutrientes ao meio a base de hidrolisado é muito vantajosa, uma vez que o processo se torna mais econômico.

  17. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  18. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  19. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.

    Science.gov (United States)

    Gairola, Krishan; Smirnova, Irina

    2012-11-01

    This work explores hydrothermal d-xylose and hemicellulose to furfural conversion coupled with simultaneous furfural extraction by SC-CO(2) and the underlying reaction pathway. A maximum furfural yield of 68% was attained from d-xylose at 230°C and 12MPa. Additionally missing kinetic data for l-arabinose to furfural conversion was provided, showing close similarity to d-xylose. Furfural yields from straw and brewery waste hydrolysates were significantly lower than those obtained from model compounds, indicating side reactions with other hydrolysate components. Simultaneous furfural extraction by SC-CO(2) significantly increased extraction yield in all cases. The results indicate that furfural reacts with intermediates of pentose dehydration. The proposed processing route can be well integrated into existing lignocellulose biorefinery concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Bioethanol production by fermentation of hemicellulosic hydrolysates of african palm residues using an adapted strain of Scheffersomyces stipitis

    Directory of Open Access Journals (Sweden)

    Frank Carlos Herrera-Ruales

    2014-01-01

    Full Text Available Se evaluó la producción de etanol a escala matraz usando una cepa de Scheffersomyces stipitis (Pichia stipitis adaptada a inhibidores presentes en hidrolizados hemicelulósicos de palma africana. La adaptación se logró luego de 20 subcultivos en medios progresivamente concentrados en inhibidores. La evaluación de la producción de etanol mostró que la agitación orbital y el volumen de medio influyen significativamente sobre la concentración máxima de etanol, mientras que el volumen del medio y la concentración del inóculo influyen sobre la productividad máxima de etanol. La máxima concentración y rendimiento de etanol fueron 8.48 gl -1 y 0,39 gg-1, respectivamente, alcanzados con 125 rpm, inóculo de 6.75x10 7 células ml-1 y 140 ml de medio. La productividad máxima fue 0.062 gl -1h-1 alcanzada con 125 rpm, inóculo de 99,63x107 células ml-1 y 90 ml de medio, mostrando que es posible producir etanol a partir de hemicelulosa de palma africana usando la adaptación de cepas.

  1. Safety of protein hydrolysates, fractions thereof and

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2009-01-01

    This paper evaluates the safety for humans with regard to consumption of protein hydrolysates and fractions thereof, including bioactive peptides. The available literature on the safety of protein, protein hydrolysates, fractions thereof and free amino acids on relevant food legislation is reviewed

  2. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    International Nuclear Information System (INIS)

    Norsyabilah, R.; Hanim, S.S.; Norsuhaila, M.H.; Noraishah, A.K.; Siti Kartina

    2013-01-01

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  3. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2012-12-01

    Full Text Available Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp. were evaluated. Papain hydrolysis showed the highest DH value (89.44%, followed by alcalase hydrolysis (83.35%. Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions.

  4. ON THE RECOVERY OF HEMICELLULOSE BEFORE KRAFT PULPING

    Directory of Open Access Journals (Sweden)

    Carlos Vila,

    2012-07-01

    Full Text Available To assess the feasibility of implementing hemicellulose recovery stages in kraft mills, Eucalyptus globulus wood samples were subjected to aqueous treatments with hot, compressed water (autohydrolysis processing to achieve partial dissolution of xylan. Autohydrolyzed solids were subjected to kraft pulping under selected conditions to yield a pulp of low kappa number, and to an optimized TCF bleaching sequence made up of three stages (alkaline oxygen delignification, chelating, and pressurized hydrogen peroxide, with minimized additions of pulping and bleaching chemicals. The final product had a relatively low kappa number (1.4, 641 mL/g ISO intrinsic viscosity, and 86.4% brightness.

  5. ALKALI EXTRACTION OF HEMICELLULOSE FROM DEPITHED CORN STOVER AND EFFECTS ON SODA-AQ PULPING

    OpenAIRE

    Heli Cheng; Huaiyu Zhan; Shiyu Fu; Lucian A. Lucia

    2011-01-01

    A biorefinery using the process of hemicellulose pre-extraction and subsequent pulping provides a promising way for the utilization of straw biomass and resolution of problems related to silicon. In this work, hemicellulose was extracted from depithed corn stover with sodium hydroxide solution before soda-AQ pulping. Components of the extracts were quantified by ion chromatography. The parameters (alkali concentration and temperature) affecting hemicellulose pre-extraction were optimized. The...

  6. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  7. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    Science.gov (United States)

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Antiulcerative Activity of Milk Proteins Hydrolysates.

    Science.gov (United States)

    Carrillo, Wilman; Monteiro, Karin Maia; Martínez-Maqueda, Daniel; Ramos, Mercedes; Recio, Isidra; Carvalho, João Ernesto de

    2018-04-01

    Several studies have shown the protective effect of dairy products, especially α-lactalbumin and derived hydrolysates, against induced gastric ulcerative lesions. The mucus strengthening represents an important mechanism in the defense of gastrointestinal mucosa. Previously, a hydrolysate from casein (CNH) and a hydrolysate from whey protein concentrate rich in β-lactoglobulin (WPH) demonstrated a stimulatory activity on mucus production in intestinal goblet cells. The aim of this work was to evaluate the possible antiulcerative activity of these two hydrolysates in an ethanol-induced ulcer model in rats. All tested samples significantly reduced the ulcerative lesions index (ULI), compared with the saline solution, using doses of 300 and 1000 mg kg -1 body weight with decreases up to 66.3% ULI. A dose-response relationship was found for both hydrolysates. The involvement of endogenous sulfhydryl (SH) groups and prostaglandins (PGs) in the antiulcerative activity was evaluated using their blockage. The antiulcerative activity of WPH showed a drastic decrease in presence of N-ethylmaleimide (from 41.4% to 9.2% ULI). However, the CNH antiulcerative properties were not significantly affected. The cytoprotective effect of WPH appears to depend on a PG-mediated mechanism. In conclusion, CNH and WPH demonstrated in vivo antiulcerative properties and represent a promising alternative as protectors of the gastric mucosa.

  9. Utilization of cellulose and hemicellulose of pig faeces by Trichoderma viride

    NARCIS (Netherlands)

    Wit, de W.

    1980-01-01

    The purpose of this investigation was to study the microbiological degradation of the cellulose-hemicellulose-lignin complexes of the faeces of pigs. Cellulose, hemicellulose and lignin are components of the cell wall of plants and residues of plant material occur in large quantities in faeces

  10. Production and Utilization of Hemicelluloses from Renewable Resources for Sustainable Advanced Products

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa

    Vast amounts of by-products are generated every year from agricultural crop production and hence great quantities of polysaccharides remain underutilized. The polysaccharides from agricultural by-products can be separated and used in the form of new materials. This thesis is devoted...... to the possibility of using hemicelluloses for special polysaccharide film applications in the packaging sector, starting from hemicellulose isolations from a side product of agricultural processes, hemicellulose characterization and assessing material properties and the potential use of hemicellulose films in later.......35, while the waterextracted material had an Ara/Xyl ratio of 0.54. In order to analyse the monosaccharide composition of the isolated hemicelluloses, a method based on gas chromatography-mass spectrometry analysis of acetylated methyl glycosides was developed. The derivatives of the monosaccharides...

  11. Upgrading the Hemicellulosic Fraction of Biomass into Biofuel Valorisation de la fraction hémicellulosique de la biomasse en biocarburants

    Directory of Open Access Journals (Sweden)

    Ben Chaabane F.

    2013-06-01

    Full Text Available Hemicelluloses are polymers composed mainly of C5 sugars (pentosans . They constitute a significant part of lignocellulosic biomass (LCB, as they can be up to 30% of the total mass. The upgrading of the hemicellulosic components is thus a prerequisite for profitable biofuel production from LCB. When LCB undergoes acid pretreatment, the hemicellulose-derived fraction is mainly composed of monomeric pentoses (xylose, arabinose and oligomeric pentoses both resulting from the thermo-chemical hydrolysis. The hemicellulosic fraction is not fermentable into ethanol by wild type strains of Saccharomyces cerevisiae. Over the past 20 years, several groups have worked to genetically modify this yeast in order to render it capable offermenting pentose constituents. These efforts were met with varying degrees of success, especially in the case of industrial substrates. In this paper, we describe two other possible ways of using the hemicellulosic fraction, each of which may contribute to the economic viability of biofuel production from LCB. The first one is its use as a carbon substrate for the production of cellulases by Trichoderma reesei, since cellulases are needed for the enzymatic hydrolysis of cellulose. The second is the AcetoneButanol-Ethanol (ABE fermentation using anaerobic bacteria of the genus Clostridium. The produced ABE mixture has very interesting fuel properties and can be directly blended with gasoline. Les hémicelluloses sont des polymères composés principalement de sucres en C5 (pentosanes. Elles constituent une part importante de la biomasse lignocellulosique (BLC, puisqu’elles représentent jusqu’à 30 % de la masse totale. La valorisation des constituants hémicellulosiques est donc un prérequis pour la profitabilité de la production de biocarburants à partir de BLC. Lorsque l’on applique un prétraitement acide à la BLC, la fraction hémicellulosique résultante est principalement composée de pentoses monom

  12. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  13. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    Science.gov (United States)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  14. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed animal protein hydrolysate. 573.200... ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The condensed animal protein hydrolysate is produced from the meat byproducts scraped from cured (salted) hides taken...

  15. Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels : mechanical swelling and controlled drug release properties

    Science.gov (United States)

    Ahmet M. Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2010-01-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the...

  16. Hemicellulose-derived sugars solubilisation of rape straw. Cofermentation of pentoses and hexoses by Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    López-Linares, J.C.; Cara-Corpas, C.; Ruiz-Ramos, E.; Moya-Vilar, M.; Castro-Galiano, E.; Romero-Pulido, I.

    2015-07-01

    Bioconversion of hemicellulose sugars is essential for increasing fuel ethanol yields from lignocellulosic biomass. We report for the first time with rape straw, bioethanol production from hemicellulose sugars. Rape straw was pretreated at mild conditions with sulfuric acid to solubilize the hemicellulose fraction. This pretreatment allows obtaining a prehydrolysate, consisting basically in a solution of monomeric hemicellulosic sugars, with low inhibitor concentrations. The remaining water insoluble solid constitutes a cellulose-enriched, free of extractives material. The influence of temperature (120ºC and 130ºC), acid concentration (2-4% w/v) and pretreatment time (30-180 min) on hemicellulose-derived sugars solubilisation was evaluated. The highest hemicellulosic sugars recovery, 72.3%, was achieved at 130ºC with 2% sulfuric acid and 60 min. At these conditions, a concentrated sugars solution, 52.4 g/L, was obtained after three acid consecutive contacts, with 67% xylose and acetic acid concentration above 4.5 g/L. After a detoxification step by activated charcoal or ion-exchange resin, prehydrolysate was fermented by ethanologenic Escherichia coli. An alcoholic solution of 25 g/L and 86% of theoretical ethanol yield was attained after 144 h when the prehydrolysate was detoxified by ion-exchange resin. The results obtained in the present work show sulfuric acid pretreatment under mild conditions and E. coli as an interesting process to exploit hemicellulosic sugars in rape straw. (Author)

  17. Hemicellulose-derived sugars solubilisation of rape straw. Cofermentation of pentoses and hexoses by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Juan Carlos Lopez-Linares

    2015-09-01

    Full Text Available Bioconversion of hemicellulose sugars is essential for increasing fuel ethanol yields from lignocellulosic biomass. We report for the first time with rape straw, bioethanol production from hemicellulose sugars. Rape straw was pretreated at mild conditions with sulfuric acid to solubilize the hemicellulose fraction. This pretreatment allows obtaining a prehydrolysate, consisting basically in a solution of monomeric hemicellulosic sugars, with low inhibitor concentrations. The remaining water insoluble solid constitutes a cellulose-enriched, free of extractives material. The influence of temperature (120ºC and 130ºC, acid concentration (2-4% w/v and pretreatment time (30-180 min on hemicellulose-derived sugars solubilisation was evaluated. The highest hemicellulosic sugars recovery, 72.3%, was achieved at 130ºC with 2% sulfuric acid and 60 min. At these conditions, a concentrated sugars solution, 52.4 g/L, was obtained after three acid consecutive contacts, with 67% xylose and acetic acid concentration above 4.5 g/L. After a detoxification step by activated charcoal or ion-exchange resin, prehydrolysate was fermented by ethanologenic Escherichia coli. An alcoholic solution of 25 g/L and 86% of theoretical ethanol yield was attained after 144 h when the prehydrolysate was detoxified by ion-exchange resin. The results obtained in the present work show sulfuric acid pretreatment under mild conditions and E. coli as an interesting process to exploit hemicellulosic sugars in rape straw.

  18. Pork fat hydrolysed by Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Sørensen, B. B.; Stahnke, Louise Heller; Zeuthen, Peter

    1993-01-01

    Staphylococcus xylosus is used as a starter culture in the production of fermented sausages. Its ability to hydrolyse pork fat was investigated. Within 15 days of incubation an interaction of bacterial growth, lipase production and lipase activity in a pork fat containing medium caused liberation...

  19. Membrane capacitive deionization for biomass hydrolysate desalination

    NARCIS (Netherlands)

    Huyskens, Celine; Helsen, J.; Groot, W.J.; Haan, de A.B.

    2013-01-01

    Biomass hydrolysates are rapidly gaining interest as low-cost non-food renewable feedstocks for fermentation processes. However, since high concentrations of salt such as sodium and potassium can act toxic to microorganisms, there is a need to remove these salts to maintain high biochemical

  20. Sensory Characteristics of Mud Clam (Polymesoda Erosa) Hydrolysate

    International Nuclear Information System (INIS)

    Normah Ismail; Noorasma Mustakim

    2016-01-01

    Mud clam (Polymesoda erosa) was hydrolysed using two different microbial enzymes; alcalase and flavourzyme. The volatile compounds, amino acids and molecular weight associated with umami and bitter taste in mud clam hydrolysate were determined by head space solid phase micro-extraction gas chromatography (HS-SPME-GCMS), High performance liquid chromatography (HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The characteristics of hydrolysates produced using alcalase and flavourzyme were compared. In total, eighteen, seven and six volatile compounds were identified in the flesh, alcalase hydrolysate and flavourzyme hydrolysate, respectively. 2-piperidinone volatile compound content which is associated with bitterness was 6.79 % in alcalase hydrolysate and 3.78 % in flavourzyme hydrolysate. SDS-PAGE results showed that alcalase hydrolysate contains smaller peptide (<52 kDa) compared to flavourzyme hydrolysate (<126 kDa). In addition, sensory analysis using quantitative descriptive analysis (QDA) showed that flavourzyme hydroysate was the least bitter but elicited more umami taste compared to alcalase hydrolysate. Further treatments are still needed to enhance umami taste and to remove bitter taste in mud clam hydrolysate. (author)

  1. Potential of Selected Rumen Bacteria for Cellulose and Hemicellulose Degradation

    Directory of Open Access Journals (Sweden)

    Maša Zorec

    2014-01-01

    Full Text Available Herbivorous animals harbour potent cellulolytic and hemicellulolytic microorganisms that supply the host with nutrients acquired from degradation of ingested plant material. In addition to protozoa and fungi, rumen bacteria contribute a considerable part in the breakdown of recalcitrant (hemicellulosic biomass. The present review is focused on the enzymatic systems of three representative fibrolytic rumen bacteria, namely Ruminococcus flavefaciens, Prevotella bryantii and Pseudobutyrivibrio xylanivorans. R. flavefaciens is known for one of the most elaborated cellulosome architectures and might represent a promising candidate for the construction of designer cellulosomes. On the other hand, Prevotella bryantii and Pseudobutyrivibrio xylanivorans produce multiple free, but highly efficient xylanases. In addition, P. xylanivorans was also shown to have some probiotic traits, which makes it a promising candidate not only for biogas production, but also as an animal feed supplement. Genomic and proteomic analyses of cellulolytic and hemicellulolytic bacterial species aim to identify novel enzymes, which can then be cloned and expressed in adequate hosts to construct highly active recombinant hydrolytic microorganisms applicable for different biotechnological tasks.

  2. Microbial Production of Xylitol from Oil Palm Empty Fruit Bunch Hydrolysate: Effects of Inoculum and pH

    Directory of Open Access Journals (Sweden)

    M.T.A.P. Kresnowati

    2016-11-01

    Full Text Available Considering its high content of hemicellulose, oil palm empty fruit bunch (EFB lignocellulosic biomass waste from palm oil processing has the potential to be utilized as the raw material for the production of xylitol, a low calorie, low GI, and anti cariogenic alternative sugar with similar sweetness to sucrose. This research explored the possibility of converting EFB to xylitol via green microbial fermentation, in particular the effects of inoculum and initial pH on the fermentation performance. It was observed that the cell concentration in the inoculum and the initial pH affect cell growth and xylitol production. pH 5 was observed to give the best fermentation performance. Further, the fermentation tended to yield more xylitol at higher initial cell concentration. It was also observed that no growth or fermentation inhibitory compounds were found in the EFB hydrolysate obtained from enzymatic hydrolysis of EFB. Thus it can be used directly as substrate for xylitol fermentation.

  3. Investigation on the structure of the hemicellulose obtained from the fiber of Sansevieria trifasciata leaves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, U.; Mukherjee, A.K.

    1981-01-01

    Hydrolysis of purified hemicellulose from extractive-free, delignified fiber of S. trifaciata leaves gave a product containing D-xylose and 4-O-methyl-D-glucuronic acid in molecular ratio 5:1. Hemicellulose consists of a polymer of (1 to 4)-linked D-xylopyranosyl residues having branches of D-xylopyranosyl and 4-O-methyl-alpha-D-glucopyranosyluronic acid groups on the O-2 atoms of the main chain.

  4. ETHANOL PRODUCTION FROM THE MIXTURE OF HEMICELLULOSE PREHYDROLYSATE AND PAPER SLUDGE

    OpenAIRE

    Li Kang,; Yoon Y. Lee,; Sung-Hoon Yoon,; Allen J. Smith,; Gopal A. Krishnagopalan

    2012-01-01

    Much of the hemicellulose fraction of pulp mill feedstock is released into black liquor during the pulping process, and it is combusted to recover chemicals and energy in the form of steam and electricity. It is technically feasible to recover this fraction of carbohydrates and convert it into value-added products. In this study, a portion of the hemicellulose in pulp feed was hydrolyzed to soluble sugars by hot-water treatment. The sugars (mixtures of pentose, hexose, and their oligomers) we...

  5. Chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boluk, Y.; Jost, R. [Alberta Research Council, Edmonton, AB (Canada)

    2009-07-01

    Raw material is the basis of the chemical industry. This presentation discussed the chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals. Biorefining pretreatment processes open up the biomass structure, release hemicelluloses and overcome the resistance to enzymatic hydrolysis. Although hemicellulose is the second most abundant carbohydrate, it does not have many industrial applications. The state of released hemicellulose whether polymeric, oligomeric or monosaccharides depends primarily on the pretreatment process conditions. Physical pretreatment methods include high-pressure steaming and steam explosion; milling and grinding; extrusion; and high-energy radiation. The chemical pretreatment methods involve the use of alkali, acid, gas and oxidizing agents as well as solvents. The biological pretreatment methods involve the use of lignin consuming fungi and cellulose consuming fungi. A profitable use of C5 sugars in monomeric, oligomeric and polymeric forms is necessary for a viable wood to bioethanol process. Hemicellulose composition varies depending on the biomass source. It usually has a lower molecular weight than cellulose, contains branching, and is comprised of several different monosaccharides. The existing commercial chemical products include xylitol, mannitol, and furfural. The hemicellulose coproducts from a lignocellulosic biorefinery have the potential to become a feasible replacement for their fossil-based equivalents. tabs., figs.

  6. Effect of Partial Pre-Extraction of Hemicelluloses on the Properties of Pinus radiata Chemimechanical Pulps

    Directory of Open Access Journals (Sweden)

    Pablo Reyes

    2015-09-01

    Full Text Available Extraction of hemicelluloses prior to pulping and conversion of the extracted hemicelluloses to other bioproducts could provide additional revenue to traditional pulp and paper industries. The effect of hemicelluloses pre-extraction with a hydrothermal (HT process on Pinus radiata chemimechanical pulp (CMP properties was investigated in this study. The HT extraction resulted in a release of 7% to 58% of the initial amount of hemicelluloses from the wood. The extraction yield increased with temperature and extraction time. This hemicellulosic fraction was in the form of low molar mass oligomers with molecular weights varying from 1.5 to 100 kDa. Compared with the control (unextracted CMP pulp, the HT pre-extraction significantly reduced the refining energy to obtain a given fibrillation degree (freeness. The pulp yield with the HT/CMP process was in the range of 56% to 75%. Fiber properties of the pulps from pre-extracted wood, such as fiber length, were reduced, while increases in fiber width, fines content, fiber coarseness, and kink index were observed in comparison with the control pulps. The strength properties of CMP pulps decreased with increasing amounts of hemicellulose removal during the stage prior to pulping.

  7. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production.

    Science.gov (United States)

    Li, Huiling; Dai, Qingqing; Ren, Junli; Jian, Longfei; Peng, Feng; Sun, Runcang; Liu, Guoliang

    2016-01-20

    In the present study, a graded ethanol precipitation technique was employed to obtain hemicelluloses from the alkali-extracted corncob liquid. The relationship between the structural characteristics of alkali-soluble corncob hemicelluloses and the production of furfural was investigated by a heterogeneous process in a biphasic system. Results showed that alkali-soluble corncob hemicelluloses mainly consisted of glucuronoarabinoxylans and L-arabino-(4-O-methylglucurono)-D-xylans, and the drying way had less influence on the sugar composition, molecular weights and the functional groups of hemicelluloses obtained by the different ethanol concentration precipitation except for the thermal property, the amorphous structure and the ability for the furfural production. Furthermore, alkali-soluble corncob hemicelluloses with higher xylose content, lower branch degree, higher polydispersity and crystallinity contributed to the furfural production. A highest furfural yield of 45.41% with the xylose conversion efficiency of 99.06% and the furfural selectivity of 45.84% was obtained from the oven-dried hemicelluloses precipitated at the 30% (v/v) ethanol concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The structural features of hemicelluloses dissolved out at different cooking stages of active oxygen cooking process.

    Science.gov (United States)

    Shi, Jianbin; Yang, Qiulin; Lin, Lu

    2014-04-15

    This work described the morphologic changes of corn stalk and the structural characterization of its hemicelluloses dissolved in yellow liquor at different cooking stages. The results showed that active oxygen cooking process was an efficient method to depolymerize the corn stalk into cellulose, hemicelluloses, and lignin as a pretreatment of biomass conversion. This cooking process can also be divided into three phases: bulk delignification, extended delignification, and residual delignification. During the heating-up period 57.67% of hemicelluloses and 62.31% of lignin were removed from the raw material. However, only 15% of hemicelluloses and 23.21% of lignin were removed during at temperature' period. The hemicelluloses from the corn stalk and yellow liquor were composed of (1→4)-β-D-xylopyranose backbones substituted with α-l-arabinofuranosyl, 4-O-methyl-α-D-glucuronic acid, and some methoxyl residues. The backbones of hemicelluloses were gradually cleaved during the cooking process. The acetyl groups substituted with xylopyranosyl residues were completely cleaved during the cooking process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  10. Antihypertensive potential of bioactive hydrolysate from edible bird's nest

    Science.gov (United States)

    Ramachandran, Ravisangkar; Babji, Abdul Salam; Sani, Norrakiah Abdullah

    2018-04-01

    The aim of this study is to determine and compare the proximate composition, the degree of hydrolysis (DH) and the antihypertensive activity of edible bird's nest (EBN) hydrolysates of two different drying methods. Four types of enzymes (alcalase, bromelain, pancreatin and papain) were used in this study and with different hydrolysis time (30, 60, 90, 120, 180 and 240 min). The highest DH for alcalase (79.48 - 84.09%), pancreatine (77.10 - 80.45%) and papain (82.33%) for EBN hydrolysates was produced with alcalase treatment at 60 - 90 min, pancreatine treatment at 30 - 90 min and papain treatment at 90 min. Bromelain generated hydrolysates showed low DH. EBN hydrolysed using alcalase, pancreatin and papain have significantly higher protein content compared to raw EBN and the moisture content of all hydrolysates treatments was significantly lower compared to raw EBN. For antihypertensive assay, freeze dried EBN hydrolysates have higher antihypertensive activity compared to spray dried hydrolysates. The highest antihypertensive activity for freeze dried samples was produced by alcalase, bromelain and pancreatin and in the range of 80.22 - 86.97%. Meanwhile, papain proved to be less effective in producing hydrolysate with antihypertensive ability. In conclusion, EBN hydrolysate prepared by alcalase, bromelain and pancreatin could be classified as a functional food as it showed significant antihypertensive activity.

  11. Bitterness and Physichochemical Properties of Angelwing Clam (Pholas Orientalis) Hydrolysate

    International Nuclear Information System (INIS)

    Normah Ismail; Nurul Fasihah Razak

    2016-01-01

    Protein hydrolysates from angelwing clam were obtained by enzymatic hydrolysis using bromelain. The bitterness of hydrolysates was evaluated based on the degree hydrolysis (DH), sensory analysis, molecular weight distribution and functional group. By using 3 % of enzyme substrate ratio bromelain resulted in high DH value at 12.57 % when angelwing clam was hydrolysed for 2 hours. Sensory analysis showed that angelwing hydrolysate was bitter. Angelwing hydrolysate had molecular weight below 50 kDa. The lower molecular weight indicated that the protein has been degraded into smaller peptide chains which contribute to bitter taste. Moreover, the high peak of amine group in angelwing hydrolysate (3385.6 cm -1 ) suggested that bitterness exists. Angelwing hydrolysate had higher protein content, lower fat content and had good water holding capacity than the flesh. This result suggested that angelwing hydrolysate could be useful as food ingredient even though bitter taste developed after the hydrolysis. Thus, debittering should be considered in order to pave the way for full utilization of angelwing clam hydrolysate as a food ingredient. (author)

  12. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.

    Science.gov (United States)

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; Silva, Silvio S

    2013-10-01

    Selection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate. Dilute acid hydrolysis of SB showed 12.45 g/l of xylose and 0.67 g/l of glucose along with inhibitors. It was concentrated by vacuum evaporation and submitted to sequential detoxification (neutralization by calcium hydroxide and charcoal adsorption). The detoxified hydrolysate revealed the removal of furfural (81 %) and 5-hydroxymethylfurfural (61 %) leading to the final concentration of glucose (1.69 g/l) and xylose (33.03 g/l). S. stipitis was grown in three different fermentation media composed of detoxified hydrolysate as carbon source supplemented with varying nitrogen sources i.e. medium #1 (RBE + ammonium sulfate + calcium chloride), medium #2 (yeast extract + peptone) and medium #3 (yeast extract + peptone + malt extract). Medium #1 showed maximum ethanol production (8.6 g/l, yield 0.22 g/g) followed by medium #2 (8.1 g/l, yield 0.19 g/g) and medium #3 (7.4 g/l, yield 0.18 g/g).

  13. Alkali extraction and physicochemical characterization of hemicelluloses from young bamboo (Phyllostachys pubescens Mazel

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2012-11-01

    Full Text Available Two hemicellulose fractions were obtained by extraction of one-month- old young bamboo (Phyllostachys pubescens Mazel. The fractionation procedure employed 2% NaOH as extractant, followed by filtration, acidification, precipitation, and washing with 70% ethanol solution. The total yield was 26.2%, based on the pentosan content in bamboo. The physicochemical properties were determined and sugar composition analysis showed that the hemicelluloses consisted mainly of xylose, arabinose, galactose, and a small amount of uronic acid. Furthermore, based on FT-IR and NMR spectra analyses, the structure of hemicelluloses was determined to be mainly arabinoxylans linked via (1→4-β-glycosidic bonds with branches of arabinose and 4-O-methyl-D-glucuronic acid. The molecular weights were 6387 Da and 4076 Da, corresponding to the hemicelluloses HA and HB. Finally, the thermal stability was elucidated using the TG-DTG method. The obtained results can provide important information for understanding young bamboo and the hemicelluloses in it.

  14. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties

    Science.gov (United States)

    Chen, Ge-Gu; Qi, Xian-Ming; Li, Ming-Peng; Guan, Ying; Bian, Jing; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2015-11-01

    A facile and environmentally friendly method was introduced to incorporate montmorillonite (MMT) as an inorganic phase into quaternized hemicelluloses (QH) for forming hemicellulose-based films. Two fillers, polyvinyl alcohol (PVA) and chitin nanowhiskers (NCH), were added into the hemicelluloses/MMT hybrid matrices to prepare hybrid films, respectively. The hybrid films were nanocomposites with nacre-like structure and multifunctional characteristics including higher strength and good oxygen barrier properties via the electrostatic and hydrogen bonding interactions. The addition of PVA and NCH could induce changes in surface topography, and effectively enhance mechanical strength, thermal stability, transparency, and oxygen barrier properties. The tensile strengths of the composite films FPVA(0.3), FPVA(0.5), and FNCH(0.8) were 53.7, 46.3, and 50.1 MPa, respectively, which were 171%, 134%, and 153% larger than the FQH-MMT film (19.8 MPa). The tensile strength, and oxygen transmission rate of QH-MMT-PVA film were better than those of quaternized hemicelluloses/MMT films. Thus, the proper filler is very important for the strength of the hybrid film. These results provide insights into the understanding of the structural relationships of hemicellulose-based composite films in coating and packaging application for the future.

  15. KINETIC STUDY FOR THE THERMAL DECOMPOSITION OF HEMICELLULOSE ISOLATED FROM CORN STALK

    Directory of Open Access Journals (Sweden)

    Gao-Jin Lv

    2010-04-01

    Full Text Available In order to study the thermal decomposition characteristics of hemicellulose, a highly efficient procedure was carried out to extract hemicellulose from corn stalk. Several different sugar units were observed by 13C NMR spectra to show the presence and species of hemicellulose. Following isolation of the hemicellulose, experimental research on its thermal behavior were carried out with a thermogravimetric analyzer under inert atmosphere at heating rates ranging from 10 to 50°C/min, and the kinetic parameters were calculated by the Kissinger and Ozawa methods, respectively. It was found that the thermal degradation of hemicellulose mainly occurred in the temperature range 180-340°C with a final residue yield of 24% at 700°C. An increase of the heating rate could slightly increase both the temperatures at which the peak weight loss rate was observed and the maximum value of weight loss rate. The activation energy (E and the pre-exponential factor (lnA obtained by the Kissinger and Ozawa methods were 213.3kJ mol-1, 211.6kJ mol-1 and 46.2min-1, 45.9min-1, respectively. Even though the data showed little difference, the fitting degree of the Ozawa method was better than that of the Kissinger method. The experimental results and kinetic parameters may provide useful data for effective design and improvement of thermochemical conversion units.

  16. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  17. Antibacterial activity of papain hydrolysed camel whey and its fractions

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Goda, Hanan A.; De Gobba, Cristian

    2016-01-01

    Camel whey (ON) was hydrolysed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial activity of the CW, camel whey hydrolysate (CWH) and the obtained SEC-fractions was assessed using the disc-diffusion method. The CWH exhibited significantly...

  18. Twin-screw extrusion for hemicellulose recovery: influence on extract purity and purification performance.

    Science.gov (United States)

    Zeitoun, Rawan; Pontalier, Pierre Yves; Marechal, Philippe; Rigal, Luc

    2010-12-01

    A twin-screw extruder was used for the extraction of wheat bran hemicelluloses by the co-extrusion of wheat straw and bran. As compared with a stirred reactor extraction, a twin-screw extruder resulted in a lower extraction rate (only about 24% of hemicelluloses in the wheat bran), but it has the advantages of a shorter residence time for the vegetable matter and a lower chemical and water consumption. Hemicellulose powder production is usually effected via an expensive alcoholic precipitation step after concentration. Ultrafiltration was investigated as a means to reduce the alcohol consumption. Trials were made with hollow fiber polyethersulfone membranes with a molecular weight cut-off of 30 kDa. Ultrafiltration mainly concentrated the extract and removed small molecules such as monosaccharides and minerals. The combination of the anion-exchange chromatography and ultrafiltration allowed for the removal of colored compounds. 2010 Elsevier Ltd. All rights reserved.

  19. Fibrillar assembly of bacterial cellulose in the presence of wood-based hemicelluloses.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Sugiyama, Junji

    2017-09-01

    Composite materials mimicking the plant cell wall structure were made by culturing cellulose-producing bacteria together with secondary-wall hemicelluloses from wood. The effects of spruce galactoglucomannan (GGM) and beech xylan on the nanoscale morphology of bacterial cellulose were studied in the original, hydrated state with small-angle X-ray scattering (SAXS). The SAXS intensities were fitted with a model covering multiple levels of the hierarchical structure. Additional information on the structure of dried samples was obtained using scanning and transmission electron microscopy and infra-red spectroscopy. Both hemicelluloses induced a partial conversion of the cellulose crystal structure from I α to I β and a reduction of the cross-sectional dimensions of the cellulose microfibrils, thereby affecting also their packing into bundles. The differences were more pronounced in samples with xylan instead of GGM, and they became more significant with higher hemicellulose concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  1. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  2. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch

    Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark...... hydrolysates obtained by enzymatic hydrolysis on cancer cell proliferation. Skin and belly flap muscle from trout were hydrolysed with the unspecific proteases Alcalase, Neutrase, or UE1 (all from Novozymes, Bagsværd, Denmark) to a hydrolysis degree of 1-15%. The hydrolysates were tested for biological...... activities affecting cell proliferation and ability to modulate caspase activity in pancreatic cancer cells COLO357 and BxPC-3 in vitro. A number of the hydrolysates showed caspase promoting activity; in particular products containing muscle tissue, i.e. belly flap, were able to stimulate caspase activity...

  3. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

    Science.gov (United States)

    Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James

    2018-04-01

    We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

  4. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures

    Science.gov (United States)

    Hemicelluloses are major components of plant biomass, but their fermentation in the rumens of cattle and other ruminants is poorly understood. We compared four species of the ruminally dominant genus Prevotella and the well-known hemicellulose utilizer, Butyrivibrio fibrisolvens, with respect to deg...

  5. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  6. Cellulase-poor xylanases produced by Trichoderma reesei RUT C-30 on hemicellulose substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gamerith, G.; Groicher, R. (Lenzing AG (Austria). Dept. of Research and Development); Zeilinger, S.; Herzog, P.; Kubicek, C.P. (Technische Univ., Vienna (Austria). Abt. fuer Mikrobielle Biochemie)

    1992-12-01

    Hemicellulose components from industrial viscose fibre production are characterized by a lower cellulose content than commerical xylan and the pressence of a carboxylic acid fraction originating from the alkaline degradation of carbohydrates during the process. This substrate, after neutralization, can be used by Trichoderma reesei RUT C-30 for the production of cellulase-poor xylanases, useful for the pulp and paper industry. The yields of xylanase ranged up to almost 400 units/ml, with a ratio of carboxymethylcellulase/xylanase of less than 0.015. This crude xylanase enzyme mixture was shown to be superior to that obtained on beech-wood xylan when used for bleaching and, particularly, upgrading of hard-wood chemical pulp by selective removal of the xylan components. Biochemical studies indicate that the low cellulase production by T. reesei grown on these waste hemicelluloses is the result of a combination of at least three factors: (a) The comparatively low content of cellulose in these hemicellulosic wastes, (b) the inhibitory action of the carboxylic acid fraction present in the hemicellulosic wastes on growth and sporulation of T. reesei, and (c) the use of a mycelial inoculum that is unable to initiate the atack on the cellulose components within the carbon source. (orig.).

  7. Application of cationic hemicelluloses produced from corn husk as polyelectrolytes in sewage treatment

    Directory of Open Access Journals (Sweden)

    Alan Soares Landim

    2013-01-01

    Full Text Available Hemicelluloses were extracted from corn husk and converted into cationic hemicelluloses using 2,3-epoxypropyltrimethylammonium chloride. The degree of substitution was determined as 0.43 from results of elemental analysis. The cationic derivative was also characterized by Fourier transform infrared spectroscopy and Carbon-13 magnetic nuclear ressonance. The produced polymer was employed as coagulant aid in a sewage treatment station (STS of the municipal department of water and sewer (Departamento Municipal de Água e Esgoto - DMAE in Uberlândia-Minas Gerais, Brazil, using Jar test experiments. Its performance was compared to ACRIPOL C10, a commercial cationic polyacrylamide regularly used as a coagulant at the STS. The best result of the jar-test essays was obtained when using cationic hemicelluloses (10 mg L- 1 as coagulant aid and ferric chloride as coagulante (200 mg L- 1. The resultsof color and turbidity reduction, 37 and 39%, respectively, were better than when using only ferric chloride. These results were also higher than those of commercial polyacrylamide, on the order of 32.4 and 38.7%, respectively. The results showed that the cationic hemicelluloses presented similar or even superior performance when compared to ACRIPOL C10, demonstrating that the polyelectrolytes produced from recycled corn husks can replace commercial polymers in sewage treatment stations.

  8. Carbohydrate analysis of hemicelluloses by gas chromatography-mass spectrometry of acteylated methyl glycosides

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Plackett, David; Egsgaard, Helge

    2012-01-01

    A method based on gas chromatography–mass spectrometry analysis of acetylated methyl glycosides was developed in order to analyze monosaccharides obtained from various hemicelluloses. The derivatives of monosaccharide standards, arabinose, glucose, and xylose were studied in detail and 13C...

  9. Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    Directory of Open Access Journals (Sweden)

    A.A. Enayati

    2013-01-01

    Full Text Available Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP.

  10. (Hemi)cellulose degradation by microorganisms from the intestinal tract of arthropods

    NARCIS (Netherlands)

    Cazemier, Anne Engeline

    1999-01-01

    Photosynthesis yields up to 136 x 1015 g of dry plant material annually. Major components of this plant material are cellulose and hemicellulose. Under anaerobic conditions, these plant polymers may be converted to methane and carbon dioxide.The residence time for this anaerobic conversion can be a

  11. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  12. Post-exercise ingestion of a carbohydrate and casein hydrolysate ...

    African Journals Online (AJOL)

    casein hydrolysate) supplement on perceived muscle soreness and fatigue, in international level Sevens rugby players (n=23) during a pre-season training camp. Methods. A randomised, double-blind, placebo-controlled design was used. Players ...

  13. Sport Nutrition Drinks Based on Octopus Protein Hydrolysate

    OpenAIRE

    Bambang Riyanto; Wini Trilaksani; Rika Lestari

    2017-01-01

    AbstractSport nutrition drinks are well-known in escalating athlete’s performance and endurance. These product developed from whey protein hydrolysates and soybean protein hydrolysates have already been recognized, however expansion from marine product is comparatively rare. Octopus (Octopus cyanea) widely acknowledged containing taurine and rich in amino acids is potential to be developed as ingredient for sport nutrition drink. The aims of this study were to create and characterize sport nu...

  14. Development of Sausages Containing Mechanically Deboned Chicken Meat Hydrolysates.

    Science.gov (United States)

    Jin, S K; Choi, J S; Choi, Y J; Lee, S J; Lee, S Y; Hur, S J

    2015-07-01

    Pork meat sausages were prepared using protein hydrolysates from mechanically deboned chicken meat (MDCM). In terms of the color, compared to the controls before and after storage, the redness (a*) was significantly higher in sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate. After storage, compared to the other sausage samples, the yellowness (b*) was lower in the sausages containing ascorbate and sodium erythorbate. TBARS was not significantly different among the sausage samples before storage, whereas TBARS and DPPH radical scavenging activities were significantly higher in the sausagescontainingascorbate and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. In terms of sensory evaluation, the color was significantly higher in the sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. The "off-flavor" and overall acceptability were significantly lower in the sausages containing MDCM hydrolysates than in the other sausage samples. In most of the developed countries, meat from spent laying hens is not consumed, leading toan urgent need for effectively utilization or disposal methods. In this study, sausages were prepared using spent laying hens and protein hydrolysates from mechanically deboned chicken meat. Sausage can be made by spent laying hens hydrolysates, although overall acceptability was lower than those of other sausage samples. © 2015 Institute of Food Technologists®

  15. Comparison of Diafiltration and Size-Exclusion Chromatography to Recover Hemicelluloses From Process Water From Thermomechanical Pulping of Spruce

    Science.gov (United States)

    Andersson, Alexandra; Persson, Tobias; Zacchi, Guido; Stålbrand, Henrik; Jönsson, Ann-Sofi

    Hemicelluloses constitute one of the most abundant renewable resources on earth. To increase their utilization, the isolation of hemicelluloses from industrial biomass side-streams would be beneficial. A method was investigated to isolate hemicelluloses from process water from a thermomechanical pulp mill. The method consists of three steps: removal of solids by microfiltration, preconcentration of the hemicelluloses by ultrafiltration, and purification by either size-exclusion chromatography (SEC) or diafiltration. The purpose of the final purification step is to separate hemicelluloses from small oligosaccharides, monosaccharides, and salts. The ratio between galactose, glucose, and mannose in oligo- and polysaccharides after preconcentration was 0.8∶1∶2.8, which is similar to that found in galactoglucomannan. Continuous diafiltration was performed using a composite fluoro polymer membrane with cutoff of 1000 Da. After diafiltration with four diavolumes the purity of the hemicelluloses was 77% (gram oligo- and polysaccharides/ gram total dissolved solids) and the recovery was 87%. Purification by SEC was performed with 5, 20, and 40% sample loadings, respectively and a flow rate of 12 or 25 mL/min (9 or 19 cm/h). The purity of hemicelluloses after SEC was approx 82%, and the recovery was above 99%. The optimal sample load and flow rate were 20% and 25 mL/min, respectively. The process water from thermomechanical pulping of spruce is inexpensive. Thus, the recovery of hemicelluloses is not of main importance. If the purity of 77%, obtained with diafiltration, is sufficient for the utilization of the hemicelluloses, diafiltration probably offers a less expensive alternative in this application.

  16. Effects of process parameters of various pretreatments on enzymatic hydrolysability of Ceiba pentandra (L.) Gaertn. (Kapok) fibre: A response surface methodology study

    International Nuclear Information System (INIS)

    Tye, Ying Ying; Lee, Keat Teong; Wan Abdullah, Wan Nadiah; Leh, Cheu Peng

    2015-01-01

    Kapok fibre is a promising raw material to produce sugar by enzymatic hydrolysis. In this work, effects of water, acid and alkaline pretreatments on the enzymatic sugar yield were studied through response surface methodology (RSM) and supported by the analysis of chemical compositions and physical structure of the fibre. For water pretreatment, reaction temperature and time were the independent variables while chemical concentration was also used as the third independent variable for acid and alkaline pretreatments. For all pretreatments, the enzymatic hydrolysis conditions were kept constant. The structure of pretreated fibre was also examined using scanning electron microscope (SEM). Results showed that water and acid pretreatments effectively dissolved hemicellulose of the fibre with the latter unveiled better results. The alkaline pretreatment resulted in the highest total glucose yield (g/kg of untreated fibre) as compared to water and acid pretreatments. SEM analysis illustrated that water and acid pretreatments led severe destruction of fibre structure; however, both of these pretreatments exhibited lower enhancement of enzymatic hydrolysability of kapok fibre as compared to that observed in alkaline pretreatment. - Highlights: • Effect of pretreatments on sugar yield was studied by response surface methodology. • Glucose yield was highly related to the chemical compositions of pretreated fibers. • Pretreatments altered the physical structure of kapok fibers. • Enzymatic hydrolysability of fibre was improved the most by alkaline treatment. • Over 94% cellulose of the pretreated fibres was converted to glucose

  17. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    Science.gov (United States)

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  18. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica.

    Science.gov (United States)

    Sun, Yong-Chang; Wen, Jia-Long; Xu, Feng; Sun, Run-Cang

    2011-05-01

    Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-D-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1→4)-linked d-xylopyranosyl residues, having ramifications of α-L-arabinofuranose and 4-O-methyl-D-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400°C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11

    Energy Technology Data Exchange (ETDEWEB)

    Solden, Lindsey M.; Hoyt, David W.; Collins, William B.; Plank, Johanna E.; Daly, Rebecca A.; Hildebrand, Erik; Beavers, Timothy J.; Wolfe, Richard; Nicora, Carrie D.; Purvine, Sam O.; Carstensen, Michelle; Lipton, Mary S.; Spalinger, Donald E.; Firkins, Jeffrey L.; Wolfe, Barbara A.; Wrighton, Kelly C.

    2016-12-13

    Ruminants have co-evolved with their gastrointestinal microbial communities that aid in the digestion of plant materials, providing energy for the host. The ability of this microbiome to adapt to altered host diets may dramatically impact the survival of wild ruminant populations, especially under future climate change scenarios. To identify microorganisms capable of degrading climatedriven increases in woody biomass in arctic and boreal regions, we sampled rumen fluids from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. Our findings show that the BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals, including humans. Metagenomic reconstruction yielded the first five BS11 genomes, phylogenetically resolving two genera within this taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for degrading hemicellulose sugars to short-chain fatty acids, metabolites vital for ruminant energy. Active hemicellulosic fermentation, as well as butyrate and acetate production, were validated by shotgun proteomics and rumen metabolite detection using NMR, illuminating the vital role BS11 play in carbon transformations within the rumen. These results demonstrate that woody biomass selects for BS11 members, providing arctic herbivores with metabolic redundancy to sustain energy generation in a changing vegetative environment.

  20. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  1. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  2. Synthesis of hemicellulose-acrylic acid graft copolymer super water absorbent resin by ultrasonic irradiation technology

    Directory of Open Access Journals (Sweden)

    Fangfang LIU

    2015-12-01

    Full Text Available The hemicellulose super water absorbent resin is prepared by using ultrasonic irradiation technology, with the waste liquid produced during the preparation of viscose fiber which contains a large amount of hemicellulose as raw material, acrylic acid as graft monomer, N,N’-methylene bis acrylamide (NMBA as cross linking agent, and (NH42S2O8-NaHSO3 as the redox initiation system. The synthesis conditions, structure and water absorption ability of resin are discussed. The results indicate that water absorbency of the resin is 311 g/g, the tap water absorbency is 102 g/g, the normal saline absorbency is 55 g/g, and the artificial urine absorbency is 31 g/g under the optimal synthesis conditions, so the resin has great water absorption rate and water retaining capacity. The FT-IR and SEM analysis shows that the resin with honeycomb network structure is prepared. The successfully synthesized of the resin means that the hemicellulose waste liquid can be highly effectively recycled, and it provides a kind of new raw material for the synthesis of super water absorbent resin.

  3. Extração e caracterização de hemiceluloses de Pinus radiata e sua viabilidade para a produção de bioetanol Extraction and characterization of hemicelluloses from Pinus radiata and its feasibility for bioethanol production

    Directory of Open Access Journals (Sweden)

    Pablo Reyes

    2013-02-01

    neutral aqueous solutions of hemicelluloses from Pinus radiata wood chips and investigate their feasibility for bioethanol production. Hemicelluloses in P. radiata represented 26 g/100 g wood (o.d.w. and hexoses are responsible for approximately 64% of this amount. According to the different extraction conditions, approximately 50% of the hemicellulosic fraction was solubilized and recovered after precipitation with ethanol. The recovered hemicellulosic fractions were in the form of oligomers with weight-average molecular weigth (Mw varying from 4x10³ to 4x10(5 g/mol. Hemicellulosic oligomers were hydrolyzed with dilute sulfuric acid and the hydrolysates concentrated until approximately 70 g/L of hexoses and fermented by Saccharomyces cerevisiae yeast. Fermentation results showed that sugar obtained from acid and neutral extractions were fermented to ethanol with maximum yields of 63% and 54% (22 g/ L and 19 g/L, respectively. The conversion of wood hemicellulosic substrates to ethanol is feasible but the low ethanol yields obtained make the process not economically attractive and optimization of the process or alternatives uses for hemicelluloses should be evaluated.

  4. Physiological Importance and Mechanisms of Protein Hydrolysate Absorption

    Science.gov (United States)

    Zhanghi, Brian M.; Matthews, James C.

    Understanding opportunities to maximize the efficient digestion and assimilation by production animals of plant- and animal-derived protein products is critical for farmers, nutritionists, and feed manufacturers to sustain and expand the affordable production of high quality animal products for human consumption. The challenge to nutritionists is to match gastrointestinal tract load to existing or ­inducible digestive and absorptive capacities. The challenge to feed manufacturers is to develop products that are efficient substrates for digestion, absorption, and/or both events. Ultimately, the efficient absorption of digesta proteins depends on the mediated passage (transport) of protein hydrosylate products as dipeptides and unbound amino acids across the lumen- and blood-facing membranes of intestinal absorptive cells. Data testing the relative efficiency of supplying protein as hydrolysates or specific dipeptides versus as free amino acids, and the response of animals in several physiological states to feeding of protein hydrolysates, are presented and reviewed in this chapter. Next, data describing the transport mechanisms responsible for absorbing protein hydrolysate digestion products, and the known and putative regulation of these mechanisms by their substrates (small peptides) and hormones are presented and reviewed. Several conclusions are drawn regarding the efficient use of protein hydrolysate-based diets for particular physiological states, the economically-practical application of which likely will depend on technological advances in the manufacture of protein hydrolysate products.

  5. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    Science.gov (United States)

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  6. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.

  7. Sport Nutrition Drinks Based on Octopus Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2017-02-01

    Full Text Available AbstractSport nutrition drinks are well-known in escalating athlete’s performance and endurance. These product developed from whey protein hydrolysates and soybean protein hydrolysates have already been recognized, however expansion from marine product is comparatively rare. Octopus (Octopus cyanea widely acknowledged containing taurine and rich in amino acids is potential to be developed as ingredient for sport nutrition drink. The aims of this study were to create and characterize sport nutrition drinks based on marine peptides through Octopus protein hydrolyzate. Octopus protein hydrolysate has 77.78±2.69% degree of hydrolysis and 751.02±10.63 mg / 100g taurine. Sports nutrition drinks with the addition of 4% Octopus protein hydrolyzate was acceptable sensory panelists, and the serving size of 600 ml contained taurine 726.06±0.82 mg and detected 17 types of amino acids.

  8. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Korczak, J.

    1998-01-01

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  9. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  10. Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

    OpenAIRE

    Waraporn Apiwatanapiwat; Pilanee Vaithanomsat; Phanu Somkliang; Taweesiri Malapant

    2009-01-01

    This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reactio...

  11. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; de Souza, Rebeca Andrade; Marcelino, Paulo Franco

    2018-01-01

    condition (7.45 UA490nm). By using SCB hydrolysate-based medium, the highest red pigment production (18.71 AU490nm) was achieved under dark condition and the glucose and cellobiose present in the hydrolysate were metabolized. SCB enzymatic hydrolysate was demonstrated to be a promising carbon source...

  12. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

    Directory of Open Access Journals (Sweden)

    Tingting Ning

    2017-02-01

    Full Text Available Objective This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR silage. Methods The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR or Leymus chinensis hay (LTMR, corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens, B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion The microbial amylase contributes to starch hydrolysis during the

  13. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Science.gov (United States)

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  14. Cellulase Production from Spent Lignocellulose Hydrolysates by Recombinant Aspergillus niger▿

    Science.gov (United States)

    Alriksson, Björn; Rose, Shaunita H.; van Zyl, Willem H.; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    2009-01-01

    A recombinant Aspergillus niger strain expressing the Hypocrea jecorina endoglucanase Cel7B was grown on spent hydrolysates (stillage) from sugarcane bagasse and spruce wood. The spent hydrolysates served as excellent growth media for the Cel7B-producing strain, A. niger D15[egI], which displayed higher endoglucanase activities in the spent hydrolysates than in standard medium with a comparable monosaccharide content (e.g., 2,100 nkat/ml in spent bagasse hydrolysate compared to 480 nkat/ml in standard glucose-based medium). In addition, A. niger D15[egI] was also able to consume or convert other lignocellulose-derived compounds, such as acetic acid, furan aldehydes, and phenolic compounds, which are recognized as inhibitors of yeast during ethanolic fermentation. The results indicate that enzymes can be produced from the stillage stream as a high-value coproduct in second-generation bioethanol plants in a way that also facilitates recirculation of process water. PMID:19251882

  15. Debittering of Protein Hydrolysates by Lactobacillus LBL-4 Aminopeptidase

    Directory of Open Access Journals (Sweden)

    Bozhidar Tchorbanov

    2011-01-01

    Full Text Available Yoghurt strain Lactobacillus LBL-4 cultivated for 8–10 h at pH ~6.0 was investigated as a considerable food-grade source of intracellular aminopeptidase. Cell-free extract manifesting >200 AP U/l was obtained from cells harvested from 1 L culture media. Subtilisin-induced hydrolysates of casein, soybean isolate, and Scenedesmus cell protein with degree of hydrolysis 20–22% incubated at 45∘C for 10 h by 10 AP U/g peptides caused an enlarging of DH up to 40–42%, 46–48%, and 38–40% respectively. The DH increased rapidly during the first 4 h, but gel chromatography studies on BioGel P-2 showed significant changes occurred during 4–10 h of enzyme action when the DH increased gradually. After the digestion, the remained AP activity can be recovered by ultrafiltration (yield 40–50%. Scenedesmus protein hydrolysate with DH 20% was inoculated by Lactobacillus LBL-4 cells, and after 72 h cultivation the DH reached 32%. The protein hydrolysates (DH above 40% obtained from casein and soybean isolate (high Q value demonstrated a negligible bitterness while Scenedesmus protein hydrolysates (low Q value after both treatments were free of bitterness.

  16. Conversion of oligomeric starch, cellulose, hydrolysates or sugars to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2017-09-05

    Embodiments of the present invention are directed to the conversion of a source material (e.g., a depolymerized oligosaccharide mixture, a monomeric sugar, a hydrolysate, or a mixture of monomeric sugars) to intermediate molecules containing 7 to 26 contiguous carbon atoms. These intermediates may also be converted to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  17. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    International Nuclear Information System (INIS)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-01-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC 50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries. - Highlights: ► Radiation was applied for the hydrolysis of tuna cooking juice protein. ► The degree of hydrolysis were increased by irradiation and the antioxidant activity of hydrolysate was higher than protein. ► This result suggest that radiation is useful method for the hydrolysis of protein.

  18. Rheological and Functional Properties of Catfish Skin Protein Hydrolysates

    Science.gov (United States)

    Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin hydrolysates. The objectives of this study were to: isolating soluble and insoluble proteins from hydrolyzed catfish skin and study the chemical and functional properties of the prote...

  19. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Directory of Open Access Journals (Sweden)

    Octavian BASTON

    2012-12-01

    Full Text Available Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regarding lactic acid yields andproductivity. After 48 hours of chicory and Jerusalem artichhoke hydrolysates fermentation, from all the studied strains, Lb2 produced the highest lactic acid yield (0.97%. Lb2 produced after 48 hours of fermentation the lowest pH value of 3.45±0.01. Lb2 showed greater lactic acid productivity compared to the other studied lactic acid bacteria, the highest values, 0.13 g·L-1·h-1fromJerusalem artichoke hydrolysate and 0.11g·L-1·h-1 from chicory hydrolysate, being produced after 24 hours of fermentation.

  20. Production of functional protein hydrolysates from Egyptian breeds ...

    African Journals Online (AJOL)

    Production of functional protein hydrolysates from Egyptian breeds of soybean and lupin seeds. AA khalil, SS Mohamed, FS Taha, EN Karlsson. Abstract. Enzymatic hydrolysis is an agro-processing aid that can be utilized in order to improve nutritional quality of protein extracts from many sources. In this study, protein ...

  1. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  2. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose

    Science.gov (United States)

    Qi, Xian-Ming; Liu, Shi-Yun; Chu, Fang-Bing; Pang, Shuai; Liang, Yan-Ru; Guan, Ying; Peng, Feng; Sun, Run-Cang

    2015-01-01

    Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH) and carboxymethyl cellulose (CMC) was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP), the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC) was 1:1.5, the blend film showed the best light transmittance (45%). All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP. PMID:28787804

  3. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose

    Directory of Open Access Journals (Sweden)

    Xian-Ming Qi

    2015-12-01

    Full Text Available Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH and carboxymethyl cellulose (CMC was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP, the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC was 1:1.5, the blend film showed the best light transmittance (45%. All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP.

  4. Modification of Pectin and Hemicellulose Polysaccharides in Relation to Aril Breakdown of Harvested Longan Fruit

    Science.gov (United States)

    Wang, Duoduo; Zhang, Haiyan; Wu, Fuwang; Li, Taotao; Liang, Yuxiang; Duan, Xuewu

    2013-01-01

    To investigate the modification of cell wall polysaccharides in relation to aril breakdown in harvested longan fruit, three pectin fractions (WSP, water soluble pectin; CSP, CDTA-soluble pectin; ASP, alkali soluble pectin) and one hemicellulose fraction (4 M KOH-SHC, 4 M KOH-soluble hemicellulose) were extracted, and their contents, monosaccharide compositions and molecular weights were evaluated. As aril breakdown intensified, CSP content increased while ASP and 4 M KOH-SHC contents decreased, suggesting the solubilization and conversion of cell wall components. Furthermore, the molar percentage of arabinose (Ara), as the main component of the side-chains, decreased largely in CSP and ASP while that of rhamnose (Rha), as branch point for the attachment of neutral sugar side chains, increased during aril breakdown. Analysis of (Ara + Gal)/Rha ratio showed that the depolymerization of CSP and ASP happened predominantly in side-chains formed of Ara residues. For 4 M KOH-SHC, more backbones were depolymerized during aril breakdown. Moreover, it was found that the molecular weights of CSP, ASP and 4 M KOH-SHC polysaccharides tended to decrease as aril breakdown intensified. These results suggest that both enhanced depolymerization and structural modifications of polysaccharides in the CSP, ASP and 4 M KOH-SHC fractions might be responsible for aril breakdown of harvested longan fruit. PMID:24287911

  5. Combined enzymatic hydrolysis and fermentation of hemicellulose to 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Yu, E.K.C.; Deschatelets, L.; Saddler, J.N.

    1984-06-01

    Hemicellulose-rich fractions from several agricultural residues were converted to 2,3-butanediol by a combined enzymatic hydrolysis and fermentation process. Culture filtrates from Trichoderma harzianum E58 were used to hydrolyze the substrates while Klebsiella pneumoniae fermented the liberated sugars to 2,3-butanediol. Approximately 50-60% of a 5% (w/v) xylan preparation could be hydrolyzed and quantitatively converted to 2,3-butanediol using this procedure. Although enzymatic hydrolysis was optimal at pH 5.0 and 50/sup 0/C, the combined hydrolysis and fermentation was most efficient at pH 6.5 and 30/sup 0/C. Combined hydrolysis and fermentation resulted in butanediol levels that were 20-40% higher than could be obtained with a separate hydrolysis and fermentation process. The hemicellulose-rich water-soluble fractions obtained from a variety of steam-exploded agricultural residues could be readily used by the combined hydrolysis and fermentation approach resulting in butanediol yields of 0.4-0.5 g/g of reducing sugar utilized.

  6. Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production.

    Science.gov (United States)

    Hernández-Pérez, A F; Costa, I A L; Silva, D D V; Dussán, K J; Villela, T R; Canettieri, E V; Carvalho, J A; Soares Neto, T G; Felipe, M G A

    2016-01-01

    Biotechnological production of xylitol is an attractive route to add value to a sugarcane biorefinery, through utilization of the hemicellulosic fraction of sugarcane straw, whose availability is increasing in Brazil. Herein, supplementation of the sugarcane straw hemicellulosic hydrolyzate (xylose 57gL(-1)) with maltose, sucrose, cellobiose or glycerol was proposed, and their effect as co-substrates on xylitol production by Candida guilliermondii FTI 20037 was studied. Sucrose (10gL(-1)) and glycerol (0.7gL(-1)) supplementation led to significant increase of 8.88% and 6.86% on xylose uptake rate (1.11gL(-1)h(-1) and 1.09gL(-1)), respectively, but only with sucrose, significant increments of 12.88% and 8.69% on final xylitol concentration (36.11gL(-1)) and volumetric productivity (0.75gL(-1)h(-1)), respectively, were achieved. Based on these results, utilization of complex sources of sucrose, derived from agro-industries, as nutritional supplementation for xylitol production can be proposed as a strategy for improving the yeast performance and reducing the cost of this bioprocess by replacing more expensive nutrients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  8. Production of Lupinus angustifolius protein hydrolysates with improved functional properties

    Directory of Open Access Journals (Sweden)

    Millán, Francisco

    2005-06-01

    Full Text Available Protein hydrolysates wer e obtained from lupin flour and from the purified globulin α -conglutin, and their functional properties were studied. Hydrolysis with alcalase for 60 minutes yielded degrees of hydrolysis ranging from 4 % to 11 % for lupin flour, and from 4 % to 13% for α -conglutin. Protein solubility, oil absorption, foam capacity and stability, emulsifying activity, and emulsion stability of hydrolysates with 6% degree of hydrolysis were determined and compared with the properties of the original flour. The protein hydrolysates showed better functional properties than the original proteins. Most importantly, the solubility of the α -conglutin and L. angustifolius flour hydrolysates was increased by 43 % and 52 %, respectively. Thus, lupin seed protein hydrolysates have improved functional properties and could be used in the elaboration of a variety of products such as breads, cakes, and salad dressings.Se obtuvieron hidrolizados proteicos de la harina del altramuz y de la globulina α - conglutina purificada y se estudiaron sus propiedades funcionales. La hidrólisis con alcalasa durante 60 minutos produjo hidrolizados con grados de hidrólisis entre el 4 % y el 11 % para la harina y entre el 4 % y el 13 % para la α - conglutina. Se estudió en un hidrolizado con un 6 % de grado de hidrólisis la solubilidad proteica, absorción de aceite, capacidad y estabilidad espumante y actividad y estabilidad emulsificante. Los hidrolizados proteicos mostraron mejores propiedades funcionales que las proteínas originales. Más aún, la solubilidad de los hidrolizados de α - conglutina y la harina se incrementó en un 43 % y 52 % respectivamente. Así pues, hidrolizados de proteínas de semilla de lupino presentan mejores propiedades funcionales y podrían usarse en la elaboración de productos como pan, dulces, salsas o cremas.

  9. Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals

    Science.gov (United States)

    Nagodawithana, Tilak W.; Nelles, Lynn; Trivedi, Nayan B.

    Early civilizations have relied upon their good sense and experience to develop and improve their food quality. The discovery of soy sauce centuries ago can now be considered one of the earliest protein hydrolysates made by man to improve palatability of foods. Now, it is well known that such savory systems are not just sources for enjoyment but complex semiotic systems that direct the humans to satisfy the body's protein need for their sustenance. Recent developments have resulted in a wide range of cost effective savory flavorings, the best known of which are autolyzed yeast extracts and hydrolyzed vegetable proteins. New technologies have helped researchers to improve the savory characteristics of yeast extracts through the application of Maillard reaction and by generating specific flavor enhancers through the use of enzymes. An interesting parallel exists in the pet food industry, where a similar approach is taken in using animal protein hydrolysates to create palatability enhancers via Maillard reaction scheme. Protein hydrolysates are also utilized extensively as a source of nutrition to the elderly, young children and immuno-compromised patient population. These hydrolysates have an added advantage in having peptides small enough to avoid any chance of an allergenic reaction which sometimes occur with the consumption of larger sized peptides or proteins. Accordingly, protein hydrolysates are required to have an average molecular weight distribution in the range 800-1,500 Da to make them non-allergenic. The technical challenge for scientists involved in food and feed manufacture is to use an appropriate combination of enzymes within the existing economic constraints and other physical factors/limitations, such as heat, pH, and time, to create highly palatable, yet still nutritious and hypoallergenic food formulations.

  10. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin.

    Science.gov (United States)

    Lin, Lili; Yan, Rong; Liu, Yongqiang; Jiang, Wenju

    2010-11-01

    The artificial biomass based on three biomass components (cellulose, hemicellulose and lignin) were developed on the basis of a simplex-lattice approach. Together with a natural biomass sample, they were employed in enzymatic hydrolysis researches. Different enzyme combines of two commercial enzymes (ACCELLERASE 1500 and OPTIMASH BG) showed a potential to hydrolyze hemicellulose completely. Negligible interactions among the three components were observed, and the used enzyme ACCELLERASE 1500 was proven to be weak lignin-binding. On this basis, a multiple linear-regression equation was established for predicting the reducing sugar yield based on the component proportions in a biomass. The hemicellulose and cellulose in a biomass sample were found to have different contributions in staged hydrolysis at different time periods. Furthermore, the hydrolysis of rice straw was conducted to validate the computation approach through considerations of alkaline solution pretreatment and combined enzymes function, so as to understand better the nature of biomass hydrolysis, from the aspect of three biomass components.

  11. Effect of Casein Hydrolysates on Yogurt Fermentation and Texture Properties during Storage

    Directory of Open Access Journals (Sweden)

    Qiang-Zhong Zhao

    2006-01-01

    Full Text Available Effects of casein hydrolysates by papain on acidification of the yogurts and growth of probiotic bacteria during yogurt fermentation have been investigated. The viability of probiotic bacteria and texture characteristics of the yogurts during storage at 4 °C have been evaluated. The hydrolysates strongly decreased the fermentation and coagulation time of the yogurts. The post-fermentation acidification was retarded by the hydrolysates. The hydrolysates increased the probiotic counts during initial fermentation stage. The growth of the probiotic organisms decreased at the final stage. Survival of probiotic bacteria was improved by the hydrolysates. The hydrolysates significantly (p<0.05 increased the adhesiveness of the yogurts except for 0.5 % of hydrolysate with degree of hydrolysis of 8.5 %. The sensory evaluation scores of the yogurts were significantly (p<0.05 improved by the hydrolysates after the storage. The effect of casein hydrolysates on fermentation and texture properties was related to the molecular mass of the hydrolysates.

  12. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Latorres, J M; Rios, D G; Saggiomo, G; Wasielesky, W; Prentice-Hernandez, C

    2018-02-01

    Protein hydrolysates from white shrimp ( Litopenaeus vannamei ) with different degrees of hydrolysis (DH-10 and 20%) were prepared using the enzymes Alcalase 2.4 L and Protamex. The hydrolysates were evaluated for amino acid composition, solubility, foaming properties, emulsifying and antioxidant activity. All the hydrolysates showed high concentrations of Glutamic Acid, Aspartic acid, Arginine, Glycine, Lysine, Proline. It was found that the increase in the production of negatively charged amino acids was related to increase in DH. The hydrophobic amino acids were higher for hydrolysates obtained with Alcalase (10% DH) and Protamex (20% DH). The results indicated that higher degree of hydrolysis showed positive relation with the protein solubility of the hydrolysates, while negatively influenced foam and emulsification properties. The antioxidant properties presented by the white shrimp protein hydrolysates were influenced by the composition and peptides size. Hydrolysates with higher peptide chain showed the highest antioxidant power for the 2,2-Diphenyl-1-picrylhydrazyl radical scavenging and reducing power, while hydrolysates with lower peptide chain showed higher antioxidant power for 2,2'-azinobis (3-ethylbenzothiazoline sulfonic acid) radical scavenging. All hydrolysates showed dose-dependent antioxidant activities. Therefore, the results of the present study suggest that white shrimp is a potential source of protein hydrolysates as bioactive ingredients for the use in the formulation of functional foods as well as natural antioxidants in lipid food systems.

  13. Clostridium thermocellum: adhesion and sporulation while adhered to cellulose and hemicellulose

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.; Dykstra, M.

    1984-01-01

    During growth in the presence of fibers composed of cellulose or hemicellulose, various strains of the thermophilic soil bacterium Clostridium thermocellum and several newly isolated thermophilic anaerobic soil bacteria adhered to the fibers. Attachment occurred via a fibrous ruthenium red-staining material. C. thermocellum sporulated while attached to the fibers when the pH dropped below 6.4. It is postulated that the attachment is involved in cellulose breakdown and that C. thermocellum gaines an advantage by remaining attached to its insoluble substrates when the environment is not suitable for rapid growth. The tendency to adhere to cellulose fibers was used in the purification of thermophilic cellulolytic anaerobes. 27 references, 7 figures.

  14. Separate and Simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Sørensen, H. R.; Dam, B. P

    2006-01-01

    Fermentations with three different xylose-utilizing recombinant Saccharomyces cerevisiae strains (F12, CR4, and CB4) were performed using two different wheat hemicellulose substrates, unfermented starch free fibers, and an industrial ethanol fermentation residue, vinasse. With CR4 and F12......, the maximum ethanol concentrations obtained were 4.3 and 4 g/L, respectively, but F12 converted xylose 15% faster than CR4 during the first 24 h. The comparison of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with F12 showed that the highest, maximum...... ethanol concentrations were obtained with SSF. In general, the volumetric ethanol productivity was initially, highest in the SHF, but the overall volumetric ethanol productivity ended up being maximal in the SSF, at 0.013 and 0.010 g/Lh, with starch free fibers and vinasse, respectively....

  15. Effect of hemicellulose from rice bran on low fat meatballs chemical and functional properties.

    Science.gov (United States)

    Hu, Guohua; Yu, Wenjian

    2015-11-01

    The paper study the functional properties of hemicellulose B (RBHB) and rice bran insoluble dietary fibre (RBDF) to develop an acceptable low fat meat product enriched with high content fibre from defatted rice bran. Meatballs were produced with three different formulations including 2%, 4% and 6% RBHB or RBDF addition. The total trans fatty acids were lower and the ratio of total unsaturated fatty acids to total saturated fatty acids was higher in the samples with added RBHB than in the control meatballs. Meatballs containing RBHB had lower concentrations of total fat and total trans fatty acids than the control samples. Sensory evaluations revealed that meatballs with 2%, 4% and 6% RBHB were overall acceptable. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in development of functional foods including functional meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite.

    Science.gov (United States)

    Gao, Hongling; Liu, Haitang; Pang, Bo; Yu, Guang; Du, Jian; Zhang, Yuedong; Wang, Haisong; Mu, Xindong

    2014-11-01

    This study aimed to produce furfural from waste aqueous hemicellulose solution of a hardwood kraft-based dissolving pulp production processing in a green method. The maximum furfural yield of 82.4% and the xylose conversion of 96.8% were achieved at 463K, 1.0g ZSM-5, 1.05g NaCl and organic solvent-to-aqueous phase ratio of 30:15 (V/V) for 3h. The furfural yield was just 51.5% when the same concentration of pure xylose solution was used. Under the optimized condition, furfural yield was still up to 67.1% even after the fifth reused of catalyst. Catalyst recycling study showed that ZSM-5 has a certain stability and can be efficiently reused. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Enzymatic saccharification of hemicellulose obtained from hydrothermally pretreated sugar can bagasse and beech bark

    Energy Technology Data Exchange (ETDEWEB)

    Walch, E; Zemann, A; Bonn, G; Bobleter, O [Innsbruck Univ. (Austria). Inst. fuer Radiochemie und Angewandte Physikalische Chemie; Schinner, F [Innsbruck Univ. (AT). Inst. for Microbiology

    1992-01-01

    Characteristics of different xylanses and their use in the saccharification of sugar cane bagasse and beech bark were studied. Bagasse was pretreated by two different hydrothermolysis procedures, a recirculation and a direct flow-through process. The recirculation procedure resulted in a higher yield of dry matter in the hydrothermolysis solution and a higher saccharification effect after enzymatic hydrolysis. In the case of beech bark, the tannins have first to be removed at temperatures of 120-140{sup o}C. In a second hydrothermal step (at approximately 200{sup o}C), a hemicellulose solution is obtained which can be saccharified enzymatically with high yields. The inhibitory effect of the tannins is experimentally demonstrated. (author).

  18. Effect of γ-irradiation on the acidic hydrolysis of free-hemicellulose thistle

    International Nuclear Information System (INIS)

    Suarez, C.; Paz Saa, D.; Diaz Palma, A.

    1983-01-01

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemicellulose ''Onopordum Nervosum Boiss'' thistle is determined. It is shown the influence of gamma-irradiation on the yield or sugar obtained from the batchwise hydrolysis of the cellulose (1% H 2 SO 4 and 180 0 C) at increasing doses. At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum overall yield of sugar in the irradiated lignocellulosic material was about 66 0 at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from paper was 53%, 2'3 times that of the control. Irradiation under 1% H 2 SO 4 does not enhance the yield anyway. (author)

  19. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.

    Science.gov (United States)

    Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang

    2014-04-01

    Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Comparison of physicochemical properties of suppositories containing starch hydrolysates

    Directory of Open Access Journals (Sweden)

    Piotr Belniak

    2017-03-01

    Full Text Available The purpose of this work was to determine the effect of starch hydrolysates (SH on the physicochemical properties of suppositories. The study was conducted with suppositories with acetaminophen (AAP a typical antipyretic analgesic, as model drug on lipophilic (cocoa butter and hydrophilic base (polyethylene glycol 1500 + 400. The suppositories with and without the addition of SH were examined for physicochemical tests according to European Pharmacopoeia 8th edition (Ph. Eur.: the uniformity of mass of single-dose preparation test, the softening time determination of lipophilic suppositories test, the disintegration of suppositories test, and dissolution test with flow-through apparatus. The results confirm the possibility of using starch hydrolysates as a cheap and safe addition to modify physicochemical properties of suppositories.

  1. Comparison of physicochemical properties of suppositories containing starch hydrolysates.

    Science.gov (United States)

    Belniak, Piotr; Świąder, Katarzyna; Szumiło, Michał; Hyla, Aleksandra; Poleszak, Ewa

    2017-03-01

    The purpose of this work was to determine the effect of starch hydrolysates (SH) on the physicochemical properties of suppositories. The study was conducted with suppositories with acetaminophen (AAP) a typical antipyretic analgesic, as model drug on lipophilic (cocoa butter) and hydrophilic base (polyethylene glycol 1500 + 400). The suppositories with and without the addition of SH were examined for physicochemical tests according to European Pharmacopoeia 8th edition (Ph. Eur.): the uniformity of mass of single-dose preparation test, the softening time determination of lipophilic suppositories test, the disintegration of suppositories test, and dissolution test with flow-through apparatus. The results confirm the possibility of using starch hydrolysates as a cheap and safe addition to modify physicochemical properties of suppositories.

  2. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    Science.gov (United States)

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  3. Use of Protein Hydrolysates in Industrial Starter Culture Fermentations

    Science.gov (United States)

    Ummadi, Madhavi (Soni); Curic-Bawden, Mirjana

    Lactic acid bacteria (LAB) have been used as starter cultures for fermenting foods long before the importance of microorganisms were recognized. The most important group of LAB are the lactococci, lactobacilli, streptococci, and pediococci. Additionally, bifidobacteria have been included as a probiotic, providing added value to the product. Since the genera involved are so diverse, the nutritional requirements (energy, carbon and nitrogen sources) differ significantly between and within species. Designing an optimum fermentation medium for production of active and vigorous LAB starter cultures and probiotics requires selecting the right raw ingredients, especially protein hydrolysates that can provide adequate nutrients for growth and viability. This chapter attempts to describe the application of various commercial protein hydrolysates used for production of dairy and meat starter cultures, with special emphasis on meeting the nitrogen requirements of industrially important LAB species.

  4. Comparison of physicochemical properties of suppositories containing starch hydrolysates

    OpenAIRE

    Piotr Belniak; Katarzyna Świąder; Michał Szumiło; Aleksandra Hyla; Ewa Poleszak

    2017-01-01

    The purpose of this work was to determine the effect of starch hydrolysates (SH) on the physicochemical properties of suppositories. The study was conducted with suppositories with acetaminophen (AAP) a typical antipyretic analgesic, as model drug on lipophilic (cocoa butter) and hydrophilic base (polyethylene glycol 1500?+?400). The suppositories with and without the addition of SH were examined for physicochemical tests according to European Pharmacopoeia 8th edition (Ph. Eur.): the uniform...

  5. Direct transformation of xylan-type hemicelluloses to furfural via SnCl₄ catalysts in aqueous and biphasic systems.

    Science.gov (United States)

    Wang, Wenju; Ren, Junli; Li, Huiling; Deng, Aojie; Sun, Runcang

    2015-05-01

    Direct catalytic transformation of xylan-type hemicelluloses to furfural in the aqueous system and the biphasic system were comparatively investigated under mild conditions. Screening of several promising chlorides for conversion of beech xylan in the aqueous system revealed the Lewis acid SnCl4 was the most effective catalyst. Comparing to the single aqueous system, the bio-based 2-methyltetrahydrofuran (2-MTHF)/H2O biphasic system was more conducive to the synthesis of furfural, in which the highest furfural yield of 78.1% was achieved by using SnCl4 as catalysts under the optimized reaction conditions (150°C, 120 min). Additionally, the influences of xylan-type hemicelluloses with different chemical and structural features from beech, corncob and bagasse on the furfural production were studied. It was found that furfural yield to some extent was determined by the xylose content in hemicelluloses and also had relationships with the molecular weight of hemicelluloses and the degree of crystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose...

  7. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Bjerring Olesen, A.; Fernqvist, T.

    1996-01-01

    to 10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-beta-xylosidase. Furfural and hydroxymethyl-furfural, known...

  8. Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites

    DEFF Research Database (Denmark)

    Liu, Ming; Meyer, Anne S.; Fernando, Dinesh

    2016-01-01

    The objective of this study was to investigate the effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of hemp fibre/epoxy composites. Pectin removal by EDTA and endo-polygalacturonase (EPG) removed epidermal and parenchyma cells from hemp fibres and improved...

  9. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

    Science.gov (United States)

    Hasunuma, Tomohisa; Ismail, Ku Syahidah Ku; Nambu, Yumiko; Kondo, Akihiko

    2014-02-01

    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    Science.gov (United States)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-08-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries.

  11. Antioxidant properties of Australian canola meal protein hydrolysates.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; He, Rong; Girgih, Abraham; Aluko, Rotimi E

    2014-03-01

    Antioxidant activities of canola protein hydrolysates (CPHs) and peptide fractions prepared using five proteases and ultrafiltration membranes (1, 3, 5, and 10kDa) were investigated. CPHs had similar and adequate quantities of essential amino acids. The effective concentration that scavenged 50% (EC50) of the ABTS(+) was greatest for the <1kDa pancreatin fraction at 10.1μg/ml. CPHs and peptide fractions scavenged DPPH(+) with most of the EC50 values being <1.0mg/ml. Scavenging of superoxide radical was generally weak, except for the <1kDa pepsin peptide fraction that had a value of 51%. All CPHs inhibited linoleic acid oxidation with greater efficiency observed for pepsin hydrolysates. The oxygen radical absorbance capacity of Alcalase, chymotrypsin and pepsin hydrolysates was found to be better than that of glutathione (GSH) (p<0.05). These results show that CPHs have the potential to be used as bioactive ingredients in the formulation of functional foods against oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.

    Science.gov (United States)

    Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M

    2017-06-01

    Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m 2 /g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Low serum biotin in Japanese children fed with hydrolysate formula.

    Science.gov (United States)

    Sato, Yasuhiro; Wakabayashi, Kenji; Ogawa, Eishin; Kodama, Hiroko; Mimaki, Masakazu

    2016-09-01

    Given that nutritional biotin deficiency in Japanese infants has been reported, a straightforward method for estimating biotin level is needed. The biotin content in infant formula, breast milk, and the sera of infants fed with various types of formula were measured using avidin-binding assay. A commercially available ELISA kit was used for the measurement of biotin in 54 types of formula, including hydrolysate formulas for milk allergy, as well as in breast milk and in the sera of 27 infants fed with these formulas. The biotin content reached the recommended value in only five formulas. All of the hydrolysate formulas and more than half of the special formulas contained biotin biotin was low in infants fed only with the hydrolysate formulas, and one of them had alopecia related to biotin deficiency. While many were asymptomatic, infants fed with formulas lacking biotin are at risk of developing symptomatic disease. The addition of biotin to breast milk substitutes was finally approved in the middle of 2014, however pediatricians in Japan should still be vigilant with regard to nutritional biotin deficiency in infants for the time being. © 2016 Japan Pediatric Society.

  14. Bioactive L acidissima protein hydrolysates using Box-Behnken design.

    Science.gov (United States)

    Sonawane, Sachin K; Arya, Shalini S

    2017-07-01

    This study examines the extraction and hydrolysis of proteins using single factor and Box-Behnken Design (BBD). From single factor tests, optimised extraction parameters were 1% alkali concentration, 40 °C temperature, 60 min time, and 1:20 solid to alkali ratio. Under these conditions; 924.31 mg/g of total protein was obtained from Limonia acidissima (L acidissima). The maximum degree of hydrolysis was 39.82% at pH 2, enzyme to substrate ratio 2.5% (w/w), and hydrolysis time was 42.41 min using BBD design. L acidissima seed protein hydrolysate showed 32.94% DPPH and 88.18% of ABTS activity at concentration of 100 µg/ml and 1 mg/ml, respectively. Reducing power of 0.16 and metal chelating activity of 87.39% was obtained from 5 mg/ml protein hydrolysates. This implied that L acidissima seed protein hydrolysate could be utilised in protein rich product or as protein supplements.

  15. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    Science.gov (United States)

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values ( 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...

  17. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases.

    Science.gov (United States)

    Franco Marcelino, Paulo Ricardo; da Silva, Vinícius Luiz; Rodrigues Philippini, Rafael; Von Zuben, Cláudio José; Contiero, Jonas; Dos Santos, Júlio César; da Silva, Silvio Silvério

    2017-01-01

    Biosurfactants are microbial metabolites with possible applications in various industrial sectors that are considered ecofriendly molecules. In recent years, some studies identified these compounds as alternatives for the elimination of vectors of tropical diseases, such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have been the use of conventional raw materials that increase production costs as well as opportunistic or pathogenic bacteria, which restrict the application of these biomolecules. The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24) of 70 ± 3.4% and a superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons 12 h after application and presented an letal concentration (LC50) of 660 mg.L-1. Thus, a new alternative for biosurfactant production using vegetal biomass as raw material within the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic biosurfactant in larvicidal formulations against neglected tropical disease vectors was demonstrated.

  18. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases.

    Directory of Open Access Journals (Sweden)

    Paulo Ricardo Franco Marcelino

    Full Text Available Biosurfactants are microbial metabolites with possible applications in various industrial sectors that are considered ecofriendly molecules. In recent years, some studies identified these compounds as alternatives for the elimination of vectors of tropical diseases, such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have been the use of conventional raw materials that increase production costs as well as opportunistic or pathogenic bacteria, which restrict the application of these biomolecules. The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24 of 70 ± 3.4% and a superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons 12 h after application and presented an letal concentration (LC50 of 660 mg.L-1. Thus, a new alternative for biosurfactant production using vegetal biomass as raw material within the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic biosurfactant in larvicidal formulations against neglected tropical disease vectors was demonstrated.

  19. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    Science.gov (United States)

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  20. Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum

    Energy Technology Data Exchange (ETDEWEB)

    Yu, E.K.C.; Deschatelets, L.; Louis-Seize, G.; Saddler, J.N.

    1985-10-01

    The bioconverison of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growing inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.

  1. Development of a strain of saccharomyces cereviase to utilize hemicellulosic biomass

    International Nuclear Information System (INIS)

    Batt, C.A.

    1991-01-01

    The current status of yeast conversion to utilize pentose sugar is discussed in this paper. The development of processes for the production of ethanol from agricultural wastes provides both a beneficial utilization of the resources presently available and an alternate source of liquid transportation fuel. The efficient conversion of agricultural bio mass is in part dependent on utilization of all the potential sugars, including the pentoses in the hemicellulosic fraction. A number of approaches have been investigated, including the engineering of strain of S. cerevisiae which express a xylose isomerase activity. Despite the apparent lack of success with respect to expressing an active xylose isomerase, a great deal of knowledge has been gained on the metabolism of pentoses by yeast and the genetics, structure/function of the enzyme xylose isomerase. Hopefully this cumulative knowledge base will lead to the design of a xylose isomerase with the appropriate structure to allow it retain activity in S. cerevisiae. This coupled with the elegant efforts in a number of laboratories to develop cellulose utilizing strains of S. cerevisiae might yield a single yeast capable of fermenting all of the major carbon substrates in agricultural to fuel grade ethanol. (Orig./A.B.)

  2. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    Science.gov (United States)

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  3. The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus

    OpenAIRE

    Pejin, Jelena; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Đukić-Vuković, Aleksandra; Mladenović, Dragana; Mojović, Ljiljana

    2015-01-01

    In this study brewers' spent grain (BSG) hydrolysate was produced using optimal conditions. Hydrolysates were used for lactic acid fermentation by Lactobacillus rhamnosus ATCC 7469. The aim of this study was to evaluate possibilities of the BSG hydrolysate utilization as a substrate for lactic acid fermentation as well as the effect of dry brewers' yeast (1.0, 3.0, and 5.0 %) addition in hydrolysate on lactic acid fermentation parameters (L-(+)-lactic acid and reducing sugars concentration an...

  4. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    NARCIS (Netherlands)

    Ven, van der C.; Muresan, S.; Gruppen, H.; Bont, D.B.A.; Merck, K.B.; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness,

  5. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    Science.gov (United States)

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements. PMID:16421963

  6. Comparison of Neuroprotective and Cognition-Enhancing Properties of Hydrolysates from Soybean, Walnut, and Peanut Protein

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-01-01

    Full Text Available Hydrolysates were prepared from soybean, walnut, and peanut protein by papain, respectively. Their amino acid compositions and molecular weight distributions, the effects of various hydrolysates on H2O2-induced injury PC12 cells, and cognition of mice were investigated, respectively. Results showed that the three hydrolysates were dominated by the peptides with 1–3 KDa with large amount of neurotrophic amino acids. All the hydrolysates exhibited much stronger inhibitory activity against H2O2-induced toxicity than cerebrolysin, and soy protein hydrolysate showed the highest activity. Moreover, the hydrolysates also could reduce the rate of nonviable apoptotic cells at the concentration of 2 mg/mL. The test of animal’s cognition indicated that three hydrolysates could present partly better effect of improving recurred memory ability of normal mice and consolidated memory ability of anisodine-treated mice than piracetam. Therefore, soybean, walnut, and peanut protein hydrolysates were recommended as a potential food raw material for prevention or treatment of neurodegenerative disorders.

  7. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  8. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... hydrolysis of filter cake from wet-oxidised wheat straw for 48 h with an enzyme loading of 5 FPU/g biomass resulted in glucose yields from cellulose of 58% (w/w) and 39% (w/w) using enzymes produced by R brasilianum and a commercial enzyme mixture, respectively. At higher enzyme loading (25 FPU/g biomass...

  9. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment.

    Science.gov (United States)

    Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E

    2015-12-01

    Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (PProtein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (Pprotein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199

    Czech Academy of Sciences Publication Activity Database

    López-Mondejár, Rubén; Zühlke, D.; Větrovský, Tomáš; Becher, D.; Riedel, K.; Baldrian, Petr

    2016-01-01

    Roč. 9, MAY 14 (2016), s. 104 ISSN 1754-6834 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) LM2015055; GA MŠk(CZ) LD15086 Institutional support: RVO:61388971 Keywords : Cellulose * Hemicellulose * Paenibacillus Subject RIV: EE - Microbiology, Virology Impact factor: 5.203, year: 2016

  11. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    Science.gov (United States)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  12. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity.

    Science.gov (United States)

    de Castro, María; Miller, Janice G; Acebes, José Luis; Encina, Antonio; García-Angulo, Penélope; Fry, Stephen C

    2015-04-01

    Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [(3)H]arabinose, and traced the distribution of (3)H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [(3)H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [(3)H]xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of (3)H-hemicelluloses ([(3)H]xylans and [(3)H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls' cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells' reduced capacity to integrate arabinoxylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly. © 2015 Institute of Botany, Chinese Academy of Sciences.

  13. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates.

    Science.gov (United States)

    Shazly, Ahmed Behdal; He, Zhiyong; El-Aziz, Mahmoud Abd; Zeng, Maomao; Zhang, Shuang; Qin, Fang; Chen, Jie

    2017-10-01

    Buffalo and bovine caseins were hydrolysed by alcalase and trypsin to produce novel antioxidant peptides. The casein hydrolysates were purified using ultrafiltration (UF) and further characterized by RP-HPLC. The fractions produced higher antioxidant activities were identified for their peptides using LC MS/MS. All UF-VI (MWcasein (UF-VI with 54.84-fold purification) showed higher antioxidant activity than that obtained by trypsin. Trypsin hydrolysate contained high amount of hydrophobic amino acids while alcalase hydrolysate consisted mainly of Ser, Arg, Ala and Leu. The antioxidant peptides identified by LC MS/MS were RELEE, MEDNKQ and TVA, EQL in buffalo casein hydrolysates produced by trypsin and alcalase, respectively. Mechanism and reaction pathways of selected antioxidant peptides with ABTS were proposed. Conclusively, buffalo casein provided antioxidant peptides similar to bovine, suggesting that buffalo casein is a novel source of antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Han, Rui-Zhi; Xu, Guo-Chao; Gong, Lei; Xing, Wan-Ru; Ni, Ye

    2018-07-01

    The toxicity of furfural residues (FRs) hydrolysate is a major obstacle in its application. This work focused on the detoxification of FRs hydrolysate and its application in butanol fermentation. Combination of activated carbon and resin 717 was appropriate for the detoxification of hydrolysate. Mixed sterilization of FRs hydrolysate and corn steep liquor (CSL) was better than the separate ones, since proteins in CSL could adsorb and remove toxic components during sterilization. The results further confirmed that simultaneous sterilization of activated carbon + resin and fermentation medium was more efficient for detoxification and butanol production, in which 76.4% of phenolic compounds and 99.3% of Maillard reaction products were removed, 8.48 g/L butanol and 12.61 g/L total solvent were obtained. This study provides feasible and economic approaches for the detoxification of FRs hydrolysate and its application in butanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. THE EFFECT OF SOIL CONDITIONERS ON CELLULOSE, HEMICELLULOSE, AND THE ADL FIBRE FRACTION CONCENTRATION IN DACTYLIS GLOMERATA AND LOLIUM PERENNE

    Directory of Open Access Journals (Sweden)

    Milena Truba

    2017-01-01

    Full Text Available Replicated three times, the research was conducted in the experimental field between 2011 and 2014. Three soil conditioners with the following trade names: UGmax, Eko-Użyźniacz, and Humus Active Papka were used in the experiment, separately or together with NPK fertilisers. They were all used on plots sown with two species of grass, Dactylis glomerata of the Bora variety and Lolium perenne of the Info variety. The plant material from both grass species was tested for the concentration of ADL fraction (% DM, cellulose (% DM, and hemicellulose (% DM. It was found that the concentration of cellulose, hemicelluloses, and the ADL fraction was significantly higher in the biomass of Dactylis glomerata than in the biomass of Lolium perenne. The grass from the plot with the UGmax soil conditioner applied had the highest amount of cellulose and hemicellulose. The lowest amount of those organic compounds was found in the grass treated with UGmax together with mineral fertilisers and in plants treated with Humus Active, together with mineral fertilisers. However, the fertilisers and conditioners did not increase the ADL content in both grass species.

  16. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize

    Directory of Open Access Journals (Sweden)

    Rongli Shi

    2018-04-01

    Full Text Available Antagonistic interactions of phosphorus (P hamper iron (Fe acquisition by plants and can cause Fe deficiency-induced chlorosis. To determine the physiological processes underlying adverse Fe–P interactions, the maize lines B73 and Mo17, which differ in chlorosis susceptibility, were grown hydroponically at different Fe:P ratios. In the presence of P, Mo17 became more chlorotic than B73. The higher sensitivity of Mo17 to Fe deficiency was not related to Fe–P interactions in leaves but to lower Fe translocation to shoots, which coincided with a larger pool of Fe being fixed in the root apoplast of P-supplied Mo17 plants. Fractionating cell wall components from roots showed that most of the cell wall-contained P accumulated in pectin, whereas most of the Fe was bound to root hemicelluloses, revealing that co-precipitation of Fe and P in the apoplast was not responsible for Fe inactivation in roots. A negative correlation between chlorophyll index and hemicellulose-bound Fe in 85 inbred lines of the intermated maize B73 × Mo17 (IBM population indicated that apoplastic Fe retention contributes to genotypic differences in chlorosis susceptibility of maize grown under low Fe supplies. Our study indicates that Fe retention in the hemicellulose fraction of roots is an important determinant in the tolerance to Fe deficiency-induced chlorosis of graminaceous plant species with low phytosiderophore release, like maize.

  17. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  18. Short communication: Tryptic β-casein hydrolysate modulates enteric nervous system development in primary culture.

    Science.gov (United States)

    Cossais, F; Clawin-Rädecker, I; Lorenzen, P C; Klempt, M

    2017-05-01

    The intestinal tract of the newborn is particularly sensitive to gastrointestinal disorders, such as infantile diarrhea or necrotizing colitis. Perinatal development of the gut also encompasses the maturation of the enteric nervous system (ENS), a main regulator of intestinal motility and barrier functions. It was recently shown that ENS maturation can be enhanced by nutritional factors to improve intestinal maturation. Bioactivity of milk proteins is often latent, requiring the release of bioactive peptides from inactive native proteins. Several casein-derived hydrolysates presenting immunomodulatory properties have been described recently. Furthermore, accumulating data indicate that milk-derived hydrolysate can enhance gut maturation and enrichment of milk formula with such hydrolysates has recently been proposed. However, the capability of milk-derived bioactive hydrolysate to target ENS maturation has not been analyzed so far. We, therefore, investigated the potential of a recently described tryptic β-casein hydrolysate to modulate ENS growth parameters in an in vitro model of rat primary culture of ENS. Rat primary cultures of ENS were incubated with a bioactive tryptic β-casein hydrolysate and compared with untreated controls or to cultures treated with native β-casein or a Prolyve β-casein hydrolysate (Lyven, Colombelles, France). Differentiation of enteric neurons and enteric glial cells, and establishment of enteric neural network were analyzed using immunohistochemistry and quantitative PCR. Effect of tryptic β-casein hydrolysate on bone morphogenetic proteins (BMP)/Smad pathway, an essential regulator of ENS development, was further assessed using quantitative PCR and immunochemistry. Tryptic β-casein hydrolysate stimulated neurite outgrowth and simultaneously modulated the formation of enteric ganglia-like structures, whereas native β-casein or Prolyve β-casein hydrolysate did not. Additionally, treatment with tryptic bioactive

  19. Antioxidant and antimicrobial activity of lecithin free egg yolk protein preparation hydrolysates obtained with digestive enzymes

    Directory of Open Access Journals (Sweden)

    Aleksandra Zambrowicz

    2012-12-01

    Full Text Available ABSTRACT:Several biological activities have now been associated with egg protein- derived peptides, including antihypertensive, antimicrobial, immunomodulatory, anticancer and antioxidantactivities, highlighting the importance of these biopeptides in human health, and disease prevention and treatment. Special attention has been given to peptides with antioxidant and antimicrobial activities as a new source of natural preservatives in food industry. In this study, the antioxidant properties of the egg-yolk protein by-product (YP hydrolysates were evaluated based on their radical scavenging capacity (DPPH, Fe2+chelating effect and ferric reducing power (FRAP. Furthermore, antimicrobial properties of obtained hydrolysates against Bacillus species were studied. The degrees (DHs of hydrolysis for 4h hydrolysates were: 19.1%, 13.5% and 13.0%, for pepsin, chymotrypsin and trypsin, respectively. Pepsin was the most effective in producing the free amino groups (1410.3 μmolGly/g. The RP-HPLC profiles of the protein hydrolysates showed differences in the hydrophobicity of the generated peptides.Trypsin hydrolysate obtained after 4h reaction demonstrated the strongest DPPH free radical scavenging activity (0.85 µmol Troloxeq/mg. Trypsin and chymotrypsin hydrolysates obtained after 4h reaction exhibited 4 times higher ferric reducing capacity than those treated bypepsin. The hydrolysis products obtained from YP exhibited significant chelating activity. The 4h trypsin hydrolysate exhibited weak antimicrobial activity against B. subtilis B3; B. cereus B512; B. cereus B 3p and B. laterosporum B6.

  20. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    Science.gov (United States)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  1. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg.

    Science.gov (United States)

    Chalamaiah, M; Hemalatha, R; Jyothirmayi, T; Diwan, Prakash V; Bhaskarachary, K; Vajreswari, A; Ramesh Kumar, R; Dinesh Kumar, B

    2015-02-01

    The aim of this study was to prepare protein hydrolysates from underutilized common carp (Cyprinus carpio) egg and to investigate their immunomodulatory effects in vivo. Common carp (Cyprinus carpio) egg (roe) was hydrolysed by pepsin, trypsin, and Alcalase. Chemical composition (proximate, amino acid, mineral and fatty acid compositions) and molecular mass distribution of the three hydrolysates were determined. The carp egg protein hydrolysates (CEPHs) were evaluated for their immunomodulatory effects in BALB/c mice. CEPHs (0.25, 0.5 and 1 g/kg body weight) were orally administered daily to female BALB/c mice (4-6 wk, 18-20 g) for a period of 45 d. After 45 d, mice were sacrificed and different tissues were collected for the immunologic investigations. The three hydrolysates contained high protein content (64%-73%) with all essential amino acids, and good proportion of ω-3 fatty acids, especially docosahexaenoic acid. Molecular mass analysis of hydrolysates confirmed the conversion of large-molecular-weight roe proteins into peptides of different sizes (5-90 kDa). The three hydrolysates significantly enhanced the proliferation of spleen lymphocytes. Pepsin hydrolysate (0.5 g/kg body weight) significantly increased the splenic natural killer cell cytotoxicity, mucosal immunity (secretory immunoglobulin A) in the gut and level of serum immunoglobulin A. Whereas Alcalase hydrolysate induced significant increases in the percentages of CD4+ and CD8+ cells in spleen. The results demonstrate that CEPHs are able to improve the immune system and further reveal that different CEPHs may exert differential influences on the immune function. These results indicate that CEPHs could be useful for several applications in the health food, pharmaceutical, and nutraceutical industries. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Beneficial effects of protein hydrolysates in exercise and sports nutrition.

    Science.gov (United States)

    Yuan, J; Jiang, B; Li, K; Shen, W; Tang, J L

    2017-01-01

    Protein hydrolysates (PH) are rich sources of proteins that supply the need of exercising muscles. PHs are enriched in di- and tripeptides and are better than free amino acids or intact proteins when muscle anabolic effect is considered. Digestion, absorption and muscle uptake of amino acids are faster and more efficient when PH is ingested in comparison to the respective intact protein. PHs not only enhance endurance in high intensity exercise regimen, but also help in faster post-exercise recovery of muscle by promoting glycogen synthesis, although the latter effect requires more convincing evidence. PHs have been shown to exhibit insulinotrophic effect as it enhances the secretion of insulin and the hormone, in turn, exerts muscle anabolic effect.

  3. Evaluation of physicochemical and antioxidant properties of peanut protein hydrolysate.

    Directory of Open Access Journals (Sweden)

    Lin Tang

    Full Text Available Peanut protein and its hydrolysate were compared with a view to their use as food additives. The effects of pH, temperature and protein concentration on some of their key physicochemical properties were investigated. Compared with peanut protein, peanut peptides exhibited a significantly higher solubility and significantly lower turbidity at pH values 2-12 and temperature between 30 and 80°C. Peanut peptide showed better emulsifying capacity, foam capacity and foam stability, but had lower water holding and fat adsorption capacities over a wide range of protein concentrations (2-5 g/100 ml than peanut protein isolate. In addition, peanut peptide exhibited in vitro antioxidant properties measured in terms of reducing power, scavenging of hydroxyl radical, and scavenging of DPPH radical. These results suggest that peanut peptide appeared to have better functional and antioxidant properties and hence has a good potential as a food additive.

  4. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Lisbeth; Hahn-Haegerdal, B. (Lund Univ. (Sweden). Dept. of Applied Microbiology)

    1993-01-01

    The sugar consumption rates and the product formation of yeasts (Saccharomyces cidri NCYC 775, S. cerevisiae NCYC 1047, S.cerevisiae ATCC 4132) and bacteria (Lactobacillus brevis DSM 20054, Lactococcus lactis ssp. lactis ATCC 19435, Escherichia coli ATCC 11303, Zymomonas mobilis ATCC 31821) were investigated in spent sulphite liquor and an enzymatic hydrolysate of steam-pretreated Salix caprea at different pH values in order to elucidate the suitability of the organisms with respect to future genetic engineering approaches. The possible inhibitory action of the two substrates on the investigated microorganisms was also considered. S.cerevisiae emerged as one of the better candidates, owing to its fast sugar consumption rate and efficient ethanol production. (author)

  5. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  6. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2013-01-01

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd 2+ ) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd 2+ concentration and rescued Cd 2+ -induced chlorosis in Arabidopsis thaliana. Under Cd 2+ stress conditions, NAA increased Cd 2+ retention in the roots and most Cd 2+ in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd 2+ , whereas it significantly increased the content of hemicellulose 1 and the amount of Cd 2+ retained in it. There were highly significant correlations between Cd 2+ concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd 2+ or NAA + Cd 2+ treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd 2+ in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd 2+ toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd 2+ fixation in the root, thus reducing the translocation of Cd 2+ from roots to shoots

  7. Overall Reduction Kinetics of Low-grade Pyrolusite Using a Mixture of Hemicellulose and Lignin as Reductant

    Directory of Open Access Journals (Sweden)

    Yun-Fei Long

    2015-11-01

    Full Text Available Manganese is widely used in many fields. Many efforts have been made to recover manganese from low-grade pyrolusite due to the depletion of high-grade manganese ore. Thus, it is of practical significance to develop a clean, energy-saving and environmentally friendly technical route to reduce the low-grade pyrolusite. The reported results show that biomass wastes from crops, crop waste, wood and wood waste are environmentally friendly, energy-saving, and low-cost reducing agents for roasting reduction of low-grade pyrolusite. Kinetics of the reduction reactions is necessary for an efficient design of biomass reduction of pyrolusite. Therefore, it is important to look for a general kinetics equation to describe the reduction of pyrolusite by different kinds of biomass, because there is a wide variety of biomass wastes, meaning that it is impossible to investigate the kinetics for each biomass waste. In this paper, thermal gravimetric analysis and differential thermal analysis were applied to study the overall reduction kinetics of pyrolusite using a mixture of hemicellulose and lignin, two major components of biomass. Overall reduction process is the overlap of the respective reduction processes. A new empirical equation based on the Johnson–Mehl–Avrami equation can be used to describe the respective reduction kinetics using hemicellulose and lignin as reductants, and the corresponding apparent activation energy is 30.14 kJ mol−1 and 38.91 kJ mol−1, respectively. The overall kinetic model for the reduction of pyrolusite by the mixture of hemicellulose and lignin can be simulated by the summation of the respective kinetics by considering their mass-loss fractions, while a unit step function was used to avoid the invalid conversion data. The obtained results in this work are necessary to understand the biomass reduction of pyrolusite and provide valuable assistance in the development of a general kinetics equation.

  8. Gross and true ileal digestible amino acid contents of several animal body proteins and their hydrolysates.

    Science.gov (United States)

    Cui, J; Chong, B; Rutherfurd, S M; Wilkinson, B; Singh, H; Moughan, P J

    2013-07-01

    Amino acid compositions of ovine muscle, ovine myofibrillar protein, ovine spleen, ovine liver, bovine blood plasma, bovine blood globulins and bovine serum albumin and the amino acid compositions and in vivo (laboratory rat) true ileal amino acid digestibilities of hydrolysates (sequential hydrolysis with Neutrase, Alcalase and Flavourzyme) of these protein sources were determined. True ileal amino acid digestibility differed (Pprotein hydrolysates. The ovine myofibrillar protein and liver hydrolysates were the most digestible, with a mean true ileal digestibility across all amino acids of 99%. The least digestible protein hydrolysate was bovine serum albumin with a comparable mean true ileal digestibility of 93%. When the digestible amino acid contents were expressed as proportions relative to lysine, considerable differences, across the diverse protein sources, were found in the pattern of predicted absorbed amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    NARCIS (Netherlands)

    Zha, Y.; Westerhuis, J.A.; Muilwijk, B.; Overkamp, K.M.; Nijmeijer, B.M.; Coulier, L.; Smilde, A.K.; Punt, P.J.

    2014-01-01

    Background: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates.Results: We studied the

  10. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    Science.gov (United States)

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    NARCIS (Netherlands)

    Zha, Y.; Westerhuis, J.A.; Muilwijk, B.; Overkamp, K.M.; Nijmeijer, B.M.; Coulier, L.; Smilde, A.K.; Punt, P.J.

    2014-01-01

    BACKGROUND: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. RESULTS: We studied the

  12. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates.

    Science.gov (United States)

    Herrera Chalé, Francisco; Ruiz Ruiz, Jorge Carlos; Betancur Ancona, David; Acevedo Fernández, Juan José; Segura Campos, Maira Rubi

    2016-01-01

    Hydrolysates and peptide fractions (PF) obtained from M. pruriens protein concentrates with commercial and digestive enzymatic systems were studied for their hypolipidemic and antithrombotic activities. Hydrolysates obtained with Pepsin-Pancreatin (PP) and their peptide fractions inhibited cholesterol micellar solubility with a maximum value of 1.83% in PP. Wistar rats were used to evaluate the hypolipidemic effect of hydrolysates and PF. The higher reductions of cholesterol and triglyceride levels were exhibited by PP and both peptide fractions 10 kDa from both hydrolysates showed the maximum antithrombotic activity with values of 33.33% for PF > 10 kDa from AF and 31.72% for PF > 10 kDa from PP. The results suggest that M. pruriens bioactive peptides with the hypolipidemic effect and antithrombotic activity might be utilized as nutraceuticals.

  13. Purification of Angiotensin Converting Enzyme Inhibitory Peptide Derived From Kacang Goat Meat Protein Hydrolysate

    OpenAIRE

    Jamhari, J; Yusiati, L.M; Suryanto, E; Cahyanto, M.N; Erwanto, Y; Muguruma, M

    2013-01-01

    The objective of this study was to identify the Angiotensin Converting Enzyme (ACE) inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC usi...

  14. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    Science.gov (United States)

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  15. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    Science.gov (United States)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  16. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    Science.gov (United States)

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.

  17. IMPACT OF ADULTERATION WITH GLUCOSE, FRUCTOSE AND HYDROLYSED INULIN SYRUP ON HONEY PHYSICO-CHEMICAL PROPERTIES

    OpenAIRE

    Sorina ROPCIUC; Mircea OROIAN; Vlad OLARIU

    2017-01-01

    The aim of this study is to evaluate the influence of the adulteration with glucose, fructose, hydrolysed inulin syrup on honey physico-chemical properties (pH, aw, electrical conductivity (EC), water activity and colour parameters (L*, a*, b*, chroma)) of three honey samples of different botanical origins (acacia, tilia and polyfloral). The honeys were adulterated in different percentages (10%, 20%, 30%, 40% and 50% respectively) with glucose, fructose and hydrolysed inulin syrup. The moistu...

  18. Xylitol Production from Eucalyptus Wood Hydrolysates in Low-Cost Fermentation Media

    Directory of Open Access Journals (Sweden)

    José Diz

    2002-01-01

    Full Text Available Several aspects concerning the bioconversion of xylose-containing hydrolysates (obtained from Eucalyptus wood into xylitol were assessed. Debaryomyces hansenii yeast strains were adapted to fermentation media (obtained either by prehydrolysis or autohydrolysis- posthydrolysis of wood supplemented with low-cost nutrients. Media containing up to 80 g/L xylose were efficiently fermented when the hydrolysates were detoxified by charcoal adsorption and supplemented with corn steep liquor.

  19. Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions

    International Nuclear Information System (INIS)

    Jin, Qiang; Zhang, Hongman; Yan, Lishi; Qu, Liang; Huang, He

    2011-01-01

    The kinetic characterization of hemicellulose hydrolysis of corn stover was investigated using a new reactor of dilute acid cycle spray flow-through (DCF) pretreatment. The primary purpose was to obtain kinetic data for hemicellulose hydrolysis with sulfuric acid concentrations (10-30 kg m -3 ) at relatively low temperatures (90-100 o C). A simplified kinetic model was used to describe its performance at moderate conditions. The results indicate that the rates of xylose formation and degradation are sensitive to flow rate, temperature and acid concentration. Moreover, the kinetic data of hemicellulose hydrolysis fit a first-order reaction model and the experimental data with actual acid concentration after accounting for the neutralization effect of the substrates at different temperatures. Over 90% of the xylose monomer yield and below 5.5% of degradation product (furfural) yield were observed in this reactor. Kinetic constants for hemicellulose hydrolysis models were analyzed by an Arrhenius-type equation, and the activation energy of xylose formation were 111.6 kJ mol -1 , and 95.7 kJ mol -1 for xylose degradation, respectively. -- Highlights: → Investigating a novel pretreatment reactor of dilute acid cycle spray flow-through. → Xylose yield is sensitive to flow rate, temperature and acid concentration. → Obtaining relatively higher xylose monomer yield and lower fermentation inhibitor. → Lumping hemicellulose and xylan oligmers together in the model is a valid way. → The kinetic model as a guide for reactor design, and operation strategy optimization.

  20. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  1. Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus residues and assessment of its antioxidant activity

    Directory of Open Access Journals (Sweden)

    Daniela Miotto BERNARDI

    2016-01-01

    Full Text Available Abstract The objective of this work was to produce protein hydrolysates from by-products of the Nile tilapia fileting process, and to assess the effects of different hydrolysis times on the antioxidant activity of the hydrolysed animal-based protein, in free form and incorporated into a food matrix. Gutted tilapia heads and carcasses were hydrolysed by Alcalase® for different hydrolysis times producing six hydrolysates. The protein content, degree of hydrolysis, reverse-phase high-performance liquid chromatography, and antioxidant activity by the ORAC, FRAP and TEAC methods were analysed. Three mini-hamburger formulations were produced and the lipidic oxidation of mini-hamburger was determined by TBARS. The protein contained in the residue was completely recovered in the process. The hydrolysates varied in their degree of hydrolysis, but presented similar levels of antioxidant activity. In the mini-hamburgers the hydrolysate was capable of delaying oxidation after 7 days of storage. Hydrolysis of tilapia processing by-products produced peptides may be used in the formulation of functional foods.

  2. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Science.gov (United States)

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  3. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Li-Hong Deng

    2014-01-01

    Full Text Available Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification.

  4. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.

    Science.gov (United States)

    Jeong, So-Yeon; Trinh, Ly Thi Phi; Lee, Hong-Joo; Lee, Jae-Won

    2014-01-01

    A two-step detoxification process consisting of electrodialysis and adsorption was performed to improve the fermentability of oxalic acid hydrolysates. The constituents of the hydrolysate differed significantly between mixed hardwood and softwood. Acetic acid and furfural concentrations were high in the mixed hardwood, whereas 5-hydroxymethylfurfural (HMF) concentration was relatively low compared with that of the mixed softwood. The removal efficiency of acetic acid reached 100% by electrodialysis (ED) process in both hydrolysates, while those of furfural and HMF showed very low, due to non-ionizable properties. Most of the remaining inhibitors were removed by XAD-4 resin. In the mixed hardwood hydrolysate without removal of the inhibitors, ethanol fermentation was not completed. Meanwhile, both ED-treated hydrolysates successfully produced ethanol with 0.08 and 0.15 g/Lh ethanol productivity, respectively. The maximum ethanol productivity was attained after fermentation with 0.27 and 0.35 g/Lh of detoxified hydrolysates, which were treated by ED, followed by XAD-4 resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  6. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  7. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Directory of Open Access Journals (Sweden)

    Ting Jiang

    Full Text Available An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH, condensed acid-catalyzed liquid hot water hydrolysate (CALH and condensed acid-catalyzed sulfite hydrolysate (CASH as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF, vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  8. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements.

    Science.gov (United States)

    Ververis, C; Georghiou, K; Danielidis, D; Hatzinikolaou, D G; Santas, P; Santas, R; Corleti, V

    2007-01-01

    Freshwater algal biomass and orange and lemon peels were assessed as tissue paper pulp supplements. Cellulose and hemicellulose contents of algal biomass were 7.1% and 16.3%, respectively, whereas for citrus peels cellulose content ranged from 12.7% to 13.6% and hemicellulose from 5.3% to 6.1%. For all materials, lignin and ash content was 2% or lower, rendering them suitable for use as paper pulp supplements. The addition of algal biomass to paper pulp increased its mechanical strength significantly. However, brightness was adversely affected by chlorophyll. The addition of citrus peels in paper pulp had no effect on breaking length, increased bursting strength and decreased tearing resistance. Brightness was negatively affected at proportions of 10%, because citrus peel particles behave as coloured pigments. The cost of both materials is about 45% lower than that of conventional pulp, resulting in a 0.9-4.5% reduction in final paper price upon their addition to the pulp.

  9. Corrected: The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus

    OpenAIRE

    Pejin, Jelena; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Đukić-Vuković, Aleksandra; Mladenović, Dragana; Mojović, Ljiljana

    2016-01-01

    Brewers' spent grain (BSG) hydrolysates were used for lactic acid (LA) fermentation by Lactobacillus rhamnosus ATCC 7469. The aim of this study was to evaluate possibilities of the BSG hydrolysate utilization as a substrate for LA fermentation as well as the effect of dry brewers' yeast addition in hydrolysate on lactic acid fermentation parameters (L-(+)-LA and reducing sugar concentration and number of viable cell-viability). Very high L. rhamnosus ATCC 7469 cell viability was achieved in a...

  10. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    Science.gov (United States)

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (Pfish skin, could serve as a potential source of functional food ingredients for health promotion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    Science.gov (United States)

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  12. Evaluation of cotton stalk hydrolysate for xylitol production.

    Science.gov (United States)

    Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent

    2016-07-03

    Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.

  13. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process.

    Science.gov (United States)

    Luo, Ying; Pierce, Karisa M

    2012-07-01

    Plant-derived hydrolysates are widely used in mammalian cell culture media to increase yields of recombinant proteins and monoclonal antibodies (mAbs). However, these chemically varied and undefined raw materials can have negative impact on yield and/or product quality in large-scale cell culture processes. Traditional methods that rely on fractionation of hydrolysates yielded little success in improving hydrolysate quality. We took a holistic approach to develop an efficient and reliable method to screen intact soy hydrolysate lots for commercial recombinant mAb manufacturing. Combined high-resolution (1) H nuclear magnetic resonance (NMR) spectroscopy and partial least squares (PLS) analysis led to a prediction model between product titer and NMR fingerprinting of soy hydrolysate with cross-validated correlation coefficient R(2) of 0.87 and root-mean-squared-error of cross-validation RMSECV% of 11.2%. This approach screens for high performance hydrolysate lots, therefore ensuring process consistency and product quality in the mAb manufacturing process. Furthermore, PLS analysis was successful in discerning multiple markers (DL-lactate, soy saccharides, citrate and succinate) among hydrolysate components that positively and negatively correlate with titer. Interestingly, these markers correlate to the metabolic characteristics of some strains of taxonomically diverse lactic acid bacteria (LAB). Thus our findings indicate that LAB strains may exist during hydrolysate manufacturing steps and their biochemical activities may attribute to the titer enhancement effect of soy hydrolysates. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  14. The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects.

    Science.gov (United States)

    Claessens, M; Calame, W; Siemensma, A D; van Baak, M A; Saris, W H M

    2009-01-01

    To study the effect of four protein hydrolysates from vegetable (pea, gluten, rice and soy) and two protein hydrolysates from animal origin (whey and egg) on glucagon and insulin responses. Eight healthy normal-weight male subjects participated in this study. The study employed a repeated-measures design with Latin square randomization and single-blind trials. Protein hydrolysates used in this study (pea, rice, soy, gluten, whey and egg protein hydrolysate) consisted of 0.2 g hydrolysate per kg body weight (bw) and 0.2 g maltodextrin per kg bw and were compared to maltodextrin alone. Postprandial plasma glucose, glucagon, insulin and amino acids were determined over 2 h. All protein hydrolysates induced an enhanced insulin secretion compared to maltodextrin alone and a correspondingly low plasma glucose response. A significant difference was observed in area under the curve (AUC) for plasma glucagon between protein hydrolysates and the maltodextrin control drink (Pprotein hydrolysate induced the lowest glucagon response. High amino-acid-induced glucagon response does not necessarily go together with low insulin response. Protein hydrolysate source affects AUC for glucagon more profoundly than for insulin, although the protein load used in this study seemed to be at lower level for significant physiological effects.

  15. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.

    Science.gov (United States)

    West, Thomas P

    2016-01-01

    The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.

  16. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Giuseppe eColla

    2014-09-01

    Full Text Available The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L. coleoptile elongation rate test (experiment 1, a rooting test on tomato cuttings (experiment 2; and two greenhouse experiments: a dwarf pea (Pisum sativum L. growth test (experiment 3, and a tomato (Solanum lycopersicum L. nitrogen uptake trial (experiment 4. Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the four concentrations tested (0.375, 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid (IAA treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21%, 35%, 24%, and 26%, respectively in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L significantly increased the shoot length of the giberellin (GA-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5%, 15% and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances.

  17. Use of hemicellulose hydrolate in the production of fatty acids. Udnyttelse af hemicellulosehydrolysat til fremstilling af fede syrer

    Energy Technology Data Exchange (ETDEWEB)

    Hamann Spendler, F.

    1988-06-15

    Cellulose fibers can be produced from straw by an organosolve process or similar week acid hydrolysis. The hydrolysate sugars can further be converted to volatile fatty acids by fermentation. The composition of the hydrolysate was analyzed. Xylose was predominant, but in a lower contration than expected from the overall COD-content. This study has shown that if the fermentation is carried out in a fixed film reactor, composition of the acid mixture in the broth yield and conversion speed are strongly dependent on pH and retention time. The production of the more valuable acids, such as lactic acid and butyric acid is favored by a pH around 6,0. Lactid acid should be produced at low retention times of app. 4 hours or less, whereas butyric acid requires retention times of 40 - 60 hours. Attempt to recover the acids by extraction with a solvent compose of tertiary amines and nonylphenol did not prove to be succesful. Other ways of recovering the acids reported in the litterature have been studied and are going to be tested out in the second phase of the project.

  18. Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells

    Science.gov (United States)

    Siemensma, André; Babcock, James; Wilcox, Chris; Huttinga, Hans

    In the light of the growing demand for high quality plant-derived hydrolysates (i.e., HyPep™ and UltraPep™ series), Sheffield Bio-Science has developed a new hydrolysate platform that addresses the need for animal-free cell culture medium supplements while also minimizing variability concerns. The platform is based upon a novel approach to enzymatic digestion and more refined processing. At the heart of the platform is a rationally designed animal component-free (ACF) enzyme cocktail that includes both proteases and non-proteolytic enzymes (hydrolases) whose activities can also liberate primary components of the polymerized non-protein portion of the raw material. This enzyme system is added during a highly optimized process step that targets specific enzyme-substrate reactions to expand the range of beneficial nutritional factors made available to cells in culture. Such factors are fundamental to improving the bio-performance of the culture system, as they provide not merely growth-promoting peptides and amino acids, but also key carbohydrates, lipids, minerals, and vitamins that improve both rate and quality of protein expression, and serve to improve culture life due to osmo-protectant and anti-apoptotic properties. Also of significant note is that, compared to typical hydrolysates, the production process is greatly reduced and requires fewer steps, intrinsically yielding a better-controlled and therefore more reproducible product. Finally, the more sophisticated approach to enzymatic digestion renders hydrolysates more amenable to sterile filtration, allowing hydrolysate end users to experience streamlined media preparation and bioreactor supplementation activities. Current and future development activities will evolve from a better understanding of the complex interactions within a handful of key biochemical pathways that impact the growth and productivity of industrially relevant organisms. Presented in this chapter are some examples of the efforts that

  19. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

    DEFF Research Database (Denmark)

    Agger, Jane W.; Isaksen, Trine; Várnai, Anikó

    2014-01-01

    of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades...... walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting...... on the same substrates. The enzyme particularly acts on the glucose backbone of xyloglucan, accepting various substitutions (xylose, galactose) in almost all positions. Because the attachment of xyloglucan to cellulose hampers depolymerization of the latter, it is possible that the beneficial effect...

  20. Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans.

    Science.gov (United States)

    Wu, Shengjun; Lu, Mingsheng; Chen, Jing; Fang, Yaowei; Wu, Leilei; Xu, Yan; Wang, Shujun

    2016-01-01

    In the present study, hydrolysis of potato starch with marine cold-adapted α-amylase and pullulan production from the hydrolysates by a new strain of Auerobasidium pullulans isolated from sea mud were conducted. The hydrolysis conditions were optimized as follows: reaction time 2h, pH 6.5, temperature 20°C, and α-amylase amount 12 U/g. Under these optimum hydrolysis conditions, the DE value of the potato starch hydrolysates reached to 49.56. The potato starch hydrolysates consist of glucose, maltose, isomaltose, maltotriose, and trace of other maltooligosaccharides with degree of polymerization ranged 4-7. The maximum production of pullulan at 96 h from the hydrolysate of potato starch was 36.17 g/L, which was higher than those obtained from glucose (22.07 g/L, p<0.05) and sucrose (31.42 g/L, p<0.05). Analysis of the high performance liquid chromatography of the hydrolysates of the pullulan product with pullulanase indicated that the main composition is maltotriose, thus confirming the pullulan structure of this pullulan product. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber.

    Science.gov (United States)

    Terán Hilares, Ruly; de Souza, Rebeca Andrade; Marcelino, Paulo Franco; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César

    2018-04-15

    Sugarcane bagasse (SCB) hydrolysate could be an interesting source for red pigment production by Monascus ruber Tieghem IOC 2225. The influence of different wavelength of light-emitting diode (LED) at 250 μmol.m -2 .s -1 of photon flux density on red pigment production by M. ruber in glucose-based medium was evaluated. Then, SCB hydrolysate was used as carbon source under the previously selected light incidence conditions. In glucose-based medium, the highest pigment production was achieved in fermentation assisted with orange LED light (8.28 UA 490nm ), white light (8.26 UA 490nm ) and under dark condition (7.45 UA 490nm ). By using SCB hydrolysate-based medium, the highest red pigment production (18.71 AU 490nm ) was achieved under dark condition and the glucose and cellobiose present in the hydrolysate were metabolized. SCB enzymatic hydrolysate was demonstrated to be a promising carbon source for high thermal stability red pigment production (activation energy of 10.5 kcal.mol -1 ), turning an interesting alternative for implementation in biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Amino acid composition and functional properties of giant red sea cucumber ( Parastichopus californicus) collagen hydrolysates

    Science.gov (United States)

    Liu, Zunying; Su, Yicheng; Zeng, Mingyong

    2011-03-01

    Giant red sea cucumber ( Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis. The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species. The degree of hydrolysis (DH), amino acid composition, SDS-PAGE, emulsion activity index (EAI), emulsion stability index (ESI), foam expansion (FE), and foam stability (FS) of hydrolysates were investigated. The effects of pH on the EAI, ESI FE and FS of hydrolysates were also investigated. The results indicated that the β and α 1 chains of the collagen were effectively hydrolyzed by trypsin at 50°c with an Enzyme/Substrate (E/S) ration of 1:20 (w:w). The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin. The hydrolysates had a molecular weight distribution of 1.1-17 kDa, and were abundant in glycine (Gly), proline (Pro), glutamic acid (Glu), alanine (Ala) and hydroxyproline (Hyp) residues. The hydrolysates were fractionated into three fractions ( 10 kDa), and the fraction of 3-10 kDa exhibited a higher EAI value than the fraction of > 10 kDa ( P 10 kDa had higher FE and FS values than other fractions ( P 10 kDa showed higher FE value, respectively. They are hoped to be utilized as functional ingredients in food and nutraceutical industries.

  3. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    Science.gov (United States)

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes 3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.

  4. Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans.

    Science.gov (United States)

    Drummond, Elaine; Flynn, Sarah; Whelan, Helena; Nongonierma, Alice B; Holton, Thérèse A; Robinson, Aisling; Egan, Thelma; Cagney, Gerard; Shields, Denis C; Gibney, Eileen R; Newsholme, Philip; Gaudel, Celine; Jacquier, Jean-Christophe; Noronha, Nessa; FitzGerald, Richard J; Brennan, Lorraine

    2018-05-02

    Evidence exists to support the role of dairy derived proteins whey and casein in glycemic management. The objective of the present study was to use a cell screening method to identify a suitable casein hydrolysate and to examine its ability to impact glycemia related parameters in an animal model and in humans. Following screening for the ability to stimulate insulin secretion in pancreatic beta cells, a casein hydrolysate was selected and further studied in the ob/ob mouse model. An acute postprandial study was performed in 62 overweight and obese adults. Acute and long-term supplementation with the casein hydrolysate in in vivo studies in mice revealed a glucose lowering effect and a lipid reducing effect of the hydrolysate (43% reduction in overall liver fat). The postprandial human study revealed a significant increase in insulin secretion ( p = 0.04) concomitant with a reduction in glucose ( p = 0.03). The area under the curve for the change in glucose decreased from 181.84 ± 14.6 to 153.87 ± 13.02 ( p = 0.009). Overall, the data supports further work on the hydrolysate to develop into a functional food product.

  5. Determination of Optimum Condition of Leucine Content in Beef Protein Hydrolysate using Response Surface Methodology

    International Nuclear Information System (INIS)

    Siti Roha Ab Mutalib; Zainal Samicho; Noriham Abdullah

    2016-01-01

    The aim of this study is to determine the optimum condition of leucine content in beef hydrolysate. Beef hydrolysate was prepared by enzymatic hydrolysis using bromelain enzyme produced from pineapple peel. Parameter conditions such as concentration of bromelain, hydrolysis temperature and hydrolysis time were assessed to obtain the optimum leucine content of beef hydrolysate according to experimental design which was recommended by response surface methodology (RSM). Leucine content in beef hydrolysate was determined using AccQ. Tag amino acid analysis method using high performance liquid chromatography (HPLC). The condition of optimum leucine content was at bromelain concentration of 1.38 %, hydrolysis temperature of 42.5 degree Celcius and hydrolysis time of 31.59 hours with the predicted leucine content of 26.57 %. The optimum condition was verified with the leucine value obtained was 26.25 %. Since there was no significant difference (p>0.05) between the predicted and verified leucine values, thus it indicates that the predicted optimum condition by RSM can be accepted to predict the optimum leucine content in beef hydrolysate. (author)

  6. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties

    Directory of Open Access Journals (Sweden)

    César Ozuna

    2017-01-01

    Full Text Available Seeds from Cucurbitaceae plants (squashes, pumpkins, melons, etc. have been used both as protein-rich food ingredients and nutraceutical agents by many indigenous cultures for millennia. However, relatively little is known about the bioactive components (e.g., peptides of the Cucurbitaceae seed proteins (CSP and their specific effects on human health. Therefore, this paper aims to provide a comprehensive review of latest research on bioactive and functional properties of CSP isolates and hydrolysates. Enzymatic hydrolysis can introduce a series of changes to the CSP structure and improve its bioactive and functional properties, including the enhanced protein solubility over a wide range of pH values. Small-sized peptides in CSP hydrolysates seem to enhance their bioactive properties but adversely affect their functional properties. Therefore, medium degrees of hydrolysis seem to benefit the overall improvement of bioactive and functional properties of CSP hydrolysates. Among the reported bioactive properties of CSP isolates and hydrolysates, their antioxidant, antihypertensive, and antihyperglycaemic activities stand out. Therefore, they could potentially substitute synthetic antioxidants and drugs which might have adverse secondary effects on human health. CSP isolates and hydrolysates could also be implemented as functional food ingredients, thanks to their favorable amino acid composition and good emulsifying and foaming properties.

  7. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

    Science.gov (United States)

    Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara

    2016-06-01

    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For

  8. Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace

    DEFF Research Database (Denmark)

    Zietsman, Anscha J.J.; Moore, John P.; Fangel, Jonatan Ulrik

    2017-01-01

    Chardonnay grape pomace was treated with pressurized heat followed by enzymatic hydrolysis, with commercial or pure enzymes, in buffered conditions. The pomace was unfermented as commonly found for white winemaking wastes and treatments aimed to simulate biovalorization processing. Cell wall...... to a working model of the hitherto, poorly understood innermost xyloglucan-rich hemicellulose layers of unfermented grape pomace....

  9. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview.

    Science.gov (United States)

    Zamora-Sillero, Juan; Gharsallaoui, Adem; Prentice, Carlos

    2018-04-01

    The inadequate management of fish processing waste or by-products is one of the major problems that fish industry has to face nowadays. The mismanagement of this raw material leads to economic loss and environmental problems. The demand for the use of these by-products has led to the development of several processes in order to recover biomolecules from fish by-products. An efficient way to add value to fish waste protein is protein hydrolysis. Protein hydrolysates improve the functional properties and allow the release of peptides of different sizes with several bioactivities such as antioxidant, antimicrobial, antihypertensive, anti-inflammatory, or antihyperglycemic among others. This paper reviews different methods for the production of protein hydrolysates as well as current research about several fish by-products protein hydrolysates bioactive properties, aiming the dual objective: adding value to these underutilized by-products and minimizing their negative impact on the environment.

  10. Changes in vascularization of internal organs in rabbits with experimental atherosclerosis, treated with protein hydrolysate

    International Nuclear Information System (INIS)

    Demireva, K.; Popdimitrov, I.

    1979-01-01

    The vascularization of the internal organs of rabbits with experimental atherosclerosis was studied by the method of Sapirstein with 86 rubidium. Experiments were carried out on male Chinchilla rabbits, fed cholesterol in a dose of 0,2 g/kg of body weight daily for a period of 90 days. Part of the animals were treated with protein hydrolysate in a dose of 5 ml/kg of body weight subcutaneously and the remaining - with physiologic saline. There was reduced vascularization in the heart, kidneys, intestines, liver, adrenals, pancreas and other internal organs in rabbits fed cholestrol and treated with physiologic saline. Administration of protein hydrolysate had protective effect on organ vascularization. Accumulation of 86 rubidium in a large part of the animals was greater than in control group. It is shown that protein hydrolysate amino acids stabilize the endothelial cells and stimulate the local vascularization. (author)

  11. Potential Use of Gelidium amansii Acid Hydrolysate for Lactic Acid Production by Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2013-01-01

    Full Text Available Galactose and glucose are the main monosaccharides produced from the saccharification of Gelidium amansii. They were hydrolysed with 3 % (by volume H2SO4 at 140 °C for 5 min and obtained at concentrations of 19.60 and 10.21 g/L, respectively. G. amansii hydrolysate (5 %, by mass per volume was used as a substrate for L(+-lactic acid production by Lactobacillus rhamnosus. The maximum lactic acid yield (YP/S was 42.03 % with optical purity of 84.54 %. Lactic acid produced from G. amansii hydrolysate can be applicable, among others, for the production of lactic acid esters, like ethyl or methyl lactate, and disinfectant in seaweed cultivation.

  12. Transglutaminase-treated conjugation of sodium caseinate and corn fiber gum hydrolysate: Interfacial and dilatational properties.

    Science.gov (United States)

    Liu, Yan; Selig, Michael J; Yadav, Madhav P; Yin, Lijun; Abbaspourrad, Alireza

    2018-05-01

    This study compliments previous work where peroxidase was successfully used to crosslink corn fiber gum (CFG) with bovine serum albumin and improve CFG's emulsifying properties. Herein, an alternative type of enzyme, transglutaminase, was used to prepare conjugates of CFG and sodium caseinate. Additionally, the CFG was partially hydrolyzed by sulfuric acid and its crosslinking pattern with caseinate was evaluated. The interfacial crosslinking degree between caseinate and CFG increased after hydrolysis according to high performance size exclusion chromatography. The equilibrium interfacial tension of CFG hydrolysate-caseinate conjugate was lower than that of CFG-caseinate conjugate as the rearrangement rate of the CFG hydrolysate-caseinate conjugate was higher. The dilatational modulus of CFG hydrolysate decreased from that of CFG. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans

    DEFF Research Database (Denmark)

    Calbet, Jose A L; Holst, Jens Juul

    2004-01-01

    peptide hydrolysate (WHY) or casein hydrolysate (CAHY). All solutions were matched for volume (600 mL), nitrogen content (9.3 g/L), energy density (1069-1092 kJ/L), osmolality (288-306 mosmol/kg), pH (6.9-7.0) and temperature (37 degrees C). RESULTS: Solutions were emptied at similar rates, with mean half...

  14. Antioxidant Activity of Fish Protein Hydrolysates in in vitro Assays and in Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Andersen, Lisa Lystbæk; Jacobsen, Charlotte

    The aim of this study was to screen different protein hydrolysates with respect to their antioxidative properties in order to select the most promising extracts for further evaluation in oil-in-water emulsions. Three fractions of protein hydrolysates (Crude, >5kDa and 5kDa, 3-5kDa and...

  15. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...

  16. Interfacial properties of whey protein and whey protein hydrolysates and their influence on O/W emulsion stability

    NARCIS (Netherlands)

    Schroder, A.J.; Berton-Carabin, C.C.; Venema, P.; Cornacchia, L.

    2017-01-01

    Protein hydrolysates are commonly used in high-tolerance or hypoallergenic formulae. The relation between the physicochemical properties of hydrolysed proteins (i.e., size, molecular weight distribution, charge, hydrophobicity), and their emulsifying properties is not fully understood. In this work,

  17. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    Science.gov (United States)

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  18. Percutaneous removal of pulmonary artery emboli with hydrolyser catheter in pigs

    International Nuclear Information System (INIS)

    Lacoursiere, L.; Millward, S.; Veinot, J.P.; Labinaz, M.

    2001-01-01

    To evaluate the efficacy and safety of the Hydrolyser catheter for per,cutaneous treatment of massive pulmonary embolism in pigs. Twelve pigs, each weighing between 55 kg and 89 kg, were used. Radio-opaque 9 cm x 0.8 cm and 4.5 cm x 0.8 cm clots, produced by mixing pig blood with iodinated contrast agent in vacutainers, were injected via the jugular vein until central pulmonary embolism (main and proximal lobar arteries) was obtained with significant systemic and pulmonary hemodynamic modifications. From a femoral approach, the 7-French Hydrolyser thrombectomy catheter was run over a 0.025-inch (0.64-mm) guide wire to remove the pulmonary emboli. Hemodynamic, gasometric and angiographic monitoring was performed before and after treatment. The procedure's safety and completeness of emboli removal was assessed by cardiopulmonary autopsy. Three of the 12 pigs died during embolization. Thrombectomy was therefore performed in 9, and central emboli could be obtained in 7 of the 9. The Hydrolyser could be manipulated only in central pulmonary arteries and could aspirate only central emboli in 5 of the 7 pigs that had them. Despite minimal angiographic improvement seen in these 5, there was no significant hemodynamic and gasometric improvement after treatment. The procedure induced an increase in free hemoglobin blood levels. Autopsies revealed an average of 2 endothelial injuries per pig (mainly adherent endocardial thrombi) in both nontreated (n = 3) and Hydrolyser-treated (n = 9) groups. The Hydrolyser thrombectomy catheter can be promptly positioned and easily steered in central pulmonary arteries. It can be used to partially remove central emboli, but not peripheral pulmonary emboli. Most of the injuries observed may not have been strictly related to Hydrolyser use. The pig might not be a suitable animal model for treatment of massive pulmonary embolism. (author)

  19. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats.

    Directory of Open Access Journals (Sweden)

    M Garcés-Rimón

    Full Text Available The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.

  20. Lactic acid production on brewers' spent grain hydrolysate by lactobacillus Rhamnosus and Lactobacillus fermentum

    OpenAIRE

    Pejin, Jelena; Mojović, Ljiljana; Kocić-Tanackov, Sunčica; Radosavljević, Miloš; Đukić-Vuković, Aleksandra; Nikolić, Svetlana

    2014-01-01

    Brewers' spent grain (BSG) is the major by-product of the brewing industry, representing around 85% of the total by-products generated. Per 100 L of beer produced 20 kg of brewer's spent grain are obtained. BSG is a lignocellulosic material and due to its high content of protein and fibre, it can also serve as a raw material in biotechnology i.e. in lactic acid production. In this study brewer's spent grain hydrolysate was produced using optimal conditions. Hydrolysates were used for lactic a...

  1. Bioactivity of Cod and Chicken Protein Hydrolysates before and after in vitro Gastrointestinal Digestion

    DEFF Research Database (Denmark)

    Jamnik, Polona; Istenič, Katja; Wulff, Tune

    2017-01-01

    , where values of cod and chicken were (95.5±1.2) and (90.5±0.7) %, respectively. Neither species nor digestion had any effect on cellular metabolic energy. At proteome level, digested hydrolysates gave again significantly stronger responses than undigested counterparts; cod peptides here also gave...... somewhat stronger response than chicken peptides. The knowledge of the action of food protein hydrolysates and their digests within live cells, also at proteome level, is important for further validation of their activity in higher eukaryotes to develop new products, such as in this case chicken and cod...... muscle-derived peptides as functional ingredients....

  2. Biological utilization of bagasse, a lignocellulose waste

    CSIR Research Space (South Africa)

    Paterson-Jones, JC

    1989-01-01

    Full Text Available for the production of single cell protein from the hemicelluloses and cellulose hydrolysates and the production of ethanol from the the cellulose by simultaneous saccharification and fermentation and from the hemicelluloses hydroly-sate by direct fermentation...

  3. Preventive effect of feeding high-risk infants a casein hydrolysate formula or an ultrafiltrated whey hydrolysate formula. A prospective, randomized, comparative clinical study

    DEFF Research Database (Denmark)

    Halken, S; Høst, A; Hansen, L G

    1993-01-01

    In a prospective study of a 1-year birth cohort of 158 high-risk infants the effect of feeding breastmilk, a casein hydrolysate (Nutramigen) or a new ultrafiltrated whey hydrolysate (Profylac) on the development of cow milk protein allergy/intolerance (CMPA/CMPI) was assessed and compared. All...... the infants had biparental or severe single atopic predisposition, the latter combined with cord blood IgE > or = 0.5 kU/L. At birth all infants were randomized to Nutramigen or Profylac, which was used when breastfeeding was insufficient or not possible during the first 6 months of life. During the same...... period this regimen was combined with avoidance of solid foods and cow milk protein. All mothers had unrestricted diets and were encouraged to do breastfeeding only. Moreover, avoidance of daily exposure to tobacco smoking, furred pets and dust-collecting materials in the bedroom was advised. The infants...

  4. Inhibition of Lipid Peroxidation by Enzymatic Hydrolysates from Wheat Bran

    Directory of Open Access Journals (Sweden)

    Yanping Cao

    2011-01-01

    Full Text Available Wheat bran, an important by-product of the cereal industry, is rich in potentially health-promoting phenolic compounds. The phenolics are mainly esterified to the cell wall polysaccharides. In our previous paper, wheat bran was destarched and deproteinated by α-amylase, protease and amyloglucosidase successively and further hydrolyzed using Bacillus subtilis xylanases, and the enzymatic hydrolysates from wheat bran (EHWB showed good scavenging activity in vitro. The aim of this study is to further characterize the antioxidant potential of EHWB against various systems, both ex vivo and in vivo, namely, rat liver microsomal lipid peroxidation systems induced by Fe2+/H2O2 and Fe3+-adenosine diphosphate (ADP/dihydronicotinamide adenine dinucleotide phosphate (NADPH, copper- and 2,2’-azo-bis(2-amidinopropane dihydrochloride (AAPH-induced human low-density lipoprotein (LDL oxidation systems, and alloxan-induced in vivo lipid peroxidation in mice. EHWB inhibited lipid peroxidation in rat liver microsomes induced by Fe2+/H2O2 and Fe3+-ADP/NADPH in a concentration-dependent manner with 90.3 and 87 % inhibition of lipid peroxidation at 50 mg/L, respectively, which were similar to that of butylated hydroxytoluene (BHT at 20 mg/L. The antioxidant potential of EHWB at a concentration ranging from 10 to 20 mg/L in the nonenzymatic system was more effective than in the enzymatic system. EHWB strongly inhibited in vitro copper- and AAPH-mediated oxidation of LDL in a concentration- and time-dependent manner with 52.41 and 63.03 % inhibition at 20 mg/L, respectively, which were similar to that of ascorbate at 10 mg/L. EHWB significantly decreased the level of thiobarbituric acid reactive substances (TBARS and increased the activities of glutathione peroxidase (GSH-Px, catalase (CAT and superoxide dismutase (SOD in serum and liver of alloxan-treated mice compared with the control. These results demonstrated that EHWB might be efficient in the protection of

  5. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  6. De hydrolyse van vet bij de kaasrijping in verband met de smaak van kaas

    NARCIS (Netherlands)

    Stadhouders, J.J.

    1956-01-01

    Fatty acids are important as constituents of cheese flavour. In cheese made from raw milk, milk lipase probably hydrolyses cheese fat to some extent, but cheese made from aseptically drawn milk shows no piquant flavour.
    It was established that during ripening no active lipase was formed inside

  7. Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration.

    Science.gov (United States)

    Zhou, Kequan; Sun, Shi; Canning, Corene

    2012-12-01

    Corn protein was hydrolysed by three microbial proteases and further separated by sequential ultra-filtration to 12 hydrolysate fractions which were investigated for free radical scavenging capacity and chelating activity. The oxygen radical absorbance capacity (ORAC) of the hydrolysates varied significantly between 65.6 and 191.4μmoles Trolox equivalents (TE)/g dried weight with a small peptide fraction (NP-F3) produced by neutral protease (NP) possessing the highest antioxidant activity. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH()) scavenging activities of the hydrolysate fractions also varied significantly between 18.4 and 38.7μmoles TE/g. Two fractions (AP-F2 and AP-F3) produced by alkaline protease (AP) showed the strongest activity. However, no significant difference was detected on the chelating activity of the fractions. NP-F3, AP-F2, and AP-F3 were incorporated into ground beef to determine their effects on lipid oxidation during 15-day storage period. NP-F3 was the only fraction that inhibited lipid oxidation at both 250 and 500μg/g levels by as much as 52.9%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Safety evaluation of an IPP tripeptide-containing milk protein hydrolysate

    NARCIS (Netherlands)

    Ponstein-Simarro Doorten, A.Y.; Wiel, J.A.G. van de; Jonker, D.

    2009-01-01

    Tensguard™ is a milk protein hydrolysate containing the lactotripeptide IPP. It is derived from cow's milk, which is present in the human diet and has a safe history of consumption. The final Tensguard™ product, a supplement or a functional food ingredient, is intended for use by people who want to

  9. SOYBEAN AND CASEIN HYDROLYSATES INDUCE GRAPEVINE IMMUNE RESPONSES AND RESISTANCE AGAINST PLASMOPARA VITICOLA

    Directory of Open Access Journals (Sweden)

    Nihed eLachhab

    2014-12-01

    Full Text Available Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy and casein (cas to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defence responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signalling events were followed by transcriptome reprogramming, including the up-regulation of defence genes encoding pathogenesis-related (PR proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas one. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack.

  10. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus Pepsin/Pancreatin Hydrolysates

    Directory of Open Access Journals (Sweden)

    Alvaro Montoya-Rodríguez

    2015-04-01

    Full Text Available The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH and extruded amaranth hydrolysates (EAH and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da, 120 min (802 Da and 180 min (567 Da in UAH. EAH showed high intensity at 10 min (2034 Da and 120 min (984, 1295 and 1545 Da. Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.

  11. Production and characterization of cowpea protein hydrolysate with optimum nitrogen solubility by enzymatic hydrolysis using pepsin.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René

    2017-06-01

    Cowpea is a source of low-cost and good nutritional quality protein for utilization in food formulations in replacement of animal proteins. Therefore it is necessary that cowpea protein exhibits good functionality, particularly protein solubility which affects the other functional properties. The objective of this study was to produce cowpea protein hydrolysate exhibiting optimum solubility by the adequate combination of hydrolysis parameters, namely time, solid/liquid ratio (SLR) and enzyme/substrate ratio (ESR), and to determine its functional properties and molecular characteristics. A Box-Behnken experimental design was used for the experiments, and a second-order polynomial to model the effects of hydrolysis time, SLR and ESR on the degree of hydrolysis and nitrogen solubility index. The optimum hydrolysis conditions of time 208.61 min, SLR 1/15 (w/w) and ESR 2.25% (w/w) yielded a nitrogen solubility of 75.71%. Protein breakdown and the peptide profile following enzymatic hydrolysis were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. Cowpea protein hydrolysate showed higher oil absorption capacity, emulsifying activity and foaming ability compared with the concentrate. The solubility of cowpea protein hydrolysate was adequately optimized by response surface methodology, and the hydrolysate showed adequate functionality for use in food. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content, and gas exchange

    Science.gov (United States)

    The use of biostimulants to enhance crop production has gained considerable momentum because of its contribution to agroecological sustainability. Protein hydrolysates (PHs) are an important group of plant biostimulants that have received increasing attention in recent years due to their positive ef...

  13. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Asif Wali

    2017-01-01

    Full Text Available The effects of power ultrasound pretreatments on the degree of hydrolysis (DH, angiotensin-I-converting enzyme (ACE inhibitory activity, amino acid composition, surface hydrophobicity, protein solubility, and thermal stability of ACE inhibition of rapeseed protein hydrolysates were evaluated. Ultrasonic pretreatments before enzymolysis in terms of power and exposure time increased the DH and ACE inhibitory activities over the control (without sonication. In this study, maximum DH 22.07% and ACE inhibitory activity 72.13% were achieved at 600 W and 12 min pretreatment. Compared to the hydrolysates obtained without sonication, the amino acid profile of ultrasound pretreated hydrolysates showed significant changes particularly in the proline content and hydrophobic amino acids with an increased rate of 2.47% and 6.31%, respectively. Ultrasound pretreatment (600 watts, 12 min improved functional properties of protein hydrolysates over control by enhancing surface hydrophobicity and solubility index with an increased rate of 130.76% and 34.22%. Moreover, the stability test showed that the ACE inhibitory activity remains stable against heat treatments. However, extensive heat, prolonged heating time, and alkaline conditions were not in the favor of stability test, while under mild heat and acidic conditions their ACE inhibitory activities were not significantly different from unheated samples.

  14. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30

    Science.gov (United States)

    Rita C.L.B. Rodrigues; William R. Kenealy; Thomas W. Jeffries

    2011-01-01

    Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono-and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3 -Ä1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic...

  16. Fermented inulin hydrolysate by Bifidobacterium breve as cholesterol binder in functional food application

    Science.gov (United States)

    Melanie, Hakiki; Susilowati, Agustine; Maryati, Yati

    2017-01-01

    Inulin hydrolysate is a result of inulin hydrolysis by inulinase enzyme of Scopulariopsis sp.-CBS1 fungi isolated from dahlia tuber skin in the formation of fructooligosaccharides (FOS) as dietary fiber. Inulin hydrolysate fermented by Bifidobacterium breve has a potential as cholesterol binder in digestive system due to dietary fiber content in inulin. This study was conducted to evaluate the best cholesterol binding capacity by the variation of lactic acid bacteria (LAB) culture concentration of 10%, 20% and 30% (v/v), respectively. Fermentation process were conducted with inulin hydrolysate concentration of 25% (w/v), skim milk 7,5% (w/v) and various LAB culture concentration at 40 °C for 0, 12, 24, 36 and 48 hours. The results showed that the variation of LAB culture concentrations affect the cholesterol binding ability in fermented inulin hydrolysate. The fermentation process with 10% LAB culture concentration at 40°C for 48 hours resulted in the highest cholesterol binding capacity (CBC) of 13,69 mg/g at pH 7and 14,44 mg/g at pH 2 with composition of total acids of 0,787%, soluble dietary fiber of 0,396%, insoluble dietary fiber of 5,47%, total solids of 14,476%, total sugars of 472,484 mg/mL, reducing sugar of 92 mg/mL and total plate count (TPC) of 7,278 log CFU/mL, respectively.

  17. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  18. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    Science.gov (United States)

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Comparison of the aggregation behavior of soy and bovine whey protein hydrolysates

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Alting, A.C.; Gruppen, H.

    2007-01-01

    Abstract Soy-derived proteins (soy protein isolate, glycinin, and ß-conglycinin) and bovine whey-derived proteins (whey protein isolate, ¿-lactalbumin, ß-lactoglobulin) were hydrolyzed using subtilisin Carlsberg, chymotrypsin, trypsin, bromelain, and papain. The (in)solubility of the hydrolysates

  20. Raw mechanically separated chicken meat and salmon protein hydrolysate as protein sources in extruded dog food

    DEFF Research Database (Denmark)

    Tjernsbekk, M. T.; Tauson, A. H.; Kraugerud, O. F.

    2017-01-01

    Protein quality was evaluated for mechanically separated chicken meat (MSC) and salmon protein hydrolysate (SPH), and for extruded dog foods where MSC or SPH partially replaced poultry meal (PM). Apparent total tract digestibility (ATTD) of crude protein (CP) and amino acids (AA) in the protein...

  1. Antioxidative, DPP-IV and ACE inhibiting peptides from fish protein hydrolysed with intestinal proteases

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Stagsted, Jan; Nielsen, Henrik Hauch

    amino groups, antioxidative capacity by ABTS (2,2-azinobis(3-ethylbenzothiazoline-6-sulfonicacid)), DPP-IV and ACE inhibiting activity. Degree of hydrolysis (DH) of hydrolysates was approximately 13% and 10% for belly flap and skin respectively. No clear difference was observed in DH between pancreatin...

  2. Preparation of antioxidant enzymatic hydrolysates from honeybee-collected pollen using plant enzymes.

    Science.gov (United States)

    Marinova, Margarita D; Tchorbanov, Bozhidar P

    2011-01-09

    Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate) in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate) and proline iminopeptidase (0.03 U/g substrate) from cabbage leaves (Brassica oleracea var. capitata), and aminopeptidase (0.2 U/g substrate) from chick-pea cotyledons (Cicer arietinum L.) were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH), total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20-28%), total phenolics (15.3-27.2 μg/mg sample powder), and proteins (162.7-242.8 μg/mg sample powder), respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42-46% inhibition). The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  3. Preparation of Antioxidant Enzymatic Hydrolysates from Honeybee-Collected Pollen Using Plant Enzymes

    Directory of Open Access Journals (Sweden)

    Margarita D. Marinova

    2010-01-01

    Full Text Available Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate and proline iminopeptidase (0.03 U/g substrate from cabbage leaves (Brassica oleracea var. capitata, and aminopeptidase (0.2 U/g substrate from chick-pea cotyledons (Cicer arietinum L. were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH, total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20–28%, total phenolics (15.3–27.2 μg/mg sample powder, and proteins (162.7–242.8 μg/mg sample powder, respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42–46% inhibition. The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  4. Protein Hydrolysates from Non-bovine and Plant Sources Replaces Tryptone in Microbiological Media

    Science.gov (United States)

    Ranganathan, Yamini; Patel, Shifa; Pasupuleti, Vijai K.; Meganathan, R.

    Tryptone (pancreatic digest of casein) is a common ingredient in laboratory and fermentation media for growing wild-type and genetically modified microorganisms. Many of the commercially manufactured products such as human growth hormone, antibiotics, insulin, etc. are produced by recombinant strains grown on materials derived from bovine sources. With the emergence of Bovine Spongiform Encephalopathy (BSE) and the consequent increase in Food and Drug Administration (FDA) regulations, elimination of materials of bovine origin from fermentation media is of paramount importance. To achieve this objective, a number of protein hydrolysates derived from non-bovine animal and plant sources were evaluated. Tryptone in Luria-Bertani (LB) broth was replaced with an equal quantity of alternate protein hydrolysates. Four of the six hydrolysates (one animal and three from plants) were found to efficiently replace the tryptone present in LB-medium as measured by growth rate and growth yield of a recombinant Escherichia coli strain. In addition, we have determined plasmid stability, inducibility and activity of the plasmid encoded β-galactosidase in the recombinant strain grown in the presence of various protein hydrolysates.

  5. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  6. Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates

    Science.gov (United States)

    Caes, Benjamin R.; Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Maravelias, Christos T.

    2015-01-01

    Simulated moving bed chromatography, a continuous separation method, enables the nearly quantitative recovery of sugar products and ionic liquid solvent from chemical hydrolysates of biomass. The ensuing sugars support microbial growth, and the residual lignin from the process is intact. PMID:23939991

  7. Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods

    Directory of Open Access Journals (Sweden)

    Sumeng Wang

    2016-01-01

    Full Text Available The present study is about the use of peanut hull for isoprene production. In this study, two pretreatment methods, hydrogen peroxide-acetic acid (HPAC and popping, were employed prior to enzymatic hydrolysis, which could destroy the lignocellulosic structure and accordingly improve the efficiency of enzymatic hydrolysis. It is proven that the isoprene production on enzymatic hydrolysate with HPAC pretreatment is about 1.9-fold higher than that of popping pretreatment. Moreover, through High Performance Liquid Chromatography (HPLC analysis, the amount and category of inhibitors such as formic acid, acetic acid, and HMF were assayed and were varied in different enzymatic hydrolysates, which may be the reason leading to a decrease in isoprene production during fermentation. To further increase the isoprene yield, the enzymatic hydrolysate of HPAC was detoxified by activated carbon. As a result, using the detoxified enzymatic hydrolysate as the carbon source, the engineered strain YJM21 could accumulate 297.5 mg/L isoprene, which accounted for about 90% of isoprene production by YJM21 fermented on pure glucose (338.6 mg/L. This work is thought to be the first attempt on isoprene production by E. coli using peanut hull as the feedstock. More importantly, it also shows the prospect of peanut hull to be considered as an alternative feedstock for bio-based chemicals or biofuels production due to its easy access and high polysaccharide content.

  8. Production of arapaima protein hydrolysate using Aspergillus flavo-furcatis protease and pancreatin

    Directory of Open Access Journals (Sweden)

    Flávia de Carvalho Paiva

    2015-03-01

    Full Text Available The processing of arapaima (Arapaima gigas generates a lot of residues that can be used for the development of new products of industrial interest. This study aimed at evaluating the production of protein hydrolysates from arapaima residues using Aspergillus flavo-furcatis protease and commercial pancreatin, as well as characterizing their nutritional and microbiological qualities. The raw material used was meat mechanically separated from arapaima carcasses (MMSA. Two products were developed: a protein hydrolysate of arapaima using a commercial enzyme (PHACE and another one using microbial enzyme (PHAME. The MMSA and the hydrolysates were analyzed for chemical composition, microbiological quality, degree of hydrolysis, digestibility and amino acid profile. The results showed that the PHACE protein content was 73.47 %. This value was significantly higher, when compared to the PHAME (58.03 %. However, both products showed high digestibility values, absence of microbial contaminants and reduced lipid content. Among the enzymes used, pancreatin was the most efficient one in the preparation of the final product, which showed essential amino acids content higher than the requirements for human adults. The hydrolysate developed using A. flavo-furcatis enzymes presented essential amino acids score lower than 1.0, being tryptophan the most limiting one.

  9. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    Science.gov (United States)

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  10. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates.

    Science.gov (United States)

    Yust, María del Mar; Millán-Linares, María del Carmen; Alcaide-Hidalgo, Juan María; Millán, Francisco; Pedroche, Justo

    2012-07-01

    Some dietary proteins possess biological properties which make them potential ingredients of functional or health-promoting foods. Many of these properties are attributed to bioactive peptides that can be released by controlled hydrolysis using exogenous proteases. The aim of this work was to test the improvement of hypocholesterolaemic and antioxidant activities of chickpea protein isolate by means of hydrolysis with alcalase and flavourzyme. All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chickpea protein isolate. The highest cholesterol micellar solubility inhibition (50%) was found after 60 min of treatment with alcalase followed by 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chickpea proteins three methods were used: β-carotene bleaching method, reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect since antioxidant activity of protein hydrolysates may not be attributed to a single mechanism. Chickpea hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate. The results of this study showed the good potential of chickpea protein hydrolysates as bioactive ingredients. The highest bioactive properties could be obtained by selecting the type of proteases and the hydrolysis time. Copyright © 2012 Society of Chemical Industry.

  11. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  12. Protein hydrolysates are avoided by herbivores but not by omnivores in two-choice preference tests.

    Directory of Open Access Journals (Sweden)

    Kristin L Field

    Full Text Available The negative sensory properties of casein hydrolysates (HC often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist.We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16-18/species using solid foods containing 20% HC in a series of two-choice preference tests that used a non-protein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat. Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC's sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10 were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores.This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable

  13. Application of high rate, high temperature anaerobic digestion to fungal thermozyme hydrolysates from carbohydrate wastes.

    Science.gov (United States)

    Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E

    2009-05-01

    The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme

  14. Chemical structure, comparison antioxidant capacity and separation antioxidant of hen, duck and quail egg white protein hydrolysate

    Science.gov (United States)

    Fatah, A.; Meihu, M.; Ning, Q.; Setiani, B. E.; Bintoro, V. P.

    2018-01-01

    Amino acid linkages as proteins are nutritional substance which important for diet intake. Purification protein procesing undergo heating procedure process followed by additional of proteolytic enzymes or acid had been resulting in protein hydrolysates. A protein hydrolysate describe as many free amino acids bound together through a complex mixture of peptides. Egg white protein hydrolysates is one of subject interested to study for human health or industry product. The objectives of the research are to determine and identification the antioxidant derived from egg white hydrolysate protein. Identification of chemical structure of albumen and albumen protein hydrolysate was examine using IR Spectrophotometry. While comparison of antioxidant capacity and antioxidant separation egg albumen was also investigate using FTIR method (Fourier Transform Infrared Spectroscopy). Hen, duck and quail albumen egg white and on hydrolisate form were used as research materials. The results were showing that different time and enzyme of hydrolysis were not influence at secondary structure of hydrolysate albumen protein. Phytochemical content such as alcohol and hydroxyl compound which have potential as functional group of antioxidant were detected in all of the samples. Their results of radical scavenging activities samples hydrolyzed by pepsin were respectively 89.40%, 50.25% and 85.13%. Whereas the radical scavenging activities of hydrolysates hydrolyzed by papain were 72.85%, 61% and 76.45% respectively.

  15. COMPARATIVE STUDY ON ANGIOTENSIN CONVERTING ENZYME INHIBITORY ACTIVITY OF HYDROLYSATE OF MEAT PROTEIN OF INDONESIAN LOCAL LIVESTOCKS

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The experiment was conducted to investigate the angiotensin converting enzyme (ACE inhibitoryactivity of hydrolysate in meat protein of Bali cattle, Kacang goat, native chicken, and local duck. Themeats of Bali cattle, Kacang goat, native chicken, and local duck were used in this study. The meatswere ground using food processor added with aquadest to obtain meat extract. The meat extracts werethen hydrolyzed using protease enzymes to obtain hydrolysate of meat protein. Protein concentration ofmeat extract and hydrolysate of meat protein were determined, and were confirmed by sodium dodecylsulfate - poly acrylamide gel electrophoresis (SDS-PAGE. ACE inhibitory activity of hydrolysate ofmeat protein derived from Bali cattle, Kacang goat, native chicken, and local duck was also determined.The results showed that protein concentration of hydrolysate of meat protein of Bali cattle, Kacang goat,native chicken, and local duck meat was significantly higher than their meat extracts. SDS-PAGEanalysis indicated that hydrolysate of meat protein of Bali cattle, Kacang goat, native chicken, and localduck had more peptides with lower molecular weight, compared to their meat extracts. Hydrolysate ofmeat protein of Bali cattle, Kacang goat, native chicken, and local duck had potencies in inhibiting ACEactivity, so it will potentially reduce blood pressure.

  16. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.

    Science.gov (United States)

    Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei

    2015-10-01

    H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Deacetylation Followed by Fractionation of Yellow Poplar Sawdust for the Production of Toxicity-Reduced Hemicellulosic Sugar for Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Seong Ju Kim

    2018-02-01

    Full Text Available In order to produce bioethanol from yellow poplar sawdust without detoxification, deacetylation (mild alkali treatment was performed with aqueous ammonia solution. To select the optimal conditions, deacetylation was carried out under different conditions: NH4OH loading (2–10% (w/v and a solid-to-liquid ratio of 1:4–1:10 at 121 °C for 60 min. In order to assess the effectiveness of deacetylation, fractionation of deacetylated yellow poplar sawdust was performed using dilute acid (H2SO4, 0.5–2.0% (w/v at a reaction temperature of 130–150 °C for 10–80 min. The toxicity-reduced hemicellulosic hydrolyzates that were obtained through a two-step treatment at optimized conditions were fermented using Pichia stipitis for ethanol production, without any further detoxification. The maximum ethanol production was 4.84 g/L, corresponding to a theoretical ethanol yield of 82.52%, which is comparable to those of intentionally made hydrolyzates as controls.

  18. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  19. Stabilization of kerosene/water emulsions using bioemulsifiers obtained by fermentation of hemicellulosic sugars with Lactobacillus pentosus.

    Science.gov (United States)

    Portilla-Rivera, Oscar Manuel; Torrado, Ana María; Domínguez, José Manuel; Moldes, Ana Belén

    2010-09-22

    The results of the present study show that Lactobacillus pentosus can produce extracellular bioemulsifiers by utilizing hemicellulosic sugars from grape marc as a source of carbon. The effectiveness of these bioemulsifiers (LPEM) was studied by preparing kerosene/water (K/W) emulsions in the presence and absence of these emulsifiers. Various parameters such as relative emulsion volume (EV), stabilizing capacity (ES), viscosity, and droplet size of K/W emulsions were measured. The EV values for K/W emulsions stabilized by concentrated LPEM were approximately 74.5% after 72 h of emulsion formation, with ES values of 97%. These values were higher than those obtained with dodecyl sodium sulfate as emulsifier (EV=62.3% and ES=87.7%). Additionally, K/W emulsions stabilized by LPEM produced polydisperse emulsions containing droplets of radius between 10 and 40 μm, which were smaller than those obtained for K/W emulsions without LPEM (droplet radius=60-100 μm). Moreover, the viscosity values of the K/W emulsions without and with LPEM were approximately 236 and 495 cP, respectively.

  20. Autoradiographic investigations of cell wall development. 1. Tritiated glucose assimilation in relation to cellulose and hemicellulose deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M; Harada, H [Kyoto Univ. (Japan). Faculty of Agriculture

    1978-07-01

    Light microscopic and electron microscopic autoradiography, using D-glucose-6/sup 3/-H, were employed to the study of the differentiating compression wood tracheids which had been examined in an earlier series of studied. From this work, it could be demonstrated that: (1) In cells depositing S/sub 1/, the radioactivity was heavily or strongly incorporated into S/sub 1/. (2) Its incorporation was temporarily decreased and was scattered throughout the wall and cytoplasm in the transitional cells during S/sub 1/ to S/sub 2/ development. (3) The radioactivity was abundantly and specifically concentrated on the inner surface region of the developing S/sub 2/ while rarely taken up in the cytoplasm, in cells with a rapidly thickening S/sub 2/. (4) In the transitional cells going from the S/sub 2/ thickening stage to the secondary wall lignification stage, it was again dispersed in the interior of S/sub 2/ and in the cytoplasm besides the inner surface of S/sub 2/. (5) Thereafter, the incorporation decrease sharply in the secondary-wall-lignifying cells. The sequences of secondary wall development depending on cellulose and hemicellulose deposition are discussed in relation to the above observations.

  1. A novel alkaline hemicellulosic heteroxylan isolated from alfalfa (Medicago sativa L.) stem and its thermal and anti-inflammatory properties.

    Science.gov (United States)

    Chen, Lei; Liu, Jie; Zhang, Yaqiong; Niu, Yuge; Dai, Bona; Yu, Liangli Lucy

    2015-03-25

    A novel hemicellulosic polysaccharide (ACAP) was purified from the cold alkali extraction of alfalfa stems and characterized as a heteroxylan with a weight-average molecular weight of 7.94 × 10(3) kDa and a radius of 58 nm. Structural analysis indicated that ACAP consisted of a 1,4-linked β-D-Xylp backbone with 4-O-MeGlcpA and T-L-Araf substitutions at O-2 and O-3 positions, respectively. Transmission electron microscopy (TEM) examination revealed the entangled chain morphology of ACAP molecules. The evaluation of thermal degradation property revealed a primary decomposition temperature range of 238.8-314.0 °C with an apparent activation energy (Ea) and a pre-exponential factor (A) of 220.0 kJ/mol and 2.81 × 10(24)/s, respectively. ACAP also showed significant inhibitory activities on IL-1β, IL-6, and COX-2 gene expressions in cultured RAW 264.7 mouse macrophage cells. These results suggested the potential utilization of ACAP in functional foods and dietary supplement products.

  2. Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immuno nutrition

    International Nuclear Information System (INIS)

    Morris, Humberto J; Carrillo, Olimpia; Almarales, Angel; Bermudez, Rosa C; Alonso, Maria E; Borges, Leonardo; Quintana, Maria M; Fontaine, Roberto; Llaurado, Gabriel; Hernandez, Martha

    2009-01-01

    Chlorella vulgaris (Chlorophyta, Chlorophyceae) has received a particular attention in the programmes of microalgae utilisation in biotechnology. Enzymatic hydrolysis of cell proteins represents a very promising method to increase protein digestibility and thus, for obtaining hydrolysates with improved nutritional and functional properties. However, this technology has been little approached and the biological evaluation of hydrolysates has had a strictly nutritional nature. The design of hydrolysis conditions that combined for the first time, the use of C.vulgaris 87/1 treated with ethanol and pancreatin at pH values of 7.5-8.0, led to a product with a degree of hydrolysis of 20-22% and yields of 50-55%, characterised by a high digestibility (97.2%) and nitrogen solubility over a wide pH range (2.0-10.0). Hydrolysis curves were fitted to an exponential model, common to many food proteins. The bulk of the product dry matter consists of soluble peptides and free amino acids (47.7%) with three main peptides of molecular masses between 2 and 5 kDa. The oral administration of Chlorella hydrolysate (500 mg/kg) to undernourished Balb/c mice provided benefits in terms of liver protein metabolism and the induction of anabolic processes in gut mucosa. The hydrolysate also enhanced the immunological recovery, as judged by the stimulation of haemopoiesis, monocyte macrophage system activation, as well as humoral and cell mediated immune functions, like T-dependent antibody response and the reconstitution of delayed-type hypersensitivity (DTH) response. These results represent the first findings in the world concerning the immunomodulating effects of a microalgae protein hydrolysate. (author)

  3. Inhibition of α-Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions

    Directory of Open Access Journals (Sweden)

    Camila Gabriel Kato

    2017-01-01

    Full Text Available The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50 being 47.0 and 285.4 μM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 μM for the hydrolysable tannin and 248.1 μM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition. Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 μmol/kg and 88% inhibition at the dose of 294 μmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 μmol/kg (49% and 620 μmol/kg (57%. It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes.

  4. Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens.

    Science.gov (United States)

    Chen, P-W; Jheng, T T; Shyu, C-L; Mao, F C

    2013-03-01

    Previous reports have shown that several probiotic strains can resist the antibacterial activity of bovine lactoferrin (bLf), but the results are inconsistent. Moreover, a portion of orally administered apo-bLf is digested in vivo by pepsin to yield bLf hydrolysate, which produces stronger antibacterial activity than that observed with apo-bLf. However, whether bLf hydrolysate affects the growth of probiotic strains is unclear. Therefore, various probiotic strains in Taiwan were collected and evaluated for activity against apo-bLf and bLf hydrolysate in vitro. Thirteen probiotic strains were evaluated, and the growth of Lactobacillus acidophilus ATCC 4356, Lactobacillus salivarius ATCC 11741, Lactobacillus rhamnosus ATCC 53103, Bifidobacterium longum ATCC 15707, and Bifidobacterium lactis BCRC 17394 were inhibited by both apo-bLf and bLf hydrolysate. The growth of 8 strains were not affected by apo-bLf and bLf hydrolysate, including L. rhamnosus ATCC 7469, Lactobacillus reuteri ATCC 23272, Lactobacillus fermentum ATCC 11739, Lactobacillus coryniformis ATCC 25602, L. acidophilus BCRC 14065, Bifidobacterium infantis ATCC 15697, Bifidobacterium bifidum ATCC 29521, and Pediococcus acidilactici ATCC 8081. However, apo-bLf and its hydrolysate inhibited the growth of foodborne pathogens, including Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Enterococcus faecalis. Moreover, the supernatants produced by L. fermentum, B. lactis, and B. longum inhibited the growth of most pathogens. Importantly, a combination of apo-bLf or bLf hydrolysate with the supernatants of cultures of the organisms described above showed synergistic or partially synergistic effects against the growth of most of the selected pathogens. In conclusion, several probiotic strains are resistant to apo-bLf and bLf hydrolysate, warranting clinical studies to evaluate the antimicrobial potential for the combination of apo-bLf or its hydrolysate with specific probiotics. Copyright

  5. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus

    Directory of Open Access Journals (Sweden)

    Xu Ning

    2012-08-01

    Full Text Available Abstract Background Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments. Results A Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility. Conclusions Using six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.

  6. A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2016-01-01

    Highlights: • A bio-based ‘green’ process for catalytic conversion of corn stover to adipic acid (ADA) is studied. • New separations for effective recovery of biomass derivatives are developed. • Separations are integrated with cellulose/hemicellulose-to-ADA conversions. • Proposed process can compete economically with the current petro-based process. - Abstract: A bio-based ‘green’ process is presented for the catalytic conversion of corn stover to adipic acid (ADA) based on experimental studies. ADA is used for biobased nylon 6.6 manufacturing from lignocellulosics as carbon and energy source. In this process, the cellulose and hemicellulose fractions are catalytically converted to γ-valerolactone (GVL), using cellulose and hemicellulose-derived GVL as a solvent, and subsequently upgrading to ADA. Experimental studies showed maximal carbon yields (biomass-to-GVL: 41% and GVL-to-ADA: 46%) at low concentrations (below 16 wt% solids) using large volumes of GVL solvents while requiring efficient interstage separations and product recovery. This work presents an integrated process, including catalytic conversion and separation subsystems for GVL and ADA production and recovery, and designs a heat exchanger network to satisfy the total energy requirements of the integrated process via combustion of biomass residues (lignin and humins). Finally, an economic analysis shows that 2000 metric tonnes (Mt) per day of corn stover feedstock processing results in a minimum selling price of $633 per Mt if using the best possible parameters.

  7. Population level analysis of evolved mutations underlying improvements in plant hemicellulose and cellulose fermentation by Clostridium phytofermentans.

    Directory of Open Access Journals (Sweden)

    Supratim Mukherjee

    Full Text Available The complexity of plant cell walls creates many challenges for microbial decomposition. Clostridium phytofermentans, an anaerobic bacterium isolated from forest soil, directly breaks down and utilizes many plant cell wall carbohydrates. The objective of this research is to understand constraints on rates of plant decomposition by Clostridium phytofermentans and identify molecular mechanisms that may overcome these limitations.Experimental evolution via repeated serial transfers during exponential growth was used to select for C. phytofermentans genotypes that grow more rapidly on cellobiose, cellulose and xylan. To identify the underlying mutations an average of 13,600,000 paired-end reads were generated per population resulting in ∼300 fold coverage of each site in the genome. Mutations with allele frequencies of 5% or greater could be identified with statistical confidence. Many mutations are in carbohydrate-related genes including the promoter regions of glycoside hydrolases and amino acid substitutions in ABC transport proteins involved in carbohydrate uptake, signal transduction sensors that detect specific carbohydrates, proteins that affect the export of extracellular enzymes, and regulators of unknown specificity. Structural modeling of the ABC transporter complex proteins suggests that mutations in these genes may alter the recognition of carbohydrates by substrate-binding proteins and communication between the intercellular face of the transmembrane and the ATPase binding proteins.Experimental evolution was effective in identifying molecular constraints on the rate of hemicellulose and cellulose fermentation and selected for putative gain of function mutations that do not typically appear in traditional molecular genetic screens. The results reveal new strategies for evolving and engineering microorganisms for faster growth on plant carbohydrates.

  8. Characterization of Animal By-Product Hydrolysates to Be Used as Healthy and Bioactive Ingredients in Food

    DEFF Research Database (Denmark)

    Damgaard, Trine Desiree

    The world meat production and consumption has increased rapidly over the last couple of decades, due to population and income growth. In contrast to the meat, the consumption of animal by-products has been declining, leaving large amounts of by-products underutilized. As many by-products are highly...... nutritious as well as being good sources of protein, they represent interesting substrates for the generation of bioactive hydrolysates and peptides. Different porcine and bovine by-products were hydrolysed with a mixture consisting of Alcalase®and Protamex, and tested in relation to antioxidant capacity...... and their “meat factor” effect, i.e. their ability to enhance in vitro iron availability. Hydrolysates of different animal by-products displayed antioxidant capacities as observed by several assays intended to test different antioxidant mechanisms. The radical scavenging capacity of the hydrolysates was found...

  9. Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    Sugarcane bagasse is a potential feedstock for cellulosic ethanol production, rich in both glucan and xylan. This stresses the importance of utilizing both C6 and C5 sugars for conversion into ethanol in order to improve the process economics. During processing of the hydrolysate degradation...... products such as acetate, 5-hydroxymethylfurfural (HMF) and furfural are formed, which are known to inhibit microbial growth at higher concentrations. In the current study, conversion of both glucose and xylose sugars into ethanol in wet exploded bagasse hydrolysates was investigated without detoxification...... using Scheffersomyces (Pichia) stipitis CBS6054, a native xylose utilizing yeast strain. The sugar utilization ratio and ethanol yield (Yp/s) ranged from 88-100% and 0.33-0.41 ± 0.02 g/g, respectively, in all the hydrolysates tested. Hydrolysate after wet explosion at 185°C and 6 bar O2, composed...

  10. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  11. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    Science.gov (United States)

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    Science.gov (United States)

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    Summary The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  13. Chitosan mediated enhancement of hydrolysable tannin in Phyllanthus debilis Klein ex Willd via plant cell suspension culture.

    Science.gov (United States)

    V, Malayaman; N, Sisubalan; R P, Senthilkumar; S, Sheik Mohamed; R, Ranjithkumar; M, Ghouse Basha

    2017-11-01

    Phyllanthus debilis Klein ex Willd. is wild medicinal plant used in the traditional system of medicine. This plant has been actively used for hepatoprotection and to cure many diseases including jaundice and so on; which leads to complete extinction of this particular species. Therefore, the chitosan mediated cost effective cell suspension method has been developed for the production of hydrolysable tannin. The hydrolysable tannins are the main therapeutically active constituents with antioxidant, anticancer, and antimicrobial properties. An in vitro cell suspension culture was optimized by adding chitosan for production of hydrolysable tannin. According to the growth kinetics, a maximum biomass of 4.46±0.06g fresh cell weight and 1.33±0.04g dry cell weight were obtained from the optimal suspension medium consisted of MS medium+0.5mgL -1 BAP+1.5mgL -1 NAA. Chitosan was treated at the stationary phase which leads to the highest accumulation of hydrolysable tannin compared to the untreated control. Hydrolysable tannin was observed and compared using HPLC at the Rt of 4.91 in both chitosan treated and untreated cells. This is the first ever report where use of chitosan has been done to enhance the production of the hydrolysable tannin in P. debilis using cell suspension culture technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Studies on the conversion of cellulose hydrolysate into citric acid by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Manonmani, H.K.; Sreekantiah, K.R.

    1987-06-01

    The production of citric acid by Aspergillus niger (16) was studied using enzymatic hydrolysate of alkali-treated bagasse by solid state fermentation. Saccharification and fermentations were carried out sequentially as well as simultaneously. Conditions for optimum citric acid production using cellulose hydrolysate medium were: sugar concentration: 7% (w/w); NaNO/sub 3/; 400 mg/N/sub 2//l medium; KH/sub 2/PO/sub 4/:/0.1%/l medium; ethanol: 3% (v/w); 1 ml of 1 x 10 squared m fluoroacetate and coconut oil: 3% (v/w). Simultaneous saccharification and fermentation was not found to be suitable for citric acid production. 44% conversion of total reducing sugars to citric acid was obtained in 72 hours fermentation by sequential process with the above mentioned parameters. (Refs. 15).

  15. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...... in rejection between FFA and glycerides and the highest flux (27 kg h−1 m−2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended largely on the property matching between membrane and solvent, as observed (40 kg h−1 m−2) flux was achieved...... with methanol but no flux detected with hexane for PLAC. The polyvinyl alcohol (PVA, NTR-729 HF) and Polyamide (PA, NTR-759HR) membranes gave the second and third highest flux (10.1 and 5.7 kg h−1 m−2, respectively), where solute rejections for NTR-759HR were 95.9% for triacylglycerols (TG), 83...

  16. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico

    2011-01-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial...... the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m3 MEC·day and was obtained at pH 7–8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during...

  17. Replacement of mechanically deboned chicken meat with its protein hydrolysate in mortadella-type sausages

    Directory of Open Access Journals (Sweden)

    Carlos Pasqualin Cavalheiro

    2014-09-01

    Full Text Available Mortadella-type sausage manufactured using mechanically deboned chicken meat were reformulated replacing MDCM with increasing amounts of MDCM protein hydrolysates (10%, 20%, and 30%, and their physicochemical, microbiological, and sensorial characteristics were evaluated for 60 days of storage at 4 °C. The higher substitutions resulted in sausages more susceptible to lipid oxidation with higher TBARS values during storage; however, these values were lower than the organoleptic perception threshold. The sausages were darker and less red, with lower lightness (L* and redness (a* values than those of the control treatment. They had soft texture, which was evidenced by both the instrumental and sensory analysis. Therefore, the formulation containing 10% of MDCM protein hydrolysates proved to be the most suitable for mortadella-type sausage elaboration.

  18. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    Science.gov (United States)

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P Maillard reaction (P reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  19. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  20. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners

    DEFF Research Database (Denmark)

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen

    2015-01-01

    This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week...... a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers....

  1. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.

    Science.gov (United States)

    Zhou, Zhongxin; Yin, Zheng; Hu, Xiaoqing

    2014-01-01

    Monascus pigment has traditionally been produced by the fermentation of Monascus using rice powder or glucose as a culture substrate. Submerged fermentation can produce stable Monascus pigment yield and control the accumulation of the by-product, citrinin, which can then be more easily removed. To reduce the cost of Monascus submerged fermentation, the feasibility of corncob hydrolysate as an alternative substrate was investigated. Results showed that, when compared with a conventional glucose medium, the corncob hydrolysate medium produced an equivalent pigment yield without stimulating citrinin accumulation. Furthermore, the corncob hydrolysate medium and cultivation conditions were optimized to enhance pigment production and decrease citrinin synthesis. When Monascus sp. was cultured under dark conditions in the presence of caprylic acid, pigment production was increased to 25.8 ± 0.8 UA500 /mL, which was higher than that achieved in a glucose medium (24.0 ± 0.9 UA500 /mL), and those obtained in previously reported Monascus submerged fermentations using the same yield unit; on the other hand, citrinin accumulation was decreased to 26.2 ± 1.9 µg/L, which was significantly lower than that generated in the glucose control (44.3 ± 2.2 µg/L) and in those previously reported fermentations. Thus, corncob hydrolysate was proved to be an efficient alternative substrate for Monascus pigment production through submerged fermentation, which showed significant advantages over a conventional glucose substrate. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  2. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    International Nuclear Information System (INIS)

    Banerjee, Pradipta; Madhu, S.; Chandra Babu, N.K.; Shanthi, C.

    2015-01-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl 2 , 5 mM of Na 2 HPO 4 , 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO − and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals

  3. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    OpenAIRE

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein d...

  4. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Saibo Huang

    2015-12-01

    Full Text Available The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE, longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone.

  5. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    Science.gov (United States)

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  6. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio) by Enzymatic Hydrolysis

    OpenAIRE

    Saputra, Dede; Nurhayati, Tati

    2016-01-01

    Fish Protein Hydrolysates (FPH) is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified ...

  7. Sensory and aromatic characteristics of tongue sole by-products hydrolysates (Cynoglossus senegalensis)

    OpenAIRE

    Sylla, K. S. B.; Berge, Jean-pascal; Prost, Carole; Musabyemariya, B.; Seydi, Mg

    2009-01-01

    Tongue sole by-products coming from fish-filleting plant were hydrolyzed by Protamex® protease. To identify the future application of hydrolysates, a sensory analysis was carried out.The sensory profile was performed with a jury of 14 specialized judges.11 profiles were found by this panel of tasting. In addition, the aromatic characterization revealed that 57 molecules are responsible for these odours described in sensory analysis.The description of these aromatic compounds opens potentia...

  8. The uncertainty evaluation of measurement for uranium in UF_6 hydrolysate by potentiometric titration

    International Nuclear Information System (INIS)

    Jiang Haiying; Cheng Ruoyu; Meng Xiujun

    2014-01-01

    Based on the building of mathematical model, this paper analyzed the origin of component of indeterminacy of which the measurement result for uranium in uranium hexafluoride hydrolysate by potentiometric titration, also each uncertainty was calculated and the expanded uncertainty was given. By evaluation the result of the uranium concentration is that: (158.88 + 1.22) mgU/mL, K = 2, P = 95%. (authors)

  9. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates

    OpenAIRE

    Homa Torabizadeh; Asieh Mahmoudi

    2018-01-01

    Inulinase can produce a high amount of fructose syrup from inulin in a one-step enzymatic process. Inulinase from Aspergillus niger was immobilized covalently on Fe3O4 magnetic nanoparticles functionalized with wheat gluten hydrolysates (WGHs). Wheat gluten was enzymatically hydrolyzed by two endopeptidases Alcalase and Neutrase and related nanoparticles were prepared by desolvation method. Magnetite nanoparticles were coated with WGHs nanoparticles and then inulinase was immobilized onto it ...

  10. Effects of orally administered fumonisin B₁ (FB₁), partially hydrolysed FB₁, hydrolysed FB₁ and N-(1-deoxy-D-fructos-1-yl) FB₁ on the sphingolipid metabolism in rats.

    Science.gov (United States)

    Hahn, Irene; Nagl, Veronika; Schwartz-Zimmermann, Heidi Elisabeth; Varga, Elisabeth; Schwarz, Christiane; Slavik, Veronika; Reisinger, Nicole; Malachová, Alexandra; Cirlini, Martina; Generotti, Silvia; Dall'Asta, Chiara; Krska, Rudolf; Moll, Wulf-Dieter; Berthiller, Franz

    2015-02-01

    Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in maize-based food and feed. Alkaline processing like nixtamalisation of maize generates partially and fully hydrolysed FB1 (pHFB1 and HFB1) and thermal treatment in the presence of reducing sugars leads to formation of N-(1-deoxy-D-fructos-1-yl) fumonisin B1 (NDF). The toxicity of these metabolites, in particular their effect on the sphingolipid metabolism, is either unknown or discussed controversially. We produced high purity FB1, pHFB1a+b, HFB1 and NDF and fed them to male Sprague Dawley rats for three weeks. Once a week, urine and faeces samples were collected over 24 h and analysed for fumonisin metabolites as well as for the sphinganine (Sa) to sphingosine (So) ratio by validated LC-MS/MS based methods. While the latter was significantly increased in the FB1 positive control group, the Sa/So ratios of the partially and fully hydrolysed fumonisins were indifferent from the negative control group. Although NDF was partly cleaved during digestion, the liberated amounts of FB1 did not raise the Sa/So ratio. These results show that the investigated alkaline and thermal processing products of FB1 were, at the tested concentrations, non-toxic for rats, and suggest that according food processing can reduce fumonisin toxicity for humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates.

    Science.gov (United States)

    Mudgil, Priti; Kamal, Hina; Yuen, Gan Chee; Maqsood, Sajid

    2018-09-01

    In-vitro inhibitory properties of peptides released from camel milk proteins against dipeptidyl peptidase-IV (DPP-IV), porcine pancreatic α-amylase (PPA), and porcine pancreatic lipase (PPL) were studied. Results revealed that upon hydrolysis by different enzymes, camel milk proteins displayed dramatic increase in inhibition of DPP-IV and PPL, but slight improvement in PPA inhibition was noticed. Peptide sequencing revealed a total of 20 and 3 peptides for A9 and B9 hydrolysates respectively, obtained the score of 0.8 or more on peptide ranker and were categorized as potential DPP-IV inhibitory peptides. KDLWDDFKGL in A9 and MPSKPPLL in B9 were identified as most potent PPA inhibitory peptide. For PPL inhibition only 7 and 2 peptides qualified as PPL inhibitory peptides from hydrolysates A9 and B9, respectively. The present study report for the first time PPA and PPL inhibitory and only second for DPP-IV inhibitory potential of protein hydrolysates from camel milk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. PURIFICATION OF ANGIOTENSIN CONVERTING ENZYME INHIBITORY PEPTIDE DERIVED FROM KACANG GOAT MEAT PROTEIN HYDROLYSATE

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The objective of this study was to identify the Angiotensin Converting Enzyme (ACE inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC using a Cosmosil column 5PE-SM, 4.6 x 250 mm. The sequence of amino acid of ACEinhibitory peptide was identified by amino acid sequencer. The results showed that amino acidssequence of ACE inhibitory peptide derived from protein hydrolysate of Kacang goat meat was leu-thrglu-ala-pro-leu-asn-pro-lys-ala-arg- asn-glu-lys. It had a molecular weight (MW of 1581 and occurredat the position of 20th to 33rd residues of b-actin of goat meat protein (Capra hircus. The ACE inhibitoryactivity (IC50 of the peptide was 190 mg/mL or 120 mM.

  14. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate.

    Science.gov (United States)

    Kong, Yan; Yang, Xiao; Ding, Qi; Zhang, Yu-Yu; Sun, Bao-Guo; Chen, Hai-Tao; Sun, Ying

    2017-12-01

    Umami taste is an important part to the taste of chicken. To isolate and identify non-volatile umami compounds, fractions from chicken soup and hydrolysate were prepared and analyzed. Amino acids were analyzed by amino acid analyzer. Organic acids and nucleotides were determined by ultra-performance liquid chromatography. Separation procedures utilizing ultrafiltration, Sephadex G-15 and reversed-phase high-performance liquid chromatography were used to isolate umami taste peptides. Combined with sensory evaluation and LC-Q-TOF-MS, the amino acid sequences of 12 oligopeptides were determined. The amount of taste compounds was higher in chicken enzymatic hydrolysate than that of chicken soup. Eight oligopeptides from chicken enzymatic hydrolysate were identified, including Ala-Asp, Ala-Met, His-Ser, Val-Glu, Ala-Glu, Asp-Ala-Gly, Glu-Asp and Ala-Glu-Ala. Four oligopeptides from chicken soup were identified, including Val-Thr, Ala-His, Ala-Phe and Thr-Glu. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of Wheat Gluten Hydrolysate and Its Ultrafiltration Fractions on Dough Properties and Bread Quality

    Directory of Open Access Journals (Sweden)

    Mouming Zhao

    2007-01-01

    Full Text Available Two fractions (50-K and permeate from a proteolytic hydrolysate (degree of hydrolysis, DH=3.8 % of wheat gluten were separated using ultrafiltration (UF membrane with molecular mass cut-off of 50 kDa. The effects of the wheat gluten hydrolysate (WGH and its UF fractions on the mixing behaviour and viscoelastic properties of wheat dough were presented. The WGH and its UF fractions modified the mixing properties of dough. The addition of these fractions improved the viscoelastic characteristics of wheat dough. A significant (p<0.05 effect of 50-K fraction on these characteristics of wheat dough was observed. After adding these fractions, the bread was considered acceptable by the sensory panel. Also, 50-K fraction resulted in significant (p<0.05 increase in the crumb firmness, while the bread made with wheat flour with WGH and permeate (P fraction showed softer crumbs compared to that of wheat flour. Moreover, these fractions had anti-staling properties for bread during storage. Hence, the wheat gluten hydrolysate and its UF fractions are the products with promising potential in the baking products.

  16. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Evaluation of Hypotensive and Antihypertensive Effects of Velvet Bean (Mucuna pruriens L.) Hydrolysates.

    Science.gov (United States)

    Chel-Guerrero, Luis; Galicia-Martínez, Saulo; Acevedo-Fernández, Juan José; Santaolalla-Tapia, Jesus; Betancur-Ancona, David

    2017-01-01

    Hypertension could cause significant worldwide health problems that affect 15-20% of all adults; according to National Health and Nutrition Examination Survey, about 29% of the adult population in the United States are hypertensive. Recent research has shown that peptides derived from the hydrolysis of food proteins can decrease blood pressure. This study was carried out to evaluate the hypotensive and antihypertensive potential of Mucuna pruriens protein hydrolysates in in vitro and in vivo models. M. pruriens protein concentrate was prepared by wet fractionation and enzymatically hydrolyzed using Alcalase ® , Flavourzyme ® , and the sequential system Alcalase-Flavourzyme at different times (5-120 min). The biological potential was measured in vitro based on the IC 50 value as well as in vivo effect, measuring the systolic (SBP) and diastolic (DBP) blood pressure in normotensive and antihypertensive Wistar-Kyoto rats by the tail-cuff method. Hydrolysis of M. pruriens protein concentrates with commercial enzymes generated extensive hydrolysates with angiotensin-converting enzyme (ACE-I) inhibitory activity (IC 50 : 0.589-0.993 mg/mL) and hypotensive (SBP: 0.6-47.43%, DBP: 1.94-43.47%) and antihypertensive (SBP: 8.84-27.29% DBP: 16.1-29.37%) effect. These results indicate that Mucuna pruriens protein hydrolysate (MPPH) could be used as a functional ingredient to prevent blood pressure increase.

  18. Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-06-01

    This study extends the findings of prior studies proposing and validating nutrient recycling for the heterotrophic microalgae, Thraustochytrium sp. (T18), grown in optimized fed-batch conditions. Sequential nutrient recycling of enzymatically-derived hydrolysate in fermentors succeeded at growing the tested thraustochytrid strain, with little evidence of inhibition or detrimental effects upon culture health. The average maximum biomass obtained in the recycled hydrolysate was 63.68±1.46gL(-1) in 90h the first recycle followed by 65.27±1.15gL(-1) in 90h in the subsequent recycle of the same material. These compared to 58.59gL(-1) and 64.92gL(-1) observed in fresh media in the same time. Lipid production was slightly impaired, however, with a maximum total fatty acid content of 62.2±0.30% in the recycled hydrolysate compared to 69.4% in fresh control media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enteral Tube Feeding Nutritional Protein Hydrolysate Production Under Different Factors By Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Nguyen ThiQuynhHoa

    2015-01-01

    Full Text Available Abstract Hydrolysis of proteins involves the cleavage of peptide bonds to give peptides of varying sizes and amino acid composition. There are a number of types of hydrolysis enzymatic acid or alkali hydrolysis. Chemical hydrolysis is difficult to control and reduces the nutritional quality of products destroying L-form amino acids and producing toxic substances such as lysino-alanine. Enzymatic hydrolysis works without destructing amino acids and by avoiding the extreme temperatures and pH levels required for chemical hydrolysis the nutritional properties of the protein hydrolysates remain largely unaffected. In this research we investigate the fat removal and protein hydrolysis from pork meat to produce the enteral tube feeding nutritional protein hydrolysate for patient. Our results are as follows meat moisture 75.1 protein 22.6 lipid 1.71 ash 0.5 vitamin B1 1.384mg100g n hexantreatment at 80oCin 45 minutes and drying 30 minutes in 90oC.Viscosity of the hydrolysate is very low 2.240 0.092 cPand high degree of hydrolysis 31.390 0.138 . The final protein powder has balance nutritional components and acid amines low microorganisms which are safety for human consumption.

  20. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    Science.gov (United States)

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Hydrolysates of Fish Skin Collagen: An Opportunity for Valorizing Fish Industry Byproducts.

    Science.gov (United States)

    Blanco, María; Vázquez, José Antonio; Pérez-Martín, Ricardo I; Sotelo, Carmen G

    2017-05-05

    During fish processing operations, such as skinning and filleting, the removal of collagen-containing materials can account for up to 30% of the total fish byproducts. Collagen is the main structural protein in skin, representing up to 70% of dry weight depending on the species, age and season. It has a wide range of applications including cosmetic, pharmaceutical, food industry, and medical. In the present work, collagen was obtained by pepsin extraction from the skin of two species of teleost and two species of chondrychtyes with yields varying between 14.16% and 61.17%. The storage conditions of the skins appear to influence these collagen extractions yields. Pepsin soluble collagen (PSC) was enzymatically hydrolyzed and the resultant hydrolysates were ultrafiltrated and characterized. Electrophoretic patterns showed the typical composition of type I collagen, with denaturation temperatures ranged between 23 °C and 33 °C. In terms of antioxidant capacity, results revealed significant intraspecific differences between hydrolysates, retentate, and permeate fractions when using β -Carotene and DPPH methods and also showed interspecies differences between those fractions when using DPPH and ABTS methods. Under controlled conditions, PSC hydrolysates from Prionace glauca , Scyliorhinus canicula , Xiphias gladius, and Thunnus albacares provide a valuable source of peptides with antioxidant capacities constituting a feasible way to efficiently upgrade fish skin biomass.

  2. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability.

    Science.gov (United States)

    Ketnawa, Sunantha; Benjakul, Soottawat; Martínez-Alvarez, Oscar; Rawdkuen, Saroat

    2017-01-15

    The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Satoshi; Fukuda, Hideki [Kobe Univ. (Japan). Div. of Molecular Science; Mizuike, Atsuko; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2006-10-15

    The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying ss-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation. (orig.)

  4. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation.

    Science.gov (United States)

    Neelamegam, Annamalai; Al-Battashi, Huda; Al-Bahry, Saif; Nallusamy, Sivakumar

    2018-01-10

    Waste paper, a major fraction of municipal solid waste, has a potential to serve as renewable feedstock for the biorefineries of fuels, chemicals and materials due to rich in cellulose and abundant at low cost. This study evaluates the possibility of waste office paper (WOP) to serve as a potential feedstock for the biorefinery production of poly (3-hydroxybutyrate). In this study, the WOP was pretreated, enzymatically saccharified and the hydrolysate was used for PHB production. The hydrolysate mainly consists of glucose (22.70g/L) and xylose (1.78g/L) and the corresponding sugar yield was about 816mg/g. Ammonium sulphate and C/N ratio 20 were identified as most favorable for high yield of PHB. The batch fermentation of Cupriavidus necator using the pretreated WOP hydrolysate resulted in cell biomass, PHB production and PHB content of 7.74g/L, 4.45g/L and 57.52%, respectively. The volumetric productivity and yield achieved were 0.061g/L/h and 0.210g/g sugar, respectively. The results suggested that WOP could be a potential alternative feedstock for the biorefinery production of bioplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF

    Directory of Open Access Journals (Sweden)

    Röder Anja

    2008-06-01

    Full Text Available Abstract Background Pichia stipitis xylose reductase (Ps-XR has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae strain USM21. Results In this study, we demonstrate that strain TMB3400 not only converts xylose, but also displays higher tolerance to lignocellulosic hydrolysate during anaerobic batch fermentation as well as 3 times higher in vitro HMF and furfural reduction activity than the control strain USM21. Using laboratory strains producing various levels of Ps-XR, we confirm that Ps-XR is able to reduce HMF both in vitro and in vivo. Ps-XR overexpression increases the in vivo HMF conversion rate by approximately 20%, thereby improving yeast tolerance towards HMF. Further purification of Ps-XR shows that HMF is a substrate inhibitor of the enzyme. Conclusion We demonstrate for the first time that xylose reductase is also able to reduce the furaldehyde compounds that are present in undetoxified lignocellulosic hydrolysates. Possible implications of this newly characterized activity of Ps-XR on lignocellulosic hydrolysate fermentation are discussed.

  6. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction.

    Science.gov (United States)

    Brandenburg, Jule; Poppele, Ieva; Blomqvist, Johanna; Puke, Maris; Pickova, Jana; Sandgren, Mats; Rapoport, Alexander; Vedernikovs, Nikolajs; Passoth, Volkmar

    2018-05-26

    This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerevisiae, Lipomyces starkeyi, and Rhodotorula babjevae. In the fermentations, average final ethanol concentrations of 23.85 g/l were obtained, corresponding to a yield of 0.53 g ethanol per g released glucose. L. starkeyi generated lipids with a rate of 0.08 g/h and a yield of 0.09 g per g consumed glucose. R. babjevae produced lipids with a rate of 0.18 g/h and a yield of 0.17 per g consumed glucose. In both yeasts, desaturation increased during cultivation. Remarkably, the R. babjevae strain used in this study produced considerable amounts of heptadecenoic, α,- and γ-linolenic acid.

  7. Impact of thermal pretreatment and MSW origin on composition and hydrolysability in a sugar platform biorefinery

    Science.gov (United States)

    Vaurs, L. P.; Heaven, S.; Banks, C. J.

    2018-03-01

    Municipal solid waste (MSW) is a widely available large volume source of lignocellulosic material containing a waste paper/cardboard mixture which can be converted into fermentable sugars via cellulolytic enzyme hydrolysis in a sugar platform biorefinery. Thermal pretreatments are generally applied to MSW to facilitate the extraction of the lignocellulosic material from recyclable materials (plastics, metals etc.) and improve the paper pulp conversion to sugars. Applying high temperature might enhance food waste solubilisation but may collapse cellulose fibre decreasing its hydrolysability. Low temperature pre-treatment will reduce the energy demand but might result in highly contaminated pulp. Preliminary results showed that the enzymatic hydrolysis performances were dependent on the MSW origins. Using 8 different samples, the impact of thermal pretreatment and MSW origin on pulp composition and hydrolysability was assessed in this work. Low pre-treatment temperature produced pulp which contained less lignocellulosic material but which hydrolysed to a higher degree than MSW treated at high temperatures. High temperature pre-treatment could have exposed more of the inhibiting lignin to cellulase. This information would have a significant economic impact on a commercial plant as expensive autoclave could be advantageously replaced by a cheaper process. Glucan conversions were also found to vary depending on the region, the recycling rate possibly because of the lower recycling rate resulting in the use of less paper additive in the material or the difference in paper production technology (chemical VS mechanical pulping). This could also be explained by the differences in paper composition.

  8. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-08-01

    Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L(-1) of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L(-1) and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.

  9. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation

    Directory of Open Access Journals (Sweden)

    Jiayu Xu

    2016-10-01

    Full Text Available Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that ‘Ruanrou Shanlihong 3 Hao’ fruits became softer during ripening, whereas ‘Qiu JinXing’ fruits remained hard. At late developmental stages, the firmness of ‘Ruanrou Shanlihong 3 Hao’ fruits rapidly declined, and that of ‘Qiu JinXing’ fruits remained essentially unchanged. According to transmission electron microscopy (TEM, the middle lamella of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruit flesh was largely degraded as the fruits matured. Microfilaments in ‘Qiu JinXing’ flesh were arranged close together and were deep in color, whereas those in ‘Ruanrou Shanlihong 3 Hao’ fruit flesh were arranged loosely, partially degraded and light in color. RNA-Seq analysis yielded approximately 46.72 Gb of clean data and 72,837 unigenes. Galactose metabolism and pentose and glucuronate interconversions are involved in cell wall metabolism, play an important role in hawthorn texture. We identified 85 unigenes related to the cell wall between hard- and soft-fleshed hawthorn fruits. Based on data analysis and real-time PCR, we suggest that β-GAL and PE4 have important functions in early fruit softening. The genes Ffase, Gns, α-GAL, PE63, XTH and CWP, which are involved in cell wall degradation, are responsible for the different textures of hawthorn fruits. Thus, we hypothesize that the different textures of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruits at maturity mainly result from cellulose/hemicelluloses degradation rather than from lamella degradation. Overall, we propose that different types of hydrolytic enzymes in cells interact to degrade the cell wall, resulting in ultramicroscopic Structure changes in the cell wall and, consequently, fruit softening. These results provide

  10. Controllable production of liquid and solid biofuels by doping-free, microwave-assisted, pressurised pyrolysis of hemicellulose

    International Nuclear Information System (INIS)

    Li, T.; Remón, J.; Shuttleworth, P.S.; Jiang, Z.; Fan, J.; Clark, J.H.; Budarin, V.L.

    2017-01-01

    Highlights: • Microwave pyrolysis of xylan in the absence of any external microwave absorber. • High energy-efficient and controllable production of biochar and bio-oil from xylan. • Water in liquid phase is needed for fast microwave pyrolysis. • Production of bio-oil and bio-char with HHVs 52% and 19% greater than that of xylan. - Abstract: Batch, pressurised microwave-assisted pyrolysis of hemicellulose in the absence of any external microwave absorber was found to be a promising route for the production of bio-based chemicals and biofuels. The experiments were conducted in a 10 mL batch reactor using a fixed power of 200 W employing different initial masses of xylan (0.1–0.7 g) for a maximum time, temperature and pressure of 10 min, 250 °C and 200 psi, respectively. The gas, bio-oil and solid (char) yields varied by 16–40%, 2–21% and 40–82%, respectively. Char production is preferential using a low amount of xylan (<0.25 g), while bio-oil production is favoured using a high amount of xylan (0.25–0.7 g). The effect of the sample mass is accounted for by the different physical state of the volatiles released during pyrolysis depending on the pressure attained during the experiment. This permits the process to be easily customised for the selective production of liquid (bio-oil) or solid (bio-char). Regarding the bio-oil, it is composed of a mixture of platform chemicals such as aldehydes, alkenes, phenols, polyaromatic hydrocarbons (PAHC), cyclic ketones and furans, with the composition varying depending on the initial mass of xylan. The char had a higher proportion of C together with a lower proportion of O than the original feedstock. Energy efficiencies of 100 and 26% were achieved for char and bio-oil production, respectively; thus leading to an increase in the HHV of the products (with respect to the original feedstock) of 52% for char and 19% for bio-oil.

  11. The Cooperative Effect of Genistein and Protein Hydrolysates on the Proliferation and Survival of Osteoblastic Cells (hFOB 1.19

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2016-11-01

    Full Text Available Chum salmon skin gelatin, de-isoflavoned soy protein, and casein were hydrolyzed at two degrees of hydrolysis. Genistein, the prepared hydrolysates, and genistein-hydrolysate combinations were assessed for their proliferative and anti-apoptotic effects on human osteoblasts (hFOB 1.19 to clarify potential cooperative effects between genistein and these hydrolysates in these two activities. Genistein at 2.5 μg/L demonstrated the highest proliferative activity, while the higher dose of genistein inhibited cell growth. All hydrolysates promoted osteoblast proliferation by increasing cell viability to 102.9%–131.1%. Regarding etoposide- or NaF-induced osteoblast apoptosis, these hydrolysates at 0.05 g/L showed both preventive and therapeutic effects against apoptosis. In the mode of apoptotic prevention, the hydrolysates decreased apoptotic cells from 32.9% to 15.2%–23.7% (etoposide treatment or from 23.6% to 14.3%–19.6% (NaF treatment. In the mode of apoptotic rescue, the hydrolysates lessened the extent of apoptotic cells from 15.9% to 13.0%–15.3% (etoposide treatment or from 13.3% to 10.9%–12.7% (NaF treatment. Gelatin hydrolysates showed the highest activities among all hydrolysates in all cases. All investigated combinations (especially the genistein-gelatin hydrolysate combination had stronger proliferation, apoptotic prevention, and rescue than genistein itself or their counterpart hydrolysates alone, suggesting that genistein cooperated with these hydrolysates, rendering greater activities in osteoblast proliferation and anti-apoptosis.

  12. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties.

    Science.gov (United States)

    Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick

    2010-08-30

    Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation

  13. Low acid hydrothermal fractionation of Giant Miscanthus for production of xylose-rich hydrolysate and furfural.

    Science.gov (United States)

    Kim, Tae Hyun; Ryu, Hyun Jin; Oh, Kyeong Keun

    2016-10-01

    Low acid hydrothermal (LAH) fractionation was developed for the effective recovery of hemicellulosic sugar (mainly xylose) from Miscanthus sacchariflorus Goedae-Uksae 1 (M. GU-1). The xylose yield was maximized at 74.75% when the M. GU-1 was fractionated at 180°C and 0.3wt.% of sulfuric acid for 10min. At this condition, the hemicellulose (mainly xylan) degradation was 86.41%. The difference between xylan degradation and xylose recovery yield, i.e., xylan loss, was 11.66%, as indicated by the formation of decomposed products. The furfural, the value added biochemical product, was also obtained by 0.42g/L at this condition, which was 53.82% of furfural production yield based on the xylan loss. After then, the furfural production continued to increase to a maximum concentration of 1.87g/L, at which point the xylan loss corresponded to 25.87%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Production of Transglutaminase by Streptoverticillium ladakanum NRRL-3191 Grown on Media Made from Hydrolysates of Sorghum Straw

    Directory of Open Access Journals (Sweden)

    Simón J. Téllez-Luis

    2004-01-01

    Full Text Available The aim of this work was to elucidate the suitability of the biotechnological production of transglutaminase by Streptoverticillium ladakanum NRRL-3191 grown on media made from hydrolysates of sorghum straw. Transglutaminase activity was determined in fermentations on sorghum straw hydrolysates and commercial xylose with initial xylose 10, 20 or 30 g/L. Using media containing commercial xylose 20 g/L, transglutaminase activity up to 0.282 U/mL was obtained in 96 h. Using neutralized, charcoal-treated hydrolysates of sorghum straw with xylose 30 g/L sterilized in autoclave at 121 °C, up to 0.155 U/mL was obtained in 96 h. However, when the sterilization was performed by filtration, using the same hydrolysates with xylose 20 g/L, up to 0.348 U/mL was obtained in 72 h. It was demonstrated that hydrolysates of sorghum straw are suitable media for transglutaminase production by Streptoverticillium ladakanum.

  15. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: stepwise multiple linear regression analysis.

    Science.gov (United States)

    Zhang, Yanyan; Ma, Haile; Wang, Bei; Qu, Wenjuan; Wali, Asif; Zhou, Cunshan

    2016-08-01

    Ultrasound pretreatment of wheat gluten (WG) before enzymolysis can improve the angiotensin converting enzyme (ACE) inhibitory activity of the hydrolysates by alerting the structure of substrate proteins. Establishment of a relationship between the structure of WG and ACE inhibitory activity of the hydrolysates to judge the end point of the ultrasonic pretreatment is vital. The results of stepwise multiple linear regression (MLR) showed that the contents of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil were significantly correlated to ACE Inhibitory activity of the hydrolysate, with the standard partial regression coefficients were 3.729, -0.676, -0.252, 0.022 and 0.156, respectively. The R(2) of this model was 0.970. External validation showed that the stepwise MLR model could well predict the ACE inhibitory activity of hydrolysate based on the content of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil of WG before hydrolysis. A stepwise multiple linear regression model describing the quantitative relationships between the structure of WG and the ACE Inhibitory activity of the hydrolysates was established. This model can be used to predict the endpoint of the ultrasonic pretreatment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    Science.gov (United States)

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC 50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  17. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy.

    Science.gov (United States)

    Liu, Yating; Wang, Yanping; Liu, Hongjuan; Zhang, Jian'an

    2015-03-01

    In recent years, energy crisis and environmental issues such as greenhouse effect, global warming, etc. has roused peoples' concern. Biodiesel, as renewable energy, has attracted much attention to deal with such problems. This work studied the lipid production by Rhodotorula glutinis with undetoxified corncob hydrolysate. The results indicated that R. glutinis had high tolerance to the inhibitors in corncob hydrolysate and it could utilize undetoxified corncob hydrolysate directly for lipid production. The cell grew well with undetoxified hydrolysate in the batch culture of 5L fermentor with the optimized C/N ratio of 75, lipid titer and lipid content reached 5.5g/L and 36.4%, respectively. High cell density culture with two-stage nitrogen feeding strategy was studied to enhance the lipid production, biomass, lipid concentration and lipid content of 70.8, 33.5g/L and 47.2% were obtained. The results indicated the potential application for lipid production by R. glutinis with corncob hydrolysate directly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Production of butanol (a biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Dien, Bruce; Iten, Loren; Bowman, Michael J.; Cotta, Michael A. [United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research, 1815 N. University Street, Peoria, IL 61604 (United States); Hughes, Stephen; Liu, Siqing [USDA-ARS-NCAUR, Renewable Product Technology, 1815 N. University Street, Peoria, IL 61604 (United States); Sarath, Gautam [USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska, 314 Biochemistry Hall, East Campus, Lincoln, NE 68583 (United States)

    2010-04-15

    Acetone butanol ethanol (ABE) was produced from hydrolysed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 g L{sup -1} total ABE. In this experiment an ABE yield and productivity of 0.41 and 0.31 g L{sup -1} h{sup -1} was achieved, respectively. Fermentation of untreated corn stover hydrolysate (CSH) exhibited no growth and no ABE production; however, upon dilution with water (two fold) and wheat straw hydrolysate (WSH, ratio 1:1), 16.00 and 18.04 g L{sup -1} ABE was produced, respectively. These experiments resulted in ABE productivity of 0.17-0.21 g L{sup -1} h{sup -1}. Inhibitors present in CSH were removed by treating the hydrolysate with Ca(OH){sub 2} (overliming). The culture was able to produce 26.27 g L{sup -1} ABE after inhibitor removal. Untreated switchgrass hydrolysate (SGH) was poorly fermented and the culture did not produce more than 1.48 g L{sup -1} ABE which was improved to 14.61 g L{sup -1}. It is suggested that biomass pretreatment methods that do not generate inhibitors be investigated. Alternately, cultures resistant to inhibitors and able to produce butanol at high concentrations may be another approach to improve the current process. (author)

  19. Molecular characterization of gluten hydrolysing Bacillus sp. and their efficacy and biotherapeutic potential as probiotics using Caco-2 cell line.

    Science.gov (United States)

    Rashmi, B S; Gayathri, D

    2017-09-01

    To isolate and characterize indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples and further evaluation of their probiotic potentiality. Indigenous gluten hydrolysing isolates GS 33, GS 143, GS 181 and GS 188 were identified as Bacillus sp. by molecular-typing methods and studied extensively for their functional and probiotic attributes. All the tested isolates could survive at pH 2 and toxicity of 0·3% bile and also exhibited cell surface hydrophobicity and autoaggregation phenotype. The isolates were adhered strongly to Caco-2 cells and coaggregated with Escherichia coli MTCC 433 and Listeria monocytogenes MTCC 1143 preventing pathogen invasion into Caco-2 cells in vitro. In addition, the minimum inhibitory concentration of selected antibiotics for all the investigated gluten hydrolysing isolates was within the breakpoint values as recommended by the European Food Safety Authority. The indigenous high intensity gluten hydrolysing bacteria exhibited high resistance to gastric and pancreatic stress and possessed antibacterial, aggregation, adhesion and pathogen exclusion properties, and as a potential probiotics, either alone or in consortium would be useful in the development of gluten-free wheat foods. Exploring new indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples would be beneficial in developing gluten-free wheat foods using potential indigenous probiotics. © 2017 The Society for Applied Microbiology.

  20. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-06-01

    Full Text Available Angiotensin I-converting enzyme (ACE inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH (45.87% followed by A. elegans T3 proteases hydrolysate (37.84% and alcalase (30.55%. The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits.

  2. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees.

    Science.gov (United States)

    Garcia-Maraver, A; Salvachúa, D; Martínez, M J; Diaz, L F; Zamorano, M

    2013-11-01

    The heterogeneity of biomass makes it difficult if not impossible to make sweeping generalizations concerning thermochemical treatment systems and the optimal equipment to be used in them. Chemical differences in the structural components of the biomass (cellulose, hemicellulose, and lignin) have a direct impact on its chemical reactivity. The aim of this research was to study the influence of the organic components of the raw material from olive trees (leaves, pruning residues, and wood) in the combustion behavior of this biomass, as well as to find the component responsible for the higher ash content of olive leaves. Accordingly, the study used a thermogravimetric analyzer to monitor the different states and complex transitions that occurred in the biomass as the temperature varied. The decomposition rates of the different samples were analyzed in order to establish a link between each combustion phase and the composition of the raw materials. Two methods were used to determine the hemicellulose and cellulose contents of biomass from olive trees. Significant differences among the results obtained by the different methods were observed, as well as important variations regarding the chemical composition and consequently the thermal behavior of the raw materials tested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Size and Persistence of the Microbial Biomass Formed during the Humification of Glucose Hemicellulose Cellulose, and Straw in Soils Containing Different Amounts of Clay

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1983-01-01

    14C-labelled substrates were incubated at 20°C in 4 soils with clay contents ranging from 6 to 34%. Glucose was most readily decomposed, followed in order by hemicellulose, cellulose, maize straw, and barley straw. After the first 10 days of incubation, about 60% of the glucose-C had left the soils...... as CO2, compared with only 23% of the barley-C.The humified matter that remained in the soils after 3 months decayed at almost the same rate whether the origin of the matter was glucose, hemicellulose, cellulose or straw; this rate was, on the whole, independent of the caly content of the soils. Half......-C percentages increased with the clay content of the soils.The biomass was determined by fumigation with CHCl3 according to Jenkinson. After 3 months an average of 17% of the residual labelled C was in biomass; the values ranged from 37% when the labelled C was added as glucose to 2–9% when added as barley...

  5. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread

    Science.gov (United States)

    Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-01-01

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  6. Identification of odor volatile compounds and deodorization of Paphia undulata enzymatic hydrolysate

    Science.gov (United States)

    Chen, Deke; Chen, Xin; Chen, Hua; Cai, Bingna; Wan, Peng; Zhu, Xiaolian; Sun, Han; Sun, Huili; Pan, Jianyu

    2016-12-01

    Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) of Paphia undulata enzymatic hydrolysate revealed that the compounds contributing to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodorizing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata enzymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80°C, 40 min), YE masking (7 mg mL-1, 45°C, 30 min) and TP treatment (0.4 mg mL-1, 40°C, 50 min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of aldehydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. undulate hydrolysate solution for a period of 72 h.

  7. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    Science.gov (United States)

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Accelerated shelf-life testing of quality loss for a commercial hydrolysed hen egg white powder.

    Science.gov (United States)

    Rao, Qinchun; Rocca-Smith, Jeancarlo R; Schoenfuss, Tonya C; Labuza, Theodore P

    2012-11-15

    In recent years, due to the specific health benefits associated with bioactive peptides and the reduction of protein allergenicity by enzymatic hydrolysis, the utilisation of protein hydrolysates in functional foods and beverages for both protein supplementation and clinical use has significantly increased. However, few studies have explored the moisture-induced effects on food protein hydrolysates, and the resulting changes in the structure and texture of the food matrix as well as the loss in functional properties of bioactive peptides during storage. The main purpose of this study is to determine the influence of water activity (a(w)) on the storage quality of a commercial spray-dried hydrolysed hen egg white powder (HEW). During storage at 45 °C for two months at different a(w)s (0.05-0.79), the selected physicochemical properties of the HEW samples were analysed. Overall, the effect of a(w) on the colour change of HEW at 45 °C for one month was similar to that of HEW after four months at 23 °C due to the presence of a small amount of glucose in HEW. Several structural changes occurred at a(w)s from 0.43 to 0.79 including agglomeration, stickiness and collapse. Kinetic analysis showed a first-order hyperbolic model fit for the change in the L(∗) value, the total colour difference (ΔE(∗)) and the fluorescence intensity (FI). There was a high correlation between colour change and fluorescence, as expected for the Maillard reaction. The reduction in the remaining free amino groups was about 5% at a(w) 0.50 and 6% at a(w) 0.79 after one month storage. In summary, during storage, the Maillard reaction and/or its resulting products could decrease the nutritional value and the quality of HEW. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The ability of fruit and vegetable enzyme system to hydrolyse ester bonds

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available The pulp of potato tubers (Solanum tuberosum, topinambur (Helianthus tuberosus and apples (Malus silvestris can hydrolyse totally, or almost totally, ester bonds in phenyl, α- and β-naphthyl, benzyl and cinnamyl acetates. In methyl 4-acetoxy-3-metoxybenzoate and methyl 2,5-diacetoxybenzoate as well as testosterone propionate and 16,17-acetonide of 21-acetoxy-6-fluoro-16α,17β,21-trihydroxy-4-pregnen-3,20-dione, the hydrolysis is selective towards the substrate and the bioreagent. In contrast, ethyl benzoate and cinnamate are resistant to hydrolysis.

  10. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist; Lorenzen, Janne Kunchel; Gomes, Sisse

    2014-01-01

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC......) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic...

  11. Cellulose with a High Fractal Dimension Is Easily Hydrolysable under Acid Catalysis

    Directory of Open Access Journals (Sweden)

    Mariana Díaz

    2017-05-01

    Full Text Available The adsorption of three diverse amino acids couples onto the surface of microcrystalline cellulose was studied. Characterisation of modified celluloses included changes in the polarity and in roughness. The amino acids partially break down the hydrogen bonding network of the cellulose structure, leading to more reactive cellulose residues that were easily hydrolysed to glucose in the presence of hydrochloric acid or tungstophosphoric acid catalysts. The conversion of cellulose and selectivity for glucose was highly dependent on the self-assembled amino acids adsorbed onto the cellulose and the catalyst.

  12. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate.

    Science.gov (United States)

    Zhang, Min; Gu, Lei; Cheng, Chao; Zhu, Junru; Wu, Hao; Ma, Jiangfeng; Dong, Weiliang; Kong, Xiangping; Jiang, Min; Ouyang, Pingkai

    2017-08-01

    Chicory is an agricultural plant with considerable potential as a carbohydrate substrate for low-cost production of biochemicals. In this work, the production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate was investigated. The bioconversion process initially suffered from the leakage of fructose to the phosphoketolase pathway, resulting in a low mannitol yield. When inulin hydrolysate was supplemented with glucose as a substrate for mannitol production in combination with aeration induction and nicotinic acid induced redox modulation strategies, the mannitol yield greatly improved. Under these conditions, significant improvement in the glucose consumption rate, intracellular NADH levels and mannitol dehydrogenase specific activity were observed, with mannitol production increasing from 64.6 to 88.1 g/L and overall yield increase from 0.69 to 0.94 g/g. This work demonstrated an efficient method for the production of mannitol from inulin hydrolysate with a high overall yield.

  13. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  15. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    Science.gov (United States)

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics.

  16. Effect of Abalone Hydrolysates Encapsulated by Double Emulsion on the Physicochemical and Sensorial Properties of Fresh Cheese.

    Science.gov (United States)

    Choi, HeeJeong; Kim, Soo-Jin; Lee, Sang-Yoon; Choi, Mi-Jung

    2017-01-01

    The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether W 1 /O/W 2 double emulsions can be used to enhance the saltiness of cheese without increasing the salt content (W 1 is distilled water or 1% abalone hydrolysate, and W 2 is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion (W 1 = distilled water, W 2 = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion (W 1 is water and W 2 is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties.

  17. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates.

    Science.gov (United States)

    Venuste, Muhamyankaka; Zhang, Xiaoming; Shoemaker, Charles F; Karangwa, Eric; Abbas, Shabbar; Kamdem, Patrick Eugene

    2013-04-30

    Nutritional and antioxidant properties of pumpkin meal and their hydrolysates prepared by hydrolysis with alcalase, flavourzyme, protamex or neutrase were evaluated. The hydrolysis process significantly increased protein content from 67.07% to 92.22%. All the essential amino acids met the Food and Agriculture Organization of United Nations/World Health Organization (WHO/FAO) suggested requirements for children and adults. The amino acid score (AAS) of meal was increased from 65.59 to 73.00 except for flavourzyme (62.97) and protamex (62.50). The Biological Value (BV) was increased from 53.18 to 83.44 except for protamex (40.97). However hydrolysis decreased the Essential Amino Acid/Total Amino Acid ratio (EAA/TAA) from 32.98% to 29.43%. Protein Efficiency Ratio (PER) was comparable to that of good quality protein (1.5) except for flavourzyme hydrolysate which had PER1 = 0.92, PER2 = 1.03, PER3 = 0.38. The in vitro protein digestibility (IVPD) increased from 71.32% to 77.96%. Antioxidant activity increased in a dose-dependent manner. At 10 mg mL(-1), the hydrolysates had increased 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities from 21.89% to 85.27%, the reducing power increased from Abs(700nm) 0.21 to 0.48. Metal (Iron) chelating ability was improved from 30.50% to 80.03% at 1 mg mL(-1). Hydrolysates also showed better capabilities to suppress or delay lipid peroxidation in a linoleic acid model system. Different proteases lead to different Degrees of Hydrolysis (DH), molecular weight (MW) distribution, amino acid composition and sequence, which influenced the nutritional properties and antioxidant activities of the hydrolysates. Alcalase was the most promising protease in production of pumpkin protein hydrolysates with improved nutritional quality, while flavourzyme was best in production of hydrolysates with improved antioxidative activity among various assays. These results showed that hydrolysates from by-products of pumpkin oil

  18. Comparison of Nitrogen Bioaccessibility from Salmon and Whey Protein Hydrolysates using a Human Gastrointestinal Model (TIM-1

    Directory of Open Access Journals (Sweden)

    Bomi Framroze

    2014-05-01

    Full Text Available Background: The TIM-1 system is a computer-controlled multi-compartmental dynamic model that closely simulates in vivo gastrointestinal tract digestion in humans. During digestion, the compounds released from meal matrix by gastric and intestinal secretions (enzymes are progressively absorbed through semipermeable membranes depending on their molecular weight. These absorbed (dialysed compounds are considered as bioaccessible, which means that they can be theoretically absorbed by the small intestine in the body. Methods: Salmon protein hydrolysate (SPH, whey protein hydrolysates extensively (WPHHigh or weakly (WPH-Low hydrolysed, non-hydrolysed whey protein isolate (WPI and mixtures of WPI:SPH (90:10, 80:20 were digested in TIM-1 using the conditions for a fast gastrointestinal transit that simulate the digestion of a liquid meal in human adults. During digestion (2 hours, samples were collected in intestinal compartments (duodenum, jejunum, and ileum and in both jejunal and ileal dialysates to determine their nitrogen content. All the products were compared in terms of kinetics of nitrogen absorption through the semipermeable membranes (bioaccessible nitrogen and nitrogen distribution throughout the intestinal compartments at the end of the 2 hour digestion. Results: After a 2 h-digestion in TIM-1, SPH was the protein substrate from which the highest amount of nitrogen (67.0% becomes available for the small intestine absorption. WPH-High had the second highest amount (56.0% of bioaccessible nitrogen while this amount decreased to 38.5–42.2% for the other protein substrates. The high nitrogen bioaccessibility of SPH is consistent with its richness in low molecular weight peptides (50% < 1000 Da. Conclusions: The results of this study indicate that SPH provides a higher proportion of bioaccessible nitrogen to a healthy adult compared to all forms of whey proteins, including extensively hydrolysed whey protein hydrolysate. The substitution of

  19. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease.

    Science.gov (United States)

    Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-09-01

    Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P 2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of ginger protease can be used as a functional food for patients with type 2 diabetes.

  20. Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates.

    Science.gov (United States)

    Yan, Yu; He, Jianzhong

    2017-08-01

    Conversion of lignocellulosic hydrolysate to biofuels is impeded by the toxic effects of inhibitors that are generated during pretreatment and hydrolysis processes. Here we describe a wild-type Clostridium sp. strain BOH3 with high tolerance to the lignocellulose-derived inhibitors and its capability to transform these inhibitors. Strain BOH3 is capable of tolerating over 60 mM furfural, 60 mM hydroxymethylfurfural, and 6.6 mM vanillin, respectively, and is able to convert 53.74 ± 0.37 mM furfural into furfuryl alcohol within 90 h. The high furfural tolerance and its biotransformation by strain BOH3, which is correlated to the high transcription levels of two short-chain dehydrogenase/reductases, enable strain BOH3 to produce 5.15 ± 0.52 g/L butanol from dilute sulfuric acid pretreated horticultural waste hydrolysate (HWH) that bypassed the detoxification step. The capability of strain BOH3 to produce butanol from un-detoxified HWH lays the foundation of cost-effective biofuel production from lignocellulosic materials.

  1. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates.

    Science.gov (United States)

    Nongonierma, Alice B; Paolella, Sara; Mudgil, Priti; Maqsood, Sajid; FitzGerald, Richard J

    2018-04-01

    Nine novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (FLQY, FQLGASPY, ILDKEGIDY, ILELA, LLQLEAIR, LPVP, LQALHQGQIV, MPVQA and SPVVPF) were identified in camel milk proteins hydrolysed with trypsin. This was achieved using a sequential approach combining liquid chromatography tandem mass spectrometry (LC-MS/MS), qualitative/quantitative structure activity relationship (QSAR) and confirmatory studies with synthetic peptides. The most potent camel milk protein-derived DPP-IV inhibitory peptides, LPVP and MPVQA, had DPP-IV half maximal inhibitory concentrations (IC 50 ) of 87.0 ± 3.2 and 93.3 ± 8.0 µM, respectively. DPP-IV inhibitory peptide sequences identified within camel and bovine milk protein hydrolysates generated under the same hydrolysis conditions differ. This was linked to differences in enzyme selectivity for peptide bond cleavage of camel and bovine milk proteins as well as dissimilarities in their amino acid sequences. Camel milk proteins contain novel DPP-IV inhibitory peptides which may play a role in the regulation of glycaemia in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis.

    Science.gov (United States)

    Yu, Jie; Hu, Yuanliang; Xue, Mingxiong; Dun, Yaohao; Li, Shenao; Peng, Nan; Liang, Yunxiang; Zhao, Shumao

    2016-07-28

    The aim of this study was to isolate antioxidant peptides from an enzymatic hydrolysate of Spirulina platensis. A novel antioxidant peptide was obtained by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography, with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay used to measure the antioxidant activity, and the sequence was determined to be Pro-Asn-Asn (343.15 Da) by electrospray ionization tandem mass spectrometry. This peptide was synthesized to confirm its antioxidant properties, and it exhibited 81.44 ± 0.43% DPPH scavenging activity at 100 µg/ml, which was similar to that of glutathione (82.63 ± 0.56%). Furthermore, the superoxide anion and hydroxyl free-radical scavenging activities and the SOD activity of the peptide were 47.84 ± 0.49%, 54.01 ± 0.82%, and 12.55 ± 0.75%, respectively, at 10 mg/ml. These results indicate that S. platensis is a good source of antioxidant peptides, and that its hydrolysate may have important applications in the pharmaceutical and food industries.

  3. Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis.

    Science.gov (United States)

    Tang, Wenting; Zhang, Hui; Wang, Li; Qian, Haifeng; Qi, Xiguang

    2015-02-01

    Anchovy (Engraulis japonicus) cooking wastewater (ACWW) is a by-product resulted from the production of boiled-dried anchovies in the seafood processing industry. In this study, the protein hydrolysate of ACWW (ACWWPH) was found to have antimicrobial activity after enzymatic hydrolysis with Protamex. For the targeted screening of antibacterial peptides, liposomes constructed from Staphylococcus aureus membrane lipids were used in an equilibrium dialysis system. The hydrolysate was further purified by liposome equilibrium dialysis combined with high performance liquid chromatography. The purified antimicrobial peptide (ACWWP1) was determined to be GLSRLFTALK, with a molecular weight of 1104.6622Da. The peptide exhibited no haemolytic activity up to a concentration of 512μg/ml. It displayed a dose-dependent bactericidal effect in reconstituted milk. The change in cell surface hydrophobicity and membrane-permeable action of the purified ACWWP1 may have contributed to the antibacterial effect. This study suggests that liposome equilibrium dialysis can be used for the targeted screening of antimicrobial peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antioxidant activity of pea protein hydrolysates produced by batch fermentation with lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Stanisavljević Nemanja S.

    2015-01-01

    Full Text Available Nine Lactobacillus strains known for surface proteinase activity were chosen from our collection and tested for their ability to grow in pea seed protein-based medium, and to hydrolyze purified pea proteins in order to produce peptides with antioxidant (AO activity. Two strains, Lactobacillus rhamnosus BGT10 and Lactobacillus zeae LMG17315, exhibited strong proteolytic activity against pea proteins. The AO activity of the pea hydrolysate fraction, MW <10 kDa, obtained by the fermentation of purified pea proteins with Lactobacillus rhamnosus BGT10, was tested by standard spectrophotometric assays (DPPH, ABTS, Fe3+-reducing capacity and the recently developed direct current (DC polarographic assay. The low molecular weight fraction of the obtained hydrolysate was separated using ion exchange chromatography, while the AO activity of eluted fractions was determined by means of a sensitive DC polarographic assay without previous concentration of samples. Results revealed that the fraction present in low abundance that contained basic peptides possessed the highest antioxidant activity. Based on the obtained results, it can be concluded that Lactobacillus rhamnosus BGT10 should be further investigated as a candidate strain for large-scale production of bioactive peptides from legume proteins. [Projekat Ministartsva nauke Republike Srbije, br. 173005 i br. 173026

  6. Characterization and Potential Use of Cuttlefish Skin Gelatin Hydrolysates Prepared by Different Microbial Proteases

    Directory of Open Access Journals (Sweden)

    Mourad Jridi

    2014-01-01

    Full Text Available Composition, functional properties, and in vitro antioxidant activities of gelatin hydrolysates prepared from cuttlefish skin were investigated. Cuttlefish skin gelatin hydrolysates (CSGHs were obtained by treatment with crude enzyme preparations from Bacillus licheniformis NH1, Bacillus mojavensis A21, Bacillus subtilis A26, and commercial alcalase. All CSGHs had high protein contents, 74.3–78.3%, and showed excellent solubility (over 90%. CSGH obtained by alcalase demonstrated high antioxidant activities monitored by β-carotene bleaching, DPPH radical scavenging, lipid peroxidation inhibition, and reducing power activity. Its antioxidant activity remained stable or increased in a wide range of pH (1–9, during heating treatment (100°C for 240 min and after gastrointestinal digestion simulation. In addition, alcalase-CSGH was incorporated into turkey meat sausage to determine its effect on lipid oxidation during 35 days of storage period. At 0.5 mg/g, alcalase-CSGH delayed lipid oxidation monitored by TBARS and conjugated diene up to 10 days compared to vitamin C. The results reveal that CSGHs could be used as food additives possessing both antioxidant activity and functional properties.

  7. POTENTIAL USE OF COLLAGEN HYDROLYSATES FROM CHAMOIS LEATHER WASTE AS INGREDIENT IN LEATHER FINISHING FORMULATIONS

    Directory of Open Access Journals (Sweden)

    POPA Emil

    2016-05-01

    Full Text Available The aim of this paper is the obtaining of value-added products from the dust resulted from chamois leather buffering, a solid waste that raises serious disposal problems, due to its physical state and complex chemical composition. Starting from leather waste, an alkaline hydrolysis was performed followed by the chemical modification of the polypeptyde hydrolysate by polycondensation with dispersions of copolymers of vinyl acetate with acrylic esters and reticulation with glutaraldehyde in order to improve its hydrophobicity. The resulted product can be used/was tested as an ingredient in leather finishing formulations, as binder or carrier agent. In this paper, new finishing mixtures were prepared using pigments and obtained polypeptide hydrolysates as a substitute for casein in pigment pastes. By this method, there were obtained two experimental variants of brown and black pigment pastes which were compared to the pigment pastes with casein binder. Natural grain Box bovine leather samples coated with such admixtures were subjected to physico-mechanical resistance tests, in accordance with the standardized methods. Specific tests carried on finished leather – tensile strength, tear resistance, resistance to grain cracking, dry and wet rubbing fastness, flexural fatigue strength test, etc – showed values of this characteristics comparable to those obtained with casein conventional finishing.

  8. IMPACT OF ADULTERATION WITH GLUCOSE, FRUCTOSE AND HYDROLYSED INULIN SYRUP ON HONEY PHYSICO-CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Sorina ROPCIUC

    2017-03-01

    Full Text Available The aim of this study is to evaluate the influence of the adulteration with glucose, fructose, hydrolysed inulin syrup on honey physico-chemical properties (pH, aw, electrical conductivity (EC, water activity and colour parameters (L*, a*, b*, chroma of three honey samples of different botanical origins (acacia, tilia and polyfloral. The honeys were adulterated in different percentages (10%, 20%, 30%, 40% and 50% respectively with glucose, fructose and hydrolysed inulin syrup. The moisture content of all the three samples did not exceed the maximum allowable level of 20% established by the European Commission. The physico-chemical parameters (pH, aw, electrical conductivity (EC, water activity and colour parameters (L*, a*, b*, chroma of the analysed honeys are in agreement with other studies reported in the international scientific literature. The physico-chemical parameters prediction, in function of the botanical origin, adulteration agent and adulteration agent percentage have been made using the analysis of variance (ANOVA. According to the ANOVA it was observed that in the case of L*, pH and electrical conductivity (EC there is a good correlation (R2>0.90 between the parameters and the botanical origin, adulteration agent and adulteration agent percentages.

  9. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang

    2016-01-01

    Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.

  11. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment.

    Science.gov (United States)

    Qin, Lizhen; Qian, Hanyu; He, Yucai

    2017-12-01

    Biodiesel is a fuel composed of monoalkyl esters of long-chain fatty acids derived from renewable biomass sources. In this study, biomass waste pecan nutshell (PS) was attempted to be converted into microbial oil. For effective utilization of PS, sequential pretreatment with ethylene glycol-H 2 SO 4 -water (78:2:20, wt:wt:wt) at 130 °C for 30 min and aqueous ammonia (25 wt%) at 50 °C for 24 h was used to enhance its enzymatic saccharification. Significant linear correlation was obtained about delignification-saccharification (R 2  = 0.9507). SEM and FTIR results indicated that combination pretreatment could effectively remove lignin and xylan in PS for promoting its enzymatic saccharification. After 72 h, the reducing sugars from the hydrolysis of 50 g/L pretreated PS by combination pretreatment could be obtained at 73.6% yield. Using the recovered PS hydrolysates containing 20 g/L glucose as carbon source, microbial lipids produced from the PS hydrolysates by Rhodococcus opacus ACCC41043. Four fatty acids including palmitic acid (C16:0; 23.1%), palmitoleic acid (C16:1; 22.4%), stearic acid (C18:0; 15.3%), and oleic acid (C18:1; 23.9%) were distributed in total fatty acids. In conclusion, this strategy has potential application in the future.

  12. Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity

    Science.gov (United States)

    Noh, Dong Ouk; Suh, Hyung Joo

    2015-01-01

    In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of α-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of α-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and α-amino nitrogen content after 24 h-hydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26451355

  13. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    Science.gov (United States)

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  14. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    Science.gov (United States)

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities.

    Science.gov (United States)

    O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre

    2015-03-18

    The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (Piron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.

  16. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Improvement of Emulsifying Properties of Wheat Gluten Hydrolysate λ-Carrageenan Conjugates

    Directory of Open Access Journals (Sweden)

    Jin-Shui Wang

    2006-01-01

    Full Text Available Gluten hydrolysate was prepared through limited enzymatic hydrolysis of wheat gluten resulting from the byproducts of wheat starch. The enzyme applied in the present study was Protamex. Response surface methodology was used to investigate the effects of pH, gluten hydrolysate (GHPλ-carrageenan (C ratio and reaction time on emulsifying properties of the GHP-C conjugate. The regression model for emulsion activity index (EAI was significant at p=0.001, while reaction time had a significant effect on EAI of the conjugate with regression coefficient of 4.25. The interactions of pH and GHP/ C ratio, and GHP/C ratio and reaction time significantly affected the EAI of the conjugate. Both the emulsifying property and nitrogen solubility index (NSI of GHP-C conjugate prepared under the optimal conditions increased more remarkably, compared to the control. The denaturation temperature of GHP-C conjugate obviously increased compared to wheat gluten. The addition of GHP-C conjugate had different effects on dough characteristics. Moreover, this conjugate can delay the increase in the bread crumb firmness during storage. It demonstrated that this conjugate couldimprove the dough characteristics and had anti-staling properties of bread.

  18. Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate.

    Science.gov (United States)

    Reis, Cristiano E R; Zhang, Jianguo; Hu, Bo

    2014-09-01

    Microbial oil accumulated by fungal cells is a potential feedstock for biodiesel production, and lignocellulosic materials can serve as the carbon source to support the fungal growth. The dilute acid pretreatment of corn stover can effectively break down its lignin structure, and this process generates a hydrolysate containing mostly xylose at very dilute concentration and numerous by-products that may significantly inhibit the cell growth. This study utilized corn stover hydrolysate as the culture media for the growth of Mucor circinelloides. The results showed that Mucor cells formed pellets during the cell growth, which facilitates the cell harvest from dilute solution. The results also showed that the inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), and acetic acid could be avoided if their concentration was low. In fact, all these by-products may be assimilated as carbon sources for the fungal growth. The results proved the feasibility to reuse the cultural broth water for acid pretreatment and then use for subsequent cell cultivation. The results will have a direct impact on the overall water usage of the process.

  19. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification.

    Science.gov (United States)

    Monlau, F; Sambusiti, C; Antoniou, N; Zabaniotou, A; Solhy, A; Barakat, A

    2015-01-01

    The robust supramolecular structure of biomass often requires severe pretreatments conditions to produce soluble sugars. Nonetheless, these processes generate some inhibitory compounds (i.e. furans compounds and aliphatic acids) deriving mainly from sugars degradation. To avoid the inhibition of the biological process and to obtain satisfactory sugars conversion level into biofuels, a detoxification step is required. This study investigates the use of two pyrochars derived from solid anaerobic digestates for the detoxification of lignocellulosic hydrolysates. At a pyrochar concentration of 40gL(-1), more than 94% of 5-HMF and 99% of furfural were removed in the synthetic medium after 24h of contact time, whereas sugars concentration remained unchanged. Furfural was adsorbed faster than 5-HMF by both pyrochars and totally removed after 3h of contact. Finally, the two pyrochars were found efficient in the detoxification of corn stalks and Douglas fir wood chips hydrolysates without affecting the soluble sugars concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Thermal hydrolysis of sludge and the use of hydrolysate as carbon source for denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Barlindhaug, J

    1995-10-01

    As a consequence of the North Sea- and the Baltic Sea Treaties as well as the Wastewater Directive of the EU, several large wastewater treatment plants discharging to sensitive receiving waters have to include phosphorus as well as nitrogen removal. This thesis evaluates the so called NTH-process for nutrient removal. In this process pre-precipitation is used in front of a biological nitrogen removal step that is based on a combination of pre- and post-denitrification in moving bed biofilm reactors. The biological step is followed by a final separation step, possibly after coagulant addition. Carbon source for the post denitrification step is made available by hydrolysis of the sludge produced. The idea is that the particulate organic matter, which in a traditional pre-denitrification step would have to be enzymatically hydrolyzed, can be more efficiently hydrolyzed in a concentrated sidestream and used in a post-denitrification step. In the thesis hydrolyzed sludge is used as a carbon source for denitrification. The objective is to investigate the influence of varying hydrolysis conditions on the composition and amount of the thermal hydrolysate produced, as well as the quality of the hydrolysate as a carbon source for denitrification. 201 refs., 78 refs., 53 tabs.

  1. Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes

    Directory of Open Access Journals (Sweden)

    Bernd M. Liebeck

    2017-03-01

    Full Text Available It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR and wide angle X-ray diffraction (WAXD. Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA is applied to obtain information on the thermal stability of the composite materials.

  2. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  3. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates.

    Science.gov (United States)

    Xu, Yang; Li, Yuting; Bao, Tao; Zheng, Xiaodong; Chen, Wei; Wang, Jianxu

    2017-04-15

    Cauliflower by-products (CBP) are rich in leaf protein. Every year tons of CBP will lead to environmental pollution. Therefore, this study was conducted to extract leaf protein from CBP and investigate its biological activities. Our results showed that the optimal extraction parameters were: a liquid to solid ratio of 4mL/g, a pH of 11, an ultrasonic extraction lasting 15min, and at an applied power of 175W. Under these optimized conditions, 12.066g of soluble leaf protein (SLP) was obtained from 1000g of CBP and its extraction yield was 53.07%. The obtained SLP was further hydrolysed by Alcalase and the SLP hydrolysate (SLPH) showed a potent angiotensin I-converting enzyme (ACE) inhibitory activity with an IC 50 value of 138.545μg/mL in vitro. In addition, SLPH promoted the glucose consumption and enhanced the glycogen content in HepG2 cells. Overall, our results suggested that CBP may be recycled for designing future functional foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    Science.gov (United States)

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  5. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  6. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration.

    Science.gov (United States)

    Ajao, Olumoye; Rahni, Mohamed; Marinova, Mariya; Chadjaa, Hassan; Savadogo, Oumarou

    2017-12-15

    Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

  7. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration

    Directory of Open Access Journals (Sweden)

    Olumoye Ajao

    2017-12-01

    Full Text Available Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

  8. Effects of Different Working Modes of Ultrasound on Structural Characteristics of Zein and ACE Inhibitory Activity of Hydrolysates

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ren

    2017-01-01

    Full Text Available Ultrasound was used as a new technology to pretreat protein prior to proteolysis to improve enzymolysis efficiency. The effects of different working modes of ultrasound on the angiotensin I-converting enzyme (ACE inhibitory activity of zein hydrolysates and the structural characteristics of zein were investigated. The solubility, surface hydrophobicity (H0, ultraviolet-visible (UV-Vis spectra, intrinsic fluorescence spectra, and circular dichroism (CD spectra of zein pretreated with ultrasound were determined. All ultrasound pretreatments significantly improved the ACE inhibitory activity of zein hydrolysates (p<0.05. The highest ACE inhibitory activity, representing an increase of 99.21% over the control, was obtained with dual sweeping frequency ultrasound of 33±2 and 68±2 kHz. The effects of single sweeping frequency and dual fixed frequency ultrasound were stronger than those of single fixed frequency ultrasound for improving the ACE inhibitory activity of zein. Structural changes in zein were induced by ultrasound, as confirmed by changes in the solubility, H0, UV-Vis spectra, intrinsic fluorescence spectra, and CD spectra of zein, and these were consistent with the corresponding ACE inhibitory activities of zein hydrolysates. Thus, ultrasound working mode and frequency have significant effects on the structure of zein and the ACE inhibitory activity of zein hydrolysates.

  9. Interlaboratory evaluation of a cow's milk allergy mouse model to assess the allergenicity of hydrolysed cow's milk based infant formulas

    NARCIS (Netherlands)

    Esch, B.C.A.M. van; Bilsen, J.H.M. van; Jeurink, P.V.; Garssen, J.; Penninks, A.H.; Smit, J.J.; Pieters, R.H.H.; Knippels, L.M.J.

    2013-01-01

    This study describes two phases of a multi-phase project aiming to validate a mouse model for cow's milk allergy to assess the potential allergenicity of hydrolysed cow's milk based infant formulas (claim support EC-directive 2006/141/E). The transferability and the discriminatory power of this

  10. Characterization of the Immunogenicity and Allergenicity of Two Cow's Milk Hydrolysates – A Study in Brown Norway Rats

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Barkholt, Vibeke; Madsen, Charlotte Bernhard

    2015-01-01

    Hypoallergenic infant formulas based on hydrolysed milk proteins are used in the diet for cow's milk allergic infants. For a preclinical evaluation of the immunogenicity and allergenicity of new protein ingredients for such hypoallergenic infant formulas as well as for the investigation of which...

  11. The effect of wool hydrolysates on squamous cell carcinoma cells in vitro. Possible implications for cancer treatment.

    Directory of Open Access Journals (Sweden)

    Tatsiana Damps

    Full Text Available Squamous cell carcinoma of the skin is the second most common cutaneous malignancy. Despite various available treatment methods and advances in noninvasive diagnostic techniques, the incidence of metastatic cutaneous squamous cell carcinoma is rising. Deficiency in effective preventive or treatment methods of transformed keratinocytes leads to necessity of searching for new anticancer agents. The present study aims to evaluate the possibility of using wool hydrolysates as such agents. Commercially available compounds such as 5-fluorouracil, ingenol mebutate, diclofenac sodium salt were also used in this study. The process of wool degradation was based on chemical pre-activation and enzymatic digestion of wool. The effect of mentioned compounds on cell viability of squamous carcinoma cell line and healthy keratinocytes was evaluated. The obtained data show a significantly stronger effect of selected wool hydrolysates compared to commercial compounds (p<0.05 on viability of cells. The wool hydrolysates decreased squamous cell carcinoma cells viability by up to 67% comparing to untreated cells. These results indicate bioactive properties of wool hydrolysates, which affect the viability of squamous carcinoma cells and decrease their number. We hypothesize that these agents may be used topically for treatment of transformed keratinocytes in actinic keratosis and invasive squamous skin cancer in humans.

  12. An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydrolysate

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Jeppsson, H. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Olsson, L. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Mohagheghi, A. (Bioprocess and Fuels Engineering Research Branch, National Renewable Energy Lab., Golden, CO (United States))

    1994-03-01

    A xylose-rich, dilute-acid-pretreated corn-cob hydrolysate was fermented by Escherichia coli ATCC 11303, recombinant (rec) E. coli B (pLOI 297 and KO11), Pichia stipitis (CBS 5773, 6054 and R), Saccharomyces cerevisiae isolate 3 in combination with xylose isomerase, rec S. cerevisiae (TJ1, H550 and H477) and Fusarium oxysporum VTT-D-80134 in an interlaboratory comparison. The micro-organisms were studied according to three different options: (A) fermentation under consistent conditions. (B) fermentation under optimal conditions for the organism, and (C) fermentation under optimal conditions for the organism with detoxification of the hydrolysate. The highest yields of ethanol, 0.24 g/g (A), 0.36 g/g (B) and 0.54 g/g (C), were obtained from rec E. coli B, KO11. P. stipitis and F. oxysporum were sensitive to the inhibitors present in the hydrolysate and produced a maximum yield of 0.34 g/g (C) and 0.04 g/g (B), respectively. The analysis of the corn-cob hydrolysate and aspects of process economy of the different fermentation options (pH, sterilization, nutrient supplementation, adaptation, detoxification) are discussed. (orig.)

  13. Removal and recovery of acetic acid and two furans during sugar purification of simulated phenols-free biomass hydrolysates.

    Science.gov (United States)

    Lee, Sang Cheol

    2017-12-01

    A cost-effective five-step sugar purification process involving simultaneous removal and recovery of fermentation inhibitors from biomass hydrolysates was first proposed here. Only the three separation steps (PB, PC and PD) in the process were investigated here. Furfural was selectively removed up to 98.4% from a simulated five-component hydrolysate in a cross-current three-stage extraction system with n-hexane. Most of acetic acid in a simulated four-component hydrolysate was selectively removed by emulsion liquid membrane, and it could be concentrated in the stripping solution up to 4.5 times its initial concentration in the feed solution. 5-Hydroxymethylfurfural was selectively removed from a simulated three-component hydrolysate in batch and continuous fixed-bed column adsorption systems with L-493 adsorbent. Also, 5-hydroxymethylfurfural could be concentrated to about 9 times its feed concentration in the continuous adsorption system through a fixed-bed column desorption experiment with aqueous ethanol solution. These results have shown that the proposed purification process was valid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessment of safety and efficiency of nitrogen organic fertilizers from animal-based protein hydrolysates--a laboratory multidisciplinary approach.

    Science.gov (United States)

    Corte, Laura; Dell'abate, Maria Teresa; Magini, Alessandro; Migliore, Melania; Felici, Barbara; Roscini, Luca; Sardella, Roccaldo; Tancini, Brunella; Emiliani, Carla; Cardinali, Gianluigi; Benedetti, Anna

    2014-01-30

    Protein hydrolysates or hydrolysed proteins (HPs) are high-N organic fertilizers allowing the recovery of by-products (leather meal and fluid hydrolysed proteins) otherwise disposed of as polluting wastes, thus enhancing matter and energy conservation in agricultural systems while decreasing potential pollution. Chemical and biological characteristics of HPs of animal origin were analysed in this work to assess their safety, environmental sustainability and agricultural efficacy as fertilizers. Different HPs obtained by thermal, chemical and enzymatic hydrolytic processes were characterized by Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis, and their safety and efficacy were assessed through bioassays, ecotoxicological tests and soil biochemistry analyses. HPs can be discriminated according to their origin and hydrolysis system by proteomic and metabolomic methods. Three experimental systems, soil microbiota, yeast and plants, were employed to detect possible negative effects exerted by HPs. The results showed that these compounds do not significantly interfere with metabolomic activity or the reproductive system. The absence of toxic and genotoxic effects of the hydrolysates prepared by the three hydrolytic processes suggests that they do not negatively affect eukaryotic cells and soil ecosystems and that they can be used in conventional and organic farming as an important nitrogen source derived from otherwise highly polluting by-products. © 2013 Society of Chemical Industry.

  15. Rapid determination of acetic acid, furfural and 5-hydroxymethylfurfural in biomass hydrolysate using near-infrared spectroscopy

    Science.gov (United States)

    Near infrared spectroscopy (NIR) is a rapid detection technique that has been used to characterize biomass. The objective of this study was to develop suitable NIR models to predict the acetic acid, furfural, and 5-hydroxymethylfurfural (HMF) contents in biomass hydrolysates. Using a uniform distrib...

  16. Preparation of salted meat products, e.g. cured bacon - by injecting liquid comprising meat proteins hydrolysed with enzymes

    DEFF Research Database (Denmark)

    1997-01-01

    Preparation of salted meat products comprises the following:(1) meat is chopped into fine pieces and mixed with water to form a slurry; (2) enzymes hydrolyse proteins in the meat; (3) adding a culture to the resulting medium, which comprises short peptide chains or amino acids; (4) forming...... flavourings as the culture is growing, and (5) injecting the liquid into pieces of meat....

  17. Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus).

    Science.gov (United States)

    Mirdhayati, Irdha; Hermanianto, Joko; Wijaya, Christofora H; Sajuthi, Dondin; Arihara, Keizo

    2016-08-01

    The meat of Kacang goat has potential for production of a protein hydrolysate. Functional ingredients from protein hydrolysate of Kacang goat meat were determined by the consistency of angiotensin-converting enzyme (ACE) inhibitory activity and antihypertensive effect. This study examined the potency of Kacang goat protein hydrolysate in ACE inhibition and antihypertensive activity. Protein hydrolysates of Kacang goat meat were prepared using sequential digestion of endo-proteinase and protease complex at several concentrations and hydrolysis times. The highest ACE inhibitory activity resulted from a hydrolysate that was digested for 4 h with 5 g kg(-1) of both enzymes. An ACE inhibitory peptide was purified and a novel peptide found with a sequence of Phe-Gln-Pro-Ser (IC50 value of 27.0 µmol L(-1) ). Both protein hydrolysates and a synthesised peptide (Phe-Gln-Pro-Ser) demonstrated potent antihypertensive activities in spontaneously hypertensive rats. Protein hydrolysate of Kacang goat meat produced by sequential digestion with endo-proteinase and protease complex has great potential as a functional ingredient, particularly as an antihypertensive agent. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Bioactive Peptides from Cartilage Protein Hydrolysate of Spotless Smoothhound and Their Antioxidant Activity In Vitro

    Directory of Open Access Journals (Sweden)

    Jing Tao

    2018-03-01

    Full Text Available In the experiment, crude proteins from spotless smoothhound (Mustelus griseus, cartilages were isolated by HCl-Guanidine buffer, and its hydrolysate was prepared using trypsin at pH 8.0, 40 °C with a total enzyme dose of 2.5%. Subsequently, three antioxidant peptides were purified from the hydrolysate using membrane ultrafiltration, anion-exchange chromatography, gel filtration chromatography, and reverse phase high-performance liquid chromatography. The amino acid sequences of isolated peptides were identified as Gly-Ala-Glu-Arg-Pro (MCPE-A; Gly-Glu-Arg-Glu-Ala-Asn-Val-Met (MCPE-B; and Ala-Glu-Val-Gly (MCPE-C with molecular weights of 528.57, 905.00, and 374.40 Da, respectively, using protein amino acid sequence analyzer and mass spectrum. MCPE-A, MCPE-B and MCPE-C exhibited good scavenging activities on 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH• (EC50 3.73, 1.87, and 2.30 mg/mL, respectively, hydroxyl radicals (HO• (EC50 0.25, 0.34, and 0.06 mg/mL, respectively, 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radicals (ABTS+• (EC50 0.10, 0.05, and 0.07 mg/mL, respectively and superoxide anion radicals ( O 2 − • (EC50 0.09, 0.33, and 0.18 mg/mL, respectively. MCPE-B showed similar inhibiting ability on lipid peroxidation with butylated hydroxytoluene (BHT in a linoleic acid model system. Furthermore, MCPE-A, MCPE-B, and MCPE-C could protect H2O2-induced HepG2 cells from oxidative stress by decreasing the content of malonaldehyde (MDA and increasing the levels of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and glutathione reductase (GSH-Rx. Glu, Gly, Met, and Pro in their sequences and low molecular weight could be attributed to the antioxidant activities of three isolated peptides. These results suggested that GAERP (MCPE-A, GEREANVM (MCPE-B, and AEVG (MCPE-C from cartilage protein hydrolysate of spotless smoothhound might serve as potential antioxidants and be used in the pharmaceutical and

  19. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Karaś, Monika; Jakubczyk, Anna; Szymanowska, Urszula; Materska, Małgorzata; Zielińska, Ewelina

    2014-01-01

    Nowadays, legume plants have been considered not only a source of valuable proteins necessary for the proper functioning and growth of the body but also a source of bioactive compounds such as bioactive peptides, that may be beneficial to human health and protect against negative change in food. The aim of this study was to investigate the effect of heat treatment on the release of antioxidant peptides obtained by hydrolysis of the yellow string beans protein. The antioxidant properties of the hydrolysates were evaluated through free radical scavenging activities (DPPH and ABTS) and inhibition of iron activities (chelation of Fe2+). The results show that the heat treatment had influence on both increased peptides content and antioxidant activity after pepsin hydrolysis of string bean protein. The peptides content after protein hydrolysis derived from raw and heat treated beans were noted 2.10 and 2.50 mg·ml-1, respectively. The hydrolysates obtained from raw (PHR) and heat treated (PHT) beans showed better antioxidant properties than protein isolates (PIR and PIT). Moreover, the hydrolysates obtained from heat treated beans showed the higher ability to scavenge DPPH• (46.12%) and ABTS+• (92.32%) than obtained from raw beans (38.02% and 88.24%, correspondingly). The IC50 value for Fe2+ chelating ability for pepsin hydrolysates obtained from raw and heat treatment beans were noted 0.81 and 0.19 mg·ml-1, respectively. In conclusion, the results of this study showed that the heat treatment string beans caused increase in the antioxidant activities of peptide-rich hydrolysates.

  20. Effect of collagen hydrolysate in articular pain: a 6-month randomized, double-blind, placebo controlled study.

    Science.gov (United States)

    Bruyère, O; Zegels, B; Leonori, L; Rabenda, V; Janssen, A; Bourges, C; Reginster, J-Y

    2012-06-01

    Evaluation of the efficacy and safety of a food supplement made of collagen hydrolysate 1200 mg/day versus placebo during 6 months, in subjects with joint pain at the lower or upper limbs or at the lumbar spine. Comparative double-blind randomized multicenter study in parallel groups. 200 patients of both genders of at least 50 years old with joint pain assessed as ≥30 mm on a visual analogical scale (VAS). Collagen hydrolysate 1200 mg/day or placebo during 6 months. Comparison of the percentage of clinical responder between the active collagen hydrolysate group and the placebo group after 6 months of study. A responder subject was defined as a subject experiencing a clinically significant improvement (i.e. by 20% or more) in the most painful joint using the VAS score. All analyses were performed using an intent-to-treat procedure. At 6 months, the proportion of clinical responders to the treatment, according to VAS scores, was significantly higher in the collagen hydrolysate (CH) group 51.6%, compared to the placebo group 36.5% (pvs. 39.6%, p=0.53). No significant difference in terms of security and tolerability was observed between the two groups. This study suggests that collagen hydrolysate 1200 mg/day could increase the number of clinical responders (i.e. improvement of at least 20% on the VAS) compared to placebo. More studies are needed to confirm the clinical interest of this food supplement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid

    Directory of Open Access Journals (Sweden)

    Samantha Cristina Pinho

    2013-04-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052. The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80 was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.

  2. Effects of Hydrolysed Whey Proteins on the Techno-Functional Characteristics of Whey Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Klaus Noller

    2013-03-01

    Full Text Available Pure whey protein isolate (WPI-based cast films are very brittle due to its strong formation of protein cross-linking of disulphide bonding, hydrogen bonding as well as hydrophobic and electrostatic interactions. However, this strong cross-linking is the reason for its final barrier performance. To overcome film brittleness of whey protein layers, plasticisers like glycerol are used. It reduces intermolecular interactions, increases the mobility of polymer chains and thus film flexibility can be achieved. The objective of this study was to investigate the influence of hydrolysed whey protein isolate (WPI in whey protein isolate-based cast films on their techno-functional properties. Due to the fact, that the addition of glycerol is necessary but at the same time increases the free volume in the film leading to higher oxygen and water vapour permeability, the glycerol concentration was kept constant. Cast films with different ratios of hydrolysed and not hydrolysed WPI were produced. They were characterised in order to determine the influence of the lower molecular weight caused by the addition of hydrolysed WPI on the techno-functional properties. This study showed that increasing hydrolysed WPI concentrations significantly change the mechanical properties while maintaining the oxygen and water vapour permeability. The tensile and elastic film properties decreased significantly by reducing the average molecular weight whereas the yellowish coloration and the surface tension considerably increased. This study provided new data which put researchers and material developers in a position to tailor the characteristics of whey protein based films according to their intended application and further processing.

  3. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19).

    Science.gov (United States)

    Pan, Xiao-Wen; Zhao, Xin-Huai

    2015-06-17

    Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  4. KAJIAN SIFAT FISIKOKIMIA DAN ORGANOLEPTIK HIDROLISAT TEMPE HASIL HIDROLISIS PROTEASE [Study on physicochemical and organoleptic properties of tempeh hydrolysate produced by protease

    Directory of Open Access Journals (Sweden)

    Bambang Herry

    2002-12-01

    Full Text Available Physicochemical and organoleptic properties of tempeh hydrolysate produced by protease were studied. The tempeh hydrolysate had different properties comparing with those of the unhydrolyzed tempeh powder. Hydrolysis of the tempeh protein could lower the antioxidant activity. Accordingly, the TBA value increased significantly when the tempeh was hydrolyzed by protease. This process also promoted Maillard reaction, resulting in a more brown color than that of the unhydrolyzed tempeh powder. Moreover, the tempeh hydrolysate had a better protein solubility, and a higher index of umami taste by organoleptic evaluation.

  5. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohy......In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  6. Antioxidation activities of low-molecular-weight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus

    Science.gov (United States)

    Wang, Jingfeng; Wang, Yuming; Tang, Qingjuan; Wang, Yi; Chang, Yaoguang; Zhao, Qin; Xue, Changhu

    2010-03-01

    Gelatin extracted from the body wall of the sea cucumber ( Stichopus japonicus) was hydrolyzed with flavourzyme. Low-molecular-weight gelatin hydrolysate (LMW-GH) of 700-1700 Da was produced using an ultrafiltration membrane bioreactor system. Chemiluminescence analysis revealed that LMW-GH scavenges high free radicals in a concentration-dependent manner; IC50 value for superoxide and hydroxyl radicals was 442 and 285 μg mL-1, respectively. LMW-GH exhibited excellent inhibitory characteristics against melanin synthesis and tyrosinase activity in B16 cells. Furthermore, LMW-GH notably increased intracellular glutathione (GSH), which in turn suppressed melanogenesis. LMW-GH performs antioxidation activity, holding the potential of being used as a valuable ingredient in function foods, cosmetics and pharmaceuticals or nutriceuticals.

  7. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.

    Science.gov (United States)

    Rahayu, Farida; Kawai, Yuto; Iwasaki, Yuki; Yoshida, Koichiro; Kita, Akihisa; Tajima, Takahisa; Kato, Junichi; Murakami, Katsuji; Hoshino, Tamotsu; Nakashimada, Yutaka

    2017-12-01

    A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.9mol/mol-sugar. The transformant successfully fermented sugars in hydrolysate prepared through the acid hydrolysis of lignocellulose to ethanol, suggesting that this transformant can be used to ferment the sugars in lignocellulosic biomass for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Safety of a new, ultrafiltrated whey hydrolysate formula in children with cow milk allergy

    DEFF Research Database (Denmark)

    Halken, S; Høst, A; Hansen, L G

    1993-01-01

    The purpose of this study was to determine whether a new ultrafiltrated whey hydrolysate infant formula, Profylac, could be administered safely to children with cow milk protein allergy/intolerance. Profylac has a stated molecular weight of ... which is controlled by a combination of ELISA-techniques and immunochemical methods. The study comprised 66 children with cow milk protein allergy/intolerance diagnosed by controlled elimination/challenge procedures. The children were aged 1 month-14.5 years, median 1 11/12 years and 15 were below 1...... year. Thirty-five of these children had proven IgE-mediated reactions (cow milk protein allergy). Sixty-one of the children had at least two different symptoms and 31 had concomitant allergies to other foods and/or inhalants. All 66 children underwent and tolerated open, controlled challenges...

  9. Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling

    Science.gov (United States)

    Barbera, Elena; Sforza, Eleonora; Kumar, Sandeep; Morosinotto, Tomas; Bertucco, Alberto

    2016-01-01

    The production of biofuels from microalgae is associated with high demands of nutrients (nitrogen and phosphorus) required for growth. Recycling nutrients from the residual biomass is essential to obtain a sustainable production. In this work, the aqueous phase obtained from flash hydrolysis of Scenedesmus sp. was used as cultivation medium for a microalga of the same genus, to assess the feasibility of this technique for nutrient recycling purposes. Batch and continuous cultivations were carried out, to determine growth performances in this substrate compared to standard media, and verify if a stable biomass production could be obtained. In continuous experiments, the effect of hydrolysate inlet concentration and of residence time were assessed to optimize nutrient supply in relation to productivity. Results obtained show that nutrient recycling is feasible by treating biomass with flash hydrolysis, and Scenedesmus is capable of recycling large amounts of recovered nutrients. PMID:26868157

  10. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.

    Science.gov (United States)

    Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon

    2005-02-09

    Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

  11. The role of cGMP hydrolysing phosphodiesterases 1 and 5 in cerebral artery dilatation

    DEFF Research Database (Denmark)

    Kruuse, Christina; Rybalkin, S D; Khurana, T S

    2001-01-01

    The aim was to investigate the presence and activity of cGMP hydrolysing phosphodiesterases in guinea pig basilar arteries and the effect of selective and non-selective phosphodiesterase inhibitors on cerebral artery dilatation involving the nitric oxide (NO)-guanosine cyclic 3'5-monophosphate (cGMP...... a close relation to the nitric oxide-cGMP pathway. The responses to zaprinast and dipyridamole, however, were not only moderately affected, but also restored by sodium nitroprusside (0.1 microM) pretreatment. At high concentrations, the dilatory effects of zaprinast and dipyridamole were partly caused...... by cGMP-independent mechanisms. Targeting the phosphodiesterases present in cerebral arteries, with selective inhibitors or activators of phosphodiesterase, may be a possible new way of treating cerebrovascular disease....

  12. Intakes of whey protein hydrolysate and whole whey proteins are discriminated by LC-MS metabolomics

    DEFF Research Database (Denmark)

    Stanstrup, Jan; Rasmussen, Jakob Ewald; Ritz, Christian

    2014-01-01

    of four different whey protein fractions and establishes new hypotheses for the observed effects. Obese, non-diabetic subjects were included in the randomized, blinded, cross-over meal study. Subjects ingested a high-fat meal containing whey isolate (WI), whey concentrate hydrolysate (WH), α...... of the meals. Highly elevated plasma levels of a number of cyclic dipeptides and other AA metabolites were found following intake of the WH meal and these metabolites are primary candidates to explain the superior insulinotropic effect of WH. The manufacturing process of WH caused oxidization of methionine...... to methionine sulfoxide which in turn caused in vivo generation of N-phenylacetyl-methionine and N-phenylacetyl-methionine sulfoxide. These two compounds have not previously been described in biological systems....

  13. High-performance liquid chromatographic quantitation of desmosine plus isodesmosine in elastin and whole tissue hydrolysates

    International Nuclear Information System (INIS)

    Soskel, N.T.

    1987-01-01

    Quantitation of desmosine and isodesmosine, the major crosslinks in elastin, has been of interest because of their uniqueness and use as markers of that protein. Accurate measurement of these crosslinks may allow determination of elastin degradation in vivo and elastin content in tissues, obviating lengthy extraction procedures. We have developed a method of quantitating desmosine plus isodesmosine in hydrolysates of tissue and insoluble elastin using high-performance liquid chromatographic separation and absorbance detection that is rapid (21-35 min) and sensitive (accurate linearity from 100 pmol to 5 nmol). This method has been used to quantitate desmosines in elastin from bovine nuchal ligament and lung and in whole aorta from hamsters. The ability to completely separate [ 3 H]lysine from desmosine plus isodesmosine allows the method to be used to study incorporation of lysine into crosslinks in elastin

  14. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate

    DEFF Research Database (Denmark)

    Bai, Dongmei; Li, S.Z.; Liu, Z.L.

    2008-01-01

    -added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the......-isomer and a simple nutrition requirement by the fungus. Production of-L-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency...... of substrate utilization and enhanced production of L-(+)-lactic acid from corncob hydrolysate. It increased L-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were...

  15. Two novel antioxidant nonapeptides from protein hydrolysate of skate (Raja porosa) muscle.

    Science.gov (United States)

    Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin; Deng, Shang-Gui

    2015-04-03

    In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2-· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.

  16. Two Novel Antioxidant Nonapeptides from Protein Hydrolysate of Skate (Raja porosa Muscle

    Directory of Open Access Journals (Sweden)

    Fa-Yuan Hu

    2015-04-01

    Full Text Available In the current study, the preparation conditions of neutrase hydrolysate (SMH from skate (Raja porosa muscle protein were optimized using orthogonal L9(34 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A and NWDMEKIWD (SP-B with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL, DPPH· (EC50 0.614 and 0.289 mg/mL, and O2−· (EC50 0.215 and 0.132 mg/mL in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp, acidic (2Asp and Glu, and basic (Lys amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.

  17. Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate

    Directory of Open Access Journals (Sweden)

    Débora Danielle Virgínio da Silva

    2007-03-01

    Full Text Available The effect of glucose on xylose-to-xylitol bioconversion by Candida guilliermondii was examined by adding it to sugarcane bagasse hydrolysate medium to obtain different glucose:xylose ratios (1:25, 1:12, 1:5 and 1:2.5. Under experimental conditions, increasing glucose:xylose ratio improved the assimilation of the xylose present in the hydrolysate by yeast, resulting in biomass increase, and in the formation of xylitol and glycerol/ethanol by-products. Maximum values of xylitol yield (0.59 g g-1 and volumetric productivity (0.53 g l-1.h-1 were obtained with glucose:xylose ratio of 1:5, resulting in the higher conversion efficiency (64.3%.O efeito da glicose na bioconversão de xilose em xilitol por Candida guilliermondii foi avaliado em hidrolisado hemicelulósico de bagaço de cana com diferentes relações glicose:xilose (1:25, 1:12, 1:5 and 1:2,5. Sob as condições experimentais, o aumento da relação glicose:xilose favoreceu a assimilação da xilose presente no hidrolisado, resultando em aumento da biomassa celular e aumento da formação de xilitol e dos sub-produtos glicerol e etanol. Os valores máximos do fator de conversão de xilose em xilitol (0,59 g g-1 e da produtividade volumétrica de xilitol (0,53 g l-1.h-1 foram obtidos com a relação glicose:xilose 1:5, resultando na maior eficiência de conversão (64,3%.

  18. Functional properties of pumpkin (Cucurbita pepo seed protein isolate and hydrolysate

    Directory of Open Access Journals (Sweden)

    Bučko Sandra Đ.

    2016-01-01

    Full Text Available Pumpkin seed protein isolate (PSPI was enzymatically hydrolysed by pepsin to obtain pumpkin seed protein hydrolysate, PSPH. Investigation on solubility, interfacial and emulsifying properties of both PSPI and PSPH was conducted under different conditions of pH (3-8 and ionic strength (0-1 mol/dm3 NaCl. PSPI had the lowest solubility, i.e. isoelectric point (pI, at pH 5. PSPH had higher solubility than PSPI over whole range of pH and ionic strengths tested. Decrease in surface and interfacial tension evidenced that both PSPI and PSPH adsorb at air/protein solution and oil/protein solution interface. Emulsions (20 % oil in water stabilized by 1 g/100cm3 PSPI or PSPH solution were prepared at pH 3, 5 and 8 and ionic strength of 0 and 0.5 mol/dm3 NaCl. PSPH stabilized emulsions from coalescence at all pH and ionic strengths tested. PSPI was able to stabilize emulsions at pH 3 and 0 mol/dm3 NaCl, and at pH 8 regardless of ionic strength, while emulsions at pH 5 and both 0 and 0.5 mol/dm3 NaCl and at pH 3 when ionic strength was increased separated to oil and serum layer immediately after preparation. All emulsions were susceptible to creaming instability. [Projekat Ministarstva nauke Republike Srbije, br. III 46010

  19. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  20. Sensory analysis of hydrolysed meat preparations Análise sensorial de preparações com hidrolisados de carne

    Directory of Open Access Journals (Sweden)

    Maria Elisabeth Machado Pinto E Silva

    2010-06-01

    Full Text Available The use of hydrolysed meat in diets contributes to the improvement of protein, vitamin and mineral supply. This work aims at checking the acceptance pattern in meat hydrolysates. Four preparations have been developed with three types of hydrolysates in domestic-like conditions. Acceptance was verified by means of sensory analysis using the nine-point hedonic scale. Sensory tests have been carried out in three sessions (according to the kind of hydrolysates. In the evaluation file, information on age groups has been included. The statistical analysis has been made by ANOVA and Tukey test. The best accepted preparation have been the turkey and chicken hydrolysed balls. Hydrolysates can be used in many different kinds of preparations, but it is necessary to know both the age group it will be used to and its sensory and chemical-physical features to ensure the taste and the original appearance of the final product.A utilização de hidrolisados de carne em dietas melhora seu conteúdo protéico, de vitaminas e minerais. O objetivo do presente trabalho foi avaliar a aceitação de hidrolisados de carne. Quatro preparações foram desenvolvidas com três tipos de hidrolisados em condições similares às domésticas. . A aceitação foi avaliada com uso de escala hedônica de 9 pontos. Os testes foram realizados em três sessões (de acordo com o tipo de hidrolisado e, incluiu-se na ficha de avaliação informações de idade. A análise estatística foi realizada por ANOVA e teste de Tukey. As preparações mais aceitas foram os bolinhos com hidrolisados de peru e frango. Os hidrolisados podem ser utilizados em diversas preparações, sendo necessário o conhecimento da faixa etária a qual se destinam, suas características sensoriais e físico-químicas, para garantir o sabor e a aparência do produto final.

  1. Evaluation of the possibility of using brewer’s spent grain for the fermentation of lignocellulosic hydrolysates to biobutanol

    Directory of Open Access Journals (Sweden)

    Morozova Tatyana Sergeevna

    2017-06-01

    Full Text Available The paper deals with the investigation of the possible using of brewer’s grain as a source of growth substabces in acetone-butanol fermentation of lignocellulosic hydrolysates in order to reduce the cost of biobutanol production and to utilize the brewery waste. The fermentation of glucose was carried out at different concentrations of the brewer’s grain by Clostridium acetobutylicum ATCC 824. In the experiments on fermentation of the lignocellulosic hydrolysates an enzymatic hydrolysate of miscanthus cellulose containing 34.8 g/l glucose and 15.6 g/l xylose was used as a source of reducing substances. The sterilization of the medium was carried out at 0.5 KPa for 20 minutes. The sterilization of the growth and reducing substances sources was conducted separately to prevent caramelization of products and melanoidins. For inoculation the spores of 3% (vol/vol C. acetobutylicum ATCC 824 were transferred to a fresh medium. The strain was grown at 37 °С under anaerobic conditions. In a series of experiments on the evaluation of the influence of the brewer’s grain on the fermentability of carbohydrates by the strain of C. acetobutylicum АТСС 824, limiting and inhibitive concentrations of brewer’s grain were determined in the medium, which were 2 and 20 % vol., respectively. The optimal amount of the brewer’s grain was about 6 % vol. At the optimal concentration of the brewer’s grain the fermentation of lignocellulosic hydrolysates occured in all replicates. It was characterized by intensive gas and foam formation that corresponds to the data in literature. After 79-88 h of fermentation of miscanthus cellulose hydrolysate the product yield amounted 10.14±0.87 g/L butanol, 02.48±0.53 acetone, 01.02±0.42 g/L ethanol. It was found that at an optimum concentration both the fresh and sour brewer’s grain can be used in the fermentation. After the acetone-butanol fermentation the brewer’s grain can be used as a food for farm animals

  2. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    Directory of Open Access Journals (Sweden)

    J. M. Marton

    2006-03-01

    Full Text Available Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite, each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it

  3. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2008-01-01

    was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has......Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding...... to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate...

  4. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...

  5. Immunomodulatory potential of a brewers' spent grain protein hydrolysate incorporated into low-fat milk following in vitro gastrointestinal digestion.

    Science.gov (United States)

    Crowley, Damian; O'Callaghan, Yvonne; McCarthy, Aoife; Connolly, Alan; Piggott, Charles O; FitzGerald, Richard J; O'Brien, Nora M

    2015-01-01

    Brewers' spent grain (BSG) protein rich fraction was previously hydrolysed using Alcalase (U) and three additional fractions were prepared by membrane fractionation; a 5-kDa retentate (U > 5), a 5-kDa permeate (U milk, subjected to simulated gastrointestinal digestion (SGID) and their anti-inflammatory potential was investigated. The digestates caused a significant reduction (p RAW 264.7 cells. IL-2 and interferon-γ (IFN-γ) production in stimulated Jurkat T cells and IL-1β and tumor necrosis factor-α (TNF-α) production in stimulated RAW 264.7 cells were not affected in the presence of the digestates. Results show that a SGID milk product supplemented with BSG hydrolysate and its associated ultrafiltered fractions can confer anti-inflammatory effects in Jurkat T cells.

  6. Soybean plant growth study conducted using purified protein hydrolysate-based fertilizer made from chrome-tanned leather waste.

    Science.gov (United States)

    Pati, Anupama; Chaudhary, Rubina

    2015-12-01

    Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer.

  7. Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride.

    Science.gov (United States)

    Qing, Qing; Guo, Qi; Zhou, Linlin; Wan, Yilun; Xu, Youqing; Ji, Huilong; Gao, Xiaohang; Zhang, Yue

    2017-02-01

    Catalytic conversion of corncob pretreatment hydrolysate and raw corncob into furfural in a modified biphasic system by SO 4 2- /SnO 2 - MMT solid catalyst has been developed. The influence of the organic solvent type, organic to water phase ratio, sodium chloride concentration, reaction temperature and time on the furfural production were comparatively evaluated. The results showed that furfural yields of 81.7% and 66.1% were achieved at 190°C for 15mins and 190°C for 20mins, respectively, for corncob pretreatment hydrolysate and raw corncob by this solid catalyst. The solid catalyst used in this study exhibited good stability and high efficiency applied in the modified biphasic system in addition to excellent recyclability. The proposed catalytic system displayed high performance for catalytic conversion of lignocellulosic biomass into important platform chemicals and has great potential in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Use of collagen hydrolysate as a complex nitrogen source for the synthesis of penicillin by Penicillium chrysogenum.

    Science.gov (United States)

    Leonhartsberger, S; Lafferty, R M; Korneti, L

    1993-09-01

    Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression.

  9. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation.

    Science.gov (United States)

    Soudham, Venkata Prabhakar; Brandberg, Tomas; Mikkola, Jyri-Pekka; Larsson, Christer

    2014-08-01

    The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  11. Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity

    Directory of Open Access Journals (Sweden)

    Marialice Pinto Coelho Silvestre

    2012-12-01

    Full Text Available The aim of this study was to prepare enzymatic hydrolysates from whey protein concentrate with a nutritionally adequate peptide profile and the ability to inhibit angiotensin-converting enzyme (ACE activity. The effects of the type of enzyme used (pancreatin or papain, the enzyme:substrate ratio (E:S ratio=0.5:100, 1:100, 2:100 and 3:100 and the use of ultrafiltration (UF were investigated. The fractionation of peptides was performed by size-exclusion-HPLC, and the quantification of the components of the chromatographic fractions was carried out by a rapid Corrected Fraction Area method. The ACE inhibitory activity (ACE-IA was determined by Reverse Phase-HPLC. All parameters tested affected both the peptide profile and the ACE-IA. The best peptide profile was achieved for the hydrolysates obtained with papain, whereas pancreatin was more advantageous in terms of ACE-IA. The beneficial effect of using a lower E:S ratio on the peptide profile and ACE-IA was observed for both enzymes depending on the conditions used to prepare the hydrolysates. The beneficial effect of not using UF on the peptide profile was observed in some cases for pancreatin and papain. However, the absence of UF yielded greater ACE-IA only when using papain.O objetivo deste estudo foi preparar hidrolisados enzimáticos do concentrado proteico do soro de leite com perfil peptídico nutricionalmente adequado e com capacidade para inibir a atividade da enzima conversora da angiotensina (ECA. Os efeitos do tipo de enzima usado (pancreatina ou papaína, da relação enzima:substrato (E:S=0,5:100, 1:100, 2:100 e 3:100 e do uso da ultrafiltração (UF foram investigados. O fracionamento dos peptídeos foi feito por CLAE de exclusão molecular e a quantificação dos componentes das frações cromatográficas foi realizada pelo método da Área Corrigida da Fração. A atividade inibitória da ECA (AI-ECA foi determinada por CLAE de fase reversa. Todos os parâmetros testados afetaram

  12. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process.

    Science.gov (United States)

    Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao

    2014-03-01

    This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    Science.gov (United States)

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A Biorefinery Cascade Conversion of Hemicellulose-Free Eucalyptus Globulus Wood: Production of Concentrated Levulinic Acid Solutions for γ-Valerolactone Sustainable Preparation

    Directory of Open Access Journals (Sweden)

    Sandra Rivas

    2018-04-01

    Full Text Available Eucalyptus globulus wood samples were subjected to preliminary aqueous processing to remove water-soluble extractives and hemicelluloses, and the resulting solid (mainly made up of cellulose and lignin was employed as a substrate for converting the cellulosic fraction into mixtures of levulinic and formic acid through a sulfuric acid-catalyzed reaction. These runs were carried out in a microwave-heated reactor at different temperatures and reaction times, operating in single-batch or cross-flow modes, in order to identify the most favorable operational conditions. Selected liquid phases deriving from these experiments, which resulted in concentrated levulinic acid up to 408 mmol/L, were then employed for γ-valerolactone production by levulinc acid hydrogenation in the presence of the commercial 5% Ru/C catalyst. In order to assess the effects of the main reaction parameters, hydrogenation experiments were performed at different temperatures, reaction times, amounts of ruthenium catalyst and hydrogen pressure. Yields of γ-valerolactone in the range of 85–90 mol % were obtained from the hydrogenation of the wood-derived solutions containing levulinic acid, obtained by single-batch operation or by the cross-flow process. The negative effect of co-produced formic acid present in crude levulinic acid solutions was evidenced and counteracted efficiently by allowing the preliminary thermal decomposition of formic acid itself.

  15. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  16. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    Science.gov (United States)

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  17. Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes

    OpenAIRE

    Persico, Mathieu; Bazinet, Laurent

    2017-01-01

    Peptide adsorption occurring on conventional anion- and cation-exchange membranes is one of the main technological locks in electrodialysis (ED) for hydrolysate demineralization. Hence, the peptide fouling of monovalent anion (MAP) and monovalent cation (MCP) permselective membranes was studied and compared to conventional membranes (AMX-SB and CMX-SB). It appeared that the main peptide sequences responsible for fouling were TPEVDDEALEKFDK, VAGTWY and VLVLDTDYK for both anionic membranes; and...

  18. Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD-ESI/QTOF/MS.

    Science.gov (United States)

    Tuominen, Anu; Sundman, Terhi

    2013-01-01

    Hydrolysable tannins occur in plants that are used for food or medicine by humans or herbivores. Basic conditions can alter the structures of tannins, that is, the oxidation of phenolic groups can lead to the formation of toxic quinones. Previously, these labile quinones and other oxidation products have been studied with colorimetric or electron paramagnetic resonance methods, which give limited information about products. To study the stability and oxidation products of hydrolysable tannins in basic conditions using HPLC with a diode-array detector (DAD) combined with electrospray ionisation (ESI) and quadrupole time-of-flight (QTOF) MS. Three galloyl glucoses, four galloyl derivatives with different polyols and three ellagitannins were purified from plants. The incubation reactions of tannins were monitored by HPLC/DAD at five pH values and in reduced oxygen conditions. Reaction products were identified based on UV spectra and mass spectral fragmentation obtained with the high-resolution HPLC/DAD-ESI/QTOF/MS. The use of a base-resistant HPLC column enabled injections without the sample pre-treatment and thus detection of short-lived products. Hydrolysable tannins were unstable in basic conditions and half-lives were mostly less than 10 min at pH 10. Degradation rates were faster at pH 11 but slower at milder pH. The HPLC analyses revealed that various products were formed and identified to be the result of hydrolysis, deprotonation and oxidation. Interestingly, the main hydrolysis product was ellagic acid; it was also formed from galloyl glucoses that do not contain oxidatively coupled galloyl groups in their initial structures. HPLD/DAD-ESI/QTOF/MS was an efficient method for the identification of polyphenol oxidation products and showed how different pH conditions determine the fate of hydrolysable tannins. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    Science.gov (United States)

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l -1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  20. Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysate Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes.

    Science.gov (United States)

    Bamdad, Fatemeh; Shin, Seulki Hazel; Suh, Joo-Won; Nimalaratne, Chamila; Sunwoo, Hoon

    2017-04-10

    Casein-derived peptides are shown to possess radical scavenging and metal chelating properties. The objective of this study was to evaluate novel anti-inflammatory properties of casein hydrolysates (CH) produced by an eco-friendly process that combines high hydrostatic pressure with enzymatic hydrolysis (HHP-EH). Casein was hydrolysed by different proteases, including flavourzyme (Fla), savinase (Sav), thermolysin (Ther), trypsin (Try), and elastase (Ela) at 0.1, 50, 100, and 200 MPa pressure levels under various enzyme-to-substrate ratios and incubation times. Casein hydrolysates were evaluated for the degree of hydrolysis (DH), molecular weight distribution patterns, and anti-inflammatory properties in chemical and cellular models. Hydrolysates produced using HHP-EH exhibited higher DH values and proportions of smaller peptides compared to atmospheric pressure-enzymatic hydrolysis (AP-EH). Among five enzymes, Fla-digested HHP-EH-CH (HHP-Fla-CH) showed significantly higher antioxidant properties than AP-Fla-CH. The anti-inflammatory properties of HHP-Fla-CH were also observed by significantly reduced nitric oxide and by the suppression of the synthesis of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that 59% of the amino acids of the peptides in HHP-Fla-CH were composed of proline, valine, and leucine, indicating the potential anti-inflammatory properties. In conclusion, the HHP-EH method provides a promising technology to produce bioactive peptides from casein in an eco-friendly process.

  1. Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaeia

    2016-07-01

    Full Text Available Background: There has been evidence that proteins are potentially excellent source of antioxidants, antihypertensive and antimicrobial peptides, and that enzymatic hydrolysis is an effective method to release these peptides from protein molecules. The functional properties of protein hydrolysates depends on the protein substrate, the specificity of the enzymes, the conditions used during proteolysis, degree of hydrolysis, and the nature of peptides released including molecular weight, amino acid composition, and hydrophobicity. Context and purpose of this study: The biomass of Kluyveromyces marxianus was considered as a source of ACE inhibitory, antioxidant and antimicrobial peptides. Results: Autolysis and enzymatic hydrolysis were completed respectively, after 96 h and 5 h. Overall, trypsin (18.52% DH and chymotrypsin (21.59% DH treatments were successful in releasing antioxidant and ACE inhibitory peptides. Autolysate sample (39.51% DH demonstrated poor antioxidant and ACE inhibitory activity compared to trypsin and chymotrypsin hydrolysates. The chymotrypsin 3-5 kDa (301.6±22.81 μM TE/mg protein and trypsin < 3 kDa (280.16±39.16 μM TE/mg protein permeate peptide fractions showed the highest DPPH radical scavenging activity. The trypsin <3 kDa permeate peptide fraction showed the highest ABTS radical scavenging (1691.1±48.68 μM TE/mg protein and ACE inhibitory (IC50=0.03±0.001 mg/mL activities. The fraction (MW=5-10 kD obtained after autolysis treatment showed antibacterial activity against St. aureus and Lis. monocytogenes in well diffusion screening. The minimum inhibitory concentration (MIC value was 13.3 mg/mLagainst St. aureus and Lis. monocytogenes calculated by turbidimetric assay and it showed bactericidal activity against St. aureus at 21.3 mg/mL protein concentration. Conclusions: Altogether, the results of this study reveal that K. marxianus proteins contain specific peptides in their sequences which can be released by

  2. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Anna Dąbrowska

    2017-11-01

    Full Text Available The effect of whey protein hydrolysate (WPH addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP, WPH-SMP (ratio 1:1, WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  3. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    Science.gov (United States)

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  4. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; Aluko, Rotimi E; Strappe, Padraig

    2015-10-15

    This study assessed the ability of canola protein isolate (CPI) and enzymatic hydrolysates (CPHs) to inhibit adipogenic differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro. Cell viability was maintained at concentrations of 60 μg/ml of sample. Cells treated with Alcalase hydrolysate demonstrated a higher reduction in anti-adipogenic differentiation through quantitation by oil-red O staining. qPCR analysis showed that CPI and CPH-treated cells significantly inhibited PPARγ expression, a key transcription factor involved in adipocyte differentiation, as evident in an ∼ 60-80% fold reduction of PPARγ mRNA. Immunofluorescence staining for PPARγ protein also showed a reduced expression in some treated cells when compared to differentiated untreated cells. The 50% inhibition concentration (IC50) of CPI, CPHs and their membrane ultrafiltration fractions on pancreatic lipase (PL) activity ranged between 0.75 and 2.5 mg/ml, (p < 0.05) for the hydrolysed and unhydrolysed samples. These findings demonstrate that CPI and CPHs contain bioactive components which can modulate in vitro adipocyte differentiation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    Science.gov (United States)

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    Science.gov (United States)

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  7. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus.

    Science.gov (United States)

    Akanni, Gabriel B; du Preez, James C; Steyn, Laurinda; Kilian, Stephanus G

    2015-03-30

    The cladodes of Opuntia ficus-indica (prickly pear cactus) have a low protein content; for use as a balanced feed, supplementation with other protein sources is therefore desirable. We investigated protein enrichment by cultivation of the yeasts Candida utilis and Kluyveromyces marxianus in an enzymatic hydrolysate of the cladode biomass. Dilute acid pretreatment and enzymatic hydrolysis of sun-dried cladodes resulted in a hydrolysate containing (per litre) 45.5 g glucose, 6.3 g xylose, 9.1 g galactose, 10.8 g arabinose and 9.6 g fructose. Even though K. marxianus had a much higher growth rate and utilized l-arabinose and d-galactose more completely than C. utilis, its biomass yield coefficient was lower due to ethanol and ethyl acetate production despite aerobic cultivation. Yeast cultivation more than doubled the protein content of the hydrolysate, with an essential amino acid profile superior to sorghum and millet grains. This K. marxianus strain was weakly Crabtree positive. Despite its low biomass yield, its performance compared well with C. utilis. This is the first report showing that the protein content and quality of O. ficus-indica cladode biomass could substantially be improved by yeast cultivation, including a comparative evaluation of C. utilis and K. marxianus. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  8. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations.

    Science.gov (United States)

    da Cunha-Pereira, Fernanda; Hickert, Lilian Raquel; Sehnem, Nicole Teixeira; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia

    2011-03-01

    The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    Science.gov (United States)

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  10. Effect of alkaline cooking of maize on the content of fumonisins B1 and B2 and their hydrolysed forms.

    Science.gov (United States)

    De Girolamo, A; Lattanzio, V M T; Schena, R; Visconti, A; Pascale, M

    2016-02-01

    The effect of nixtamalization on the content of fumonisins (FBs), hydrolysed (HFBs) and partially hydrolysed (PHFBs) fumonisins in maize was investigated at laboratory-scale. Maize naturally contaminated with FBs and PHFBs was cooked with lime. Starting raw maize, steeping and washing waters and final masa fractions were analysed for toxin content. Control-cooking experiments without lime were also carried out. The nixtamalization reduced the amount of FBs and PHFBs in masa and converted them to HFBs. However, the three forms of fumonisins collected in all fractions amounted to 183%, indicating that nixtamalization made available forms of matrix-associated fumonisins that were then converted to their hydrolysed forms. Control-cooking enhanced FBs and PHFBs reduction, due to the solubility of fumonisins in water during the steeping process, but did not form HFBs. These findings indicate that benefits associated with enhancing the nutritional value of nixtamalized maize are also associated with a safer product in terms of fumonisin contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The use of protein hydrolysate improves the protein intestinal absorption in undernourished mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Coutinho Eridan M.

    2002-01-01

    Full Text Available Patients residing in endemic areas for schistosomiasis in Brazil are usually undernourished and when they develop the hepatosplenic clinical form of the disease should usually receive hospital care, many of them being in need of nutritional rehabilitation before specific treatment can be undertaken. In the mouse model, investigations carried out in our laboratory detected a reduced aminoacid uptake in undernourished animals which is aggravated by a superimposed infection with Schistosoma mansoni. However, in well-nourished infected mice no dysfunction occurs. In this study, we tried to improve the absorptive intestinal performance of undernourished mice infected with S. mansoni by feeding them with hydrolysed casein instead of whole casein. The values obtained for the coefficient of protein intestinal absorption (cpia among well-nourished mice were above 90% (either hydrolysed or whole protein. In undernourished infected mice, however, the cpia improved significantly after feeding them with hydrolysed casein, animals reaching values close to those obtained in well-nourished infected mice.

  12. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds.

    Science.gov (United States)

    Hernández-Álvarez, Alan Javier; Carrasco-Castilla, Janet; Dávila-Ortiz, Gloria; Alaiz, Manuel; Girón-Calle, Julio; Vioque-Peña, Javier; Jacinto-Hernández, Carmen; Jiménez-Martínez, Cristian

    2013-03-15

    Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry.

  13. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    Science.gov (United States)

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

  14. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column

    Directory of Open Access Journals (Sweden)

    Nampoothiri K. Madhavan

    1999-01-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.

  15. The use of cerebroprotein hydrolysate in dementia: A case series of 25 cases seen in a tertiary general hospital

    Directory of Open Access Journals (Sweden)

    Mosam Phirke

    2014-01-01

    Full Text Available Background: Cerebroprotein hydrolysate (Cerebrolysin is a pharmacological and neurotrophic agent that has been used widely in the management of various forms of dementia. Purpose: The present paper presents a retrospective chart review of 25 patients with dementia visiting a tertiary general hospital psychiatry unit who received cerebroprotein hydrolysate as an add on treatment for dementia. Materials and Methods: Twenty-five patients were administered 20 doses of cerebroprotein hydrolysate intravenously at a dose of 60 mg in 250 ml normal saline over 1-2 h after a test dose on 20 consecutive days. The cognitive assessment was done before the first injection and after the last dose using the Adenbrook′s Cognitive Examination-Revised (ACER and the Mini Mental Status Examination (MMSE. Results: There was significant improvement in scores on the ACER and MMSE, although the final scores remained in the dementia range. None of the patients experienced any major side effects. Conclusions: Cerebroprotein thus is a useful pharmacological option in the management of dementia and warrants further study and exploration.

  16. Effects of Whey Protein Hydrolysate Ingestion on Postprandial Aminoacidemia Compared with a Free Amino Acid Mixture in Young Men

    Directory of Open Access Journals (Sweden)

    Kyosuke Nakayama

    2018-04-01

    Full Text Available To stimulate muscle protein synthesis, it is important to increase the plasma levels of essential amino acids (EAA, especially leucine, by ingesting proteins. Protein hydrolysate ingestion can induce postprandial hyperaminoacidemia; however, it is unclear whether protein hydrolysate is associated with higher levels of aminoacidemia compared with a free amino acid mixture when both are ingested orally. We assessed the effects of whey protein hydrolysate (WPH ingestion on postprandial aminoacidemia, especially plasma leucine levels, compared to ingestion of a free amino acid mixture. This study was an open-label, randomized, 4 × 4 Latin square design. After 12–15 h of fasting, 11 healthy young men ingested the WPH (3.3, 5.0, or 7.5 g of protein or the EAA mixture (2.5 g. Blood samples were collected before ingestion and at time points from 10 to 120 min after ingestion, and amino acids, insulin, glucose and insulin-like growth factor-1 (IGF-1 concentrations in plasma were measured. Even though the EAA mixture and 5.0 g of the WPH contained similar amounts of EAA and leucine, the WPH was associated with significantly higher plasma EAA and leucine levels. These results suggest that the WPH can induce a higher level of aminoacidemia compared with a free amino acid mixture when both are ingested orally.

  17. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaei

    2018-04-01

    Full Text Available Kluyveromyces marxianus protein hydrolysates were prepared by two different sonicated-enzymatic (trypsin and chymotrypsin hydrolysis treatments to obtain antioxidant and ACE-inhibitory peptides. Trypsin and chymotrypsin hydrolysates obtained by 5 h, exhibited the highest antioxidant and ACE-inhibitory activities. After fractionation using ultrafiltration and reverse phase high performance liquid chromatography (RP-HPLC techniques, two new peptides were identified. One fragment (LL-9, MW = 1180 Da with the amino acid sequence of Leu-Pro-Glu-Ser-Val-His-Leu-Asp-Lys showed significant ACE inhibitory activity (IC50 = 22.88 μM while another peptide fragment (VL-9, MW = 1118 Da with the amino acid sequence of Val-Leu-Ser-Thr-Ser-Phe-Pro-Pro-Lys showed the highest antioxidant and ACE inhibitory properties (IC50 = 15.20 μM, 5568 μM TE/mg protein. The molecular docking studies revealed that the ACE inhibitory activities of VL-9 is due to interaction with the S2 (His513, His353, Glu281 and S′1 (Glu162 pockets of ACE and LL-9 can fit perfectly into the S1 (Thr345 and S2 (Tyr520, Lys511, Gln281 pockets of ACE. Keywords: K. marxianus, Bioactive peptides, Antioxidant, ACE inhibitory, Protein hydrolysate

  18. Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird's nest hydrolysate

    Science.gov (United States)

    Khushairay, Etty Syarmila Ibrahim; Ayub, Mohd Khan; Babji, Abdul Salam

    2014-09-01

    Edible bird nest (EBN) is a dried glutinous secretion from the salivary glands of several different swiftlet species. It is widely consumed as a health food due to its high beneficial effects to human health and has been considered to be one of the most precious food items by the Chinese for thousands of years. The aim of this study was to evaluate the effect of enzymatic hydrolysis on protein solubility (μg/g), the degree of hydrolysis (DH%), and peptide content (μg/g) of edible bird's nest hydrolysate. Initial protein solubility of boiled EBN was 25.5mg/g EBN. Treating the solubilized EBN with pancreatin 4NF for 1.0 - 1.5hours increased EBN protein solubility to 163.9mg/g and produced hydrolysate with DH% of 86.5% and 109.5mg/g peptide. EBN hydrolyzed with alcalase for 1.5 hours produced hydrolysate with protein solubility of 86.7mg/g, 82.7 DH% and had 104.1mg/g peptide content.

  19. Identification of New Anti-inflammatory Peptides from Zein Hydrolysate after Simulated Gastrointestinal Digestion and Transport in Caco-2 Cells.

    Science.gov (United States)

    Liang, Qiufang; Chalamaiah, Meram; Ren, Xiaofeng; Ma, Haile; Wu, Jianping

    2018-02-07

    Chronic inflammation is an underlying contributor to various chronic diseases. The objectives of this study were to investigate the anti-inflammatory activity of zein hydrolysate after simulated gastrointestinal digestion and Caco-2 cell absorption and to identify novel anti-inflammatory peptides after transport across Caco-2 cells. Three zein hydrolysates were prepared and further digested using gastrointestinal proteases; their transports were studied in Caco-2 cells. Anti-inflammatory activity was studied in endothelial EA.hy926 cells. Three zein hydrolysates and their digests significantly decreased the expression of tumor necrosis factor-α (TNF-α) induced pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) by 37.3-66.0%. Eleven novel peptides with 5-9 amino acid residues were sequenced; three peptides showed strong anti-inflammatory activity by inhibiting the VCAM-1 by 54-38.9% and intercellular cell adhesion molecule-1 (ICAM-1) by 36.5-28.6% at 0.2 mM. A new approach to identify novel anti-inflammatory peptides that could survive gastrointestinal digestion and absorption was developed.

  20. Angiotensin I converting enzyme inhibitory activity and antihypertensive effect in spontaneously hypertensive rats of cobia (Rachycentron canadum) head papain hydrolysate.

    Science.gov (United States)

    Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong

    2013-06-01

    Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.

  1. Identification of ace inhibitory cryptides in Tilapia protein hydrolysate by UPLC-MS/MS coupled to database analysis.

    Science.gov (United States)

    Yesmine, Ben Henda; Antoine, Bonnet; da Silva Ortência Leocádia, Nunes Gonzalez; Rogério, Boscolo Wilson; Ingrid, Arnaudin; Nicolas, Bridiau; Thierry, Maugard; Jean-Marie, Piot; Frédéric, Sannier; Stéphanie, Bordenave-Juchereau

    2017-05-01

    An ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry method was developed and applied to identify short angiotensin-I-converting enzyme (ACE) inhibitory cryptides in Tilapia (Oreochromis Niloticus) protein hydrolyzate. A database was created with previously identified ACE-inhibitory di- and tripeptides and the lowest molecular weight fraction of Tilapia hydrolysate was analysed for coincidences. Only VW and VY were identified. Further analysis of collected fractions conducted to the identification of 51 different peptides in major fractions. 19 peptides selected were synthesised and tested for their ACE inhibitory potential. TL, TI, IK, LR, LD, IQ, DI, AILE, ALLE, ALIE and AIIE were identified as new ACE inhibitors. The findings from this study point UPLC-MS/MS combined with the creation of a database as an efficient technique to identify specific short peptides within a complex hydrolysate, in addition with de novo sequencing. This efficient characterisation of bioactive factors like cryptides in protein hydrolysates will extend their use as functional foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate.

    Science.gov (United States)

    Suleria, Hafiz Ansar Rasul; Masci, Paul P; Addepalli, Rama; Chen, Wei; Gobe, Glenda C; Osborne, Simone A

    2017-07-01

    Abalone viscera contain sulphated polysaccharides with anti-thrombotic and anti-coagulant activities. In this study, a hydrolysate was prepared from blacklip abalone (Haliotis rubra) viscera using papain and bromelain and fractionated using ion exchange and size exclusion chromatography. Hydrolysates and fractions were investigated for in vitro thrombin inhibition mediated through heparin cofactor II (HCII) as well as anti-coagulant activity in plasma and whole blood. On the basis of sulphated polysaccharide concentration, the hydrolysate inhibited thrombin through HCII with an inhibitor concentration at 50% (IC50) of 16.5 μg/mL compared with 2.1 μg/mL for standard heparin. Fractionation concentrated HCII-mediated thrombin inhibition down to an IC50 of 1.8 μg/mL and improved anti-coagulant activities by significantly delaying clotting time. This study confirmed the presence of anti-thrombotic and anti-coagulant molecules in blacklip abalone viscera and demonstrated that these activities can be enriched with a simple chromatography regime. Blacklip abalone viscera warrant further investigation as a source of nutraceutical or functional food ingredients. Graphical abstract Schematic showing preparation of bioactive extracts and fractions from blacklip abalone.

  3. Avaliação de diferentes tipos de carvão ativo na destoxificação de hidrolisado de palha de arroz para produção de xilitol Evaluation of different kinds of activated charcoal used for rice straw hydrolysate detoxification for xylitol production

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2004-03-01

    Full Text Available O hidrolisado hemicelulósico de palha de arroz foi tratado com cinco tipos de carvão ativo (pó e granulado com o objetivo de remover, por adsorção, compostos tóxicos que podem agir como inibidores no processo de bioconversão de xilose em xilitol, por Candida guilliermondii. Os valores máximos de fator de rendimento em xilitol (Y P/S = 0,67g g-1 e produtividade volumétrica (Q P = 0,61g L-1 h-1 foram atingidos quando o hidrolisado foi tratado com carvão ativo em pó de partículas de tamanho pequeno (0,043mm, baixa granulometria (32% retidos em peneira de 325mesh e grande área superficial (860m² g-1, características as quais favoreceram a adsorção dos compostos tóxicos.Rice straw hemicellulosic hydrolysate was treated with five kinds of activated charcoal (powdered and granulated in order to remove, by adsorption, toxic compounds that can be act as inhibitors in the bioconversion of xylose to xylitol, by Candida guilliermondii. Maximum values of xylitol yield factor (Y P/S= 0.67g g-1 and volumetric productivity (Q P=0.61g L-1h-1 were provided by powdered activated charcoal with small particles size (0.043mm, low granulometry (32% restrained in 325mesh and large surface area (860m² g-1, characteristics which favoured the toxic compounds adsorption.

  4. Improvement of skin condition by oral administration of collagen hydrolysates in chronologically aged mice.

    Science.gov (United States)

    Wang, Zhenbin; Wang, Qing; Wang, Lin; Xu, Weidong; He, Yuanqing; Li, Yunliang; He, Song; Ma, Haile

    2017-07-01

    Collagen hydrolysates (CHs) have been demonstrated to have positive effects on skin photoaging by topical application or oral ingestion. However, there has been little research on their influence on skin chronological aging. In this study, 9-month-old female ICR mice were given normal AIN-93M diets containing CHs (2.5, 5 and 10% w/w) from Nile tilapia scale. After 6 months, the collagen content and antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities increased significantly (P skin did not change (P > 0.05). The color, luster and quantity of hair were obviously ameliorated. Moreover, the structure of epidermis and dermis, the density and distribution of collagen fibers and the ratio of type I to type III collagen were improved in a dose-dependent manner as shown by histochemical staining. Oral ingestion of CHs increased the collagen content and antioxidant enzyme activities and improved the appearance and structure of skin. These results suggest the potential of CHs as an anti-skin-aging ingredient in nutraceuticals or functional foods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins.

    Science.gov (United States)

    Salami, Saheed A; Valenti, Bernardo; Bella, Marco; O'Grady, Michael N; Luciano, Giuseppe; Kerry, Joseph P; Jones, Eleanor; Priolo, Alessandro; Newbold, Charles J

    2018-05-01

    This study characterised the response of ruminal fermentation and the rumen microbiome in lambs fed commercial vegetal sources of hydrolysable tannins (HT) and condensed tannins (CT). Forty-four lambs (19.56 ± 2.06 kg) were randomly assigned to either a concentrate diet (CON, n = 8) or CON supplemented with 4% of two HT [chestnut (Castanea sativa, HT-c) and tara (Caesalpinia spinosa, HT-t)] and CT [mimosa (Acacia negra, CT-m) and gambier (Uncaria gambir, CT-g)] extracts (all, n = 9) for 75 days pre-slaughter. Tannin supplementation did not influence ruminal fermentation traits. Quantitative PCR demonstrated that tannins did not affect the absolute abundance of ruminal bacteria or fungi. However, CT-m (-12.8%) and CT-g (-11.5%) significantly reduced the abundance of methanogens, while HT-t (-20.7%) and CT-g (-20.8%) inhibited protozoal abundance. Ribosomal amplicon sequencing revealed that tannins caused changes in the phylogenetic structure of the bacterial and methanogen communities. Tannins inhibited the fibrolytic bacterium, Fibrobacter and tended to suppress the methanogen genus, Methanosphaera. Results demonstrated that both HT and CT sources could impact the ruminal microbiome when supplemented at 4% inclusion level. HT-t, CT-m and CT-g extracts displayed specific antimicrobial activity against methanogens and protozoa without compromising ruminal fermentation in a long-term feeding trial.

  6. Preparation of ACE Inhibitory Peptides from Mytilus coruscus Hydrolysate Using Uniform Design

    Directory of Open Access Journals (Sweden)

    Jin-Chao Wu

    2013-01-01

    Full Text Available The angiotensin-I-converting enzyme (ACE inhibitory peptides from mussel, Mytilus coruscus, were investigated and the variable factors, protease concentration, hydrolysis time, pH, and temperature, were optimized using Uniform Design, a new statistical experimental method. The results proved that the hydrolysate of alkali proteases had high ACE-inhibitory activity, especially the alkali protease E1. Optimization by Uniform Design showed that the best hydrolysis conditions for preparation of ACE-inhibitory peptides from Mytilus coruscus were protease concentration of 36.0 U/mL, hydrolysis time of 2.7 hours, pH 8.2, and Temperature at 59.5°C, respectively. The verification experiments under optimum conditions showed that the ACE-inhibitory activity (91.3% were agreed closely with the predicted activity of 90.7%. The amino acid composition analysis of Mytilus coruscus ACE-inhibitory peptides proved that it had high percent of lysine, leucine, glycine, aspartic acid, and glutamic acid.

  7. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Science.gov (United States)

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. Published by Elsevier Ltd.

  8. Effect of cooking temperatures on protein hydrolysates and sensory quality in crucian carp (Carassius auratus) soup.

    Science.gov (United States)

    Zhang, Jinjie; Yao, Yanjia; Ye, Xingqian; Fang, Zhongxiang; Chen, Jianchu; Wu, Dan; Liu, Donghong; Hu, Yaqin

    2013-06-01

    Cooking methods have a significant impact on flavour compounds in fish soup. The effects of cooking temperatures (55, 65, 75, 85, 95, and 100 °C) on sensory properties and protein hydrolysates were studied in crucian carp (Carassius auratus) soup. The results showed that the soup prepared at 85 °C had the best sensory quality in color, flavour, amour, and soup pattern. Cooking temperature had significant influence on the hydrolysis of proteins in the soup showed by SDS-PAGE result. The contents of water soluble nitrogen (WSN) and non-protein nitrogen (NPN) increased with the cooking temperature, but the highest contents of total peptides and total free amino acids (FAA) were obtained at the cooking temperature of 85 °C. The highest contents of umami-taste active amino acid and branched-chain amino acids were also observed in the 85 °C sample. In conclusion, a cooking temperature of 85 °C was preferred for more excellent flavor and higher nutritional value of crucian carp soup.

  9. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates.

    Science.gov (United States)

    Torabizadeh, Homa; Mahmoudi, Asieh

    2018-03-01

    Inulinase can produce a high amount of fructose syrup from inulin in a one-step enzymatic process. Inulinase from Aspergillus niger was immobilized covalently on Fe 3 O 4 magnetic nanoparticles functionalized with wheat gluten hydrolysates (WGHs). Wheat gluten was enzymatically hydrolyzed by two endopeptidases Alcalase and Neutrase and related nanoparticles were prepared by desolvation method. Magnetite nanoparticles were coated with WGHs nanoparticles and then inulinase was immobilized onto it using glutaraldehyde as crosslinking agent. Parallel studies employing differential scanning calorimetry and field emmision scanning electron microscopy were carried out to observe functional and structural variations in free inulinase during immobilization. Optimum temperature of immobilized inulinase was increased, while, pH and K m values were decreased compared to free enzyme. Overall, a 12.3 folds rise was detected in enzyme half-life value after Immobilization at 75 °C and enzyme preserved 70% of its initial activity after 12 cycles of hydrolysis with 75% of enzyme loading.

  10. 3-MCPD in food other than soy sauce or hydrolysed vegetable protein (HVP).

    Science.gov (United States)

    Baer, Ines; de la Calle, Beatriz; Taylor, Philip

    2010-01-01

    This review gives an overview of current knowledge about 3-monochloropropane-1,2-diol (3-MCPD) formation and detection. Although 3-MCPD is often mentioned with regard to soy sauce and acid-hydrolysed vegetable protein (HVP), and much research has been done in that area, the emphasis here is placed on other foods. This contaminant can be found in a great variety of foodstuffs and is difficult to avoid in our daily nutrition. Despite its low concentration in most foods, its carcinogenic properties are of general concern. Its formation is a multivariate problem influenced by factors such as heat, moisture and sugar/lipid content, depending on the type of food and respective processing employed. Understanding the formation of this contaminant in food is fundamental to not only preventing or reducing it, but also developing efficient analytical methods of detecting it. Considering the differences between 3-MCPD-containing foods, and the need to test for the contaminant at different levels of food processing, one would expect a variety of analytical approaches. In this review, an attempt is made to provide an up-to-date list of available analytical methods and to highlight the differences among these techniques. Finally, the emergence of 3-MCPD esters and analytical techniques for them are also discussed here, although they are not the main focus of this review.

  11. Peptides derived from tryptic hydrolysate of Bacillus subtilis culture suppress fungal spoilage of table grapes.

    Science.gov (United States)

    Zhang, Bo; Wang, Jingnan; Ning, Shuqing; Yuan, Quan; Chen, Xiangning; Zhang, Yanyan; Fan, Junfeng

    2018-01-15

    This study confirmed the anti-fungal effect of trypsin-treated Bacillus subtilis culture (BC) (tryptic hydrolysate, TH) on mold growth on Kyoho grapes. We examined the anti-fungal activity of TH by identifying TH peptides and performing a computational docking analysis. TH was more potent than untreated BC in suppressing fungal growth on grapes. Specifically, TH maintained grape freshness by inhibiting respiration and rachis browning, maintaining firmness, and preventing weight loss. Thirty-six inhibitory peptides against β-1,3-glucan synthase (GS) were screened from 126 TH peptides identified through proteomic analysis. Among them, 13 peptides bound tightly to GS active pockets with lower binding energies than that of GppNHp. The most potent peptides, LFEIDEELNEK and FATSDLNDLYR, were synthesized, and further experiments showed that these peptides had a highly suppressive effect on GS activity and Aspergillus niger and Penicillium chrysogenum growth. Our results confirm that tryptic treatment is effective for improving the anti-fungal activity of BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Arsenic Removal from Pinctada martensii Enzymatic Hydrolysate by Using Zr(Ⅳ)-Loaded Chelating Resin

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoman; DAI Wenjin; SUN Huili; PAN Jianyu

    2013-01-01

    The present study investigated the removal of inorganic arsenic from Pinctada martensii enzymatic hydrolysate through unmodified resin (D296) and Zr(Ⅳ)-loaded chelating resin (Zr-D401).By loading Zr to macroporous chelating resin D401,the as exchange adsorption active sites are generated.This transforms D401 from a material that does not have the arsenic adsorption capacity into a material that has excellent arsenic exchange adsorption capacity.The static adsorption experiments were conducted to investigate the optimal removal condition for D296 and Zr-D401.The experimental results show that:the optimum condition for D296 is that T=25℃,pH=5,resin additive amount=1 g(50mL)-1,and contact time=10h,the corresponding arsenic removal rate being 65.7%,and protein loss being 2.33%; the optimum condition for Zr-D401 is that T=25 ℃,pH=8,resin additive amount=1 g (50 mL)-1,and contact time=10 h,the corresponding arsenic removal rate being 70.3%,and protein loss being 4.65%.These results show that both of the two resins are effective in arsenic removal for preserving useful substance.Our research provides scientific evidence and advances in the processing technology for heavy metal removal in shellfish.

  13. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate.

    Science.gov (United States)

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi

    2017-11-01

    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode.

    Science.gov (United States)

    Farup, J; Rahbek, S K; Vendelbo, M H; Matzon, A; Hindhede, J; Bejder, A; Ringgard, S; Vissing, K

    2014-10-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohydrate group (PLA). Subjects completed 12 weeks maximal knee extensor training with one leg using eccentric contractions and the other using concentric contractions. Before and after training cross-sectional area (CSA) of m. quadriceps and patellar tendon CSA was quantified with magnetic resonance imaging and a isometric strength test was used to assess maximal voluntary contraction (MVC) and rate of force development (RFD). Quadriceps CSA increased by 7.3 ± 1.0% (P tendon CSA increased by 14.9 ± 3.1% (P effect of contraction mode. MVC and RFD increased by 15.6 ± 3.5% (P effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training - irrespective of contraction mode. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners.

    Science.gov (United States)

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen; Bibby, Bo Martin; Madsen, Klavs

    2015-04-01

    This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week training camp (13 exercise sessions). Half of the runners (PRO-CHO) ingested a protein drink before (0.3 g kg(-1)) and a protein-carbohydrate drink after (0.3 g protein kg(-1) and 1 g carbohydrate kg(-1)) each exercise session. The others ingested energy and time-matched carbohydrate drinks (CHO). A 4-km run-test with 20 control points was performed before and on the last day of the intervention. Blood and saliva were obtained in the mornings, before and after run-tests, and after the last training session. During the intervention, questionnaires were fulfilled regarding psychological sense of performance capacity and motivation. PRO-CHO and not CHO improved performance in the 4-km run-test (interaction p performance capacity during the intervention was greater in CHO (p performance and reduces markers of muscle damage during a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers.

  16. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin.

    Science.gov (United States)

    Karnjanapratum, Supatra; O'Callaghan, Yvonne C; Benjakul, Soottawat; O'Brien, Nora

    2016-07-01

    The in vitro cellular bioactivities including, antioxidant, immunomodulatory and antiproliferative effects of a gelatin hydrolysate (GH) prepared from unicorn leatherjacket skin, using partially purified glycyl endopeptidase, were investigated in order to optimize the use of fish skin waste products as functional food ingredients. GH under the tested concentrations (750-1500 µg mL(-1) ) protected against H2 O2 -induced DNA damage in U937 cells. GH also protected against the H2 O2 -induced reduction in cellular antioxidant enzyme activities, superoxide dismutase and catalase, in HepG2 cells. GH demonstrated immunomodulatory potential by reducing pro-inflammatory cytokine (interleukin-6 (IL-6) and IL-1β) production and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Cell proliferation in human colon cancer (Caco-2) cells was significantly reduced in a dose-dependent manner following incubation with GH. These results indicate that GH has several bioactivities which support its potential as a promising functional food ingredient with various health benefits. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  18. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Dede Saputra

    2016-03-01

    Full Text Available Fish Protein Hydrolysates (FPH is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified by analyzing the content of dissolved total nitrogen (NTT compared with nitrogen total ingredient (NTB in order to get the value of total soluble nitrogen/total nitrogen material (NTT/NTB. The hydrolysis processes were carried out in 0,26% (w/v papain, 60 οC for 3 hours. The result showed that the specific activity of papain enzyme was about 3.28 U/mg. Solubility of FPH by comparing NTT/NTB was about 0.29% (fish meat and 0.40% (fish viscera. Proximate test of protein content of fish meat was 18.34 ± 0.04 (g/100 g; while viscera was about 0.95±0.04 (g/100 g. The result indicated that product waste of fish carp had potential as a major of source of FPH.

  19. Preparation and bioavailability of calcium-chelating peptide complex from tilapia skin hydrolysates.

    Science.gov (United States)

    Chen, Jun; Qiu, Xujian; Hao, Gengxin; Zhang, Meng; Weng, Wuyin

    2017-11-01

    With the continuous improvement in material life, the generation of fish by-products and the market demand for calcium supplements have been increasing in China. Therefore a calcium-chelating peptide complex (CPC) from tilapia skins was prepared and its effect on calcium (Ca)-deficient mice was investigated. The molecular weight distribution of CPC mainly ranged from 2000 to 180 Da, and its contents of complete amino acids and free amino acids were 85.30 and 8.67% (w/w) respectively. Scanning electron microscopy images and Fourier transform infrared data revealed that Ca crystals were bound with gelatin hydrolysates via interaction between Ca ions and NH/CN groups. When Ca-deficient mice were fed CPC and CaCO 3 respectively for 4 weeks, no significant differences in serum biochemistry or bone mineral density were found. However, the length, weight, Ca content and hydroxyproline content of the femur, Ca absorption and body weight gain of mice fed CPC were significantly higher than those of mice fed CaCO 3 . It is concluded that the prepared CPC could promote bone formation via better bioavailability of Ca and an increase in bone collagen. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. The Drug Release Profile from Calcium-induced Alginate Gel Beads Coated with an Alginate Hydrolysate

    Directory of Open Access Journals (Sweden)

    Susumu Kawashima

    2007-11-01

    Full Text Available Calcium-induced alginate gel bead (Alg-Ca coated with an alginate hydrolysate(Alg, e.g. the guluronic acid block (GB was prepared and the model drug, hydrocortisonerelease profiles were investigated under simulated gastrointestinal conditions. Theirmolecular weights were one sixth or one tenth that of Alg and the diffraction patterns of thehydrolysates resembled that of Alg. The drug release rate from Alg-Ca coated with GBapparently lowered than that of Alg-Ca (coating-free in the gastric juice (pH1.2. And thecoating did not resist the disintegration of Alg-Ca in the intestinal juice (pH 6.8 and thegel erosion accelerated the drug release. On the other hand, for the coated Alg-Cacontaining chitosan, the drug release showed zero-order kinetics without rapid erosion ofAlg-Ca. The drug release rate from Alg-Ca was able to be controlled by the coating andmodifying the composition of the gel matrix.