WorldWideScience

Sample records for heme groups neighboring

  1. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  2. Single or functionalized fullerenes interacting with heme group

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  3. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighborsgroup members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  4. Heme transport and erythropoiesis

    Yuan, Xiaojing; Fleming, Mark D.; Hamza, Iqbal

    2013-01-01

    In humans, systemic heme homeostasis is achieved via coordinated regulation of heme synthesis, transport and degradation. Although the heme biosynthesis and degradation pathways have been well characterized, the pathways for heme trafficking and incorporation into hemoproteins remains poorly understood. In the past few years, researchers have exploited genetic, cellular and biochemical tools, to identify heme transporters and, in the process, reveal unexpected functions for this elusive group of proteins. However, given the complexity of heme trafficking pathways, current knowledge of heme transporters is fragmented and sometimes contradictory. This review seeks to focus on recent studies on heme transporters with specific emphasis on their functions during erythropoiesis. PMID:23415705

  5. Peroxide-Dependent Analyte Conversion by the Heme Prosthetic Group, the Heme Peptide “Microperoxidase-11” and Cytochrome c on Chitosan Capped Gold Nanoparticles Modified Electrodes

    Frieder W. Scheller

    2012-05-01

    Full Text Available In view of the role ascribed to the peroxidatic activity of degradation products of cytochrome c (cyt c in the processes of apoptosis, we investigate the catalytic potential of heme and of the cyt c derived heme peptide MP-11 to catalyse the cathodic reduction of hydrogen peroxide and to oxidize aromatic compounds. In order to check whether cyt c has an enzymatic activity in the native state where the protein matrix should suppress the inherent peroxidatic activity of its heme prosthetic group, we applied a biocompatible immobilization matrix and very low concentrations of the co-substrate H2O2. The biocatalysts were entrapped on the surface of a glassy carbon electrode in a biocompatible chitosan layer which contained gold nanoparticles. The electrochemical signal for the peroxide reduction is generated by the redox conversion of the heme group, whilst a reaction product of the substrate oxidation is cathodically reduced in the substrate indication. The catalytic efficiency of microperoxidase-11 is sufficient for sensors indicating HRP substrates, e.g., p-aminophenol, paracetamol and catechol, but also the hydroxylation of aniline and dehalogenation of 4-fluoroaniline. The lower limit of detection for p-aminophenol is comparable to previously published papers with different enzyme systems. The peroxidatic activity of cyt c immobilized in the chitosan layer for catechol was found to be below 1 per mill and for p-aminophenol about 3% as compared with that of heme or MP-11.

  6. Heme Sensor Proteins*

    Girvan, Hazel M.; Munro, Andrew W.

    2013-01-01

    Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins. PMID:23539616

  7. Deformations of the Heme Group of Different Ferrocytochrome c Proteins Probed by Resonance Raman Spectroscopy

    Hagarman, Andrew; Schweitzer-Stenner, Reinhard; Wallace, Carmichael; Laberge, Monique

    2008-01-01

    We measured the low-frequency polarized resonance Raman spectra of horse heart, chicken, and yeast(C102T) ferrocytochromes c with Soret excitation. We examined the out-of-plane deformations of the heme groups by determining the relative intensities and depolarization ratios of a variety of out-of-plane and in-plane Raman active bands. Analysis of relative Raman intensities shows differences in non-planarity of the heme groups of yeast(C102T), horse heart and chicken cytochrome c. Cytochrome c has been shown to have a dominant ruffling (B 1u ) deformation by means of normal coordinate structural decomposition (NSD) analysis of the heme group in crystal structures. The presence and intensity of B 1u modes, γ 10 -γ 12 , support the indication of ruffling being the major contribution to the non-planar deformations in cytochrome c. Other types of non-planar deformations like doming (A 2U ) and waving (E g ) can be deduced from the Raman activity of γ 5 (A 2u ), γ 21 and γ 22 (E g ). The depolarization ratios of γ 5 , γ 10 , γ 11 and γ 12 are larger than 0.125, indicating the presence of other deformations such as saddling (B 2u ) and propellering (A 1u ), which is again in agreement with the crystal structures of horse heart and yeast ferrocytochrome c. An analysis of the intensities and depolarization ratios of out-of-plane modes revealed that ruffling is comparable in yeast and horse heart cytochrome c, saddling is larger and doming as well as propellering are lower in yeast cytochrome c. With respect to doming and ruffling our results contradict values obtained from the NSD analysis of the corresponding crystal structures. With respect to saddling, our data are in agreement with the crystal structure. The NSD analysis of heme structures resulting from MD simulations did not correlate very well with the spectroscopically obtained results concerning the ruffling and doming coordinate, whereas a qualitative agreement was again obtained for saddling.

  8. Ligand exchange reactions of the heme group in hemoglobin and myoglobin as studied by pulse radiolysis

    Raap, I.A.

    1978-01-01

    In this thesis, the kinetic aspects of the ligand exchange reactions of hemoglobin are studied using the pulse radiolysis technique, in particular, the reactions of hydrated electrons with methemoglobin. A hitherto unobserved transient state of the heme group is observed which appears immediately after the rapid reduction process. The absorption spectrum of this new species has the characteristics of a ferrous low-spin state and can therefore be ascribed to the formation of a hemochrome non-equilibrium state. The subsequent relaxation of this intermediate structure into a deoxy-conformation is dependent on the amount of proton activity in the solution and on the presence of organic and inorganic phosphate anions. The final absorption spectrum of the heme group is shown to correspond to a ferrous high-spin state in the relaxed quaternary conformation. This is in agreement with the kinetics observen the binding of carbon monoxide and oxygen to partially reduced methemoglobin. At reduction degrees of methemoglobin as well as of valncy 8ybrids where there is an important contribution from species with two reduced subunits, the binding of carbon monoxide to hemoglobin occurs with on-rate constants characteristic for the tensed quaternary conformation. It is argued that this conformational change of hemoglobin (the R-to-T transition) takes place very rapidly, which suggests the participation of an activated relaxed conformation. In addition, it is found that there is a distinct heterogeneity in the binding of oxygen to partially reduced methemoglobin even at low degrees of reduction

  9. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.

    Li, Xianchan; Zheng, Wei; Zhang, Limin; Yu, Ping; Lin, Yuqing; Su, Lei; Mao, Lanqun

    2009-10-15

    This study demonstrates a facile and effective electrochemical method for investigation of hemoglobin (Hb) unfolding based on the electrochemical redox property of heme groups in Hb at bare glassy carbon (GC) electrodes. In the native state, the heme groups are deeply buried in the hydrophobic pockets of Hb with a five-coordinate high-spin complex and thus show a poor electrochemical property at bare GC electrodes. Upon the unfolding of Hb induced by the denaturant of guanidine hydrochloride (GdnHCl), the fifth coordinative bond between the heme groups and the residue of the polypeptides (His-F8) is broken, and as a result, the heme groups initially buried deeply in the hydrophobic pockets dissociate from the polypeptide chains and are reduced electrochemically at GC electrodes, which can be used to probe the unfolding of Hb. The results on the GdnHCl-induced Hb unfolding obtained with the electrochemical method described here well coincide with those studied with other methods, such as UV-vis spectroscopy, fluorescence, and circular dichroism. The application of the as-established electrochemical method is illustrated to study the kinetics of GdnHCl-induced Hb unfolding, the GdnHCl-induced unfolding of another kind of hemoprotein, catalase, and the pH-induced Hb unfolding/refolding.

  10. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.

    Hanna, David A; Martinez-Guzman, Osiris; Reddi, Amit R

    2017-04-04

    Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.

  11. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase.

    Kwon, Yong-Chan; Oh, In-Seok; Lee, Nahum; Lee, Kyung-Ho; Yoon, Yeo Joon; Lee, Eun Yeol; Kim, Byung-Gee; Kim, Dong-Myung

    2013-04-01

    Harnessing the isolated protein synthesis machinery, cell-free protein synthesis reproduces the cellular process of decoding genetic information in artificially controlled environments. More often than not, however, generation of functional proteins requires more than simple translation of genetic sequences. For instance, many of the industrially important enzymes require non-protein prosthetic groups for biological activity. Herein, we report the complete cell-free biogenesis of a heme prosthetic group and its integration with concurrent apoenzyme synthesis for the production of functional P450 monooxygenase. Step reactions required for the syntheses of apoenzyme and the prosthetic group have been designed so that these two separate pathways take place in the same reaction mixture, being insulated from each other. Combined pathways for the synthesis of functional P450 monooxygenase were then further integrated with in situ assay reactions to enable real-time measurement of enzymatic activity during its synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  12. Control of intracellular heme levels: Heme transporters and Heme oxygenases

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. PMID:21238504

  13. Heme Mobilization in Animals: A Metallolipid's Journey.

    Reddi, Amit R; Hamza, Iqbal

    2016-06-21

    Heme is universally recognized as an essential and ubiquitous prosthetic group that enables proteins to carry out a diverse array of functions. All heme-dependent processes, from protein hemylation to heme signaling, require the dynamic and rapid mobilization of heme to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitates that heme mobilization is carefully controlled at the cellular and systemic level. However, the molecules and mechanisms that mediate heme homeostasis are poorly understood. In this Account, we provide a heuristic paradigm with which to conceptualize heme trafficking and highlight the most recent developments in the mechanisms underlying heme trafficking. As an iron-containing tetrapyrrole, heme exhibits properties of both transition metals and lipids. Accordingly, we propose its transport and trafficking will reflect principles gleaned from the trafficking of both metals and lipids. Using this conceptual framework, we follow the flow of heme from the final step of heme synthesis in the mitochondria to hemoproteins present in various subcellular organelles. Further, given that many cells and animals that cannot make heme can assimilate it intact from nutritional sources, we propose that intercellular heme trafficking pathways must exist. This necessitates that heme be able to be imported and exported from cells, escorted between cells and organs, and regulated at the organismal level via a coordinated systemic process. In this Account, we highlight recently discovered heme transport and trafficking factors and provide the biochemical foundation for the cell and systems biology of heme. Altogether, we seek to reconceptualize heme from an exchange inert cofactor buried in hemoprotein active sites to an exchange labile and mobile metallonutrient.

  14. Control of intracellular heme levels: Heme transporters and heme oxygenases

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number...

  15. Renormalization-group studies of antiferromagnetic chains. I. Nearest-neighbor interactions

    Rabin, J.M.

    1980-01-01

    The real-space renormalization-group method introduced by workers at the Stanford Linear Accelerator Center (SLAC) is used to study one-dimensional antiferromagnetic chains at zero temperature. Calculations using three-site blocks (for the Heisenberg-Ising model) and two-site blocks (for the isotropic Heisenberg model) are compared with exact results. In connection with the two-site calculation a duality transformation is introduced under which the isotropic Heisenberg model is self-dual. Such duality transformations can be defined for models other than those considered here, and may be useful in various block-spin calculations

  16. From neighbors to picketers: unemployed workers’ movements and subaltern groups in contemporary Argentina

    Renake Bertholdo David das Neves

    2016-12-01

    Full Text Available Since the 1980s, in Argentina, the neighborhood becomes the vital space – the only one – of political action and organization for the most fragile fractions of subaltern groups. This article intents to analyze the significant changes that the raise and development of the Unemployed Workers Movements (picketers operate, since the late 1990s, in the political action and thought of this popular sectors, even though the neighborhood still remains the backbone of their political organization. We understand that the Argentinean MTD express, in many ways, multiple aspects about the reconfiguration of the relation between labor and capital in contemporary capitalism (post-1970.The discussion presented here derives from the research for our PhD degree, whose sources were documents produced by MTD – papers, journals, pamphlets, releases – and thematic and life history interviews with those movements’ workers.

  17. Heme Oxygenase-1 and breast cancer resistance protein protect against heme-induced toxicity

    Wagener, Frank A D T G; Dankers, Anita C A; van Summeren, Frank; Scharstuhl, Alwin; van den Heuvel, Jeroen J M W; Koenderink, Jan B; Pennings, Sebastiaan W C; Russel, Frans G M; Masereeuw, R.

    2013-01-01

    Heme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating

  18. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  19. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  20. Heme and erythropoieis: more than a structural role

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own ...

  1. Neighbors United for Health

    Westhoff, Wayne W.; Corvin, Jaime; Virella, Irmarie

    2009-01-01

    Modeled upon the ecclesiastic community group concept of Latin America to unite and strengthen the bond between the Church and neighborhoods, a community-based organization created Vecinos Unidos por la Salud (Neighbors United for Health) to bring health messages into urban Latino neighborhoods. The model is based on five tenants, and incorporates…

  2. Transmutation of a heme protein.

    Barker, P D; Ferrer, J C; Mylrajan, M; Loehr, T M; Feng, R; Konishi, Y; Funk, W D; MacGillivray, R T; Mauk, A G

    1993-01-01

    Residue Asn57 of bovine liver cytochrome b5 has been replaced with a cysteine residue, and the resulting variant has been isolated from recombinant Escherichia coli as a mixture of four major species: A, BI, BII, and C. A combination of electronic spectroscopy, 1H NMR spectroscopy, resonance Raman spectroscopy, electrospray mass spectrometry, and direct electrochemistry has been used to characterize these four major cytochrome derivatives. The red form A (E(m) = -19 mV) is found to possess a heme group bound covalently through a thioether linkage involving Cys57 and the alpha carbon of the heme 4-vinyl group. Form BI has a covalently bound heme group coupled through a thioether linkage involving the beta carbon of the heme 4-vinyl group. Form BII is similar to BI except that the sulfur involved in the thioether linkage is oxidized to a sulfoxide. The green form C (E(m) = 175 mV) possesses a noncovalently bound prosthetic group with spectroscopic properties characteristic of a chlorin. A mechanism is proposed for the generation of these derivatives, and the implications of these observations for the biosynthesis of cytochrome c and naturally occurring chlorin prosthetic groups are discussed. PMID:8341666

  3. Linear perturbation renormalization group for the two-dimensional Ising model with nearest- and next-nearest-neighbor interactions in a field

    Sznajd, J.

    2016-12-01

    The linear perturbation renormalization group (LPRG) is used to study the phase transition of the weakly coupled Ising chains with intrachain (J ) and interchain nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions forming the triangular and rectangular lattices in a field. The phase diagrams with the frustration point at J2=-J1/2 for a rectangular lattice and J2=-J1 for a triangular lattice have been found. The LPRG calculations support the idea that the phase transition is always continuous except for the frustration point and is accompanied by a divergence of the specific heat. For the antiferromagnetic chains, the external field does not change substantially the shape of the phase diagram. The critical temperature is suppressed to zero according to the power law when approaching the frustration point with an exponent dependent on the value of the field.

  4. Genetic relatedness of indigenous ethnic groups in northern Borneo to neighboring populations from Southeast Asia, as inferred from genome-wide SNP data.

    Yew, Chee Wei; Hoque, Mohd Zahirul; Pugh-Kitingan, Jacqueline; Minsong, Alexander; Voo, Christopher Lok Yung; Ransangan, Julian; Lau, Sophia Tiek Ying; Wang, Xu; Saw, Woei Yuh; Ong, Rick Twee-Hee; Teo, Yik-Ying; Xu, Shuhua; Hoh, Boon-Peng; Phipps, Maude E; Kumar, S Vijay

    2018-07-01

    The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (F ST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent

  5. Hemoglobin and heme scavenger receptors

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  6. Heme and erythropoieis: more than a structural role.

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-06-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency. Copyright© Ferrata Storti Foundation.

  7. Proton NMR study of the influence of heme vinyl groups on the formation of the isomeric forms of sulfmyoglobin

    Chatfield, M.J.; La Mar, G.N.; Balch, A.L.; Smith, K.M.; Parish, D.W.; LePage, T.J.

    1986-01-01

    The formation of sulfmyoglobin has been investigated for myoglobin reconstituted with hemins having vinyls replaced by hydrogens to determine the participation of the vinyl groups in the reaction processes. Green complexes are produced in all cases, proving that vinyls are not obligatory for the formation of sulfproteins. In the presence of the 4-vinyl group, the 1 H NMR spectra of the met-cyano derivatives indicate the formation of three green species; however, the most stable of these products is not formed in the absence of this group, confirming reaction of the 4-vinyl in this species. Two new red extractable sulfmyoglobin derivatives are formed in the absence of the 4-vinyl group. (Auth.)

  8. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry.

    Blincoe, William D; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A; Joyce, Leo A; Mangion, Ian; Sheng, Huaming

    2018-04-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS 1 ). Significant water/alcohol loss (>30% abundance in MS 1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. Graphical Abstract ᅟ.

  9. Molecular hijacking of siroheme for the synthesis of heme and d1 heme.

    Bali, Shilpa; Lawrence, Andrew D; Lobo, Susana A; Saraiva, Lígia M; Golding, Bernard T; Palmer, David J; Howard, Mark J; Ferguson, Stuart J; Warren, Martin J

    2011-11-08

    Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.

  10. Heme metabolism as an integral part of iron homeostasis

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  11. [Heme metabolism as an integral part of iron homeostasis].

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-02

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  12. Heme Recognition By a Staphylococcus Aureus IsdE

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  13. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  14. Mini Heme-Proteins: Designability of Structure and Diversity of Functions.

    Rai, Jagdish

    2017-08-30

    Natural heme proteins may have heme bound to poly-peptide chain as a cofactor via noncovalent forces or heme as a prosthetic group may be covalently bound to the proteins. Nature has used porphyrins in diverse functions like electron transfer, oxidation, reduction, ligand binding, photosynthesis, signaling, etc. by modulating its properties through diverse protein matrices. Synthetic chemists have tried to utilize these molecules in equally diverse industrial and medical applications due to their versatile electro-chemical and optical properties. The heme iron has catalytic activity which can be modulated and enhanced for specific applications by protein matrix around it. Heme proteins can be designed into novel enzymes for sterio specific catalysis ranging from oxidation to reduction. These designed heme-proteins can have applications in industrial catalysis and biosensing. A peptide folds around heme easily due to hydrophobic effect of the large aromatic ring of heme. The directional property of co-ordinate bonding between peptide and metal ion in heme further specifies the structure. Therefore heme proteins can be easily designed for targeted structure and catalytic activity. The central aromatic chemical entity in heme viz. porphyrin is a very ancient molecule. Its presence in the prebiotic soup and in all forms of life suggests that it has played a vital role in the origin and progressive evolution of living organisms. Porphyrin macrocycles are highly conjugated systems composed of four modified pyrrole subunits interconnected at their α -carbon atoms via methine (=CH-) bridges. Initial minimalist models of hemoproteins focused on effect of heme-ligand co-ordinate bonding on chemical reactivity, spectroscopy, electrochemistry and magnetic properties of heme. The great sensitivity of these spectroscopic features of heme to its surrounding makes them extremely useful in structural elucidation of designed heme-peptide complexes. Therefore heme proteins are

  15. Genome-based analysis of heme biosynthesis and uptake in prokaryotic systems.

    Cavallaro, Gabriele; Decaria, Leonardo; Rosato, Antonio

    2008-11-01

    Heme is the prosthetic group of many proteins that carry out a variety of key biological functions. In addition, for many pathogenic organisms, heme (acquired from the host) may constitute a very important source of iron. Organisms can meet their heme demands by taking it up from external sources, by producing the cofactor through a dedicated biosynthetic pathway, or both. Here we analyzed the distribution of proteins specifically involved in the processes of heme biosynthesis and heme uptake in 474 prokaryotic organisms. These data allowed us to identify which organisms are capable of performing none, one, or both processes, based on the similarity to known systems. Some specific instances where one or more proteins along the pathways had unusual modifications were singled out. For two key protein domains involved in heme uptake, we could build a series of structural models, which suggested possible alternative modes of heme binding. Future directions for experimental work are given.

  16. Heme Synthesis and Acquisition in Bacterial Pathogens

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  17. Heme isomers substantially affect heme's electronic structure and function

    Kepp, Kasper Planeta

    2017-01-01

    Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as du...

  18. [Update on the biology of heme synthesis in erythroid cells].

    Fujiwara, Tohru; Harigae, Hideo

    2015-02-01

    Heme is a prosthetic group of hemoproteins playing important roles in oxygen transport, detoxification, circadian rhythm, microRNA processing, regulation of transcription, and translation. The majority of heme (-85%) is synthesized in red blood cells mainly for hemoglobin production, whereas hepatocytes account for most of the rest, functioning primarily in the synthesis of cytochrome P450 enzymes and mitochondrial respiratory enzymes. Thus, failure of heme biosynthesis causes severe inherited or acquired disorders in humans, including porphyria and sideroblastic anemia. The heme biosynthetic pathway is composed of eight enzymes that work in either mitochondria or the cytoplasm, which have been extensively researched and frequently reviewed. On the other hand, the mechanisms governing transport and intracellular trafficking of heme intermediates, as well as their potential links to human diseases, are poorly understood. Herein, we focus on recent understanding of the heme biosynthetic pathway and on human disorders due to defective heme synthesis in erythroid cells, such as X-linked sideroblastic anemia and erythropoietic protoporphyria.

  19. NeighborHood

    Corominola Ocaña, Víctor

    2015-01-01

    NeighborHood és una aplicació basada en el núvol, adaptable a qualsevol dispositiu (mòbil, tablet, desktop). L'objectiu d'aquesta aplicació és poder permetre als usuaris introduir a les persones del seu entorn més immediat i que aquestes persones siguin visibles per a la resta d'usuaris. NeighborHood es una aplicación basada en la nube, adaptable a cualquier dispositivo (móvil, tablet, desktop). El objetivo de esta aplicación es poder permitir a los usuarios introducir a las personas de su...

  20. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.

    Rice, Selena L; Preimesberger, Matthew R; Johnson, Eric A; Lecomte, Juliette T J

    2014-12-01

    The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology.

    Igarashi, Kazuhiko; Watanabe-Matsui, Miki

    2014-04-01

    The connection between gene regulation and metabolism is an old issue that warrants revisiting in order to understand both normal as well as pathogenic processes in higher eukaryotes. Metabolites affect the gene expression by either binding to transcription factors or serving as donors for post-translational modification, such as that involving acetylation and methylation. The focus of this review is heme, a prosthetic group of proteins that includes hemoglobin and cytochromes. Heme has been shown to bind to several transcription factors, including Bach1 and Bach2, in higher eukaryotes. Heme inhibits the transcriptional repressor activity of Bach1, resulting in the derepression of its target genes, such as globin in erythroid cells and heme oxygenase-1 in diverse cell types. Since Bach2 is important for class switch recombination and somatic hypermutation of immunoglobulin genes as well as regulatory and effector T cell differentiation and the macrophage function, the heme-Bach2 axis may regulate the immune response as a signaling cascade. We discuss future issues regarding the topic of the iron/heme-gene regulation network based on current understanding of the heme-Bach axis, including the concept of "iron immunology" as the synthesis of the iron metabolism and the immune response.

  2. Alteration of the Regiospecificity of Human Heme Oxygenase-1 by Unseating of the Heme but not Disruption of the Distal Hydrogen Bonding Network†

    Wang, Jinling; Evans, John P.; Ogura, Hiroshi; La Mar, Gerd N.; Ortiz de Montellano, Paul R.

    2008-01-01

    Heme oxygenase regiospecifically oxidizes heme at the α-meso position to give biliverdin IXα, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry, but partially shifts the oxidation to the β/δ-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by ~90°, causes a slight loss of regiospecificity, but combined with the R183E and K18E mutations results primarily in β/δ-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network, impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane. PMID:16388581

  3. Structure and Heme-Independent Peroxidase Activity of a Fully-Coordinated Mononuclear Mn(II) Complex with a Schiff-Base Tripodal Ligand Containing Three Imidazole Groups

    Sarkar, Shuranjan; Lee, Hong In [Kyungpook National University, Daegu (Korea, Republic of); Moon, Do Hyun [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Lah, Myoung Soo [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2010-11-15

    New complex [Mn(II)H{sub 1.5}L]{sub 2}[Mn(II)H{sub 3}L]{sub 2}(ClO{sub 4}){sub 5}·3H{sub 2}O, where H{sub 3}L is tris{2-(4-imidazolyl)methyliminoethyl} amine (imtren), has been prepared by reacting manganese(II) perchlorate hexahydrate with the imtren ligand in methanol. X-ray crystallographic study revealed that the imtren ligand hexadentately binds to Mn(II) ion through the three Schiff-base imine N atoms and three imidazole N atoms with a distorted octahedral geometry, and the apical tertiary amine N atom of the ligand pseudo-coordinates to Mn(II), forming overall a pseudo-seven coordination environment. The hydrogen-bonds between imidazole and imidazolate of [Mn(II)H{sub 1.5}L]{sup 0.5+} complex ions are extended to build a 2D puckered network with trigonal voids. [Mn(II)H{sub 3}L]{sup 2+} complex ions constitutes another extended 2D puckered layer without hydrogen bonds. Two layers are wedged each other to constitute overall stack of the crystal. Peroxidase activity of complex 1 was examined by observing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline)- 6-sulfonic acid (ABTS) with hydrogen peroxide in the presence of complex 1. Generation of ABTS{sup +·} was observed by UV-vis and EPR spectroscopies, indicating that the complex 1, a fully-coordinated mononuclear Mn(II) complex with nitrogen-only ligand, has a heme-independent peroxidase activity.

  4. Identifying influential neighbors in animal flocking.

    Li Jiang

    2017-11-01

    Full Text Available Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors.

  5. Identifying influential neighbors in animal flocking.

    Jiang, Li; Giuggioli, Luca; Perna, Andrea; Escobedo, Ramón; Lecheval, Valentin; Sire, Clément; Han, Zhangang; Theraulaz, Guy

    2017-11-01

    Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors.

  6. Heme and blood-feeding parasites: friends or foes?

    Glanfield Amber

    2010-11-01

    Full Text Available Abstract Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.

  7. Heme and blood-feeding parasites: friends or foes?

    2010-01-01

    Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification. PMID:21087517

  8. The heme-heme oxygenase system: a molecular switch in wound healing.

    Wagener, F.A.D.T.G.; Beurden, H.E. van; Hoff, J.W. Von den; Adema, G.J.; Figdor, C.G.

    2003-01-01

    When cells are injured they release their contents, resulting in a local accumulation of free heme proteins and heme. Here, we investigated the involvement of heme and its degrading enzyme heme oxygenase (HO) in the inflammatory process during wound healing. We observed that heme directly

  9. Heme A synthase in bacteria depends on one pair of cysteinyls for activity.

    Lewin, Anna; Hederstedt, Lars

    2016-02-01

    Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  12. Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters

    Norifumi Muraki

    2016-05-01

    Full Text Available Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.

  13. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides.

    Mashhadi, Zahra; Newcomer, Marcia E; Brash, Alan R

    2016-11-03

    This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H 2 O 2 to fatty acid hydroperoxide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Heme metabolism in stress regulation and protein production: from Cinderella to a key player

    Martinez Ruiz, José Luis; Petranovic, D.; Nielsen, Jens

    2016-01-01

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer....

  15. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. A dual component heme biosensor that integrates heme transport and synthesis in bacteria.

    Nobles, Christopher L; Clark, Justin R; Green, Sabrina I; Maresso, Anthony W

    2015-11-01

    Bacterial pathogens acquire host iron to power cellular processes and replication. Heme, an iron-containing cofactor bound to hemoglobin, is scavenged by bacterial proteins to attain iron. Methods to measure intracellular heme are laborious, involve complex chemistry, or require radioactivity. Such drawbacks limit the study of the mechanistic steps of heme transport and breakdown. Hypothesizing heme homeostasis could be measured with fluorescent methods, we coupled the conversion of heme to biliverdin IXα (a product of heme catabolism) by heme oxygenase 1 (HO1) with the production of near-infrared light upon binding this verdin by infrared fluorescent protein (IFP1.4). The resultant heme sensor, IFP-HO1, was fluorescent in pathogenic E. coli exposed to heme but not in the absence of the heme transporter ChuA and membrane coupling protein TonB, thereby validating their long-standing proposed role in heme uptake. Fluorescence was abolished in a strain lacking hemE, the central gene in the heme biosynthetic pathway, but stimulated by iron, signifying the sensor reports on intracellular heme production. Finally, an invasive strain of E. coli harboring the sensor was fluorescent during an active infection. This work will allow researchers to expand the molecular toolbox used to study heme and iron acquisition in culture and during infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. New Sliding Puzzle with Neighbors Swap Motion

    Prihardono, Ariyanto; Kawagoe, Kenichi

    2015-01-01

    The sliding puzzles (15-puzzle, 8-puzzle, 5-puzzle) are known to have 2 kind of puz-zle: solvable puzzle and unsolvable puzzle. In this thesis, we make a new puzzle with only 1 kind of it, solvable puzzle. This new puzzle is made by adopting sliding puzzle with several additional rules from M13 puzzle; the puzzle that is formed form The Mathieu group M13. This puzzle has a movement that called a neighbors swap motion, a rule of movement that enables every neighboring points to swap. This extr...

  18. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Jesus A Araujo

    2012-07-01

    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  19. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  20. Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae.

    Joubert, Laetitia; Dagieu, Jean-Baptiste; Fernandez, Annabelle; Derré-Bobillot, Aurélie; Borezée-Durant, Elise; Fleurot, Isabelle; Gruss, Alexandra; Lechardeur, Delphine

    2017-01-16

    Heme is essential for several cellular key functions but is also toxic. Whereas most bacterial pathogens utilize heme as a metabolic cofactor and iron source, the impact of host heme during bacterial infection remains elusive. The opportunist pathogen Streptococcus agalactiae does not synthesize heme but still uses it to activate a respiration metabolism. Concomitantly, heme toxicity is mainly controlled by the HrtBA efflux transporter. Here we investigate how S. agalactiae manages heme toxicity versus benefits in the living host. Using bioluminescent bacteria and heme-responsive reporters for in vivo imaging, we show that the capacity of S. agalactiae to overcome heme toxicity is required for successful infection, particularly in blood-rich organs. Host heme is simultaneously required, as visualized by a generalized infection defect of a respiration-negative mutant. In S. agalactiae, HrtBA expression responds to an intracellular heme signal via activation of the two-component system HssRS. A hssRS promoter-driven intracellular luminescent heme sensor was designed to identify host compartments that supply S. agalactiae with heme. S. agalactiae acquires heme in heart, kidneys, and liver, but not in the brain. We conclude that S. agalactiae response to heme is organ-dependent, and its efflux may be particularly relevant in late stages of infection.

  1. A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    Soto, Iliana C.; Fontanesi, Flavia; Myers, Richard S.; Hamel, Patrice; Barrientos, Antoni

    2012-01-01

    Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N-terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production. PMID:23217259

  2. A role for heme in Alzheimer's disease: Heme binds amyloid β and has altered metabolism

    Atamna, Hani; Frey, William H.

    2004-01-01

    Heme is a common factor linking several metabolic perturbations in Alzheimer's disease (AD), including iron metabolism, mitochondrial complex IV, heme oxygenase, and bilirubin. Therefore, we determined whether heme metabolism was altered in temporal lobes obtained at autopsy from AD patients and age-matched nondemented subjects. AD brain demonstrated 2.5-fold more heme-b (P < 0.01) and 26% less heme-a (P = 0.16) compared with controls, resulting in a highly significant 2.9-fold decrease in he...

  3. Mechanisms of heme utilization by Francisella tularensis.

    Helena Lindgren

    Full Text Available Francisella tularensis is a highly virulent facultative intracellular pathogen causing the severe disease tularemia in mammals. As for other bacteria, iron is essential for its growth but very few mechanisms for iron acquisition have been identified. Here, we analyzed if and how F. tularensis can utilize heme, a major source of iron in vivo. This is by no means obvious since the bacterium lacks components of traditional heme-uptake systems. We show that SCHU S4, the prototypic strain of subspecies tularensis, grew in vitro with heme as the sole iron source. By screening a SCHU S4 transposon insertion library, 16 genes were identified as important to efficiently utilize heme, two of which were required to avoid heme toxicity. None of the identified genes appeared to encode components of a potential heme-uptake apparatus. Analysis of SCHU S4 deletion mutants revealed that each of the components FeoB, the siderophore system, and FupA, contributed to the heme-dependent growth. In the case of the former two systems, iron acquisition was impaired, whereas the absence of FupA did not affect iron uptake but led to abnormally high binding of iron to macromolecules. Overall, the present study demonstrates that heme supports growth of F. tularensis and that the requirements for the utilization are highly complex and to some extent novel.

  4. Identification of the Mitochondrial Heme Metabolism Complex.

    Medlock, Amy E; Shiferaw, Mesafint T; Marcero, Jason R; Vashisht, Ajay A; Wohlschlegel, James A; Phillips, John D; Dailey, Harry A

    2015-01-01

    Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.

  5. Neighboring and Urbanism: Commonality versus Friendship.

    Silverman, Carol J.

    1986-01-01

    Examines a dimension of neighboring that need not assume friendship as the role model. When the model assumes only a sense of connectedness as defining neighboring, then the residential correlation, shown in many studies between urbanism and neighboring, disappears. Theories of neighboring, study variables, methods, and analysis are discussed.…

  6. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    Ramos-Santana, Brenda J.; López-Garriga, Juan

    2012-01-01

    Highlights: ► H-bonding network loop by PheB10Tyr mutation is proposed. ► The propionate group H-bonding network restricted the flexibility of the heme. ► The hydrogen bonding interaction modulates the electron density of the iron. ► Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. 1 H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00 ppm, GlnE7 N ε1 H/N ε2 H at 10.66 ppm/−3.27 ppm, and PheE11 C δ H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen

  7. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  8. Heme oxygenase-1: a metabolic nike.

    Wegiel, Barbara; Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C; Otterbein, Leo E

    2014-04-10

    Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

  9. Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks.

    Jiang, Wei; Yang, Jiebing; Wang, Xinghuo; Han, Haobo; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-01-01

    The aim of this work was to construct a peroxidase mimic for achieving the phenol degradation through Fenton reaction. The enzyme mimic was synthesized through the conjugation of heme with the amino group of 2-amino-1,4-benzene dicarboxylate in UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. Compared to free heme, the composite Heme-ZrMOF exhibited an obviously enhanced ability for phenol degradation with up to 97.3% of phenol removal after 2h. Meanwhile, it could achieve the easy separation of catalyst from the system and the elimination of iron residues in the process of phenol degradation. Finally, the catalyst Heme-ZrMOF was observed to possess good recyclability in the phenol degradation with still 76.2% of phenol removal after 4 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A rapid, simple method for obtaining radiochemically pure hepatic heme

    Bonkowski, H.L.; Bement, W.J.; Erny, R.

    1978-01-01

    Radioactively-labelled heme has usually been isolated from liver to which unlabelled carrier has been added by long, laborious techniques involving organic solvent extraction followed by crystallization. A simpler, rapid method is devised for obtaining radiochemically-pure heme synthesized in vivo in rat liver from delta-amino[4- 14 C]levulinate. This method, in which the heme is extracted into ethyl acetate/glacial acetic acid and in which porphyrins are removed from the heme-containing organic phase with HCl washes, does not require addition of carrier heme. The new method gives better heme recoveries than and heme specific activities identical to, those obtained using the crystallization method. In this new method heme must be synthesized from delta-amino[4- 14 C]levulinate; it is not satisfactory to use [2- 14 C]glycine substrate because non-heme counts are isolated in the heme fraction. (Auth.)

  11. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Wojtowicz, Halina; Wojaczynski, Jacek; Olczak, Mariusz; Kroliczewski, Jaroslaw; Latos-Grazynski, Lechoslaw; Olczak, Teresa

    2009-01-01

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and 1 H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  12. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  13. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  14. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  15. Insights on Heme Synthesis in the Malaria Parasite.

    Nagaraj, Viswanathan A; Padmanaban, Govindarajan

    2017-08-01

    The malaria parasite has a functional heme-biosynthetic pathway, although it can access host hemoglobin-heme. The heme pathway is dispensable for blood stages, but essential in the mosquito stages which do not acquire hemoglobin-heme. We propose that the blood stage parasites maintain a dynamic heme pool through multiple back-up mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In vitro Activation of heme oxygenase-2 by menadione and its analogs.

    Vukomanovic, Dragic; Rahman, Mona N; Bilokin, Yaroslav; Golub, Andriy G; Brien, James F; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2014-02-18

    Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structure-activity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and -2, respectively, as well as recombinant, human heme oxygenase-2. Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and -3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, α-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties.

  17. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  18. Structural and Functional Models of Non-Heme Iron Enzymes : A Study of the 2-His-1-Carboxylate Facial Triad Structural Motif

    Bruijnincx, P.C.A.

    2007-01-01

    The structural and functional modeling of a specific group of non-heme iron enzymes by the synthesis of small synthetic analogues is the topic of this thesis. The group of non-heme iron enzymes with the 2-His-1-carboxylate facial triad has recently been established as a common platform for the

  19. Nearest neighbors by neighborhood counting.

    Wang, Hui

    2006-06-01

    Finding nearest neighbors is a general idea that underlies many artificial intelligence tasks, including machine learning, data mining, natural language understanding, and information retrieval. This idea is explicitly used in the k-nearest neighbors algorithm (kNN), a popular classification method. In this paper, this idea is adopted in the development of a general methodology, neighborhood counting, for devising similarity functions. We turn our focus from neighbors to neighborhoods, a region in the data space covering the data point in question. To measure the similarity between two data points, we consider all neighborhoods that cover both data points. We propose to use the number of such neighborhoods as a measure of similarity. Neighborhood can be defined for different types of data in different ways. Here, we consider one definition of neighborhood for multivariate data and derive a formula for such similarity, called neighborhood counting measure or NCM. NCM was tested experimentally in the framework of kNN. Experiments show that NCM is generally comparable to VDM and its variants, the state-of-the-art distance functions for multivariate data, and, at the same time, is consistently better for relatively large k values. Additionally, NCM consistently outperforms HEOM (a mixture of Euclidean and Hamming distances), the "standard" and most widely used distance function for multivariate data. NCM has a computational complexity in the same order as the standard Euclidean distance function and NCM is task independent and works for numerical and categorical data in a conceptually uniform way. The neighborhood counting methodology is proven sound for multivariate data experimentally. We hope it will work for other types of data.

  20. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis.

    Halina Wójtowicz

    2009-05-01

    Full Text Available Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-beta fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.

  1. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome em>c>4

    Natzmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2012-01-01

    force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe...

  2. Heme biosynthesis and its regulation : Toward understanding and improvement of heme biosynthesis in filamentous fungi.

    S. de Weert; P.J. Punt; Christien Lokman; C.A. van den Hondel; A.C. Franken; A.F. Ram

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  3. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi

    Franken, A.C.W.; Lokman, B.C.; Ram, A.F.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Weert, S. de

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  4. Heme synthesis in normal mouse liver and mouse liver tumors

    Stout, D.L.; Becker, F.F.

    1990-01-01

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors 55 FeCl3 and [2- 14 C]glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated [2-14C]glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool

  5. Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras.

    Braeuning, Albert; Schwarz, Michael

    2010-11-01

    Cytochrome P450 (CYP) hemoproteins play an important role in hepatic biotransformation. Recently, β-catenin and Ha-ras signaling have been identified as players controlling transcription of various CYP genes in mouse liver. The aim of the present study was to analyze the role of β-catenin and Ha-ras in the regulation of heme synthesis. Heme synthesis-related gene expression was analyzed in normal liver, in transgenic mice expressing activated β-catenin or Ha-ras, and in hepatomas. Regulation of the aminolevulinate dehydratase promoter was studied in vitro. Elevated expression of mRNAs and proteins involved in heme biosynthesis was linked to β-catenin activation in perivenous hepatocytes, in transgenic hepatocytes, and in hepatocellular tumors. Stimulation of the aminolevulinate dehydratase promoter by β-catenin was independent of the β-catenin/T-cell-specific transcription factor dimer. By contrast, activation of Ha-ras repressed heme synthesis-related gene expression. The present data suggest that β-catenin enhances the expression of both CYPs and heme synthesis-related genes, thus coordinating the availability of CYP apoprotein and its prosthetic group heme. The reciprocal regulation of heme synthesis by β-catenin and Ha-ras-dependent signaling supports our previous hypothesis that antagonistic action of these pathways plays a major role in the control of zonal gene expression in healthy mouse liver and aberrant expression patterns in hepatocellular tumors.

  6. Heme and non-heme iron transporters in non-polarized and polarized cells

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  7. Characterization of Heme Proteins Involved in Microbial Exoelectric Activity and Small Molecule-Sensing

    Vogler, Malvina M.

    2018-01-01

    Heme proteins, also termed cytochromes, are a widespread class of metalloproteins containing an Fe-protoporphyrin IX cofactor. They perform numerous functions in nature such as oxygen-transport by hemoglobin, monooxygenation reactions catalyzed by Cytochrome P-450, and electron transfer reactions during photosynthesis. The differences between proteincofactor binding characteristics and the cofactor environment greatly influence the extensive range of functions. In this dissertation, proteins from the Mtr pathway of Shewanella oneidensis are characterized. These c-type cytochromes contain multiple heme cofactors per protein molecule that covalently attach to the protein amino acid sequence and are involved in electron transfer to extracellular metal oxides during anaerobic conditions. Successful recombinant expression of pathway components MtrC and MtrA is achieved in Escherichia coli. Heme-dependent gel staining and UV/Vis spectroscopy show characteristic c-type cytochrome characteristics. Mass spectrometry confirms that the correct extensive post-translational modifications were performed and the ten heme groups were incorporated per protein of MtrC and MtrA and the correct lipid-anchor was attached to extracellular MtrC. Raman spectroscopy measurements of MtrA provide intriguing structural information and highlight the strong influence of the heme cofactors within the protein structure. Next, an Arabidopsis thaliana protein is analyzed. It was previously identified via a motif search of the plant genome, based on conserved residues in the H4 NOX pocket. Here, the incorporation of a heme b cofactor is confirmed. UV/Vis spectroscopy under anaerobic conditions demonstrates reversible binding of nitric oxide to the heme iron and depicts the previously published characteristic absorption maxima for other H-NOX proteins.

  8. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS)

    Du, Y.; Liu, G.; Yan, Y.; Huang, D.; Luo, W.; Martínková, M.; Man, Petr; Shimizu, T.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 839-852 ISSN 0966-0844 Institutional support: RVO:61388971 Keywords : Heme oxygenase * Heme protein * Hydrogen sulfide Subject RIV: CE - Biochemistry Impact factor: 2.689, year: 2013

  9. Kidney injury and heme oxygenase-1

    Hai-xing MAI

    2012-02-01

    Full Text Available     Heme oxygenase-1 (HO-1 is one of the main pathways to degrade heme in mammals, and the main degradation products are free iron (Fe2+, carbon monoxide (CO, and bilirubin. Heme plays an important role in promoting cell survival, circulation of intracellular substrates, and immune regulation. Previous studies suggest that HO-1 pathway is an important internal factor in determining the susceptibility and severity of acute kidney injury (AKI. The induction of HO-1 expression can attenuate the severity of renal ischemia-reperfusion injury (IRI, and the inhibition of HO-1 expression will aggravate IRI. The present article summarizes the latest advances in research abroad and at home on protective mechanism by which HO-1 prevents AKI to further deepen our understanding of the role of HO-1 in the treatment of AKI.   

  10. Red meat and colon cancer : how dietary heme initiates hyperproliferation

    IJssennagger, N.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in Western countries. The risk to develop colorectal cancer is associated with the intake of red meat. Red meat contains the porphyrin pigment heme. Heme is an irritant for the colonic wall and it is previously shown that the addition of heme

  11. Heme oxygenase activity increases after exercise in healthy volunteers

    AbstractHeme oxygenase (HO) is an essential, rate-limiting protein which participates in the catabolism of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge carbon of the heme is eliminated as CO which can be measured as blood carboxyhemoglobin (COHb)....

  12. Dibromine radical anion reactions with heme enzymes

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  13. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2.

    Kathiresan, Meena; English, Ann M

    2017-02-01

    We recently reported that cytochrome c peroxidase (Ccp1) functions as a H 2 O 2 sensor protein when H 2 O 2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (Cyc II ), determines whether Ccp1 acts as a H 2 O 2 sensor or peroxidase. For H 2 O 2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H 2 O 2 in the absence of Cyc II to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H 2 O 2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H 2 O 2 shuts down heterolytic cleavage of H 2 O 2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H 2 O 2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O 2 reactivity.

  14. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We inv...

  15. Mononuclear non-heme iron(III)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  16. Heme pathway evolution in kinetoplastid protists

    Cenci, U.; Moog, D.; Curtis, B.A.; Tanifuji, G.; Eme, L.; Lukeš, Julius; Archibald, J.M.

    2016-01-01

    Roč. 16, MAY 18 (2016), č. článku 109. ISSN 1471-2148 Institutional support: RVO:60077344 Keywords : heme * kinetoplastea * Paramoeba pemaquidensis * Perkinsela * evolution * endosymbiosis * Prokinetoplastina * lateral gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.221, year: 2016

  17. Unsaturated glycerophospholipids mediate heme crystallization: biological implications for hemozoin formation in the kissing bug Rhodnius prolixus.

    Renata Stiebler

    Full Text Available Hemozoin (Hz is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM. Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE and phosphatidylcholine (uPC, with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9-17.7 minutes than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut.

  18. An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme-heme interactions.

    Sil, Debangsu; Rath, Sankar Prasad

    2015-10-07

    Interaction between heme centers has been cleverly implemented by Nature in order to regulate different properties of multiheme cytochromes, thereby allowing them to perform a wide variety of functions. Our broad interest lies in unmasking the roles played by heme-heme interactions in modulating different properties viz., metal spin state, redox potential etc., of the individual heme centers using an ethane-bridged porphyrin dimer as a synthetic model of dihemes. The large differences in the structure and properties of the diheme complexes, as compared to the monoheme analogs, provide unequivocal evidence of the role played by heme-heme interactions in the dihemes. This Perspective provides a brief account of our recent efforts to explore these interesting aspects and the subsequent outcomes.

  19. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    Bowman, Sarah E. J.; Bren, Kara L.

    2008-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histi...

  20. Characterization of Heme Proteins Involved in Microbial Exoelectric Activity and Small Molecule-Sensing

    Vogler, Malvina M.

    2018-01-01

    spectrometry confirms that the correct extensive post-translational modifications were performed and the ten heme groups were incorporated per protein of MtrC and MtrA and the correct lipid-anchor was attached to extracellular MtrC. Raman spectroscopy

  1. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  3. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  4. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans.

    Hamza, Iqbal; Dailey, Harry A

    2012-09-01

    The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron

    Gardner, L.C.; Cox, T.M.

    1988-01-01

    Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular free heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation

  6. Effect of lead on heme synthesis

    Neuberger, A.

    1975-01-01

    Recently, a fair amount of work has been done on the effect of lead on porphobilinogen dehydratase, which has been used as a sensitive indicator of lead poisoning. How far this is in itself harmful depends on the Michaelis constants of both the aminolaevulinic synthetase and of the dehydratase, and in addition on the relative activities of the two enzymes in a cell and also on the tissue concentration of glycine. Information on some of these points is still fragmentary, and a reliable judgement is at the present not very easy. Another step in the heme synthesis, which is sensitive to low concentrations of lead, is the incorporation of iron into protoporphyrin. Inhibition of this step may be important in accounting to a large extent for the anaemia found in individuals with lead poisoning. Reduction in the tissue concentration of heme or of heme-like compounds may also explain, through the mechanism of de-repression, the excretion of increased amounts of aminolaevulinic acid in the urine observed in cases of lead poisoning. A third step in heme synthesis, which might be sensitive to lead, is the oxidative decarboxylation of coproporphyrin to protoporphyrin, and this may explain why the former derivative is excreted in the urine. Recent work of the Harvard Medical School has indicated that greatly reduced levels of ALA dehydratase may be found in most cases of severe liver damage due to alcoholism. In most of these cases the level of lead in the blood is within normal limits, and there is no history of exposure to toxic amounts of lead. We therefore have to assume that a reduction in the blood level of this enzyme is not necessarily an indication of lead poisoning.

  7. Heme-based sensors in biological systems.

    Rodgers, K R

    1999-04-01

    The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.

  8. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  9. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  10. Moessbauer spectroscopic study of polymer-bound heme complexes

    Tsuchida, Eishun; Nishide, Hiroyuki; Yokoyama, Hiroyuki; Inoue, Hidenari; Shirai, Tsuneo.

    1984-01-01

    Moessbauer spectra were measured on the heme complexes of poly(1-vinyl- and 1-vinyl-2-methylimidazole)(PVI and PMI) and heme derivatives with covalently bound imidazoleligand (IH) and 2-methylimidazole-ligand (MIH) embedded in poly(1-vinyl-2-pyrrolidone) film. Quadrupole splitting (ΔE sub(Q)) for the carbon monoxide adduct of PMI-heme indicated large electronic field gradient at the iron nucleus, probably due to steric hindrance of the polymer chain, and this behavior agreed with its low affinity with carbon monoxide. PMI-heme formed an oxygen adduct and its isomer shift and ΔE sub(Q) values were obtained. (author)

  11. Gas-phase spectroscopy of ferric heme-NO complexes

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  12. Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.

    Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2010-03-01

    The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Relationship between natural and heme-mediated antibody polyreactivity

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  14. Recrafting the Neighbor-Joining Method

    Mailund; Brodal, Gerth Stølting; Fagerberg, Rolf

    2006-01-01

    Background: The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3) algorithm upon which all existing implementations are based. Methods: In this paper we present techniques for speeding...... up the canonical neighbor-joining method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining method. The best-case running time of our algorithms are O(n2) but the worst-case remains O(n3). We empirically evaluate the performance of our algoritms on distance...... matrices obtained from the Pfam collection of alignments. Results: The experiments indicate that the running time of our algorithms evolve as Θ(n2) on the examined instance collection. We also compare the running time with that of the QuickTree tool, a widely used efficient implementation of the canonical...

  15. The clinic as a good corporate neighbor.

    Sass, Hans-Martin

    2013-02-01

    Clinics today specialize in health repair services similar to car repair shops; procedures and prices are standardized, regulated, and inflexibly uniform. Clinics of the future have to become Health Care Centers in order to be more respected and more effective corporate neighbors in offering outreach services in health education and preventive health care. The traditional concept of care for health is much broader than repair management and includes the promotion of lay health competence and responsibility in healthy social and natural environments. The corporate profile and ethics of the clinic as a good and competitive local neighbor will have to focus on [a] better personalized care, [b] education and services in preventive care, [c] direct or web-based information and advice for general, seasonal, or age related health risks, and on developing and improving trustworthy character traits of the clinic as a corporate person and a good neighbor.

  16. Aldoxime dehydratase: probing the heme environment involved in the synthesis of the carbon-nitrogen triple bond.

    Pinakoulaki, Eftychia; Koutsoupakis, Constantinos; Sawai, Hitomi; Pavlou, Andrea; Kato, Yasuo; Asano, Yasuhisa; Aono, Shigetoshi

    2011-11-10

    Fourier transform infrared (FTIR) spectra, "light" minus "dark" difference FTIR spectra, and time-resolved step-scan (TRS(2)) FTIR spectra are reported for carbonmonoxy aldoxime dehydratase. Two C-O modes of heme at 1945 and 1964 cm(-1) have been identified and remained unchanged in H(2)O/D(2)O exchange and in the pH 5.6-8.5 range, suggesting the presence of two conformations at the active site. The observed C-O frequencies are 5 and 16 cm(-1) lower and higher, respectively, than that obtained previously (Oinuma, K.-I.; et al. FEBS Lett.2004, 568, 44-48). We suggest that the strength of the Fe-His bond and the neutralization of the negatively charged propionate groups modulate the ν(Fe-CO)/ν(CO) back-bonding correlation. The "light" minus "dark" difference FTIR spectra indicate that the heme propionates are in both the protonated and deprotonated forms, and the photolyzed CO becomes trapped within a ligand docking site (ν(CO) = 2138 cm(-1)). The TRS(2)-FTIR spectra show that the rate of recombination of CO to the heme is k(1945 cm(-1)) = 126 ± 20 s(-1) and k(1964 cm(-1)) = 122 ± 20 s(-1) at pH 5.6, and k(1945 cm(-1)) = 148 ± 30 s(-1) and k(1964 cm(-1)) = 158 ± 32 s(-1) at pH 8.5. The rate of decay of the heme propionate vibrations is on a time scale coincident with the rate of rebinding, suggesting that there is a coupling between ligation dynamics in the distal heme environment and the environment sensed by the heme propionates. The implications of these results with respect to the proximal His-Fe heme environment including the propionates and the positively charged or proton-donating residues in the distal pocket which are crucial for the synthesis of nitriles are discussed.

  17. Lectures on the nearest neighbor method

    Biau, Gérard

    2015-01-01

    This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).   .

  18. Effects of illumination and packaging on non-heme iron and color attributes of sliced ham.

    Li, H; Li, C B; Xu, X L; Zhou, G H

    2012-08-01

    This study was designed to investigate effects of illumination and packaging on color of cooked cured sliced ham during refrigeration, and the possibility of decomposition of nitrosylheme under light and oxygen exposure. Three illumination levels and three packaging films with different oxygen transmission rates (OTRs) were used in two separate experiments during 35 days storage, and pH value, a* value, nitrosylheme, residual nitrite and non-heme iron were evaluated. Packaging OTRs had significant effects (P0.05) nitrosylheme concentration during storage. For both groups, storage time had a significant effect (P<0.01) on a* value and nitrosylheme. Negative relationships between nitrosylheme and nitrite in the illumination group, and between nitrosylheme and non-heme iron in the packaging group were observed. Therefore, illumination level and packaging OTR had limited effects on overall pigment stability, but more discoloration and loss of redness occurred on the surface of products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Dietary heme-mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon.

    Noortje Ijssennagger

    Full Text Available Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome analysis of mucosa of heme-fed mice showed, besides stress- and proliferation-related genes, many upregulated lipid metabolism-related PPARα target genes. The aim of this study was to investigate the role of PPARα in heme-induced hyperproliferation and hyperplasia. Male PPARα KO and WT mice received a purified diet with or without heme. As PPARα is proposed to protect against oxidative stress and lipid peroxidation, we hypothesized that the absence of PPARα leads to more surface injury and crypt hyperproliferation in the colon upon heme-feeding. Heme induced luminal cytotoxicity and lipid peroxidation and colonic hyperproliferation and hyperplasia to the same extent in WT and KO mice. Transcriptome analysis of colonic mucosa confirmed similar heme-induced hyperproliferation in WT and KO mice. Stainings for alkaline phosphatase activity and expression levels of Vanin-1 and Nrf2-targets indicated a compromised antioxidant defense in heme-fed KO mice. Our results suggest that the protective role of PPARα in antioxidant defense involves the Nrf2-inhibitor Fosl1, which is upregulated by heme in PPARα KO mice. We conclude that PPARα plays a protective role in colon against oxidative stress, but PPARα does not mediate heme-induced hyperproliferation. This implies that oxidative stress of surface cells is not the main determinant of heme-induced hyperproliferation and hyperplasia.

  20. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Evidence for cultural differences between neighboring chimpanzee communities.

    Luncz, Lydia V; Mundry, Roger; Boesch, Christophe

    2012-05-22

    The majority of evidence for cultural behavior in animals has come from comparisons between populations separated by large geographical distances that often inhabit different environments. The difficulty of excluding ecological and genetic variation as potential explanations for observed behaviors has led some researchers to challenge the idea of animal culture. Chimpanzees (Pan troglodytes verus) in the Taï National Park, Côte d'Ivoire, crack Coula edulis nuts using stone and wooden hammers and tree root anvils. In this study, we compare for the first time hammer selection for nut cracking across three neighboring chimpanzee communities that live in the same forest habitat, which reduces the likelihood of ecological variation. Furthermore, the study communities experience frequent dispersal of females at maturity, which eliminates significant genetic variation. We compared key ecological factors, such as hammer availability and nut hardness, between the three neighboring communities and found striking differences in group-specific hammer selection among communities despite similar ecological conditions. Differences were found in the selection of hammer material and hammer size in response to changes in nut resistance over time. Our findings highlight the subtleties of cultural differences in wild chimpanzees and illustrate how cultural knowledge is able to shape behavior, creating differences among neighboring social groups. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Role of heme in bromine-induced lung injury

    Lam, Adam; Vetal, Nilam; Matalon, Sadis; Aggarwal, Saurabh

    2016-01-01

    Bromine (Br2) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 hours of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2-induced human toxicity. We will discuss our latest published data, which suggests that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into billiverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure. PMID:27244263

  3. Heme: From quantum spin crossover to oxygen manager of life

    Kepp, Kasper Planeta

    2016-01-01

    The review discusses how the electronic structure of heme explains its central importance to oxygen-based life on Earth. Emphasis is on the chemical bonding of heme, its spin crossover, reversible O2 binding, and O-O bond activation, put in relation to its physiological functions. The review disc...

  4. Identification of the receptor scavenging hemopexin-heme complexes

    Hvidberg, Vibeke; Maniecki, Maciej B; Jacobsen, Christian

    2005-01-01

    and is suggested to facilitate cellular heme metabolism. Using a ligand-affinity approach, we purified the human hemopexin-heme receptor and identified it as the low-density lipoprotein receptor-related protein (LRP)/CD91, a receptor expressed in several cell types including macrophages, hepatocytes, neurons......, and syncytiotrophoblasts. Binding experiments, including Biacore analysis, showed that hemopexin-heme complex formation elicits the high receptor affinity. Uptake studies of radio-labeled hemopexin-heme complex in LRP/CD91-expressing COS cells and confocal microscopy of the cellular processing of fluorescent hemopexin......-heme complexes are removed by a receptor-mediated pathway showing striking similarities to the CD163-mediated haptoglobin-hemoglobin clearance in macrophages. Furthermore, the data indicate a hitherto unknown role of LRP/CD91 in inflammation....

  5. Recrafting the neighbor-joining method

    Pedersen Christian NS

    2006-01-01

    Full Text Available Abstract Background The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3 algorithm upon which all existing implementations are based. Results In this paper we present techniques for speeding up the canonical neighbor-joining method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining method. The best-case running time of our algorithms are O(n2 but the worst-case remains O(n3. We empirically evaluate the performance of our algoritms on distance matrices obtained from the Pfam collection of alignments. The experiments indicate that the running time of our algorithms evolve as Θ(n2 on the examined instance collection. We also compare the running time with that of the QuickTree tool, a widely used efficient implementation of the canonical neighbor-joining method. Conclusion The experiments show that our algorithms also yield a significant speed-up, already for medium sized instances.

  6. Increased Plasma Levels of Heme Oxygenase-1 in Human Brucellosis.

    Chen, Zhe; Zhang, Yu-Xue; Fu, Dong-Wei; Gao, Qing-Feng; Ge, Feng-Xia; Liu, Wei-Hua

    2016-08-01

    Brucellosis is associated with inflammation and the oxidative stress response. Heme oxygenase-1 (HO-1) is a cytoprotective stress-responsive enzyme that has anti-inflammatory and anti-oxidant effects. Nevertheless, the role of HO-1 in human brucellosis has not yet been studied. The aim of this study was to examine the plasma levels of HO-1 in patients with brucellosis and to evaluate the ability of plasma HO-1 levels as an auxiliary diagnosis, a severity predictor, and a monitor for brucellosis treatments. A total of 75 patients with brucellosis were divided into the acute, subacute, chronic active, and chronic stable groups. An additional 20 volunteers were included as the healthy control group. The plasma HO-1 levels and other laboratory parameters were measured in all groups. Furthermore, the plasma levels of HO-1 in the acute group were compared before and after treatment. The plasma HO-1 levels were considerably increased in the acute (4.97 ± 3.55), subacute (4.98 ± 3.23), and chronic active groups (4.43 ± 3.00) with brucellosis compared to the healthy control group (1.03 ± 0.63) (p brucellosis (r = 0.707, p brucellosis status and may be used as a supplementary plasma marker for diagnosing brucellosis and monitoring its treatment.

  7. Increase on the initial soluble heme levels in acidic conditions is an important mechanism for spontaneous heme crystallization in vitro.

    Renata Stiebler

    Full Text Available BACKGROUND: Hemozoin (Hz is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH (the synthetic counterpart of Hz formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO and a series of polyethyleneglycols (PEGs. We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000 increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300 caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. CONCLUSIONS: The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels.

  8. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Olszewski Kellen L

    2007-07-01

    Full Text Available Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes. Results We developed Nearest Neighbor Networks (NNN, a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the

  9. The Application of Determining Students’ Graduation Status of STMIK Palangkaraya Using K-Nearest Neighbors Method

    Rusdiana, Lili; Marfuah

    2017-12-01

    K-Nearest Neighbors method is one of methods used for classification which calculate a value to find out the closest in distance. It is used to group a set of data such as students’ graduation status that are got from the amount of course credits taken by them, the grade point average (AVG), and the mini-thesis grade. The study is conducted to know the results of using K-Nearest Neighbors method on the application of determining students’ graduation status, so it can be analyzed from the method used, the data, and the application constructed. The aim of this study is to find out the application results by using K-Nearest Neighbors concept to determine students’ graduation status using the data of STMIK Palangkaraya students. The development of the software used Extreme Programming, since it was appropriate and precise for this study which was to quickly finish the project. The application was created using Microsoft Office Excel 2007 for the training data and Matlab 7 to implement the application. The result of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5%. It could determine the predicate graduation of 94 data used from the initial data before the processing as many as 136 data which the maximal training data was 50data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study. The results of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5% could determine the predicate graduation which is the maximal training data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study.

  10. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes

    Lara, F.A.; Sant'Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Reis Salles, I.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; Paes, M.C.

    2007-01-01

    Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane

  11. Dimensionality reduction with unsupervised nearest neighbors

    Kramer, Oliver

    2013-01-01

    This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustr...

  12. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  13. The effect of proteins from animal source foods on heme iron bioavailability in humans.

    Pizarro, Fernando; Olivares, Manuel; Valenzuela, Carolina; Brito, Alex; Weinborn, Valerie; Flores, Sebastián; Arredondo, Miguel

    2016-04-01

    Forty-five women (35-45 year) were randomly assigned to three iron (Fe) absorption sub-studies, which measured the effects of dietary animal proteins on the absorption of heme Fe. Study 1 was focused on heme, red blood cell concentrate (RBCC), hemoglobin (Hb), RBCC+beef meat; study 2 on heme, heme+fish, chicken, and beef; and study 3 on heme and heme+purified animal protein (casein, collagen, albumin). Study 1: the bioavailability of heme Fe from Hb was similar to heme only (∼13.0%). RBCC (25.0%) and RBCC+beef (21.3%) were found to be increased 2- and 1.6-fold, respectively, when compared with heme alone (pProteins from animal source foods and their digestion products did not enhance heme Fe absorption. Copyright © 2015. Published by Elsevier Ltd.

  14. Neighbor Rupture Degree of Some Middle Graphs

    Gökşen BACAK-TURAN

    2017-12-01

    Full Text Available Networks have an important place in our daily lives. Internet networks, electricity networks, water networks, transportation networks, social networks and biological networks are some of the networks we run into every aspects of our lives. A network consists of centers connected by links. A network is represented when centers and connections modelled by vertices and edges, respectively. In consequence of the failure of some centers or connection lines, measurement of the resistance of the network until the communication interrupted is called vulnerability of the network. In this study, neighbor rupture degree which is a parameter that explores the vulnerability values of the resulting graphs due to the failure of some centers of a communication network and its neighboring centers becoming nonfunctional were applied to some middle graphs and neighbor rupture degree of the $M(C_{n},$ $M(P_{n},$ $M(K_{1,n},$ $M(W_{n},$ $M(P_{n}\\times K_{2}$ and $M(C_{n}\\times K_{2}$ have been found.

  15. Reduction in predator defense in the presence of neighbors in a colonial fish.

    Franziska C Schädelin

    Full Text Available Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or

  16. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences

    Nagao, Satoshi; Hirai, Yueki; Kawano, Shin; Imai, Kiyohiro; Suzuki, Akihiro; Yamamoto, Yasuhiko

    2007-01-01

    A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12, 18-trimethyl-porphyrin-atoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using 19 F NMR and the O 2 binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in α- and β- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O 2 affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O 2 affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O 2 affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A

  17. Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis.

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella

    2012-06-01

    The pathogenesis of multiple sclerosis (MS), a disease characterized by demyelination and subsequent axonal degeneration, is as yet unknown. Also, the nature of the disease is as yet not established, since doubts have been cast on its autoimmune origin. Genetic and environmental factors have been implied in MS, leading to the idea of an overall multifactorial origin. An unexpected role in energizing the axon has been reported for myelin, supposed to be the site of consumption of most of oxygen in brain. Myelin would be able to perform oxidative phosphorylation to supply the axons with ATP, thanks to the expression therein of mitochondrial F(o)F(1)-ATP synthase, and respiratory chains. Interestingly, myelin expresses the pathway of heme synthesis, hence of cytochromes, that rely on heme group, in turn depending on Fe availability. Poisoning by these pollutants shares the common characteristic to bring about demyelination both in animal models and in man. Carbon monoxide (CO) and lead poisoning which cause functional imbalance of the heme group, as well as of heme synthesis, cause myelin damage. On the other hand, a lack of essential metals such as iron and copper, produces dramatic myelin decrease. Myelin is a primary target, of iron shortage, indicating that in myelin Fe-dependent processes are more active than in other tissues. The predominant spread of MS in industrialized countries where pollution by heavy metals, and CO poisoning is widespread, suggests a relationship among toxic action of metal pollutants and MS. According to the present hypothesis, MS can be primarily triggered by environmental factors acting on a genetic susceptibility, while the immune response may be a consequence of a primary oxidative damage due to reactive oxygen species produced consequently to an imbalance of cytochromes and respiratory chains in the sheath. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  19. Heme synthesis in the lead-intoxicated mouse embryo

    Gerber, G B; Maes, J

    1978-02-01

    Incorporation of /sup 55/Fe and of (/sup 14/C) glycine was studied in control embryos and mothers and in those which had received lead in the diet from day 7 of pregnancy. Incorporation of Fe into heme of embryonic liver which increases markedly for controls on day 17 of pregnancy was depressed greatly and showed no such increase in lead-intoxicated embryos. These embryos were retarded in growth but had normal heme concentrations in body and liver. Incorporation of glycine into embryonic heme and proteins was not affected. Data on incorporation in the mothers are also presented. It is thought that the impaired synthesis of heme in lead-intoxicated embryos limits their body growth during the late phase of pregnancy.

  20. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    Effect of a heme oxygenase-1 inducer on NADPH oxidase expression in ... and immunohistochemistry of hepatic NOX1 and NOX4 were investigated in week 4. ... (HO-1 inhibitor) administration caused upregulation of NOX gene expression ...

  1. Wiring of heme enzymes by methylene-blue labeled dendrimers

    Álvarez-Martos, Isabel; Shahdost-fard, Faezeh; Ferapontova, Elena

    2017-01-01

    Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme- and moli......Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme......- and molibdopterin-containing sulfite oxidase (SOx), wired to gold by the methylene blue (MB)-labeled polyamidoamine (PAMAM) dendrimers. The enzymes’ electrochemical transformation and bioelectrocatalytic function could be followed at both unlabeled and MB-labeled dendrimer-modified electrodes with the formal redox......, optimization of bioelectrocatalysis of complex intermembrane and, possibly, membrane enzymes....

  2. Immunolocalization of heme oxygenase-1 in periodontal diseases

    G Gayathri

    2014-01-01

    Conclusion: The results of our study is an increasing evidence of involvement of antioxidant enzymes like heme oxygenase-1 in periodontal inflammation and their implication for treatment of chronic periodontitis.

  3. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  4. Hal Is a Bacillus anthracis Heme Acquisition Protein

    Balderas, Miriam A.; Nobles, Christopher L.; Honsa, Erin S.; Alicki, Embriette R.

    2012-01-01

    The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development. PMID:22865843

  5. Heme and menaquinone induced electron transport in lactic acid bacteria

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacill...

  6. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  7. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  8. ACTION RECOGNITION USING SALIENT NEIGHBORING HISTOGRAMS

    Ren, Huamin; Moeslund, Thomas B.

    2013-01-01

    Combining spatio-temporal interest points with Bag-of-Words models achieves state-of-the-art performance in action recognition. However, existing methods based on “bag-ofwords” models either are too local to capture the variance in space/time or fail to solve the ambiguity problem in spatial...... and temporal dimensions. Instead, we propose a salient vocabulary construction algorithm to select visual words from a global point of view, and form compact descriptors to represent discriminative histograms in the neighborhoods. Those salient neighboring histograms are then trained to model different actions...

  9. A dumbed-down approach to unite Fermilab, its neighbors

    Constable, B

    2004-01-01

    "...Fermilab is reaching out to its suburban neighbors...With the nation on orange alert, Fermilab scientists no longer can sit on the front porch and invite neighbors in for coffee and quasars" (1 page).

  10. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    Ponka, P.; Schulman, H.M.

    1985-01-01

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59 Fe from [ 59 Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [ 59 Fe]transferrin. Also, Fe-SIH stimulates [2- 14 C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59 Fe incorporation into heme from either [ 59 Fe]transferrin or [ 59 Fe]SIH but does reverse the inhibition of 59 Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes

  11. TMEM14C is required for erythroid mitochondrial heme metabolism.

    Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J; Cooney, Jeffrey D; Pierce, Eric L; Mohler, Kyla; Dailey, Tamara A; Miyata, Non; Kingsley, Paul D; Garone, Caterina; Hattangadi, Shilpa M; Huang, Hui; Chen, Wen; Keenan, Ellen M; Shah, Dhvanit I; Schlaeger, Thorsten M; DiMauro, Salvatore; Orkin, Stuart H; Cantor, Alan B; Palis, James; Koehler, Carla M; Lodish, Harvey F; Kaplan, Jerry; Ward, Diane M; Dailey, Harry A; Phillips, John D; Peters, Luanne L; Paw, Barry H

    2014-10-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.

  12. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  14. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  15. Cryptosporidiosis in Saudi Arabia and neighboring countries

    Areeshi, Mohammed Y.; Hart, C.A.; Beeching, N.J.

    2007-01-01

    Cryptosporidium is a coccidian protozoan parasite of the intestinal tract that causes severe and sometimes fatal watery diarrhea in immunocompromised patients and self-limiting but prolonged diarrheal disease in immunocompetent individuals. It exists naturally in animals and can be zoonotic. Although cryptosporidiosis is a significant cause of diarrheal disease in both developing and developed countries, it is more prevalent in developing countries and in tropical environments. We examined the epidemiology and disease burden of Cryptosporidium in Saudi Arabia and neighboring countries by reviewing 23 published studies of Cryptosporidium and etiology of diarrhea in between 1986 and 2006. The prevalence of Cryptosporidium infection in human's ranged from 1% to 37% with a median of 4%, while in animals it was for different species of animals and geographic locations of the studies. Most cases of cryptosporidiosis occurred among children less than 7 years of age and particularly in the first two years of life. The seasonality of Cryptosporidium varied depending on the geographic locations of the studies but it generally most prevalent in the rainy season. The most commonly identified species was Cryptosporidium parvum while C.hominis was detected only in one study from Kuwait. The cumulative experience from Saudi Arabia and four neighboring countries (Kuwait, Oman, Jordan and Iraq) suggest that Cryptosporidium is an important cause of diarrhea in human and cattle. However, the findings of this review also demonstrate the limitations of the available data regarding Cryptosporidium species and strains in circulation in these countries. (author)

  16. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    Majuri, R.

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of 35 S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with 35 S. The same two bands were observed if the cell surface proteins were labeled with 125 I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author)

  17. Mechanisms of Mitochondrial Holocytochrome c Synthase and the Key Roles Played by Cysteines and Histidine of the Heme Attachment Site, Cys-XX-Cys-His*

    Babbitt, Shalon E.; San Francisco, Brian; Mendez, Deanna L.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; Bretsnyder, Eric C.; Kranz, Robert G.

    2014-01-01

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. PMID:25170082

  18. Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His.

    Babbitt, Shalon E; San Francisco, Brian; Mendez, Deanna L; Lukat-Rodgers, Gudrun S; Rodgers, Kenton R; Bretsnyder, Eric C; Kranz, Robert G

    2014-10-17

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).

    Monari, Stefano; Battistuzzi, Gianantonio; Borsari, Marco; Di Rocco, Giulia; Martini, Laura; Ranieri, Antonio; Sola, Marco

    2009-10-15

    The recombinant diheme cytochrome c(4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 and its Met64Ala and Met164Ala variants, which feature a hydroxide ion axially bound to the heme iron at the N- and C-terminal domains, respectively, were found to exchange electrons efficiently with a gold electrode coated with a SAM of 11-mercapto-1-undecanoic acid. The mutation-induced removal of the redox equivalence of the two heme groups and changes in the net charge of the protein lobes yield two-centered protein systems with unprecedented properties in the electrode-immobilized state. The heterogeneous and intraheme electron transfer processes were characterized for these species in which the high- and low-potential heme groups are swapped over in the bilobal protein framework and experience a constrained (M64A) and unconstrained (M164A) orientation toward the electrode. The reduction thermodynamics for the native and mutated hemes were measured for the first time for a diheme cytochrome c. In the diffusing regime, they reproduce closely those for the corresponding centers in single-heme class-I cytochromes c, despite the low sequence identity. Larger differences are observed in the thermodynamics of the immobilized species and in the heterogeneous electron transfer rate constants. T-dependent kinetic measurements show that the proteins are positioned approximately 7 A from the HOOC-terminated SAM-coated electrode. Protein-electrode orientation and efficient intraheme ET enable the His,OH(-)-ligated heme A of the immobilized Met64Ala variant to carry out the reductive electrocatalysis of molecular oxygen. This system therefore constitutes a novel two-centered heme-based biocatalytic interface to be exploited for "third-generation" amperometric biosensing.

  20. Model of directed lines for square ice with second-neighbor and third-neighbor interactions

    Kirov, Mikhail V.

    2018-02-01

    The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.

  1. The surprising power of neighborly advice.

    Gilbert, Daniel T; Killingsworth, Matthew A; Eyre, Rebecca N; Wilson, Timothy D

    2009-03-20

    Two experiments revealed that (i) people can more accurately predict their affective reactions to a future event when they know how a neighbor in their social network reacted to the event than when they know about the event itself and (ii) people do not believe this. Undergraduates made more accurate predictions about their affective reactions to a 5-minute speed date (n = 25) and to a peer evaluation (n = 88) when they knew only how another undergraduate had reacted to these events than when they had information about the events themselves. Both participants and independent judges mistakenly believed that predictions based on information about the event would be more accurate than predictions based on information about how another person had reacted to it.

  2. Observing Literacy Practices in Neighbor Institutions

    Reusch, Charlotte

    ’procedures on language and literacy. Based on this material, we developed an observation scheme and a guide for preschool teachers to follow, inspired by an action learning concept.During fall 2015, a pilot project is carried out. Preschool teachers from one institution visit a neighbor institution one by one during...... work hours, in order to observe and register how language and literacy events look like there. Afterwards, they share their registrations at a team meeting, and discuss and decide which procedures to test in their own institution. Thus, they form a professional learning network. In the pilot project......The Danish National Centre for Reading and a municipality in southern Denmark cooperate to develop a program to improve preschool children’s early literacy skills. The project aims to support preschool teachers’ ability to create a rich literacy environment for children age 3‒6. Recent research...

  3. Giant Planets: Good Neighbors for Habitable Worlds?

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  4. The Role of Heme Chirality in the Circular Dichroism of Heme Proteins

    Woody, Robert W.; Pescitelli, Gennaro

    2014-07-01

    The rotational strength (R) of the Soret transition in sperm-whale myoglobin (SW Mb), the hemoglobin from Chironomus thummi thummi (CTT Hb), and human hemoglobin (hHb) has been calculated using 20 high-resolution ( Raro > Rpep. For CTT Hb and hHB, the orders were, respectively, Rint > Rpep > Raro and Rint > Raro ≈ Rpep. Human Hb ɑ chains showed the same trend as CTT Hb. Only in the hHb β chains did Raro predominate, with the order Raro > Rint > Rpep. The total predicted Rtot for SW Mb, CTT Hb, and hHb averaged +0.77±0.10 (0.56 - 0.80), -0.37±0.12 (-0.5), and +0.31±0.17 DBM (0.23 - 0.50), respectively. (Values in parentheses are experimental values.) Thus, contrary to the currently accepted view, coupling with aromatic side-chain or peptide transitions is not the dominant factor in the Soret circular dichroism (CD) of these proteins. The Soret CD is dominated by intrinsic CD of the heme chromophore, of which vinyl torsion is the major determinant. This result suggests an explanation for the large effect of heme isomerism on the Soret CD of Mb and Hb. Rotation about the ɑ-γ axis may be associated with large changes in vinyl torsion and thus substantially alter the intrinsic CD, even reversing its sign.

  5. Raman scattering mediated by neighboring molecules

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  6. Raman scattering mediated by neighboring molecules

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2016-05-07

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  7. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  8. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  9. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J.

    2015-01-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorpo...

  10. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes

    Chiabrando, Deborah; Vinchi, Francesca; Fiorito, Veronica; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multi...

  11. Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis

    Jacob E. Choby; Caroline M. Grunenwald; Arianna I. Celis; Svetlana Y. Gerdes; Jennifer L. DuBois; Eric P. Skaar; Kimberly A. Kline

    2018-01-01

    Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme hom...

  12. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-08

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.

  13. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification

    Han, Euihong; Karypis, George; Kumar, Vipin

    1999-01-01

    .... The authors present a nearest neighbor classification scheme for text categorization in which the importance of discriminating words is learned using mutual information and weight adjustment techniques...

  14. Common Nearest Neighbor Clustering—A Benchmark

    Oliver Lemke

    2018-02-01

    Full Text Available Cluster analyses are often conducted with the goal to characterize an underlying probability density, for which the data-point density serves as an estimate for this probability density. We here test and benchmark the common nearest neighbor (CNN cluster algorithm. This algorithm assigns a spherical neighborhood R to each data point and estimates the data-point density between two data points as the number of data points N in the overlapping region of their neighborhoods (step 1. The main principle in the CNN cluster algorithm is cluster growing. This grows the clusters by sequentially adding data points and thereby effectively positions the border of the clusters along an iso-surface of the underlying probability density. This yields a strict partitioning with outliers, for which the cluster represents peaks in the underlying probability density—termed core sets (step 2. The removal of the outliers on the basis of a threshold criterion is optional (step 3. The benchmark datasets address a series of typical challenges, including datasets with a very high dimensional state space and datasets in which the cluster centroids are aligned along an underlying structure (Birch sets. The performance of the CNN algorithm is evaluated with respect to these challenges. The results indicate that the CNN cluster algorithm can be useful in a wide range of settings. Cluster algorithms are particularly important for the analysis of molecular dynamics (MD simulations. We demonstrate how the CNN cluster results can be used as a discretization of the molecular state space for the construction of a core-set model of the MD improving the accuracy compared to conventional full-partitioning models. The software for the CNN clustering is available on GitHub.

  15. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  16. Heme and menaquinone induced electron transport in lactic acid bacteria

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait.

  17. Cysteine-independent activation/inhibition of heme oxygenase-2

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  18. Heme and HO-1 inhibition of HCV, HBV, and HIV

    Warren N Schmidt

    2012-10-01

    Full Text Available Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system are virucidal for all three viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.

  19. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  20. AN ELISA ASSAY FOR HEME OXYGENASE (HO-1)

    An ELISA assay for heme oxygenase (HO-l ) Abstract A double antibody capture ELISA for the HO-l protein has been developed to separately quantitate HO-I protein. The use of 2.5% NP40 detergent greatly assists in freeing HO-l protein from membranes and/or other cel...

  1. Frog sound identification using extended k-nearest neighbor classifier

    Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati

    2017-09-01

    Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.

  2. The Islands Approach to Nearest Neighbor Querying in Spatial Networks

    Huang, Xuegang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2005-01-01

    , and versatile approach to k nearest neighbor computation that obviates the need for using several k nearest neighbor approaches for supporting a single service scenario. The experimental comparison with the existing techniques uses real-world road network data and considers both I/O and CPU performance...

  3. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.

    Fiege, Kerstin; Querebillo, Christine Joy; Hildebrandt, Peter; Frankenberg-Dinkel, Nicole

    2018-05-15

    Recombinant production of heme proteins in Escherichia coli is often limited by the availability of heme in the host. Therefore, several methods, including the reconstitution of heme proteins after production but prior to purification or the HPEX system, conferring the ability to take up external heme have been developed and used in the past. Here we describe the use of the apathogenic E. coli strain Nissle 1917 (EcN) as a suitable host for the recombinant production of heme proteins. EcN has an advantage over commonly used lab strains in that it is able to take up heme from the environment through the heme receptor ChuA. Expression of several heme proteins from different prokaryotic sources led to high yield and quantitative incorporation of the cofactor when heme was supplied in the growth medium. Comparative UV-vis and resonance Raman measurements revealed that the method employed has significant influence on heme coordination with the EcN system representing the most native situation. Therefore, the use of EcN as a host for recombinant heme protein production represents an inexpensive and straightforward method to facilitate further investigations of structure and function.

  4. Coordinate expression of heme and globin is essential for effective erythropoiesis.

    Doty, Raymond T; Phelps, Susan R; Shadle, Christina; Sanchez-Bonilla, Marilyn; Keel, Siobán B; Abkowitz, Janis L

    2015-12-01

    Erythropoiesis requires rapid and extensive hemoglobin production. Heme activates globin transcription and translation; therefore, heme synthesis must precede globin synthesis. As free heme is a potent inducer of oxidative damage, its levels within cellular compartments require stringent regulation. Mice lacking the heme exporter FLVCR1 have a severe macrocytic anemia; however, the mechanisms that underlie erythropoiesis dysfunction in these animals are unclear. Here, we determined that erythropoiesis failure occurs in these animals at the CFU-E/proerythroblast stage, a point at which the transferrin receptor (CD71) is upregulated, iron is imported, and heme is synthesized--before ample globin is produced. From the CFU-E/proerythroblast (CD71(+) Ter119(-) cells) stage onward, erythroid progenitors exhibited excess heme content, increased cytoplasmic ROS, and increased apoptosis. Reducing heme synthesis in FLVCR1-defient animals via genetic and biochemical approaches improved the anemia, implying that heme excess causes, and is not just associated with, the erythroid marrow failure. Expression of the cell surface FLVCR1 isoform, but not the mitochondrial FLVCR1 isoform, restored normal rbc production, demonstrating that cellular heme export is essential. Together, these studies provide insight into how heme is regulated to allow effective erythropoiesis, show that erythropoiesis fails when heme is excessive, and emphasize the importance of evaluating Ter119(-) erythroid cells when studying erythroid marrow failure in murine models.

  5. ATP-binding cassette B10 regulates early steps of heme synthesis.

    Bayeva, Marina; Khechaduri, Arineh; Wu, Rongxue; Burke, Michael A; Wasserstrom, J Andrew; Singh, Neha; Liesa, Marc; Shirihai, Orian S; Langer, Nathaniel B; Paw, Barry H; Ardehali, Hossein

    2013-07-19

    Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.

  6. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2010-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biot...

  8. Performance modeling of neighbor discovery in proactive routing protocols

    Andres Medina

    2011-07-01

    Full Text Available It is well known that neighbor discovery is a critical component of proactive routing protocols in wireless ad hoc networks. However there is no formal study on the performance of proposed neighbor discovery mechanisms. This paper provides a detailed model of key performance metrics of neighbor discovery algorithms, such as node degree and the distribution of the distance to symmetric neighbors. The model accounts for the dynamics of neighbor discovery as well as node density, mobility, radio and interference. The paper demonstrates a method for applying these models to the evaluation of global network metrics. In particular, it describes a model of network connectivity. Validation of the models shows that the degree estimate agrees, within 5% error, with simulations for the considered scenarios. The work presented in this paper serves as a basis for the performance evaluation of remaining performance metrics of routing protocols, vital for large scale deployment of ad hoc networks.

  9. Genetic analyses of heme oxygenase 1 (HMOX1 in different forms of pancreatitis.

    Sebastian Weis

    Full Text Available Heme oxygenase 1 (HMOX1 is the rate limiting enzyme in heme degradation and a key regulator of inflammatory processes. In animal models the course of pancreatitis was ameliorated by up-regulation of HMOX1 expression. Additionally, carbon monoxide released during heme breakdown inhibited proliferation of pancreatic stellate cells and might thereby prevent the development of chronic pancreatitis (CP. Transcription of HMOX1 in humans is influenced by a GT-repeat located in the promoter. As such, HMOX1 variants might be of importance in the pathogenesis of pancreatitis.The GT-repeat and SNP rs2071746 were investigated with fluorescence labelled primers and by melting curve analysis in 285 patients with acute pancreatitis, 208 patients with alcoholic CP, 207 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and in 289 controls, respectively. GT-repeat analysis was extended to a total of 446 alcoholic CP patients. In addition, we performed DNA sequencing in 145 patients with alcoholic CP, 138 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and 151 controls. Exon 3 screening was extended to additional patients and controls.S- and L-alleles of the GT-repeat, genotypes and alleles of SNP rs2071746 and non-synonymous variants detected by sequencing were found with similar frequencies in all groups.Although functional data implicate a potential influence of HMOX1 variants on the pathogenesis of pancreatitis, we did not find any association. As rare non-synonymous HMOX1 variants were found in patients and controls, it is rather unlikely that they will have functional consequences essential for pancreatitis development.

  10. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  11. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans.

    Mieno, Ayako; Yamamoto, Yuji; Yoshikawa, Yasunaga; Watanabe, Kiyotaka; Mukai, Takao; Orino, Koichi

    2013-01-01

    Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.

  12. Dietary heme mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    IJssennagger, Noortje; Wit, de Nicole; Muller, Michael; Meer, van der Roelof

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  13. Dietary heme-mediated PPARa activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    IJssenagger, N.; Wit, de N.J.W.; Muller, M.R.; Meer, van der R.

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  14. A Novel, “Double-Clamp” Binding Mode for Human Heme Oxygenase-1 Inhibition

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  15. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Mona N Rahman

    Full Text Available The development of heme oxygenase (HO inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl-4,4-diphenyl-2-butanone (QC-308. Using a carbon monoxide (CO formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50 = 0.27±0.07 µM than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50 = 4.0±1.8 µM. The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  16. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Rahman, Mona N; Vlahakis, Jason Z; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50) = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50) = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  17. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin

    Benvenisti-Zarom Luna

    2004-09-01

    Full Text Available Abstract Background Hemin, the oxidized form of heme, accumulates in intracranial hematomas and is a potent oxidant. Growing evidence suggests that it contributes to delayed injury to surrounding tissue, and that this process is affected by the heme oxygenase enzymes. In a prior study, heme oxygenase-2 gene deletion increased the vulnerability of cultured cortical astrocytes to hemin. The present study tested the effect of HO-2 gene deletion on protein oxidation, reactive oxygen species formation, and cell viability after mixed cortical neuron/astrocyte cultures were incubated with neurotoxic concentrations of hemin. Results Continuous exposure of wild-type cultures to 1–10 μM hemin for 14 h produced concentration-dependent neuronal death, as detected by both LDH release and fluorescence intensity after propidium iodide staining, with an EC50 of 1–2 μM; astrocytes were not injured by these low hemin concentrations. Cell death was consistently reduced by at least 60% in knockout cultures. Exposure to hemin for 4 hours, a time point that preceded cell lysis, increased protein oxidation in wild-type cultures, as detected by staining of immunoblots for protein carbonyl groups. At 10 μM hemin, carbonylation was increased 2.3-fold compared with control sister cultures subjected to medium exchanges only; this effect was reduced by about two-thirds in knockout cultures. Cellular reactive oxygen species, detected by fluorescence intensity after dihydrorhodamine 123 (DHR staining, was markedly increased by hemin in wild-type cultures and was localized to neuronal cell bodies and processes. In contrast, DHR fluorescence intensity in knockout cultures did not differ from that of sham-washed controls. Neuronal death in wild-type cultures was almost completely prevented by the lipid-soluble iron chelator phenanthroline; deferoxamine had a weaker but significant effect. Conclusions These results suggest that HO-2 gene deletion protects neurons in mixed

  18. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  19. Our Galactic Neighbor Hosts Complex Organic Molecules

    Hensley, Kerry

    2018-03-01

    For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected

  20. Interaction of nitric oxide with human heme oxygenase-1.

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  1. Dimensional testing for reverse k-nearest neighbor search

    Casanova, Guillaume; Englmeier, Elias; Houle, Michael E.

    2017-01-01

    Given a query object q, reverse k-nearest neighbor (RkNN) search aims to locate those objects of the database that have q among their k-nearest neighbors. In this paper, we propose an approximation method for solving RkNN queries, where the pruning operations and termination tests are guided...... by a characterization of the intrinsic dimensionality of the data. The method can accommodate any index structure supporting incremental (forward) nearest-neighbor search for the generation and verification of candidates, while avoiding impractically-high preprocessing costs. We also provide experimental evidence...

  2. Color and neighbor edge directional difference feature for image retrieval

    Chaobing Huang; Shengsheng Yu; Jingli Zhou; Hongwei Lu

    2005-01-01

    @@ A novel image feature termed neighbor edge directional difference unit histogram is proposed, in which the neighbor edge directional difference unit is defined and computed for every pixel in the image, and is used to generate the neighbor edge directional difference unit histogram. This histogram and color histogram are used as feature indexes to retrieve color image. The feature is invariant to image scaling and translation and has more powerful descriptive for the natural color images. Experimental results show that the feature can achieve better retrieval performance than other color-spatial features.

  3. Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation

    Matuschewski, Kai; Haussig, Joana M.

    2016-01-01

    Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503

  4. The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake.

    Marcelo L Merli

    2016-01-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport, which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.

  5. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  6. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury.

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-07-31

    Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the

  7. Alteration by irradiation and storage at amount of heme iron in poultry meat; Alteracoes provocadas pela irradiacao e armazenamento nos teores de ferro heme em carne de frango

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia; Canniatti-Brazaca, Solange Guidolin [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: sgcbraza@esalq.usp.br

    2007-04-15

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  8. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase

    Lukat, G.S.; Rodgers, K.R.; Jabro, M.N.; Goff, H.M.

    1989-01-01

    Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, the authors characterize the H 2 O 2 -oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Caprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum

  9. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress

  10. Tyrosine oxidation in heme oxygenase: examination of long-range proton-coupled electron transfer.

    Smirnov, Valeriy V; Roth, Justine P

    2014-10-01

    Heme oxygenase is responsible for the degradation of a histidine-ligated ferric protoporphyrin IX (Por) to biliverdin, CO, and the free ferrous ion. Described here are studies of tyrosyl radical formation reactions that occur after oxidizing Fe(III)(Por) to Fe(IV)=O(Por(·+)) in human heme oxygenase isoform-1 (hHO-1) and the structurally homologous protein from Corynebacterium diphtheriae (cdHO). Site-directed mutagenesis on hHO-1 probes the reduction of Fe(IV)=O(Por(·+)) by tyrosine residues within 11 Å of the prosthetic group. In hHO-1, Y58· is implicated as the most likely site of oxidation, based on the pH and pD dependent kinetics. The absence of solvent deuterium isotope effects in basic solutions of hHO-1 and cdHO contrasts with the behavior of these proteins in the acidic solution, suggesting that long-range proton-coupled electron transfer predominates over electron transfer.

  11. Syntheses of carbon-13 labeled protoporphyrin-IX for spectroscopic studies of heme proteins

    Fujinari, E.M.

    1985-01-01

    The development of various methodologies for synthesis of selectively tailored protoporphyrin-IX dimethyl ester are presented. The iron(II) complex of protoporphyrin-IX is the heme, the prosthetic group for Hb, Mb, cytochromes and peroxidases. The significance of this research is to provide direct means to establish definitive carbon-13 NMR assignments of heme proteins in order to study not only the structure-function relationships, but also protein dynamics of these vital systems. Carbon-13 labeling at the beta-vinyl position was first achieved by ozonolysis of protoporphyrin-IX dimethyl ester. Column LC method were used to first isolate 2,4-diformyldeuteroporphyrin-IX dimethyl ester. Concomitantly, monofomyl-monovinyl porphyrins were obtained as a mixture of two isomers. This mixture was separated by MPLC or prep HPLC to afford the isomerically pure products, Spirographis porphyrin dimethyl ester and Iso-Spirographis porphyrin dimethyl ester. A Wittig reaction to each of these porphyrins with 13 C-methyltriphenylphosphonium iodide gave 2,4-bis[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, 2-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, and the 4-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, respectively

  12. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Carvalho-Costa, P.G. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Branco, L.G.S. [Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Leite-Panissi, C.R.A. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-09-19

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

  13. Structure-Activity Relationships of 1,2-Disubstituted Benzimidazoles: Selective Inhibition of Heme Oxygenase-2 Activity.

    Kong, Xianqi; Vukomanovic, Dragic; Nakatsu, Kanji; Szarek, Walter A

    2015-08-01

    Devising ways to up- or down-regulate heme oxygenase activity is attracting much interest as a strategy for the treatment of a variety of disorders. With a view of obtaining compounds that exhibit high potency and selectivity as inhibitors of the heme oxygenase-2 (HO-2) isozyme (constitutive) relative to the heme oxygenase-1 (HO-1) isozyme (inducible), several 1,2-disubstituted 1H-benzimidazoles were designed and synthesized. Specifically, analogues were synthesized in which the C2 substituent was the following: (1H-imidazol-1-yl)methyl, (N-morpholinyl)methyl, cyclopentylmethyl, cyclohexylmethyl, or (norborn-2-yl)methyl. Compounds with the cyclic system in the C2 substituent being a carbocyclic ring, especially cyclohexyl or norborn-2-yl, and the N1 substituent being a ring-substituted benzyl group, especially 4-chlorobenzyl or 4-bromobenzyl, best exhibited the target criteria of high potency and selectivity toward inhibition of HO-2. The new candidates should be useful pharmacological tools and may have therapeutic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    Marco Constante

    2017-09-01

    Full Text Available Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD, where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis

  15. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  16. Irradiation of bovine meat: effect of heme-iron concentration

    Mistura, Liliana Perazzini Furtado

    2002-01-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  17. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  18. Studying disorders of vertebrate iron and heme metabolism using zebrafish.

    van der Vorm, Lisa N; Paw, Barry H

    2017-01-01

    Iron is a crucial component of heme- and iron-sulfur clusters, involved in vital cellular functions such as oxygen transport, DNA synthesis, and respiration. Both excess and insufficient levels of iron and heme-precursors cause human disease, such as iron-deficiency anemia, hemochromatosis, and porphyrias. Hence, their levels must be tightly regulated, requiring a complex network of transporters and feedback mechanisms. The use of zebrafish to study these pathways and the underlying genetics offers many advantages, among others their optical transparency, ex-vivo development and high genetic and physiological conservations. This chapter first reviews well-established methods, such as large-scale mutagenesis screens that have led to the initial identification of a series of iron and heme transporters and the generation of a variety of mutant lines. Other widely used techniques are based on injection of RNA, including complementary morpholino knockdown and gene overexpression. In addition, we highlight several recently developed approaches, most notably endonuclease-based gene knockouts such as TALENs or the CRISPR/Cas9 system that have been used to study how loss of function can induce human disease phenocopies in zebrafish. Rescue by chemical complementation with iron-based compounds or small molecules can subsequently be used to confirm causality of the genetic defect for the observed phenotype. All together, zebrafish have proven to be - and will continue to serve as an ideal model to advance our understanding of the pathogenesis of human iron and heme-related diseases and to develop novel therapies to treat these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nitric oxide heme interactions in nitrophorin from Cimex lectularius

    Christmann, R.; Auerbach, H., E-mail: auerbach@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Berry, R. E.; Walker, F. A. [The University of Arizona, Department of Chemistry and Biochemistry (United States); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The nitrophorin from the bedbug Cimex lectularius (cNP) is a nitric oxide (NO) carrying protein. Like the nitrophorins (rNPs) from the kissing bug Rhodnius prolixus, cNP forms a stable heme Fe(III)-NO complex, where the NO can be stored reversibly for a long period of time. In both cases, the NPs are found in the salivary glands of blood-sucking bugs. The insects use the nitrophorins to transport the NO to the victim’s tissues, resulting in vasodilation and reduced blood coagulation. However, the structure of cNP is significantly different to those of the rNPs from Rhodnius prolixus. Furthermore, the cNP can bind a second NO molecule to the proximal heme cysteine when present at higher concentrations. High field Mössbauer spectroscopy on {sup 57}Fe enriched cNP complexed with NO shows reduction of the heme iron and formation of a ferrous nitric oxide (Fe(II)-NO) complex. Density functional theory calculations reproduce the experimental Mössbauer parameters and confirm this observation.

  20. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

    Dailey, Harry A; Dailey, Tamara A; Gerdes, Svetlana; Jahn, Dieter; Jahn, Martina; O'Brian, Mark R; Warren, Martin J

    2017-03-01

    The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized. Copyright © 2017 American Society for Microbiology.

  1. Stability enhancement of cytochrome c through heme deprotonation and mutations.

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.

  2. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  3. The role of orthography in the semantic activation of neighbors.

    Hino, Yasushi; Lupker, Stephen J; Taylor, Tamsen E

    2012-09-01

    There is now considerable evidence that a letter string can activate semantic information appropriate to its orthographic neighbors (e.g., Forster & Hector's, 2002, TURPLE effect). This phenomenon is the focus of the present research. Using Japanese words, we examined whether semantic activation of neighbors is driven directly by orthographic similarity alone or whether there is also a role for phonological similarity. In Experiment 1, using a relatedness judgment task in which a Kanji word-Katakana word pair was presented on each trial, an inhibitory effect was observed when the initial Kanji word was related to an orthographic and phonological neighbor of the Katakana word target but not when the initial Kanji word was related to a phonological but not orthographic neighbor of the Katakana word target. This result suggests that phonology plays little, if any, role in the activation of neighbors' semantics when reading familiar words. In Experiment 2, the targets were transcribed into Hiragana, a script they are typically not written in, requiring readers to engage in phonological coding. In that experiment, inhibitory effects were observed in both conditions. This result indicates that phonologically mediated semantic activation of neighbors will emerge when phonological processing is necessary in order to understand a written word (e.g., when that word is transcribed into an unfamiliar script). PsycINFO Database Record (c) 2012 APA, all rights reserved.

  4. In vivo heme scavenging by Staphylococcus aureus IsdC and IsdE proteins

    Mack, John; Vermeiren, Christie; Heinrichs, David E.; Stillman, Martin J.

    2004-01-01

    We report the first characterization of the in vivo porphyrin scavenging abilities of two components of a newly discovered heme scavenging system involving iron-regulated surface determinant (Isd) proteins. These proteins are present within the cell envelope of the Gram-positive human pathogen Staphylococcus aureus. IsdC and IsdE, when expressed heterologously in Escherichia coli, efficiently scavenged intracellular heme and resulted in de novo heme synthesis in excess of 100-fold above background. Magnetic circular dichroism analyses showed that the heme-binding properties of the two proteins differ significantly from one another. IsdC bound almost exclusively free-base protoporphyrin IX, whereas the IsdE protein was associated with low spin Fe(III) and Fe(II) heme. These properties provide important insight into the possible mechanisms of iron scavenging from bound heme by Isd proteins

  5. Impact of Training Bolivian Farmers on Integrated Pest Management and Diffusion of Knowledge to Neighboring Farmers.

    Jørs, Erik; Konradsen, Flemming; Huici, Omar; Morant, Rafael C; Volk, Julie; Lander, Flemming

    2016-01-01

    Teaching farmers integrated pest management (IPM) in farmer field schools (FFS) has led to reduced pesticide use and safer handling. This article evaluates the long-term impact of training farmers on IPM and the diffusion of knowledge from trained farmers to neighboring farmers, a subject of importance to justify training costs and to promote a healthy and sustainable agriculture. Training on IPM of farmers took place from 2002 to 2004 in their villages in La Paz County, Bolivia, whereas dissemination of knowledge from trained farmer to neighboring farmer took place until 2009. To evaluate the impact of the intervention, self-reported knowledge and practice on pesticide handling and IPM among trained farmers (n = 23) and their neighboring farmers (n = 47) were analyzed in a follow-up study and compared in a cross-sectional analysis with a control group of farmers (n = 138) introduced in 2009. Variables were analyzed using χ2 test and analysis of variance (ANOVA). Trained farmers improved and performed significantly better in all tested variables than their neighboring farmers, although the latter also improved their performance from 2002 to 2009. Including a control group showed an increasing trend in all variables, with the control farmers having the poorest performance and trained farmers the best. The same was seen in an aggregated variable where trained farmers had a mean score of 16.55 (95% confidence interval [CI]: 15.45-17.65), neighboring farmers a mean score of 11.97 (95% CI: 10.56-13.38), and control farmers a mean score of 9.18 (95% CI: 8.55-9.80). Controlling for age and living altitude did not change these results. Trained farmers and their neighboring farmers improved and maintained knowledge and practice on IPM and pesticide handling. Diffusion of knowledge from trained farmers might explain the better performance of the neighboring farmers compared with the control farmers. Dissemination of knowledge can contribute to justify the cost and convince

  6. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription: Correlative Cell Culture Assays Guide in Vivo Imaging

    Monica Hajdena-Dawson; Weisheng Zhang; Pamela R. Contag; Ronald J. Wong; Hendrik J. Vreman; David K. Stevenson; Christopher H. Contag

    2003-01-01

    Heme oxygenase (HO) is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps), a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme. Therefore, effective development of this class of compounds as therapeutics for treating pathologic jaundic...

  8. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme.

    Babbitt, Shalon E; San Francisco, Brian; Bretsnyder, Eric C; Kranz, Robert G

    2014-08-19

    C-type cytochromes are distinguished by the covalent attachment of a heme cofactor, a modification that is typically required for its subsequent folding, stability, and function. Heme attachment takes place in the mitochondrial intermembrane space and, in most eukaryotes, is mediated by holocytochrome c synthase (HCCS). HCCS is the primary component of the eukaryotic cytochrome c biogenesis pathway, known as System III. The catalytic function of HCCS depends on its ability to coordinate interactions between its substrates: heme and cytochrome c. Recent advancements in the recombinant expression and purification of HCCS have facilitated comprehensive analyses of the roles of conserved residues in HCCS, as demonstrated in this study. Previously, we proposed a four-step model describing HCCS-mediated cytochrome c assembly, identifying a conserved histidine residue (His154) as an axial ligand to the heme iron. In this study, we performed a systematic mutational analysis of 17 conserved residues in HCCS, and we provide evidence that the enzyme contains two heme-binding domains. Our data indicate that heme contacts mediated by residues within these domains modulate the dynamics of heme binding and contribute to the stability of the HCCS-heme-cytochrome c steady state ternary complex. While some residues are essential for initial heme binding (step 1), others impact the subsequent release of the holocytochrome c product (step 4). Certain HCCS mutants that were defective in heme binding were corrected for function by exogenous aminolevulinic acid (ALA, the precursor to heme). This chemical "correction" supports the proposed role of heme binding for the corresponding residues.

  9. Irradiation of bovine meat: effect of heme-iron concentration.; Irradiacao de carne bovina: efeito na concentracao de ferro heme

    Mistura, Liliana Perazzini Furtado

    2002-07-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  10. Haldane to Dimer Phase Transition in the Spin-1 Haldane System with Bond-Alternating Nearest-Neighbor and Uniform Next-Nearest-Neighbor Exchange Interactions

    Takashi, Tonegawa; Makoto, Kaburagi; Takeshi, Nakao; Department of Physics, Faculty of Science, Kobe University; Faculty of Cross-Cultural Studies, Kobe University; Department of Physics, Faculty of Science, Kobe University

    1995-01-01

    The Haldane to dimer phase transition is studied in the spin-1 Haldane system with bond-alternating nearest-neighbor and uniform next-nearest-neighbor exchange interactions, where both interactions are antiferromagnetic and thus compete with each other. By using a method of exact diagonalization, the ground-state phase diagram on the ratio of the next-nearest-neighbor interaction constant to the nearest-neighbor one versus the bond-alternation parameter of the nearest-neighbor interactions is...

  11. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  12. Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase.

    Quang M Tran

    Full Text Available The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to -80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.

  13. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.

    Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel

    2014-10-01

    Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.

  14. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed

  15. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex.

    Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D

    2004-12-27

    Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief

  16. O2-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-01-01

    Research highlights: → Human serum heme-albumin displays globin-like properties. → O 2 -mediated oxidation of ferrous nitrosylated human serum heme-albumin. → Allosteric modulation of human serum heme-albumin reactivity. → Rifampicin is an allosteric effector of human serum heme-albumin. → Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O 2 -mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O 2 -mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10 -5 and 8.3 x 10 -4 s -1 , and h = 1.3 x 10 -4 and 8.5 x 10 -4 s -1 , in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 o C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O 2 -mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O 2 does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O 2 -mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  17. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  18. [When the natives are our neighbors].

    Ginsburg, F

    1992-01-01

    The US debate over the ethics of abortion is the context for this discussion of problems in reporting the results of research when the topic is a controversial social movement on which the researcher and members of the academic community hold strong personal views. The author worked with local right-to-life and prochoice activists in Fargo, North Dakota, in the early 1980s. This article describes the political climate in those years after the election of Reagan to the presidency, as well as the composition of the prolife movement and its emergence with the New Right in the 1970s. The local scope of much right-to-life activity in that era made it an appropriate topic for ethnographic research using participant-observation techniques. The collective portrait of local prolife activists in Fargo was more complex than their stereotype of reactionary housewives left behind by social change would suggest. Right-to-lifers are often considered hostile to feminism, but a large part of their rhetoric actually covered the same ground. Much of the right-to-life program can be interpreted as the expression of a desire to reform the most dehumanizing aspects of contemporary capitalist culture. From this point of view, prolifers are more similar to their prochoice opponents than to their presumed New Right allies, who prefer a more libertarian social philosophy. Activists on both sides of the debate share a common sociohistorical context providing common references, particularly regarding procreation and sexuality. The debate has a dialectical quality in that a large part consists of reactions to the positions of the other side. Militants on both sides agree on such points as the need for equal pay for equal work and the need to make the economic system more responsive to the needs and responsibilities of women. The credibility of the author's findings was questioned by colleagues, which prompted reflection on the presentation of results of research on a controversial group

  19. Potent heme-degrading action of antimony and antimony-containing parasiticidal agents.

    Drummond, G S; Kappas, A

    1981-02-01

    The ability of antimony and antimony-containing parasiticidal agents to enhance the rate of heme degradation in liver and kidney was investigated. Trivalent antimony was shown to be an extremely potent inducer of heme oxygenase, the initial and rate-limiting enzyme in heme degradation, in both organs, whereas the pentavalent form was a weak inducer of this enzyme. The ability of antimony to induce heme oxygenase was dose-dependent, independent of the salt used, and not a result of a direct activation of the enzyme in vitro. Concomitant with heme oxygenase induction by antimony, microsomal heme and cytochrome P-450 contents decreased, the cyto-chrome P-450-dependent mixed function oxidase system was impaired, and delta-ami-nolevulinate synthase (ALAS), the rate-limiting enzyme of heme synthesis, underwent the sequential changes-initial inhibition followed by rebound induction-usually associated with the administration of transition elements such as cobalt. Antimony induction of heme oxygenase however, unlike the enzyme induction elicited by cobalt, was not prevented either by cysteine administered orally or as a cysteine metal complex, or by simultaneous zinc administration. Desferoxamine also did not block heme oxygenase induction by antimony, but this chelator did prevent the rebound increase in ALAS activity associated with antimony or cobalt treatment. Antimony-containing parasiticidal drugs were also potent inducers of heme oxygenase in liver and kidney. The heme degradative action of these drugs may be related in part to the jaundice commonly associated with the prolonged therapeutic use of these agents. The heme-oxygenase-inducing action of antimony-containing parasiticidal drugs is a newly defined biological property of these compounds. The relation between the parasiticidal and the heme-oxygenase-inducing actions of such drugs is unknown. However, certain parasites contain hemoproteins or require heme compounds during their life cycle. It may therefore be

  20. Multiple k Nearest Neighbor Query Processing in Spatial Network Databases

    Xuegang, Huang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2006-01-01

    This paper concerns the efficient processing of multiple k nearest neighbor queries in a road-network setting. The assumed setting covers a range of scenarios such as the one where a large population of mobile service users that are constrained to a road network issue nearest-neighbor queries...... for points of interest that are accessible via the road network. Given multiple k nearest neighbor queries, the paper proposes progressive techniques that selectively cache query results in main memory and subsequently reuse these for query processing. The paper initially proposes techniques for the case...... where an upper bound on k is known a priori and then extends the techniques to the case where this is not so. Based on empirical studies with real-world data, the paper offers insight into the circumstances under which the different proposed techniques can be used with advantage for multiple k nearest...

  1. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal.

    Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco

    2011-02-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.

  2. Pilot-scale tests of HEME and HEPA dissolution process

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  3. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  4. Nearest unlike neighbor (NUN): an aid to decision confidence estimation

    Dasarathy, Belur V.

    1995-09-01

    The concept of nearest unlike neighbor (NUN), proposed and explored previously in the design of nearest neighbor (NN) based decision systems, is further exploited in this study to develop a measure of confidence in the decisions made by NN-based decision systems. This measure of confidence, on the basis of comparison with a user-defined threshold, may be used to determine the acceptability of the decision provided by the NN-based decision system. The concepts, associated methodology, and some illustrative numerical examples using the now classical Iris data to bring out the ease of implementation and effectiveness of the proposed innovations are presented.

  5. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  6. The effect of irradiation and thermal process on beef heme iron concentration and color properties

    Mistura, Liliana Perazzini Furtado; Colli, Celia

    2009-01-01

    The aim of this study was to evaluate the influence of irradiation and thermal process on the heme iron (heme-Fe) concentration and color properties of Brazilian cattle beef. Beef samples (patties and steaks) were irradiated at 0-10 kGy and cooked in a combination oven at 250 deg C for 9 minutes with 70% humidity. Total iron and heme iron (heme-Fe) concentrations were determined. The data were compared by multiple comparisons and fixed- effects ANOVA. Irradiation at doses higher than 5 kGy significantly altered the heme-Fe concentration. However, the sample preparation conditions interfered more in the heme-Fe content than did the irradiation. Depending on the animal species, meat heme iron levels between 35 and 52% of the total iron are used for dietetic calculations. In this study the percentage of heme-iron was, on average, 70% of the total iron showing that humidity is an important factor for its preservation. The samples were analyzed instrumentally for CIE L * , a * , and b * values. (author)

  7. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  8. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes

    Albrecht, Tim; Li, WW; Ulstrup, Jens

    2005-01-01

    On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme...

  9. Alteration by irradiation and storage at amount of heme iron in poultry meat

    Souza, A.R.M. de; Arthur, V.; Canniatti-Brazaca, S.G.

    2007-01-01

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 °C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author) [pt

  10. Alteration by irradiation and storage at amount of heme iron in poultry meat

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur; Canniatti-Brazaca, Solange Guidolin

    2007-01-01

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  11. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages

    Mary Philip

    2016-01-01

    Full Text Available Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body’s iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation.

  12. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  13. Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

    Stiebler, R.; Majerowicz, David; Knudsen, Jens

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membrane...

  14. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging

    Thomsen, Jens Haugbølle; Etzerodt, Anders; Svendsen, Pia

    2013-01-01

    The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex...

  15. Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm

    E. Parvinnia

    2014-01-01

    Full Text Available Electroencephalogram (EEG signals are often used to diagnose diseases such as seizure, alzheimer, and schizophrenia. One main problem with the recorded EEG samples is that they are not equally reliable due to the artifacts at the time of recording. EEG signal classification algorithms should have a mechanism to handle this issue. It seems that using adaptive classifiers can be useful for the biological signals such as EEG. In this paper, a general adaptive method named weighted distance nearest neighbor (WDNN is applied for EEG signal classification to tackle this problem. This classification algorithm assigns a weight to each training sample to control its influence in classifying test samples. The weights of training samples are used to find the nearest neighbor of an input query pattern. To assess the performance of this scheme, EEG signals of thirteen schizophrenic patients and eighteen normal subjects are analyzed for the classification of these two groups. Several features including, fractal dimension, band power and autoregressive (AR model are extracted from EEG signals. The classification results are evaluated using Leave one (subject out cross validation for reliable estimation. The results indicate that combination of WDNN and selected features can significantly outperform the basic nearest-neighbor and the other methods proposed in the past for the classification of these two groups. Therefore, this method can be a complementary tool for specialists to distinguish schizophrenia disorder.

  16. Effect of heme oxygenase-1 on radiation-induced skin injury

    Song Chuanjun; Meng Xingjun; Xie Ling; Chen Qing; Zhou Jundong; Zhang Shuyu; Wu Jinchang

    2012-01-01

    Objective: To investigate the effect of heme oxygenase-1 (HO-1) on the acute radiation-induced skin injury by gene transfer. Methods: Thirty-three male SD rats were randomly divided into three groups as PBS-injected group, Ad-EGFP-injected group and Ad-HO-1-injected group (n=11). In each group, three rats were used for determining the expression of target gene and the other rats were irradiated on the buttock skin with 40 Gy electron beam generated by a linear accelerator. Immediately after irradiation, rats were administered with a subcutaneous injection of PBS, Ad-EGFP or Ad-HO-1, respectively. Subsequently, the skin reactions were measured twice a week using the semi-quantitative skin injury scale. Results: The strong positive expression of HO-1 was observed in subcutaneous dermal tissue after injection of Ad-HO-1. Compared to the PBS-injected group or the Ad-EGFP-injected group, a significant mitigation of skin injury was observed in Ad-HO-1-injected mice 14 d after irradiation (q=0.000-0.030, P<0.05). Conclusions: HO-1 could significantly mitigate radiation-induced acute skin injury and Ad-HO-1 could be used to treat radiation-induced skin injury. (authors)

  17. Heme oxygenase-1 prevents hyperthyroidism induced hepatic damage via an antioxidant and antiapoptotic pathway.

    Giriş, Murat; Erbil, Yeşim; Depboylu, Bilge; Mete, Ozgür; Türkoğlu, Umit; Abbasoğlu, Semra Doğru; Uysal, Müjdat

    2010-12-01

    The exact pathogenesis of hepatic dysfunction in hyperthyroidism is still unknown. We aimed to investigate the pathogenesis of liver dysfunction caused by hyperthyroidism through inducing heme oxygenase-1 (HO-1) expression, which has antioxidant and anti-apoptotic properties. Rats were divided into six groups: untreated (group 1), treated with zinc protoporphyrin (ZnPP) (group 2), treated with hemin (group 3), treated with tri-iodothyronine (T3) (group 4), treated with T3 and ZnPP (group 5), and treated with T3 and hemin (group 6). After 22 d, oxidative stress and antioxidant enzymes and the expression of HO-1, mitochondrial permeability transition, cytochrome c, Bax, Bcl-2, caspase-3, caspase-8, and caspase-3 activity, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay were examined. Hyperthyroidism induced oxidative stress of liver tissue was ameliorated by HO-1 induction. Administration of hemin (HO-1 inducer) increased Bcl-2 expression. Decreased expression of cytochrome c was accompanied by a decrease in caspase-3, caspase-8, Bax expression, and caspase-3 activity. The apoptotic activity and oxidative damage were found to be increased by the administration of ZnPP (HO-1 inhibitor). Immunohistochemistry findings supported these results. HO-1 induction plays a protective role in the pathogenesis of the liver dysfunction in hyperthyroidism. This effect is dependent on modulation of the antiapoptotic and antioxidative pathways by HO-1 expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Spray nozzle pattern test for the DWPF HEME Task QA Plan

    Lee, L.

    1991-01-01

    The DWPF melter off-gas systems have two High Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine mists and particulates from the off-gas. To have an acceptable filter life and an efficient operation, an air atomized water is spray on the HEME. The water spray keeps the HEME wet and dissolves the soluble particulates and enhances and HEME efficiency. DWPF Technical asked SRL to determine the conditions which will give satisfactory atomization and distribution of water so that the HEME will operate efficiently. The purpose of this document is to identify, QA controls to be applied in the pursuit of this task (WSRC-RP-91-1151)

  19. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  20. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.

  1. Contrasting demographic histories of the neighboring bonobo and chimpanzee

    Hvilsom, Christina; Carlsen, Frands; Heller, Rasmus

    2014-01-01

    of the neighboring bonobo remained constant. The changes in population size are likely linked to changes in habitat area due to climate oscillations during the late Pleistocene. Furthermore, the timing of population expansion for the rainforest-adapted chimpanzee is concurrent with the expansion of the savanna...

  2. Local randomization in neighbor selection improves PRM roadmap quality

    McMahon, Troy

    2012-10-01

    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K\\'), that first computes the K\\' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K\\'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.

  3. Local randomization in neighbor selection improves PRM roadmap quality

    McMahon, Troy; Jacobs, Sam; Boyd, Bryan; Tapia, Lydia; Amato, Nancy M.

    2012-01-01

    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K'), that first computes the K' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.

  4. Clustered K nearest neighbor algorithm for daily inflow forecasting

    Akbari, M.; Van Overloop, P.J.A.T.M.; Afshar, A.

    2010-01-01

    Instance based learning (IBL) algorithms are a common choice among data driven algorithms for inflow forecasting. They are based on the similarity principle and prediction is made by the finite number of similar neighbors. In this sense, the similarity of a query instance is estimated according to

  5. Near Neighbor Distribution in Sets of Fractal Nature

    Jiřina, Marcel

    2013-01-01

    Roč. 5, č. 1 (2013), s. 159-166 ISSN 2150-7988 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : nearest neighbor * fractal set * multifractal * Erlang distribution Subject RIV: BB - Applied Statistics, Operational Research http://www.mirlabs.org/ijcisim/regular_papers_2013/Paper91.pdf

  6. Neighboring Genes Show Correlated Evolution in Gene Expression

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  7. Secure Nearest Neighbor Query on Crowd-Sensing Data

    Ke Cheng

    2016-09-01

    Full Text Available Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes.

  8. Thermodynamic systematics of oxides of americium, curium, and neighboring elements

    Morss, L.R.

    1984-01-01

    Recently-obtained calorimetric data on the sesquioxides and dioxides of americium and curium are summarized. These data are combined with other properties of the actinide elements to elucidate the stability relationships among these oxides and to predict the behavior of neighboring actinide oxides. 45 references, 4 figures, 5 tables

  9. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  10. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  11. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  12. Host heme oxygenase-1: Friend or foe in tackling pathogens?

    Singh, Nisha; Ahmad, Zeeshan; Baid, Navin; Kumar, Ashwani

    2018-05-14

    Infectious diseases are a major challenge in management of human health worldwide. Recent literature suggests that host immune system could be modulated to ameliorate the pathogenesis of infectious disease. Heme oxygenase (HMOX1) is a key regulator of cellular signaling and it could be modulated using pharmacological reagents. HMOX1 is a cytoprotective enzyme that degrades heme to generate carbon monoxide (CO), biliverdin, and molecular iron. CO and biliverdin (or bilirubin derived from it) can restrict the growth of a few pathogens. Both of these also induce antioxidant pathways and anti-inflammatory pathways. On the other hand, molecular iron can induce proinflammatory pathway besides making the cellular environment oxidative in nature. Since microbial infections often induce oxidative stress in host cells/tissues, role of HMOX1 has been analyzed in the pathogenesis of number of infections. In this review, we have described the role of HMOX1 in pathogenesis of bacterial infections caused by Mycobacterium species, Salmonella and in microbial sepsis. We have also provided a succinct overview of the role of HMOX1 in parasitic infections such as malaria and leishmaniasis. In the end, we have also elaborated the role of HMOX1 in viral infections such as AIDS, hepatitis, dengue, and influenza. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  13. Heme and menaquinone induced electron transport in lactic acid bacteria

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  14. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  15. Heme and menaquinone induced electron transport in lactic acid bacteria.

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  16. Energy transfer at the active sites of heme proteins

    Dlott, D.D.; Hill, J.R.

    1995-01-01

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes

  17. Heme-containing enzymes and inhibitors for tryptophan metabolism.

    Yan, Daojing; Lin, Ying-Wu; Tan, Xiangshi

    2017-09-20

    Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.

  18. Heme oxygenase-1 comes back to endoplasmic reticulum

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  19. Heme oxygenase and carbon monoxide protect from muscle dystrophy.

    Chan, Mun Chun; Ziegler, Olivia; Liu, Laura; Rowe, Glenn C; Das, Saumya; Otterbein, Leo E; Arany, Zoltan

    2016-11-28

    Duchenne muscle dystrophy (DMD) is one of the most common lethal genetic diseases of children worldwide and is 100% fatal. Steroids, the only therapy currently available, are marred by poor efficacy and a high side-effect profile. New therapeutic approaches are urgently needed. Here, we leverage PGC-1α, a powerful transcriptional coactivator known to protect against dystrophy in the mdx murine model of DMD, to search for novel mechanisms of protection against dystrophy. We identify heme oxygenase-1 (HO-1) as a potential novel target for the treatment of DMD. Expression of HO-1 is blunted in the muscles from the mdx murine model of DMD, and further reduction of HO-1 by genetic haploinsufficiency worsens muscle damage in mdx mice. Conversely, induction of HO-1 pharmacologically protects against muscle damage. Mechanistically, HO-1 degrades heme into biliverdin, releasing in the process ferrous iron and carbon monoxide (CO). We show that exposure to a safe low dose of CO protects against muscle damage in mdx mice, as does pharmacological treatment with CO-releasing molecules. These data identify HO-1 and CO as novel therapeutic agents for the treatment of DMD. Safety profiles and clinical testing of inhaled CO already exist, underscoring the translational potential of these observations.

  20. Incidence and Prevalence of Tuberculosis in Iran and Neighboring Countries

    Arezoo Tavakoli

    2017-07-01

    Full Text Available Background Tuberculosis is one of the major public health concerns in many countries, however the available and effective treatment is known. Tuberculosis typically determined with socio-economic problems such as war, malnutrition and HIV prevalence. In Iran, many progresses are carried to control tuberculosis but, different factors such as immigration from neighboring countries are affective to tuberculosis infection. Objectives In this paper, the incidence and prevalence of tuberculosis is evaluated in different regions of Iran and neighboring countries. Methods The data are collected from different and valid sources such as Scopus, Pubmed and also many reports from world health organization (WHO and center of disease control and prevention (CDC for a period of 25 years (1990 - 2015 evaluated for Iran and neighboring countries. Results This study as a descriptive- analytical research is conducted cross- sectional among Iran and neighboring countries since 1990. The information is obtained from exact and valid informative data from web of sciences. The east and west border countries of Iran which are faced with war and immigration in Afghanistan, Pakistan and Iraq are source of tuberculosis infection that effect on tuberculosis prevalence in Iran. The data were analyzed by SPSS 22 and Excel 2013. Conclusions The incidence of tuberculosis in Iran has been decreased because of many controlling actions such as BCG vaccination, electronic reporting system for tuberculosis and free access to tuberculosis medication. Some of Iran neighboring countries such as Tajikistan and Pakistan have the highest incidence of tuberculosis which known as a challenge for tuberculosis control in Iran while Saudi Arabia and Turkey have the lowest incidence.

  1. Local biotic adaptation of trees and shrubs to plant neighbors

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  2. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    Suttorp, Christiaan M.; Xie, Rui; Lundvig, Ditte M. S.; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C.; Wagener, Frank A. D. T. G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment. PMID:27486402

  3. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. (c) 2007 Wiley-Liss, Inc.

  4. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats.

    Suttorp, Christiaan M; Xie, Rui; Lundvig, Ditte M S; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C; Wagener, Frank A D T G

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, "fast" and "slow" tooth movers during orthodontic treatment.

  5. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    Qian, Wen-Jian [National Cancer Inst., Frederick, MD (United States); Park, Jung-Eun [National Cancer Inst., Bethesda, MD (United States); Grant, Robert [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lai, Christopher C. [National Cancer Inst., Frederick, MD (United States); Kelley, James A. [National Cancer Inst., Frederick, MD (United States); Yaffe, Michael B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lee, Kyung S. [National Cancer Inst., Bethesda, MD (United States); Burke, Terrence R. [National Cancer Inst., Frederick, MD (United States)

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  6. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction.

    Stranava, Martin; Martínková, Markéta; Stiborová, Marie; Man, Petr; Kitanishi, Kenichi; Muchová, Lucie; Vítek, Libor; Martínek, Václav; Shimizu, Toru

    2014-11-01

    The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats.

    Martin, O C B; Lin, C; Naud, N; Tache, S; Raymond-Letron, I; Corpet, D E; Pierre, F H

    2015-01-01

    Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.

  8. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  9. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-01-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and 14 C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of 14 C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose

  10. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  11. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Souza, C.F.; Carneiro, A.B.; Silveira, A.B.; Laranja, G.A.T.; Silva-Neto, M.A.C.; Costa, S.C. Goncalves da; Paes, M.C.

    2009-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  12. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  13. Genetic Variability of the Heme Uptake System among Different Strains of the Fish Pathogen Vibrio anguillarum: Identification of a New Heme Receptor

    Mouriño, Susana; Rodríguez-Ares, Isabel; Osorio, Carlos R.; Lemos, Manuel L.

    2005-01-01

    The ability to utilize heme compounds as iron sources was investigated in Vibrio anguillarum strains belonging to serotypes O1 to O10. All strains, regardless of their serotype or isolation origin could utilize hemin and hemoglobin as sole iron sources. Similarly, all of the isolates could bind hemin and Congo red, and this binding was mediated by cell envelope proteins. PCR and Southern hybridization were used to assay the occurrence of heme transport genes huvABCD, which have been previously described in serotype O1. Of 23 strains studied, two serotype O3 isolates proved negative for all huvABCD genes, whereas nine strains included in serotypes O2, O3, O4, O6, O7, and O10 tested negative for the outer membrane heme receptor gene huvA. A gene coding for a novel outer membrane heme receptor was cloned and characterized in a V. anguillarum serotype O3 strain lacking huvA. The new heme receptor, named HuvS, showed significant similarity to other outer membrane heme receptors described in Vibrionaceae, but little homology (39%) to HuvA. This heme receptor was present in 9 out of 11 of the V. anguillarum strains that tested negative for HuvA. Furthermore, complementation experiments demonstrated that HuvS could substitute for the HuvA function in Escherichia coli and V. anguillarum mutants. The huvS and huvA sequences alignment, as well as the analysis of their respective upstream and downstream DNA sequences, suggest that horizontal transfer and recombination might be responsible for generating this genetic diversity. PMID:16332832

  14. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  15. Heme as a danger molecule in pathogen recognition.

    Wegiel, Barbara; Hauser, Carl J; Otterbein, Leo E

    2015-12-01

    Appropriate control of redox mechanisms are critical for and effective innate immune response, which employs multiple cell types, receptors and molecules that recognize danger signals when they reach the host. Recognition of pathogen-associated pattern molecules (PAMPs) is a fundamental host survival mechanism for efficient elimination of invading pathogens and resolution of the infection and inflammation. In addition to PAMPs, eukaryotic cells contain a plethora of intracellular molecules that are normally secured within the confines of the plasma membrane, but if liberated and encountered in the extracellular milieu can provoke rapid cell activation. These are known as Alarmins or Danger-Associated Molecular Patterns (DAMPs) and can be released actively by cells or passively as a result of sterile cellular injury after trauma, ischemia, or toxin-induced cell rupture. Both PAMPs and DAMPs are recognized by a series of cognate receptors that increase the generation of free radicals and activate specific signaling pathways that result in regulation of a variety of stress response, redox sensitive genes. Multiple mediators released, as cells die include, but are not limited to ATP, hydrogen peroxide, heme, formyl peptides, DNA or mitochondria provide the second signal to amplify immune responses. In this review, we will focus on how sterile and infective stimuli activate the stress response gene heme oxygenase-1 (Hmox1, HO-1), a master gene critical to an appropriate host response that is now recognized as one with enormous therapeutic potential. HO-1 gene expression is regulated in large part by redox-sensitive proteins including but not limited to nrf2. Both PAMPs and DAMPs increase the activation of nrf2 and HO-1. Heme is a powerful pro-oxidant and as such should be qualified as a DAMP. With its degradation by HO-1a molecule of carbon monoxide (CO) is generated that in turn serves as a bioactive signaling molecule. PAMPs such as bacterial endotoxin activate HO-1

  16. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria

    Kathiresan, Meena; Martins, Dorival; English, Ann M.

    2014-01-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1’s heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  17. Allocation of Heme is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1 and null (fc1-2 mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1 and null (fc2-2 mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.

  18. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-09

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification.

  19. Social dilemma alleviated by sharing the gains with immediate neighbors

    Wu, Zhi-Xi; Yang, Han-Xin

    2014-01-01

    We study the evolution of cooperation in the evolutionary spatial prisoner's dilemma game (PDG) and snowdrift game (SG), within which a fraction α of the payoffs of each player gained from direct game interactions is shared equally by the immediate neighbors. The magnitude of the parameter α therefore characterizes the degree of the relatedness among the neighboring players. By means of extensive Monte Carlo simulations as well as an extended mean-field approximation method, we trace the frequency of cooperation in the stationary state. We find that plugging into relatedness can significantly promote the evolution of cooperation in the context of both studied games. Unexpectedly, cooperation can be more readily established in the spatial PDG than that in the spatial SG, given that the degree of relatedness and the cost-to-benefit ratio of mutual cooperation are properly formulated. The relevance of our model with the stakeholder theory is also briefly discussed.

  20. Grain price spikes and beggar-thy-neighbor policy responses

    Boysen, Ole; Jensen, Hans Grinsted

    on the agenda of various international policy fora, including the annual meetings of G20 countries in recent years. For that reason, recent studies have attempted to quantify the extent to which such policy actions contributed to the rise in food prices. A study by Jensen & Anderson (2014) uses the global AGE...... model GTAP and the corresponding database to quantify the global policy actions contributions to the raise in food prices by modeling the changes in distortions to agricultural incentives in the period 2006 to 2008. We link the results from this global model into a national AGE model, highlighting how...... global "Beggar-thy-Neighbor Policy Responses" impacted on poor households in Uganda. More specifically we examine the following research questions: What were the Ugandan economy-wide and poverty impacts of the price spikes? What was the impact of other countries "Beggar-thy-Neighbor Policy Responses...

  1. Crimean-Congo hemorrhagic fever in Iran and neighboring countries

    Chinikar, S; Ghiasi, Seyed Mojtaba; Hewson, R

    2010-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic viral disease that is asymptomatic in infected livestock, but a serious threat to humans. Human infections begin with nonspecific febrile symptoms, but progress to a serious hemorrhagic syndrome with a case fatality rate of 2-50%. Although the ...... in Iran and neighboring countries and provide evidence of over 5000 confirmed cases of CCHF in a single period/season....

  2. Fast Most Similar Neighbor (MSN) classifiers for Mixed Data

    Hernández Rodríguez, Selene

    2010-01-01

    The k nearest neighbor (k-NN) classifier has been extensively used in Pattern Recognition because of its simplicity and its good performance. However, in large datasets applications, the exhaustive k-NN classifier becomes impractical. Therefore, many fast k-NN classifiers have been developed; most of them rely on metric properties (usually the triangle inequality) to reduce the number of prototype comparisons. Hence, the existing fast k-NN classifiers are applicable only when the comparison f...

  3. ENTROPY CHARACTERISTICS IN MODELS FOR COORDINATION OF NEIGHBORING ROAD SECTIONS

    N. I. Kulbashnaya

    2016-01-01

    Full Text Available The paper considers an application of entropy characteristics as criteria to coordinate traffic conditions at neighboring road sections. It has been proved that the entropy characteristics are widely used in the methods that take into account information influence of the environment on drivers and in the mechanisms that create such traffic conditions which ensure preservation of the optimal level of driver’s emotional tension during the drive. Solution of such problem is considered in the aspect of coordination of traffic conditions at neighboring road sections that, in its turn, is directed on exclusion of any driver’s transitional processes. Methodology for coordination of traffic conditions at neighboring road sections is based on the E. V. Gavrilov’s concept on coordination of some parameters of road sections which can be expressed in the entropy characteristics. The paper proposes to execute selection of coordination criteria according to accident rates because while moving along neighboring road sections traffic conditions change drastically that can result in creation of an accident situation. Relative organization of a driver’s perception field and driver’s interaction with the traffic environment has been selected as entropy characteristics. Therefore, the given characteristics are made conditional to the road accidents rate. The investigation results have revealed a strong correlation between the relative organization of the driver’s perception field and the relative organization of the driver’s interaction with the traffic environment and the accident rate. Results of the executed experiment have proved an influence of the accident rate on the investigated entropy characteristics.

  4. Do alcohol compliance checks decrease underage sales at neighboring establishments?

    Erickson, Darin J; Smolenski, Derek J; Toomey, Traci L; Carlin, Bradley P; Wagenaar, Alexander C

    2013-11-01

    Underage alcohol compliance checks conducted by law enforcement agencies can reduce the likelihood of illegal alcohol sales at checked alcohol establishments, and theory suggests that an alcohol establishment that is checked may warn nearby establishments that compliance checks are being conducted in the area. In this study, we examined whether the effects of compliance checks diffuse to neighboring establishments. We used data from the Complying with the Minimum Drinking Age trial, which included more than 2,000 compliance checks conducted at more than 900 alcohol establishments. The primary outcome was the sale of alcohol to a pseudo-underage buyer without the need for age identification. A multilevel logistic regression was used to model the effect of a compliance check at each establishment as well as the effect of compliance checks at neighboring establishments within 500 m (stratified into four equal-radius concentric rings), after buyer, license, establishment, and community-level variables were controlled for. We observed a decrease in the likelihood of establishments selling alcohol to underage youth after they had been checked by law enforcement, but these effects quickly decayed over time. Establishments that had a close neighbor (within 125 m) checked in the past 90 days were also less likely to sell alcohol to young-appearing buyers. The spatial effect of compliance checks on other establishments decayed rapidly with increasing distance. Results confirm the hypothesis that the effects of police compliance checks do spill over to neighboring establishments. These findings have implications for the development of an optimal schedule of police compliance checks.

  5. Single cell transcriptomics of neighboring hyphae of Aspergillus niger

    2011-01-01

    Single cell profiling was performed to assess differences in RNA accumulation in neighboring hyphae of the fungus Aspergillus niger. A protocol was developed to isolate and amplify RNA from single hyphae or parts thereof. Microarray analysis resulted in a present call for 4 to 7% of the A. niger genes, of which 12% showed heterogeneous RNA levels. These genes belonged to a wide range of gene categories. PMID:21816052

  6. Effects of 1,2-dibromo-3-chloropropane on hepatic heme synthesis

    Moody, D.E.; Clawson, G.A.; Piper, W.N.; Smuckler, E.A.

    1984-01-01

    Previous studies showed that 1,2-dibromo-3-chloropropane (DBCP) caused a decrease in hepatic microsomal cytochrome P-450 suggesting that hepatic heme metabolism may be affected by DBCP treatment. Various parameters of hepatic heme synthesis were measured at intervals ranging from 0 to 72 hr in male Sprague-Dawley rats given a single oral dose (200 mg/kg) of DBCP. Incorporation of the radiolabeled heme precursor [delta-14C]aminolevulinic acid (14C-ALA) into liver, protein, extracted heme, and subcellular fractions of liver homogenates was significantly decreased to 75, 58, and 81% of controls, respectively, at 24 hr. At 48 and 72 hr after DBCP treatment, the accumulation of 14C-ALA label after 4 hr in liver homogenates and subcellular fractions was significantly increased in comparison to controls. These changes in 14C-ALA uptake were accompanied by decreases in total liver and microsomal heme, but not mitochondrial heme. Decreases were found in the spectral content of two heme proteins, cytochromes P-450 and b5, and the activity of another heme protein, catalase. Heme oxygenase activity increased to 130, 151, 209, and 186% of control values at 12, 24, 48, and 72 hr after DBCP, respectively. A slight, but significant, increase in ALA-synthetase to 112% of controls occurred at 24 hr, and slight, but significant, decreases in ALA-dehydratase to 90 and 80% of control occurred at 12 and 24 hr, respectively. No significant changes in uroporphyrinogen-1-synthetase or ferrochelatase at the time points tested was noted. The porphyrin content of liver was increased to 130% of control, while the serum and urine porphyrin levels were decreased to 30% of the control values at 24 hr. Liver ALA content was not significantly altered through the time period studied, but serum and urine levels were increased at 24 hr to 176 and 130% of the control values, respectively. In conclusion, the decreases in liver heme proteins following a single oral dose of DBCP are accompanied by

  7. [Galaxy/quasar classification based on nearest neighbor method].

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  8. Selective activation of heme oxygenase-2 by menadione.

    Vukomanovic, Dragic; McLaughlin, Brian E; Rahman, Mona N; Szarek, Walter A; Brien, James F; Jia, Zongchao; Nakatsu, Kanji

    2011-11-01

    While substantial progress has been made in elucidating the roles of heme oxygenases-1 (HO-1) and -2 (HO-2) in mammals, our understanding of the functions of these enzymes in health and disease is still incomplete. A significant amount of our knowledge has been garnered through the use of nonselective inhibitors of HOs, and our laboratory has recently described more selective inhibitors for HO-1. In addition, our appreciation of HO-1 has benefitted from the availability of tools for increasing its activity through enzyme induction. By comparison, there is a paucity of information about HO-2 activation, with only a few reports appearing in the literature. This communication describes our observations of the up to 30-fold increase in the in-vitro activation of HO-2 by menadione. This activation was due to an increase in Vmax and was selective, in that menadione did not increase HO-1 activity.

  9. Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites

    Gautam, Ritika

    Linear oligopyrroles are degradation products of heme, which is converted in the presence of heme oxygenase to bile pigments, such as biliverdin and bilirubin. These tetrapyrrolic oligopyrroles are ubiquitously present in biological systems and find applications in the fields of catalysis and sensing. These linear tetrapyrrolic scaffolds are further degraded into linear tripyrrolic and dipyrrolic fragments. Although these lower oligopyrroles are abundantly present, their coordination chemistry requires further characterization. This dissertation focuses mainly on two classes of bioinspired linear oligopyrroles, propentdyopent and tripyrrindione, and their transition metal complexes, which present a rich ligand-based redox chemistry. Chapter 1 offers an overview of heme degradation to different classes of linear oligopyrroles and properties of their transition metal complexes. Chapter 2 is focused on the tripyrrin-1,14-dione scaffold of the urinary pigment uroerythrin, which coordinates divalent transition metals palladium and copper with square planar geometry. Specifically, the tripyrrin-1, 14-dione ligand binds Cu(II) and Pd(II) as a dianionic organic radical under ambient conditions. The electrochemical study confirms the presence of ligand based redox chemistry, and one electron oxidation or reduction reactions do not alter the planar geometry around the metal center. The X-Ray analysis and the electron paramagnetic resonance (EPR) studies of the complexes in the solid and solution phase reveals intermolecular interactions between the ligand based unpaired electrons and therefore formation of neutral pi-pi dimers. In Chapter 3, the antioxidant activity and the fluorescence sensor properties of the tripyrrin-1,14-dione ligand in the presence of superoxide are described. We found that the tripyrrindione ligand undergoes one-electron reduction in the presence of the superoxide radical anion (O2•- ) to form highly fluorescent H3TD1•- radical anion, which emits

  10. Pilot-scale tests of HEME and HEPA dissolution process

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME's) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump

  11. The hydroxyl functionality and a rigid proximal N are required for forming a novel non-covalent quinine-heme complex.

    Alumasa, John N; Gorka, Alexander P; Casabianca, Leah B; Comstock, Erica; de Dios, Angel C; Roepe, Paul D

    2011-03-01

    Quinoline antimalarial drugs bind both monomeric and dimeric forms of free heme, with distinct preferences depending on the chemical environment. Under biological conditions, chloroquine (CQ) appears to prefer to bind to μ-oxo dimeric heme, while quinine (QN) preferentially binds monomer. To further explore this important distinction, we study three newly synthesized and several commercially available QN analogues lacking various functional groups. We find that removal of the QN hydroxyl lowers heme affinity, hemozoin (Hz) inhibition efficiency, and antiplasmodial activity. Elimination of the rigid quinuclidyl ring has similar effects, but elimination of either the vinyl or methoxy group does not. Replacing the quinuclidyl N with a less rigid tertiary aliphatic N only partially restores activity. To further study these trends, we probe drug-heme interactions via NMR studies with both Fe and Zn protoporphyrin IX (FPIX, ZnPIX) for QN, dehydroxyQN (DHQN), dequinuclidylQN (DQQN), and deamino-dequinuclidylQN (DADQQN). Magnetic susceptibility measurements in the presence of FPIX demonstrate that these compounds differentially perturb FPIX monomer-dimer equilibrium. We also isolate the QN-FPIX complex formed under mild aqueous conditions and analyze it by mass spectrometry, as well as fluorescence, vibrational, and solid-state NMR spectroscopies. The data elucidate key features of QN pharmacology and allow us to propose a refined model for the preferred binding of QN to monomeric FPIX under biologically relevant conditions. With this model in hand, we also propose how QN, CQ, and amodiaquine (AQ) differ in their ability to inhibit Hz formation. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions

    Ó'Fágáin Ciarán

    2008-03-01

    Full Text Available Abstract Background The mammalian heme peroxidases (MHPs are a medically important group of enzymes. Included in this group are myeloperoxidase, eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase. These enzymes are associated with such diverse diseases as asthma, Alzheimer's disease and inflammatory vascular disease. Despite much effort to elucidate a clearer understanding of the function of the 4 major groups of this multigene family, we still do not have a clear understanding of their relationships to each other. Results Sufficient signal exists for the resolution of the evolutionary relationships of this family of enzymes. We demonstrate, using a root mean squared deviation statistic, how the removal of the fastest evolving sites aids in the minimisation of the effect of long branch attraction and the generation of a highly supported phylogeny. Based on this phylogeny we have pinpointed the amino acid positions that have most likely contributed to the diverse functions of these enzymes. Many of these residues are in close proximity to sites implicated in protein misfolding, loss of function or disease. Conclusion Our analysis of all available genomic sequence data for the MHPs from all available completed mammalian genomes, involved sophisticated methods of phylogeny reconstruction and data treatment. Our study has (i fully resolved the phylogeny of the MHPs and the subsequent pattern of gene duplication, and (ii, we have detected amino acids under positive selection that have most likely contributed to the observed functional shifts in each type of MHP.

  13. Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts.

    João M P Alves

    Full Text Available It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.

  14. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    Marcia Cristina Paes

    2011-01-01

    Full Text Available Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology.

  15. Analysis of the electrochemistry of hemes with Ems spanning 800 mV

    Zheng, Zhong; Gunner, M. R.

    2009-01-01

    The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of Ems with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental Ems range over 800 mV from −350 mV in cytochrome c3 to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated Ems are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental Ems is 0.73 (R2 = 0.90), showing the method accounts for 73% of the observed Em range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R2 = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and Ems shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle Em range. In solution, bis-His ligation lowers the Em by ≈205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about Ems which are ≈200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by ≈300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the Em, has been suggested to be a major factor in

  16. Synthesis and Evaluation of Amyloid β Derived and Amyloid β Independent Enhancers of the Peroxidase-like Activity of Heme.

    Wißbrock, Amelie; Kühl, Toni; Silbermann, Katja; Becker, Albert J; Ohlenschläger, Oliver; Imhof, Diana

    2017-01-12

    Labile heme has been suggested to have an impact in several severe diseases. In the context of Alzheimer's disease (AD), however, decreased levels of free heme have been reported. Therefore, we were looking for an assay system that can be used for heme concentration determination. From a biochemical point of view the peroxidase activity of the Aβ-heme complex seemed quite attractive to pursue this goal. As a consequence, a peptide that is able to increase the readout even in the case of a low heme concentration is favorable. The examination of Aβ- and non-Aβ-derived peptides in complex with heme revealed that the peroxidase-like activity significantly depends on the peptide sequence and length. A 23mer His-based peptide derived from human fatty acyl-CoA reductase 1 in complex with heme exhibited a significantly higher peroxidase activity than Aβ(40)-heme. Structural modeling of both complexes demonstrated that heme binding via a histidine can be supported by hydrogen bond interactions of a basic residue near the propionate carboxyl function of protoporphyrin IX. Furthermore, the interplay of Aβ-heme and the lipoprotein LDL as a potential physiological effector of Aβ was examined.

  17. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders.

    Ann eSmith

    2015-06-01

    Full Text Available The goal here is to describe our current understanding of heme metabolism and the deleterious effects of free heme on immunological processes, endothelial function, systemic inflammation, and various end-organ tissues (e.g. kidney, lung, liver, etc., with particular attention paid to the role of hemopexin (HPX. Because heme toxicity is the impetus for much of the pathology in sepsis, sickle cell disease, and other hemolytic conditions, the biological importance and clinical relevance of HPX, the predominant heme binding protein, is reinforced. A perspective on the function of HPX and haptoglobin (Hp is presented, updating how these two proteins and their respective receptors act simultaneously to protect the body in clinical conditions that entail hemolysis and/or systemic intravascular inflammation. Evidence from longitudinal studies in patients supports that HPX plays a Hp-independent role in genetic and non-genetic hemolytic diseases without the need for global Hp depletion. Evidence also supports that HPX has an important role in the prognosis of complex illnesses characterized predominantly by the presence of hemolysis, such as sickle cell disease, sepsis, hemolytic-uremic syndrome, and conditions involving intravascular and extravascular hemolysis, such as that generated by extracorporeal circulation during cardiopulmonary bypass and from blood transfusions. We propose that quantitating the amounts of plasma heme, HPX, Hb-Hp, heme-HPX and heme-albumin levels in various disease states may aid in the diagnosis and treatment of the above-mentioned conditions, which is crucial to developing targeted plasma protein supplementation (i.e. replenishment therapies for patients with heme toxicity due to HPX depletion.

  18. Effects of Zinc Deuteroporphyrin Bis Glycol on Newborn Mice After Heme-Loading

    He, Cynthia X.; Campbell, Claire M.; Zhao, Hui; Kalish, Flora S.; Schulz, Stephanie; Vreman, Hendrik J.; Wong, Ronald J.; Stevenson, David K.

    2011-01-01

    Infants with hemolytic diseases frequently develop hyperbilirubinemia, but standard phototherapy only eliminates bilirubin after its production. A better strategy might be to directly inhibit heme oxygenase (HO), the rate-limiting enzyme in bilirubin production. Metalloporphyrins (Mps) are heme analogs that competitively inhibit HO activity in vitro and in vivo and suppress plasma bilirubin levels in vivo. A promising Mp, zinc deuteroporphyrin bis glycol (ZnBG), is orally absorbed and effecti...

  19. Heme A synthesis and CcO activity are essential for Trypanosoma cruzi infectivity and replication.

    Merli, Marcelo L; Cirulli, Brenda A; Menéndez-Bravo, Simón M; Cricco, Julia A

    2017-06-27

    Trypanosoma cruzi , the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa 3 (C c O) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic C c O, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 ( Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi , confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more C c O activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on C c O activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being C c O an essential terminal oxidase. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin

    Laskey, J.D.; Ponka, P.; Schulman, H.M.

    1986-01-01

    In many types of cells the synthesis of σ-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from this laboratory with reticulocytes suggest that the rate of iron uptake from 125 I-transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels or 59 Fe-Tf (20 μM). Furthermore, in induced Friend cells 100 μM Fe-SIH stimulated 2- 14 C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells

  1. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2014-11-05

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.

  2. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Quality and efficiency in high dimensional Nearest neighbor search

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2009-01-01

    Nearest neighbor (NN) search in high dimensional space is an important problem in many applications. Ideally, a practical solution (i) should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills both requirements, except locality sensitive hashing (LSH). The existing LSH implementations are either rigorous or adhoc. Rigorous-LSH ensures good quality of query results, but requires expensive space and query cost. Although adhoc-LSH is more efficient, it abandons quality control, i.e., the neighbor it outputs can be arbitrarily bad. As a result, currently no method is able to ensure both quality and efficiency simultaneously in practice. Motivated by this, we propose a new access method called the locality sensitive B-tree (LSB-tree) that enables fast highdimensional NN search with excellent quality. The combination of several LSB-trees leads to a structure called the LSB-forest that ensures the same result quality as rigorous-LSH, but reduces its space and query cost dramatically. The LSB-forest also outperforms adhoc-LSH, even though the latter has no quality guarantee. Besides its appealing theoretical properties, the LSB-tree itself also serves as an effective index that consumes linear space, and supports efficient updates. Our extensive experiments confirm that the LSB-tree is faster than (i) the state of the art of exact NN search by two orders of magnitude, and (ii) the best (linear-space) method of approximate retrieval by an order of magnitude, and at the same time, returns neighbors with much better quality. © 2009 ACM.

  4. Mountain tourism development in Serbia and neighboring countries

    Krunić Nikola

    2010-01-01

    Full Text Available Mountain areas with their surroundings are important parts of tourism regions with potentials for all-season tourism development and complementary activities. Development possibilities are based on size of high mountain territory, nature protection regimes, infrastructural equipment, provided conditions for leisure and recreation as well as involvement of local population in processes of development and protection. This paper analyses the key aspects of tourism development, winter tourism in high-mountain areas of Serbia and some neighboring countries (Slovakia, Romania, Bulgaria, and Greece. Common determinants of cohesion between nature protection and mountain tourism development, national development policies, applied models and concepts and importance of trans-border cooperation are indicated.

  5. Neighboring Structure Visualization on a Grid-based Layout.

    Marcou, G; Horvath, D; Varnek, A

    2017-10-01

    Here, we describe an algorithm to visualize chemical structures on a grid-based layout in such a way that similar structures are neighboring. It is based on structure reordering with the help of the Hilbert Schmidt Independence Criterion, representing an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator. The method can be applied to any layout of bi- or three-dimensional shape. The approach is demonstrated on a set of dopamine D5 ligands visualized on squared, disk and spherical layouts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The nearest neighbor and the bayes error rates.

    Loizou, G; Maybank, S J

    1987-02-01

    The (k, l) nearest neighbor method of pattern classification is compared to the Bayes method. If the two acceptance rates are equal then the asymptotic error rates satisfy the inequalities Ek,l + 1 ¿ E*(¿) ¿ Ek,l dE*(¿), where d is a function of k, l, and the number of pattern classes, and ¿ is the reject threshold for the Bayes method. An explicit expression for d is given which is optimal in the sense that for some probability distributions Ek,l and dE* (¿) are equal.

  7. Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN classification method

    D.A. Adeniyi

    2016-01-01

    Full Text Available The major problem of many on-line web sites is the presentation of many choices to the client at a time; this usually results to strenuous and time consuming task in finding the right product or information on the site. In this work, we present a study of automatic web usage data mining and recommendation system based on current user behavior through his/her click stream data on the newly developed Really Simple Syndication (RSS reader website, in order to provide relevant information to the individual without explicitly asking for it. The K-Nearest-Neighbor (KNN classification method has been trained to be used on-line and in Real-Time to identify clients/visitors click stream data, matching it to a particular user group and recommend a tailored browsing option that meet the need of the specific user at a particular time. To achieve this, web users RSS address file was extracted, cleansed, formatted and grouped into meaningful session and data mart was developed. Our result shows that the K-Nearest Neighbor classifier is transparent, consistent, straightforward, simple to understand, high tendency to possess desirable qualities and easy to implement than most other machine learning techniques specifically when there is little or no prior knowledge about data distribution.

  8. Diagnostic tools for nearest neighbors techniques when used with satellite imagery

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques are non-parametric approaches to multivariate prediction that are useful for predicting both continuous and categorical forest attribute variables. Although some assumptions underlying nearest neighbor techniques are common to other prediction techniques such as regression, other assumptions are unique to nearest neighbor techniques....

  9. Using K-Nearest Neighbor in Optical Character Recognition

    Veronica Ong

    2016-03-01

    Full Text Available The growth in computer vision technology has aided society with various kinds of tasks. One of these tasks is the ability of recognizing text contained in an image, or usually referred to as Optical Character Recognition (OCR. There are many kinds of algorithms that can be implemented into an OCR. The K-Nearest Neighbor is one such algorithm. This research aims to find out the process behind the OCR mechanism by using K-Nearest Neighbor algorithm; one of the most influential machine learning algorithms. It also aims to find out how precise the algorithm is in an OCR program. To do that, a simple OCR program to classify alphabets of capital letters is made to produce and compare real results. The result of this research yielded a maximum of 76.9% accuracy with 200 training samples per alphabet. A set of reasons are also given as to why the program is able to reach said level of accuracy.

  10. Kinetic Models for Topological Nearest-Neighbor Interactions

    Blanchet, Adrien; Degond, Pierre

    2017-12-01

    We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.

  11. Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio

    Nababan, A. A.; Sitompul, O. S.; Tulus

    2018-04-01

    K- Nearest Neighbor (KNN) is a good classifier, but from several studies, the result performance accuracy of KNN still lower than other methods. One of the causes of the low accuracy produced, because each attribute has the same effect on the classification process, while some less relevant characteristics lead to miss-classification of the class assignment for new data. In this research, we proposed Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio as a parameter to see the correlation between each attribute in the data and the Gain Ratio also will be used as the basis for weighting each attribute of the dataset. The accuracy of results is compared to the accuracy acquired from the original KNN method using 10-fold Cross-Validation with several datasets from the UCI Machine Learning repository and KEEL-Dataset Repository, such as abalone, glass identification, haberman, hayes-roth and water quality status. Based on the result of the test, the proposed method was able to increase the classification accuracy of KNN, where the highest difference of accuracy obtained hayes-roth dataset is worth 12.73%, and the lowest difference of accuracy obtained in the abalone dataset of 0.07%. The average result of the accuracy of all dataset increases the accuracy by 5.33%.

  12. Heme-coordinated histidine residues form non-specific functional "ferritin-heme" peroxidase system: Possible and partial mechanistic relevance to oxidative stress-mediated pathology in neurodegenerative diseases.

    Esmaeili, Sajjad; Kooshk, Mohammad Reza Ashrafi; Asghari, Seyyed Mohsen; Khodarahmi, Reza

    2016-10-01

    Ferritin is a giant protein composed of 24 subunits which is able to sequester up to 4500 atoms of iron. We proposed two kinds of heme binding sites in mammalian ferritins and provided direct evidence for peroxidase activity of heme-ferritin, since there is the possibility that "ferritin-heme" systems display unexpected catalytic behavior like heme-containing enzymes. In the current study, peroxidase activity of heme-bound ferritin was studied using TMB(1), l-DOPA, serotonin, and dopamine, in the presence of H2O2, as oxidant substrate. The catalytic oxidation of TMB was consistent with first-order kinetics with respect to ferritin concentration. Perturbation of the binding affinity and catalytic behavior of heme-bound His-modified ferritin were also documented. We also discuss the importance of the peroxidase-/nitrative-mediated oxidation of vital molecules as well as ferritin-induced catalase inhibition using in vitro experimental system. Uncontrollable "heme-ferritin"-based enzyme activity as well as up-regulation of heme and ferritin may inspire that some oxidative stress-mediated cytotoxic effects in AD-affected cells could be correlated to ferritin-heme interaction and/or ferritin-induced catalase inhibition and describe its contribution as an important causative pathogenesis mechanism in some neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rapid, convenient method for screening imidazole-containing compounds for heme oxygenase inhibition.

    Vlahakis, Jason Z; Rahman, Mona N; Roman, Gheorghe; Jia, Zongchao; Nakatsu, Kanji; Szarek, Walter A

    2011-01-01

    Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation. A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound). The degradation of heme by heme oxygenase-1 was initiated using l-ascorbic acid, and the collected relevant absorbance data were analyzed by three different methods to calculate the percent control activity occurring in wells containing test compounds relative to that occurring in control wells with no test compound present. In the cases of wells containing inhibitory compounds, significant shifts in λ(max) from 404 to near 412 nm were observed as well as a decrease in the rate of heme degradation relative to that of the control. Each of the three methods of data processing (overall percent drop in absorbance over 1.5h, initial rate of reaction determined over the first 5 min, and estimated pseudo first-order reaction rate constant determined over 1.5h) gave similar and reproducible results for percent control activity. The fastest and easiest method of data analysis was determined to be that using initial rates, involving data acquisition for only 5 min once reactions have been initiated using l-ascorbic acid. The results of the study demonstrate that this simple assay based on the spectroscopic detection of heme represents a rapid, convenient method to determine the relative inhibitory activity of candidate compounds, and is useful in quickly screening a series or library of compounds for heme oxygenase inhibition

  14. Serum heme oxygenase-1 levels in patients with primary dysmenorrhea.

    Aksoy, Ayse Nur; Laloglu, Esra; Ozkaya, Alev Lazoglu; Yilmaz, Emsal Pınar Topdagi

    2017-04-01

    Primary dysmenorrhea effects the life-quality of women negatively. The aim of this study was to evaluate heme oxygenase-1 (HO1) activity together with malondialdehyde (MDA) and nitric oxide (NO) levels in patients with primary dysmenorrhea. A total of 28 nulliparous women with the diagnosis of primary dysmenorrhea and 26 healthy controls were included in this study. On the first day of menstruation, all patients underwent ultrasound examination to exclude pelvic pathology and the visual analogue scale was applied to patients. Patient's visual analogue scale (VAS) scores, age, body mass index (BMI), menstrual cycle length (day), length of bleeding (day) were recorded. In the same day, fasting blood samples were taken from each patient for biochemical analysis. Serum MDA, NO and HO1 levels were found to be higher in women with primary dysmenorrhea compared to healthy controls (p = 0.012, p = 0.009, p dysmenorrhea. Antioxidant support might be helpful to reduce pain severity in primary dysmenorrhea.

  15. A product of heme catabolism modulates bacterial function and survival.

    Christopher L Nobles

    Full Text Available Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC, a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome and Gram-positive bacteria being susceptible to membrane disruption (negative outcome. This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

  16. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis.

    Chang, Ling-Chu; Chiang, Shih-Kai; Chen, Shuen-Ei; Yu, Yung-Luen; Chou, Ruey-Hwang; Chang, Wei-Chao

    2018-03-01

    Ferroptosis is a form of oxidative cell death and has become a chemotherapeutic target for cancer treatment. BAY 11-7085 (BAY), which is a well-known IκBα inhibitor, suppressed viability in cancer cells via induction of ferroptotic death in an NF-κB-independent manner. Reactive oxygen species scavenging, relief of lipid peroxidation, replenishment of glutathione and thiol-containing agents, as well as iron chelation, rescued BAY-induced cell death. BAY upregulated a variety of Nrf2 target genes related to redox regulation, particularly heme oxygenase-1 (HO-1). Studies with specific inhibitors and shRNA interventions suggested that the hierarchy of induction is Nrf2-SLC7A11-HO-1. SLC7A11 inhibition by erastin, sulfasalazine, or shRNA interference sensitizes BAY-induced cell death. Overexperession of SLC7A11 attenuated BAY-inhibited cell viability. The ferroptotic process induced by hHO-1 overexpression further indicated that HO-1 is a key mediator of BAY-induced ferroptosis that operates through cellular redox regulation and iron accumulation. BAY causes compartmentalization of HO-1 into the nucleus and mitochondrion, and followed mitochondrial dysfunctions, leading to lysosome targeting for mitophagy. In this study, we first discovered that BAY induced ferroptosis via Nrf2-SLC7A11-HO-1 pathway and HO-1 is a key mediator by responding to the cellular redox status. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    Adi Dror

    2012-09-01

    Full Text Available Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.

  18. Identification of residues in the heme domain of soluble guanylyl cyclase that are important for basal and stimulated catalytic activity.

    Padmamalini Baskaran

    Full Text Available Nitric oxide signals through activation of soluble guanylyl cyclase (sGC, a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain to the effector domain (catalytic domain, in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105 of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC.

  19. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    Ascenzi, Paolo; Imperi, Francesco; Coletta, Massimo; Fasano, Mauro

    2008-01-01

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k off ) is reported. In the absence of drugs, the value of k off is (1.3 ± 0.2) x 10 -4 s -1 . Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k off value increases to (8.6 ± 0.9) x 10 -4 s -1 . From the dependence of k off on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 ± 0.2) x 10 -3 M and (6.2 ± 0.7) x 10 -5 M, respectively) were determined. The increase of k off values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors

  20. Catalytic enhancement of the heme-based oxygen-sensing phosphodiesterase EcDOS by hydrogen sulfide is caused by changes in heme coordination structure

    Yang, F.; Fojtíková, V.; Man, Petr; Stráňava, M.; Martínková, M.; Du, Y.; Huang, D.; Shimizu, T.

    2015-01-01

    Roč. 28, č. 4 (2015), s. 637-652 ISSN 0966-0844 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Heme * O-2 sensor * Phosphodiesterase Subject RIV: CE - Biochemistry Impact factor: 2.134, year: 2015

  1. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  3. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  4. Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ.

    Hofbauer, Stefan; Dalla Sega, Marco; Scheiblbrandner, Stefan; Jandova, Zuzana; Schaffner, Irene; Mlynek, Georg; Djinović-Carugo, Kristina; Battistuzzi, Gianantonio; Furtmüller, Paul G; Oostenbrink, Chris; Obinger, Christian

    2016-09-27

    Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of -205 ± 3 mV for LmHemQ and -207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (∼1 × 10(4) M(-1) s(-1)). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria.

  5. A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*

    Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole

    2013-01-01

    Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702

  6. Histidine at Position 195 is Essential for Association of Heme- b in Lcp1VH2

    Oetermann, Sylvia; Vivod, Robin; Hiessl, Sebastian; Hogeback, Jens; Holtkamp, Michael; Karst, Uwe; Steinbüchel, Alexander

    2018-05-01

    The latex clearing protein (Lcp) is the key enzyme of polyisoprene degradation in actinomycetes (Yikmis and Steinbüchel in Appl Environ Microbiol 78:4543-4551, https://doi.org/10.1128/AEM.00001-12 , 2012). In this study it was shown that Lcp from Gordonia polyisoprenivorans VH2 (Lcp1VH2) harbors a non-covalently bound heme b as cofactor, which was identified by pyridine hemochrome spectra and confirmed by LC/ESI-ToF-MS. It contains iron, most likely in the Fe3+ state. We focused on the characterization of the heme-cofactor, its accessibility with respect to the conformation of Lcp1VH2, and the identification of putative histidine residues involved in the coordination of heme. A change was detectable in UV/Vis-spectra of reduced Lcp1VH2 when imidazole was added, showing that Lcp1VH2 "as isolated" occurs in an open state, directly being accessible for external ligands. In addition, three highly conserved histidines (H195, H200 and H228), presumably acting as ligands coordinating the heme within the heme pocket, were replaced with alanines by site-directed mutagenesis. The effect of these changes on in vivo rubber-mineralization was investigated. The lcp- deletion mutant complemented with the H195A variant of lcp1 VH2 was unable to mineralize poly( cis-1,4-isoprene). In vitro analyses of purified, recombinant Lcp1VH2H195A confirmed the loss of enzyme activity, which could be ascribed to the loss of heme. Hence, H195 is essential for the association of heme- b in the central region of Lcp1VH2.

  7. Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance.

    Zeng, Bin; Chen, Honglei; Zhu, Chengang; Ren, Xiaofeng; Lin, Guosheng; Cao, Feng

    2008-10-01

    Bone marrow mesenchymal stem cells (MSCs) have the potential to repair the infarcted myocardium and improve cardiac function. However, this approach is limited by its poor viability after transplantation, and controversy still exists over the mechanism by which MSCs contribute to the tissue repair. The human heme oxygenase-1 (hHO-1) was transfected into cultured MSCs using an adenoviral vector. 1 x 10(6) Ad-hHO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS only (PBS group) were injected intramyocardially into rat hearts 1h after myocardial infarction. HO-1-MSCs survived in the infarcted myocardium, and expressed hHO-1 mRNA. The expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) was significantly enhanced in HO-1-MSCs-treated hearts. At the same time, there were significant reduction of TNF-alpha, IL-1-beta and IL-6 mRNA, and marked increase of IL-10 mRNA in HO-1-MSCs-treated hearts. Moreover, a further downregulation of proapoptotic protein, Bax, and a marked increase in microvessel density were observed in HO-1-MSCs-treated hearts. The infarct size and cardiac performance were also significantly improved in HO-1-MSCs-treated hearts. The combined approach improves MSCs survival and is superior to MSCs injection alone.

  8. Dinitrosyl non-heme iron complexes at the gamma radiation treatment of animals

    Aliev, D.I.; Alieva, I.N.; Abilov, Z.G.; Gurbanov, I.S.

    2003-01-01

    Full text: At the present time there are a great number investigations dedicated to revealing of mechanism formation of 2,03 complexes at the some pathologies in an organism. These complexes are represented weakly bounded form of non-heme iron, including into beside iron two nitrogen oxide molecules (NO) and two paired RS- groups of proteins or low-molecular compounds. 2,03 complexes are characterized by an axial symmetrical tensory of the g-factor with g=2,037, g=2,012 and g=2,03. In this study the data testifying 2,03 complexes formation into liver of animal treated by the fatal dose of gamma-radiation are reported. The changing of the ESR signal form was observed. It was shown that the form and intensity of the 2,03 signal in healthy and irradiated animals are differ from each other. The analysis of the 2,03 signal parameters is confirm this fact, too. The conclusion was made that 2,03 complexes ESR signal may be considered as an indicator of integrity of intracellular membranes of the gamma-irradiated animals

  9. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    Gonzales, Antonio [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blazier, Nicholas Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses on a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.

  10. Nearest Neighbor Estimates of Entropy for Multivariate Circular Distributions

    Neeraj Misra

    2010-05-01

    Full Text Available In molecular sciences, the estimation of entropies of molecules is important for the understanding of many chemical and biological processes. Motivated by these applications, we consider the problem of estimating the entropies of circular random vectors and introduce non-parametric estimators based on circular distances between n sample points and their k th nearest neighbors (NN, where k (≤ n – 1 is a fixed positive integer. The proposed NN estimators are based on two different circular distances, and are proven to be asymptotically unbiased and consistent. The performance of one of the circular-distance estimators is investigated and compared with that of the already established Euclidean-distance NN estimator using Monte Carlo samples from an analytic distribution of six circular variables of an exactly known entropy and a large sample of seven internal-rotation angles in the molecule of tartaric acid, obtained by a realistic molecular-dynamics simulation.

  11. Introduction to machine learning: k-nearest neighbors.

    Zhang, Zhongheng

    2016-06-01

    Machine learning techniques have been widely used in many scientific fields, but its use in medical literature is limited partly because of technical difficulties. k-nearest neighbors (kNN) is a simple method of machine learning. The article introduces some basic ideas underlying the kNN algorithm, and then focuses on how to perform kNN modeling with R. The dataset should be prepared before running the knn() function in R. After prediction of outcome with kNN algorithm, the diagnostic performance of the model should be checked. Average accuracy is the mostly widely used statistic to reflect the kNN algorithm. Factors such as k value, distance calculation and choice of appropriate predictors all have significant impact on the model performance.

  12. Measurement of near neighbor separations of surface atoms

    Cohen, P.I.

    Two techniques are being developed to measure the nearest neighbor distances of atoms at the surfaces of solids. Both measures extended fine structure in the excitation probability of core level electrons which are excited by an incident electron beam. This is an important problem because the structures of most surface systems are as yet unknown, even though the location of surface atoms is the basis for any quantitative understanding of the chemistry and physics of surfaces and interfaces. These methods would allow any laboratory to make in situ determinations of surface structure in conjunction with most other laboratory probes of surfaces. Each of these two techniques has different advantages; further, the combination of the two will increase confidence in the results by reducing systematic error in the data analysis

  13. Radionuclide content of an exhumed canyon vessel and neighboring soil

    Holcomb, H.P.

    1976-11-01

    The long-term hazard potential associated with burial of process equipment from radiochemical separations plants is being evaluated. As part of this evaluation, a feed adjustment tank was exhumed eighteen years after burial. The tank had been in service in the fuel reprocessing plant for twenty-nine months before it was retired. Assay of the exhumed tank indicated that 7 mg (0.4 mCi) of 239 Pu and 1 mCi of 137 Cs remained on its surfaces; 1.1 mg (0.07 mCi) 239 Pu, 0.4 mCi 137 Cs, and 3.5 mCi 90 Sr were found in neighboring soil. The vessel and surrounding soil have met the present guidelines (less than or equal to 10 nCi/g) of the U. S. Energy Research and Development Administration (ERDA) for nonretrievable waste

  14. Reduction of Conflicts in Mining Development Using "Good Neighbor Agreements"

    Masaitis, A.

    2013-05-01

    New environmental and social challenges for the mining industry in both developed and developing countries show the obvious need to implement "responsible" mining practices that include improved community involvement. Good Neighbor Agreements (GNA's) are a relatively new mechanism for improving communication and trust between a mining company and the community. The focus of a GNA will be to provide a written and enforceable agreement, negotiated between the concerned public and the respective mining company to respond to concerns from the public, and also provide a mechanism for conflict resolution, when there is mutual benefit to maintain a working relationship. Development of GNA's, a recently evolving process that promotes environmentally sound relationships between mines and the surrounding communities. Modify and apply the resulting GNA formulas to the developing countries and countries with transitional economies. This is particularly important for countries that have poorly functioning regulatory systems that cannot guarantee a healthy and safe environment for the communities. The fundamental questions addressed by this research. 1. This is a three-year research project started in August 2012 at the University of Nevada, Reno (UNR) to develop a Good Neighbor Agreements standards as well as to investigate the details of mine development. 2. Identify spheres of possible cooperation between mining companies, government organizations, and the Non-Governmental Organizations (NGO's). Use this cooperation to develop international standards for the GNA, to promote exchange of environmental information, and exchange of successful environmental, health, and safety practices between mining operations from different countries. Discussion: The Good Neighbor Agreement currently evolving will address the following: 1. Provide an economically viable mechanism for developing a partnership between mining operations and the local communities that will increase mining industry

  15. Building good relationships with neighbors of Japan's oldest plant, Tsuruga

    Hata, Emi

    1992-01-01

    Since its establishment in 1957 as a pioneer company of nuclear power development in Japan, the Japan Atomic Power Company (JAPC) has gained a great deal of experience with construction and operation of four nuclear power plants - one gas-cooled reactor, two boiling water reactors (BWRs), and one pressurized water reactor (PWR) - at two sites, Tsuruga and Tokai. To gain the understanding and cooperation of the local community, the Tsuruga station must keep running. Each employee is encouraged to make every possible effort not only to ensure the safe and reliable operation of the two units, but also to ensure conscientious coexistence and coprosperity within the local community. The Tsuruga office in the city and the Public Relations (PR) Pavilion (visitor's center) at the site work together as an open window of communication with the local community. Under these basic philosophies, various good neighbor activities are developed and carried out

  16. Implementation of Nearest Neighbor using HSV to Identify Skin Disease

    Gerhana, Y. A.; Zulfikar, W. B.; Ramdani, A. H.; Ramdhani, M. A.

    2018-01-01

    Today, Android is one of the most widely used operating system in the world. Most of android device has a camera that could capture an image, this feature could be optimized to identify skin disease. The disease is one of health problem caused by bacterium, fungi, and virus. The symptoms of skin disease usually visible. In this work, the symptoms that captured as image contains HSV in every pixel of the image. HSV can extracted and then calculate to earn euclidean value. The value compared using nearest neighbor algorithm to discover closer value between image testing and image training to get highest value that decide class label or type of skin disease. The testing result show that 166 of 200 or about 80% is accurate. There are some reasons that influence the result of classification model like number of image training and quality of android device’s camera.

  17. Neighboring Optimal Aircraft Guidance in a General Wind Environment

    Jardin, Matthew R. (Inventor)

    2003-01-01

    Method and system for determining an optimal route for an aircraft moving between first and second waypoints in a general wind environment. A selected first wind environment is analyzed for which a nominal solution can be determined. A second wind environment is then incorporated; and a neighboring optimal control (NOC) analysis is performed to estimate an optimal route for the second wind environment. In particular examples with flight distances of 2500 and 6000 nautical miles in the presence of constant or piecewise linearly varying winds, the difference in flight time between a nominal solution and an optimal solution is 3.4 to 5 percent. Constant or variable winds and aircraft speeds can be used. Updated second wind environment information can be provided and used to obtain an updated optimal route.

  18. Morphological type correlation between nearest neighbor pairs of galaxies

    Yamagata, Tomohiko

    1990-01-01

    Although the morphological type of galaxies is one of the most fundamental properties of galaxies, its origin and evolutionary processes, if any, are not yet fully understood. It has been established that the galaxy morphology strongly depends on the environment in which the galaxy resides (e.g., Dressler 1980). Galaxy pairs correspond to the smallest scales of galaxy clustering and may provide important clues to how the environment influences the formation and evolution of galaxies. Several investigators pointed out that there is a tendency for pair galaxies to have similar morphological types (Karachentsev and Karachentseva 1974, Page 1975, Noerdlinger 1979). Here, researchers analyze morphological type correlation for 18,364 nearest neighbor pairs of galaxies identified in the magnetic tape version of the Center for Astrophysics Redshift Catalogue.

  19. Designing lattice structures with maximal nearest-neighbor entanglement

    Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)

    2009-08-07

    In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.

  20. Credit scoring analysis using weighted k nearest neighbor

    Mukid, M. A.; Widiharih, T.; Rusgiyono, A.; Prahutama, A.

    2018-05-01

    Credit scoring is a quatitative method to evaluate the credit risk of loan applications. Both statistical methods and artificial intelligence are often used by credit analysts to help them decide whether the applicants are worthy of credit. These methods aim to predict future behavior in terms of credit risk based on past experience of customers with similar characteristics. This paper reviews the weighted k nearest neighbor (WKNN) method for credit assessment by considering the use of some kernels. We use credit data from a private bank in Indonesia. The result shows that the Gaussian kernel and rectangular kernel have a better performance based on the value of percentage corrected classified whose value is 82.4% respectively.

  1. Radiative energy loss of neighboring subjets arXiv

    Mehtar-Tani, Yacine

    We compute the in-medium energy loss probability distribution of two neighboring subjets at leading order, in the large-$N_c$ approximation. Our result exhibits a gradual onset of color decoherence of the system and accounts for two expected limiting cases. When the angular separation is smaller than the characteristic angle for medium-induced radiation, the two-pronged substructure lose energy coherently as a single color charge, namely that of the parent parton. At large angular separation the two subjets lose energy independently. Our result is a first step towards quantifying effects of energy loss as a result of the fluctuation of the multi-parton jet substructure and therefore goes beyond the standard approach to jet quenching based on single parton energy loss. We briefly discuss applications to jet observables in heavy-ion collisions.

  2. Therapeutic Roles of Heme Oxygenase-1 in Metabolic Diseases: Curcumin and Resveratrol Analogues as Possible Inducers of Heme Oxygenase-1

    Yong Son

    2013-01-01

    Full Text Available Metabolic diseases, such as insulin resistance, type II diabetes, and obesity, are associated with a low-grade chronic inflammation (inflammatory stress, oxidative stress, and endoplasmic reticulum (ER stress. Because the integration of these stresses is critical to the pathogenesis of metabolic diseases, agents and cellular molecules that can modulate these stress responses are emerging as potential targets for intervention and treatment of metabolic diseases. It has been recognized that heme oxygenase-1 (HO-1 plays an important role in cellular protection. Because HO-1 can reduce inflammatory stress, oxidative stress, and ER stress, in part by exerting antioxidant, anti-inflammatory, and antiapoptotic effects, HO-1 has been suggested to play important roles in pathogenesis of metabolic diseases. In the present review, we will explore our current understanding of the protective mechanisms of HO-1 in metabolic diseases and present some emerging therapeutic options for HO-1 expression in treating metabolic diseases, together with the therapeutic potential of curcumin and resveratrol analogues that have their ability to induce HO-1 expression.

  3. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening.

    Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin

    2018-03-28

    Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.

  4. An interactive cooperation model for neighboring virtual power plants

    Shabanzadeh, Morteza; Sheikh-El-Eslami, Mohammad-Kazem; Haghifam, Mahmoud-Reza

    2017-01-01

    Highlights: •The trading strategies of a VPP in cooperation with its neighboring VPPs are addressed. •A portfolio of inter-regional contracts is considered to model this cooperation scheme. •A novel mathematical formulation for possible inadvertent transactions is provided. •A two-stage stochastic programming approach is applied to characterize the uncertainty. •Two efficient risk measures, SSD and CVaR, are implemented in the VPP decision-making problem. -- Abstract: Future distribution systems will accommodate an increasing share of distributed energy resources (DERs). Facing with this new reality, virtual power plants (VPPs) play a key role to aggregate DERs with the aim of facilitating their involvement in wholesale electricity markets. In this paper, the trading strategies of a VPP in cooperation with its neighboring VPPs are addressed. Toward this aim, a portfolio of inter-regional contracts is considered to model this cooperation and maximize the energy trade opportunities of the VPP within a medium-term horizon. To hedge against profit variability caused by market price uncertainties, two efficient risk management approaches are also implemented in the VPP decision-making problem based on the concepts of conditional value at risk (CVaR) and second-order stochastic dominance constraints (SSD). The resulting models are formulated as mixed-integer linear programming (MILP) problems that can be solved using off-the-shelf software packages. The efficiency of the proposed risk-hedging models is analyzed through a detailed case study, and thereby relevant conclusions are drawn.

  5. Heme Iron Concentrate and Iron Sulfate Added to Chocolate Biscuits: Effects on Hematological Indices of Mexican Schoolchildren.

    Quintero-Gutiérrez, Adrián Guillermo; González-Rosendo, Guillermina; Pozo, Javier Polo; Villanueva-Sánchez, Javier

    2016-08-01

    Food fortification is one of the most effective strategies for increasing iron intake in the population. A simple blind trial was conducted to compare the effect of 2 forms of iron fortification and assess the changes in hemoglobin and iron status indices among preschool children from rural communities. Hemoglobin was evaluated in 47 children aged 3-6 years old. For 72 days (10-week period), children ate Nito biscuits. Thirteen pupils with elevated hemoglobin levels were assigned to the biscuit control group, and pupils with hemoglobin equal to 13.5 mg/dL or less were randomly allocated to consume fortified biscuits with a heme iron concentrate (n = 15) or iron sulfate (n = 19). Changes in hemoglobin, plasma ferritin, and other hematological indices were evaluated with analysis of variance (ANOVA) for repeated measurements. Except mean corpuscular hemoglobin concentrations (+1.27 ± 2.25 g/dL), hematological indices increased significantly across the study: Mean corpuscular volume (+2.2 ± 1.0 f/dL), red blood cells (+0.30 ± 0.37 M/μL), mean corpuscular hemoglobin (+1.8 ± 1.74 pg), hemoglobin (+1.68 ± 0.91 g/dL), hematocrit (+3.43% ± 3.03%), and plasma ferritin (+18.38 ± 22.1 μg/L) were all p effect of the iron-fortified chocolate biscuits in the hemoglobin levels was higher than the control group (+1.1 ± 0.2 g/dL) but no difference was found between consumers of fortified biscuits with heme iron concentrate or iron sulfate (+1.9 ± 0.2 g/dL and +2.0 ± 0.2 g/dL, respectively). Heme iron concentrate and iron sulfate were equally effective in increasing Hb levels and hematological indices. Processed foods were shown to be an effective, valuable, and admissible intervention to prevent anemia in preschool children.

  6. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-12-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  7. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Deborah Chiabrando

    2016-12-01

    Full Text Available Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs. Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1 gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  8. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias

    Siddesh Besur

    2014-11-01

    Full Text Available Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA, porphobilinogen and porphyrins are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow. We also describe salient clinical, laboratory and genetic features of the eight types of porphyria.

  9. Proton NMR investigation of heme pocket mobility in hemoglobin via hydrogen isotope exchange kinetics

    Han, K.

    1985-01-01

    Dynamic mobility of heme cavity, the active site of Hb, was investigated by analyzing the hydrogen isotope exchange kinetics of the proximal histidyl ring NH of various kinds of Hbs with the aid of the high field Fourier Transform 1 H NMR spectroscopy. The exchange reaction occurs faster in oxy or R-state Hb than in deoxy or T-state Hb and there exists a good correlation between the oxygen affinity of Hb and the heme pocket mobility reflected in the hydrogen exchange rate. The effect of pH on the exchange is dramatically different for the two subunits of Hb A. Studying the exchange characteristics of mutant Hbs and chemically modified Hbs not only showed the existence of three well-defined localized paths for transmission of conformational changes between different heme pockets through a 1 b 2 subunit interface, but also indicated that the heme pocket mobility is regulated by the quaternary state of Hb as well as by the ligation state of Hb. Finally, the effect of the quaternary state on the heme pocket mobility is separated from that of the ligation by following the exchange reactions in Hbs where only their quaternary structure transition can be achieved without changing their ligation states by adjusting experimental conditions such as adding inositol hexaphosphate

  10. A synthesis of 1,4-thiazine carboxanilide: neighboring group participation in pummerer reaction

    Hahn, Hoh Gyu; Nam, Kee Dal; Mah, He Duck

    2002-01-01

    For the purpose of development of new agrochemical fungicide of α,β-unsaturated carboxanilide series a synthesis of 4-acetyl-3-methyl-N-phenyl-1,4-thiazine-2-carboxamide (6) is described. Pummerer reaction of sulfoxide 7 obtained by sulfoxidation of dihydro-1,4-thiazine methyl ester 11 gave α-acetoxy dihydro-1,4-thiazine 10a. Under the same reaction conditions, dihydro-1,4-thiazine carboxanilide sulfoxide 14 was converted to acetoxymethyl dihydro-1,4-thiazine 18 through vinylogous Pummerer reaction involving carboxanilide of sulfonium ion through intermediate 15. 1,4-Thiazine carboxanilide 6 was synthesized from the treatment of α-acetoxy dihydro-1,4-thiazine 10a with acid catalyst followed by hydrolysis and then the reaction with aniline

  11. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Hye-Jung Yeom

    Full Text Available Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1, an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs. Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  12. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  13. Heme oxygenase behavior in ultraviolet-B irradiated soybean plants

    Yannarelli, G.G.; Noriega, G.O.; Tomaro, M.L.

    2005-01-01

    Full text: Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and leads to the generation of reactive oxygen species (ROS). Heme oxygenase (HO) plays a protective role against oxidative stress in mammals, but little is known about this issue in plants. Here, we report for the first time the response of HO in leaves of soybean plants subjected to UV-B radiation. HO activity, protein and gene expression, as well as stress markers were evaluated. Under lower UV-B doses (7.5 and 15 kJ m -2 ), the production of thiobarbituric acid reactive substances (TBARS) remained unaltered, while quantitative RT-PCR revealed that HO and catalase (CAT) transcripts were increased 40% and 20% after 8 h, respectively. Treatment with 30 kJ m -2 brought about a 90% enhancement in TBARS indicating that an oxidative burst occurred, and a downregulation in gene expression was observed. Immunoblot analysis showed a 4.3 and 3.7-fold increase in HO protein after irradiation with 75 and 15 kJ m -2 , respectively. HO and CAT enzymes activities were enhanced at these doses but diminished at 30 kJ m -2 UV-B. These results indicate that the up regulation of HO and CAT genes at the lower doses occurred as a signal of cell protection against oxidative damage. On the other hand, irradiation with 30 kJ m -2 overcome the cellular antioxidant capacity and repressed the response as a result of ROS overproduction. (author)

  14. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function.

    Liu, Xiaoli; Pachori, Alok S; Ward, Christopher A; Davis, J Paul; Gnecchi, Massimiliano; Kong, Deling; Zhang, Lunan; Murduck, Jared; Yet, Shaw-Fang; Perrella, Mark A; Pratt, Richard E; Dzau, Victor J; Melo, Luis G

    2006-02-01

    We reported previously that predelivery of the anti-oxidant gene heme oxygenase-1 (HO-1) to the heart by adeno associated virus (AAV) markedly reduces injury after acute myocardial infarction (MI). However, the effect of HO-1 gene delivery on postinfarction recovery has not been investigated. In the current study, we assessed the effect of HO-1 gene delivery on post-MI left ventricle (LV) remodeling and function using echocardiographic imaging and histomorphometric approaches. Two groups of Sprague-Dawley rats were injected with 4 x 10(11) particles of AAV-LacZ (control) or AAV-hHO-1 in the LV wall. Eight wk after gene transfer, the animals were subjected to 30 min of ischemia by ligation of left anterior descending artery (LAD) followed by reperfusion. Echocardiographic measurements were obtained in a blinded fashion prior and at 1.5 and 3 months after I/R. Ejection fraction (EF) was reduced by 13% and 40% in the HO-1 and LacZ groups, respectively at 1.5 months after MI. Three months after MI, EF recovered fully in the HO-1, but only partially in the LacZ-treated animals. Post-MI LV dimensions were markedly increased and the anterior wall was markedly thinned in the LacZ-treated animals compared with the HO-1-treated animals. Significant myocardial scarring and fibrosis were observed in the LacZ-group in association with elevated levels of interstitial collagen I and III and MMP-2 activity. Post-MI myofibroblast accumulation was reduced in the HO-1-treated animals, and retroviral overexpression of HO-1 reduced proliferation of isolated cardiac fibroblasts. Our data indicate that rAAV-HO-1 gene transfer markedly reduces fibrosis and ventricular remodeling and restores LV function and chamber dimensions after myocardial infarction.

  15. Unwanted Behaviors and Nuisance Behaviors Among Neighbors in a Belgian Community Sample.

    Michaux, Emilie; Groenen, Anne; Uzieblo, Katarzyna

    2015-06-30

    Unwanted behaviors between (ex-)intimates have been extensively studied, while those behaviors within other contexts such as neighbors have received much less scientific consideration. Research indicates that residents are likely to encounter problem behaviors from their neighbors. Besides the lack of clarity in the conceptualization of problem behaviors among neighbors, little is known on which types of behaviors characterize neighbor problems. In this study, the occurrence of two types of problem behaviors encountered by neighbors was explored within a Belgian community sample: unwanted behaviors such as threats and neighbor nuisance issues such as noise nuisance. By clearly distinguishing those two types of behaviors, this study aimed at contributing to the conceptualization of neighbor problems. Next, the coping strategies used to deal with the neighbor problems were investigated. Our results indicated that unwanted behaviors were more frequently encountered by residents compared with nuisance problems. Four out of 10 respondents reported both unwanted pursuit behavior and nuisance problems. It was especially unlikely to encounter nuisance problems in isolation of unwanted pursuit behaviors. While different coping styles (avoiding the neighbor, confronting the neighbor, and enlisting help from others) were equally used by the stalked participants, none of them was perceived as being more effective in reducing the stalking behaviors. Strikingly, despite being aware of specialized help services such as community mediation services, only a very small subgroup enlisted this kind of professional help. © The Author(s) 2015.

  16. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  17. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Dietary heme injures surface epithelium resulting in hyperproliferation, inhibition of apoptosis and crypt hyperplasia in rat colon

    de Vogel, Johan; van-Eck, Wytske Boersma; Sesink, Aloys L. A.; Jonker-Termont, Denise S. M. L.; Kleibeuker, Jan; van der Meer, Roelof

    Epidemiological and animal model studies suggest that a high intake of heme, present in red meat, is associated with an increased risk of colon cancer. The aim of this study was to elucidate the effects of dietary heme on colonic cell homeostasis in rats. Rats were fed a purified, humanized, control

  19. Heme oxygenase is not involved in the anti-proliferative effects of statins on pancreatic cancer cells

    Váňová, K.; Boukalová, Štěpána; Gbelcová, H.; Muchová, L.; Neužil, Jiří; Gürlich, R.; Ruml, T.; Vítek, L.

    2016-01-01

    Roč. 16, May 12 (2016), č. článku 309. ISSN 1471-2407 R&D Projects: GA MZd NT14078; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Heme * Heme oxygenase * Pancreatic cancer * Statins Subject RIV: FD - Oncology ; Hematology Impact factor: 3.288, year: 2016

  20. Electron transfer among the CuA-, heme b- and a3-centers of Thermus thermophilus cytochrome ba3

    Farver, Ole; Chen, Ying; Fee, James A

    2006-01-01

    The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and P...

  1. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen

    Saederup, Kirstine Lindhardt; Stødkilde-Jørgensen, Kristian; Graversen, Jonas Heilskov

    2016-01-01

    Hemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S. aureus iron-regulated surface determinant (Isd...

  2. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Guilherme Curty Lechuga

    2016-12-01

    Full Text Available Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM, with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.

  3. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  4. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-09

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin.

  5. Identification of the heme acquisition system in Vibrio vulnificus M2799.

    Kawano, Hiroaki; Miyamoto, Katsushiro; Yasunobe, Megumi; Murata, Masahiro; Yamahata, Eri; Yamaguchi, Ryo; Miyaki, Yuta; Tsuchiya, Takahiro; Tanabe, Tomotaka; Funahashi, Tatsuya; Tsujibo, Hiroshi

    2018-04-01

    Vibrio vulnificus, the causative agent of serious, often fatal, infections in humans, requires iron for its pathogenesis. As such, it obtains iron via both vulnibactin and heme-mediated iron-uptake systems. In this study, we identified the heme acquisition system in V. vulnificus M2799. The nucleotide sequences of the genes encoding heme receptors HupA and HvtA and the ATP-binding cassette (ABC) transport system proteins HupB, HupC, and HupD were determined, and then used in the construction of deletion mutants developed from a Δics strain, which could not synthesize vulnibactin. Growth experiments using these mutants indicated that HupA and HvtA are major and minor heme receptors, respectively. The expressions of two proteins were analyzed by the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Furthermore, complementation analyses confirmed that the HupBCD proteins are the only ABC transport system shared by both the HupA and HvtA receptors. This is the first genetic evidence that the HupBCD proteins are essential for heme acquisition by V. vulnificus. Further investigation showed that hupA, hvtA, and hupBCD are regulated by Fur. The qRT-PCR analysis of the heme receptor genes revealed that HupR, a LysR-family positive transcriptional activator, upregulates the expression of hupA, but not hvtA. In addition, ptrB was co-transcribed with hvtA, and PtrB had no influence on growth in low-iron CM9 medium supplemented with hemin, hemoglobin, or cytochrome C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Neighboring Hetero-Atom Assistance of Sacrificial Amines to Hydrogen Evolution Using Pt-Loaded TiO2-Photocatalyst

    Masahide Yasuda

    2014-05-01

    Full Text Available Photocatalytic H2 evolution was examined using Pt-loaded TiO2-photocatalyst in the presence of amines as sacrificial agents. In the case of amines with all of the carbon attached to the hetero-atom such as 2-aminoethanol, 1,2-diamonoethane, 2-amino-1,3-propanediol, and 3-amino-1,2-propanediol, they were completely decomposed into CO2 and water to quantitatively evolve H2. On the other hand, the amines with both hetero-atoms and one methyl group at the β-positions (neighboring carbons of amino group such as 2-amino-1-propanol and 1,2-diaminopropane were partially decomposed. Also, the photocatalytic H2 evolution using amines without the hetero-atoms at the β-positions such as ethylamine, propylamine, 1-butylamine, 1,3-diaminopropane, 2-propylamine, and 2-butylamine was inefficient. Thus, it was found that the neighboring hetero-atom strongly assisted the degradation of sacrificial amines. Moreover, rate constants for H2 evolution were compared among amines. In conclusion, the neighboring hetero-atom did not affect the rate constants but enhanced the yield of hydrogen evolution.

  7. Allotment gardening and health: a comparative survey among allotment gardeners and their neighbors without an allotment.

    van den Berg, Agnes E; van Winsum-Westra, Marijke; de Vries, Sjerp; van Dillen, Sonja M E

    2010-11-23

    The potential contribution of allotment gardens to a healthy and active life-style is increasingly recognized, especially for elderly populations. However, few studies have empirically examined beneficial effects of allotment gardening. In the present study the health, well-being and physical activity of older and younger allotment gardeners was compared to that of controls without an allotment. A survey was conducted among 121 members of 12 allotment sites in the Netherlands and a control group of 63 respondents without an allotment garden living next to the home addresses of allotment gardeners. The survey included five self-reported health measures (perceived general health, acute health complaints, physical constraints, chronic illnesses, and consultations with GP), four self-reported well-being measures (stress, life satisfaction, loneliness, and social contacts with friends) and one measure assessing self-reported levels of physical activity in summer. Respondents were divided into a younger and older group at the median of 62 years which equals the average retirement age in the Netherlands. After adjusting for income, education level, gender, stressful life events, physical activity in winter, and access to a garden at home as covariates, both younger and older allotment gardeners reported higher levels of physical activity during the summer than neighbors in corresponding age categories. The impacts of allotment gardening on health and well-being were moderated by age. Allotment gardeners of 62 years and older scored significantly or marginally better on all measures of health and well-being than neighbors in the same age category. Health and well-being of younger allotment gardeners did not differ from younger neighbors. The greater health and well-being benefits of allotment gardening for older gardeners may be related to the finding that older allotment gardeners were more oriented towards gardening and being active, and less towards passive relaxation

  8. Allotment gardening and health: a comparative survey among allotment gardeners and their neighbors without an allotment

    van Winsum-Westra Marijke

    2010-11-01

    Full Text Available Abstract Background The potential contribution of allotment gardens to a healthy and active life-style is increasingly recognized, especially for elderly populations. However, few studies have empirically examined beneficial effects of allotment gardening. In the present study the health, well-being and physical activity of older and younger allotment gardeners was compared to that of controls without an allotment. Methods A survey was conducted among 121 members of 12 allotment sites in the Netherlands and a control group of 63 respondents without an allotment garden living next to the home addresses of allotment gardeners. The survey included five self-reported health measures (perceived general health, acute health complaints, physical constraints, chronic illnesses, and consultations with GP, four self-reported well-being measures (stress, life satisfaction, loneliness, and social contacts with friends and one measure assessing self-reported levels of physical activity in summer. Respondents were divided into a younger and older group at the median of 62 years which equals the average retirement age in the Netherlands. Results After adjusting for income, education level, gender, stressful life events, physical activity in winter, and access to a garden at home as covariates, both younger and older allotment gardeners reported higher levels of physical activity during the summer than neighbors in corresponding age categories. The impacts of allotment gardening on health and well-being were moderated by age. Allotment gardeners of 62 years and older scored significantly or marginally better on all measures of health and well-being than neighbors in the same age category. Health and well-being of younger allotment gardeners did not differ from younger neighbors. The greater health and well-being benefits of allotment gardening for older gardeners may be related to the finding that older allotment gardeners were more oriented towards gardening

  9. Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice.

    Ohta, Ryo; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Nakamae, Toshio; Izumi, Bunichiro; Fujioka, Yuki; Ochi, Mitsuo

    2012-09-01

    Intervertebral disc degeneration is considered to be a major feature of low back pain. Furthermore, oxidative stress has been shown to be an important factor in degenerative diseases such as osteoarthritis and is considered a cause of intervertebral disc degeneration. The purpose of this study was to clarify the correlation between oxidative stress and intervertebral disc degeneration using Broad complex-Tramtrack-Bric-a-brac and cap'n'collar homology 1 deficient (Bach 1-/-) mice which highly express heme oxygenase-1 (HO-1). HO-1 protects cells from oxidative stress. Caudal discs of 12-week-old and 1-year-old mice were evaluated as age-related models. Each group and period, 5 mice (a total of 20 mice, a total of 20 discs) were evaluated as age-related model. C9-C10 caudal discs in 12-week-old Bach 1-/- and wild-type mice were punctured using a 29-gauge needle as annulus puncture model. Each group and period, 5 mice (a total of 60 mice, a total of 60 discs) were evaluated. The progress of disc degeneration was evaluated at pre-puncture, 1, 2, 4, 8 and 12 weeks post-puncture. Radiographic, histologic and immunohistologic analysis were performed to compare between Bach 1-/- and wild-type mice. In the age-related model, there were no significant differences between Bach 1-/- and wild-type mice radiologically and histologically. However, in the annulus puncture model, histological scoring revealed significant difference at 8 and 12 weeks post-puncture. The number of HO-1 positive cells was significantly greater in Bach 1-/- mice at every period. The apoptosis rate was significantly lower at 1 and 2 weeks post-puncture in Bach 1-/- mice. Oxidative stress prevention may avoid the degenerative process of the intervertebral disc after puncture, reducing the number of apoptosis cells. High HO-1 expression may also inhibit oxidative stress and delay the process of intervertebral disc degeneration.

  10. Heme oxygenase-1 regulates the progression of K/BxN serum transfer arthritis.

    Rita Brines

    Full Text Available Heme oxygenase-1 (HO-1 is induced in many cell types as a defense mechanism against stress. We have investigated the possible role of endogenous HO-1 in the effector phase of arthritis using the K/BxN serum transfer model of arthritis in HO-1 heterozygous and homozygous knock-out mice.Arthritis was induced in C57/Black-6 xFVB (HO-1(+/+, HO-1(+/- and HO-1(-/- mice by intraperitoneal injection of 150 µl serum from arthritic K/BxN mice at days 0 and 2. Blood was collected and animals were sacrificed at day 10. Histological analysis was performed in ankle sections. The levels of inflammatory mediators were measured in serum and paw homogenates by enzyme-linked immunosorbent assay or Multiplex technology. The incidence of arthritis was higher in HO-1(+/- and HO-1(-/- groups compared with HO-1(+/+. The inflammatory response was aggravated in HO-1(+/- mice as shown by arthritic score and the migration of inflammatory cells that could be related to the enhancement of CXCL-1 production. In addition, the HO-1(+/- group showed proteoglycan depletion significantly higher than HO-1(+/+ mice. Serum levels of matrix metalloproteinase-3, monocyte chemotactic protein-1, plasminogen activator inhibitor-1, E-selectin and intercellular adhesion molecule-1 were increased in arthritic HO-1(-/- mice, whereas vascular endothelial growth factor and some cytokines such as interferon-γ showed a reduction compared to HO-1(+/+ or HO-1(+/- mice. In addition, down-regulated gene expression of ferritin, glutathione S-reductase A1 and superoxide dismutase-2 was observed in the livers of arthritic HO-1(+/- animals.Endogenous HO-1 regulates the production of systemic and local inflammatory mediators and plays a protective role in K/BxN serum transfer arthritis.

  11. Factors for the bioavailability of heme iron preparation in female rats

    村上, 亜由美; 岸本, 三香子; 川口, 真規子; 松浦, 寿喜; 市川, 富夫; Ayumi, Murakami; Mikako, Kishimoto; Makiko, Kawaguchi; Toshiki, Matsuura; Tomio, Ichikawa

    1998-01-01

    Factors for iron absorption in small intestine using heme iron preparation (HIP) and ferric citrate (FC) were investigated. We measured the solubility of iron of experimental diets (FC-normal, FC-overload, HIP-normal, HIP-overload) in water (adjusted pH6.8) and the diffusibility of dietary iron after digestion in vitro. The results did not show significantly differences between FC and HIP. Also, we measured microsomal heme oxygenase (HO) activity in intestinal mucosa of female rats fed experi...

  12. Unsynchronized influenza epidemics in two neighboring subtropical cities

    Xiujuan Tang

    2018-04-01

    Full Text Available Objective: The aim of this study was to examine the synchrony of influenza epidemics between Hong Kong and Shenzhen, two neighboring subtropical cities in South China. Methods: Laboratory-confirmed influenza data for the period January 2006 to December 2016 were obtained from the Shenzhen Center for Disease Control and Prevention and the Department of Health in Hong Kong. The population data were retrieved from the 2011 population censuses. The weekly rates of laboratory-confirmed influenza cases were compared between Shenzhen and Hong Kong. Results: Unsynchronized influenza epidemics between Hong Kong and Shenzhen were frequently observed during the study period. Influenza A/H1N1 caused a more severe pandemic in Hong Kong in 2009, but the subsequent seasonal epidemics showed similar magnitudes in both cities. Two influenza A/H3N2 dominant epidemic waves were seen in Hong Kong in 2015, but these epidemics were very minor in Shenzhen. More influenza B epidemics occurred in Shenzhen than in Hong Kong. Conclusions: Influenza epidemics appeared to be unsynchronized between Hong Kong and Shenzhen most of the time. Given the close geographical locations of these two cities, this could be due to the strikingly different age structures of their populations. Keywords: Influenza epidemics, Synchrony, Shenzhen, Hong Kong

  13. Forecasting of steel consumption with use of nearest neighbors method

    Rogalewicz Michał

    2017-01-01

    Full Text Available In the process of building a steel construction, its design is usually commissioned to the design office. Then a quotation is made and the finished offer is delivered to the customer. Its final shape is influenced by steel consumption to a great extent. Correct determination of the potential consumption of this material most often determines the profitability of the project. Because of a long waiting time for a final project from the design office, it is worthwhile to pre-analyze the project’s profitability and feasibility using historical data on already realized orders. The paper presents an innovative approach to decision-making support in one of the Polish construction companies. The authors have defined and prioritized the most important factors that differentiate the executed orders and have the greatest impact on steel consumption. These are, among others: height and width of steel structure, number of aisles, type of roof, etc. Then they applied and adapted the method of k-nearest neighbors to the specificity of the discussed problem. The goal was to search a set of historical orders and find the most similar to the analyzed one. On this basis, consumption of steel can be estimated. The method was programmed within the EXPLOR application.

  14. Identification of influential users by neighbors in online social networks

    Sheikhahmadi, Amir; Nematbakhsh, Mohammad Ali; Zareie, Ahmad

    2017-11-01

    Identification and ranking of influential users in social networks for the sake of news spreading and advertising has recently become an attractive field of research. Given the large number of users in social networks and also the various relations that exist among them, providing an effective method to identify influential users has been gradually considered as an essential factor. In most of the already-provided methods, those users who are located in an appropriate structural position of the network are regarded as influential users. These methods do not usually pay attention to the interactions among users, and also consider those relations as being binary in nature. This paper, therefore, proposes a new method to identify influential users in a social network by considering those interactions that exist among the users. Since users tend to act within the frame of communities, the network is initially divided into different communities. Then the amount of interaction among users is used as a parameter to set the weight of relations existing within the network. Afterward, by determining the neighbors' role for each user, a two-level method is proposed for both detecting users' influence and also ranking them. Simulation and experimental results on twitter data shows that those users who are selected by the proposed method, comparing to other existing ones, are distributed in a more appropriate distance. Moreover, the proposed method outperforms the other ones in terms of both the influential speed and capacity of the users it selects.

  15. k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks

    Z. Martinasek

    2016-06-01

    Full Text Available Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM, RF (Random Forest and Multi-Layer Perceptron (MLP. In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first containing the power traces of an unprotected AES (Advanced Encryption Standard implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4. The obtained results revealed some interesting facts, namely, an elementary k-NN (k-Nearest Neighbors algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.

  16. River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method

    H. Sanikhani

    2016-02-01

    Full Text Available Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1 methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE methodology for an application to runoff prediction, (2 methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3 methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system. Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models

  17. Nearest neighbor 3D segmentation with context features

    Hristova, Evelin; Schulz, Heinrich; Brosch, Tom; Heinrich, Mattias P.; Nickisch, Hannes

    2018-03-01

    Automated and fast multi-label segmentation of medical images is challenging and clinically important. This paper builds upon a supervised machine learning framework that uses training data sets with dense organ annotations and vantage point trees to classify voxels in unseen images based on similarity of binary feature vectors extracted from the data. Without explicit model knowledge, the algorithm is applicable to different modalities and organs, and achieves high accuracy. The method is successfully tested on 70 abdominal CT and 42 pelvic MR images. With respect to ground truth, an average Dice overlap score of 0.76 for the CT segmentation of liver, spleen and kidneys is achieved. The mean score for the MR delineation of bladder, bones, prostate and rectum is 0.65. Additionally, we benchmark several variations of the main components of the method and reduce the computation time by up to 47% without significant loss of accuracy. The segmentation results are - for a nearest neighbor method - surprisingly accurate, robust as well as data and time efficient.

  18. Cytochrome P-450 inactivation by 3-alkylsydnones. Mechanistic implications of N-alkyl and N-alkenyl heme adduct formation

    Grab, L.A.; Swanson, B.A.; Ortiz de Montellano, P.R.

    1988-01-01

    Incubation of 3-(2-phenylethyl)-4-methylsydnone (PMS) with liver microsomes from phenobarbital-pretreated rats or with reconstituted cytochrome P-450b results in loss of the enzyme chromophore. Chromophore loss is NADPH-dependent even though the sydnone decomposes by an oxygen- but not enzyme-dependent process to give pyruvic acid and, presumably, the (2-phenylethyl)diazonium cation. N-(2-Phenylethyl)protoporphyrin IX and N-(2-phenylethenyl)protoporphyrin IX have been isolated from the livers of rats treated with PMS. Both deuteriums are retained in the N-(2-phenylethyl) adduct derived from 3-(2-phenyl[1,1- 2 H]ethyl)-4-methylsydnone, but one deuterium is lost in the N-(2-phenylethenyl) adduct. The N-(2-phenylethyl) to N-(2-phenylethenyl) adduct ratio is increased by deuterium substitution. Electron paramagnetic resonance (EPR)-spin trapping studies show that carbon radicals are formed in incubations of the sydnones with liver microsomes but by a process that is independent of chromophore destruction. It is proposed that the 2-phenylethyl radical formed by electron transfer to the sydnone-derived (2-phenylethyl)diazonium cation adds to the prosthetic heme group to give the N-(2-phenylethyl) adduct. This alkylation reaction is similar to that observed with (2-phenylethyl)hydrazine. Autoxidation of the Fe-CH(CH 2 Ph)-N bridged species expected from insertion of 2-phenyldiazoethane into one of the heme Fe-N bonds is proposed to explain the unprecedented introduction of a double bond into the N-(2-phenylethenyl)adduct

  19. Phagocytic response of astrocytes to damaged neighboring cells.

    Nicole M Wakida

    Full Text Available This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane. In addition to the presence (or lack of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue.

  20. Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing.

    Cazzola, Mario; Malcovati, Luca

    2015-01-01

    The sideroblastic anemias are a heterogeneous group of inherited and acquired disorders characterized by the presence of ring sideroblasts in the bone marrow. X-linked sideroblastic anemia (XLSA) is caused by germline mutations in ALAS2. Hemizygous males have a hypochromic microcytic anemia, which is generally mild to moderate and is caused by defective heme synthesis and ineffective erythropoiesis. XLSA is a typical iron-loading anemia; although most patients are responsive to pyridoxine, treatment of iron overload is also important in the management of these patients. Autosomal recessive sideroblastic anemia attributable to mutations in SLC25A38, a member of the mitochondrial carrier family, is a severe disease: patients present in infancy with microcytic anemia, which soon becomes transfusion dependent. Conservative therapy includes regular red cell transfusion and iron chelation, whereas allogenic stem cell transplantation represents the only curative treatment. Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome characterized mainly by anemia attributable to ineffective erythropoiesis. The clinical course of RARS is generally indolent, but there is a tendency to worsening of anemia over time, so that most patients become transfusion dependent in the long run. More than 90% of these patients carry somatic mutations in SF3B1, a gene encoding a core component of the RNA splicing machinery. These mutations cause misrecognition of 3' splice sites in downstream genes, resulting in truncated gene products and/or decreased expression attributable to nonsense-mediated RNA decay; this explains the multifactorial pathogenesis of RARS. Variants of RARS include refractory cytopenia with multilineage dysplasia and ring sideroblasts, and RARS associated with marked thrombocytosis; these variants involve additional genetic lesions. Inhibitors of molecules of the transforming growth factor-β superfamily have been shown recently to target ineffective

  1. 14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...

  2. Microbiota facilitates dietary heme-induced epithelial hyperproliferation and hyperplasia by breaking the mucus barrier

    IJssennagger, Noortje; Belzer, Clara; Hooiveld, Guido; Dekker, Jan; Muller, Michael; Kleerebezem, Michiel; Meer, van der Roelof

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in

  3. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof; van Mil, SWC

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in

  4. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  5. In vitro studies on heme oxygenase-1 and P24 antigen HIV-1 level ...

    Background: Heme oxygenase-1 (HO-1) is a protein secreted by immune cells as a part of immune response mechanism.HO-1 can be induced by variety agents that causingoxidative stress, such as exposure to 100% oxygenat2,4 ATA pressure.It plays a vital role in maintaining cellular homeostasis.This study was ...

  6. Heme-Protein Active Site Models via Self-Assembly in Water

    Fiammengo, R.; Wojciechowski, Kamil; Crego Calama, Mercedes; Figoli, A.; Wessling, Matthias; Reinhoudt, David; Timmerman, P.

    2003-01-01

    Water-soluble models of heme-protein active sites are obtained via the self-assembly of cationic porphyrins 1 and tetrasulfonato calix[4]arene 2 (K1·2 = 105 M-1). Selective binding of ligands either outside or inside the cavity of assemblies 1·2 via coordination to the zinc center has been observed.

  7. Mononuclear non-heme iron(III) complexes of linear and tripodal ...

    The rate of oxygenation depends on the solvent and the. Lewis acidity of iron(III) ... has been achieved by non-heme iron enzymes and their ..... oxygen atoms of nitrate ion (figure 3). ... enhanced covalency of iron-catecholate interaction and.

  8. Red meat and colon cancer : The cytotoxic and hyperproliferative effects of dietary heme

    Sesink, ALA; Termont, DSML; Kleibeuker, JH; Van der Meer, R

    1999-01-01

    The intake of a Western diet with a high amount of red meat is associated with a high risk for colon cancer. We hypothesize that heme, the iron carrier of red meat, is involved in diet-induced colonic epithelial damage, resulting in increased epithelial proliferation. Rats were fed purified control

  9. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    Jens Haugbølle Thomsen

    2013-01-01

    Full Text Available The haptoglobin- (Hp- CD163-heme oxygenase-1 (HO-1 pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO, biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6, but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.

  10. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum.

    Jääskeläinen, Elina; Johansson, Per; Kostiainen, Olli; Nieminen, Timo; Schmidt, Georg; Somervuo, Panu; Mohsina, Marzia; Vanninen, Paula; Auvinen, Petri; Björkroth, Johanna

    2013-02-01

    Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) which causes spoilage in cold-stored modified-atmosphere-packaged (MAP) meat products. In addition to the fermentative metabolism, L. gasicomitatum is able to respire when exogenous heme and oxygen are available. In this study, we investigated the respiration effects on growth rate, biomass, gene expression, and volatile organic compound (VOC) production in laboratory media and pork loin. The meat samples were evaluated by a sensory panel every second or third day for 29 days. We observed that functional respiration increased the growth (rate and yield) of L. gasicomitatum in laboratory media with added heme and in situ meat with endogenous heme. Respiration increased enormously (up to 2,600-fold) the accumulation of acetoin and diacetyl, which are buttery off-odor compounds in meat. Our transcriptome analyses showed that the gene expression patterns were quite similar, irrespective of whether respiration was turned off by excluding heme from the medium or mutating the cydB gene, which is essential in the respiratory chain. The respiration-based growth of L. gasicomitatum in meat was obtained in terms of population development and subsequent development of sensory characteristics. Respiration is thus a key factor explaining why L. gasicomitatum is so well adapted in high-oxygen packed meat.

  11. Effects of Zinc Deuteroporphyrin Bis Glycol on Newborn Mice After Heme-Loading

    He, Cynthia X.; Campbell, Claire M.; Zhao, Hui; Kalish, Flora S.; Schulz, Stephanie; Vreman, Hendrik J.; Wong, Ronald J.; Stevenson, David K.

    2011-01-01

    Infants with hemolytic diseases frequently develop hyperbilirubinemia, but standard phototherapy only eliminates bilirubin after its production. A better strategy might be to directly inhibit heme oxygenase (HO), the rate-limiting enzyme in bilirubin production. Metalloporphyrins (Mps) are heme analogs that competitively inhibit HO activity in vitro and in vivo and suppress plasma bilirubin levels in vivo. A promising Mp, zinc deuteroporphyrin bis glycol (ZnBG), is orally absorbed and effectively inhibits HO activity at relatively low doses. We determined the I50 (the dose needed to inhibit HO activity by 50%) of orally administered ZnBG in vivo and then evaluated ZnBG’s effects on in vivo bilirubin production, HO activity, HO protein levels, and HO-1 gene expression in newborn mice following heme-loading, a model analogous to a hemolytic infant. The I50 of ZnBG was found to be 4.0 μmol/kg body weight (BW). At a dose of 15-μmol/kg BW, ZnBG reduced in vivo bilirubin production, inhibited heme-induced liver HO activity and spleen HO activity to and below baseline, respectively, transiently induced liver and spleen HO-1 gene transcription, and induced liver and spleen HO-1 protein levels. We conclude that ZnBG may be an attractive compound for treating severe neonatal hyperbilirubinemia caused by hemolytic disease. PMID:21785387

  12. Rapamycin Induces Heme Oxygenase-1 in Liver but Inhibits Bile Flow Recovery after Ischemia

    Kist, Alwine; Wakkie, Joris; Madu, Max; Versteeg, Ruth; ten Berge, Judith; Nikolic, Andrej; Nieuwenhuijs, Vincent B.; Porte, Robert J.; Padbury, Robert T. A.; Barritt, Greg J.

    Background/Aims. Rapamycin, which is employed in the management of patients undergoing liver surgery, induces the synthesis of heme oxygenase-1 (HO-1) in some non-liver cell types. The aim was to investigate whether rapamycin can induce HO-1 expression in the liver, and to test the effects of

  13. Evidence for dynamic behavior of O2 in oxy-heme model compounds

    Montiel-Montoya, R.; Bill, E.; Trautwein, A.X.; Winkler, H.

    1986-01-01

    The authors have performed Moessbauer studies on several oxy-heme model compounds, and for two of them they have also derived the three dimensional structure from X-ray studies. The X-ray structure analysis of these model compounds provides the information that O 2 occupies three different sites in one and only two sites in the other. (Auth.)

  14. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.

    Ryu, Moon-Suhn; Zhang, Deliang; Protchenko, Olga; Shakoury-Elizeh, Minoo; Philpott, Caroline C

    2017-05-01

    Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.

  15. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J.

    2016-01-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma. PMID:25659933

  16. Dry powder inhalation of hemin to induce heme oxygenase expression in the lung

    Zijlstra, G.S.; Brandsma, C.; Harpe, M.F.H.; Van Dam, G.M.; Slebos, D.J.; Kerstjens, H.A.M.; de Boer, Anne; Frijlink, H.W.

    2007-01-01

    The purpose of this study was to formulate hemin as a powder for inhalation and to show proof of concept of heme oxygenase 1 (HO-1) expression in the lungs of mice by inhalation of hemin. Hemin was spray dried from a neutralized sodium hydroxide solution. The particle size distribution of the powder

  17. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1.

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J

    2015-05-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. ["Kuhu me siis läheme? - Eks ikka koju."] / M. J.

    Jõgi, Mall, 1947-

    2016-01-01

    Tutvustus: „Kuhu me siis läheme? - Eks ikka koju.“ : sajandivahetus saksa kirjanduses 200 aastat tagasi : Goethe, Schiller, Tieck, Kleist, Hoffmann, Eichendorff, Büchner, Novalis, Hegel (Schelling? Hölderlin?), Schlegel / saksa keelest valinud ja tõlkinud Mati Sirkel. Tallinn : Eesti Keele Sihtasutus, 2015

  19. A Non-Heme Iron Photocatalyst for Light-Driven Aerobic Oxidation of Methanol

    Chen, Juan; Stepanovic, Stepan; Draksharapu, Apparao; Gruden, Maja; Browne, Wesley R

    2018-01-01

    Non-heme (L)FeIIIand (L)FeIII-O-FeIII(L) complexes (L=1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine) underwent reduction under irradiation to the FeIIstate with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT

  20. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo

    Elassiuty, Yasser E.; Klarquist, Jared; Speiser, Jodi; Yousef, Randa M.; El Refaee, Abdelaziz A.; Hunter, Nahla S.; Shaker, Olfat G.; Gundeti, Mohan; Nieuweboer-Krobotova, Ludmila; Caroline Le Poole, I.

    2011-01-01

    To study protection of melanocytes from stress-induced cell death by heme oxygenases during depigmentation and repigmentation in vitiligo, expression of isoforms 1 and 2 was studied in cultured control and patient melanocytes and normal skin explants exposed to UV or bleaching agent 4-TBP.

  1. Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon

    IJssenagger, N.; Rijnierse, A.; Wit, de N.J.W.; Boekschoten, M.V.; Dekker, J.; Schonewille, A.; Müller, M.R.; Meer, van der M.

    2013-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by generating cytotoxic and oxidative stress. Recently, we found that this surface injury is compensated by hyperproliferation and hyperplasia of crypt cells, which

  2. Dietary heme induces instantaneous oxidative stress but delayed cytotoxicity and compensatory hyperproliferation in mouse colon

    IJssennagger, Noortje; Rijnierse, A.; Wit, de Nicole; Boekschoten, Mark; Dekker, Jan; Schonewille, Arjan; Muller, Michael; Meer, van der Roelof

    2013-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is compensated by hyperproliferation and hyperplasia of crypt cells, which was induced by a

  3. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    Singh, Neha; Bhatla, Satish C

    2016-02-29

    Nitric oxide is a significant component of iron signaling in plants. Heme is one of the iron sensors in plants. Free heme is highly toxic and can cause cell damage as it catalyzes the formation of reactive oxygen species (ROS). Its catabolism is carried out by heme oxygenase (HOs; EC 1.14.99.3) which uses heme both as a prosthetic group and as a substrate. Two significant events, which accompany adaptation to salt stress in sunflower seedlings, are accumulation of ROS and enhanced production of nitric oxide (NO) in roots and cotyledons. Present investigations on the immunolocalization of heme oxygenase distribution in sunflower seedling cotyledons by confocal laser scanning microscopic (CLSM) imaging provide new information on the differential spatial distribution of the inducible form of HO (HO-1) as a long distance in response to NaCl stress. The enzyme is abundantly distributed in the specialized cells around the secretory canals (SCs) in seedling cotyledons. Abundance of tyrosine nitrated proteins has also been observed in the specialized cells around the secretory canals in cotyledons derived from salt stressed seedlings. The spatial distribution of tyrosine nitrated proteins and HO-1 expression further correlates with the abundance of mitochondria in these cells. Present findings, thus, highlight a link among distribution of HO-1 expression, abundance of tyrosine nitrated proteins and mitochondria in specialized cells around the secretory canal as a long distance mechanism of salt stress tolerance in sunflower seedlings. Enhanced spatial distribution of HO-1 in response to NaCl stress in seedling cotyledons is in congruence with the observed increase in specific activity of HO-1 in NaCl stressed conditions. The enzyme activity is further enhanced by hemin (HO-1 inducer) both in the absence or presence of NaCl stress and inhibited by zinc protoporphyrin. Western blot analysis of cotyledon homogenates using anti-HO-1 polyclonal antibody shows one major band (29

  4. Tree communities of lowland warm-temperate old-growth and neighboring shelterbelt forests in the Shikoku region of southwestern Japan

    Shigeo Kuramoto; Shigenori Oshioka; Takahisa Hirayama; Kaori Sato; Yasumasa Hirata

    2007-01-01

    We characterized the tree species composition of a 30 ha old-growth and neighboring shelterbelt (reserved buffer strips among conifer plantations) in warm-temperate forests in the Shikoku region of southwestern Japan. Using a two-way indicator species analysis of data from 28 plots, we identified four structural groups in terms of relative basal area. These structural...

  5. Effects of heme oxygenase-1 gene modulated mesenchymal stem cells on vasculogenesis in ischemic swine hearts.

    Jiang, Yi-Bo; Zhang, Xiao-Li; Tang, Yao-Liang; Ma, Gen-Shan; Shen, Cheng-Xing; Wei, Qin; Zhu, Qi; Yao, Yu-Yu; Liu, Nai-Feng

    2011-02-01

    Mesenchymal stem cells (MSCs) transplantation may partially restore heart function in the treatment of acute myocardial infarction (AMI). The aim of this study was to explore the beneficial effects of MSCs modified with heme xygenase-1 (HO-1) on post-infarct swine hearts to determine whether the induction of therapeutic angiogenesis is modified by the angiogenic cytokines released from the implanted cells. In vitro, MSCs were divided into four groups: (1) non-transfected MSCs (MSCs group), (2) MSCs transfected with the pcDNA3.1-Lacz plasmid (Lacz-MSCs group), (3) MSCs transfected with pcDNA3.1-hHO-1 (HO-1-MSCs group), and (4) MSCs transfected with pcDNA3.1-hHO-1 and pretreatment with an HO inhibitor, tin protoporphyrin (SnPP) (HO-1-MSCs + SnPP group). Cells were cultured in an airtight incubation bottle for 24 hours, in which the oxygen concentration was maintained at < 1%, followed by 12 hours of reoxygenation. After hypoxia/reoxygen treatment, ELISA was used to measure transforming growth factor (TGF-β) and fibroblast growth factor (FGF-2) in the supernatant. In vivo, 28 Chinese mini-pigs were randomly allocated to the following treatment groups: (1) control group (saline), (2) Lacz-MSCs group, (3) HO-1-MSCs group, and (4) HO-1-MSCs + SnPP group. About 1 × 10(7) of autologous stem cells or an identical volume of saline was injected intracoronary into porcine hearts 1 hour after MI. Magnetic resonance imaging (MRI) assay and postmortem analysis were assessed four weeks after stem cell transplantation. Post hypoxia/reoxygenation in vitro, TGF-β in the supernatant was significantly increased in the HO-1-MSCs ((874.88 ± 68.23) pg/ml) compared with Lacz-MSCs ((687.81 ± 57.64) pg/ml, P < 0.001). FGF-2 was also significantly increased in the HO-1-MSCs ((1106.48 ± 107.06) pg/ml) compared with the Lacz-MSCs ((853.85 ± 74.44) pg/ml, P < 0.001). In vivo, at four weeks after transplantation, HO-1 gene transfer increased the capillary density in the peri-infarct area

  6. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks.

    Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-07-01

    Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Tradition over trend: Neighboring chimpanzee communities maintain differences in cultural behavior despite frequent immigration of adult females.

    Luncz, Lydia V; Boesch, Christophe

    2014-07-01

    The notion of animal culture has been well established mainly through research aiming at uncovering differences between populations. In chimpanzees (Pan troglodytes verus), cultural diversity has even been found in neighboring communities, where differences were observed despite frequent immigration of individuals. Female chimpanzees transfer at the onset of sexual maturity at an age, when the behavioral repertoire is fully formed. With immigrating females, behavioral variety enters the group. Little is known about the diversity and the longevity of cultural traits within a community. This study is building on previous findings of differences in hammer selection when nut cracking between neighboring communities despite similar ecological conditions. We now further investigated the diversity and maintenance of cultural traits within one chimpanzee community and were able to show high levels of uniformity in group-specific behavior. Fidelity to the behavior pattern did not vary between dispersing females and philopatric males. Furthermore, group-specific tool selection remained similar over a period of 25 years. Additionally, we present a study case on how one newly immigrant female progressively behaved more similar to her new group, suggesting that the high level of similarity in behavior is actively adopted by group members possibly even when originally expressing the behavior in another form. Taken together, our data support a cultural transmission process in adult chimpanzees, which leads to persisting cultural behavior of one community over time. © 2014 Wiley Periodicals, Inc.

  8. Detect thy neighbor: Identity recognition at the root level in plants

    Chen, B.J.W.; During, H.J.; Anten, N.P.R.

    2012-01-01

    Some plant species increase root allocation at the expense of reproduction in the presence of non-self and non-kin neighbors, indicating the capacity of neighbor-identityrecognition at the rootlevel. Yet in spite of the potential consequences of rootidentityrecognition for the relationship between

  9. Working with Family, Friend, and Neighbor Caregivers: Lessons from Four Diverse Communities

    Powell, Douglas R.

    2011-01-01

    This article is excerpted from "Who's Watching the Babies? Improving the Quality of Family, Friend, and Neighbor Care" by Douglas R. Powell ("ZERO TO THREE," 2008). The article explores questions about program development and implementation strategies for supporting Family, Friend, and Neighbor (FFN) caregivers: How do programs and their host…

  10. A central role for heme iron in colon carcinogenesis associated with red meat intake.

    Bastide, Nadia M; Chenni, Fatima; Audebert, Marc; Santarelli, Raphaelle L; Taché, Sylviane; Naud, Nathalie; Baradat, Maryse; Jouanin, Isabelle; Surya, Reggie; Hobbs, Ditte A; Kuhnle, Gunter G; Raymond-Letron, Isabelle; Gueraud, Françoise; Corpet, Denis E; Pierre, Fabrice H F

    2015-03-01

    Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat. The relative part of heme iron (1% in diet), heterocyclic amines (PhIP + MeIQx, 50 + 25 μg/kg in diet), and NOC (induced by NaNO₂+ NaNO₂; 0.17 + 0.23 g/L of drinking water) was determined by a factorial design and preneoplastic endpoints in chemically induced rats and validated on tumors in Min mice. The molecular mechanisms (genotoxicity, cytotoxicity) were analyzed in vitro in normal and Apc-deficient cell lines and confirmed on colon mucosa. Heme iron increased the number of preneoplastic lesions, but dietary heterocyclic amines and NOC had no effect on carcinogenesis in rats. Dietary hemoglobin increased tumor load in Min mice (control diet: 67 ± 39 mm²; 2.5% hemoglobin diet: 114 ± 47 mm², P = 0.004). In vitro, fecal water from rats given hemoglobin was rich in aldehydes and was cytotoxic to normal cells, but not to premalignant cells. The aldehydes 4-hydroxynonenal and 4-hydroxyhexenal were more toxic to normal versus mutated cells and were only genotoxic to normal cells. Genotoxicity was also observed in colon mucosa of mice given hemoglobin. These results highlight the role of heme iron in the promotion of colon cancer by red meat and suggest that heme iron could initiate carcinogenesis through lipid peroxidation. . ©2015 American Association for Cancer Research.

  11. No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.

    Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte

    2017-07-20

    Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Structure prediction and activity analysis of human heme oxygenase-1 and its mutant.

    Xia, Zhen-Wei; Zhou, Wen-Pu; Cui, Wen-Jun; Zhang, Xue-Hong; Shen, Qing-Xiang; Li, Yun-Zhu; Yu, Shan-Chang

    2004-08-15

    To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (delta hHO-1) structures, to clone and express them and analyze their activities. Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5alpha. Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of delta hHO-1 was reduced 91.21% after mutation compared with whHO-1. Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. delta hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. delta hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.

  13. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus.

    Laakso, Holly A; Marolda, Cristina L; Pinter, Tyler B; Stillman, Martin J; Heinrichs, David E

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD-I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦

    Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960

  15. Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis

    Gibbons, Simon J.; Grover, Madhusudan; Choi, Kyoung Moo; Wadhwa, Akhilesh; Zubair, Adeel; Wilson, Laura A.; Wu, Yanhong; Abell, Thomas L.; Hasler, William L.; Koch, Kenneth L.; McCallum, Richard W.; Nguyen, Linda A. B.; Parkman, Henry P.; Sarosiek, Irene; Snape, William J.; Tonascia, James; Hamilton, Frank A.; Pasricha, Pankaj J.

    2017-01-01

    Background Idiopathic and diabetic gastroparesis in Homo sapiens cause significant morbidity. Etiology or risk factors have not been clearly identified. Failure to sustain elevated heme oxygenase-1 (HO1) expression is associated with delayed gastric emptying in diabetic mice and polymorphisms in the HO1 gene (HMOX1, NCBI Gene ID:3162) are associated with worse outcomes in other diseases. Aim Our hypothesis was that longer polyGT alleles are more common in the HMOX1 genes of individuals with gastroparesis than in controls without upper gastrointestinal motility disorders. Methods Repeat length was determined in genomic DNA. Controls with diabetes (84 type 1, 84 type 2) and without diabetes (n = 170) were compared to diabetic gastroparetics (99 type 1, 72 type 2) and idiopathic gastroparetics (n = 234). Correlations of repeat lengths with clinical symptom sub-scores on the gastroparesis cardinal symptom index (GCSI) were done. Statistical analyses of short (32) repeat alleles and differences in allele length were used to test for associations with gastroparesis. Results The distribution of allele lengths was different between groups (P = 0.016). Allele lengths were longest in type 2 diabetics with gastroparesis (29.18±0.35, mean ± SEM) and longer in gastroparetics compared to non-diabetic controls (28.50±0.14 vs 27.64±0.20 GT repeats/allele, P = 0.0008). Type 2 diabetic controls had longer alleles than non-diabetic controls. In all gastroparetic groups, allele lengths were longer in African Americans compared to other racial groups, differences in the proportion of African Americans in the groups accounted for the differences between gastroparetics and controls. Diabetic gastroparetics with 1 or 2 long alleles had worse GCSI nausea sub-scores (3.30±0.23) as compared to those with 0 long alleles (2.66±0.12), P = 0.022. Conclusions Longer poly-GT repeats in the HMOX1 gene are more common in African Americans with gastroparesis. Nausea symptoms are worse in

  16. Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis.

    Gibbons, Simon J; Grover, Madhusudan; Choi, Kyoung Moo; Wadhwa, Akhilesh; Zubair, Adeel; Wilson, Laura A; Wu, Yanhong; Abell, Thomas L; Hasler, William L; Koch, Kenneth L; McCallum, Richard W; Nguyen, Linda A B; Parkman, Henry P; Sarosiek, Irene; Snape, William J; Tonascia, James; Hamilton, Frank A; Pasricha, Pankaj J; Farrugia, Gianrico

    2017-01-01

    Idiopathic and diabetic gastroparesis in Homo sapiens cause significant morbidity. Etiology or risk factors have not been clearly identified. Failure to sustain elevated heme oxygenase-1 (HO1) expression is associated with delayed gastric emptying in diabetic mice and polymorphisms in the HO1 gene (HMOX1, NCBI Gene ID:3162) are associated with worse outcomes in other diseases. Our hypothesis was that longer polyGT alleles are more common in the HMOX1 genes of individuals with gastroparesis than in controls without upper gastrointestinal motility disorders. Repeat length was determined in genomic DNA. Controls with diabetes (84 type 1, 84 type 2) and without diabetes (n = 170) were compared to diabetic gastroparetics (99 type 1, 72 type 2) and idiopathic gastroparetics (n = 234). Correlations of repeat lengths with clinical symptom sub-scores on the gastroparesis cardinal symptom index (GCSI) were done. Statistical analyses of short (32) repeat alleles and differences in allele length were used to test for associations with gastroparesis. The distribution of allele lengths was different between groups (P = 0.016). Allele lengths were longest in type 2 diabetics with gastroparesis (29.18±0.35, mean ± SEM) and longer in gastroparetics compared to non-diabetic controls (28.50±0.14 vs 27.64±0.20 GT repeats/allele, P = 0.0008). Type 2 diabetic controls had longer alleles than non-diabetic controls. In all gastroparetic groups, allele lengths were longer in African Americans compared to other racial groups, differences in the proportion of African Americans in the groups accounted for the differences between gastroparetics and controls. Diabetic gastroparetics with 1 or 2 long alleles had worse GCSI nausea sub-scores (3.30±0.23) as compared to those with 0 long alleles (2.66±0.12), P = 0.022. Longer poly-GT repeats in the HMOX1 gene are more common in African Americans with gastroparesis. Nausea symptoms are worse in subjects with longer alleles.

  17. Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis.

    Simon J Gibbons

    Full Text Available Idiopathic and diabetic gastroparesis in Homo sapiens cause significant morbidity. Etiology or risk factors have not been clearly identified. Failure to sustain elevated heme oxygenase-1 (HO1 expression is associated with delayed gastric emptying in diabetic mice and polymorphisms in the HO1 gene (HMOX1, NCBI Gene ID:3162 are associated with worse outcomes in other diseases.Our hypothesis was that longer polyGT alleles are more common in the HMOX1 genes of individuals with gastroparesis than in controls without upper gastrointestinal motility disorders.Repeat length was determined in genomic DNA. Controls with diabetes (84 type 1, 84 type 2 and without diabetes (n = 170 were compared to diabetic gastroparetics (99 type 1, 72 type 2 and idiopathic gastroparetics (n = 234. Correlations of repeat lengths with clinical symptom sub-scores on the gastroparesis cardinal symptom index (GCSI were done. Statistical analyses of short (32 repeat alleles and differences in allele length were used to test for associations with gastroparesis.The distribution of allele lengths was different between groups (P = 0.016. Allele lengths were longest in type 2 diabetics with gastroparesis (29.18±0.35, mean ± SEM and longer in gastroparetics compared to non-diabetic controls (28.50±0.14 vs 27.64±0.20 GT repeats/allele, P = 0.0008. Type 2 diabetic controls had longer alleles than non-diabetic controls. In all gastroparetic groups, allele lengths were longer in African Americans compared to other racial groups, differences in the proportion of African Americans in the groups accounted for the differences between gastroparetics and controls. Diabetic gastroparetics with 1 or 2 long alleles had worse GCSI nausea sub-scores (3.30±0.23 as compared to those with 0 long alleles (2.66±0.12, P = 0.022.Longer poly-GT repeats in the HMOX1 gene are more common in African Americans with gastroparesis. Nausea symptoms are worse in subjects with longer alleles.

  18. Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands

    Chen, Ching-Wei; Rau, Ruey-Juin

    2017-04-01

    We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35

  19. Accelerating distributed average consensus by exploring the information of second-order neighbors

    Yuan Deming [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Xu Shengyuan, E-mail: syxu02@yahoo.com.c [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Zhao Huanyu [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2010-05-17

    The problem of accelerating distributed average consensus by using the information of second-order neighbors in both the discrete- and continuous-time cases is addressed in this Letter. In both two cases, when the information of second-order neighbors is used in each iteration, the network will converge with a speed faster than the algorithm only using the information of first-order neighbors. Moreover, the problem of using partial information of second-order neighbors is considered, and the edges are not chosen randomly from second-order neighbors. In the continuous-time case, the edges are chosen by solving a convex optimization problem which is formed by using the convex relaxation method. In the discrete-time case, for small network the edges are chosen optimally via the brute force method. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed algorithm.

  20. Neighbors Like Me? Religious Affiliation and Neighborhood Racial Preferences among Non-Hispanic Whites

    Stephen M. Merino

    2011-06-01

    Full Text Available Research on racial residential segregation has paid little attention to the role that social institutions play in either isolating or integrating racial and ethnic groups in American communities. Scholars have argued that racial segregation within American religion may contribute to and consolidate racial division elsewhere in social life. However, no previous study has employed national survey data to examine the relationship between religious affiliation and the preferences people have about the racial and ethnic composition of their neighborhoods. Using data from the “Multi-Ethnic United States” module on the 2000 General Social Survey, this study finds that white evangelical Protestants have a significantly stronger preference for same-race neighbors than do Catholics, Jews, adherents of “other” faiths, and the unaffiliated. Group differences in preferences are largely accounted for by socio-demographic characteristics. Negative racial stereotyping and social isolation from minorities, both topics of interest in recent research on evangelical Protestants and race, fail to explain group differences in preferences.

  1. 50 Hz electric field effects on protein carbonyl (PCO), heme oxygenase-1 (HO-1) and hydroxyproline levels

    Ozgur, Elcin; Goknur, Guler; Seyhan, Nesrin

    2008-01-01

    Full text: Non-ionizing electromagnetic field (EMF) radiation sources, such as power lines and other Extremely Low Frequency (ELF) sources have become one of the most ubiquitous components of the spectrum of the human environment, and the possibility that they may have hazardous effects on human health is a major a public concern. Although it is well documented that EMFs have biological effects, the degree to which these exposures constitute a human health hazard is not clear yet. Today relation between production of oxidative stress resulted by reactive oxygen species and electrical stimulus, also the protective effects of antioxidant treatments are mentioned in many researches. In this study, it was aimed to determine both oxidation of proteins and protein collagen levels under 50 Hz 12 kV/m vertical Electric (E) Field exposure and the N-Acetylcysteine (NAC) administration which is a well-known antioxidant. To this end, protein carbonyl levels (PCO) as bio-markers of oxidative stress and Heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme analyzed to figure out the protein oxidation. Hydroxyproline level, a major component of the protein collagen was measured in order to express the level of collagen in lung tissue. Guinea pigs, weighted 250-300 g, were used in the study. A total forty male guinea pigs were randomly divided into four groups which are composed of 10 guinea pigs each for groups: 1) Group I (Sham); 2) Group II (NAC-administrated group); 3) Group III (E Field Exposure group); 4) Group IV (NAC administrated + E Field exposed group). One week exposure period for 8 hours per daily was conducted for each exposure groups (Group III, Group IV ). The electric field exposure period was from 9 a.m. to 5 p.m. After the last exposure day, the guinea pigs were anesthetized by the injection of ketamine and xylazine. The guinea pigs were killed by decapitation. Statistical analyses were carried out using SPSS software (SPSS 11.5 for windows

  2. Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes

    Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.

    2012-02-01

    Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.

  3. Nearest Neighbor Search in the Metric Space of a Complex Network for Community Detection

    Suman Saha

    2016-03-01

    Full Text Available The objective of this article is to bridge the gap between two important research directions: (1 nearest neighbor search, which is a fundamental computational tool for large data analysis; and (2 complex network analysis, which deals with large real graphs but is generally studied via graph theoretic analysis or spectral analysis. In this article, we have studied the nearest neighbor search problem in a complex network by the development of a suitable notion of nearness. The computation of efficient nearest neighbor search among the nodes of a complex network using the metric tree and locality sensitive hashing (LSH are also studied and experimented. For evaluation of the proposed nearest neighbor search in a complex network, we applied it to a network community detection problem. Experiments are performed to verify the usefulness of nearness measures for the complex networks, the role of metric tree and LSH to compute fast and approximate node nearness and the the efficiency of community detection using nearest neighbor search. We observed that nearest neighbor between network nodes is a very efficient tool to explore better the community structure of the real networks. Several efficient approximation schemes are very useful for large networks, which hardly made any degradation of results, whereas they save lot of computational times, and nearest neighbor based community detection approach is very competitive in terms of efficiency and time.

  4. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  5. Effect of heme oxygenase-1 on the protection of ischemia reperfusion injury of bile duct in rats after liver transplantation.

    Zhan, Xi; Zhang, Zhiqing; Huang, Hanfei; Zhang, Yujun; Zeng, Zhong

    2018-06-01

    To investigate the effect of heme oxygenase-1 (HO-1) on the ischemic reperfusion injury (IRI) of bile duct in rat models after liver transplantation. 320 SD rats were equally and randomly divided into 5 groups, which were group A receiving injection of 3×10 8 /pfu/ml adenovirus (adv), group B with donor receiving Adv-HO-1 and recipient receiving Adv-HO-1-siRNA, group C with donor and recipient both receiving Adv-HO-1, group D with donor receiving Adv-HO-1-siRNA and recipient receiving Adv-HO-1, and group E with donor and recipient both receiving Adv-HO-1-siRNA at 24h before liver transplantation. Donor liver was stored in UW liquid at 4°C followed by measuring HO-1 level by western blot before transplantation. On d1, d3, d7 and d14, serum and liver was isolated for analysis of liver function, inflammatory cell infiltration by H&E staining, ultrastructure of liver by transmission electron microscopy as well as the expression of HO-1, Bsep, Mrp2 and Ntcp by western blot. Compared with group D and E, group B and C displayed improved liver function as demonstrated by lower level of ALT, AST, LDH, TBIL, ALP and GGT, increased secretion of TBA and PL as well as expression of transporter proteins (Bsep, Mrp2 and Ntcp), reduced inflammatory cells infiltration and liver injury. Our study demonstrated that overexpression of HO-1 in donor liver can ameliorate the damage to bile duct and liver, and improved liver function, suggesting HO-1 might be a new therapeutic target in the treatment of IRI after liver transplantation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang

    2006-01-01

    to the tunnelling current, apparently due to slow electron transfer kinetics. As a consequence, STM images of heme-containing and heme-free MOP-C did not reveal any notable differences in apparent height or physical extension. The apparent height of heme-containing MOP-C did not show any dependence on the substrate...... potential being varied around the redox potential of the protein. The mere presence of an accessible molecular energy level is not sufficient to result in detectable tunnelling current modulation. (c) 2006 Elsevier B.V. All rights reserved.......In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which...

  7. Effects of second neighbor interactions on skyrmion lattices in chiral magnets

    Oliveira, E A S; Silva, R L; Silva, R C; Pereira, A R

    2017-01-01

    In this paper we investigate the influences of the second neighbor interactions on a skyrmion lattice in two-dimensional chiral magnets. Such a system contains the exchange and the Dzyaloshinskii–Moriya for the spin interactions and therefore, we analyse three situations: firstly, the second neighbor interaction is present only in the exchange coupling; secondly, it is present only in the Dzyaloshinskii–Moriya coupling. Finally, the second neighbor interactions are present in both exchange and Dzyaloshinskii–Moriya couplings. We show that such effects cause important modifications to the helical and skyrmion phases when an external magnetic field is applied. (paper)

  8. Improving Recommendations in Tag-based Systems with Spectral Clustering of Tag Neighbors

    Pan, Rong; Xu, Guandong; Dolog, Peter

    2012-01-01

    Tag as a useful metadata reflects the collaborative and conceptual features of documents in social collaborative annotation systems. In this paper, we propose a collaborative approach for expanding tag neighbors and investigate the spectral clustering algorithm to filter out noisy tag neighbors...... in order to get appropriate recommendation for users. The preliminary experiments have been conducted on MovieLens dataset to compare our proposed approach with the traditional collaborative filtering recommendation approach and naive tag neighbors expansion approach in terms of precision, and the result...... demonstrates that our approach could considerably improve the performance of recommendations....

  9. Relationship of Heme Oxygenase-1 (HO-1 Level with Onset and Severity in Normotensive Pregnancy and Severe Preeclampsia

    John Johannes Wantania

    2016-08-01

    Full Text Available Background: Preeclampsia still becomes a major problem in pregnancies. Various evidences showed that heme oxygenase-1 (HO-1 is very important in pregnancy. This study aims to understand the relationship of heme oxygenase-1 level with onset and severity in normotensive pregnancy and severe preeclampsia. Methods: This is a cross sectional analytic comparative study, the subjects consisted of 26 patients with normotensive pregnancies and 26 patients with severe preeclampsia. Blood samples from women with < 34 / ≥ 34 weeks’ normotensive pregnancies and women with severe preeclampsia were taken. HO-1 ELISA kit used to quantitate heme oxygenase-1 level in samples. Results: The level of heme oxygenase-1 in normotensive pregnant women < 34 weeks lower than severe preeclampsia pregnant women < 34 weeks (3.28 ± 0.46 ng/mL vs 4.20 ± 0.64 ng/mL, p=0.003, respectively. The median level of heme oxygenase-1 in normotensive pregnant women ≥ 34 weeks was 2.96 (2.41–4.39 ng/mL, while severe preeclampsia pregnant women ≥ 34 weeks was 3.52 (2.88–5.43 ng/mL, (p=0.040. The median level of heme oxygenase-1 in normotensive pregnant women was 3.04 (2.41–4.39 ng/mL, while severe preeclampsia pregnant women was 3.68 (2.88–5.67 ng/mL, (p=0.001. Conclusions: There is correlation between the incidence of severe preeclampsia with heme oxygenase-1 level in < 34 and ≥ 34 weeks of pregnancy. There is a significant difference between the level of heme oxygenase-1 in pregnant women with severe preeclampsia and in women with normotensive pregnancy. 

  10. The Heme Biosynthesis Pathway Is Essential for Plasmodium falciparum Development in Mosquito Stage but Not in Blood Stages*

    Ke, Hangjun; Sigala, Paul A.; Miura, Kazutoyo; Morrisey, Joanne M.; Mather, Michael W.; Crowley, Jan R.; Henderson, Jeffrey P.; Goldberg, Daniel E.; Long, Carole A.; Vaidya, Akhil B.

    2014-01-01

    Heme is an essential cofactor for aerobic organisms. Its redox chemistry is central to a variety of biological functions mediated by hemoproteins. In blood stages, malaria parasites consume most of the hemoglobin inside the infected erythrocytes, forming nontoxic hemozoin crystals from large quantities of heme released during digestion. At the same time, the parasites possess a heme de novo biosynthetic pathway. This pathway in the human malaria parasite Plasmodium falciparum has been considered essential and is proposed as a potential drug target. However, we successfully disrupted the first and last genes of the pathway, individually and in combination. These knock-out parasite lines, lacking 5-aminolevulinic acid synthase and/or ferrochelatase (FC), grew normally in blood-stage culture and exhibited no changes in sensitivity to heme-related antimalarial drugs. We developed a sensitive LC-MS/MS assay to monitor stable isotope incorporation into heme from its precursor 5-[13C4]aminolevulinic acid, and this assay confirmed that de novo heme synthesis was ablated in FC knock-out parasites. Disrupting the FC gene also caused no defects in gametocyte generation or maturation but resulted in a greater than 70% reduction in male gamete formation and completely prevented oocyst formation in female Anopheles stephensi mosquitoes. Our data demonstrate that the heme biosynthesis pathway is not essential for asexual blood-stage growth of P. falciparum parasites but is required for mosquito transmission. Drug inhibition of pathway activity is therefore unlikely to provide successful antimalarial therapy. These data also suggest the existence of a parasite mechanism for scavenging host heme to meet metabolic needs. PMID:25352601

  11. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases.

    Su, Yang; Majtan, Tomas; Freeman, Katherine M; Linck, Rachel; Ponter, Sarah; Kraus, Jan P; Burstyn, Judith N

    2013-01-29

    Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.

  12. Influence of heme environment structure on dioxygen affinity for the dual function Amphitrite ornata hemoglobin/dehaloperoxidase. Insights into the evolutional structure-function adaptations

    Sun, Shengfang; Sono, Masanori; Wang, Chunxue; Du, Jing; Lebioda, Lukasz; Dawson, John H. [SC

    2014-05-15

    Sea worm, Amphitrite ornata, has evolved its globin (an O2 carrier) also to serves as a dehaloperoxidase (DHP) to detoxify haloaromatic pollutants generated by competing species. A previous mutagenesis study by our groups on both DHP and sperm whale myoglobin (SW Mb) revealed some structural factors that influence the dehaloperoxidase activities (significantly lower for Mb) of both proteins. Using an isocyanide/O2 partition constant measurement method in this study, we have examined the effects of these structural factors on the O2 equilibrium constants (KO2) of DHP, SW Mb, and their mutants. A clear trend of decreasing O2 affinity and increasing catalytic activity along with the increase in the distal His Nεheme iron distance is observed. An H93K/T95H Mb double mutant mimicking the DHP proximal His positioning exhibited markedly enhanced O2 affinity, confirming the essential effect of proximal His rotation on the globin function of DHP. For DHP, the L100F, T56G and M86E variants showed the effects of distal volume, distal His flexibility and proximal electronic push, respectively, on the O2 affinity. This study provides insights into how DHP has evolved its heme environment to gain significantly enhanced peroxidase capability without compromising its primary function as an O2 carrier.

  13. Selenolate complexes of CYP101 and the heme-bound hHO-1/H25A proximal cavity mutant.

    Jiang, Yongying; Ortiz de Montellano, Paul R

    2008-05-05

    Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.

  14. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae.

    Kobayashi, Yuki; Ando, Hiroyuki; Hanaoka, Mitsumasa; Tanaka, Kan

    2016-05-01

    ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. A Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders

    Hyman M. Schipper

    2015-03-01

    Full Text Available Heme oxygenase-1 (HO-1 is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.

  16. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  18. Study on models of O2 binding to heme using density functional theory

    Hovorun D. M.

    2009-08-01

    Full Text Available Aim. To study a mechanism of molecular oxygen binding to heme three models of geometry structure of the complex are considered: the axis of O2 molecule is situated perpendicularly to the porphin macrocycle, parallel, and angularly. Methods. The Fe(II porphin complexes with dioxygen are calculated by the quantum-chemical method of density functional theory with the UB3LYP/6-311G approximation. Results. The optimized geometry and electron structures as well as the absorption IR spectra of the complexes in the high-spin (septet state are described. Conclusions. It is shown that the main mechanism of spin-orbit coupling during the O2 binding to heme is connected with peculiarity of the O2 molecule electronic structure.

  19. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Tick iron and heme metabolism – New target for an anti-tick intervention

    Hajdušek, Ondřej; Šíma, Radek; Perner, Jan; Loosová, Gabriela; Harcubová, Adéla; Kopáček, Petr

    2016-01-01

    Roč. 7, č. 4 (2016), s. 565-572 ISSN 1877-959X R&D Projects: GA ČR GA13-11043S; GA ČR GP13-27630P; GA ČR GP13-12816P EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : tick * iron * heme * RNAi * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.230, year: 2016

  1. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction.

    Spencer, Christopher S; Yunta, Cristina; de Lima, Glauber Pacelli Gomes; Hemmings, Kay; Lian, Lu-Yun; Lycett, Gareth; Paine, Mark J I

    2018-05-03

    The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme. Heme degradation by heme oxygenase (HO) is a common protective mechanism, and a gene for HO exists in the An. gambiae genome HO (AgHO), although it has yet to be functionally examined. Here, we have cloned and expressed An. gambiae HO (AgHO) in E. coli. Purified recombinant AgHO bound hemin stoichiometrically to form a hemin-enzyme complex similar to other HOs, with a K D of 3.9 ± 0.6 μM; comparable to mammalian and bacterial HOs, but 7-fold lower than that of Drosophila melanogaster HO. AgHO also degraded hemin to biliverdin and released CO and iron in the presence of NADPH cytochrome P450 oxidoreductase (CPR). Optimal AgHO activity was observed at 27.5 °C and pH 7.5. To investigate effects of AgHO inhibition, adult female A. gambiae were fed heme analogues Sn- and Zn-protoporphyrins (SnPP and ZnPP), known to inhibit HO. These led to a dose dependent decrease in oviposition. Cu-protoporphyrin (CuPP), which does not inhibit HO had no effect. These results demonstrate that AgHO is a catalytically active HO and that it may play a key role in egg production in mosquitoes. It also presents a potential target for the development of compounds aimed at sterilising mosquitoes for vector control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment.

    Kelath Murali Manoj

    Full Text Available Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP, uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the "steady state kinetics" of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of "the product of interest" in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of "substrate concentration at maximum observed rate". The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes.

  4. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis.

    Perry, Christopher; de Los Santos, Emmanuel L C; Alkhalaf, Lona M; Challis, Gregory L

    2018-04-13

    Covering: up to the end of 2017The roles played by Rieske non-heme iron-dependent oxygenases in natural product biosynthesis are reviewed, with particular focus on experimentally characterised examples. Enzymes belonging to this class are known to catalyse a range of transformations, including oxidative carbocyclisation, N-oxygenation, C-hydroxylation and C-C desaturation. Examples of such enzymes that have yet to be experimentally investigated are also briefly described and their likely functions are discussed.

  5. Does a pear growl? Interference from semantic properties of orthographic neighbors.

    Pecher, Diane; de Rooij, Jimmy; Zeelenberg, René

    2009-07-01

    In this study, we investigated whether semantic properties of a word's orthographic neighbors are activated during visual word recognition. In two experiments, words were presented with a property that was not true for the word itself. We manipulated whether the property was true for an orthographic neighbor of the word. Our results showed that rejection of the property was slower and less accurate when the property was true for a neighbor than when the property was not true for a neighbor. These findings indicate that semantic information is activated before orthographic processing is finished. The present results are problematic for the links model (Forster, 2006; Forster & Hector, 2002) that was recently proposed in order to bring form-first models of visual word recognition into line with previously reported findings (Forster & Hector, 2002; Pecher, Zeelenberg, & Wagenmakers, 2005; Rodd, 2004).

  6. Nearest neighbors EPR superhyperfine interaction in divalent iridium complexes in alkali halide host lattice

    Pinhal, N.M.; Vugman, N.V.

    1983-01-01

    Further splitting of chlorine superhyperfine lines on the EPR spectrum of the [Ir (CN) 4 Cl 2 ] 4 - molecular species in NaCl latice indicates a super-superhyperfine interaction with the nearest neighbors sodium atoms. (Author) [pt

  7. The influence of neighbors' family size preference on progression to high parity births in rural Nepal.

    Jennings, Elyse A; Barber, Jennifer S

    2013-03-01

    Large families can have a negative impact on the health and well-being of women, children, and their communities. Seventy-three percent of the individuals in our rural Nepalese sample report that two children is their ideal number, yet about half of the married women continue childbearing after their second child. Using longitudinal data from the Chitwan Valley Family Study, we explore the influence of women's and neighbors' family size preferences on women's progression to high parity births, comparing this influence across two cohorts. We find that neighbors' family size preferences influence women's fertility, that older cohorts of women are more influenced by their neighbors' preferences than are younger cohorts of women, and that the influence of neighbors' preferences is independent of women's own preferences. © 2013 The Population Council, Inc.

  8. On Competitiveness of Nearest-Neighbor-Based Music Classification: A Methodological Critique

    Pálmason, Haukur; Jónsson, Björn Thór; Amsaleg, Laurent

    2017-01-01

    The traditional role of nearest-neighbor classification in music classification research is that of a straw man opponent for the learning approach of the hour. Recent work in high-dimensional indexing has shown that approximate nearest-neighbor algorithms are extremely scalable, yielding results...... of reasonable quality from billions of high-dimensional features. With such efficient large-scale classifiers, the traditional music classification methodology of aggregating and compressing the audio features is incorrect; instead the approximate nearest-neighbor classifier should be given an extensive data...... collection to work with. We present a case study, using a well-known MIR classification benchmark with well-known music features, which shows that a simple nearest-neighbor classifier performs very competitively when given ample data. In this position paper, we therefore argue that nearest...

  9. Efficient and accurate nearest neighbor and closest pair search in high-dimensional space

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2010-01-01

    Nearest Neighbor (NN) search in high-dimensional space is an important problem in many applications. From the database perspective, a good solution needs to have two properties: (i) it can be easily incorporated in a relational database, and (ii

  10. Mixed random walks with a trap in scale-free networks including nearest-neighbor and next-nearest-neighbor jumps

    Zhang, Zhongzhi; Dong, Yuze; Sheng, Yibin

    2015-10-01

    Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm; however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading scaling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.

  11. EPR spectral changes of nitrosil hemes and their relation to the hemoglobin T-R transition

    Louro, S.R.W.; Ribeiro, P.C.; Bemski, G.

    1980-09-01

    EPR spectra of nitrosil-hemes were used to study the quaternary structure of hemoglobin. Human adult hemoglobin has been titrated with nitric oxide at pH 7.0 and 25 0 C. After the equilibration of NO among the α and β subunits the samples were frozen for EPR measurements. The spectra were fitted by linear combinations of three standard signals: the first arising from NO - β hemes and the other two arising from NO - α hemes of molecules in the high and low affinity conformations. The fractional amounts of α subunits exhibiting the high affinity spectrum fitted the two-state model with L = 7 x 10 6 , and csup(α) sub(NO) and csup(β) sub(NO) approximately 0.01. Hemoglobin has been marked with nitric oxide at one chain using low-saturation amounts of nitric oxide. The EPR spectra were studied as a function of oxygen saturation. Linear combinations of the three standard signals above fitted these spectra. The fractions of molecules exhibiting the high affinity spectrum fitted the two-state model with L = 7 x 10 6 , csub(O 2 ) = 0.0033 and csup(α) sub(NO) = 0.08, instead of csup(α) sub(NO) = 0.01.Thus, the two state model is not adequate to describe the conformational transition of these hybrids. The results are evidence of the nonequivalence between oxygen and nitric oxide as ligands. (Author) [pt

  12. Diamond Blackfan Anemia at the Crossroad between Ribosome Biogenesis and Heme Metabolism

    Deborah Chiabrando

    2010-01-01

    Full Text Available Diamond-Blackfan anemia (DBA is a rare, pure red-cell aplasia that presents during infancy. Approximately 40% of cases are associated with other congenital defects, particularly malformations of the upper limb or craniofacial region. Mutations in the gene coding for the ribosomal protein RPS19 have been identified in 25% of patients with DBA, with resulting impairment of 18S rRNA processing and 40S ribosomal subunit formation. Moreover, mutations in other ribosomal protein coding genes account for about 25% of other DBA cases. Recently, the analysis of mice from which the gene coding for the heme exporter Feline Leukemia Virus subgroup C Receptor (FLVCR1 is deleted suggested that this gene may be involved in the pathogenesis of DBA. FLVCR1-null mice show a phenotype resembling that of DBA patients, including erythroid failure and malformations. Interestingly, some DBA patients have disease linkage to chromosome 1q31, where FLVCR1 is mapped. Moreover, it has been reported that cells from DBA patients express alternatively spliced isoforms of FLVCR1 which encode non-functional proteins. Herein, we review the known roles of RPS19 and FLVCR1 in ribosome function and heme metabolism respectively, and discuss how the deficiency of a ribosomal protein or of a heme exporter may result in the same phenotype.

  13. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells.

    Khalil Karimi

    Full Text Available We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells.

  14. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  15. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168.

    Philibert, Tuyishime; Rao, Zhiming; Yang, Taowei; Zhou, Junping; Huang, Genshu; Irene, Komera; Samuel, Niyomukiza

    2016-06-01

    Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 10(3) s(-1)). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe(2+) preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains.

  16. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  17. Symmetric Link Key Management for Secure Neighbor Discovery in a Decentralized Wireless Sensor Network

    2017-09-01

    KEY MANAGEMENT FOR SECURE NEIGHBOR DISCOVERY IN A DECENTRALIZED WIRELESS SENSOR NETWORK by Kelvin T. Chew September 2017 Thesis Advisor...and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT...DATE September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE SYMMETRIC LINK KEY MANAGEMENT FOR SECURE NEIGHBOR

  18. SibRank: Signed bipartite network analysis for neighbor-based collaborative ranking

    Shams, Bita; Haratizadeh, Saman

    2016-09-01

    Collaborative ranking is an emerging field of recommender systems that utilizes users' preference data rather than rating values. Unfortunately, neighbor-based collaborative ranking has gained little attention despite its more flexibility and justifiability. This paper proposes a novel framework, called SibRank that seeks to improve the state of the art neighbor-based collaborative ranking methods. SibRank represents users' preferences as a signed bipartite network, and finds similar users, through a novel personalized ranking algorithm in signed networks.

  19. The impact of vacant, tax-delinquent, and foreclosed property on sales prices of neighboring homes

    Stephan Whitaker; Thomas J. Fitzpatrick

    2012-01-01

    In this empirical analysis, we estimate the impact of vacancy, neglect associated with property-tax delinquency, and foreclosures on the value of neighboring homes using parcel-level observations. Numerous studies have estimated the impact of foreclosures on neighboring properties, and these papers theorize that the foreclosure impact works partially through creating vacant and neglected homes. To our knowledge, this is only the second attempt to estimate the impact of vacancy itself and the ...

  20. The Patient-Centered Medical Home Neighbor: A Critical Concept for a Redesigned Healthcare Delivery System

    2011-01-25

    Sharing Knowledge: Achieving Breakthrough Performance 2010 Military Health System Conference The Patient -Centered Medical Home Neighbor: A Critical...DATE 25 JAN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Patient -Centered Medical Home Neighbor: A...Conference What is the Patient -Centered Medical Home?  …a vision of health care as it should be  …a framework for organizing systems of care at both the

  1. Neighborhood environments and its influence on physical activity in Olomouc and neighboring villages

    Michal Kohout

    2014-03-01

    Full Text Available BACKGROUND: Modern society with development of new technologies greatly facilitates the activities of daily life and thus substantially eliminates human motion. This fact, together with a sedentary behavior is associated with considerable health risks, such as obesity, diabetes mellitus (type II, hypertension etc. A large part of the population is not aware of the negative consequences of physical inactivity, which may cause serious health problems. And this circumstance should be the main motivational factor to change lifestyle, including the environment. AIM: This study examines differences in the structure of physical activity in adults in Olomouc and neighboring villages within 15 km distance around Olomouc. The main objective was to determine how neighborhood environments affect physical activity of selected population groups. METHODS: All respondents were visited in person by authors and asked to participate in a research study using a Czech version of the questionnaire ANEWS. Data collection was carried out in May and June 2012 and data were obtained from 43 respondents aged 24-61 living in Olomouc and neighboring. RESULTS: The results showed that residents of urban areas are more physically active than nonurban residents. In the active area residents with higher walkability were associated with higher physical activity in urban residents, while the rural residents indicated higher physical activity in lower walkability areas. We found a significant difference in energy expenditure among respondents living in areas with higher and lower walkability in favor of the more walkable areas [H (1, 43 = 26.184, p ≤ .000]. CONCLUSIONS: Highest levels of physical activity represent men living in single-family houses and women living in multiple family houses. Participating respondents most frequently engaged in moderate physical activities. They spent more time sitting during work than sitting outside the workplace. Most frequently used

  2. Modifiers of Neighbors' Bystander Intervention in Intimate Partner Violence: A Concept Mapping Study.

    Wee, Sara; Todd, Mary-Justine; Oshiro, Michael; Greene, Emily; Frye, Victoria

    2016-03-01

    Encouraging bystander intervention in intimate partner violence (IPV) against women is potentially an important method of reducing the prevalence of such violence in urban communities. Most existing research has been conducted on campuses and in relation to sexual violence among teens or young adults. Our understanding of which bystander behaviors are feasible is nascent, and our knowledge of which situational factors influence neighbors' self-reported willingness to intervene is underdeveloped. We conducted a concept mapping study to identify potential bystander intervention behaviors in IPV among neighbors in urban settings; we also assessed whether perceived feasibility and effectiveness of those behaviors varied by situational characteristics. Using data collected from 41 residents of a low-income New York City neighborhood in late 2011, concept mapping was used to create a conceptual map of the 74 behaviors identified by participants. We examined participant differences in mean feasibility (i.e., that the participants "could" or "would" enact a behavior), feasibility given two situational characteristics (if the couple was perceived to have a history of IPV, and if children were believed to be involved or present), and perceived effectiveness of bystander behaviors. Differences across select sociodemographic factors of participants were also analyzed. A 13-cluster solution emerged, with clusters of bystander behaviors grouped into four larger cluster areas: victim focused, parenting/education focused, perpetrator focused, and community involvement focused. Bivariate analyses revealed that participants rated the four cluster areas as more feasible when a child was believed to be involved. Male participants rated intervention as less feasible when the couple was believed to have a history of IPV. Participants who reported a history of IPV victimization rated all four cluster areas as less effective on average, as compared with participants without a history of

  3. Third nearest neighbor parameterized tight binding model for graphene nano-ribbons

    Van-Truong Tran

    2017-07-01

    Full Text Available The existing tight binding models can very well reproduce the ab initio band structure of a 2D graphene sheet. For graphene nano-ribbons (GNRs, the current sets of tight binding parameters can successfully describe the semi-conducting behavior of all armchair GNRs. However, they are still failing in reproducing accurately the slope of the bands that is directly associated with the group velocity and the effective mass of electrons. In this work, both density functional theory and tight binding calculations were performed and a new set of tight binding parameters up to the third nearest neighbors including overlap terms is introduced. The results obtained with this model offer excellent agreement with the predictions of the density functional theory in most cases of ribbon structures, even in the high-energy region. Moreover, this set can induce electron-hole asymmetry as manifested in results from density functional theory. Relevant outcomes are also achieved for armchair ribbons of various widths as well as for zigzag structures, thus opening a route for multi-scale atomistic simulation of large systems that cannot be considered using density functional theory.

  4. Palinspastic reconstruction and geological evolution of Jurassic basins in Mongolia and neighboring China

    Wu Genyao

    2013-07-01

    Full Text Available The important event in Jurassic tectonics in Mongolia was the subduction and closure of the Mongolia-Okhotsk ocean; correspondingly, basin evolution can be divided into two main stages, related to the orogeny and collapse of the orogenic belt, respectively. The developing of Early–Middle Jurassic basins to the north of the ocean resulted from back-arc extension. The fossil sutures, from the China–SE Asia sub-continent to the south of the ocean, were rejuvenated by subduction-related orogeny; in addition, the Yanshanian intra-continental movement occurred. Three Early–Middle Jurassic molasse basins were developed by movement in Inner Mongolia, all of which stretched westwards (or northwards into Mongolia; therefore, the molasse basins in eastern and southern Mongolia had the same geometric and kinematic features as the basins in the Inner Mongolia. Owing to the collapse of the Mongolia-Okhotsk orogenic belt, a group of rift basins developed during the Late Jurassic. In eastern Mongolia, the NE orientated extensional basins were controlled by the neogenic NE-structure. The contemporary basins in southern Mongolia and the neighboring areas in China were constrained by remobilization (inherited activation of the latitudinal or ENE-directional basement structures. Three stages can be recognized in the evolution of the Early–Middle Jurassic basins after reversal; the basins also experienced four episodes of reformation.

  5. Reentrant behavior in the nearest-neighbor Ising antiferromagnet in a magnetic field

    Neto, Minos A.; de Sousa, J. Ricardo

    2004-12-01

    Motived by the H-T phase diagram in the bcc Ising antiferromagnetic with nearest-neighbor interactions obtained by Monte Carlo simulation [Landau, Phys. Rev. B 16, 4164 (1977)] that shows a reentrant behavior at low temperature, with two critical temperatures in magnetic field about 2% greater than the critical value Hc=8J , we apply the effective field renormalization group (EFRG) approach in this model on three-dimensional lattices (simple cubic-sc and body centered cubic-bcc). We find that the critical curve TN(H) exhibits a maximum point around of H≃Hc only in the bcc lattice case. We also discuss the critical behavior by the effective field theory in clusters with one (EFT-1) and two (EFT-2) spins, and a reentrant behavior is observed for the sc and bcc lattices. We have compared our results of EFRG in the bcc lattice with Monte Carlo and series expansion, and we observe a good accordance between the methods.

  6. Co-Expression of Neighboring Genes in the Zebrafish (Danio rerio Genome

    Daryi Wang

    2009-08-01

    Full Text Available Neighboring genes in the eukaryotic genome have a tendency to express concurrently, and the proximity of two adjacent genes is often considered a possible explanation for their co-expression behavior. However, the actual contribution of the physical distance between two genes to their co-expression behavior has yet to be defined. To further investigate this issue, we studied the co-expression of neighboring genes in zebrafish, which has a compact genome and has experienced a whole genome duplication event. Our analysis shows that the proportion of highly co-expressed neighboring pairs (Pearson’s correlation coefficient R>0.7 is low (0.24% ~ 0.67%; however, it is still significantly higher than that of random pairs. In particular, the statistical result implies that the co-expression tendency of neighboring pairs is negatively correlated with their physical distance. Our findings therefore suggest that physical distance may play an important role in the co-expression of neighboring genes. Possible mechanisms related to the neighboring genes’ co-expression are also discussed.

  7. Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier

    Rosdi, Bakhtiar Affendi; Jaafar, Haryati; Ramli, Dzati Athiar

    2015-02-01

    In this paper, a new approach for personal identification using finger vein image is presented. Finger vein is an emerging type of biometrics that attracts attention of researchers in biometrics area. As compared to other biometric traits such as face, fingerprint and iris, finger vein is more secured and hard to counterfeit since the features are inside the human body. So far, most of the researchers focus on how to extract robust features from the captured vein images. Not much research was conducted on the classification of the extracted features. In this paper, a new classifier called fuzzy-based k-nearest centroid neighbor (FkNCN) is applied to classify the finger vein image. The proposed FkNCN employs a surrounding rule to obtain the k-nearest centroid neighbors based on the spatial distributions of the training images and their distance to the test image. Then, the fuzzy membership function is utilized to assign the test image to the class which is frequently represented by the k-nearest centroid neighbors. Experimental evaluation using our own database which was collected from 492 fingers shows that the proposed FkNCN has better performance than the k-nearest neighbor, k-nearest-centroid neighbor and fuzzy-based-k-nearest neighbor classifiers. This shows that the proposed classifier is able to identify the finger vein image effectively.

  8. Plant neighbor identity influences plant biochemistry and physiology related to defense.

    Broz, Amanda K; Broeckling, Corey D; De-la-Peña, Clelia; Lewis, Matthew R; Greene, Erick; Callaway, Ragan M; Sumner, Lloyd W; Vivanco, Jorge M

    2010-06-17

    Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  9. Plant neighbor identity influences plant biochemistry and physiology related to defense

    Callaway Ragan M

    2010-06-01

    Full Text Available Abstract Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa or heterospecific (Festuca idahoensis plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  10. Pollinator-mediated interactions in experimental arrays vary with neighbor identity.

    Ha, Melissa K; Ivey, Christopher T

    2017-02-01

    Local ecological conditions influence the impact of species interactions on evolution and community structure. We investigated whether pollinator-mediated interactions between coflowering plants vary with plant density, coflowering neighbor identity, and flowering season. We conducted a field experiment in which flowering time and floral neighborhood were manipulated in a factorial design. Early- and late-flowering Clarkia unguiculata plants were placed into arrays with C. biloba neighbors, noncongeneric neighbors, additional conspecific plants, or no additional plants as a density control. We compared whole-plant pollen limitation of seed set, pollinator behavior, and pollen deposition among treatments. Interactions mediated by shared pollinators depended on the identity of the neighbor and possibly changed through time, although flowering-season comparisons were compromised by low early-season plant survival. Interactions with conspecific neighbors were likely competitive late in the season. Interactions with C. biloba appeared to involve facilitation or neutral interactions. Interactions with noncongeners were more consistently competitive. The community composition of pollinators varied among treatment combinations. Pollinator-mediated interactions involved competition and likely facilitation, depending on coflowering neighbor. Experimental manipulation helped to reveal context-dependent variation in indirect biotic interactions. © 2017 Botanical Society of America.

  11. Heme Iron Content in Lamb Meat Is Differentially Altered upon Boiling, Grilling, or Frying as Assessed by Four Distinct Analytical Methods

    Pourkhalili, Azin; Mirlohi, Maryam; Rahimi, Ebrahim

    2013-01-01

    Lamb meat is regarded as an important source of highly bioavailable iron (heme iron) in the Iranians diet. The main objective of this study is to evaluate the effect of traditional cooking methods on the iron changes in lamb meat. Four published experimental methods for the determination of heme iron were assessed analytically and statistically. Samples were selected from lambs' loin. Standard methods (AOAC) were used for proximate analysis. For measuring heme iron, the results of four experi...

  12. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome.

    Yang, Zhantao; Keel, Siobán B; Shimamura, Akiko; Liu, Li; Gerds, Aaron T; Li, Henry Y; Wood, Brent L; Scott, Bart L; Abkowitz, Janis L

    2016-05-11

    Diamond Blackfan anemia (DBA) and myelodysplastic syndrome (MDS) with isolated del(5q) are severe macrocytic anemias; although both are associated with impaired ribosome assembly, why the anemia occurs is not known. We cultured marrow cells from DBA (n = 3) and del(5q) MDS (n = 6) patients and determined how heme (a toxic chemical) and globin (a protein) are coordinated. We show that globin translation initiates slowly, whereas heme synthesis proceeds normally. This results in insufficient globin protein, excess heme and excess reactive oxygen species in early erythroid precursors, and CFU-E (colony-forming unit-erythroid)/proerythroblast cell death. The cells that can more rapidly and effectively export heme or can slow heme synthesis preferentially survive and appropriately mature. Consistent with these observations, treatment with 10 μM succinylacetone, a specific inhibitor of heme synthesis, improved the erythroid cell output of DBA and del(5q) MDS marrow cultures by 68 to 95% (P = 0.03 to 0.05), whereas the erythroid cell output of concurrent control marrow cultures decreased by 4 to 13%. Our studies demonstrate that erythropoiesis fails when heme exceeds globin. Our data further suggest that therapies that decrease heme synthesis (or facilitate heme export) could improve the red blood cell production of persons with DBA, del(5q) MDS, and perhaps other macrocytic anemias. Copyright © 2016, American Association for the Advancement of Science.

  13. Histidine at Position 195 is Essential for Association of Heme-b in Lcp1VH2

    Oetermann, Sylvia; Vivod, Robin; Hiessl, Sebastian; Hogeback, Jens; Holtkamp, Michael; Karst, Uwe; Steinbüchel, Alexander

    2018-03-01

    The latex clearing protein (Lcp) is the key enzyme of polyisoprene degradation in actinomycetes (Yikmis and Steinbüchel in Appl Environ Microbiol 78:4543-4551, https://doi.org/10.1128/AEM.00001-12, 2012). In this study it was shown that Lcp from Gordonia polyisoprenivorans VH2 (Lcp1VH2) harbors a non-covalently bound heme b as cofactor, which was identified by pyridine hemochrome spectra and confirmed by LC/ESI-ToF-MS. It contains iron, most likely in the Fe3+ state. We focused on the characterization of the heme-cofactor, its accessibility with respect to the conformation of Lcp1VH2, and the identification of putative histidine residues involved in the coordination of heme. A change was detectable in UV/Vis-spectra of reduced Lcp1VH2 when imidazole was added, showing that Lcp1VH2 "as isolated" occurs in an open state, directly being accessible for external ligands. In addition, three highly conserved histidines (H195, H200 and H228), presumably acting as ligands coordinating the heme within the heme pocket, were replaced with alanines by site-directed mutagenesis. The effect of these changes on in vivo rubber-mineralization was investigated. The lcp- deletion mutant complemented with the H195A variant of lcp1 VH2 was unable to mineralize poly(cis-1,4-isoprene). In vitro analyses of purified, recombinant Lcp1VH2H195A confirmed the loss of enzyme activity, which could be ascribed to the loss of heme. Hence, H195 is essential for the association of heme-b in the central region of Lcp1VH2.

  14. Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea.

    Tirado, Raquel; Masdeu, Maria José; Vigil, Laura; Rigla, Mercedes; Luna, Alexis; Rebasa, Pere; Pareja, Rocío; Hurtado, Marta; Caixàs, Assumpta

    2017-09-01

    Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation. We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery. Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03). Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.

  15. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (PhHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  16. Role of distal arginine in early sensing intermediates in the heme domain of the oxygen sensor FixL.

    Jasaitis, Audrius; Hola, Klara; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Balland, Veronique; Vos, Marten H; Liebl, Ursula

    2006-05-16

    FixL is a bacterial heme-based oxygen sensor, in which release of oxygen from the sensing PAS domain leads to activation of an associated kinase domain. Static structural studies have suggested an important role of the conserved residue arginine 220 in signal transmission at the level of the heme domain. To assess the role of this residue in the dynamics and properties of the initial intermediates in ligand release, we have investigated the effects of R220X (X = I, Q, E, H, or A) mutations in the FixLH heme domain on the dynamics and spectral properties of the heme upon photolysis of O(2), NO, and CO using femtosecond transient absorption spectroscopy. Comparison of transient spectra for CO and NO dissociation with steady-state spectra indicated less strain on the heme in the ligand dissociation species for all mutants compared to the wild type (WT). For CO and NO, the kinetics were similar to those of the wild type, with the exception of (1) a relatively low yield of picosecond NO rebinding to R220A, presumably related to the increase in the free volume of the heme pocket, and (2) substantial pH-dependent picosecond to nanosecond rebinding of CO to R220H, related to formation of a hydrogen bond between CO and histidine 220. Upon excitation of the complex bound with the physiological sensor ligand O(2), a 5-8 ps decay phase and a nondecaying (>4 ns) phase were observed for WT and all mutants. The strong distortion of the spectrum associated with the decay phase in WT is substantially diminished in all mutant proteins, indicating an R220-induced role of the heme in the primary intermediate in signal transmission. Furthermore, the yield of dissociated oxygen after this phase ( approximately 10% in WT) is increased in all mutants, up to almost unity in R220A, indicating a key role of R220 in caging the oxygen near the heme through hydrogen bonding. Molecular dynamics simulations corroborate these findings and suggest motions of O(2) and arginine 220 away from the heme

  17. Handling Neighbor Discovery and Rendezvous Consistency with Weighted Quorum-Based Approach.

    Own, Chung-Ming; Meng, Zhaopeng; Liu, Kehan

    2015-09-03

    Neighbor discovery and the power of sensors play an important role in the formation of Wireless Sensor Networks (WSNs) and mobile networks. Many asynchronous protocols based on wake-up time scheduling have been proposed to enable neighbor discovery among neighboring nodes for the energy saving, especially in the difficulty of clock synchronization. However, existing researches are divided two parts with the neighbor-discovery methods, one is the quorum-based protocols and the other is co-primality based protocols. Their distinction is on the arrangements of time slots, the former uses the quorums in the matrix, the latter adopts the numerical analysis. In our study, we propose the weighted heuristic quorum system (WQS), which is based on the quorum algorithm to eliminate redundant paths of active slots. We demonstrate the specification of our system: fewer active slots are required, the referring rate is balanced, and remaining power is considered particularly when a device maintains rendezvous with discovered neighbors. The evaluation results showed that our proposed method can effectively reschedule the active slots and save the computing time of the network system.

  18. Handling Neighbor Discovery and Rendezvous Consistency with Weighted Quorum-Based Approach

    Chung-Ming Own

    2015-09-01

    Full Text Available Neighbor discovery and the power of sensors play an important role in the formation of Wireless Sensor Networks (WSNs and mobile networks. Many asynchronous protocols based on wake-up time scheduling have been proposed to enable neighbor discovery among neighboring nodes for the energy saving, especially in the difficulty of clock synchronization. However, existing researches are divided two parts with the neighbor-discovery methods, one is the quorum-based protocols and the other is co-primality based protocols. Their distinction is on the arrangements of time slots, the former uses the quorums in the matrix, the latter adopts the numerical analysis. In our study, we propose the weighted heuristic quorum system (WQS, which is based on the quorum algorithm to eliminate redundant paths of active slots. We demonstrate the specification of our system: fewer active slots are required, the referring rate is balanced, and remaining power is considered particularly when a device maintains rendezvous with discovered neighbors. The evaluation results showed that our proposed method can effectively reschedule the active slots and save the computing time of the network system.

  19. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  20. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Mu Zhou

    2014-01-01

    Full Text Available This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs in logarithmic received signal strength (RSS varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.