Sample records for helicity active region

  1. How to improve the maps of magnetic helicity injection in active regions? (United States)

    Pariat, Etienne; Démoulin, Pascal; Nindos, Alexander

    Magnetic helicity, a topological quantity which measures the twist, the writhe and the shear of a magnetic field, has recently appeared as a key quantity to understand some mechanisms of the solar activity such as Coronal Mass Ejections and flare onset. It is thus becoming of major importance to be able to compute magnetic helicity in active regions. Computing photospheric maps of the injection of magnetic helicity provides new spatial information that helps us to understand basic properties of solar activity, such as where and how magnetic helicity is injected. Several helicity flux density maps have been published for different active regions. Unfortunately, the classical helicity flux density is not a correct physical quantity and it does induce spurious signals (fake polarities) which mask the real injection of helicity. To map the real helicity injection, the knowledge of the complete connectivity of the field lines is fundamental. Even without the connectivity, improved helicity flux density maps can be derived. They have fake polarities which are lower by more than a factor 10 than the previous incorrect maps. Rather than a mixture of negative and positive injection patterns, they show almost unipolar injection on the active region scale. This leads to a completely new way of understanding the dynamics of active regions, in the frame of magnetic helicity studies.

  2. Helicity of Solar Active Regions from a Dynamo Model Piyali ...

    Indian Academy of Sciences (India)

    above need not be mutually exclusive: both may be simultaneously operative. A careful comparison between observational data and detailed theoretical models will be needed to ascertain the relative importance of these two effects. We present here calculations of helicity based on our two-dimensional kinematic.

  3. On Asymmetry of Magnetic Helicity in Emerging Active Regions: High-resolution Observations (United States)

    Tian, Lirong; Démoulin, Pascal; Alexander, David; Zhu, Chunming


    We employ the DAVE (differential affine velocity estimator) tracking technique on a time series of Michelson Doppler Imager (MDI)/1 minute high spatial resolution line-of-sight magnetograms to measure the photospheric flow velocity for three newly emerging bipolar active regions (ARs). We separately calculate the magnetic helicity injection rate of the leading and following polarities to confirm or refute the magnetic helicity asymmetry, found by Tian & Alexander using MDI/96 minute low spatial resolution magnetograms. Our results demonstrate that the magnetic helicity asymmetry is robust, being present in the three ARs studied, two of which have an observed balance of the magnetic flux. The magnetic helicity injection rate measured is found to depend little on the window size selected, but does depend on the time interval used between the two successive magnetograms being tracked. It is found that the measurement of the magnetic helicity injection rate performs well for a window size between 12 × 10 and 18 × 15 pixels and at a time interval Δt = 10 minutes. Moreover, the short-lived magnetic structures, 10-60 minutes, are found to contribute 30%-50% of the magnetic helicity injection rate. Comparing with the results calculated by MDI/96 minute data, we find that the MDI/96 minute data, in general, can outline the main trend of the magnetic properties, but they significantly underestimate the magnetic flux in strong field regions and are not appropriate for quantitative tracking studies, so provide a poor estimate of the amount of magnetic helicity injected into the corona.

  4. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun (United States)

    Liu, Y.; Schuck, P. W.


    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  5. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field (United States)

    Petrie, Gordon; McMaken, Tyler C.


    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  6. Thermally activated helicity reversals of skyrmions (United States)

    Yu, X. Z.; Shibata, K.; Koshibae, W.; Tokunaga, Y.; Kaneko, Y.; Nagai, T.; Kimoto, K.; Taguchi, Y.; Nagaosa, N.; Tokura, Y.


    Magnetic bubbles with winding number S =1 are topologically equivalent to skyrmions. Here we report the discovery of helicity (in-plane magnetization-swirling direction) reversal of skyrmions, while keeping their hexagonal lattice form, at above room temperature in a thin hexaferrite magnet. We have observed that the frequency of helicity reversals dramatically increases with temperature in a thermally activated manner, revealing that the generation energy of a kink-soliton pair for switching helicity on a skyrmion rapidly decreases towards the magnetic transition temperature.

  7. Hydrophobicity and Helicity Regulate the Antifungal Activity of 14-Helical β-Peptides (United States)


    Candida albicans is one of the most prevalent fungal pathogens, causing both mucosal candidiasis and invasive candidemia. Antimicrobial peptides (AMPs), part of the human innate immune system, have been shown to exhibit antifungal activity but have not been effective as pharmaceuticals because of low activity and selectivity in physiologically relevant environments. Nevertheless, studies on α-peptide AMPs have revealed key features that can be designed into more stable structures, such as the 14-helix of β-peptide-based oligomers. Here, we report on the ways in which two of those features, hydrophobicity and helicity, govern the activity and selectivity of 14-helical β-peptides against C. albicans and human red blood cells. Our results reveal both antifungal activity and hemolysis to correlate to hydrophobicity, with intermediate levels of hydrophobicity leading to high antifungal activity and high selectivity toward C. albicans. Helical structure-forming propensity further influenced this window of selective antifungal activity, with more stable helical structures eliciting specificity for C. albicans over a broader range of hydrophobicity. Our findings also reveal cooperativity between hydrophobicity and helicity in regulating antifungal activity and specificity. The results of this study provide critical insight into the ways in which hydrophobicity and helicity govern the activity and specificity of AMPs and identify criteria that may be useful for the design of potent and selective antifungal agents. PMID:24837702

  8. Analysis of a β-helical region in the p55 domain of Helicobacter pylori vacuolating toxin

    Directory of Open Access Journals (Sweden)

    Algood Holly


    Full Text Available Abstract Background Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. VacA, a toxin secreted by H. pylori, is comprised of two domains, designated p33 and p55. Analysis of the crystal structure of the p55 domain indicated that its structure is predominantly a right-handed parallel β-helix, which is a characteristic of autotransporter passenger domains. Substitution mutations of specific amino acids within the p33 domain abrogate VacA activity, but thus far, it has been difficult to identify small inactivating mutations within the p55 domain. Therefore, we hypothesized that large portions of the p55 domain might be non-essential for vacuolating toxin activity. To test this hypothesis, we introduced eight deletion mutations (each corresponding to a single coil within a β-helical segment spanning VacA amino acids 433-628 into the H. pylori chromosomal vacA gene. Results All eight of the mutant VacA proteins were expressed by the corresponding H. pylori mutant strains and underwent proteolytic processing to yield ~85 kDa passenger domains. Three mutant proteins (VacA Δ484-504, Δ511-536, and Δ517-544 were secreted and induced vacuolation of mammalian cells, which indicated that these β-helical coils were dispensable for vacuolating toxin activity. One mutant protein (VacA Δ433-461 exhibited reduced vacuolating toxin activity compared to wild-type VacA. Other mutant proteins, including those containing deletions near the carboxy-terminal end of the β-helical region (amino acids Val559-Asn628, exhibited marked defects in secretion and increased susceptibility to proteolytic cleavage by trypsin, which suggested that these proteins were misfolded. Conclusions These results indicate that within the β-helical segment of the VacA p55 domain, there are regions of plasticity that tolerate alterations without detrimental effects on protein

  9. Design and Analysis of an Active Helical Drive Downhole Tractor (United States)

    LI, Yujia; LIU, Qingyou; CHEN, Yonghua; REN, Tao


    During oil-gas well drilling and completion, downhole tools and apparatus should be conveyed to the destination to complete a series of downhole works. Downhole tractors have been used to convey tools in complex wellbores, however a very large tractive force is needed to carry more downhole tools to accomplish works with high efficiency. A novel serial active helical drive downhole tractor which has significantly improved performance compared with previous work is proposed. All previously reported helical drive downhole tractors need stators to balance the torque generated by the rotator. By contrast, the proposed serial downhole tractor does not need a stator; several rotator-driven units should only be connected to one another to achieve a tractive force multifold higher than that was previously reported. As a result, the length of a single unit is shortened, and the motion flexibility of the downhole tractor is increased. The major performance indicators, namely, gear ratio, velocity, and tractive force, are analyzed. Experimental results show that the maximum tractive force of a single-unit prototype with a length of 900 mm is 165.3 kg or 1620 N. The analysis and experimental results show that the proposed design has considerable potential for downhole works.

  10. Regional Entrepreneurship and Innovation Management: Actors, Helices and Consensus Space

    Directory of Open Access Journals (Sweden)

    Emanuela TODEVA


    Full Text Available European Smart Specialization (S3 policies aim to mobilize innovation and entrepreneurial capabilities and to deliver job creation and economic growth through inter-regional cooperation. The foundation principles for this policy initiative are an entrepreneurial discovery process that aims to mobilize all stakeholders throughout all stages from conception to strategy implementation; government-led policy initiatives for selecting strategic investment priorities; and building triple helix consensus space for regional policy and strategy implementation. However, the key existing gap resides in a proper investigation of such a consensus space that would fulfill the S3 mission. In this context, this paper outlines the key developments in regional innovation and entrepreneurship that have emerged through the process of S3 development and implementation. The discussion starts with an overview of the challenges and barriers and policy response for building place-based consensus space. We look at critical questions that are addressed by national and regional authorities and the localized mobilization of entrepreneurial and innovation capabilities. Our analysis of the regional innovation and entrepreneurial systems focuses on individual actors within the triple helix model of university-industry and government and their interaction for building a consensus space. We conclude the paper with recommendations for enhanced facilitation and orchestration of inter-regional value chains.

  11. Helicity and topology of a small region of quantum vorticity (United States)

    Mesgarnezhad, M.; Cooper, R. G.; Baggaley, A. W.; Barenghi, C. F.


    We numerically study the evolution of a small turbulent region of quantised vorticity in superfluid helium, a regime which can be realised in the laboratory. We show that the turbulence achieves a fluctuating steady-state in terms of dynamics (energy), geometry (length, writhing) and topology (linking). We show that, at any instant, the turbulence consists of many unknots and few large loops of great geometrical and topological complexity.

  12. High Field Side MHD Activity During Local Helicity Injection (United States)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.


    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. Twist of Magnetic Fields in Solar Active Regions Hongqi Zhang ...

    Indian Academy of Sciences (India)


    twisted field (current helicity) in the photosphere (Seehafer 1990; Pevtsov et al. 1995;. Bao & Zhang 1998). Bao & Zhang (1998) and Zhang & Bao (1999) computed the photospheric current helicity parameter h|| for 422 active regions, including most of the large ones observed in the period of 1988 1997 at Huairou Solar ...

  14. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David


    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  15. Signaling by the heavy-metal sensor CusS involves rearranged helical interactions in specific transmembrane regions. (United States)

    Fung, Danny Ka Chun; Ma, Yongzheng; Xia, Tingying; Luk, Jakson Chak Hon; Yan, Aixin


    Two-component systems (TCSs) play important roles in the adaptation of bacteria to stress. Despite their increasingly well understood mechanistic features, it remains poorly understood how TCSs transduce signals across membranes. Here, we use the E. coli Cu/Ag-responsive CusSR TCS as a model to investigate the roles of CusS transmembrane (TM) residues. Proline scanning of TM1 domain led to identification of the T17P, F18P, and S21P variants, which display higher kinase activities relative to wild type. A single point mutation, V202G, in the adjacent TM2 domain specifically suppresses the hyperactivities of these mutants. Disulfide crosslinking analysis demonstrated that T17 and V202 are situated in close proximity, and Cys residues substituted at those two positions form exclusive intramolecular crosslinks when CusS is in the signaling-inactive state. In the signaling-active variant of CusS, however, only intermolecular crosslinking between the two Cys residues could be observed, suggesting that destabilization of an intramolecular constraint and a subsequent rearrangement of helical interactions in this TM region is involved in the activation of CusS. An analogous TM helical interface in the P. aeruginosa heavy metal sensor kinase CzcS is also observed. Together, these results suggested a conserved transmembrane signal transduction mechanism in the heavy metal sensing TCSs. © 2016 John Wiley & Sons Ltd.

  16. Virus like particle based strategy to elicit HIV-protective antibodies to the alpha-helic regions of gp41. (United States)

    Pastori, C; Tudor, D; Diomede, L; Drillet, A S; Jegerlehner, A; Röhn, T A; Bomsel, M; Lopalco, L

    Natural antibodies to gp41 inhibit HIV-1 replication through the recognition of two different regions, corresponding to the leucine zipper motif in the HR1 alpha-helix and to another motif within HR2 region, hosting 2F5 and 4E10 epitope. This study aimed at reproducing such protective responses through VLP vaccination. Six regions covering the alpha-helical regions of gp41 were conjugated to the surface of AP205 phage-based VLPs. Once administered in mice via systemic or mucosal route, these immunogens elicited high titers of gp41-specific IgG. Immunogenicity and HIV infectivity reduction were obtained either with HR2 regions or with peptides where aminoacid strings were added to either the C-terminus or N-terminus of core epitope in HR1 region. Antibody-dependent cell cytotoxicity (ADCC) activity was induced by one of the HR2 epitopes only. These results may have relevant implications for the development of new vaccinal approaches against HIV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Observation of an optical vortex beam from a helical undulator in the XUV region. (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro


    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  18. Helical 1:1 α/Sulfono-γ-AA Heterogeneous Peptides with Antibacterial Activity

    Energy Technology Data Exchange (ETDEWEB)

    She, Fengyu; Nimmagadda, Alekhya; Teng, Peng; Su, Ma; Zuo, Xiaobing; Cai, Jianfeng


    As one of the greatest threats facing in 21st century, antibiotic resistance is now a major public health concern. Host-defense peptides (HDPs) offer an alternative approach to combat emerging multidrug-resistant bacteria. It is known that helical HDPs such as magainin 2 and its analogs adopt cationic amphipathic conformations upon interaction with bacterial membranes, leading to membrane disruption and subsequent bacterial cell death. We have previously shown that amphipathic sulfono-γ-AApeptides could mimic magainin 2 and exhibit bactericidal activity. In this article, we demonstrate for the first time that amphipathic helical 1:1 α/sulfono-γ-AA heterogeneous peptides, in which regular amino acids and sulfono-γ-AApeptide building blocks are alternatively present in a 1:1 pattern, display potent antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. Small Angle X-ray Scattering (SAXS) suggests that the lead sequences adopt defined helical structures. The subsequent studies including 2 fluorescence microscopy and time-kill experiments indicate that these hybrid peptides exert antimicrobial activity by mimicking the mechanism of HDPs. Our findings may lead to the development of HDP-mimicking antimicrobial peptidomimetics that combat drug-resistant bacterial pathogens. In addition, our results also demonstrate the effective design of a new class of helical foldamer, which could be employed to interrogate other important biological targets such as protein-protein interactions in the future.

  19. Analysis of concentration response curves to describe and compare tha antimicrobial activity anof model cationic alpha-helical peptides.

    NARCIS (Netherlands)

    Rautenbach, M.; Gerstner, G.D.; Vlok, N.M.; Kulenkampff, J.; Westerhoff, H.V.


    To assess and compare different model Leu-Lys-containing cationic α-helical peptides, their antimicrobial activities were tested against Escherichia coli as target organism over a broad peptide concentration range. The natural cationic α-helical peptides magainin 2 and PGLa and the cyclic cationic

  20. Low MHD activity using resonant helical field and limiter biasing in IR-T1 tokamak (United States)

    Lafouti, M.; Ghoranneviss, M.; Meshkani, S.; Salar Elahi, A.; Salar Elahi


    In this paper, the effect of resonant helical magnetic field (RHF) and cold biased local limiter on plasma current, loop voltage, confinement time energy, poloidal beta, line emission intensity H α, and magnetohydrodynamic (MHD) behavior based on Mirnov oscillations in the IR-T1 tokamak has been investigated. The experiments have been done in different regimes as cold biased local limiter, magnetic perturbation application, and both of these. At first the effect of the positive and negative bias voltage on plasma parameters and magnetic fluctuations detected by Mirnov coils has been investigated. Also, the effects of RHF on plasma parameters have been investigated in the edge region. Then the effects of applied biasing and RHF at the same time are analyzed. The bias voltage has been restricted to (-320 RHF and biasing are applied to the plasma at the same time, the plasma parameters do not change any more compared to corresponding discharges with only RHF (L = 3). In other words, the amplitude of MHD activity can be totally controlled when a convenient biasing is applied to the limiter in the phases of current flat-top.

  1. Shortening and modifying the 1513 MSP-1 peptide's alpha-helical region induces protection against malaria. (United States)

    Espejo, Fabiola; Bermúdez, Adriana; Torres, Elizabeth; Urquiza, Mauricio; Rodríguez, Raúl; López, Yolanda; Patarroyo, Manuel Elkin


    Immunogenic and protective peptide sequences are of prime importance in the search for an anti-malarial vaccine. The MSP-1 conserved and semi-conserved sequences have been shown to contain red blood cell (RBC) membrane high affinity binding peptides (HABP). HABP 1513 sequence ((42)GYSLFQKEKMVLNEGTSGTA(61)), from this protein's N-terminal, has been shown to possess a T-epitope; however, it did not induce a humoral immune response or complete protection when evaluated in Aotus monkeys. Analogue peptides with critical binding residues replaced by amino acids with similar mass but different charge were synthesised and tested for immunogenicity and protectivity in monkey. NMR studies correlated structural behaviour with biological function. Non-immunogenic and non-protective 1513 native peptide presented a helical fragment between residues L(4) and E(14). C-terminal, 5-residue-shorter, non-immunogenic, non-protective peptide 17894 contained an alpha-helix from Q(6) to L(12) residues. Immunogenic and protective peptide 13946 presented a shorter alpha-helix between K(7) to N(13) residues. These data suggest that changing certain residues permits better peptide fit within the MHC class II-peptide-TCR complex, thus activating the immune system and inducing a protective immune response.

  2. Monitoring single protease activities on triple-helical collagen molecules (United States)

    Harzar, Raj; Froberg, James; Srivastava, D. K.; Choi, Yongki

    Matrix metalloproteinases (MMPs), a particular family of proteases, play a pivotal role in degrading the extracellular matrix (ECM). It has been known for more than 40 years that MMPs are closely involved in multiple human cancers during cell growth, invasion, and metastasis. However, the mechanisms of MMP activity are far from being understood. Here, we monitored enzymatic processing of MMPs with two complementary approaches, atomic force microscopy and nanocircuits measurements. AFM measurements demonstrated that incubation of collagen monomers with MMPs resulted in a single position cleavage, producing 3/4 and 1/4 collagen fragments. From electronic monitoring of single MMP nanocircuit measurements, we were able to capture a single cleavage event with a rate of 0.012 Hz, which were in good agreement with fluorescence assay measurements. This work was supported financially by the NIGMS/NIH (P30GM103332-02) and ND NASA EPSCoR RID Grant.

  3. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity (United States)

    Howson, Suzanne E.; Bolhuis, Albert; Brabec, Viktor; Clarkson, Guy J.; Malina, Jaroslav; Rodger, Alison; Scott, Peter


    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans).

  4. Helicity transport and creation in the solar convection zone (United States)

    Longcope, D.; Pevtsov, A.

    Magnetic helicity provides a theoretical tool for characterizing the solar dynamo and the evolution of the coronal field. The magnetic helicity may be inferred from several types of observation including vector magnetograms of the photospehric magnetic fields. The helicty of an active region reflects, to some degree, that produced by the solar cycle dyanmo which is believed to be operating at the base of the convection zone, where the Rossby number is small. The helicty of the active region is affected by the turbulence through which it rises, and this process must be taken into account when interpreting helicity observations. The subsequent dispersal of the active region magnetic field will further affect the observed helicty of the photospheric field. This transport process suggests an observational method of identifying, through helicty measurements, the source of quiet Sun field from either a surface (non-helical) dynamo or the fragmentation of helical active region fields.

  5. Helicity of Solar Active Regions from a Dynamo Model

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  6. Contractile and chiral activities codetermine the helicity of swimming droplet trajectories (United States)

    Tjhung, Elsen; Cates, Michael E.; Marenduzzo, Davide


    Active fluids are a class of nonequilibrium systems where energy is injected into the system continuously by the constituent particles themselves. Many examples, such as bacterial suspensions and actomyosin networks, are intrinsically chiral at a local scale, so that their activity involves torque dipoles alongside the force dipoles usually considered. Although many aspects of active fluids have been studied, the effects of chirality on them are much less known. Here, we study by computer simulation the dynamics of an unstructured droplet of chiral active fluid in three dimensions. Our model considers only the simplest possible combination of chiral and achiral active stresses, yet this leads to an unprecedented range of complex motilities, including oscillatory swimming, helical swimming, and run-and-tumble motion. Strikingly, whereas the chirality of helical swimming is the same as the microscopic chirality of torque dipoles in one regime, the two are opposite in another. Some of the features of these motility modes resemble those of some single-celled protozoa, suggesting that underlying mechanisms may be shared by some biological systems and synthetic active droplets.

  7. Helicity dependence of the γ {sup 3}He → πX reactions in the Δ(1232) resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Costanza, S.; Rigamonti, F. [INFN, Sezione di Pavia, Pavia (Italy); Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Mushkarenkov, A.; Braghieri, A.; Pedroni, P. [INFN, Sezione di Pavia, Pavia (Italy); Romaniuk, M.; Mandaglio, G. [INFN, Sezione di Catania, Catania (Italy); Universita di Messina, Dipartimento di Fisica e Scienze della Terra, Messina (Italy); Aguar Bartolome, P.; Ahrens, J.; Arends, H.J.; Heid, E.; Jahn, O.; Kashevarov, V.L.; Ostrick, M.; Ortega, H.; Otte, P.B.; Oussena, B.; Schumann, S.; Thomas, A.; Unverzagt, M. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Annand, J.R.M.; Hamilton, D.; Howdle, D.; Livingston, K.; MacGregor, I.J.D.; Mancell, J.; McGeorge, J.C.; Rosner, G. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Beck, R. [University of Bonn, Helmholtz-Institut fuer Strahlen und Kernphysik, Bonn (Germany); Bekrenev, V.; Kruglov, S.; Kulbardis, A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Berghaeuser, H.; Drexler, P.; Metag, V.; Thiel, M. [University of Giessen, II Physikalisches Institut, Giessen (Germany); Briscoe, W.J.; Downie, E.J. [The George Washington University, Washington, DC (United States); Cherepnya, S.N.; Fil' kov, L.V.; Lisin, V.; Polonski, A. [Institute for Nuclear Research, Moscow (Russian Federation); Collicott, C. [Dalhousie University, Halifax, NS (Canada); Saint Mary' s University, Halifax, NS (Canada); Fix, A. [Tomsk Polytechnic University, Tomsk (Russian Federation); Glazier, D.I. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); University of Edinburgh, SUPA School of Physics and Astronomy, Edinburgh (United Kingdom); Heil, W.; Krimmer, J. [Universitaet Mainz, Institut fuer Physik, Mainz (Germany); Hornidge, D.; Middleton, D.G. [Mount Allison University, Sackville, NB (Canada); Jaegle, I.; Keshelashvili, I.; Krusche, B.; Oberle, M.; Pheron, F.; Rostomyan, T.; Werthmueller, D. [University of Basel, Institut fuer Physik, Basel (Switzerland); Huber, G.M. [University of Regina, Regina, SK (Canada); Jude, T.; Watts, D.P. [University of Edinburgh, SUPA School of Physics and Astronomy, Edinburgh (United Kingdom); Kondratiev, R. [Lebedev Physical Institute, Moscow (Russian Federation); Korolija, M.; Supek, I. [Rudjer Boskovic Institute, Zagreb (Croatia); Manley, D.M. [Kent State University, Kent, Ohio (United States); Nefkens, B.M.K.; Starostin, A. [University of California, Los Angeles, California (United States); Nikolaev, A. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Prakhov, S. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); The George Washington University, Washington, DC (United States); University of California, Los Angeles, California (United States); Sarty, A.J. [Saint Mary' s University, Halifax, NS (Canada); Collaboration: A2 Collaboration


    The helicity dependences of the differential cross sections for the semi-inclusive γ {sup 3}He → π{sup 0} X and γ {sup 3}He → π{sup ±} X reactions have been measured for the first time in the energy region 200 < E{sub γ} 450 MeV. The experiment was performed at the tagged photon beam facility of the MAMI accelerator in Mainz using a longitudinally polarised high-pressure {sup 3}He gas target. Hadronic products were measured with the large-acceptance Crystal Ball detector complemented with additional devices for charged-particle tracking and identification. Unpolarised differential cross sections and their helicity dependence are compared with theoretical calculations using the Fix-Arenhoevel model. The effect of the intermediate excitation of the Δ(1232) resonance can be clearly seen from this comparison, especially for the polarised case, where nuclear effects are relatively small. The model provides a better theoretical description of the unpolarised charged pion photoproduction data than the neutral pion channel. It does significantly better in describing the helicity-dependent data in both channels. These comparisons provide new information on the mechanisms involved in pion photoproduction on {sup 3}He and suggest that a polarised {sup 3}He target can provide valuable information on the corresponding polarised quasi-free neutron reactions. (orig.)

  8. Three new structures of left-handed RADA helical filaments: structural flexibility of N-terminal domain is critical for recombinase activity.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chang

    Full Text Available RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA, by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination.

  9. Helicity scalings

    Energy Technology Data Exchange (ETDEWEB)

    Plunian, F [ISTerre, CNRS, Universite Joseph Fourier, Grenoble (France); Lessinnes, T; Carati, D [Physique Statistique et Plasmas, Universite Libre de Bruxelles (Belgium); Stepanov, R, E-mail: [Institute of Continuous Media Mechanics of the Russian Academy of Science, Perm (Russian Federation)


    Using a helical shell model of turbulence, Chen et al. (2003) showed that both helicity and energy dissipate at the Kolmogorov scale, independently from any helicity input. This is in contradiction with a previous paper by Ditlevsen and Giuliani (2001) in which, using a GOY shell model of turbulence, they found that helicity dissipates at a scale larger than the Kolmogorov scale, and does depend on the helicity input. In a recent paper by Lessinnes et al. (2011), we showed that this discrepancy is due to the fact that in the GOY shell model only one helical mode (+ or -) is present at each scale instead of both modes in the helical shell model. Then, using the GOY model, the near cancellation of the helicity flux between the + and - modes cannot occur at small scales, as it should be in true turbulence. We review the main results with a focus on the numerical procedure needed to obtain accurate statistics.

  10. Truncation of the A,A(∗),A' helices segment impairs the actin bundling activity of mammalian eEF1A1. (United States)

    Vlasenko, Dmytro O; Novosylna, Oleksandra V; Negrutskii, Boris S; El'skaya, Anna V


    Translation elongation factor eEF1A is a G-protein which has a crucial role in the ribosomal polypeptide elongation and possesses a number of non-translational functions. Here, we show that the A,A(∗),A' helices segment of mammalian eEF1A is dispensable for the eEF1A*eEF1Bα complex formation. The A,A(∗),A' helices region did not interact with actin; however, its removal eliminates the actin bundling activity of eEF1A, probably due to the destruction of a dimeric structure of eEF1A. The translation function of monomers and the actin-bundling function of dimers of mammalian eEF1A is suggested. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Active region seismology (United States)

    Bogdan, Tom; Braun, D. C.


    Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.

  12. What Helicity Can Tell Us about Solar Magnetic Fields Alexei A ...

    Indian Academy of Sciences (India)

    damental properties as hemispheric helicity rule, and role of helicity in .... A summary of these mechanisms can be found in Longcope et al. (1999) and Longcope & Pevtsov (2003). Similar to Joy's law that describes active region tilt ... active regions' magnetic field is about 1.7 × 1043 Mx2, about three times larger than.

  13. In situ calibration of neutron activation system on the large helical device (United States)

    Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.


    In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.

  14. Helicity dependence of the {gamma}d{yields} {pi}NN reactions in the {delta}-resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Arends, H.J.; Beck, R.; Heid, E.; Jahn, O.; Lang, M.; Martinez-Fabregate, M.; Schwamb, M.; Tamas, G.; Thomas, A. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Altieri, S.; Panzeri, A.; Pinelli, T. [INFN, Pavia (Italy); Universita di Pavia, Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Annand, J.R.M.; McGeorge, J.C.; Protopopescu, D.; Rosner, G. [University of Glasgow, Department of Physics and Astronomy, Glasgow (United Kingdom); Blackston, M.A.; Weller, H.R. [Duke University, Department of Physics, Durham, NC (United States); Bradtke, C.; Dutz, H.; Klein, F.; Rohlof, C. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Braghieri, A.; Pedroni, P. [INFN, Sezione di Pavia, Pavia (Italy); Hose, N. d' [DSM/DAPNIA/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Fix, A. [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation); Kondratiev, R.; Lisin, V. [Academy of Science, INR, Moscow (Russian Federation); Meyer, W.; Reicherz, G. [Ruhr-Universitaet Bochum, Insitut fuer Experimentalphysik, Bochum (Germany); Rostomyan, T. [Universiteit Gent, Subatomaire en Stralingsfysica, Gent (Belgium); INFN, Pavia (Italy); Ryckbosch, D. [Universiteit Gent, Subatomaire en Stralingsfysica, Gent (Belgium)


    The helicity dependence of the differential cross-section for the {gamma}d{yields}{pi}NN reactions has been measured for the first time in the {delta} -resonance region. The measurement was performed with the large-acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. The data show that the main reaction mechanisms for the {pi}{sup {+-}} NN channels are the quasi-free N {pi} processes on one bound nucleon with nuclear dynamics playing a minor role. On the contrary, for the {pi}{sup 0}np channel nuclear mechanisms involving the reabsorption of the photoproduced {pi}{sup 0} by the np pair have to be taken into account to reproduce the experimental data. (orig.)

  15. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman


    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  16. Identification and in silico analysis of helical lipid binding regions in ...

    Indian Academy of Sciences (India)

    In supplementary figure 1 the complete alignment results are depicted. In grey the full sequence homology is indicated, in red the predicted lipid binding regions are highlighted. In some cases a particular region is found in a remarkably high number of organisms (like region 616-632 in E.coli) while it seems absent in one or ...

  17. Role of α-Helical Structure in Organic Solvent-Activated Homodimer of Elastase Strain K

    Directory of Open Access Journals (Sweden)

    Chee Fah Wong


    Full Text Available Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3 was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.

  18. Numerical Simulations of Helicity Condensation in the Solar Corona (United States)

    Zhao, L.; DeVore, C. R.; Antiochos, S. K.; Zurbuchen, T. H.


    The helicity condensation model has been proposed by Antiochos (2013) to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontal photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the system. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of, for example, a bipolar active region. The calculations demonstrate that, contrary to common belief, coronal loops having opposite helicity do not reconnect, whereas loops having the same sense of helicity do reconnect. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.

  19. Active trajectory control for a heavy ion beam probe on the compact helical system

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Crowley, T.P.; Hamada, Y.; Hidekuma, S.; Kojima, M.


    A 200 keV heavy ion beam probe (HIBP) on the Compact Helical System torsatron/heliotron uses a newly proposed method in order to control complicated beam trajectories in non-axisymmetrical devices. As a result, the HIBP has successfully measured potential profiles of the toroidal helical plasma. The article will describe the results of the potential profile measurements, together with the HIBP hardware system and procedures to realize the method. (author)

  20. Evolution of Active Regions

    Directory of Open Access Journals (Sweden)

    Lidia van Driel-Gesztelyi


    Full Text Available The evolution of active regions (AR from their emergence through their long decay process is of fundamental importance in solar physics. Since large-scale flux is generated by the deep-seated dynamo, the observed characteristics of flux emergence and that of the subsequent decay provide vital clues as well as boundary conditions for dynamo models. Throughout their evolution, ARs are centres of magnetic activity, with the level and type of activity phenomena being dependent on the evolutionary stage of the AR. As new flux emerges into a pre-existing magnetic environment, its evolution leads to re-configuration of small-and large-scale magnetic connectivities. The decay process of ARs spreads the once-concentrated magnetic flux over an ever-increasing area. Though most of the flux disappears through small-scale cancellation processes, it is the remnant of large-scale AR fields that is able to reverse the polarity of the poles and build up new polar fields. In this Living Review the emphasis is put on what we have learned from observations, which is put in the context of modelling and simulation efforts when interpreting them. For another, modelling-focused Living Review on the sub-surface evolution and emergence of magnetic flux see Fan (2009. In this first version we focus on the evolution of dominantly bipolar ARs.

  1. Identification and in silico analysis of helical lipid binding regions in ...

    Indian Academy of Sciences (India)

    The role of protein–lipid interactions is increasingly recognized to be of importance in numerous biological processes. Bioinformatics is being increasingly used as a helpful tool in studying protein–lipid interactions. Especially recently developed approaches recognizing lipid binding regions in proteins can be implemented.

  2. The helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation

    Directory of Open Access Journals (Sweden)

    Vitali Bialevich


    Full Text Available Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.

  3. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity. (United States)

    Tomizaki, Kin-Ya; Yamaguchi, Yuichi; Tsukamoto, Naoyuki; Imai, Takahito


    Gold nanoparticles are promising nanomaterials for catalytic reactions, sensing/imaging systems, photonic/plasmonic devices, and electronics because of their unique physical and chemical properties. To date, significant catalytic activities of gold nanoparticles have been reported for reactions such as carbon monooxide oxidation and 4-nitrophenol reduction, and diverse gold nanoparticle morphologies such as nanospheres, wires, rods, and cubes have been achieved using a variety of capping/stabilizing organic molecules. Very recently, we designed a -sheet-forming peptide that accommodates HAuCl4 in the cavities of peptide self-assemblies and provided ultrathin gold nanoribbons 50-100 nm wide, several nanometers high, and microns long, without the need for external reductants in the aqueous medium. However, there are few reports on the simultaneous assembly of peptides forming secondary structures and metallic nanoparticles into peptide-metallic particle hybrids under mild aqueous conditions and demonstration of their use as catalysts. Furthermore, the gold nanoribbon surfaces are covered with -sheet structures, disrupting the access of substrates to the active sites, thereby possibly inhibiting their catalytic activity. We here report (i) the design, synthesis, and characterization of a new template peptide, RU025, that tends to form an -helical conformation and self-assembles into network nanoarchitectures in aqueous solution through possibly hydrophobic and electrostatic interactions, (ii) the characterization of gold seed crystals synthesized by mixing RU025 and HAuCl4, (iii) the characterization of peptide-gold nanoparticle hybrids directed by crystal growth with NaBH4 and showing its dependence on the conditions used for nucleation, and (iv) the catalytic activities of the hybrids towards the reduction of 4-nitrophenol to 4-aminophenol in the presence of excess NaBH4. The size and morphology of gold nanoparticles can be tuned in the nanometer range by

  4. Relative magnetic helicity as a diagnostic of solar eruptivity (United States)

    Pariat, E.; Leake, J. E.; Valori, G.; Linton, M. G.; Zuccarello, F. P.; Dalmasse, K.


    Context. The discovery of clear criteria that can deterministically describe the eruptive state of a solar active region would lead to major improvements on space weather predictions. Aims: Using series of numerical simulations of the emergence of a magnetic flux rope in a magnetized coronal, leading either to eruptions or to stable configurations, we test several global scalar quantities for the ability to discriminate between the eruptive and the non-eruptive simulations. Methods: From the magnetic field generated by the three-dimensional magnetohydrodynamical simulations, we compute and analyze the evolution of the magnetic flux, of the magnetic energy and its decomposition into potential and free energies, and of the relative magnetic helicity and its decomposition. Results: Unlike the magnetic flux and magnetic energies, magnetic helicities are able to markedly distinguish the eruptive from the non-eruptive simulations. We find that the ratio of the magnetic helicity of the current-carrying magnetic field to the total relative helicity presents the highest values for the eruptive simulations, in the pre-eruptive phase only. We observe that the eruptive simulations do not possess the highest value of total magnetic helicity. Conclusions: In the framework of our numerical study, the magnetic energies and the total relative helicity do not correspond to good eruptivity proxies. Our study highlights that the ratio of magnetic helicities diagnoses very clearly the eruptive potential of our parametric simulations. Our study shows that magnetic-helicity-based quantities may be very efficient for the prediction of solar eruptions.

  5. The Hemispheric Sign Rule of Current Helicity during the Rising ...

    Indian Academy of Sciences (India)

    We compute the signs of two different current helicity parameters (i.e., best and ) for 87 active regions during the rise of cycle 23. The results indicate that 59% of the active regions in the northern hemisphere have negative best and 65% in the southern hemisphere have positive. This is consistent with that of the cycle ...

  6. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. (United States)

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V


    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Establishment of a low recycling state with full density control by active pumping of the closed helical divertor at LHD (United States)

    Motojima, G.; Masuzaki, S.; Tanaka, H.; Morisaki, T.; Sakamoto, R.; Murase, T.; Tsuchibushi, Y.; Kobayashi, M.; Schmitz, O.; Shoji, M.; Tokitani, M.; Yamada, H.; Takeiri, Y.; The LHD Experiment Group


    Superior control of particle recycling and hence full governance of plasma density has been established in the Large Helical Device (LHD) using largely enhanced active pumping of the closed helical divertor (CHD). In-vessel cryo-sorption pumping systems inside the CHD in five out of ten inner toroidal divertor sections have been developed and installed step by step in the LHD. The total effective pumping speed obtained was 67  ±  5 m3 s‑1 in hydrogen, which is approximately seven times larger than previously obtained. As a result, a low recycling state was observed with CHD pumping for the first time in LHD featuring excellent density control even under intense pellet fueling conditions. A global particle confinement time (τ p* ) is used for comparison of operation with and without the CHD pumping. The τ p* was evaluated from the density decay after the fueling of hydrogen pellet injection or gas puffing in NBI plasmas. A reliably low base density before the fueling and short τ p* after the fueling were obtained during the CHD pumping, demonstrating for the first time full control of the particle balance with active pumping in the CHD.

  8. Beam-helicity associated electroproduction of real photons ep {yields} e{gamma}{pi}N in the {Delta}-resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). 2. Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Argentina); Aschenauer, E.C. [DESY Zeuthen (Germany)] [and others; Collaboration: HERMES Collaboration


    The beam-helicity asymmetry in associated electroproduction of real photons, ep {yields} e{gamma}{pi}N, in the {Delta}(1232)-resonance region is measured using the longitudinally polarized HERA positron beam and an unpolarized hydrogen target. Azimuthal Fourier amplitudes of this asymmetry are extracted separately for two channels, ep {yields} e{gamma}{pi}{sup 0}p and ep {yields} e{gamma}{pi}{sup +}n, from a data set collected with a recoil detector. All asymmetry amplitudes are found to be consistent with zero.

  9. Beam-helicity asymmetry in associated electroproduction of real photons $ep \\to e\\gamma \\pi N$ in the $\\Delta$-resonance region

    CERN Document Server

    Airapetian, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Blok, H P; Böttcher, H; Borissov, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Etzelmüller, E; Fabbri, R; Frullani, S; Gapienko, G; Gapienko, V; García, J Garay; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Hartig, M; Hasch, D; Holler, Y; Hristova, I; Ivanilov, A; Jackson, H E; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Lorenzon, W; Lu, X -G; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Muccifora, V; Murray, M; Mussgiller, A; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Schäfer, A; Schnell, G; Seitz, B; Shibata, T -A; Stahl, M; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Zagrebelnyy, V; Zihlmann, B; Zupranski, P


    The beam-helicity asymmetry in associated electroproduction of real photons, $ep\\to e\\gamma \\pi N$, in the $\\Delta$(1232)-resonance region is measured using the longitudinally polarized HERA positron beam and an unpolarized hydrogen target. Azimuthal Fourier amplitudes of this asymmetry are extracted separately for two channels, $ep\\to e\\gamma \\pi^0 p$ and $ep\\to e\\gamma \\pi^+ n$, from a data set collected with a recoil detector. All asymmetry amplitudes are found to be consistent with zero.

  10. Two hits are better than one: synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. (United States)

    Zhao, Jing; Huang, Yibing; Liu, Dong; Chen, Yuxin


    This study explored combinational anticancer therapy using α-helical peptides HPRP-A1/HPRP-A2 with the chemical drugs doxorubicin (DOX) and epirubicin (EPI). The in vitro activity of these drugs against different cancer cell lines was synergistically increased, as was their activity in a HeLa xenograft model in BALB/c nude mice. We delineated the mechanism of this synergy by studying the apoptosis pathway and morphologic changes in the HeLa cell membrane. The mechanism of the HPRP-A1/DOX combination was found to involve enhanced apoptosis, which seemed to be caspase-dependent and involved both the extrinsic and intrinsic parts of the caspase cascade in HeLa cells. Combined application of HPRP-A1 and DOX at low concentrations was significantly more effective than either drug alone against HeLa tumors in the mouse xenograft model. This type of combination therapy appears to have great clinical potential.

  11. The Effects of Spatial Smoothing on Solar Magnetic Helicity Parameters and the Hemispheric Helicity Sign Rule (United States)

    Koch Ocker, Stella; Petrie, Gordon


    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode/SOT-SP data spanning 2006-2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  12. A new experiment to investigate the origin of optical activity using a low energy positron beam of controlled helicity. [molecular biology (United States)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.


    Previous experiments undertaken in search of a correlation between the origin of optical activity in biological molecules and the helicity of beta particles emitted in nuclear beta decay have not provided any useful results. A description is presented of an experiment in which a low energy polarized positron beam of controlled helicity interacts with an optically active material to form positronium in vacuum. Advantages of the current study compared to the previous experiments are mainly related to a much greater sensitivity. Initially, it will be possible to detect a helicity-dependent asymmetry in triplet positronium formation of 1 part in 10,000. Improvements to better than 1 part in 100,000 should be attainable.

  13. Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors* (United States)

    Kunda, Shailaja; Yuan, Yue; Balsara, Rashna D.; Zajicek, Jaroslav; Castellino, Francis J.


    Conantokins are ∼20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp10 disrupts only a small region of the α-helix of the Mn2+·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp10 with N8Q results in a Mg2+-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp10 with Pro10 allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses. PMID:26048991

  14. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. (United States)

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito


    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Hemispheric Sign Rule of Current Helicity during the Rising ...

    Indian Academy of Sciences (India)


    S. D. Bao*, G. X. Ai & H. Q. Zhang, Beijing Astronomical Observatory/National. Astronomical Observatories, Chinese Academy of Sciences, Beijing 100 012, China. *e mail: Abstract. We compute the signs of two different current helicity para meters (i.e., α best and H c) for 87 active regions during the ...

  16. Solar active region display system (United States)

    Golightly, M.; Raben, V.; Weyland, M.


    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing


    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haocheng [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Deng, Wei; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Böttcher, Markus [Centre for Space Research, North-West University, Potchefstroom, 2520 (South Africa)


    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. All these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.


    Energy Technology Data Exchange (ETDEWEB)

    Sorriso-Valvo, L.; De Vita, G. [IMIP-CNR, U.O.S. LICRYL di Cosenza, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Kazachenko, M. D.; Krucker, S.; Welsch, B. T.; Fisher, G. H. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley 94720, California (United States); Primavera, L.; Servidio, S.; Lepreti, F.; Carbone, V. [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Vecchio, A., E-mail: [INGV, Sede di Cosenza, Ponte P. Bucci, Cubo 30C, I-87036 Rende (Italy)


    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  19. Helical self-assembly of optically active phthalocyanine derivatives: effect of Zn-O coordination bond on morphology and handedness of nanostructures. (United States)

    Zhang, Congcong; Jing, Lu; Lin, Sha; Hao, Zijuan; Tian, Jing; Zhang, Xiaomei; Zhu, Peihua


    Two optically active phthalocyanine derivatives with eight peripheral chiral (S)-4'-(2-methylbutoxy)biphenyl moieties on the β-position of the phthalocyanine ring are synthesized. The circular dichroism (CD) spectra show signals in the Q absorption region for both compounds 1 and 2 in chloroform solution, indicating the effective chiral-information transfer from the peripheral chiral (S)-4'-(2-methylbutoxy)biphenyl side chains to the phthalocyanine chromophore at the molecular level. Their self-assembling properties are further investigated by using electronic absorption and Fourier transform infrared spectroscopy, transmission electronic microscopy, scanning electronic microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Experimental results reveal the effect of the metal-coordination bond on molecular packing models in these nanostructures, which in turn results in the self-assembled nanostructures with different morphologies, from nanosheets for 1 to helical nanofibers for 2. In addition, good semiconducting properties of the nanostructures fabricated from phthalocyanine derivatives 1 and 2 are revealed by current-voltage measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors. (United States)

    Kunda, Shailaja; Yuan, Yue; Balsara, Rashna D; Zajicek, Jaroslav; Castellino, Francis J


    Conantokins are ~20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp(10) disrupts only a small region of the α-helix of the Mn(2+)·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp(10) with N(8)Q results in a Mg(2+)-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp(10) with Pro(10) allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cascades in helical turbulence

    CERN Document Server

    Ditlevsen, P D


    The existence of a second quadratic inviscid invariant, the helicity, in a turbulent flow leads to coexisting cascades of energy and helicity. An equivalent of the four-fifth law for the longitudinal third order structure function, which is derived from energy conservation, is easily derived from helicity conservation cite{Procaccia,russian}. The ratio of dissipation of helicity to dissipation of energy is proportional to the wave-number leading to a different Kolmogorov scale for helicity than for energy. The Kolmogorov scale for helicity is always larger than the Kolmogorov scale for energy so in the high Reynolds number limit the flow will always be helicity free in the small scales, much in the same way as the flow will be isotropic and homogeneous in the small scales. A consequence is that a pure helicity cascade is not possible. The idea is illustrated in a shell model of turbulence.

  2. Checking Asymmetry of Magnetic Helicity Using Magnetograms with High Spatial and Temporal Resolution (United States)

    Tian, Lirong; Zhu, C.; Alexander, D.


    In order to check if the helicity imbalance is robust between the leading and following polarities, found by Tian & Alexander, we use an improved technique, differential affline velocity estimator (DAVE), on series of MDI 1m and 96m line-of-sight magnetograms with spatial resolution of 0.6 and 2 arcsecs. respectively, to measure photospheric flow motions of an emerging active region: NOAA 10365 (S08). A better parameter of helicity density (Gθ) than GA is employed to calculate helicity injection rate of leading and following polarities. Our results display that the helicity injection rate of using MDI/1m data is 2 times larger than that of using MDI/ 96m data. The helicity injection rate is little affected by the size of apodizing window selected and the noise level (20 Gauss). However, it is improved so much due to decreasing time difference (up to Δt=10 mines) of two images tracked. The helicity injection rate of two polarities of the active region developed as roughly same step with flux emergence,and maintain its imbalance with more amount in the negative (leading) polarity over tracking period of three days, which is a similar development tendency no matter using MDI/1m data or MDI/96m data. These results reflect that the time difference of two tracking images is the most important factor affecting amount of helicity injection rate, while there is little relation with spatial resolution of data, the size of apodizing window, and the noise level. Therefore, it should be reliable to study the development of helicity injection rate and imbalanced relationship of two polarities when using MDI/96m data, though the amount calculated is two times smaller. Further test for MDI/96m data of ARs 8214 and 0656 confirm that the helicity imbalance indeed exists between the leading and following polarities.

  3. Synthesis, helicity, and low infrared emissivity of optically active poly(N-propargylamide)s bearing stigmasteryl moieties (United States)

    Pan, Wenlu; Zhou, Yuming; He, Man; Bu, Xiaohai; Ding, Binbin; Huang, Tingyuan; Huang, Shuang; Li, Shiwei


    Novel chiral N-propargylamide based on stigmasterol (M1, HCtbnd CCH2NHCOCH2CH2COO-R, R = stigmasteryl) and achiral N-propargylamide based on pivalic acid (M2) were prepared and (co)polymerized with rhodium zwitterions catalyst in CHCl3 to afford helical polyacetylenes with moderate molecular weights (8997-26777) in good yields. The polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC). Ultraviolet-visible spectroscopy (UV-Vis) and circular dichroism (CD) absorption spectra demonstrated that the as-prepared polymers could form helical structures with a preferential helicity. The formation of hydrogen bonds of poly(M1) in CHCl3 was investigated according to the solution sate IR spectroscopic data. The single-handed helical conformation and polymerization degree of the new-typed poly(N-propargylamide)s could be controlled by the changing the feed ratio of chiral and achiral monomers. Furthermore, the infrared emissivity values (0.536-0.798) of copolymers were investigated at 8-14 μm by the Infrared Emissometer.

  4. Time-Mean Helicity Distribution in Turbulent Swirling Jets

    Directory of Open Access Journals (Sweden)

    V. Tesař


    Full Text Available Helicity offers an alternative approach to investigations of the structure of turbulent flows. Knowledge of the spatial distribution of the time-mean component of helicity is the starting point. Yet very little is known even about basic cases in which Helicity plays important role, such as the case of a swirling jet. This is the subject of the present investigations, based mainly on numerical flowfield computations. The region of significantly large time-mean helicity density is found only in a rather small region reaching to several nozzle diameters downstream from the exit. The most important result is the similarity of the helicity density profiles. 

  5. Severe osteogenesis imperfecta caused by double glycine substitutions near the amino-terminal triple helical region in COL1A2. (United States)

    Takagi, Masaki; Shinohara, Hiroyuki; Narumi, Satoshi; Nishimura, Gen; Hasegawa, Yukihiro; Hasegawa, Tomonobu


    Most cases of osteogenesis imperfecta (OI) are caused by heterozygous mutations in COL1A1 or COL1A2, the genes encoding the two type I procollagen alpha chains, proα1 (I) and proα2 (I). We report on a unique case of severe OI, a long term survivor of lethal type II OI, rather than progressively deforming type III, due to double substitutions of glycine residues in COL1A2 (p.Gly208Glu and p.Gly235Asp), located on the same allele. To the best of our knowledge, this is the first example of a patient with double COL1A2 glycine substitution mutations on the same allele. We show for the first time that double COL1A2 glycine substitution mutations located near the amino-terminal triple helical region, which individually are likely to result in mild OI, cause severe OI in combination. © 2015 Wiley Periodicals, Inc.

  6. Glycine substitutions in the triple-helical region of type VII collagen result in a spectrum of dystrophic epidermolysis bullosa phenotypes and patterns of inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Christiano, A.M.; McGrath, J.A.; Uitto, J. [Thomas Jefferson Univ., Philadelphia, PA (United States); Kong Chong Tan [National Skin Centre (Singapore)


    The dystrophic forms of epidermolysis bullosa (DEB) are characterized by fragility of the skin and mucous membranes. DEB can be inherited in either an autosomal dominant or autosomal recessive pattern, and the spectrum of clinical severity is highly variable. The unifying diagnostic hallmark of DEB is abnormalities in the anchoring fibrils, which consist of type VII collagen, and recently, mutations in the corresponding gene, COL7A1, have been disclosed in a number of families. In this study, we report six families with glycine substitution mutations in the triple-helical region of type VII collagen. Among the six families, two demonstrated a mild phenotype, and the inheritance of the mutation was consistent with the dominantly inherited form of DEB. In the four other families, the mutation was silent in the heterozygous state but, when present in the homozygous state, or combined with a second mutation, resulted in a recessively inherited DEB phenotype. Type VII collagen is, therefore, unique among the collagen genes, in that different glycine substitutions can be either silent in heterozygous individuals or result in a dominantly inherited DEB. Inspection of the locations of the glycine substitutions along the COL7A1 polypeptide suggests that the consequences of these mutations, in terms of phenotype and pattern of inheritance, are position independent. 29 refs., 4 figs., 2 tabs.

  7. Segregation of helicity in inertial wave packets (United States)

    Ranjan, A.


    Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.

  8. Beam-Target Helicity Asymmetry for γ → n → →π-p in the N* Resonance Region (United States)

    Ho, D.; Peng, P.; Bass, C.; Collins, P.; D'Angelo, A.; Deur, A.; Fleming, J.; Hanretty, C.; Kageya, T.; Khandaker, M.; Klein, F. J.; Klempt, E.; Laine, V.; Lowry, M. M.; Lu, H.; Nepali, C.; Nikonov, V. A.; O'Connell, T.; Sandorfi, A. M.; Sarantsev, A. V.; Schumacher, R. A.; Strakovsky, I. I.; Švarc, A.; Walford, N. K.; Wei, X.; Whisnant, C. S.; Workman, R. L.; Zonta, I.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; Dashyan, N.; De Sanctis, E.; De Vita, R.; Djalali, C.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fradi, A.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ripani, M.; Riser, D.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Strauch, S.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; CLAS Collaboration


    We report the first beam-target double-polarization asymmetries in the γ +n (p )→π-+p (p ) reaction spanning the nucleon resonance region from invariant mass W =1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several γ n N* resonance photocouplings.

  9. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P., E-mail: [Indian Institute of Astrophysics, II Block, Koramangala, Bengalure-560034 (India)


    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  10. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371 (United States)

    Vemareddy, P.


    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (-0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  11. Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides. (United States)

    Nan, Yong Hai; Shin, Song Yub


    To investigate the effects of disulphide bond position on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of α-helical homo-dimeric antimicrobial peptides (AMPs), we synthesized an α-helical model peptide (K6L4W1) and its homo-dimeric peptides (di-K(6)L(4)W(1)-N, di-K(6)L(4)W(1)-M, and di-K(6)L(4)W(1)-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike (6)L(4)W(1) and di-K(6)L(4)W(1)-M, the antimicrobial activity of di-K(6)L(4)W(1)-N and di-K(6)L(4)W(1)-C was unaffected by 150 mM NaCl. Both di-K(6)L(4)W(1)-N and di-K(6)L(4)W(1)-C caused much greater inhibitory effects on nitric oxide (NO) release in LPS-induced mouse macrophage RAW 264.7 cells, compared to di-K(6)L(4)W(1)-M. Taken together, our results indicate that the presence of a disulphide bond at the N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant α-helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities. [BMB reports 2011; 44(11): 747-752].

  12. Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication (United States)

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor


    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat-TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

  13. The Twist Limit for Bipolar Active Regions (United States)

    Moore, Ron; Falconer, David; Gary, Allen


    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  14. Role of helicity on the anticancer mechanism of action of cationic-helical peptides. (United States)

    Huang, Yi-Bing; He, Li-Yan; Jiang, Hong-Yu; Chen, Yu-Xin


    In the present study, the 26-residue amphipathic α-helical peptide A12L/A20L (Ac-KWKSFLKTFKSLKKTVLHTLLKAISS-amide) with strong anticancer activity and specificity was used as the framework to study the effects of helicity of α-helical anticancer peptides on biological activities. Helicity was systematically modulated by introducing d-amino acids to replace the original l-amino acids on the non-polar face or the polar face of the helix. Peptide helicity was measured by circular dichroism spectroscopy and was demonstrated to correlate with peptide hydrophobicity and the number of d-amino acid substitutions. Biological studies showed that strong hemolytic activity of peptides generally correlated with high hydrophobicity and helicity. Lower helicity caused the decrease of anti-HeLa activity of peptides. By introducing d-amino acids to replace the original l-amino acids on the non-polar face or the polar face of the helix, we improved the therapeutic index of A12L/A20L against HeLa cells by 9-fold and 22-fold, respectively. These results show that the helicity of anticancer peptides plays a crucial role for biological activities. This specific rational approach of peptide design could be a powerful method to improve the specificity of anticancer peptides as promising therapeutics in clinical practices.

  15. Role of Helicity on the Anticancer Mechanism of Action of Cationic-Helical Peptides

    Directory of Open Access Journals (Sweden)

    Yu-Xin Chen


    Full Text Available In the present study, the 26-residue amphipathic α-helical peptide A12L/A20L (Ac-KWKSFLKTFKSLKKTVLHTLLKAISS-amide with strong anticancer activity and specificity was used as the framework to study the effects of helicity of α-helical anticancer peptides on biological activities. Helicity was systematically modulated by introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix. Peptide helicity was measured by circular dichroism spectroscopy and was demonstrated to correlate with peptide hydrophobicity and the number of D-amino acid substitutions. Biological studies showed that strong hemolytic activity of peptides generally correlated with high hydrophobicity and helicity. Lower helicity caused the decrease of anti-HeLa activity of peptides. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, we improved the therapeutic index of A12L/A20L against HeLa cells by 9-fold and 22-fold, respectively. These results show that the helicity of anticancer peptides plays a crucial role for biological activities. This specific rational approach of peptide design could be a powerful method to improve the specificity of anticancer peptides as promising therapeutics in clinical practices.

  16. Effects of Single Amino Acid Substitution on the Biophysical Properties and Biological Activities of an Amphipathic α-Helical Antibacterial Peptide Against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Juanjuan Tan


    Full Text Available An antimicrobial peptide, known as V13K, was utilized as the framework to study the effects of charge, hydrophobicity and helicity on the biophysical properties and biological activities of α-helical peptides. Six amino acids (Lys, Glu, Gly, Ser, Ala, and Leu were individually used to substitute the original hydrophobic valine at the selected sixteenth location on the non-polar face of V13K. The results showed that the single amino acid substitutions changed the hydrophobicity of peptide analogs as monitored by RP-HPLC, but did not cause significant changes on peptide secondary structures both in a benign buffer and in a hydrophobic environment. The biological activities of the analogs exhibited a hydrophobicity-dependent behavior. The mechanism of peptide interaction with the outer membrane and cytoplasmic membrane of Gram-negative bacteria was investigated. We demonstrated that this single amino acid substitution method has valuable potential for the rational design of antimicrobial peptides with enhanced activities.

  17. Helicity of the Neutrino

    Indian Academy of Sciences (India)

    IAS Admin

    Helicity for a particle is defined as the projection of the particle's spin along its direction of motion. For a massive particle, the sign of its helicity depends on the frame of reference ... A team of three scientists at Brookhaven National Lab- oratory, M Goldhaber, L Grodzins and A W Sunyar set about to rectify the situation.

  18. Beam-helicity asymmetry in photon and pion electroproduction in the {delta}(1232)-resonance region at Q{sup 2}=0.35 (GeV/c){sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bensafa, I.K.; Defay, X.; Fonvieille, H.; Laveissiere, G. [Universite Blaise Pascal, Laboratoire de Physique Corpusculaire IN2P3-CNRS, Aubiere (France); Achenbach, P.; Ases Antelo, M.; Ayerbe, C.; Baumann, D.; Boehm, R.; Ding, M.; Distler, M.O.; Doria, L.; Friedrich, J.; Garcia Llongo, J.; Jover Manas, G.; Kohl, M.; Lloyd, M.; Merkel, H.; Merle, P.; Mueller, U.; Nungesser, L.; Perez Benito, R.; Pochodzalla, J.; Sanchez Majos, S.; Spitzenberg, T.; Tamas, G.; Walcher, T.; Weis, M. [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Bosnar, D.; Makek, M. [University of Zagreb, Department of Physics, Zagreb (Croatia); Burtin, E.; D' Hose, N.; Marroncle, J. [CEA Dapnia-SPhN, C.E. Saclay, Gif-sur-Yvette (France); Friedrich, J.M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Janssens, P.; Van de Vyver, R.; Van Hoorebeke, L. [University of Gent, Department of Subatomic and Radiation Physics, Gent (Belgium); Pasquini, B. [Universita degli Studi di Pavia (Italy); INFN, Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Potokar, M.; Sirca, S. [University of Ljubljana, Institut Jozef Stefan, Ljubljana (Slovenia); Rosner, G. [University of Glasgow, Department of Physics and Astronomy, Glasgow (United Kingdom); Seimetz, M. [Univ. Mainz (Germany). Inst. fuer Kernphysik; CEA Dapnia-SPhN, CE Saclay, Gif-sur-Yvette (France)


    The beam-helicity asymmetry has been measured simultaneously for the reactions (vector)ep{yields}ep{gamma} and (vector)ep{yields}ep{pi}{sup 0} in the {delta}(1232)-resonance region at Q{sup 2}=0.35 (GeV/c){sup 2}. The experiment was performed at MAMI with a longitudinally polarized beam and an out-of-plane detection of the proton. The results are compared with calculations based on dispersion relations for virtual Compton scattering and with the MAID model for pion electroproduction. There is an overall good agreement between experiment and theoretical calculations. The remaining discrepancies may be ascribed to an imperfect parametrization of some {gamma}{sup (*)}N{yields}{pi}N multipoles, mainly contributing to the non-resonant background. The beam-helicity asymmetry in both channels ({gamma} and {pi}{sup 0}) shows a good sensitivity to these multipoles and should allow future improvement in their parametrization. (orig.)

  19. Activation of different cerebral functional regions following ...

    African Journals Online (AJOL)

    Background: To explore the brain function regions characteristics of the acupoint combination, this study observed activity changes in the brain regions of healthy volunteers after acupuncture at both Taixi (KI3) and Taichong (LR3) (KI3 + LR3) and KI3 alone using resting-state functional magnetic resonance imaging(fMRI).

  20. Magnetic helical micromachines. (United States)

    Peyer, Kathrin E; Tottori, Soichiro; Qiu, Famin; Zhang, Li; Nelson, Bradley J


    Helical microrobots have the potential to be used in a variety of application areas, such as in medical procedures, cell biology, or lab-on-a-chip. They are powered and steered wirelessly using low-strength rotating magnetic fields. The helical shape of the device allows propulsion through numerous types of materials and fluids, from tissue to different types of bodily fluids. Helical propulsion is suitable for pipe flow conditions or for 3D swimming in open fluidic environments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Planetary dynamos driven by helical waves - II (United States)

    Davidson, P. A.; Ranjan, A.


    In most numerical simulations of the Earth's core the dynamo resides outside the tangent cylinder and may be crudely classified as being of the α2 type. In this region the flow comprises a sea of thin columnar vortices aligned with the rotation axis, taking the form of alternating cyclones and anticyclones. The dynamo is thought to be driven by these columnar vortices within which the flow is observed to be highly helical, helicity being a crucial ingredient of planetary dynamos. As noted in Davidson, one of the mysteries of this dynamo cartoon is the origin of the helicity, which is observed to be positive in the south and negative in the north. While Ekman pumping at the mantle can induce helicity in some of the overly viscous numerical simulations, it is extremely unlikely to be a significant source within planets. In this paper we return to the suggestion of Davidson that the helicity observed in the less viscous simulations owes its existence to helical wave packets, launched in and around the equatorial plane where the buoyancy flux is observed to be strong. Here we show that such wave packets act as a potent source of planetary helicity, constituting a simple, robust mechanism that yields the correct sign for h north and south of the equator. Since such a mechanism does not rely on the presence of a mantle, it can operate within both the Earth and the gas giants. Moreover, our numerical simulations show that helical wave packets dispersing from the equator produce a random sea of thin, columnar cyclone/anticyclone pairs, very like those observed in the more strongly forced dynamo simulations. We examine the local dynamics of helical wave packets dispersing from the equatorial regions, as well as the overall nature of an α2-dynamo driven by such wave packets. Our local analysis predicts the mean emf induced by helical waves, an analysis that rests on a number of simple approximations which are consistent with our numerical experiments, while our global

  2. Polar Field Reversals and Active Region Decay (United States)

    Petrie, Gordon; Ettinger, Sophie


    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  3. The Magnetic Free Energy in Active Regions (United States)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.


    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  4. Helically twisted photonic crystal fibres (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.


    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Helically twisted photonic crystal fibres. (United States)

    Russell, P St J; Beravat, R; Wong, G K L


    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  6. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng


    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  7. Large Helical Device project

    Energy Technology Data Exchange (ETDEWEB)



    In this book, the results of the scientific research on the design, trial manufacture and manufacturing processes of the Large Helical Device which was constructed in National Institute for Fusion Science are summarized. The LHD is the largest helical device in the world, and the largest superconducting system in the world. It possesses the following features: the optimization of heliotron magnetic field coordination, the adoption of superconducting magnets for 2 helical magnetic field coils and 6 poloidal coils, the adoption of helical diverter which enables steady plasma experiment, the flexible specification as the experimental facility and so on. The construction has been carried out smoothly, and in March, 1998, first plasma was generated. The outline of the Large Helical Device project, the physical design, the equipment design, the research and development of superconductivity and low temperature system, the design and manufacture of the superconducting and low temperature systems, the design and manufacture of the power source and superconducting bus-line, vacuum vessel and others, electron cyclotron heating, neutral beam injection and ion cyclotron RF heating, measurement system, control and data processing, safety management, the theory and analysis of LHD plasma, the visualization of the result of theoretical analysis, the analysis of the experimental data, and the experiment plan are described. (K.I.)

  8. Infrared Photometry of Solar Active Regions

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Simultaneous time series of broad-band images of two active regions close to the disk center were acquired at the maximum (0.80 m) and minimum (1.55 m) continuum opacities. Dark faculae are detected in images obtained as weighted intensity differences between both wave-length bands.

  9. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)


    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  10. Evaluation of a Triple-Helical Peptide with Quenched Fluorophores for Optical Imaging of MMP-2 and MMP-9 Proteolytic Activity

    Directory of Open Access Journals (Sweden)

    Xuan Zhang


    Full Text Available Matrix metalloproteinases (MMP 2 and 9, the gelatinases, have consistently been associated with tumor progression. The development of gelatinase-specific probes will be critical for identifying in vivo gelatinoic activity to understand the molecular role of the gelatinases in tumor development. Recently, a self-assembling homotrimeric triple-helical peptide (THP, incorporating a sequence from type V collagen, with high substrate specificity to the gelatinases has been developed. To determine whether this THP would be suitable for imaging protease activity, 5-carboxyfluorescein (5FAM was conjugated, resulting in 5FAM3-THP and 5FAM6-THP, which were quenched up to 50%. 5FAM6-THP hydrolysis by MMP-2 and MMP-9 displayed kcat/KM values of 1.5 × 104 and 5.4 × 103 M−1 s−1, respectively. Additionally 5FAM6-THP visualized gelatinase activity in gelatinase positive HT-1080 cells, but not in gelatinase negative MCF-7 cells. Furthermore, the fluorescence in the HT-1080 cells was greatly attenuated by the addition of a MMP-2 and MMP-9 inhibitor, SB-3CT, indicating that the observed fluorescence release was mediated by gelatinase proteolysis and not non-specific proteolysis of the THPs. These results demonstrate that THPs fully substituted with fluorophores maintain their substrate specificity to the gelatinases in human cancer cells and may be useful in in vivo molecular imaging of gelatinase activity.

  11. Silicon on insulator with active buried regions (United States)

    McCarthy, Anthony M.


    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  12. Acoustic Oscillation Properties of Active Region 12193 (United States)

    Monsue, Teresa; Pesnell, William D.; Hill, Frank


    Solar flares are dynamic objects occurring randomly and yet unannounced in nature. In order to find an efficient detection method, we require a greater breadth of knowledge of the system. One path to such a method is to observe the solar atmosphere in a region around a flare in different wavelengths of light and acoustic frequency bands. This provides information from different altitudes in the solar atmosphere and allows us to study the temporal evolution of each altitude through the flaring event. A more complete understanding of the time evolution may lead to yet undiscovered precursors of the flare. In this project, we study Active Region 12192 using acoustic observations near an X3 flare occurring on October 24, 2014 at 21:41UT. Our wavelet analysis utilizes time series data to create Fourier power spectra of individual pixels spatially resolved around the flare region, to study the frequency bands. In order to study the power distribution in regions around the flare and to search for any correlation we apply several methods. One method we partition sub-regions in our main flaring region and take a survey of the oscillations for each frequency band within power maps. Another method we average the FFT to take measurements within the p-modes (2-4 mHz) and chromospheric (4-6 mHz) frequencies. The application of these methods should be able to get us closer to tracking waveforms within power maps.

  13. Prototype and test of a novel rotary magnetorheological damper based on helical flow (United States)

    Yu, Jianqiang; Dong, Xiaomin; Wang, Wen


    To increase the output damping torque of a rotary magnetorheological (MR) damper with limited geometrical space, a novel rotary MR damper based on helical flow is proposed. A new working mode, helical flow mode, is discussed and applied to enlarge the flow path of MR fluids. The helical flow can improve the performance of the rotary damper by enlarging the length of the active region. Based on the idea, a rotary MR damper is designed. The rotary MR damper contains a spiral piston, dual-coil core, a rotating cylinder and a stator cylinder. Based on the Bingham model, the output damping torque of the damper is analytically derived. The finite element method (FEM) is applied to calculate the magnetic field of the active region. The multi-objective optimal design method is adopted to obtain the optimal geometric parameters. A prototype is fabricated based on the optimal results. To validate the proposed rotary MR damper, two types of experiments including the low rotation speed and the high rotation speed are investigated. The results show that the proposed rotary MR damper has high torque density and compact structure. The helical flow mode can increase the output damping torque with limited space.

  14. Exoplanet Transits of Stellar Active Regions (United States)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano


    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  15. Helices and vector bundles

    CERN Document Server

    Rudakov, A N


    This volume is devoted to the use of helices as a method for studying exceptional vector bundles, an important and natural concept in algebraic geometry. The work arises out of a series of seminars organised in Moscow by A. N. Rudakov. The first article sets up the general machinery, and later ones explore its use in various contexts. As to be expected, the approach is concrete; the theory is considered for quadrics, ruled surfaces, K3 surfaces and P3(C).

  16. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36.

    Directory of Open Access Journals (Sweden)

    Yinfeng Lv

    Full Text Available Antimicrobial peptides (AMPs, which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM and transmission electron microscope (TEM. Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.

  17. HEROES Observations of a Quiescent Active Region (United States)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.


    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  18. Solvent-induced assembly of two helical Eu(III) metal-organic frameworks and fluorescence sensing activities towards nitrobenzene and Cu2+ ions (United States)

    Ma, Ranran; Chen, Zhiwei; Wang, Suna; Yao, Qingxia; Li, Yunwu; Lu, Jing; Li, Dacheng; Dou, Jianmin


    Two helical Eu(III) metal-organic frameworks, namely, {[Eu(L)(DMF)(H2O)]·0.5DMF}n (1) and [Eu(L)(DEF)(H2O)]n (2) (H3L=3,5-bis(2-carboxylphenoxy)benzoic acid, DMF=N,N-dimethylformamide, DEF=N,N-diethylformamide), have been solvothermally synthesized in different solvents, respectively. Both complexes possess helical structures through the connectivity of Eu atoms and phenolic-oxygen containing branches of the flexible multicarboxylate ligand. Based on different helices, these two complexes exhibited hexagonal and tetragonal channels, respectively. Both complexes possess (3,6)-connected (4.62)2(42.610.83) topology but with different long Schlafli symbol. The solvent plays an important role in the formation of the final frameworks. Both complexes can sensitively and selectively detect nitrobenzene and Cu2+ ions.

  19. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. (United States)

    Smrt, Sean T; Draney, Adrian W; Lorieau, Justin L


    The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Helical CT for lumbosacral spinal

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuno, Satoshi; Fukuda, Kunihiko [Jikei Univ., Tokyo (Japan). School of Medicine


    The aim of this study was to investigate the efficacy of helical CT for lumbosacral pathology. We performed helical CT with multiplanar reconstruction, including the formation of oblique transaxial and coronal images, in 62 patients with various lumboscral disorders, including 32 non-enhanced CT and 36 CT after myelography. We correlated the appearance of the stenotic spinal canal and neoplastic disease with the findings on MRI obtained at nearly the same time. We obtained helical CT images in all cases in about 30 seconds. The diagnostic ability of helical CT was roughly equal to that of MRI in patients with spondylosis deformans, spondylolisthesis and herniated nucleus pulposus. There was no significant difference in diagnostic value for degenerative lumbosacral disease with canal and foraminal stenosis between non-enhanced and post-myelography helical CT. However, non-enhanced helical CT could not clearly demonstrate neoplastic disease because of the poor contrast resolution. Helical CT was useful in evaluating degenerative disorder and its diagnostic value was nearly equal to that of MRI. We considered that helical CT may be suitable for the assessment of patients with severe lumbago owing to the markedly shortened examination time. However, if helical CT is used as a screening method for lumbosacral disease, one must be careful of its limitations, for example, poor detectability of neoplastic disease, vascular anomalies and so on. (author)

  1. Magnetic helicity and higher helicity invariants as constraints for dynamo action (United States)

    Sokoloff, Dmitry; Akhmetyev, Peter; Illarionov, Egor


    We consider classical magnetic helicity (a Gauss invariant of magnetic lines) and higher helicity invariants as nonlinear constraints for dynamo action. We argue that the Gauss invariant has several properties absent from higher helicity invariants which prevents use of the latter to constrain dynamo action. We consider other helicities (hydrodynamic helicity and cross helicity) in the context of the dynamo problem.

  2. Complex Network for Solar Active Regions (United States)

    Daei, Farhad; Safari, Hossein; Dadashi, Neda


    In this paper we developed a complex network of solar active regions (ARs) to study various local and global properties of the network. The values of the Hurst exponent (0.8-0.9) were evaluated by both the detrended fluctuation analysis and the rescaled range analysis applied on the time series of the AR numbers. The findings suggest that ARs can be considered as a system of self-organized criticality (SOC). We constructed a growing network based on locations, occurrence times, and the lifetimes of 4227 ARs recorded from 1999 January 1 to 2017 April 14. The behavior of the clustering coefficient shows that the AR network is not a random network. The logarithmic behavior of the length scale has the characteristics of a so-called small-world network. It is found that the probability distribution of the node degrees for undirected networks follows the power law with exponents of about 3.7-4.2. This indicates the scale-free nature of the AR network. The scale-free and small-world properties of the AR network confirm that the system of ARs forms a system of SOC. Our results show that the occurrence probability of flares (classified by GOES class C> 5, M, and X flares) in the position of the AR network hubs takes values greater than that obtained for other nodes.

  3. Topology of helical fluid flow

    DEFF Research Database (Denmark)

    Andersen, Morten; Brøns, Morten


    Considering a coordinate-free formulation of helical symmetry rather than more traditional definitions based on coordinates, we discuss basic properties of helical vector fields and compare results from the literature obtained with other approaches. In particular, we discuss the role of the stream...

  4. Composition of regional conditions for start-up activity- evidence based on Swiss Mobilite Spatiale regions


    Kronthaler, Franz; Becker, Katharina; Wagner, Kerstin


    Start-up activities are considered to be important for regional economic development and vary considerably between regions. As entrepreneurial activity in a region is strongly influenced by its regional conditions, we analyse the role of the conditions and their impact on start-up activities. The main objective of the paper is to identify the variables which are relevant for a typology of regions in terms of their start-up activity and to have a closer look on their region specific characteri...

  5. Helicity in dynamic atmospheric processes (United States)

    Kurgansky, M. V.


    An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.

  6. Magnetic helicity balance at Taylor relaxed states sustained by AC helicity injection (United States)

    Hirota, Makoto; Morrison, Philip J.; Horton, Wendell; Hattori, Yuji


    Magnitudes of Taylor relaxed states that are sustained by AC magnetic helicity injection (also known as oscillating field current drive, OFCD) are investigated numerically in a cylindrical geometry. Compared with the amplitude of the oscillating magnetic field at the skin layer (which is normalized to 1), the strength of the axial guide field Bz 0 is shown to be an important parameter. The relaxation process seems to be active only when Bz 0 Neill et al., where the helicity injection rate is directly equated with the dissipation rate at the Taylor states. Then, the bifurcation to the helical Taylor state is predicted theoretically and the estimated magnitudes of the relaxed states reasonably agree with numerical results as far as Bz 0 < 1 . This work was supported by JSPS KAKENHI Grant Number 16K05627.

  7. A new self-propelled magnetic bearing with helical windings (United States)

    Shayak, B.


    In this work, a design is proposed for an active, permanent magnet based, self-propelled magnetic bearing, i.e. levitating motor having the following features: (i) simple winding structure, (ii) high load supporting capacity, (iii) no eccentricity sensors, (iv) stable confinement in all translational dimensions, (v) stable confinement in all rotational dimensions, and (vi) high efficiency. This design uses an architecture consisting of a helically wound three-phase stator, and a rotor with the magnets also arranged in a helical manner. Active control is used to excite the rotor at a torque angle lying in the second quadrant. This torque angle is independent of the rotor's position inside the stator cavity; hence the control algorithm is similar to that of a conventional permanent magnet synchronous motor. It is motivated through a physical argument that the bearing rotor develops a lift force proportional to the output torque and that it remains stably confined in space. These assertions are then proved rigorously through a calculation of the magnetic fields, forces and torques. The stiffness matrix of the system is presented and a discussion of stable and unstable operating regions is given.

  8. Unsupervised segmentation of task activated regions in fmRI

    DEFF Research Database (Denmark)

    Røge, Rasmus; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard


    of task activated functional units in multi-subject fMRI data that exploits that regions of task activation are consistent across subjects and can be more reliably inferred than regions that are not activated. We develop a non-parametric Gaussian mixture model that apriori assumes activations are smooth...

  9. Regional characteristics, opportunity perception and entrepreneurial activities

    DEFF Research Database (Denmark)

    Stuetzer, Michael; Obschonka, Martin; Brixy, Udo


    This article seeks to better understand the link between regional characteristics and individual entrepreneurship. We combine individual-level Global Entrepreneurship Monitor data for Western Germany with regional-level data, using multilevel analysis to test our hypotheses. We find no direct link...

  10. Optically active helical polyurethane@attapulgite composites: Effect of optical purity of S-1,1‧-binaphthyl-2,2‧-diol on infrared emissivity (United States)

    Wang, Zhiqiang; Zhou, Yuming; Sun, Yanqing; Mei, Zhenyu; Miao, Yuee


    Helical polyurethane@attapulgite (HPU@ATT) composites were prepared after the surface modification of the rod-like attapulgite (ATT). HPU@ATT composites based on S-1,1'-binaphthyl-2,2'-diol (S-BINOL) with different optical purity (O.P.) were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. The rod-like nanoparticles were confirmed by transmission electron microscopy (TEM). Infrared emissivity values of HPU@ATT composites have been investigated, and the results indicate that the optical purity of monomer plays a very important role in the infrared emissivity for HPU@ATT owing to the effect of helical conformation and interchain hydrogen bonds. Along with the increased optical purity of S-BINOL, the infrared emissivity of HPU@ATT is reduced evidently. Infrared emissivity value of HPU@ATT based on S-BINOL with 100% optical purity is the lowest one (0.431).

  11. Optically active helical polyurethane-attapulgite composites: Effect of optical purity of S-1,1'-binaphthyl-2,2'-diol on infrared emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqiang [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Zhou Yuming, E-mail: [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Sun Yanqing; Mei Zhenyu; Miao Yuee [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)


    Helical polyurethane-attapulgite (HPU-ATT) composites were prepared after the surface modification of the rod-like attapulgite (ATT). HPU-ATT composites based on S-1,1'-binaphthyl-2,2'-diol (S-BINOL) with different optical purity (O.P.) were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. The rod-like nanoparticles were confirmed by transmission electron microscopy (TEM). Infrared emissivity values of HPU-ATT composites have been investigated, and the results indicate that the optical purity of monomer plays a very important role in the infrared emissivity for HPU-ATT owing to the effect of helical conformation and interchain hydrogen bonds. Along with the increased optical purity of S-BINOL, the infrared emissivity of HPU-ATT is reduced evidently. Infrared emissivity value of HPU-ATT based on S-BINOL with 100% optical purity is the lowest one (0.431).

  12. The Limit of Free Magnetic Energy in Active Regions (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse


    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  13. Mapping of the Neisseria meningitidis NadA cell-binding site: relevance of predicted {alpha}-helices in the NH2-terminal and dimeric coiled-coil regions. (United States)

    Tavano, Regina; Capecchi, Barbara; Montanari, Paolo; Franzoso, Susanna; Marin, Oriano; Sztukowska, Maryta; Cecchini, Paola; Segat, Daniela; Scarselli, Maria; Aricò, Beatrice; Papini, Emanuele


    NadA is a trimeric autotransporter protein of Neisseria meningitidis belonging to the group of oligomeric coiled-coil adhesins. It is implicated in the colonization of the human upper respiratory tract by hypervirulent serogroup B N. meningitidis strains and is part of a multiantigen anti-serogroup B vaccine. Structure prediction indicates that NadA is made by a COOH-terminal membrane anchor (also necessary for autotranslocation to the bacterial surface), an intermediate elongated coiled-coil-rich stalk, and an NH(2)-terminal region involved in cell interaction. Electron microscopy analysis and structure prediction suggest that the apical region of NadA forms a compact and globular domain. Deletion studies proved that the NH(2)-terminal sequence (residues 24 to 87) is necessary for cell adhesion. In this study, to better define the NadA cell binding site, we exploited (i) a panel of NadA mutants lacking sequences along the coiled-coil stalk and (ii) several oligoclonal rabbit antibodies, and their relative Fab fragments, directed to linear epitopes distributed along the NadA ectodomain. We identified two critical regions for the NadA-cell receptor interaction with Chang cells: the NH(2) globular head domain and the NH(2) dimeric intrachain coiled-coil α-helices stemming from the stalk. This raises the importance of different modules within the predicted NadA structure. The identification of linear epitopes involved in receptor binding that are able to induce interfering antibodies reinforces the importance of NadA as a vaccine antigen.

  14. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. (Centre National de la Recherche Scientifique, Paris (France))


    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  15. Turbulent Dynamos and Magnetic Helicity

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Hantao


    It is shown that the turbulent dynamo alpha-effect converts magnetic helicity from the turbulent field to the mean field when the turbulence is electromagnetic while the magnetic helicity of the mean-field is transported across space when the turbulence is elcetrostatic or due to the elcetron diamagnetic effect. In all cases, however, the dynamo effect strictly conserves the total helicity expect for a battery effect which vanishes in the limit of magnetohydrodynamics. Implications for astrophysical situations, especially for the solar dynamo, are discussed.

  16. Magnetic Helicity and Planetary Dynamos (United States)

    Shebalin, John V.


    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  17. Helicity multiplexed broadband metasurface holograms (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong


    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  18. Helicity multiplexed broadband metasurface holograms. (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong


    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  19. Image patch analysis of sunspots and active regions

    Directory of Open Access Journals (Sweden)

    Moon Kevin R.


    Full Text Available Context. Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region’s evolution for example. Aims. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. Methods. We use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. Results. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the R-value. Conclusions. Matrix factorization of image patches is a promising new way of characterizing active regions. We provide some recommendations for which metrics, matrix factorization techniques, and regions of interest to use to study active regions.

  20. Catalan external activities and the Spanish state/region relationship


    Olaussen, Åshild


    The theme of this thesis is the political activity carried out by the Spanish region Catalonia and directed towards actors outside the border of the Spanish State. I name this regional external activities "paradiplomacy", and ask: Can the paradiplomatic activity of Catalonia indicate a process of change in the Spanish system of governance? Is it a process of change that will reflect the tendencies of a "Europe of the regions"? As implied by the research questions does the thesis treat the Cat...

  1. Helicity of the toroidal vortex with swirl

    CERN Document Server

    Bannikova, Elena Yu; Poslavsky, Sergey A


    On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small and large linked circles - directrix and generatrix of the torus - depends on distribution of the azimuthal velocity in the core of the swirling vortex ring. In the case of non-homogeneous swirl this relationship differs from the well-known Moffat relationship - the doubled product of such circulations multiplied by the number of links. The results can be applied to vortices in planetary atmospheres and to vortex movements in the vicinity of active galactic nuclei.

  2. Tracked Active Region Patches for MDI and HMI (United States)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica


    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  3. Optical helices and spiral interference fringes (United States)

    Harris, M.; Hill, C. A.; Vaughan, J. M.


    Very pure optical helices have been generated in an argon ion laser of low Fresnel number. The beam character, with continuous cophasal surface of helical form, is clearly demonstrated by spiral interference fringes produced in a novel interferometric arrangement. In addition to single-start helices the multistart fringe patterns establish both two-start and three-start helices (of pitch two and three wavelengths, respectively), and also the state of helicity (i.e. rotational hand) of the beams.

  4. Spirulina-Templated Metal Microcoils with Controlled Helical Structures for THz Electromagnetic Responses (United States)

    Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori


    Microstructures in nature are ultrafine and ordered in biological roles, which have attracted material scientists. Spirulina forms three-dimensional helical microstructure, one of remarkable features in nature beyond our current processing technology such as lithography in terms of mass-productivity and structural multiplicity. Spirulina varies its diameter, helical pitch, and/or length against growing environment. This unique helix is suggestive of a tiny electromagnetic coil, if composed of electro-conductive metal, which brought us main concept of this work. Here, we describe the biotemplating process onto Spirulina surface to fabricate metal microcoils. Structural parameters of the microcoil can be controlled by the cultivation conditions of Spirulina template and also purely one-handed microcoil can be fabricated. A microcoil dispersion sheet exhibited optically active response attributed to structural resonance in terahertz-wave region.

  5. Space-weather MDI Active Region Patches (SMARPs) (United States)

    Bobra, Monica


    We are developing a new data product from the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SoHO) called Space-weather MDI Active Region Patches (SMARPs). The SMARP data series provide maps of the photospheric line-of-sight magnetic field in patches that encompass automatically tracked magnetic concentrations, or active regions, for their entire lifetime. These concentrations are automatically detected in the photospheric line-of-sight magnetic field data using a method described in Turmon et al. (2010) and, thus, are necessarily different from NOAA's definition of an active region. As such, these regions are assigned their own identification number, or SMARP number, which is also linked to a NOAA active region number should it exist. In addition, keywords in the SMARP data series include parameters that concisely characterize the magnetic field distribution. These parameters may be useful for active region event forecasting and for identifying regions of interest. These parameters are calculated per patch and are available on a 96 minute cadence.The SMARP data product is designed to provide seamless coverage with its counterpart, the Space-weather HMI Active Region Patches (SHARPs), described in Bobra et al. (2014). Together, the SMARP and SHARP data series provide continuous coverage of tracked active regions for two solar cycles from 1996 to the present day. The SMARP data series, which runs from April 1996 to October 2010, contains 9496 unique active regions tracked throughout their lifetime. The SHARP data series, which runs from May 2010 to the present day, contains (as of May 30, 2017) 3883 unique active regions tracked throughout their lifetime. In addition, the two series contain 118 unique active regions during the overlap period between May and October 2010. SMARP data will be available at and the photospheric line-of-sight magnetic field maps will be available in either of two different coordinate


    Energy Technology Data Exchange (ETDEWEB)

    Braun, D. C., E-mail: [NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)


    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists for several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.

  7. Phosalone-Induced Changes in Regional Cholinesterase Activities ...

    African Journals Online (AJOL)

    Phosalone-Induced Changes in Regional Cholinesterase Activities in Rat Brain during Behavioral Tolerance. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... The present study was undertaken to examine the activity levels of cholinesterases in different regions of rat brain during the development of behavioral ...

  8. Software Displays Data on Active Regions of the Sun (United States)

    Golightly, Mike; Weyland, Mark; Raben, Vern


    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  9. Flexible helical-axis stellarator (United States)

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.


    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  10. 3D MHD Models of Active Region Loops (United States)

    Ofman, Leon


    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  11. Synthesis and anti-myocarditis activity in a multifunctional lanthanide microporous metal-organic framework with 1D helical chain building units

    Directory of Open Access Journals (Sweden)

    Chenglv Hong


    Full Text Available A new microporous lanthanide metal-organic framework, {[Yb(BTB(H2O (DEF2}n (1, DEF=N,N-Diethylformamide, with 1D nano-sized channels has been constructed by bridging helical chain secondary building units with 1,3,5-benzenetrisbenzoic acid (H3BTB ligand. Structural characterization suggests that this complex crystallizes in the hexagonal space group P6122 and possesses 1D triangular channels with coordinated water molecules pointing to the channel center. In addition, anti-myocarditis properties of compound 1 were evaluated in vivo. The results showed that compound 1 can improve hemodynamic parameters of, and it may be a good therapeutic option for heart failure in the future.

  12. 3He-rich Solar Energetic Particles in Helical Jets on the Sun (United States)

    Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.; Wiedenbeck, Mark E.; Gómez-Herrero, Raúl; Nitta, Nariaki V.


    Particle acceleration in stellar flares is ubiquitous in the universe; however, our Sun is the only astrophysical object where energetic particles and their source flares can both be observed. The acceleration mechanism in solar flares, tremendously enhancing (up to a factor of 10,000) rare elements like 3He and ultra-heavy nuclei, has been puzzling for almost 50 years. Here we present some of the most intense 3He- and Fe-rich solar energetic particle events ever reported. The events were accompanied by nonrelativistic electron events and type-III radio bursts. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. The helical jets originated in relatively small, compact active regions, located at the coronal-hole boundary. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories on the backside of the Sun, during the period of increased solar activity in 2014. The helical jets may be a distinct feature of these intense events that is related to the production of high 3He and Fe enrichments.

  13. Generalized helicity and Beltrami fields

    Energy Technology Data Exchange (ETDEWEB)

    Buniy, Roman V., E-mail: [Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom); Kephart, Thomas W., E-mail: [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom)


    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  14. Stability of helical Janus clusters (United States)

    Eck, Connor L.; Whitmer, Jonathan K.; Chen, Qian; Granick, Steve; Luijten, Erik


    Recent experimental and computational work has elucidated the importance of kinetic pathways in the formation of helical structures by hydrophobic-charged Janus particles.ootnotetextQ. Chen, J.K. Whitmer, et al., Science 331, 199 (2011). Motivated by these findings, we perform free-energy calculations to investigate the equilibrium structure and relative stability of helical aggregates as a function of cluster size and Janus balance. These results simultaneously aid in the interpretation of experimental observations and in the design of building blocks for specific structures.

  15. Synthesis of Helical Phenolic Resin Bundles through a Sol-Gel Transcription Method

    Directory of Open Access Journals (Sweden)

    Changzhen Shao


    Full Text Available Chiral and helical polymers possess special helical structures and optical property, and may find applications in chiral catalysis and optical devices. This work presents the preparation and formation process of helical phenolic resins through a sol-gel transcription method. A pair of bola-type chiral low-molecular-weight gelators (LMWGs derived from valine are used as templates, while 2,4-dihydroxybenzoic acid and formaldehyde are used as precursors. The electron microscopy images show that the phenolic resins are single-handed helical bundles comprised of helical ultrafine nanofibers. The diffused reflection circular dichroism spectra indicate that the helical phenolic resins exhibit optical activity. A possible formation mechanism is proposed, which shows the co-assembly of the LMWGs and the precursors.

  16. Determinants of Foreign Technological Activity in German Regions

    DEFF Research Database (Denmark)

    Dettmann, Eva; Lacasa, Iciar Dominguez; Günther, Jutta

    This paper analyses the determinants of spatial distribution of foreign technological activity across 96 German regions (1996-2009). We identify foreign inventive activity by applying the ‘cross-border-ownership concept’ to transnational patent applications. The descriptive analysis shows...... that foreign technological activity more than doubled during the observation period with persistent spatial heterogeneity in Germany. Using a pooled count data model, we estimate the effect of various sources for externalities on the extent of foreign technological activity across regions. Our results show...... that foreign technological activity is attracted by technologically specialised sectors of regions. In contrast to existing findings this effect applies both to foreign as well as domestic sources of specialisation. We show that the relation between specialization and foreign technological activity is non...

  17. Active Pesticide Production Points, Region 9, 2013, US EPA Region 9 (United States)

    U.S. Environmental Protection Agency — This data layer represents Active Pesticide Producing Establishments in USEPA Region 9 (AZ, CA, HI and NV) that reported production for the year 2013. Pesticide...

  18. Field distribution of magnetograms from simulations of active region formation (United States)

    Dacie, S.; van Driel-Gesztelyi, L.; Démoulin, P.; Linton, M. G.; Leake, J. E.; MacTaggart, D.; Cheung, M. C. M.


    Context. The evolution of the photospheric magnetic field distributions (probability densities) has previously been derived for a set of active regions. Photospheric field distributions are a consequence of physical processes that are difficult to determine from observations alone. Aims: We analyse simulated magnetograms from numerical simulations, which model the emergence and decay of active regions. These simulations have different experimental set-ups and include different physical processes, allowing us to investigate the relative importance of convection, magnetic buoyancy, magnetic twist, and braiding for flux emergence. Methods: We specifically studied the photospheric field distributions (probability densities found with a kernel density estimation analysis) and compared the results with those found from observations. Results: Simulations including convection most accurately reproduce the observed evolution of the photospheric field distributions during active region evolution. Conclusions: This indicates that convection may play an important role during the decay phase and also during the formation of active regions, particularly for low flux density values.

  19. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)



    Apr 15, 1997 ... The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. ... (1991), where they observed X-class flares near the sites of. EFR. Wang & Shi (1993) suggested that ... region using the USΟ video magnetograph (Mathew et al. 1998). The active region. 233 ...

  20. Dynamic Precursors of Flares in Active Region NOAA 10486

    Indian Academy of Sciences (India)


    potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one ...

  1. Locally Enhanced and Tunable Optical Chirality in Helical Metamaterials

    CERN Document Server

    Gutsche, Philipp; Burger, Sven


    We report on a numerical study of optical chirality. Intertwined gold helices illuminated with plane waves concentrate right and left circularly polarized electromagnetic field energy to sub-wavelength regions. These spots of enhanced chirality can be smoothly shifted in position and magnitude by varying illumination parameters, allowing for the control of light-matter interactions on a nanometer scale.

  2. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    Directory of Open Access Journals (Sweden)

    Md. Nuruzzaman Haque


    Full Text Available Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1 has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p<0.001. Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP, containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons’ active ageing level in Thailand.

  3. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær


    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  4. ICRF heating on helical devices

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.


    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues.

  5. ICRF heating on helical devices

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J. [and others


    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues.

  6. Magnetic Helicity and Large Scale Magnetic Fields: A Primer (United States)

    Blackman, Eric G.


    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  7. Thoughts on the development of active regional public health systems. (United States)

    Reis, Ademar Arthur Chioro Dos; Sóter, Ana Paula Menezes; Furtado, Lumena Almeida Castro; Pereira, Silvana Souza da Silva


    Decentralization and regionalization are strategic themes for reforms in the health system. This paper analyzes the complex process of health regionalization being developed in Brazil. This paper identifies that the normative framework from the Brazilian National Health System, SUS has made advances with respect to its institutionalization and overcoming the initial centrality involved in municipalization. This has strengthened the development of regionalization and the intergovernmental agreement on health but the evidence points to the need to promote a revision. Based on document analysis, literature review and the views given by the authors involved in management in SUS as well as generating radically different views, the challenges for the construction of a regionalization that is active, is debated. We also discuss: its relations with planning and the dimensioning of service networks, the production of active care networks and shared management spaces, the inter-federative agreements and regional regulations, the capacity to coordinate regional systems and financing and the impact of the political dimension and electoral cycles. Regionalization (and SUS itself) is an open book, therefore ways and possibilities on how to maintain an active form of regionalization can be recommended.

  8. Universities and Economic Development Activities: A UK Regional Comparison (United States)

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.


    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  9. Helical rays in two-dimensional resonant wave conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.


    The process of resonant wave conversion (often called linear mode conversion) has traditionally been analyzed with a spatially one-dimensional slab model, for which the rays propagate in a two-dimensional phase space. However, it has recently been shown [E.R. Tracy and A.N. Kaufman, Phys. Rev. Lett. 91, 130402 (2003)] that multidimensional rays have a helical structure for conversion in two or more spatial dimensions (if their dispersion matrix is generic). In that case, a one-dimensional model is inadequate; a correct analysis requires two spatial dimensions and, thus, four-dimensional phase space. In this paper we show that a cold plasma model will exhibit ray helicity in conversion regions where the density and magnetic field gradients are significantly non-parallel. For illustration, we examine a model of the poloidal plane of a deuterium-tritium tokamak plasma, and identify such a region. In this region, characterized by a six-sector topology, rays in the sector for incident and reflected magnetosonic waves exhibit significant helicity. We introduce a ''symmetric-wedge'' model, to develop a detailed analytic and numerical study of helical rays in this sector.

  10. Helical rays in two-dimensional resonant wave conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.


    The process of resonant wave conversion (often called linear mode conversion) has traditionally been analyzed with a spatially one-dimensional slab model, for which the rays propagate in a two-dimensional phase space. However, it has recently been shown [E.R. Tracy and A.N. Kaufman, Phys. Rev. Lett. 91, 130402 (2003)] that multidimensional rays have a helical structure for conversion in two or more spatial dimensions (if their dispersion matrix is generic). In that case, a one-dimensional model is inadequate; a correct analysis requires two spatial dimensions and, thus, four-dimensional phase space. In this paper we show that a cold plasma model will exhibit ray helicity in conversion regions where the density and magnetic field gradients are significantly non-parallel. For illustration, we examine a model of the poloidal plane of a deuterium-tritium tokamak plasma, and identify such a region. In this region, characterized by a six-sector topology, rays in the sector for incident and reflected magnetosonic waves exhibit significant helicity. We introduce a ''symmetric-wedge'' model, to develop a detailed analytic and numerical study of helical rays in this sector.

  11. WEB-THERMODYN: sequence analysis software for profiling DNA helical stability


    Huang, Yanlin; Kowalski, David


    WEB-THERMODYN analyzes DNA sequences and computes the DNA helical stability, i.e. the free energy required to unwind and separate the strands of the double helix. A helical stability profile across a selected DNA region or the entire sequence is generated by sliding-window analysis. WEB-THERMODYN can predict sites of low helical stability present at regulatory regions for transcription and replication and can be used to test the influence of mutations. The program can be accessed at: http://w...

  12. Baryon helicity in B decay

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mahiko [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)


    The unexpectedly large transverse polarization measured in the decay B {yields} {phi}K* poses the question whether it is accounted for as a strong interaction effect or possibly points to a hidden nonstandard weak interaction. We extend here the perturbative argument to the helicity structure of the two-body baryonic decay and discuss qualitatively on how the baryonic B decay modes might help us in understanding the issue raised by B {yields} {phi}K*. We find among others that the helicity +1/2 amplitude dominates the leading order in the B(b-barq) decay and that unlike the B {yields} VV decay the dominant amplitude is sensitive to the right-handed b {yields} s current, if any, in the penguin interaction.

  13. An experimental superconducting helical undulator

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)


    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  14. A helical scintillating fiber hodoscope

    Energy Technology Data Exchange (ETDEWEB)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Buesser, K.; Colberg, T.; Demiroers, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H.P.; Eversheim, P.D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Naehle, O.; Pfuff, M.; Prasuhn, D.; Rohdjess, H.; Rosendaal, D.; Rossen, P. von; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H.J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R


    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. {<=}{theta}{<=}72 deg. and 0 deg. {<=}phi (cursive,open) Greek{<=}360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  15. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R


    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  16. A helical scintillating fiber hodoscope (United States)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Büßer, K.; Colberg, T.; Demirörs, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Nähle, O.; Pfuff, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration


    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9°⩽ Θ⩽72° and 0°⩽ ϕ⩽360° in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes.


    Energy Technology Data Exchange (ETDEWEB)

    Miesch, Mark S. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307-3000 (United States); Zhang, Mei [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Augustson, Kyle C., E-mail: [CEA/DRF/IRFU Service d’Astrophysique, CEA-Saclay, Batiment 709, F-91191 Gif-sur-Yvette Cedex (France)


    We investigate the role of magnetic helicity in promoting cyclic magnetic activity in a global, 3D, magnetohydrodynamic (MHD) simulation of a convective dynamo. This simulation is characterized by coherent bands of toroidal field that exist within the convection zone, with opposite polarities in the northern hemisphere (NH) and southern hemisphere (SH). Throughout most of the cycle, the magnetic helicity in these bands is negative in the NH and positive in the SH. However, during the declining phase of each cycle, this hemispheric rule reverses. We attribute this to a global restructuring of the magnetic topology that is induced by the interaction of the bands across the equator. This band interaction appears to be ultimately responsible for, or at least associated with, the decay and subsequent reversal of both the toroidal bands and the polar fields. We briefly discuss the implications of these results within the context of solar observations, which also show some potential evidence for toroidal band interactions and helicity reversals.

  18. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)


    The active region NOAA 8032 of April 15, 1997 was observed to evolve rapidly. The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. The magnetic evolution of this region is studied to ascertain its role in flare production. Large changes were observed in magnetic ...

  19. TARPs: Tracked Active Region Patches from SoHO/MDI (United States)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.


    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  20. Numerical analysis of helical dielectric elastomer actuator (United States)

    Park, Jang Ho; Nair, Saurabh; Kim, Daewon


    Dielectric elastomer actuators (DEA) are known for its capability of experiencing extreme strains, as it can expand and contract based on specific actuation voltage applied. On contrary, helical DEA (HDEA) with its unique configuration does not only provide the contractile and extendable capabilities, but also can aid in attaining results for bending and torsion. The concept of HDEA embraces many new techniques and can be applied in multiple disciplines. Thus, this paper focuses on the simulation of HDEA with helical compliant electrodes that is a major factor prior to its application. The attributes of the material used to build the structure plays a vital role in the behavior of the system. For numerical analysis of HDEA, the material characteristics are input into a commercial grade software, and then the appropriate analysis is performed to retrieve its outcome. Applying the material characteristics into numerical analysis modeling, the functionality of HDEA for various activations can be achieved, which is used to test and comply with the fabricated final product.

  1. Equilibrium Reconstruction on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Samuel A. Lazerson, D. Gates, D. Monticello, H. Neilson, N. Pomphrey, A. Reiman S. Sakakibara, and Y. Suzuki


    Equilibrium reconstruction is commonly applied to axisymmetric toroidal devices. Recent advances in computational power and equilibrium codes have allowed for reconstructions of three-dimensional fields in stellarators and heliotrons. We present the first reconstructions of finite beta discharges in the Large Helical Device (LHD). The plasma boundary and magnetic axis are constrained by the pressure profile from Thomson scattering. This results in a calculation of plasma beta without a-priori assumptions of the equipartition of energy between species. Saddle loop arrays place additional constraints on the equilibrium. These reconstruction utilize STELLOPT, which calls VMEC. The VMEC equilibrium code assumes good nested flux surfaces. Reconstructed magnetic fields are fed into the PIES code which relaxes this constraint allowing for the examination of the effect of islands and stochastic regions on the magnetic measurements.

  2. Socioeconomic and regional differences in active transportation in Brazil

    Directory of Open Access Journals (Sweden)

    Thiago Hérick de Sá


    Full Text Available ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey, we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making


    Directory of Open Access Journals (Sweden)



    Full Text Available Economic areas with high technology are key drivers in sustainable regional development, including unemployment and consequently decreasing population migration in the region. Northeast Region is the largest development region of Romania in terms of number of inhabitants and the owned area. On 01/01/2014, according to balance employment, labor resources of the region were numbered 2,428,700, which represent 49.6% of employed population. The registered unemployment rate at 31 August 2014 was 6.5%, with 82 thousand unemployed registered. In terms of participation in the main economic activities, civilian employment in agriculture, forestry and fishing is predominant (40.1% while in service, civilian employment is 37.1%, while industry and construction is 22.8%. The paper aims to analyze the situation that the potential employment and development opportunities for the Northeast region through activities in the field of ITC domain. Unfortunately, this area was the worst in most indicators, the use of computers and the internet to the turnover of companies and investments in the IT & C and unfortunately in terms of employment population that is under 50%

  4. Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions

    CERN Document Server

    Athanasiou, M; David, C; Anagnostopoulos, G


    In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

  5. Ride-sharing activities in the Richmond regional planning district. (United States)


    This report gives the results of a survey made of industries in the Richmond Regional Planning District to determine the current and expected ride-sharing activities there and the type of information deemed most useful in planning ride-sharing progra...

  6. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard


    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  7. Active sonar, beaked whales and European regional policy. (United States)

    Dolman, Sarah J; Evans, Peter G H; Notarbartolo-di-Sciara, Giuseppe; Frisch, Heidrun


    Various reviews, resolutions and guidance from international and regional fora have been produced in recent years that acknowledge the significance of marine noise and its potential impacts on cetaceans. Within Europe, ACCOBAMS and ASCOBANS have shown increasing attention to the issue. The literature highlights concerns surrounding the negative impacts of active sonar on beaked whales in particular, where concerns primarily relate to the use of mid-frequency active sonar (1-10kHz), as used particularly in military exercises. The authors review the efforts that European regional policies have undertaken to acknowledge and manage possible negative impacts of active sonar and how these might assist the transition from scientific research to policy implementation, including effective management and mitigation measures at a national level. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Relevant Factors of Innovative Activities of Small Business in Regions

    Directory of Open Access Journals (Sweden)

    Yelena Davidovna Vaysman


    Full Text Available The article discusses the system analysis aimed to identify the key reasons for the low innovation activity in the regions of the Russian Federation. The research is based on the hypothesis according to which the holism and systematic principles need to be applied for analyzing the reasons of the low innovative activity of small business in the regions,. To implement these principles, the authors have used the concept of «minimum number of descriptive levels of socio-economic system». In the research, the spiritual and cultural, cognitive, institutional, material and technological «layers» of the socio-economic system are investigated. The particular attention is paid to the cognitive and institutional segments. The methodological basis of the research is the methods of correlation and regression analysis, maps of positioning, integrated assessment, the author’s method of assessing the development of the knowledge-based economy and clustering. The quality of innovative small firms’ institutional environment is assessed using the resource approach. The authors have obtained the following results. The rate of demand growth for knowledge in the regions exceeded the growth rate of the regional offers of knowledge, including the innovative development of small businesses. A delayed reaction of the suppliers of innovative ideas to the corresponding demand is showed. The trend of differentiation increase of the Russian regions in terms of the knowledge-based economy’s development is revealed. A significant linear correlation of small firms’ innovative activities and the quality of institutional environment haven’t been discovered. It is shown that the regions are almost similar in the quality of basic socio-economic institutions, and more than 60 % of the regions have the intensity of small businesses’ innovation processes below the national average level. The obtained results allow to expand the scientific and methodological basis to

  9. The Effect of "Rogue" Active Regions on the Solar Cycle (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul


    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  10. Patterns of regional brain activity in alcohol-dependent subjects. (United States)

    Hayden, Elizabeth P; Wiegand, Ryan E; Meyer, Eric T; Bauer, Lance O; O'connor, Sean J; Nurnberger, John I; Chorlian, David B; Porjesz, Bernice; Begleiter, Henri


    Electroencephalographic (EEG) measures of hemispheric asymmetry in anterior brain activity have been related to a variety of indices of psychopathology and emotionality. However, little is known about patterns of frontal asymmetry in alcohol-dependent (AD) samples. It is also unclear whether psychiatric comorbidity in AD subjects accounts for additional variance in frontal asymmetry, beyond a diagnosis of AD alone. We compared 193 AD subjects with 108 control subjects on resting brain activity in anterior and posterior regions, as indexed by asymmetries in alpha band power in the left and right hemispheres. Within the AD group alone, we examined whether comorbid major depressive disorder (MDD) or antisocial personality disorder (ASPD) had effects on regional asymmetry. Compared with control subjects, AD subjects exhibited lower left, relative to right, cortical activation in anterior regions. Evidence that comorbidity in AD subjects accounted for further variance in EEG asymmetry was mixed; AD subjects with comorbid ASPD were not significantly different from those without ASPD, while AD subjects with a lifetime history of MDD showed less asymmetry in anterior regions than those without MDD. Our findings indicate that AD subjects exhibit a pattern of frontal asymmetry similar to that found in other psychiatric groups. Results examining the effects of comorbidity in AD on EEG asymmetry were inconclusive. The implications of our findings for future work are described.

  11. On the helical arrangements of protein molecules. (United States)

    Dauter, Zbigniew; Jaskolski, Mariusz


    Helical structures are prevalent in biology. In the PDB, there are many examples where protein molecules are helically arranged, not only according to strict crystallographic screw axes but also according to approximate noncrystallographic screws. The preponderance of such screws is rather striking as helical arrangements in crystals must preserve an integer number of subunits per turn, while intuition and simple packing arguments would seem to favor fractional helices. The article provides insights into such questions, based on stereochemistry, trigonometry, and topology, and illustrates the findings with concrete PDB structures. Updated statistics of Sohncke space groups in the PDB are also presented. © 2017 The Protein Society.

  12. Helical axis stellarator with noninterlocking planar coils (United States)

    Reiman, Allan; Boozer, Allen H.


    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  13. Armenia as a Regional Centre for Astronomy for Development activities (United States)

    Mickaelian, A.


    The Byurakan Astrophysical Observatory (BAO, Armenia, are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  14. Study and assessment of clusters activity effect on regional economy

    Directory of Open Access Journals (Sweden)

    Babkin A.


    Full Text Available The cluster approach, i.e., forming basic innovative and industrial clusters is widely applied in modern Russian conditions for the development of the economy. These actions are considered as effective measures for implementing the economic policy stimulating regional development by federal and regional authorities. The analysis we carried out showed that the quantitative approach for assessing the efficiency of cluster creation and performance is still insufficiently used. In this paper we establish and quantitatively estimate the influence cluster have on the regional economy using regression analysis with an example of a number of Russian regional clusters. Expanding the practice of creation and the state support of clusters taking into account the revealed quantitative dependences estimating their efficiency is suggested. We have advanced the hypothesis that clustering has a positive influence on regional economy, and confirmed this influence by means of quantitative methods using representative datasets. Our study of course had a selective character as it is not possible to carry out the calculations for all the existing clusters and cluster initiatives of Russia and discuss the results within a single article. At the same time, following the analysis we performed, we concluded that it is effective to initiate cluster creation in Russian regions. It is shown that cluster activity is capable to have of having a positive impact on GRP growth and the budgetary income in the region. Along with that, we note the dissimilarities in the multiplying influence of clusters on the regional development, its dependence on territorial and branch specifics that will be the direction for a further indepth study.


    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Viall, N. M., E-mail:, E-mail: [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  16. IPS observations of heliospheric density structures associated with active regions (United States)

    Hick, P.; Jackson, B. V.; Altrock, R.; Woan, G.; Slater, G.


    Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.

  17. Solar activity effects in the ionospheric D region

    Directory of Open Access Journals (Sweden)

    A. D. Danilov


    Full Text Available Variations in the D-region electron concentration within the solar activity cycle are considered. It is demonstrated that conclusions of various authors, who have analyzed various sets of experimental data on [e], differ significantly. The most reliable seem to be the conclusions based on analysis of the [e] measurements carried out by the Faraday rotation method and on the theoretical concepts on the D-region photochemistry. Possible QBO effects in the relation of [e] to solar activity are considered and an assumption is made that such effects may be the reason for the aforementioned disagreement in conclusions on the [e] relation to solar indices.Key words. Atmospheric composition and structure · Ion chemistry of the atmosphere · Middle atmosphere

  18. Conditions and dynamics in the active region of a regional Mars dust storm (United States)

    Rafkin, S.; Pla-Garcia, J.; Leung, C.


    Dust storms are one of the best known and recognized phenomena. Yet, there have never been observations in or nearby the active region of a Mars dust storm. Numerical simulation of a dust storm on Mars is used to predict the so far unobserved conditions. Violent plumes of dust are found to rise deep into the atmosphere (> 20 km) and the plumes are found to organize into systems similar to that observed in thunderstorm systems on Earth.

  19. Soft electron beams in solar active and flare region

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, V.V.; Mandelshtam, S.L.; Oparin, S.N.; Urnov, A.M.; Zhitnik, I.A.


    On the basis of the experimental data obtained from the high resolution X-ray spectra for solar flares and active regions the suprathermal electron model (SEM) was proposed. This model suggests the existance of the multi-temperature structure of the solar plasma emitting Fe and Ca X-rays and the presence of additional electrons with low energies (no more than 10 keV) and small densities of about 1-5 percent relative to the thermal component.

  20. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. (United States)

    Lee, Jong Kook; Gopal, Ramamourthy; Park, Seong-Cheol; Ko, Hyun Sook; Kim, Yangmee; Hahm, Kyung-Soo; Park, Yoonkyung


    HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and an extended helical region (residues 6-20). To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9) (Anal 3-Pro) and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS). NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10) was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore <1.8 nm in diameter, which is similar to buforin II. Notably, scanning electron microscopic observation of Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to

  1. Magnetic Helicity and the Solar Dynamo (United States)

    Canfield, Richard C.


    The objective of this investigation is to open a new window into the solar dynamo, convection, and magnetic reconnection through measurement of the helicity density of magnetic fields in the photosphere and tracing of large-scale patterns of magnetic helicity in the corona.

  2. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  3. Active region upflows. II. Data driven magnetohydrodynamic modelling (United States)

    Galsgaard, K.; Madjarska, M. S.; Vanninathan, K.; Huang, Z.; Presmann, M.


    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims: This paper investigates one possible method for maintaining these upflows assuming, that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods: We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential 3D magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple 1D hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local correlation tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive 3D magnetohydrodynamic code. Results: The magnetic field contains several null points located well above the photosphere, with their fan planes dividing the magnetic field into independent open and closed flux domains. The stressing of the interfaces between the different flux domains is expected to provide locations where magnetic reconnection can take place and drive systematic flows. In this case, the region between the closed and open flux is identified as the region where observations find the systematic upflows. Conclusions: In the present experiment, the driving only initiates magneto-acoustic waves without driving any systematic upflows at any of the flux interfaces. Movie is available in electronic form at

  4. Correlating regional aeroallergen effects on internet search activity. (United States)

    Willson, Thomas J; Lospinoso, Joshua; Weitzel, Erik; McMains, Kevin


    To investigate the correlation between the change in regional aeroallergen levels and Internet search activity related to allergies. A retrospective time series analysis using a graphical analytical approach and statistical modeling was used. Tertiary academic hospital setting. There were no specific enrolled subjects. Data from Google Trends were obtained ( for the following search terms: "allergy," "allergies," "pollen," "runny nose," "congestion," and "post nasal drainage." Daily pollen and mold spore count data were obtained for the same period from throughout Texas. Graphical analysis, correlation, and autoregressive integrated moving average (ARIMA) were employed to assess the relationship between aeroallergens on Google search activity. A strong positive correlation was observed between observed pollen counts and search activity for the terms "allergies" (r pollen = 0.798), "allergy" (r pollen = 0.781), and "pollen" (r pollen = 0.849). Symptom term searches were weakly correlated with pollen and mold counts. Also, ARIMA modeling supported the relationships indicated by the correlations. Search activities for surrogate terms such as "allergy," "allergies," and "pollen" correlate strongly with observed pollen counts but not mold counts. These data demonstrate the usefulness of Google Trends search data in assessing regional disease burdens and offer insight into how the public seeks information about their own illness. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  5. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangwei, E-mail: [Group 404, National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Lu, Lipeng [Group 404, National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Laboratoire International Associe, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Fang, Le [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon, 69134 (France); Laboratoire International Associe, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Gao, Feng [Group 404, National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)


    The correlation between the velocity helicity and the energy backscatter is proved in a DNS case of 256{sup 3}-grid homogeneous isotropic decaying turbulence. The helicity is then proposed to be employed to improve turbulence models and SGS models. Then Spalart-Allmaras turbulence model (SA) is modified with the helicity to take account of the energy backscatter, which is significant in the region of corner separation in compressors. By comparing the numerical results with experiments, it can be concluded that the modification for SA model with helicity can appropriately represent the energy backscatter, and greatly improves the predictive accuracy for simulating the corner separation flow in compressors. -- Highlights: → We study the relativity between the velocity helicity and the energy backscatter. → Spalart-Allmaras turbulence model is modified with the velocity helicity. → The modified model is employed to simulate corner separation in compressor cascade. → The modification can greatly improve the accuracy for predicting corner separation. → The helicity can represent the energy backscatter in turbulence and SGS models.

  6. Monitoring rice farming activities in the Mekong Delta region (United States)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.


    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  7. Helicity Evolution at Small x (United States)

    Sievert, Michael; Kovchegov, Yuri; Pitonyak, Daniel


    We construct small- x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of ln2(1 / x) in the polarization-dependent evolution along with the powers of ln(1 / x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc &Nf limits. After solving the large-Nc equations numerically we obtain the following small- x asymptotics for the flavor-singlet g1 structure function along with quarks hPDFs and helicity TMDs (in absence of saturation effects): g1S(x ,Q2) ΔqS(x ,Q2) g1L S(x ,kT2) (1/x) > αh (1/x) 2.31√{αsNc/2 π. We also give an estimate of how much of the proton's spin may be at small x and what impact this has on the so-called ``spin crisis.'' Work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286 (YK), the RIKEN BNL Research Center, and TMD Collaboration (DP), and DOE Contract No. DE-SC0012704 (MS).

  8. Mechanisms regulating regional cerebral activation during dynamic handgrip in humans

    DEFF Research Database (Denmark)

    Williamson, James; Friedman, D B; Mitchell, J H


    Dynamic hand movement increases regional cerebral blood flow (rCBF) of the contralateral motor sensory cortex (MS1). This increase is eliminated by regional anesthesia of the working arm, indicating the importance of afferent neural input. The purpose of this study was to determine the specific...... type of afferent input required for this cerebral activation. The rCBF was measured at +5.0 and +9.0 cm above the orbitomeatal (OM) plane in 13 subjects during 1) rest; 2) dynamic left-hand contractions; 3) postcontraction ischemia (metaboreceptor afferents); and 4) biceps brachii tendon vibration...... +/- 8.6 ml.100 g-1.min-1 (P neural input from muscle spindles or metabolically sensitive nerve fibers, although the involvement of mechanoreceptors (group III or Ib) cannot be excluded....

  9. SOI/MDI studies of active region seismology and evolution (United States)

    Tarbell, Ted D.; Title, Alan; Hoeksema, J. Todd; Scherrer, Phil; Zweibel, Ellen


    The solar oscillations investigation (SOI) will study solar active regions using both helioseismic and conventional observation techniques. The Michelson Doppler imager (MDI) can perform Doppler continuum and line depth imagery and can produce longitudinal magnetograms, showing either the full disk or a high resolution field of view. A dynamics program of continuous full disk Doppler observations for two months per year, campaign programs of eight hours of continuous observation per day, and a synoptic magnetic program of about 15 full disk magnetograms per day, are planned. The scientific plans, measurements and observation programs, are described.

  10. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Axel; Ashurova, Mohira B. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Jabbari, Sarah, E-mail: [School of Mathematical Sciences and Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)


    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  11. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona (United States)

    Brandenburg, Axel; Ashurova, Mohira B.; Jabbari, Sarah


    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  12. Cool and hot emission in a recurring active region jet (United States)

    Mulay, Sargam M.; Zanna, Giulio Del; Mason, Helen


    Aims: We present a thorough investigation of the cool and hot temperature components in four recurring active region jets observed on July 10, 2015 using the Atmospheric Imaging Assembly (AIA), X-ray Telescope (XRT), and Interface Region Imaging Spectrograph (IRIS) instruments. Methods: A differential emission measure (DEM) analysis was performed on areas in the jet spire and footpoint regions by combining the IRIS spectra and the AIA observations. This procedure better constrains the low temperature DEM values by adding IRIS spectral lines. Plasma parameters, such as Doppler velocities, electron densities, nonthermal velocities and a filling factor were also derived from the IRIS spectra. Results: In the DEM analysis, significant cool emission was found in the spire and the footpoint regions. The hot emission was peaked at log T [K] = 5.6-5.9 and 6.5 respectively. The DEM curves show the presence of hot plasma (T = 3 MK) in the footpoint region. We confirmed this result by estimating the Fe XVIII emission from the AIA 94 Å channel which was formed at an effective temperature of log T [K] = 6.5. The average XRT temperatures were also found to be in agreement with log T [K] = 6.5. The emission measure (EM) was found to be three orders of magnitude higher in the AIA-IRIS DEM compared with that obtained using only AIA. The O IV (1399/1401 Å) electron densities were found to be 2.0×1010 cm-3 in the spire and 7.6 × 1010 cm-3 in the footpoint. Different threads along the spire show different plane-of-sky velocities both in the lower corona and transition region. Doppler velocities of 32 km s-1 (blueshifted) and 13 km s-1 (redshifted) were obtained in the spire and footpoint, respectively from the Si IV 1402.77 Å spectral line. Nonthermal velocities of 69 and 53 km s-1 were recorded in the spire and footpoint region, respectively. We obtained a filling factor of 0.1 in the spire at log T [K] = 5. Conclusions: The recurrent jet observations confirmed the presence of

  13. Investigations of peripheral dose for helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Steffen; Schubert, Kai; Sterzing, Florian; Herfarth, Klaus; Sroka-Perez, Gabriele; Debus, Juergen [University Hospital Heidelberg (Germany). Dept. of Radiation Oncology; Wiezorek, Tilo [University Hospital Jena (Germany). Dept. of Radiotherapy


    Purpose: Whenever treating a patient with percutaneous radiotherapy, a certain amount of dose is inevitably delivered to healthy tissue. This is mainly due to beam's entry and exit in the region of the target volume. In regions distant from the target volume, dose is delivered by leakage from the MLC and head scatter from the accelerator head and phantom scatter from the target volume (peripheral dose). Helical tomotherapy is a form of radiation therapy with a uniquely designed machine and delivery pattern which influence the peripheral dose. The goal of this work was to investigate peripheral dose in helical tomotherapy. The experiments were used to establish a complex characterization of the peripheral dose. Materials and methods: A 30*30*60cm{sup 3} slab phantom and TLD-100 (Lithium fluoride) were used for the experiments. Treatment procedures were generated with the tomotherapy planning system (TPS). Additionally, procedures were created on the Operator Station of the tomotherapy system without a calculation of the dose distribution. The peripheral dose which was produced by a typical tomotherapy treatment plan was measured. Furthermore, these procedures were used to differentiate the parts of the peripheral dose in phantom scatter dose and head scatter and leakage dose. Additionally, the relation between peripheral dose and treatment time and between peripheral dose and delivered dose was investigated. Additionally, the peripheral dose was measured in an Alderson phantom. Results: Distances of 30cm or more resulted in a decrease of the peripheral dose to less than 0.1% of the target dose. The measured doses have an offset of approximately 1cGy in comparison to the calculated doses from the TPS. The separated head scatter and leakage dose was measured in the range of 1cGy for typical treatments. Furthermore, the investigations show a linear correlation between head scatter leakage dose and treatment time and between scatter dose parts and delivered dose. A

  14. Peptides of the constant region of antibodies display fungicidal activity.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA of antibodies (Fc-peptides exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.

  15. A Search for Asymmetric Flows in Young Active Regions (United States)

    Cauzzi, G.; Canfield, R. C.; Fisher, G. H.


    We have studied the temporal evolution of photospheric velocities in young active regions that show evidence of ongoing magnetic flux emergence. We searched for asymmetries in the vertical plasma flows between the leading and following legs of the magnetic flux tubes. Such asymmetries are predicted in models of flux tubes rising in the convection zone (see the recent work of Fan, Fisher, & DeLuca). These models, which successfully describe several aspects of active region formation, predict plasma flows from the leading to the following leg of a magnetic flux loop, driven by the Coriolis force acting on the rising loop. These flows contribute to an excess of gas pressure in the following leg with respect to the leading one. Our results show a predominance of downflow in the leading part of three young regions with respect to the following part, contrary to the model predictions. The observed asymmetries, obtained by averaging over the totality of the magnetic structures, range from 60 to 150 m s-1. Their real value, however, could be higher if the age and effective magnetic filling factor were taken into account. The flow asymmetry seems to disappear when the active regions enter a phase of magnetic stability. We suggest two possible interpretations of these results in terms of the dynamics of emerging magnetic flux tubes as the most plausible ones. One possibility is that the rising flux tube experiences severe fragmentation during the last stages of emergence through the convection zone. After fragmentation, the greater effect of aerodynamic drag strongly reduces the rise speed of the smaller flux tubes and hence the Coriolis force that drives the flows from the leading to the following leg of the magnetic loop. Since the higher gas pressure present in the following leg is no longer balanced, it will then drive a flow in the opposite direction, i.e., from the following to the leading side. Estimates of these pressure-driven flow velocities are consistent with the

  16. Polymorphic transformation of helical flagella of bacteria (United States)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration


    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  17. Investigation of backfire monofilar helical antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Larsen, Niels Vesterdal; Gothelf, Ulrich Vesterager


    This paper presents a numerical investigation of the electromagnetic properties of the backfire monofilar helical antenna. The current distribution along the helical conductor, the input impedance, and the front-to-back ratio are calculated and analyzed for the backfire operation of the antenna. ....... A parametric study of the helical geometry and the resulting antenna characteristics will be described and discussed. The currents and fields are calculated using the simulation software AWAS based on the Method of Moments with a wire representation of the ground plane....


    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Martin [ORNL


    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This

  19. Non-Solenoidal Startup via Helicity Injection in the Pegasus ST (United States)

    Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.


    Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip =Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Active tectonics of the Qom region, Central Iran (United States)

    Hollingsworth, J.; Fattahi, M.; Jackson, J. A.; Talebian, M.; Nazari, H.; Bahroudi, A.


    balanced cross section indicates ~18% shortening (1.5 km) in a period bracketed by the Upper Red Fmtn (5.3 Ma), yielding shortening rates of 0.1-0.3 mm/yr. The right-lateral Kashan fault lies SE of the Qom region, and appears to be kinematically linked to the thrust faults around Qom, which probably represent thrust terminations. Historical earthquakes have occurred on the Kashan fault, and clear evidence for recent movement is seen in the Quaternary geomorphology. Reconstruction of the geology across the Kashan fault indicates ~45 km of total right-lateral motion, which suggests it has played a significant role in the accommodation of regional shortening. Late Cenozoic estimates of N-S shortening in the Qom region are 0.03-0.5 mm/yr. The difference in GPS velocities north and south of Qom indicates 1.1±1.9 mm/yr shortening across this region. This study suggests that Central Iran plays an important role in accommodating Arabia-Eurasia shortening over Quaternary to geological timescales. Efforts should be made to better constrain the seismic hazard posed by active faults to large populations in the Central Iran region.

  1. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha


    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  2. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L


    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  3. Exact solutions for helical magnetohydrodynamic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Villata, M. (Istituto di Fisica Generale, Universita di Torino, Via Pietro Giuria 1, I-10125 Torino (Italy)); Tsinganos, K. (Department of Physics, University of Crete and Research Center of Crete, GR-71409, Heraklion, Crete (Greece))


    Three novel classes of exact solutions of the generalized Grad--Shafranov equation for helically symmetric magnetohydrodynamic (MHD) equilibria are presented. The first two classes may be applied to helical MHD equilibria for plasma confined between two coaxial cylinders, while the third one to the modeling of helicoidal magnetic fields and flows in several recently observed astrophysical jets. The same solutions can be also used for the testing of sophisticated numerical codes. It is also shown that all helically symmetric MHD equilibria can be treated by the same general method which is employed to generate exact MHD solutions for systems possessing an ignorable coordinate in a system of three orthogonal basis vectors, although in the case of helical symmetry an [ital orthogonal] ignorable coordinate does not exist, contrary to what happens in the well-known cases of axial and translational symmetries.

  4. Socioeconomic and regional differences in active transportation in Brazil. (United States)

    Sá, Thiago Hérick de; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto


    To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. By using data from the Health section of 2008's Pesquisa Nacional por Amostra de Domicílio (Brazil's National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making. Apresentar estimativas nacionais sobre o deslocamento a pé ou de bicicleta no trajeto casa-trabalho no Brasil e em 10 de suas regiões metropolitanas. Utilizando dados do Suplemento sobre Saúde da Pesquisa Nacional por Amostra de Domicílios de 2008, estimamos a frequência de pessoas empregadas que se deslocam a pé ou de bicicleta no trajeto casa-trabalho estratificada por sexo, e segundo faixa etária, escolaridade, renda domiciliar per capita, residência em área urbana ou rural, regiões metropolitanas e macrorregiões do país. Adicionalmente, estimamos a distribuição da mesma frequ

  5. Kinematic dynamo induced by helical waves


    Wei, Xing


    We investigate numerically the kinematic dynamo induced by the superposition of two helical waves in a periodic box as a simplified model to understand the dynamo action in astronomical bodies. The effects of magnetic Reynolds number, wavenumber and wave frequency on the dynamo action are studied. It is found that this helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for the dynamo growth rate. A lower wave frequency facilitates the dynamo action and the oscillations o...

  6. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery


    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  7. MHD Gauge Fields: Helicities and Casimirs (United States)

    Hu, Q.; Webb, G. M.; Zank, G. P.; Anco, S.


    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector P in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction B, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of Bis zero), is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether's theorem, and gauge symmetries are used to derive the conservation laws for (a) magnetic helicity (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations, which applies to Faraday's equation and Gauss's equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for a non-barotropic gas. The cross helicity and fluid helicity conservation are nonlocal conservation laws, that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982) satisfy the Casimir equations.

  8. Hydrogen recycling and transport in the helical divertor of TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Clever, Meike


    observed. Its absence can be explained using an extended two point model including heat convection applied to the region dominated by parallel transport (laminar region). The radial penetration depth of the neutral hydrogen particles ({lambda}{sub n} {approx} 3-4 cm) estimated from spectroscopic measurements was found to be often larger than the varying radial extent of this laminar region (few mm up to 6 cm) which finally leads to convective heat transport reducing parallel temperature gradients. Increasing the radial extent of the laminar region especially in front of the divertor strike points could lead to an improvement in this respect and provide access to a high recycling regime. The radiation instability developing at high plasma densities in the helical divertor in TEXTOR is preceded by a transient partial detachment of the plasma from the divertor target plates and leads to the formation of a poloidally structured and helically inclined radiating belt, a helical divertor MARFE. While typically leading to a density limit disruption, this MARFE has been stabilised using a feedback system and could provide some divertor functionality such as low target temperature, increased neutral density and increased radiation within the stochastic boundary. Simulations using two different cross-field transport coefficients showed, that an agreement is only found at a certain level of cross-field transport (D {sub perpendicular} {sub to} =1 m{sup 2}s{sup -1}). The inclusion of carbon impurities in the simulations results in the experimentally observed reduction of the recycling flux. (orig.)

  9. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. (United States)

    Huang, Yibing; Feng, Qi; Yan, Qiuyan; Hao, Xueyu; Chen, Yuxin


    Cancer has become a serious concern in public health. Harmful side effects and multidrug resistance of traditional chemotherapy have prompted urgent needs for novel anticancer drugs or therapeutic approaches. Anticancer peptides (ACPs) have become promising molecules for novel anticancer agents because of their unique mechanism and several extraordinary properties. Most α-helical ACPs target the cell membrane, and interactions between ACPs and cell membrane components are believed to be the key factor in the selective killing of cancer cells. In this review, we focus on the exploitation of the structure and function of α-helical ACPs, including the distinction between cancer and normal cells, the proposed anticancer mechanisms, and the influence of physicochemical parameters of α-helical ACPs on the biological activities and selectivity against cancer cells. In addition, the design and modification methods to optimize the cell selectivity of α-helical ACPs are considered. Furthermore, the suitability of ACPs as cancer therapeutics is discussed.



    Surendra Vishvakarma*, Sanjay Kumbhare, K. K. Thakur


    This study presents a brief review of heat transfer through helical coil heat exchangers. Helical coils of circular cross section have been used in wide variety of applications due to simplicity in manufacturing. Enhancement in heat transfer due to helical coils has been reported by many researchers. While the heat transfer characteristics of double pipe helical heat exchangers are available in the literature, there exists no published experimental or theoretical analysis of a helically coile...

  11. A Conserved Cross Helicity for Non-Barotropic MHD

    CERN Document Server

    Yahalom, A


    Cross helicity is not conserved in non-barotropic magnetohydrodynamics (MHD) (as opposed to barotropic or incompressible MHD). Here we show that variational analysis suggests a new kind of cross helicity which is conserved in the non barotropic case. The non barotropic cross helicity reduces to the standard cross helicity under barotropic assumptions. The new cross helicity is conserved even for topologies for which the variational principle does not apply.

  12. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    Directory of Open Access Journals (Sweden)

    P. Kumar


    Full Text Available This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT and Köhler theory (KT to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method.

    Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to

  13. Helicity in the atmospheric boundary layer (United States)

    Kurgansky, Michael; Koprov, Boris; Koprov, Victor; Chkhetiani, Otto


    An overview is presented of recent direct field measurements at the Tsimlyansk Scientific Station of A.M. Obukhov Institute of Atmospheric Physics in Moscow of turbulent helicity (and potential vorticity) using four acoustic anemometers positioned, within the atmospheric surface-adjacent boundary layer, in the vertices of a rectangular tetrahedron, with an approximate 5 m distance between the anemometers and a 5.5 m elevation of the tetrahedron base above the ground surface (Koprov, Koprov, Kurgansky and Chkhetiani. Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol.51, 565-575). The same ideology was applied in a later field experiment in Tsimlyansk with the tetrahedron's size of 0.7 m and variable elevation over the ground from 3.5 to 25 m. It is illustrated with examples of the statistical distribution of instantaneous (both positive and negative) turbulent helicity values. A theory is proposed that explains the measured mean turbulent helicity sign, including the sign of contribution to helicity from the horizontal and vertical velocity & vorticity components, respectively, and the sign of helicity buoyant production term. By considering a superposition of the classic Ekman spiral solution and a jet-like wind profile that mimics a shallow breeze circulation over a non-uniformly heated Earth surface, a possible explanation is provided, why the measured mean turbulent helicity sign is negative. The pronounced breeze circulation over the Tsimlyansk polygon which is located nearby the Tsimlyansk Reservoir was, indeed, observed during the measurements period. Whereas, essentially positive helicity is injected into the boundary layer from the free atmosphere in the Northern Hemisphere.

  14. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats. (United States)

    Shukla, C; Koch, L G; Britton, S L; Cai, M; Hruby, V J; Bednarek, M; Novak, C M


    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Activation of cutaneous immune responses in complex regional pain syndrome (United States)

    Birklein, Frank; Drummond, Peter D.; Li, Wenwu; Schlereth, Tanja; Albrecht, Nahid; Finch, Philip M.; Dawson, Linda F.; Clark, J. David; Kingery, Wade S.


    The pathogenesis of complex regional pain syndrome (CRPS) is unresolved, but TNF-α and IL-6 are elevated in experimental skin blister fluid from CRPS affected limbs, as is tryptase, a marker for mast cells. In the rat fracture model of CRPS exaggerated sensory and sympathetic neural signaling stimulate keratinocyte and mast cell proliferation, causing the local production of high levels of inflammatory cytokines leading to pain behavior. The current investigation used CRPS patient skin biopsies to determine whether keratinocyte and mast cell proliferation occur in CRPS skin and to identify the cellular source of the up-regulated TNF-α, IL-6, and tryptase observed in CRPS experimental skin blister fluid. Skin biopsies were collected from the affected skin and the contralateral mirror site in 55 CRPS patients and the biopsy sections were immunostained for keratinocyte, cell proliferation, mast cell markers, TNF-α, and IL-6. In early CRPS keratinocytes were activated in the affected skin, resulting in proliferation, epidermal thickening, and up-regulated TNF-α and IL-6 expression. In chronic CRPS there was reduced keratinocyte proliferation with epidermal thinning in the affected skin. Acute CRPS patients also had increased mast cell accumulation in the affected skin, but there was no increase in mast cell numbers in chronic CRPS. PMID:24462502

  16. Static and Impulsive Models of Solar Active Regions (United States)

    Patsourakos, S.; Klimchuk, James A.


    The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.

  17. Lipophilic antioxidant activity of guava fruit varieties Palmira ICA I, Regional Roja and Regional Blanca in four ripening stages

    Directory of Open Access Journals (Sweden)

    Mauricio Espinal R


    Full Text Available We determined the lipophilic antioxidant activity and β-carotene content with HPLC-UV in guava fruit Psidium guajava L. varieties Palmira ICA I, Regional Roja and Regional Blanca in the ripening stages: green, semi-ripe, mature and senescent. It was established that the β-carotene content and lipophilic antioxidant activity increased during the ripening process up to the climacteric maximum and decreased during senescence; lipophilic antioxidant activity being higher in the varieties Palmira ICA I (13.06 μmol α-tocoferol/g fruit and regional roja (14.08 μmol a-tocopherol/g fruit and lower in the regional blanca variety (7.04 μmol a-tocopherol/g fruit, while β-carotene content was highest in the regional roja variety (85.26 Eq. retinol/100 g fruit followed by the varieties Palmira ICA I (10.53 Eq. retinol/100 g fruit and regional blanca (5.78 Eq. retinol/100 g fruit. The best correlation between lipophilic antioxidant activity and β-carotene content was observed in the ‘regional roja’ (r² = 0.830, while the varieties Palmira ICA I and regional blanca showed no correlation

  18. The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity (United States)

    Shukla, Ashutosh; Dey, Debajit; Banerjee, Kamalika; Nain, Anshu; Banerjee, Manidipa


    Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.

  19. Helical structure of basic proteins from spermatozoa. Comparison with model peptides. (United States)

    Verdaguer, N; Perelló, M; Palau, J; Subirana, J A


    We describe structural studies carried out with some basic proteins found in association with DNA in the spermatozoa of molluscs and echinoderms. We have studied proteins related to histone H1 as well as protamines. Structural prediction methods show that these proteins have a strong helical potential and contain several turns, mainly of the SPKK type. No beta structures were found. Strong structural similarities have been detected between distantly related species. The presence of helical regions is confirmed by circular dichroism in trifluoroethanol solution. The influence of the SPKK turns is also evident in the CD spectra. In proteins which contain a high percentage of arginine we conclude that conventional prediction methods should be modified in order to allow for a higher helical potential for this amino acid residue. Synthetic peptides with a sequence present in the C-terminal region of histone H1 have also been studied. It was found that octapeptides may only acquire a small amount of structure, whereas hexadecapeptides are 50-60% helical. These studies strongly suggest that both protamines and proteins related to the C-terminal part of histone H1 interact with DNA mainly in the alpha-helical conformation.

  20. Metallofoldamers supramolecular architectures from helicates to biomimetics

    CERN Document Server

    Maayan, Galia


    Metallofoldamers are oligomers that fold into three-dimensional structures in a controlled manner upon coordination with metal ions. Molecules in this class have shown an impressive ability to form single-handed helical structures and other three-dimensional architectures. Several metallofoldamers have been applied as sensors due to their selective folding when binding to a specific metal ion, while others show promise for applications as responsive materials on the basis of their ability to fold and unfold upon changes in the oxidation state of the coordinated metal ion, and as novel catalysts. Metallofoldamers: From Helicates to Biomimetic Architectures describes the variety of interactions between oligomers and metal species, with a focus on non-natural synthetic molecules. Topics covered include: the major classes of foldamers and their folding driving force metalloproteins and metalloenzymes helicates: self-assembly, structure and applications abiotic metallo-DNA metallo-PNA and iDNA metallopeptides inte...

  1. Trefoil knot timescales for reconnection and helicity (United States)

    Kerr, Robert M.


    Three-dimensional images of evolving numerical trefoil vortex knots are used to study the growth and decay of the enstrophy and helicity. Negative helicity density (hpreserved through the first reconnection, as suggested theoretically (Laing et al 2015 Sci. Rep. 5 9224) and observed experimentally (Scheeler et al 2014a Proc. Natl Acad. Sci. 111 15350–5). Next, to maintain the growth of the enstrophy and positive helicity within the trefoil while { H } is preserved, hgood correspondence between the evolution of the simulated vortices and the reconnecting experimental trefoil of Kleckner and Irvine (2017 Nat. Phys. 9 253–8) when time is scaled by their respective nonlinear timescales t f . The timescales t f are based upon by the radii r f of the trefoils and their circulations Γ, so long as the strong camber of the experimental hydrofoil models is used to correct the published experimental circulations Γ that use only the flat-plate approximation.

  2. The Maximum Free Magnetic Energy Allowed in a Solar Active Region (United States)

    Moore, Ronald L.; Falconer, David A.


    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  3. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K.; Ohdachi, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamoto, S. [Nagoya Univ., Dept. of Energy Engineering and Science, Nagoya, Aichi (JP)] [and others


    Characteristics of MHD instabilities and their impacts on plasma confinement are studied in current free plasmas of the Large Helical Device (LHD). Spontaneous L-H transition is often observed in high beta plasmas in the range of 2% averaged beta at low toroidal field (B{sub t} {<=} 0.6T). The stored energy rapidly rises with the transition, but quickly saturates due to the growth of m=2/n=3 and m=2/n=2 modes (m and n: poloidal and toroidal mode numbers) excited in the plasma edge region. Even in low beta plasmas, ELM activities are sometimes induced in high performance plasmas with a steep edge pressure gradient, and transiently reduce the stored energy by about 10%. Energetic ion driven MHD modes such as Alfven eigenmodes are studied in the very wide range of characteristic parameters: the averaged beta of energetic ions <{beta}{sub b//}> up to 5% and the ratio of energetic ion velocity to the Alfven velocity V{sub b//}/V{sub A} up to 2.5. In addition to the observation of toroidicity induced Alfven eigenmodes (TAEs), coherent magnetic fluctuations of helicity induced Alfven eigenmodes (HAEs) have been observed for the first time in NBI heated plasmas. The transition of the TAE to the global Alfven eigenmode (GAE) is also observed in a discharge with temporal evolution of the rotational transform profile, having a similarity to the phenomenon in a reversed shear tokamak. At low magnetic field, bursting TAEs transiently induce a significant loss of energetic ions, but lead to the transient improvement of bulk plasma confinement in the plasma central region. (author)

  4. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K.; Ohdachi, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamoto, S. [Nagoya Univ., Dept. of Energy Engineering and Science, Nagoya, Aichi (JP)] [and others


    Characteristics of MHD instabilities and their impacts on plasma confinement are studied in current free plasmas of the Large Helical Device (LHD). Spontaneous L-H transition is often observed in high beta plasmas in the range of 2% averaged beta at low toroidal field (B{sub t} {<=} 0.6 T). The stored energy rapidly rises by the transition, but quickly saturates by the growth of m=2/n=3 and m=2/n=2 modes (m and n: poloidal and toroidal mode numbers) excited in the plasma edge region. Even low beta plasmas, ELM like activities are sometimes induced in high performance plasmas with high edge pressure pedestal, and transiently reduce the stored energy by about 10%. Energetic ion driven MHD modes such as Alfven eigenmodes are studied in the very wide parameter range of the averaged beta of energetic ions <{beta}{sub b} sub (parallel)> up to 5% and the ratio of energetic ion velocity to the Alfven velocity V{sub b} sub (parallel)/V{sub A} up to 2.5. In addition to the observation of toroidicity induced Alfven eigenmodes (TAEs), coherent magnetic fluctuations of helicity induced Alfven eigenmodes (HAEs) have been observed for the first time in NBI heated plasmas. Transition of TAE to global Alfven eigenmode (GAE) is also observed in a discharge with temporal evolution of the rotational transform profile, having a similarity to the phenomenon in a reversed shear tokamak. At the low magnetic field, bursting TAEs enhance energetic ion loss transiently, but lead to the transient improvement of bulk plasma confinement in the plasma central region. (author)

  5. Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity (United States)

    De la Peña, Marcos; Gago, Selma; Flores, Ricardo


    Natural hammerhead ribozymes are mostly found in some viroid and viroid-like RNAs and catalyze their cis cleavage during replication. Hammerheads have been manipulated to act in trans and assumed to have a similar catalytic behavior in this artificial context. However, we show here that two natural cis-acting hammerheads self-cleave much faster than trans-acting derivatives and other reported artificial hammerheads. Moreover, modifications of the peripheral loops 1 and 2 of one of these natural hammerheads induced a >100-fold reduction of the self-cleavage constant, whereas engineering a trans-acting artificial hammerhead into a cis derivative by introducing a loop 1 had no effect. These data show that regions external to the central conserved core of natural hammerheads play a role in catalysis, and suggest the existence of tertiary interactions between these peripheral regions. The interactions, determined by the sequence and size of loops 1 and 2 and most likely of helices I and II, must result from natural selection and should be studied in order to better understand the hammerhead requirements in vivo. PMID:14532128

  6. Two theorems about electromagnetic force in activate anisotropic regions


    Spałek, Dariusz; Spałek, Dariusz


    ICEM 2010, Roma ICEM 2010, Roma The paper has dealt with two problems of calculation of electromagnetic force/torque. The first one is for magnetically anisotropic and conductive region. It has been presented sufficient condition for surface-integral representation of electromagnetic force/torque in conductive and anisotropic region. The second approach deals with the problem of independence of force/torque calculated value from shape of integral-surface. The second theorem gives the su...

  7. Electromagnetic field generated by a charge moving along a helical orbit inside a dielectric cylinder


    Saharian, A. A.; Kotanjyan, A.S.; Grigoryan, M. L.


    The electromagnetic field generated by a charged particle moving along a helical orbit inside a dielectric cylinder immersed into a homogeneous medium is investigated. Expressions are derived for the electromagnetic potentials, electric and magnetic fields in the region inside the cylinder. The parts corresponding to the radiation field are separated. The radiation intensity on the lowest azimuthal mode is studied.

  8. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface

    DEFF Research Database (Denmark)

    Kleissl, K.; Georgakis, C.T.


    In this paper, the aerodynamics of bridge cables with helical fillets and a pattern-indented surface are examined. To this end, an extensive wind-tunnel test campaign was undertaken to measure the static force coefficients about the critical Reynolds number region, with varying relative cable...

  9. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure. (United States)

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G


    We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.

  10. The Source of Helicity in Perfluorinated N-Alkanes


    Jang, Seung Soon; Blanco, Mario; Goddard, William A.; Caldwell, Gregg; Ross, Richard B.


    The well-known helical conformations of double stranded DNA and poly(alanine) are stabilized by inter- and intramolecular hydrogen bonds, respectively. Perfluorinated n-alkanes also exhibit stable helical conformations, with ordered chiralities at low temperatures. In the absence of hydrogen bonds, one may ask what forces stabilize perfluorinated n-alkane helices. We combine ab initio and empirical data to study the likely classical source of this helical behavior. Past studies point to bad s...

  11. Review of the helicity formalism; Revision del formalismo de helicidad

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, F.; Cerrada, M.; Fernandez, E.


    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs.

  12. Arts and Leisure Activities in the St. Louis Region. (United States)

    Crowther, Betty; Kahn, Alfred


    Factor analysis of a 1978 survey of St. Louis shows that different age, race, and educational attainment segments have approximately the same patterns of interest, participation, and enjoyment in leisure activities. Leisure activities of four types of fine arts activities--arts, music-dance, visual arts, and nonarts types--are described.…

  13. Artificial, parallel, left-handed DNA helices. (United States)

    Tian, Cheng; Zhang, Chuan; Li, Xiang; Li, Yingmei; Wang, Guansong; Mao, Chengde


    This communication reports an engineered DNA architecture. It contains multiple domains of half-turn-long, standard B-DNA duplexes. While each helical domain is right-handed and its two component strands are antiparallel, the global architecture is left-handed and the two component DNA strands are oriented parallel to each other.

  14. Helical chirality induction of expanded porphyrin analogues

    Indian Academy of Sciences (India)

    Helical porphyrin analogues. 1163. References. 1. (a) Jasat A and Dolphin A 1997 Chem. Rev. 97 2267;. (b) Sessler J L, Gebauer A and Weghorn S J 2000 in The porphyrin handbook, vol. 2, K M Kadish, K M Smith,. R Guilard (eds) (San Diego: Academic Press) pp55;. (c) Sessler J L and Seidel D 2003 Angew. Chem. Int.

  15. Fermion Helicity Flip Induced by Torsion Field


    Capozziello, S.; Iovane, G.; Lambiase, G.; Stornaiolo, C.


    We show that in theories of gravitation with torsion the helicity of fermion particles is not conserved and we calculate the probability of spin flip, which is related to the anti-symmetric part of affine connection. Some cosmological consequences are discussed.

  16. Muon Beam Helical Cooling Channel Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A


    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  17. The prediction of amphiphilic alpha-helices. (United States)

    Phoenix, D A; Harris, F; Daman, O A; Wallace, J


    A number of sequence-based analyses have been developed to identify protein segments, which are able to form membrane interactive amphiphilic alpha-helices. Earlier techniques attempted to detect the characteristic periodicity in hydrophobic amino acid residues shown by these structure and included the Molecular Hydrophobic Potential (MHP), which represents the hydrophobicity of amino acid residues as lines of isopotential around the alpha-helix and analyses based on Fourier transforms. These latter analyses compare the periodicity of hydrophobic residues in a putative alpha-helical sequence with that of a test mathematical function to provide a measure of amphiphilicity using either the Amphipathic Index or the Hydrophobic Moment. More recently, the introduction of computational procedures based on techniques such as hydropathy analysis, homology modelling, multiple sequence alignments and neural networks has led to the prediction of transmembrane alpha-helices with accuracies of the order of 95% and transmembrane protein topology with accuracies greater than 75%. Statistical approaches to transmembrane protein modeling such as hidden Markov models have increased these prediction levels to an even higher level. Here, we review a number of these predictive techniques and consider problems associated with their use in the prediction of structure / function relationships, using alpha-helices from G-coupled protein receptors, penicillin binding proteins, apolipoproteins, peptide hormones, lytic peptides and tilted peptides as examples.

  18. Topological characteristics of helical repeat proteins

    NARCIS (Netherlands)

    Groves, M R; Barford, D

    The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem

  19. Beta sheets with a twist: the conformation of helical polyisocyanopeptides determined by using vibrational circular dichroism. (United States)

    Schwartz, Erik; Liégeois, Vincent; Koepf, Matthieu; Bodis, Pavol; Cornelissen, Jeroen J L M; Brocorens, Patrick; Beljonne, David; Nolte, Roeland J M; Rowan, Alan E; Woutersen, Sander; Champagne, Benoît


    Detailed information on the architecture of polyisocyanopeptides based on vibrational circular dichroism (VCD) spectroscopy in combination with DFT calculations is presented. It is demonstrated that the screw sense of the helical polyisocyanides can be determined directly from the C=N-stretch vibrational region of the VCD spectrum. Analysis of the VCD signals associated with the amide I and amide II modes provides detailed information on the peptide side-chain arrangement in the polymer and indicates the presence of a helical β-sheet architecture, in which the dihedral angles are slightly different to those of natural β-sheet helices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Numerical modelling of pullout of helical soil nail

    Directory of Open Access Journals (Sweden)

    Saurabh Rawat


    Full Text Available An investigation into the pullout response of helical soil nail using finite element subroutine Plaxis 2D is presented. The numerical modelling of actual pullout response is achieved by axisymmetric and horizontal loading condition. The effect of varying number of helical plates, helical plate spacing and helical plate diameter is studied to understand the pullout capacity behaviour. The failure surfaces for various helical soil nail configurations and their pullout mechanisms are also analysed and discussed. The pullout capacity is found to increase with increase in number of helical plates. The helical plate spacing ratio (s/Dh and diameter ratio (Dh/Ds are found to increase the pullout only up to a critical value. The response of helical soil nail using axisymmetric finite element simulation is found similar to the uplift behaviour of helical piles and helical soil anchors. In the absence of literature regarding numerical modelling of helical soil nail, simulation results are validated with uplift responses of helical piles and soil anchors. A good agreement in their comparative study for pullout response is also observed.

  1. Modeling of high gain helical antenna for improved performance ...

    African Journals Online (AJOL)

    The modeling of High Gain Helical Antenna structure is subdivided into three sections : introduction of helical structures ,Numerical analysis, modeling and simulation based on the parameters of helical antenna. The basic foundation software for the research paper is Matlab technical computing software, the modeling were ...

  2. Structure determination of helical filaments by solid-state NMR spectroscopy (United States)

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane


    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  3. Electrochemical sensor for rutin detection based on Au nanoparticle-loaded helical carbon nanotubes (United States)

    Yang, Haitang; Li, Bingyue; Cui, Rongjing; Xing, Ruimin; Liu, Shanhu


    The key step in the fabrication of highly active electrochemical sensors is seeking multifunctional nanocomposites as electrode modified materials. In this study, the gold nanoparticle-decorated helical carbon nanotube nanocomposites (AuNPs-HCNTs) were fabricated for rutin detection because of its superior sensitivity, the chemical stability of AuNPs, and the superior conductivity and unique 3D-helical structure of helical carbon nanotubes. Results showed the prepared nanocomposites exhibited superior electrocatalytic activity towards rutin due to the synergetic effects of AuNPs and HCNTs. Under the optimized conditions, the developed sensor exhibited a linear response range from 0.1 to 31 μmol/L for rutin with a low detectable limit of 81 nmol/L. The proposed method might offer a possibility for electrochemical analysis of rutin in Chinese medical analysis or serum monitoring owing to its low cost, simplicity, high sensitivity, good stability, and few interferences against common coexisting ions in real samples.

  4. Activization of the state policy on euro-regional cooperation in the sphere of the interstate regional governance

    Directory of Open Access Journals (Sweden)

    V. I. Pak


    Research objective is the justification of the need of activization of the state policy on Euro-regional cooperation in the sphere of the interstate regional governance. During the research it is recognized that the realization of the state policy on the basis of the considered principles, tools, functions, factors and methods has to execute a main objective of the interstate regional control which is exercised in the sphere of Euro-regional cooperation and to promote adjustment of close mutually beneficial relations of Ukraine and neighboring states, to increase competitiveness of the Ukrainian territories and the most effective use of capacity of the Ukrainian regions in the course of activity of Euro-regions. Finally, such state policy has to be focused on the maintenance of the sufficient standard of living of the population, on ensuring integrity and unity of the social and economic space of the country, on formation of the conditions of sustainable and industrial and innovative development of regions, which will provide its harmonious integration into the European environment.

  5. Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Török, Tibor; Titov, Viacheslav S. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, James E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here, we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs: two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL shear between these two groups is much less pronounced, which suggests that the degree of current neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.

  6. The Geography of Entrepreneurial Activity and Regional Economic Development : Multilevel Analyses for Dutch and European Regions

    NARCIS (Netherlands)

    Bosma, N.S.


    Countries and regions are committed to stimulating entrepreneurship by opening doors to (potential) entrepreneurs. The commonly held belief is that a variety of entrepreneurs would lead to an enriched dynamic environment and as such lies at the root of economic prosperity. Over the past 25 years,

  7. Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. (United States)

    Shin, So-I; Ham, Seokjin; Park, Jihwan; Seo, Seong Hye; Lim, Chae Hyun; Jeon, Hyeongrin; Huh, Jounghyun; Roh, Tae-Young


    Z-DNA, a left-handed double helical DNA is structurally different from the most abundant B-DNA. Z-DNA has been known to play a significant role in transcription and genome stability but the biological meaning and positions of Z-DNA-forming sites (ZFSs) in the human genome has not been fully explored. To obtain genome-wide map of ZFSs, Zaa with two Z-DNA-binding domains was used for ChIP-Seq analysis. A total of 391 ZFSs were found and their functions were examined in vivo A large portion of ZFSs was enriched in the promoter regions and contain sequences with high potential to form Z-DNA. Genes containing ZFSs were occupied by RNA polymerase II at the promoters and showed high levels of expression. Moreover, ZFSs were significantly related to active histone marks such as H3K4me3 and H3K9ac. The association of Z-DNA with active transcription was confirmed by the reporter assay system. Overall, our results suggest that Z-DNA formation depends on chromatin structure as well as sequence composition, and is associated with active transcription in human cells. The global information about ZFSs positioning will provide a useful resource for further understanding of DNA structure-dependent transcriptional regulation. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Livelihood activities of migrants from Ghana's northern regions ...

    African Journals Online (AJOL)

    With migration being one of the strategies adopted for poverty reduction, livelihood activities of migrants have become a topic of particular interest. One of the key issues relates to whether at destination migrants maintain the same livelihood activities of their places of origin or they engage in entirely different ventures.

  9. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Elena Gabrielli

    Full Text Available We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc of human IgG(1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.

  10. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.


    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  11. Suppression and control of leakage field in electromagnetic helical microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others


    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  12. Receptor-mediated regional sympathetic nerve activation by leptin.


    Haynes, W G; Morgan, D. A.; Walsh, S.A.; Mark, A. L.; Sivitz, W I


    Leptin is a peptide hormone produced by adipose tissue which acts centrally to decrease appetite and increase energy expenditure. Although leptin increases norepinephrine turnover in thermogenic tissues, the effects of leptin on directly measured sympathetic nerve activity to thermogenic and other tissues are not known. We examined the effects of intravenous leptin and vehicle on sympathetic nerve activity to brown adipose tissue, kidney, hindlimb, and adrenal gland in anesthetized Sprague-Da...

  13. Mapping Cryo-volcanic Activity from Enceladus’ South Polar Region (United States)

    Tigges, Mattie; Spitale, Joseph N.


    Using Cassini images taken of Enceladus’ south polar plumes at various times and orbital locations, we are producing maps of eruptive activity at various times. The purpose of this experiment is to understand the mechanism that controls the cryo-volcanic eruptions.The current hypothesis is that Tiger Stripe activity is modulated by tidal forcing, which would predict a correlation between orbital phase and the amount and distribution of eruptive activity. The precise nature of those correlations depends on how the crust is failing and how the plumbing system is organized.We use simulated curtains of ejected material that are superimposed over Cassini images, obtained during thirteen different flybys, taken between mid-2009 and mid-2012. Each set represents a different time and location in Enceladus’ orbit about Saturn, and contains images of the plumes from various angles. Shadows cast onto the backlit ejected material by the terminator of the moon are used to determine which fractures were active at that point in the orbit.Maps of the spatial distribution of eruptive activity at various orbital phases can be used to evaluate various hypotheses about the failure modes that produce the eruptions.

  14. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions

    Directory of Open Access Journals (Sweden)

    Guðjón Ólafsson


    Full Text Available The spindle assembly checkpoint (SAC is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2.

  15. Weyl spinors and the helicity formalism

    CERN Document Server

    Diaz-Cruz, J Lorenzo; Meza-Aldama, O; Perez, Jonathan Reyes


    In this work we give a review of the original formulation of the relativistic wave equation for particles with spin one-half. Traditionally \\`a la Dirac, it's proposed that the ``square root'' of the Klein-Gordon (K-G) equation involves a 4 component (Dirac) spinor and in the non-relativistic limit it can be written as 2 equations for two 2 component spinors. On the other hand, there exists Weyl's formalism, in which one works from the beginning with 2 component Weyl spinors, which are the fundamental objects of the helicity formalism. In this work we rederive Weyl's equations directly, starting from K-G equation. We also obtain the electromagnetic interaction through minimal coupling and we get the interaction with the magnetic moment. As an example of the use of that formalism, we calculate Compton scattering using the helicity methods.

  16. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A


    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  17. Weaving Knotted Vector Fields with Tunable Helicity (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R.; Irvine, William T. M.


    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  18. Laser modes with helical wave fronts (United States)

    Harris, M.; Hill, C. A.; Tapster, P. R.; Vaughan, J. M.


    We report the operation of an argon-ion laser in pure (single-frequency) ``doughnut'' modes of order m=1, 2, and 3. The phase discontinuity at the center of these modes leads to striking two-beam interference patterns that clearly demonstrate the existence of a helical cophasal surface (wave front). The doughnut mode with m=1 (usually called TEM*01) displays a forking interference fringe pattern characteristic of a pure single helix. The m=2 mode shows a pattern with four extra prongs, establishing that the cophasal surface is a two-start or double helix; the m=3 mode is a triple helix with a six-extra-pronged pattern. Each pure doughnut mode is shown to have two possible states corresponding to output wave fronts of opposite helicity.

  19. Weaving Knotted Vector Fields with Tunable Helicity. (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M


    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  20. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Energy Technology Data Exchange (ETDEWEB)

    García-Martínez, Pablo Luis, E-mail: [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Sede Andina—Universidad Nacional de Río Negro (UNRN), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Lampugnani, Leandro Gabriel; Farengo, Ricardo [Instituto Balseiro and Centro Atómico Bariloche (CAB-CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina)


    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  1. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment (United States)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo


    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  2. Winding light beams along elliptical helical trajectories


    Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan


    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We develop a superposition caustic method capable of winding light beams along non-convex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implement the...

  3. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. (United States)

    Stice, Eric; Burger, Kyle S; Yokum, Sonja


    Although the intake of high-fat and high-sugar food activates mesolimbic reward, gustatory, and oral somatosensory brain regions, contributing to overeating, few studies have examined the relative role of fat and sugar in the activation of these brain regions, which would inform policy, prevention, and treatment interventions designed to reduce obesity. We evaluated the effect of a high-fat or high-sugar equicaloric chocolate milkshake and increasing fat or sugar milkshake content on the activation of these regions. Functional magnetic resonance imaging was used to assess the neural response to the intake of high-fat/high-sugar, high-fat/low-sugar, low-fat/high-sugar, and low-fat/low-sugar chocolate milkshakes and a tasteless solution in 106 lean adolescents (mean ± SD age = 15.00 ± 0.88 y). Analyses contrasted the activation to the various milkshakes. High-fat compared with high-sugar equicaloric milkshakes caused greater activation in the bilateral caudate, postcentral gyrus, hippocampus, and inferior frontal gyrus. High-sugar compared with high-fat equicaloric milkshakes caused greater activation in the bilateral insula extending into the putamen, the Rolandic operculum, and thalamus, which produced large activation regions. Increasing sugar in low-fat milkshakes caused greater activation in the bilateral insula and Rolandic operculum; increasing fat content did not elicit greater activation in any region. Fat caused greater activation of the caudate and oral somatosensory regions than did sugar, sugar caused greater activation in the putamen and gustatory regions than did fat, increasing sugar caused greater activity in gustatory regions, and increasing fat did not affect the activation. Results imply that sugar more effectively recruits reward and gustatory regions, suggesting that policy, prevention, and treatment interventions should prioritize reductions in sugar intake. This trial was registered at as DK092468.

  4. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions123 (United States)

    Burger, Kyle S; Yokum, Sonja


    Background: Although the intake of high-fat and high-sugar food activates mesolimbic reward, gustatory, and oral somatosensory brain regions, contributing to overeating, few studies have examined the relative role of fat and sugar in the activation of these brain regions, which would inform policy, prevention, and treatment interventions designed to reduce obesity. Objective: We evaluated the effect of a high-fat or high-sugar equicaloric chocolate milkshake and increasing fat or sugar milkshake content on the activation of these regions. Design: Functional magnetic resonance imaging was used to assess the neural response to the intake of high-fat/high-sugar, high-fat/low-sugar, low-fat/high-sugar, and low-fat/low-sugar chocolate milkshakes and a tasteless solution in 106 lean adolescents (mean ± SD age = 15.00 ± 0.88 y). Analyses contrasted the activation to the various milkshakes. Results: High-fat compared with high-sugar equicaloric milkshakes caused greater activation in the bilateral caudate, postcentral gyrus, hippocampus, and inferior frontal gyrus. High-sugar compared with high-fat equicaloric milkshakes caused greater activation in the bilateral insula extending into the putamen, the Rolandic operculum, and thalamus, which produced large activation regions. Increasing sugar in low-fat milkshakes caused greater activation in the bilateral insula and Rolandic operculum; increasing fat content did not elicit greater activation in any region. Conclusions: Fat caused greater activation of the caudate and oral somatosensory regions than did sugar, sugar caused greater activation in the putamen and gustatory regions than did fat, increasing sugar caused greater activity in gustatory regions, and increasing fat did not affect the activation. Results imply that sugar more effectively recruits reward and gustatory regions, suggesting that policy, prevention, and treatment interventions should prioritize reductions in sugar intake. This trial was registered at

  5. Anion Recognition by Aliphatic Helical Oligoureas. (United States)

    Diemer, Vincent; Fischer, Lucile; Kauffmann, Brice; Guichard, Gilles


    Anion binding properties of neutral helical foldamers consisting of urea type units in their backbone have been investigated. (1) H NMR titration studies in various organic solvents including DMSO suggest that the interaction between aliphatic oligoureas and anions (CH3 COO(-) , H2 PO4(-) , Cl(-) ) is site-specific, as it largely involves the urea NHs located at the terminal end of the helix (positive pole of the helix), which do not participate to the helical intramolecular hydrogen-bonding network. This mode of binding parallels that found in proteins in which anion-binding sites are frequently found at the N-terminus of an α-helix. (1) H NMR studies suggest that the helix of oligoureas remains largely folded upon anion binding, even in the presence of a large excess of the anion. This study points to potentially useful applications of oligourea helices for the selective recognition of small guest molecules. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Propulsion of microorganisms by a helical flagellum. (United States)

    Rodenborn, Bruce; Chen, Chih-Hung; Swinney, Harry L; Liu, Bin; Zhang, H P


    The swimming of a bacterium or a biomimetic nanobot driven by a rotating helical flagellum is often interpreted using the resistive force theory developed by Gray and Hancock and by Lighthill, but this theory has not been tested for a range of physically relevant parameters. We test resistive force theory in experiments on macroscopic swimmers in a fluid that is highly viscous so the Reynolds number is small compared to unity, just as for swimming microorganisms. The measurements are made for the range of helical wavelengths λ, radii R, and lengths L relevant to bacterial flagella. The experiments determine thrust, torque, and drag, thus providing a complete description of swimming driven by a rotating helix at low Reynolds number. Complementary numerical simulations are conducted using the resistive force theories, the slender body theories of Lighthill and Johnson, and the regularized Stokeslet method. The experimental results differ qualitatively and quantitatively from the predictions of resistive force theory. The difference is especially large for and/or , parameter ranges common for bacteria. In contrast, the predictions of Stokeslet and slender body analyses agree with the laboratory measurements within the experimental uncertainty (a few percent) for all λ, R, and L. We present code implementing the slender body, regularized Stokeslet, and resistive force theories; thus readers can readily compute force, torque, and drag for any bacterium or nanobot driven by a rotating helical flagellum.

  7. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter


    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...


    Directory of Open Access Journals (Sweden)



    Full Text Available This numerical research is introducing the concept of helical cone coils and their enhanced heat transfer characteristics compared to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil known as Dean Vortex. The Dean number which is a dimensionless number used to describe the Dean vortex is a function of Reynolds number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean number. Two scenarios were adopted to study the effect of changing the taper angle (curvature ratio on the heat transfer characteristics of the coil; the commercial software FLUENT was used in the investigation. It was found that Nusselt number increased with increasing the taper angle. A MATLAB code was built based on empirical correlation of Manlapaz and Churchill for ordinary helical coils to calculate the Nusselt number at each coil turn, and then calculate the average Nusselt number for the entire coil turns, the CFD simulation results were found acceptable when compared with the MATLAB results.

  9. Temperature and density structure of a recurring active region jet (United States)

    Mulay, Sargam M.; Zanna, Giulio Del; Mason, Helen


    Aims: We present a study of a recurring jet observed on October 31, 2011 by the Atmosphereic Imaging Assembly (AIA) on board the Solar Dynamic Observatory, the X-ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) on board Hinode. We discuss the physical parameters of the jet that are obtained using imaging and spectroscopic observations, such as density, differential emission measure, peak temperature, velocity, and filling factor. Methods: A differential emission measure (DEM) analysis was performed at the region of the jet spire and the footpoint using EIS observations and also by combining AIA and XRT observations. The resulting EIS DEM curves were compared to those obtained with AIA-XRT. The DEM curves were used to create synthetic spectra with the CHIANTI atomic database. The predicted total count rates for each AIA channel were compared with the observed count rates. The effects of varying elemental abundances and the temperature range for the DEM inversion were investigated. Spectroscopic diagnostics were used to obtain an electron number density distribution for the jet spire and the jet footpoint. Results: The plasma along the line of sight in the jet spire and jet footpoint was found to be peak at 2.0 MK (log T [K] = 6.3). We calculated electron densities using the Fe XII (λ186/λ195) line ratio in the region of the spire (Ne = 7.6 × 1010 cm-3) and the footpoint (1.1 × 1011 cm-3). The plane-of-sky velocity of the jet is found to be 524 km s-1. The resulting EIS DEM values are in good agreement with those obtained from AIA-XRT. The synthetic spectra contributing to each AIA channel confirms the multi-thermal nature of the AIA channels in both regions. There is no indication of high temperatures, such as emission from Fe XVII (λ254.87) (log T [K] = 6.75) seen in the jet spire. In the case of the jet footpoint, synthetic spectra predict weak contributions from Ca XVII (λ192.85) and Fe XVII (λ254.87). With further investigation, we confirmed

  10. Centro Regional de Ciencias Nucleares (a Brazilian regional center for nuclear sciences) - activities report - 1999; Centro Regional de Ciencias Nucleares - relatorio de atividades - 1999

    Energy Technology Data Exchange (ETDEWEB)



    The annual activities report of 1999 of nuclear sciences regional center - Brazilian organization - introduces the next main topics: institutional relations; sectorial actions - logistic support and training, laboratory of radiation protection and dosimetry, laboratory of metrology, laboratory of chemical characterization; technical and scientific events; and financial resources and perspectives for 2000.

  11. Helical peptaibol mimics are better ionophores when racemic than when enantiopure. (United States)

    Pike, Sarah J; Jones, Jennifer E; Raftery, James; Clayden, Jonathan; Webb, Simon J


    Helical peptide foldamers rich in α-aminoisobutyric acid (Aib) act as peptaibol-mimicking ionophores in the phospholipid bilayers of artificial vesicles. Racemic samples of these foldamers are more active than their enantiopure counterparts, which was attributed to differing propensities to form aggregates with crystal-like features in the bilayer.

  12. Insulin mimetic peptide S371 folds into a helical structure. (United States)

    Mohammadiarani, Hossein; Vashisth, Harish


    Insulin plays a crucial physiological role in glucose control by initiating a number of signaling events on binding and activating its cell surface receptor. Insulin mimics have, therefore, become promising agents for treating diabetes and to probe the mechanism of interaction of insulin with its receptor. Specifically, many insulin-mimetic peptide sequences have been discovered and found to selectively function as agonists and antagonists, but their structures and the mechanistic details of their interactions with the receptor remain challenging to characterize. In this work, we have studied the folding properties and structure of a Site 1 insulin mimetic peptide S371 that has sequence similarities with the insulin B-chain as well as with a critical hormone-binding element of the receptor known as the C-terminal (CT) peptide. We first validated our simulation approaches by predicting the known solution structure of the insulin B-chain helix and then applied them to study the folding of the mimetic peptide S371. Our data predict a helical fold for the first 16 residues of S371 that has a resemblance to the helical motifs in the insulin B-chain and CT. We also propose receptor-bound models of S371 that provide mechanistic explanations for competing binding properties of S371 and CT to the Site 1 of IR. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay


    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  14. Nonequilibrium transport between helical Luttinger liquids leads or helical Majorana modes (United States)

    Chao, Sung Po; Silotri, Salman; Chung, Chung Hou


    We study a steady state non-equilibrium transport between (i) two interacting helical edge states of a two dimensional topological insulator, described by helical Luttinger liquids, through a quantum dot or tunneling junction. (ii) one Luttinger liquids lead and a helical Majorana modes lead connected by tunneling junction(s). We find the metal-to-insulator quantum phase transition for attractive or repulsive interactions in the leads when the magnitude of the interaction strength characterized by a charge sector Luttinger parameter goes beyond a critical value. The authors acknowledge NSC grant No.101-2628-M-009-001-MY3, the MOE-ATU program, the CTS of NCTU, the NCTS and NTHU of Taiwan, R.O.C.

  15. Internal transport barrier in tokamak and helical plasmas (United States)

    Ida, K.; Fujita, T.


    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the

  16. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis (United States)

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.


    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  17. Transport barriers in helical equilibria: structural change in the reversed field pinch (United States)

    Martin, Piero


    Self-organization of RFX plasmas in single helical axis equilibrium, with m=1,n=7 helicity, is a structural change for the reversed field pinch (RFP) [Lorenzini et al., Nature Phys 2009 doi:10.1038/nphys1308]. This happens at high plasma current (I>1 MA) while axisymmetric boundary conditions are enforced: the helical state has almost conserved magnetic flux surfaces, interpreted as ghost surfaces [Hudson&Breslau PRL 2008], leading to strong core electron transport barriers. Electron temperature Te reaches 1.3keV @1.7MA. Ion temperature Ti is ˜(0.5-0.75)Te, consistent with collisional ion heating. The core barrier extends up to ˜0.65r/a. Magnetic surfaces quality improves with Lundquist number S, thanks to the simultaneous decrease of magnetic chaos and increase of the helical field strength. Helical equilibria are reconstructed by the 3d code VMEC. The (1,7) helicity acts to hold the core safety factor almost flat and below 1/7. The barrier foot coincides with a zero magnetic shear region, where density of rational surfaces is minimum, as in other configurations. Plasma-wall interaction is smoother. Main gas particle confinement time improves in pellet-fuelled plasmas, with record value ˜10ms. No core impurity accumulation is evident in Laser Blow Off experiments, which is consistent with numerical simulation results. High current sets a transition also for the edge, where robust Te gradients are observed with a pedestal of ˜1keV in ˜3cm, possibly due to improved magnetic topology and synergic with core barrier. As persistence and quality of these improved helical states increase with current, the likelihood of achieving steady helical multi-MA RFPs can be inferred. RFX experiments allow a study of the beneficial effects of non-axisymmetric shaping and may provide a platform for a more general validation of theoretical tools developed for stellarators. Moreover, these results are transformational in supporting the RFP as a low-external field, non

  18. Regions important for the adhesin activity of Moraxella catarrhalis Hag

    Directory of Open Access Journals (Sweden)

    Lafontaine Eric R


    Full Text Available Abstract Background The Moraxella catarrhalis Hag protein, an Oca autotransporter adhesin, has previously been shown to be important for adherence of this respiratory tract pathogen to human middle ear and A549 lung cells. Results The present study demonstrates that adherence of M. catarrhalis isogenic hag mutant strains to the human epithelial cell lines Chang (conjunctival and NCIH292 (lung is reduced by 50–93%. Furthermore, expressing Hag in a heterologous Escherichia coli background substantially increased the adherence of recombinant bacteria to NCIH292 cells and murine type IV collagen. Hag did not, however, increase the attachment of E. coli to Chang cells. These results indicate that Hag directly mediates adherence to NCIH292 lung cells and collagen, but is not sufficient to confer binding to conjunctival monolayers. Several in-frame deletions were engineered within the hag gene of M. catarrhalis strain O35E and the resulting proteins were tested for their ability to mediate binding to NCIH292 monolayers, middle ear cells, and type IV collagen. These experiments revealed that epithelial cell and collagen binding properties are separable, and that residues 385–705 of this ~2,000 amino acid protein are important for adherence to middle ear and NCIH292 cells. The region of O35E-Hag encompassing aa 706 to 1194 was also found to be required for adherence to collagen. In contrast, β-roll repeats present in Hag, which are structural features conserved in several Oca adhesins and responsible for the adhesive properties of Yersinia enterocolitica YadA, are not important for Hag-mediated adherence. Conclusion Hag is a major adherence factor for human cells derived from various anatomical sites relevant to pathogenesis by M. catarrhalis and its structure-function relationships differ from those of other, closely-related autotransporter proteins.

  19. Helical peptide-polyamine and -polyether conjugates as synthetic ionophores. (United States)

    Benincasa, Monica; Francescon, Marco; Fregonese, Massimo; Gennaro, Renato; Pengo, Paolo; Rossi, Paola; Scrimin, Paolo; Tecilla, Paolo


    Two new synthetic ionophores in which the hydrophobic portion is represented by a short helical Aib-peptide (Aib=α-amino-isobutyric acid) and the hydrophilic one is a poly-amino (1a) or a polyether (1b) chain have been prepared. The two conjugates show a high ionophoric activity in phospholipid membranes being able to efficiently dissipate a pH gradient and, in the case of 1b, to transport Na(+) across the membrane. Bioactivity evaluation of the two conjugates shows that 1a has a moderate antimicrobial activity against a broad spectrum of microorganisms and it is able to permeabilize the inner and the outer membrane of Escherichia coli cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Single-handed helical carbonaceous nanotubes prepared using a pair of cationic low molecular weight gelators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Huayan; Wang, Qing; Guo, Yongmin; Li, Baozong; Li, Yi, E-mail:; Yang, Yonggang


    Highlights: • 3-aminophenol-formaldeyde resins were prepared through a templating method. • A pair of cationic gelators have been used as the templates. • Single-handed helical carbonaceous nanotubes were obtained after carbonization. • The carbonaceous nanotubes showed optical activity. - Abstract: We design a facile route to obtain enantiopure carbonaceous nanostructures, which have potential application as chiral sensors, electromagnetic wave absorbers, and asymmetric catalysts. A pair of cationic low molecular weight gelators was synthesized, which were able to self-assemble into twisted nanoribbons in ethanol at a concentration of 20 g L{sup −1} at 25 °C. Single-handed helical 3-aminophenol-formaldehyde resin nanotubes with optical activity were prepared using the self-assembly of the low molecular weight gelators as templates. After carbonization, single-handed helical carbonaceous nanotubes were obtained and characterized using circular dichroism, wide-angle X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the walls of the nanotubes are amorphous carbon. Moreover, the left- and right-handed helical nanotubes exhibit opposite optical activity.

  1. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates. (United States)

    Miyake, Hiroyuki; Tsukube, Hiroshi


    'Chirality switching' is one of the most important chemical processes controlling many biological systems. DNAs and proteins often work as time-programmed functional helices, in which specific external stimuli alter the helical direction and tune the time scale of subsequent events. Although a variety of organic foldamers and their hybrids with natural helices have been developed, we highlight coordination chemistry strategies for development of structurally and functionally defined metal helicates. These metal helicates have characteristic coordination geometries, redox reactivities and spectroscopic/magnetic properties as well as complex chiralities. Several kinds of inert metal helicates maintain rigid helical structures and their stereoisomers are separable by optical resolution techniques, while labile metal helicates offer dynamic inversion of their helical structures via non-covalent interactions with external chemical signals. The latter particularly have dynamically ordered helical structures, which are controlled by the combinations of metal centres and chiral ligands. They further function as time-programmable switches of chirality-derived dynamic rotations, translations, stretching and shape flipping, which are useful applications in nanoscience and related technology.

  2. Cooperative folding of the isolated alpha-helical domain of hen egg-white lysozyme. (United States)

    Bai, P; Peng, Z


    Proteins in the alpha-lactalbumin and c-type lysozyme family have been studied extensively as model systems in protein folding. Early formation of the alpha-helical domain is observed in both alpha-lactalbumin and c-type lysozyme; however, the details of the kinetic folding pathways are significantly different. The major folding intermediate of hen egg-white lysozyme has a cooperatively formed tertiary structure, whereas the intermediate of alpha-lactalbumin exhibits the characteristics of a molten globule. In this study, we have designed and constructed an isolated alpha-helical domain of hen egg-white lysozyme, called Lyso-alpha, as a model of the lysozyme folding intermediate that is stable at equilibrium. Disulfide-exchange studies show that under native conditions, the cysteine residues in Lyso-alpha prefer to form the same set of disulfide bonds as in the alpha-helical domain of full-length lysozyme. Under denaturing conditions, formation of the nearest-neighbor disulfide bonds is strongly preferred. In contrast to the isolated alpha-helical domain of alpha-lactalbumin, Lyso-alpha with two native disulfide bonds exhibits a well-defined tertiary structure, as indicated by cooperative thermal unfolding and a well-dispersed NMR spectrum. Thus, the determinants for formation of the cooperative side-chain interactions are located mainly in the alpha-helical domain. Our studies suggest that the difference in kinetic folding pathways between alpha-lactalbumin and lysozyme can be explained by the difference in packing density between secondary structural elements and support the hypothesis that the structured regions in a protein folding intermediate may correspond to regions that can fold independently. Copyright 2001 Academic Press.

  3. Numerical simulation of an excited round jet under helical disturbances by three-dimensional discrete vortex method; Helical kakuran ni yoru reiki enkei funryu no uzuho simulation

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, S.; Kiya, M.; Mochizuki, O. [Hokkaido University, Sapporo (Japan)


    The evolution of vortical structure in an impulsively started round jet has been studied numerically by means of a three-dimensional vortex blob method. The viscous diffusion of vorticity is approximated by a core spreading model originally proposed by Leonard (1980). The jet is forced by axisymmetric, helical and multiple disturbances. The multiple disturbances are combinations of two helical disturbances of the same mode rotating in the opposite directions. The multiple disturbances are found to enhance both the generation of small-scale structures and the growth rate of the jet. The small-scale structures have highly organized spatial distributions. The core spreading method is effective in aquiring the core overlapping in regions of high extensional rate of strain. 21 refs., 12 figs.

  4. Neutralization of Electric Current, Magnetic Shear, and Eruptive Activity in Solar Active Regions (United States)

    Liu, Yang; Sun, Xudong; Torok, Tibor; Titov, Viacheslav; Leake, James E.


    There has been an ongoing debate on whether or not the electric currents in solar active regions (ARs) are neutralized. Current-neutralization means that the direct coronal currents that connect the AR polarity centers are surrounded by return currents of equal total strength and opposite direction, i.e. the net current is zero. Using data from SDO/HMI, we analyze the direct and return currents in four ARs; two eruptive ones and two non-eruptive ones. The eruptive ARs produced strong flares and CMEs (successful eruptions), while the non-eruptive ARs include one quiet AR that produced no strong eruptions and one that produced a series of failed eruptions. It is found that the eruptive ARs have strong net currents and large shear of the magnetic field near their polarity inversion lines (PILs). In contrast, the currents in the non-eruptive ARs are well neutralized, and the PIL-shear is rather small. This agrees with MHD simulations that demonstrate a relationship between the level of current neutralization and the amount of magnetic shear near the PIL. We discuss the implications of these results for the capability of ARs to produce strong eruptions.

  5. Ratios of helicity amplitudes for exclusive ρ0 electroproduction on transversely polarized proton

    Directory of Open Access Journals (Sweden)

    Manaenkov Serguei


    Full Text Available Exclusive ρ0-meson electroproduction is studied by the HERMES experiment, using the 27.6 GeV longitudinally polarized electron/positron beam of HERA and a transversely polarized hydrogen target, in the kinematic region 1.0 GeV2 < Q2 < 7.0 GeV2, 3.0 GeV < W < 6.3 GeV, and −t′ < 0.4 GeV2. Using an unbinned maximum-likelihood method, 25 parameters are extracted. They determine the real and imaginary parts of the ratios of certain helicity amplitudes describing ρ0-meson production by a virtual photon, where the denominator is the dominant amplitude F012012${F_{0{1 \\over 2}}}_{0{1 \\over 2}}$. The latter is the nucleon-helicity-non-flip amplitude, which describes the production of a longitudinal ρ0 meson by a longitudinal virtual photon. The transverse target polarization allows for the first time the extraction of ratios of a number of nucleon-helicity-flip amplitudes to F012012${F_{0{1 \\over 2}}}_{0{1 \\over 2}}$. The ratios of nucleon-helicity-non-flip amplitudes are found to be in good agreement with those from the previous HERMES analysis.

  6. Transcriptional Activity of the FUT1 Gene Promoter Region in Pigs

    Directory of Open Access Journals (Sweden)

    Chen Zi


    Full Text Available This study aims to provide a theoretical basis on the regulatory mechanism of the α-l,2-fucosyltransferase (FUT1 gene in pigs by analyzing the transcriptional activity of its promoter region. On the basis of the previously obtained promoter sequence, primers upstream and downstream of the gene were designed using the restriction endonucleases KpnI and HindIII respectively, and the recombinant plasmids of the pGL3-promoter were constructed by inserting promoter sequences with partially missing regions. The resultant mutants were observed by transient transfection assay into HEK293 cells, and the transcriptional activity of the promoter region was determined by luciferase activity. The 5'-flanking region of the FUT1 gene (−1150 to +50 bp exhibited promoter activity. The −1150-bp to −849-bp region showed negative regulation of the gene. The recombinant plasmid pGL3-898 showed the strongest luciferase activity, and the activity showed a decreasing trend when the deleted region was increased. Recombinant plasmids were successfully constructed, verified, and the positive and negative regulation areas and core promoter region were detected, providing a deeper insight into the transcriptional regulatory mechanism of the FUT1 gene.

  7. Interferometric measurement of the helical mode of a single photon

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, E J; Coyle, L E; Johnson, E; Reschovsky, B J, E-mail: [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States)


    We present measurements of the helical mode of single photons and do so by sending heralded photons through a Mach-Zehnder interferometer that prepares the light in a helical mode with topological charge one, and interferes it with itself in the fundamental non-helical mode. Masks placed after the interferometer were used to diagnose the amplitude and phase of the mode of the light. Auxiliary measurements verified that the light was in a non-classical state. The results are in good agreement with theory. The experiments demonstrate in a direct way that single photons carry the entire spatial helical-mode information.

  8. Transmembrane helices can induce domain formation in crowded model membranes

    National Research Council Canada - National Science Library

    Domański, Jan; Marrink, Siewert J; Schäfer, Lars V


    We studied compositionally heterogeneous multi-component model membranes comprised of saturated lipids, unsaturated lipids, cholesterol, and a-helical TM protein models using coarse-grained molecular...

  9. Inhomogeneous helicity effect in the solar angular-momentum transport (United States)

    Yokoi, Nobumitsu


    Coupled with mean absolute vorticity Ω∗ (rotation and mean relative vorticity), inhomogeneous turbulent helicity is expected to contribute to the generation of global flow structure against the linear and angular momentum mixing due to turbulent or eddy viscosity. This inhomogeneous helicity effect was originally derived in Yokoi & Yoshizawa (1993) [1], and recently has been validated by direct numerical simulations (DNSs) of rotating helical turbulence [2]. Turbulence effect enters the mean-vorticity equation through the turbulent vortexmotive force ⟨u'×ω'⟩ [u': velocity fluctuation, ω'(= ∇× u'): vorticity fluctuation], which is the vorticity counterpart of the electromotive force ⟨u'× b'⟩ (b': magnetic fluctuation) in the mean magnetic-field induction. The mean velocity induction δU is proportional to the vortexmotive force. According to the theoretical result [1,2], it is expressed as δU = -νT∇×Ω∗-ηT(∇2H)Ω∗, where ηT is the transport coefficient, H = ⟨u'ṡω'⟩ the turbulent helicity, and Ω∗ the mean absolute vorticity. The first term corresponds to the enhanced diffusion due to turbulent viscosity νT. The second term expresses the large-scale flow generation due to inhomogeneous helicity. Since helicity is self-generated in rotating stratified turbulence [3], an inhomogeneous helicity distribution is expected to exist in the solar convection zone. A rising flow with expansion near the surface of the Sun generates a strongly negative helicity there [4]. This spatial distribution of helicity would lead to a positive Laplacian of turbulent helicity (∇2H > 0) in the subsurface layer of the Sun. In the combination with the large-scale vorticity associated with the meridional circulation, the inhomogeneous helicity effect works for accelerating the mean velocity in the azimuthal direction. The relevance of this inhomogeneous helicity effect in the solar convection zone is discussed further. References [1] Yokoi, N. and

  10. Influence of external 3D magnetic fields on helical equilibrium and plasma flow in RFX-mod

    Energy Technology Data Exchange (ETDEWEB)

    Piovesan, P; Bonfiglio, D; Bonomo, F; Cappello, S; Carraro, L; Cavazzana, R; Gobbin, M; Marrelli, L; Martin, P; Martines, E; Momo, B; Piron, L; Puiatti, M E; Soppelsa, A; Valisa, M; Zanca, P; Zaniol, B [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, 35127 Padova (Italy)


    A spontaneous transition to a helical equilibrium with an electron internal transport barrier is observed in RFX-mod as the plasma current is raised above 1 MA (Lorenzini R et al 2009 Nature Phys. 5 570). The helical magnetic equilibrium can be controlled with external three-dimensional (3D) magnetic fields applied by 192 active coils, providing proper helical boundary conditions either rotating or static. The persistence of the helical equilibrium is strongly increased in this way. A slight reduction in the energy confinement time of about 15% is observed, likely due to the increased plasma-wall interaction associated with the finite radial magnetic field imposed at the edge. A global helical flow develops in these states and is expected to play a role in the helical self-organization. In particular, its shear may contribute to the ITB formation and is observed to increase with the externally applied radial field. The possible origins of this flow, from nonlinear visco-resistive magnetohydrodynamic (MHD) and/or ambipolar electric fields, will be discussed.

  11. The formation of helical mesoporous silica nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wan Xiaobing; Pei Xianfeng; Zhao Huanyu; Chen Yuanli; Guo Yongmin; Li Baozong; Yang Yonggang [Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou (Soochow) University, Suzhou 215123 (China); Hanabusa, Kenji [Department of Functional Polymer Science, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan)], E-mail:


    Three chiral cationic gelators were synthesized. They can form translucent hydrogels in pure water. These hydrogels become highly viscous liquids under strong stirring. Mesoporous silica nanotubes with coiled pore channels in the walls were prepared using the self-assemblies of these gelators as templates. The mechanism of the formation of this hierarchical nanostructure was studied using transmission electron microscopy at different reaction times. The results indicated that there are some interactions between the silica source and the gelator. The morphologies of the self-assemblies of gelators changed gradually during the sol-gel transcription process. It seems that the silica source directed the organic self-assemblies into helical nanostructures.

  12. Helical CT findings in mesenteric ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoon; Lim, Hyo Keun; Lee, Won Jae; Choi, Sang Hee; Lee, Soon Jin; Cho, Jae Min; Kim, Kyung Ah; Lee, Yon Ok [Sungkyunkwan Univ. College of Medicine. Samsung Medical Center, Seoul (Korea, Republic of)


    Ischemic bowel disease is one of the common causes of acute abdomen, which results from insufficient blood flow to the small bowel and colon caused by arterial or venous occlusion or mesenteric vasoconstriction. Early diagnosis by clinical, laboratory, and radiologic findings is often difficult and delay in adequate therapy results in substantial morbidity and mortality. CT is known to be useful for the evaluation of patients with suspected bowel ischemia or infarction. This study describes the spectrum of helical CT findings in acute and chronic mesenteric ischemia due to various causes, and explains the value of CT findings for specific diagnosis.

  13. Determination of GMPE functional form for an active region with limited strong motion data: application to the Himalayan region (United States)

    Bajaj, Ketan; Anbazhagan, P.


    Advancement in the seismic networks results in formulation of different functional forms for developing any new ground motion prediction equation (GMPE) for a region. Till date, various guidelines and tools are available for selecting a suitable GMPE for any seismic study area. However, these methods are efficient in quantifying the GMPE but not for determining a proper functional form and capturing the epistemic uncertainty associated with selection of GMPE. In this study, the compatibility of the recent available functional forms for the active region is tested for distance and magnitude scaling. Analysis is carried out by determining the residuals using the recorded and the predicted spectral acceleration values at different periods. Mixed effect regressions are performed on the calculated residuals for determining the intra- and interevent residuals. Additionally, spatial correlation is used in mixed effect regression by changing its likelihood function. Distance scaling and magnitude scaling are respectively examined by studying the trends of intraevent residuals with distance and the trend of the event term with magnitude. Further, these trends are statistically studied for a respective functional form of a ground motion. Additionally, genetic algorithm and Monte Carlo method are used respectively for calculating the hinge point and standard error for magnitude and distance scaling for a newly determined functional form. The whole procedure is applied and tested for the available strong motion data for the Himalayan region. The functional form used for testing are five Himalayan GMPEs, five GMPEs developed under NGA-West 2 project, two from Pan-European, and one from Japan region. It is observed that bilinear functional form with magnitude and distance hinged at 6.5 M w and 300 km respectively is suitable for the Himalayan region. Finally, a new regression coefficient for peak ground acceleration for a suitable functional form that governs the attenuation

  14. The role of charged amphipathic helices in the structure and function of surfactant protein B. (United States)

    Waring, A J; Walther, F J; Gordon, L M; Hernandez-Juviel, J M; Hong, T; Sherman, M A; Alonso, C; Alig, T; Braun, A; Bacon, D; Zasadzinski, J A


    Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.

  15. Numerical Simulations of the Evolution of Solar Active Regions: the Complex AR12565 and AR12567 (United States)

    Dumitrache, C.


    We have performed numerical magnetohydrodynamic (MHD) simulations of two closed active regions (AR). The input magnetic field values were the coronal magnetic field computed as extrapolation coronal from observations of the photospheric magnetic field. The studied active regions, NOAA AR12565 and AR12567, were registered as different bipolar region. Our investigation, the 3D coronal extrapolations, as well as the numerical MHD experiments, revealed that actually they evolved together as a quadrupolar active region. The second region emerged later under the loops system of AR12565 and separated from this one. A natural current sheet formed between then and it plays an important role in the explosive events (flares and coronal mass ejections) occurrence.

  16. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail:; Karmakar, S.N.


    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  17. Waste production and regional growth of marine activities an econometric model. (United States)

    Bramati, Maria Caterina


    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthetic Human β-Globin 5'HS2 Constructs Function as Partially Active Locus Control Regions.

    NARCIS (Netherlands)

    J. Ellis (James); D. Talbot; N.O. Dillon (Niall); F.G. Grosveld (Frank)


    textabstractTransgenes linked to the beta-globin locus control region (LCR) are transcribed in a copy-dependent manner that is independent of the integration site. It has previously been shown that the LCR 5'HS2 region does not require its NF-E2 dimer binding site for LCR activity. In this paper we

  19. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub.

    NARCIS (Netherlands)

    G.P. Patrinos (George); M. de Krom (Mariken); E. de Boer (Ernie); A. Langeveld (An); A.M.A. Imam (Ali); J. Strouboulis (John); W.L. de Laat (Wouter); F.G. Grosveld (Frank)


    textabstractThe human beta-globin locus control region (LCR) is required for the maintenance of an open chromatin configuration of the locus. It interacts with the genes and the hypersensitive regions flanking the locus to form an active chromatin hub (ACH) transcribing the genes. Proper

  20. Derivation of a regional active-optical reflectance sensor corn algorithm (United States)

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  1. Formation of helical dislocations in ammonothermal GaN substrate by heat treatment (United States)

    Horibuchi, Kayo; Yamaguchi, Satoshi; Kimoto, Yasuji; Nishikawa, Koichi; Kachi, Tetsu


    GaN substrate produced by the basic ammonothermal method and an epitaxial layer on the substrate was evaluated using synchrotron radiation x-ray topography and transmission electron microscopy. We revealed that the threading dislocations present in the GaN substrate are deformed into helical dislocations and the generation of the voids by heat treatment in the substrate for the first observation in the GaN crystal. These phenomena are formed by the interactions between the dislocations and vacancies. The helical dislocation was formed in the substrate region, and not in the epitaxial layer region. Furthermore, the evaluation of the influence of the dislocations on the leakage current of Schottky barrier diodes fabricated on the epitaxial layer is discussed. The dislocations did not affect the leakage current characteristics of the epitaxial layer. Our results suggest that the deformation of dislocations in the GaN substrate does not adversely affect the epitaxial layer.

  2. A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection

    Directory of Open Access Journals (Sweden)

    Stéphanie Jehan-Besson


    Full Text Available We propose a 3-step algorithm for the automatic detection of moving objects in video sequences using region-based active contours. First, we introduce a very full general framework for region-based active contours with a new Eulerian method to compute the evolution equation of the active contour from a criterion including both region-based and boundary-based terms. This framework can be easily adapted to various applications, thanks to the introduction of functions named descriptors of the different regions. With this new Eulerian method based on shape optimization principles, we can easily take into account the case of descriptors depending upon features globally attached to the regions. Second, we propose a 3-step algorithm for detection of moving objects, with a static or a mobile camera, using region-based active contours. The basic idea is to hierarchically associate temporal and spatial information. The active contour evolves with successively three sets of descriptors: a temporal one, and then two spatial ones. The third spatial descriptor takes advantage of the segmentation of the image in intensity homogeneous regions. User interaction is reduced to the choice of a few parameters at the beginning of the process. Some experimental results are supplied.

  3. Local study of helical magnetorotational instability in viscous Keplerian disks (United States)

    MahdaviGharavi, M.; Hajisharifi, K.; Mehidan, H.


    In this paper, regarding the recent detection of significant azimuthal magnetic field in some accretion disks such as protostellar (Donati et al. in Nature 438:466, 2005), the multi-fluid model has been employed to analysis the stability of Keplerian rotational viscous dusty plasma system in a current-free helical magnetic field structure. Using the fluid-Maxwell equations, the general dispersion relation of the excited modes in the system has been obtained by applying the local approximation method in the linear perturbation theory. The typical numerical analysis of the obtained dispersion relation in the high-frequency regime shows that the presence of azimuthal magnetic field component in Keplerian flow has a considerable role in the stability conditions of the system. It also shows that the magnetic field helicity has a stabilization role against the magnetorotational instability (MRI) in the system due to contraction of the unstable wavelength region and decreasing the maximum growth rate of the instability. In this sense, the stabilization role of the viscosity term is more considerable for HMRI (instability in the presence of azimuthal magnetic field component) than the corresponding MRI (instability in the absence of azimuthal magnetic field component). Moreover, considering the discovered azimuthal magnetic field in these systems, the MRI can be arisen in the over-all range of dust grains construction values in contract with traditional MRI. This investigation can greatly contribute to better understanding the physics of some astrophysical phenomena, such as the main source of turbulence and angular momentum transport in protostellar and the other sufficiently ionized astrophysical disks, where the azimuthal magnetic field component in these systems can play a significant role.

  4. Quantification of a Helical Origami Fold (United States)

    Dai, Eric; Han, Xiaomin; Chen, Zi


    Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has served as a source of inspiration for innovations in science and engineering. Here, we present the geometric and mechanical properties of a twisting origami fold. The origami structure created by the fold exhibits several interesting properties, including rigid foldibility, local bistability and finely tunable helical coiling, with control over pitch, radius and handedness of the helix. In addition, the pattern generated by the fold closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. We use six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. Finally, we present a mathematical model of the local bistability of the twisting origami fold. Our study elucidates the mechanisms behind the helical coiling and local bistability of the twisting origami fold, with potential applications in robotics and deployable structures. Acknowledgment to Branco Weiss Fellowship for funding.

  5. Equilibrium configurations of a cable drogue system towed in a helical motion (United States)

    Cohen, Y.; Manor, H.

    The dynamical equilibrium configuration of a system consisting of a drogue attached to a towed flexible cable is examined for the particular case depicted by a helical vertical descent. The motion equations, together with boundary conditions, were solved numerically after nondimensional treatment, and a region was found where results are of multivalued nature. Different cable configurations in dynamic equilibrium conditions were presented; the influence of constrained factors such as angular velocity, radius of towpoint and vertical rate of descent are discussed.

  6. Phase diagram of structure of radial electric field in helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Toda, S.; Itoh, K.


    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E{sub r} for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  7. Predictions for Non-Solenoidal Startup in Pegasus with Lower Divertor Helicity Injectors (United States)

    Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.


    Non-solenoidal startup in Pegasus has focused on using arrays of local helicity injectors situated on the outboard midplane to leverage PF induction. In contrast, injector assemblies located in the lower divertor region can provide improved performance. Higher toroidal field at the injector increases the helicity injection rate, providing a higher effective loop voltage. Poloidal flux expansion in the divertor region will increase the Taylor relaxation current limit. Radial position control requirements are lessened, as plasma expansion naturally couples to injectors in the divertor region. Advances in cathode design and plasma-facing guard rings allow operation at bias voltages over 1.5 kV, three times higher than previously available. This results in increased effective loop voltage and reduced impurity generation. Operation of helicity injectors in the high field side elevates the current requirements for relaxation to a tokamak-like state, but these are met through the improved injector design and increased control over the poloidal field structure via the addition of new coil sets. These advances, combined with the relocation of the injectors to the divertor region, will allow access to the operational regime where helicity injection current drive, rather the poloidal induction, dominates the discharge--a prerequisite for scaling to larger devices. Initial estimates indicate that plasma currents of 0.25-0.30 MA are attainable at full toroidal field with 4 injectors of 2 cm2 each and 8 kA total injected current. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  9. Regional activation within the vastus medialis in stimulated and voluntary contractions. (United States)

    Gallina, Alessio; Ivanova, Tanya D; Garland, S Jayne


    This study examined the contribution of muscle fiber orientation at different knee angles to regional activation identified with high-density surface electromyography (HDsEMG). Monopolar HDsEMG signals were collected using a grid of 13 × 5 electrodes placed over the vastus medialis (VM). Intramuscular electrical stimulation was used to selectively activate two regions within VM. The distribution of EMG responses to stimulation was obtained by calculating the amplitude of the compound action potential for each channel; the position of the peak amplitude was tracked across knee angles to describe shifts of the active muscle regions under the electrodes. In a separate experiment, regional activation was investigated in 10 knee flexion-extension movements against a fixed resistance. Intramuscular stimulation of different VM regions resulted in clear differences in amplitude distribution along the columns of the electrode grid (P distribution in the eccentric phase of the movement (P distribution along the fiber direction. Future studies are needed to understand possible functional roles for regional activation within the VM in dynamic tasks. Copyright © 2016 the American Physiological Society.

  10. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is of first-order in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of ...

  11. Interaction of 18-residue peptides derived from amphipathic helical ...

    Indian Academy of Sciences (India)


    categories (Segrest et al. 1990; Phoenix et al. 1998; Phoenix and Harris 2002). Helices that cause membrane lysis belong to class L and those that bind to lipids but are not lytic, such as those occurring in apolipoproteins, are classified as class. A. Interest in amphipathic helices has further stemmed from the observation that ...

  12. Experimental investigation of solar powered diaphragm and helical pumps (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  13. Two new twisted helical nickel (II) and cobalt (III) octahedral ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 6. Two new twisted helical nickel(II) and cobalt(III) octahedral monomer complexes: Synthesis and structural characterization. Malay Dolai ... Keywords. Coordination chemistry; nickel(II); cobalt(III); Schiff base; twisted helicity; supramolecular interactions.

  14. Space vehicle electromechanical system and helical antenna winding fixture

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven


    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  15. Micro helical polymeric structures produced by variable voltage direct electrospinning

    NARCIS (Netherlands)

    Shariatpanahi, S.P.; Iraji zad, A.; Abdollahzadeh, I.; Shirsavar, R.; Bonn, D.; Ejtehadi, R.


    Direct near field electrospinning is used to produce very long helical polystyrene microfibers in water. The pitch length of helices can be controlled by changing the applied voltage, allowing the production of both microsprings and microchannels. Using a novel high frequency variable voltage

  16. Coronary artery angioplasty with a helical autoperfusion balloon catheter

    NARCIS (Netherlands)

    Gurbel, PA; Anderson, RD; vanBoven, AJ; denHeijer, P

    The initial in-hospital and long-term clinical experience with a helical autoperfusion balloon catheter in the treatment of coronary artery disease is reported, This new catheter design allows blood to flow passively around the inflated balloon through a protected helical channel molded into the

  17. Dynamic Precursors of Flares in Active Region NOAA 10486 M. B. ...

    Indian Academy of Sciences (India)

    environmental satellite—Reuven Ramaty high energy solar spectroscopic ... Other groups focused on the spatial and temporal resolution of the magnetic helicity injection in the magnetic field, e.g. Vemareddy et al. ... The present work proposes a generalised form of the above formula (equation (1)). The weighted horizontal ...

  18. Regional brain activity that determines successful and unsuccessful working memory formation. (United States)

    Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie


    Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.

  19. Living conditions among people with activity limitations in Zimbabwe. A representative regional survey.


    Eide, Arne Henning; Nhiwathiwa, Sekai; Muderedzi, Jennifer; Loeb, E Mitch


    This research report provides results from a study on living conditions among people with and without activity limitations in Matabeleland, Manicaland and Midlands, Zimbabwe. The study began in 2001 and was completed in 2003. Living conditions among people with activity limitations in Zimbabwe. A representative regional survey.

  20. Regional Quality Assurance Activity in Higher Education in Southeast Asia: Its Characteristics and Driving Forces (United States)

    Umemiya, Naoki


    This article analyses the characteristics and driving forces of regional quality assurance activity in Southeast Asia, which has been actively promoted in recent years by the ASEAN University Network, an organisation for higher education under the auspices of the Association of Southeast Asian Nations (ASEAN). There are now more collaborative…

  1. H-DROP: an SVM based helical domain linker predictor trained with features optimized by combining random forest and stepwise selection. (United States)

    Ebina, Teppei; Suzuki, Ryosuke; Tsuji, Ryotaro; Kuroda, Yutaka


    Domain linker prediction is attracting much interest as it can help identifying novel domains suitable for high throughput proteomics analysis. Here, we report H-DROP, an SVM-based Helical Domain linker pRediction using OPtimal features. H-DROP is, to the best of our knowledge, the first predictor for specifically and effectively identifying helical linkers. This was made possible first because a large training dataset became available from IS-Dom, and second because we selected a small number of optimal features from a huge number of potential ones. The training helical linker dataset, which included 261 helical linkers, was constructed by detecting helical residues at the boundary regions of two independent structural domains listed in our previously reported IS-Dom dataset. 45 optimal feature candidates were selected from 3,000 features by random forest, which were further reduced to 26 optimal features by stepwise selection. The prediction sensitivity and precision of H-DROP were 35.2 and 38.8%, respectively. These values were over 10.7% higher than those of control methods including our previously developed DROP, which is a coil linker predictor, and PPRODO, which is trained with un-differentiated domain boundary sequences. Overall, these results indicated that helical linkers can be predicted from sequence information alone by using a strictly curated training data set for helical linkers and carefully selected set of optimal features. H-DROP is available at

  2. Venezuelan Equine Encephalitis Virus Activity in the Gulf Coast Region of Mexico, 2003–2010 (United States)

    Adams, A. Paige; Navarro-Lopez, Roberto; Ramirez-Aguilar, Francisco J.; Lopez-Gonzalez, Irene; Leal, Grace; Flores-Mayorga, Jose M.; Travassos da Rosa, Amelia P. A.; Saxton-Shaw, Kali D.; Singh, Amber J.; Borland, Erin M.; Powers, Ann M.; Tesh, Robert B.; Weaver, Scott C.; Estrada-Franco, Jose G.


    Venezuelan equine encephalitis virus (VEEV) has been the causative agent for sporadic epidemics and equine epizootics throughout the Americas since the 1930s. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there have been very few studies to determine the northward extent of endemic VEEV in this region. This study reports the findings of serologic surveillance in the Gulf Coast region of Mexico from 2003–2010. Phylogenetic analysis was also performed on viral isolates from this region to determine whether there have been substantial genetic changes in VEEV since the 1960s. Based on the findings of this study, the Gulf Coast lineage of subtype IE VEEV continues to actively circulate in this region of Mexico and appears to be responsible for infection of humans and animals throughout this region, including the northern State of Tamaulipas, which borders Texas. PMID:23133685

  3. Regional Brain Activation during Meditation Shows Time and Practice Effects: An Exploratory FMRI Study

    Directory of Open Access Journals (Sweden)

    E. Baron Short


    Full Text Available Meditation involves attentional regulation and may lead to increased activity in brain regions associated with attention such as dorsal lateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC. Using functional magnetic resonance imaging, we examined whether DLPFC and ACC were activated during meditation. Subjects who meditate were recruited and scanned on a 3.0 Tesla scanner. Subjects meditated for four sessions of 12 min and performed four sessions of a 6 min control task. Individual and group t-maps were generated of overall meditation response versus control response and late meditation response versus early meditation response for each subject and time courses were plotted. For the overall group (n = 13, and using an overall brain analysis, there were no statistically significant regional activations of interest using conservative thresholds. A region of interest analysis of the entire group time courses of DLPFC and ACC were statistically more active throughout meditation in comparison to the control task. Moreover, dividing the cohort into short (n = 8 and long-term (n = 5 practitioners (>10 years revealed that the time courses of long-term practitioners had significantly more consistent and sustained activation in the DLPFC and the ACC during meditation versus control in comparison to short-term practitioners. The regional brain activations in the more practised subjects may correlate with better sustained attention and attentional error monitoring. In summary, brain regions associated with attention vary over the time of a meditation session and may differ between long- and short-term meditation practitioners.

  4. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions (United States)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank


    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  5. Effects of Regional Inequalities on the Sporting Activity of School Pupils: The Hungarian Case

    Directory of Open Access Journals (Sweden)

    Vámos Ágnes


    Full Text Available In this study, the sporting activity of Hungarian school pupils is investigated with a focus on regional differences. The objective of the paper is to answer the following questions: Are there regional differences in pupils’ sporting activity, and, if yes, what is their relationship with the socio-cultural background of the pupils and the infrastructural and staffing conditions of schools? Has the 2012 introduction of daily physical education had a different effect on pupils’ leisure-time sporting activity in disadvantaged and affluent regions? Can the trends in the sporting activity of pupils be characterized as convergent or divergent since the introduction of daily physical education? The paper is based on an extensive study that relies on the most comprehensive database on physical education in schools, the National Assessment of Basic Competencies (NABC. The present study statistically analyzed eighth-grade pupil and school data from the 2010 and 2014 NABC. The results present the regional differences in pupils’ participation in sporting activity, their recent modification, and the main reasons behind the changes. In conclusion, the authors state that social, economic, and cultural inequalities are not clearly reflected in the sporting activity of students; however, certain data still call attention to the need to examine regional differences.

  6. Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence

    CERN Document Server

    Banerjee, Supratik


    Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants which are the magnetic helicity and the generalized helicity. New exact relations are derived for homogeneous (non-isotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with non-zero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations.

  7. Broadband circularly polarizing dichroism with high efficient plasmonic helical surface. (United States)

    Hu, Jingpei; Zhao, Xiaonan; Li, Ruibin; Zhu, Aijiao; Chen, Linghua; Lin, Yu; Cao, Bing; Zhu, Xiaojun; Wang, Chinhua


    We propose and experimentally demonstrate a broadband and high efficient circularly polarizing dichroism using a simple single-cycle and single-helical plasmonic surface array arranged in square lattice. Two types of helical surface structures (partially or completely covered with a gold film) are investigated. It is shown that the circular polarization dichroism in the mid-IR range (3µm - 5µm) can reach 80% (when the surface is partially covered with gold) or 65% (when the surface is completely covered with gold) with a single-cycle and single-helical surface. Experimental fabrications of the proposed helical plasmonic surface are implemented with direct 3D laser writing followed by electron beam evaporation deposition of gold. The experimental evaluations of the circular polarization dichroism are in excellent agreement with the simulation. The proposed helical surface structure is of advantages of easy-fabrication, high-dichroism and scalable to other frequencies as a high efficient broadband circular polarizer.

  8. Hierarchically arranged helical fibre actuators driven by solvents and vapours (United States)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng


    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  9. A molecular leverage for helicity control and helix inversion. (United States)

    Akine, Shigehisa; Hotate, Sayaka; Nabeshima, Tatsuya


    The helical tetranuclear complex [LZn(3)La(OAc)(3)] having two benzocrown moieties was designed and synthesized as a novel molecular leverage for helicity control and helix inversion. Short alkanediammonium guests H(3)N(+)(CH(2))(n)NH(3)(+) (n = 4, 6, 8) preferentially stabilized the P-helical isomer of [LZn(3)La(OAc)(3)], while the longer guest H(3)N(+)(CH(2))(12)NH(3)(+) caused a helix inversion to give the M-helical isomer as the major isomer. The differences in the molecular lengths were efficiently translated into helical handedness via the novel molecular leverage mechanism using the gauche/anti conversion of the trans-1,2-disubstituted ethylenediamine unit.

  10. Helicity conservation and twisted Seifert surfaces for superfluid vortices (United States)

    Salman, Hayder


    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  11. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations (United States)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  12. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT. (United States)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A; Pan, Xiaochuan


    Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredback-projection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  13. The Writhe of Helical Structures in the Solar Corona (United States)

    Toeroek, T.; Berger, M. A.; Kliem, B.


    Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.

  14. Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP active learning.

    Directory of Open Access Journals (Sweden)

    Samuel A Danziger


    Full Text Available Many protein engineering problems involve finding mutations that produce proteins with a particular function. Computational active learning is an attractive approach to discover desired biological activities. Traditional active learning techniques have been optimized to iteratively improve classifier accuracy, not to quickly discover biologically significant results. We report here a novel active learning technique, Most Informative Positive (MIP, which is tailored to biological problems because it seeks novel and informative positive results. MIP active learning differs from traditional active learning methods in two ways: (1 it preferentially seeks Positive (functionally active examples; and (2 it may be effectively extended to select gene regions suitable for high throughput combinatorial mutagenesis. We applied MIP to discover mutations in the tumor suppressor protein p53 that reactivate mutated p53 found in human cancers. This is an important biomedical goal because p53 mutants have been implicated in half of all human cancers, and restoring active p53 in tumors leads to tumor regression. MIP found Positive (cancer rescue p53 mutants in silico using 33% fewer experiments than traditional non-MIP active learning, with only a minor decrease in classifier accuracy. Applying MIP to in vivo experimentation yielded immediate Positive results. Ten different p53 mutations found in human cancers were paired in silico with all possible single amino acid rescue mutations, from which MIP was used to select a Positive Region predicted to be enriched for p53 cancer rescue mutants. In vivo assays showed that the predicted Positive Region: (1 had significantly more (p<0.01 new strong cancer rescue mutants than control regions (Negative, and non-MIP active learning; (2 had slightly more new strong cancer rescue mutants than an Expert region selected for purely biological considerations; and (3 rescued for the first time the previously unrescuable p53 cancer

  15. Positron-emission tomography of brain regions activated by recognition of familiar music. (United States)

    Satoh, M; Takeda, K; Nagata, K; Shimosegawa, E; Kuzuhara, S


    We can easily recognize familiar music by listening to only one or 2 of its opening bars, but the brain regions that participate in this cognitive processing remain undetermined. We used positron-emission tomography (PET) to study changes in regional cerebral blood flow (rCBF) that occur during listening to familiar music. We used a PET subtraction technique to elucidate the brain regions associated with the recognition of familiar melodies such as well-known nursery tunes. Nonmusicians performed 2 kinds of musical tasks: judging the familiarity of musical pieces (familiarity task) and detecting deliberately altered notes in the pieces (alteration-detecting task). During the familiarity task, bilateral anterior portions of bilateral temporal lobes, superior temporal regions, and parahippocampal gyri were activated. The alteration-detecting task bilaterally activated regions in the precunei, superior/inferior parietal lobules, and lateral surface of frontal lobes, which seemed to show a correlation with the analysis of music. We hypothesize that during the familiarity task, activated brain regions participate in retrieval from long-term memory and verbal and emotional processing of familiar melodies. Our results reinforced the hypothesis reported in the literature as a result of group and case studies, that temporal lobe regions participate in the recognition of familiar melodies.

  16. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.


    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  17. Construction of the Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI) (United States)

    Sieck, P. E.; Gu, P.; Hamp, W. T.; Izzo, V. A.; Jarboe, T. R.; Nelson, B. A.; Rogers, J. A.


    HIT-SI is a ``bow tie'' spheromak designed to implement Steady Inductive Helicity Injection (SIHI). The engineering requirements of SIHI lead to several unique design features, including a multiply connected electrically insulating o-ring seal and a close-fitting passive flux conserver that is electrically insulated from the plasma. Prototype tests have been performed to verify the performance of the o-ring seal and the plasma sprayed zirconia insulation. An engineering test of the new HIT-SI front end will be done before it replaces the present HIT-II front end on HIT. Startup and one millisecond of sustainment will be done to test breakdown and verify power supply requirements. The power supplies and external coils are designed to provide 20 MW at 5 kHz to 50 kHz for 1 ms to the helicity injection circuits for this test. Progress in the construction and assembly of HIT-SI will be presented.

  18. Improvement of Measurement and Evaluation of Regional Authorities Activity: Model and Statistical Approach

    Directory of Open Access Journals (Sweden)

    Petrova Elena Аleksandrovna


    Full Text Available Formation of strategy of long-term social and economic development is a basis for effective functioning of executive authorities and the assessment of its efficiency in general. Modern theories of assessment of public administration productivity are guided by the process approach when it is expedient to carry out the formation of business processes of regional executive authorities according to strategic indicators of territorial development. In this regard, there is a problem of modeling of interrelation of indicators of social and economic development of the region and quantitative indices of results of business processes of executive authorities. At the first stage of modeling, two main directions of strategic development, namely innovative and investment activity of regional economic systems are considered. In this regard, the work presents the results of modeling the interrelation between the indicators of regional social and economic development and innovative and investment activity. Therefore, for carrying out the analysis, the social and economic system of the region is presented in space of the main indicators of social and economic development of the territory and indicators of innovative and investment activity. The analysis is made on values of the indicators calculated for regions of the Russian Federation during 2000, 2005, 2008, 2010 and 2011. It was revealed that strategic indicators of innovative and investment activity have the most significant impact on key signs of social and economic development.

  19. Winding light beams along elliptical helical trajectories

    CERN Document Server

    Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan


    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We develop a superposition caustic method capable of winding light beams along non-convex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implement the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of non-convex trajectories, thereby opening up a new route of manipulating light beams for fundamental research and practical ap...

  20. Helical Locomotion in a Granular Medium (United States)

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco


    The physical mechanisms that bring about the propulsion of a rotating helix in a granular medium are considered. A propulsive motion along the axis of the rotating helix is induced by both symmetry breaking due to the helical shape, and the anisotropic frictional forces undergone by all segments of the helix in the medium. Helix dynamics is studied as a function of helix rotation speed and its geometrical parameters. The effect of the granular pressure and the applied external load were also investigated. A theoretical model is developed based on the anisotropic frictional force experienced by a slender body moving in a granular material, to account for the translation speed of the helix. A good agreement with experimental data is obtained, which allows for predicting the helix design to propel optimally within granular media. These results pave the way for the development of an efficient sand robot operating according to this mode of locomotion.

  1. Chiral Spin Pairing in Helical Magnets (United States)

    Onoda, Shigeki; Nagaosa, Naoto


    A concept of chiral spin pairing is introduced to describe a vector-chiral liquid-crystal order in frustrated spin systems. It is found that the chiral spin pairing is induced by the coupling to phonons through the Dzyaloshinskii-Moriya interaction and the four-spin exchange interaction of the Coulomb origin under the edge-sharing network of magnetic and ligand ions. This produces two successive second-order phase transitions upon cooling: an O(2) chiral spin nematic, i.e., spin cholesteric, order appears with an either parity, and then the O(2) symmetry is broken to yield a helical magnetic order. Possible candidate materials are also discussed as new multiferroic systems.

  2. Winding light beams along elliptical helical trajectories (United States)

    Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan


    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We developed a superposition caustic method capable of winding light beams along nonconvex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implemented the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of nonconvex trajectories, thereby opening up a route of manipulating light beams for fundamental research and practical applications.

  3. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity (United States)

    Liewer, P. C.; Qiu, J.; Lindsey, C.


    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun ( To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  4. Super Active Regions, X-ray Flares and Geo-magnetic Storm (United States)

    Tian, L.; Wang, J.

    It is important to know which active region is most likely to produce major flares, on- set of Coronal Mass Ejections and solar storms that hazard space weather. We inves- tigate more than 20 Super Active Regions (SARs) in the 22nd and 23rd cycles by five parameters: area of sunspot, X-ray flare Index, radio peak flux, proton flux and geo- magnetic index (A_p). The data include the vector magnetograms from Huairou Solar Observatory in Beijing and space data from Web ( Magnetic structure of the active regions are classified three kinds. We try to iden- tify which magnetic structure is most likely to produce major flares and solar storms, where these active regions located and in which case they produce the space weather hazards. Magnetic flux, twist and tilt of magnetic fields are studied to investigate the causes of onset of CMEs and solar storms. We especially pay attention to the middle and small active regions which produced and major geo-magnetic storms because they are easy to be looked down in the prediction.

  5. Screening Libraries of Semifluorinated Arylene Bisimides to Discover and Predict Thermodynamically Controlled Helical Crystallization. (United States)

    Ho, Ming-Shou; Partridge, Benjamin E; Sun, Hao-Jan; Sahoo, Dipankar; Leowanawat, Pawaret; Peterca, Mihai; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Heiney, Paul A; Hsu, Chain-Shu; Percec, Virgil


    Synthesis, structural, and retrostructural analysis of a library containing 16 self-assembling perylene (PBI), 1,6,7,12-tetrachloroperylene (Cl 4 PBI), naphthalene (NBI), and pyromellitic (PMBI) bisimides functionalized with environmentally friendly AB 3 chiral racemic semifluorinated minidendrons at their imide groups via m = 0, 1, 2, and 3 methylene units is reported. These semifluorinated compounds melt at lower temperatures than homologous hydrogenated compounds, permitting screening of all their thermotropic phases via structural analysis to discover thermodynamically controlled helical crystallization from propeller-like, cogwheel, and tilted molecules as well as lamellar-like structures. Thermodynamically controlled helical crystallization was discovered for propeller-like PBI, Cl 4 PBI and NBI with m = 0. Unexpectedly, assemblies of twisted Cl 4 PBIs exhibit higher order than those of planar PBIs. PBI with m = 1, 2, and 3 form a thermodynamically controlled columnar hexagonal 2D lattice of tilted helical columns with intracolumnar order. PBI and Cl 4 PBI with m = 1 crystallize via a recently discovered helical cogwheel mechanism, while NBI and PMBI with m = 1 form tilted helical columns. PBI, NBI and PMBI with m = 2 generate lamellar-like structures. 3D and 2D assemblies of PBI with m = 1, 2, and 3, NBI with m = 1 and PMBI with m = 2 exhibit 3.4 Å π-π stacking. The library approach applied here and in previous work enabled the discovery of six assemblies which self-organize via thermodynamic control into 3D and 2D periodic arrays, and provides molecular principles to predict the supramolecular structure of electronically active components.

  6. Probing the role of nascent helicity in p27 function as a cell cycle regulator.

    Directory of Open Access Journals (Sweden)

    Steve Otieno

    Full Text Available p27 regulates the activity of Cdk complexes which are the principal governors of phase transitions during cell division. Members of the p27 family of proteins, which also includes p21 and p57, are called the Cip/Kip cyclin-dependent kinase regulators (CKRs. Interestingly, the Cip/Kip CKRs play critical roles in cell cycle regulation by being intrinsically unstructured, a characteristic contrary to the classical structure-function paradigm. They exhibit nascent helicity which has been localized to a segment referred to as sub-domain LH. The nascent helicity of this sub-domain is conserved and we hypothesize that it is an important determinant of their functional properties. To test this hypothesis, we successfully designed and prepared p27 variants in which domain LH was either more or less helical with respect to the wild-type protein. Thermal denaturation experiments showed that the ternary complexes of the p27 variants bound to Cdk2/Cyclin A were less stable compared to the wild-type complex. Isothermal titration calorimetry experiments showed a decrease in the enthalpy of binding for all the mutants with respect to p27. The free energies of binding varied within a much narrower range. In vitro Cdk2 inhibition assays showed that the p27 variants exhibited disparate inhibitory potencies. Furthermore, when over-expressed in NIH 3T3 mouse fibroblast cells, the less helical p27 variants were less effective in causing cell cycle arrest relative to the wild-type p27. Our results indicate that the nascent helicity of sub-domain LH plays a key role mediating the biological function of p27.

  7. Drivers of Concentration of Economic Activity in Russia’s Regions


    Svetlana Nikolaevna Rastvortseva; Denis Sergeevich Ternovskii


    The uneven distribution of economic activity in Russia promotes the differentiation of its constituent entities by level of development. Regions are independent participants of economic relations, and they often act as competitors rather than partners. Agglomeration effects arise in more successful regions and contribute to the concentration of resources, manufacturing enterprises, service providers, skilled workers, and scientific and technological knowledge. The aim of the study, the result...

  8. Increased amylosucrase activity and specificity, and identification of regions important for activity, specificity and stability through molecular evolution

    DEFF Research Database (Denmark)

    van der Veen, Bart A; Skov, Lars K; Potocki-Véronèse, Gabrielle


    , several variants are expected to be improved concerning activity and/or thermostability. Most of the amino acid substitutions observed in the totality of these improved variants are clustered around specific regions. The secondary sucrose-binding site and beta strand 7, connected to the important Asp393...

  9. Three-dimensional CT imaging with a helical scan on temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Honghan; Hiraishi, Kumiko; Uesugi, Yasuo; Sakakura, Atsushi; Yoshikawa, Shuji; Shimizu, Takaya; Sueyoshi, Kozo; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)


    To evaluate the usefulness of three-dimensional (3D) CT on the lesions of temporal bone, we studied 19 patients with disorders on the region of temporal bone by high speed helical CT. The results showed that 8 patients with congenital hearing disorder had deficiency of the auditory ossicles, 2 patients with chronic otitis media had deformity and shortness of the auditory ossicles, 4 patients with trauma had fracture of the temporal bone (1 patient was complicated by doubtful fracture of the incus), 5 patients (4 patients with acquired hearing disorder and 1 patient with otorrhea) had space-occupying lesions. 3-D helical CT could detect abnormal findings on all the patients and it was an important examination for the temporal bone. (author)

  10. Helical CT in the primary trauma evaluation of the cervical spine: an evidence-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, C.C. [Washington Univ., Seattle, WA (United States). Dept. of Radiology; Center for Cost and Outcomes Research, Univ. of Washington, Seattle (United States); Dept. of Radiology, Harborview Medical Center, Seattle, WA (United States); Mann, F.A. [Washington Univ., Seattle, WA (United States). Dept. of Radiology; Harborview Injury Prevention and Research Center, University of Washington, Seattle (United States); Wilson, A.J. [Washington Univ., Seattle, WA (United States). Dept. of Radiology


    This review provides a summary of the cost-effectiveness, clinical utility, performance, and interpretation of screening helical cervical spine CT for trauma patients. Recent evidence supports the use of helical CT as a cost-effective method for screening the cervical spine in high-risk trauma patients. Screening cervical spine CT can be performed at the time of head CT to lower the cost of the evaluation, and when all short- and long-term costs are considered, CT may actually save money when compared with traditional radiographic screening. In addition to having higher sensitivity and specificity for cervical spine injury, CT screening also allows more rapid radiological clearance of the cervical spine than radiography. Patients who are involved in high-energy trauma, who sustain head injury, or who have neurological deficits are candidates for CT screening. Screening with CT may enhance detection of other potentially important injuries of the cervical region. (orig.)

  11. Lymphocyte Activation Dynamics Is Shaped by Hereditary Components at Chromosome Region 17q12-q21.

    Directory of Open Access Journals (Sweden)

    Amado Carreras-Sureda

    Full Text Available Single nucleotide polymorphisms (SNPs located in the chromosome region 17q12-q21 are risk factors for asthma. Particularly, there are cis-regulatory haplotypes within this region that regulate differentially the expression levels of ORMDL3, GSDMB and ZPBP2 genes. Remarkably, ORMDL3 has been shown to modulate lymphocyte activation parameters in a heterologous expression system. In this context, it has been shown that Th2 and Th17 cytokine production is affected by SNPs in this region. Therefore, we aim to assess the impact of hereditary components within region 17q12-q21 on the activation profile of human T lymphocytes, focusing on the haplotype formed by allelic variants of SNPs rs7216389 and rs12936231. We measured calcium influx and activation markers, as well as the proliferation rate upon T cell activation. Haplotype-dependent differences in mRNA expression levels of IL-2 and INF-γ were observed at early times after activation. In addition, the allelic variants of these SNPs impacted on the extent of calcium influx in resting lymphocytes and altered proliferation rates in a dose dependent manner. As a result, the asthma risk haplotype carriers showed a lower threshold of saturation during activation. Finally, we confirmed differences in activation marker expression by flow cytometry using phytohemagglutinin, a strong polyclonal stimulus. Altogether, our data suggest that the genetic component of pro-inflammatory pathologies present in this chromosome region could be explained by different T lymphocyte activation dynamics depending on individual allelic heredity.

  12. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.


    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  13. Warrego Valles and Other Candidate Sites of Local Hydrothermal Activity Within The Thaumasia Region, Mars (United States)

    Dohm, J. M.; Tanaka, K. L.; Lias, J. H.; Hare, T. M.; Anderson, R. C.; Gulick, V. C.


    We have previously demonstrated for the Thaumasia region of Mars that: (1) valley formation peaked during the Noachian and declined substantially during the Hesperian and Amazonian Periods and (2) valleys, many of which form networking systems, largely occur near volcanoes, highly faulted terrains, and large impact craters of similar age, thus suggesting hydrothermal activity. In Tanaka et al, the various hypotheses for valley formation on Mars are presented, and a geologic explanation for valley erosion in the Thaumasia region is given that "best fits" the region's geographic and geologic datasets. That comprehensive GIS-based investigation suggests that hydrothermal and seismic activity were the primary causes of valley formation in the Thaumasia region; the data make widespread precipitation less likely as a major factor in valley formation, except perhaps during the Early Noachian, for which much of the geologic record has been destroyed. Based on the reconstruction of the stratigraphic, tectonic, volcanic, and erosional histories and the close association of valleys in time and space with Noachian to Early Hesperian volcanoes and rift systems and Hesperian to Early Amazonian impact craters less than 50 km in diameter, we propose 13 sites of hydrothermal activity within the Thaumasia region; these are the best examples of valleys associated with these geologic features, but there are other less pronounced correlations elsewhere in the region.

  14. Explosive events in active region observed by IRIS and SST/CRISP (United States)

    Huang, Z.; Madjarska, M. S.; Scullion, E. M.; Xia, L.-D.; Doyle, J. G.; Ray, T.


    Transition-region explosive events (EEs) are characterized by non-Gaussian line profiles with enhanced wings at Doppler velocities of 50-150 km s-1. They are believed to be the signature of solar phenomena that are one of the main contributors to coronal heating. The aim of this study is to investigate the link of EEs to dynamic phenomena in the transition region and chromosphere in an active region. We analyse observations simultaneously taken by the Interface Region Imaging Spectrograph (IRIS) in the Si IV 1394 Å line and the slit-jaw (SJ) 1400 Å images, and the Swedish 1-m Solar Telescope in the Hα line. In total 24 events were found. They are associated with small-scale loop brightenings in SJ 1400 Å images. Only four events show a counterpart in the Hα-35 km s-1 and Hα+35 km s-1 images. Two of them represent brightenings in the conjunction region of several loops that are also related to a bright region (granular lane) in the Hα-35 km s-1 and Hα+35 km s-1 images. 16 are general loop brightenings that do not show any discernible response in the Hα images. Six EEs appear as propagating loop brightenings, from which two are associated with dark jet-like features clearly seen in the Hα-35 km s-1 images. We found that chromospheric events with jet-like appearance seen in the wings of the Hα line can trigger EEs in the transition region and in this case the IRIS Si IV 1394 Å line profiles are seeded with absorption components resulting from Fe II and Ni II. Our study indicates that EEs occurring in active regions have mostly upper-chromosphere/transition-region origin. We suggest that magnetic reconnection resulting from the braidings of small-scale transition region loops is one of the possible mechanisms of energy release that are responsible for the EEs reported in this paper.


    Directory of Open Access Journals (Sweden)

    K. S. Seredinskaya


    Full Text Available Spain is a country that traditionally suffers a lot from high level of regional disparities. From the end of XX century Spanish government has taken different measures to smooth them. For example, the state of autonomies was established, statutes were approved for every region, more powers were transferred to regional authorities. There are several institutions in Spain that increase the efficiency of cooperation between different levels of authorities and between autonomies, such as conference of the presidents, sectoral conferences, agreements on cooperation and bilateral commissions. Activity of these mechanisms is of a great interest for the author. The author tries to find the ways to modernize Russian regional policy using Spanish experience, considering its pros and cons. Undoubtedly it is impossible to copy other countries practice as Russia and Spain differ a lot, for example, in size, population, the level of socialeconomic development and the supply of mineral resources. Still there is something in common, like high level of regional disparities and amount of authorities the territories obtain. Even though Spain is a unitary state, its autonomies are quite independent. Territorial status of the country is a hybrid between unitary and federative state. Its institutional structure of regional policy is pretty diversified. So both these aspects are worth considering. Regional policy is one the most important directions of the state activity in Russia, because of its extensive territories. Today Russia has to face a number of regional challenges and regional policy cannot cope with them. The growing territorial polarization slow down the development of the whole country. It is useful to analyze foreign institutions, which solve regional problems in the other states, to adapt their practice to the Russian realities. 

  16. Helical bottleneck effect in 3D homogeneous isotropic turbulence (United States)

    Stepanov, Rodion; Golbraikh, Ephim; Frick, Peter; Shestakov, Alexander


    We present the results of modelling the development of homogeneous and isotropic turbulence with a large-scale source of energy and a source of helicity distributed over scales. We use the shell model for numerical simulation of the turbulence at high Reynolds number. The results show that the helicity injection leads to a significant change in the behavior of the energy and helicity spectra in scales larger and smaller than the energy injection scale. We suggest the phenomenology for direct turbulent cascades with the helicity effect, which reduces the efficiency of the spectral energy transfer. Therefore the energy is accumulated and redistributed so that non-linear interactions will be sufficient to provide a constant energy flux. It can be interpreted as the ‘helical bottleneck effect’ which, depending on the parameters of the injection helicity, reminds one of the well-known bottleneck effect at the end of inertial range. Simulations which included the infrared part of the spectrum show that the inverse cascade hardly develops under distributed helicity forcing.

  17. Theoretical model of chirality-induced helical self-propulsion (United States)

    Yamamoto, Takaki; Sano, Masaki


    We recently reported the experimental realization of a chiral artificial microswimmer exhibiting helical self-propulsion [T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017), 10.1039/C7SM00337D]. In the experiment, cholesteric liquid crystal (CLC) droplets dispersed in surfactant solutions swam spontaneously, driven by the Marangoni flow, in helical paths whose handedness is determined by the chirality of the component molecules of CLC. To study the mechanism of the emergence of the helical self-propelled motion, we propose a phenomenological model of the self-propelled helical motion of the CLC droplets. Our model is constructed by symmetry argument in chiral systems, and it describes the dynamics of CLC droplets with coupled time-evolution equations in terms of a velocity, an angular velocity, and a tensor variable representing the symmetry of the helical director field of the droplet. We found that helical motions as well as other chiral motions appear in our model. By investigating bifurcation behaviors between each chiral motion, we found that the chiral coupling terms between the velocity and the angular velocity, the structural anisotropy of the CLC droplet, and the nonlinearity of model equations play a crucial role in the emergence of the helical motion of the CLC droplet.

  18. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence (United States)

    Bodo, G.; Cattaneo, F.; Mignone, A.; Rossi, P.


    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  19. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions. (United States)

    Kim, Tae-Kyung; Han, Pyung-Lim


    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Planning dance activities for pre-school children in the Central Slovenia region


    Peklaj, Anita


    The aim of the present thesis is to analyse the planning of dance activities of pre-school children in the Central Slovenia region. Our interest was focused on the standpoint of pre-school teachers to the integration of the art of dance in kindergartens, on the frequency of the planning of dance activities, on the kind of the most frequently planned dance activities and on the question if pre-school teachers connect dance activities with other fields from the Curriculum for kindergartens. We ...

  1. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats


    Shukla,Charu; Koch, Lauren G.; Britton, Steven L.; Cai, Minying; Hruby, Victor J.; Bednarek, Maria; Novak, Colleen M.


    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of melanocortin peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how va...

  2. Experimental Evidence of Helical Flow in Porous Media (United States)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo


    Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation. The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media. The setup may be used to effectively mix solutes in parallel streams similarly to static mixers, but in porous media.

  3. Inducing achiral aliphatic oligoureas to fold into helical conformations. (United States)

    Wechsel, Romina; Maury, Julien; Fremaux, Juliette; France, Scott P; Guichard, Gilles; Clayden, Jonathan


    The ability of urea-linked oligomers of achiral diamines (achiral analogues of the well-established chiral oligourea foldamers) to adopt helical conformations was explored spectroscopically. Up to four achiral units were ligated either to a well-formed helical trimer or to a single chiral diamine, and the extent to which they adopted a screw-sense preference was determined by NMR and CD. In the best performing cases, a trimeric chiral oligourea and even a single cis-cyclohexanediamine monomer induced folding into a helical conformation.

  4. Experimental Evidence of Helical Flow in Porous Media

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.


    . The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media. The setup may be used to effectively mix solutes in parallel streams similarly to static......Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation...

  5. Helicity-Dependent Showers and Matching with VINCIA

    CERN Document Server

    Larkoski, Andrew J.; Skands, Peter


    We present an antenna-shower formalism that includes helicity dependence for massless partons. The formalism applies to both traditional (global) showers and to sector-based variants. We combine the shower with VINCIA's multiplicative approach to matrix-element matching, generalized to operate on each helicity configuration separately. The result is a substantial gain in computational speed for high parton multiplicities. We present an implementation of both sector and global showers, with min and max variations, and helicity-dependent tree-level matching applied for vector bosons or Higgs decay to q qbar plus up to 4 gluons and for Higgs decay to up to 5 gluons.

  6. Comprehensive Assessment of Integration Activity of Business Structures in Russian Regions

    Directory of Open Access Journals (Sweden)

    Mariya Gennad’evna Karelina


    Full Text Available In the context of economic sanctions and growing international isolation, the research into regional differences in integration development acquires special relevance for Russia; this fact determines the need for a comprehensive assessment of integration activity of business structures in Russian regions. The diversity of approaches to the study of problems and prospects of economic integration and the current debate about the role of integration processes in the development of regional economies determined a comprehensive approach to the concepts of “integration” and “integration activity” in order to create objective prerequisites for analyzing integration activity of business structures in the regions of Russia. The information base of the research is the data of Russian information and analytical agencies. The tools used in the research include methods for analyzing structural changes, methods for analyzing economic differentiation and concentration, nonparametric statistics methods, and econometric analysis methods. The first part of the paper shows that socio-economic development in constituent entities of Russia is closely connected with the operation of integrated business structures located on their territory. Having studied the structure and dynamics of integration activity, we reveal the growing heterogeneity of integration activity of business structures in Russian regions. The hypothesis about significant divergence of mergers and acquisitions for corporate structures in Russian regions was confirmed by high values of the Gini coefficient, the Herfindahl index and the decile differentiation coefficient. The second part of the paper contains a comparative analysis and proposes an econometric approach to the measurement of integration activity of business structures in subjects of the Russian Federation on the basis of integral synthetic categories. The approach we propose focuses on the development of a system of indicators

  7. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State


    Regnier, Stephane; Priest, Eric


    To understand the physics of solar flares, including the local reorganisation of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  8. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas (United States)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group


    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  9. Contextual Multi-Scale Region Convolutional 3D Network for Activity Detection

    KAUST Repository

    Bai, Yancheng


    Activity detection is a fundamental problem in computer vision. Detecting activities of different temporal scales is particularly challenging. In this paper, we propose the contextual multi-scale region convolutional 3D network (CMS-RC3D) for activity detection. To deal with the inherent temporal scale variability of activity instances, the temporal feature pyramid is used to represent activities of different temporal scales. On each level of the temporal feature pyramid, an activity proposal detector and an activity classifier are learned to detect activities of specific temporal scales. Temporal contextual information is fused into activity classifiers for better recognition. More importantly, the entire model at all levels can be trained end-to-end. Our CMS-RC3D detector can deal with activities at all temporal scale ranges with only a single pass through the backbone network. We test our detector on two public activity detection benchmarks, THUMOS14 and ActivityNet. Extensive experiments show that the proposed CMS-RC3D detector outperforms state-of-the-art methods on THUMOS14 by a substantial margin and achieves comparable results on ActivityNet despite using a shallow feature extractor.

  10. The Role of the Nobles-Philanthropists in the Activities of Hospitals in the Danube Region

    Directory of Open Access Journals (Sweden)

    Nataliya Goncharova


    Full Text Available Reviews the legal and regulatory basis in the sphere of the guardianship treatment centres in the Russian Empire in the middle of the XIXth century, alleging the establishment of the public supervision over the activities of city, County and provincial hospitals. Contents of the powers of the Trustees, their objectives and main activities. Specific examples in the Danube region proved the thesis that among the Trustees were dominated by representatives of the nobility.

  11. Helical CT of the urinary organs

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, H.H.; Uggowitzer, M.M.; Ruppert-Kohlmayr, A. [Graz Univ. (Austria). Dept. of Radiology


    Despite of the diagnostic potential of conventional CT (CCT), limitations being inherent in this technology reduce its diagnostic confidence and limit clinical CT applications as 3D imaging. Helical CT (HCT) has far overcome the limitations of CCT and has become the standard CT technology. After a short overview on the technique of HCT and its advantages over CCT, the impact of HCT on the detection of disorders of the urinary organs is discussed. Due to the high quality of 3D reconstructions, vessels are visualized free of artefacts resulting in a dramatic improvement and acceptance of CT angiography, which has become a clinically important examination in the evaluation of obstructive renal artery disease. Fast HCT provides a precise assessment of the three phases of the nephrogram and it is a prerequisite for an improved depiction of abnormal vascular perfusion and impaired tubule transit of contrast material. Helical CT enables an improved characterization of cystic mass lesions reducing the diagnosis of indeterminate masses and thus facilitating a better therapeutic management. The diagnosis of renal cell carcinomas (RCC) has improved due to an increased sensitivity in detecting small RCCs, and an increased specificity in the diagnosis of neoplastic lesions. Improved staging of RCCs is the result of accurate assessment of venous tumour extension. When planning nephron-sparing surgery 3D display of the renal tumour helps to determine the resectability of the mass depicting its relation to major renal vessels and the renal collecting system. In the evaluation of renal trauma HCT provides shorter scanning time and thus fewer artefacts in the examination of traumatized patients who cannot cooperate adequately. Three-dimensional postprocessing modalities allow the assessment of the renal vascular pedicel by CT angiography and improve the demonstration of complex lacerations of the renal parenchyma. In the evaluation of the upper urinary tract unenhanced HCT has

  12. Helical fibrous nanostructures self-assembled from metal-free phthalocyanine with peripheral chiral menthol units. (United States)

    Lv, Wei; Wu, Xingcui; Bian, Yongzhong; Jiang, Jianzhuang; Zhang, Xiaomei


    (D)- and (L)-enantiomers of a novel metal-free 2(3),9(10),16(17),23(24)-tetrakis(2-isopropyl-5-methylcyclohexoxyl)phthalocyanine (1) with four chiral menthol units attached at the peripheral positions of a phthalocyanine ligand have been synthesized, and characterized. Neither the (D)-1 nor the (L)-1 enantiomer display a circular dichroism (CD) signal in the Soret and Q absorption region of the phthalocyanine ligand, indicating the lack of effective chiral information transfer from the chiral menthol tails to the phthalocyanine chromophore at the molecular level. Their self-assembly properties were systematically studied by CD spectroscopy, transmission electron microscopy, scanning electron microscopy, and atom force microscopy technique. Although four constitutional stereoisomers of each enantiomer were synthesized, because the four chiral menthol substituents are randomly located at peripheral positions of the phthalocyanine ring, cooperation of intermolecular pi-pi interactions between the phthalocyanine rings with chiral discrimination of the chiral side chains of the (D)-1 and the (L)-1 enantiomer induces the formation of one-dimensional helices with left- and right-handed helical molecular arrangement, respectively, according to the CD spectroscopic results. This reveals the effective chiral information transfer from the chiral menthol tails to the phthalocyanine chromophore at the supermolecular level. The formed one-dimensional helices twist around each other to maximize the van der Waals interaction, leading to the formation of highly ordered fibrous nanostructures with both right- and left-handed helicity according to the staggering angles between the neighboring phthalocyanine molecules, indicating the hierarchical formation of these fibrous nanostructures. Careful inspection of these nanofibers indicates the majority of nanofibers with right- and left-handed helicity formed from (D)-1 and (L)-1 enantiomer, respectively, with the ratio of approximately

  13. Crossmodal Activation of Visual Object Regions for Auditorily Presented Concrete Words

    Directory of Open Access Journals (Sweden)

    Jasper J F van den Bosch


    Full Text Available Dual-coding theory (Paivio, 1986 postulates that the human mind represents objects not just with an analogous, or semantic code, but with a perceptual representation as well. Previous studies (eg, Fiebach & Friederici, 2004 indicated that the modality of this representation is not necessarily the one that triggers the representation. The human visual cortex contains several regions, such as the Lateral Occipital Complex (LOC, that respond specifically to object stimuli. To investigate whether these principally visual representations regions are also recruited for auditory stimuli, we presented subjects with spoken words with specific, concrete meanings (‘car’ as well as words with abstract meanings (‘hope’. Their brain activity was measured with functional magnetic resonance imaging. Whole-brain contrasts showed overlap between regions differentially activated by words for concrete objects compared to words for abstract concepts with visual regions activated by a contrast of object versus non-object visual stimuli. We functionally localized LOC for individual subjects and a preliminary analysis showed a trend for a concreteness effect in this region-of-interest on the group level. Appropriate further analysis might include connectivity and classification measures. These results can shed light on the role of crossmodal representations in cognition.

  14. Relationships between body fatness, small-screen sedentary activity and regionality among schoolchildren in Victoria, Australia. (United States)

    Aucote, Helen M; Cooper, Andrew


    To examine the difference in body fatness and engagement in small-screen activities across children living in different degrees of regionality, and to examine the relationship between child body fatness and small-screen activities. Cross-sectional study design. Grade 5-6 schoolchildren (n = 393) from central and metropolitan Victoria, and a parent/guardian of each child (n = 393). Parents completed a questionnaire on their child's engagement in television (TV) viewing and video game playing (VGP). Children's weight and height were measured by a researcher. Body mass index (BMI) (kg/m(2)) was calculated and adjusted for age and sex. Regionality (metropolitan, population > 100 000; regional, 100 000 > population < 20 000; and rural, population < 10 000) and socioeconomic status (socioeconomic indexes for areas: index of disadvantage) were assigned according to school attended. BMI did not differ across regionality or sex. Boys engaged in more VGP than girls, and metropolitan children engaged in more VGP than rural and regional children. TV viewing did not differ across sex or regionality. VGP did not predict BMI, and TV viewing did not predict girls' BMI. Three to four per cent of the variance in boys' BMI was predicted by TV viewing. Boys and metropolitan children engage in more VGP. Boys', but not girls', BMI is related to TV viewing. Interventions designed to decrease engagement in TV viewing should be targeting boys.

  15. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward.

    Directory of Open Access Journals (Sweden)

    Glenn Ryan Fox


    Full Text Available How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI study, Caucasian Jewish male participants viewed videos of (1 disliked, hateful, anti-Semitic individuals, and (2 liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex, and the somatosensory cortex, reward processing (the striatum, and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left anterior cingulate cortex and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person’s pain.

  16. Drivers of Concentration of Economic Activity in Russia’s Regions

    Directory of Open Access Journals (Sweden)

    Svetlana Nikolaevna Rastvortseva


    Full Text Available The uneven distribution of economic activity in Russia promotes the differentiation of its constituent entities by level of development. Regions are independent participants of economic relations, and they often act as competitors rather than partners. Agglomeration effects arise in more successful regions and contribute to the concentration of resources, manufacturing enterprises, service providers, skilled workers, and scientific and technological knowledge. The aim of the study, the results of which are reflected in the paper, is to identify the factors and assess their impact on the concentration (dispersion of economic activity on the basis of Russia’s regions. The paper describes the benefits of agglomeration processes from the standpoint of economic geography, allocation theory and international trade theory. The concentration of economic activity in Russia’s regions is estimated by the Herfindahl–Hirschman index of industrial production taking into consideration the volume of investments in fixed capital and the number of people employed in the economy in Russia’s regions in 1990–2013. It is determined that fixed capital investments have the propensity to concentrate, but react strongly to economic crises. Labor resources, by contrast, are distributed relatively evenly, and their concentration in certain regions is increasing steadily. The article considers key factors such as wage growth, distance to large cities, direct foreign investment, road network density, the degree of development of the services sector in the region. The factor model is constructed using the least squares method. The authors conclude that the growth of wages in the region (relative to national average has a negative effect on the concentration of economic activity. There is a positive correlation between the growth of direct foreign investment and the density of hard surface roads. The development of services has the greatest positive impact on

  17. Empirical Analysis of the Integration Activity of Business Structures in the Regions of Russia

    Directory of Open Access Journals (Sweden)

    Maria Gennadyevna Karelina


    Full Text Available The article investigates the integration activity of business structures in the regions of Russia. A wide variety of approaches to the study of the problems and prospects of economic integration and the current dispute on the role of integration processes in the regional economic development have determined the complexity of the concepts “integration” and “integration activities” in order to develop the objective conditions to analyse the integration activity of business structures in the Russian regions. The monitoring of the current legal system of the Russian Federation carried out in the area of statistics and compiling statistical databases on mergers and acquisitions has showed the absence of the formal executive authority dealing with the compiling and collections of information on the integration activity at the regional level. In this connection, the data of Russian information and analytical agencies are made from the information and analytical base. As the research tools, the methods of analysis of structural changes, methods of analysis of economic differentiation and concentration, methods of non-parametric statistics are used. The article shows the close relationship between the social and economic development of the subjects of Russia and the integrated business structures functioning on its territory. An investigation of the integration activity structure and dynamics in the subjects of the Russian Federation based on the statistical data for the period from 2003 to 2012 has revealed the increasing heterogeneity of the integration activity of business structures in the regions of Russia. The hypothesis of a substantial divergence of mergers and acquisitions of corporate structures in the Russian regions was confirmed by the high values of the Gini coefficient, the Herfindahl index, and the decile coefficient of differentiation. The research results are of practical importance since they can be used to improve the existing

  18. Spectroscopy studies of strain-compensated mid-infrared QCL active regions on misoriented substrates (United States)

    Grayer, Justin S.; Meyer, Charles; Cheng, Emily; Triplett, Gregory; Roberts, Denzil; Schunemann, Peter G.


    In this work, we perform spectroscopic studies of AlGaAs/InGaAs quantum cascade laser structures that demonstrate frequency mixing using strain-compensated active regions. Using a three-quantum well design based on diagonal transitions, we incorporate strain in the active region using single and double well configurations on various surface planes (100) and (111). We observe the influence of piezoelectric properties in molecular beam epitaxy grown structures, where the addition of indium in the GaAs matrix increases the band bending in between injector regions and demonstrates a strong dependence on process conditions that include sample preparation, deposition rates, mole fraction, and enhanced surface diffusion lengths. We produced mid-infrared structures under identical deposition conditions that differentiate the role of indium(strain) in intracavity frequency mixing and show evidence that this design can potentially be implemented using other material systems.

  19. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness. (United States)

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui


    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger

  20. "Power, Regulation and Physically Active Identities": The Experiences of Rural and Regional Living Adolescent Girls (United States)

    Casey, M.; Mooney, A.; Smyth, J.; Payne, W.


    Drawing on interpretations of Foucault's techniques of power, we explored the discourses and power relations operative between groups of girls that appeared to influence their participation in Physical Education (PE) and outside of school in sport and physical activity (PA) in rural and regional communities. Interviews and focus groups were…

  1. Two active X-ray transients in the Galactic Center region as seen by INTEGRAL

    NARCIS (Netherlands)

    Kuulkers, E.; Shaw, S.; Chenevez, J.; Brandt, S.; Courvoisier, T.J.L.; Domingo, A.; Kretschmar, P.; Markwardt, C.; Mowlavi, N.; Paizis, A.; Risquez, D.; Sanchez-Fernandez, C.; Wijnands, R.


    The first of a new series of INTEGRAL Galactic bulge monitoring observations (ATel #438, #874) performed between UT 2007, Feb 15 18:35 and 22:17 shows two transient X-ray sources to be active in the Galactic Center region. One is the recently found source IGR J17453-2853 at RA, Dec (Degrees) =

  2. Flow Orientation Analysis for Major Activity Regions Based on Smart Card Transit Data

    Directory of Open Access Journals (Sweden)

    Parul Singh


    Full Text Available Analyzing public movement in transportation networks in a city is significant in understanding the life of citizen and making improved city plans for the future. This study focuses on investigating the flow orientation of major activity regions based on smart card transit data. The flow orientation based on the real movements such as transit data can provide the easiest way of understanding public movement in the complicated transportation networks. First, high inflow regions (HIRs are identified from transit data for morning and evening peak hours. The morning and evening HIRs are used to represent major activity regions for major daytime activities and residential areas, respectively. Second, the directional orientation of flow is then derived through the directional inflow vectors of the HIRs to show the bias in directional orientation and compare flow orientation among major activity regions. Finally, clustering analysis for HIRs is applied to capture the main patterns of flow orientations in the city and visualize the patterns on the map. The proposed methodology was illustrated with smart card transit data of bus and subway transportation networks in Seoul, Korea. Some remarkable patterns in the distribution of movements and orientations were found inside the city. The proposed methodology is useful since it unfolds the complexity and makes it easy to understand the main movement patterns in terms of flow orientation.

  3. Does serotonin influence aggression? Comparing regional activity before and during social interaction

    DEFF Research Database (Denmark)

    Summers, C.H.; Korzan, W.J.; Lukkes, J.L.


    baseline serotonergic activity is lower in the septum, nucleus accumbens, striatum, medial amygdala, anterior hypothalamus, raphe, and locus ceruleus but not in the hippocampus, lateral amygdala, preoptic area, substantia nigra, or ventral tegmental area. However, in regions such as the nucleus accumbens...

  4. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja


    in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...

  5. Filling the Gap : Relationship Between the Serotonin-Transporter-Linked Polymorphic Region and Amygdala Activation

    NARCIS (Netherlands)

    Bastiaansen, Jojanneke A.; Servaas, Michelle N.; Marsman, Jan-Bernard; Ormel, Johan; Nolte, Ilja M.; Riese, Harriette; Aleman, Andre


    The alleged association between the serotonin-transporter-linked polymorphic region (5-HTTLPR) and amygdala activation forms a cornerstone of the common view that carrying the short allele of this polymorphism is a potential risk factor for affective disorders. The authors of a recent meta-analysis

  6. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity (United States)

    Kontogiannis, Ioannis; Georgoulis, Manolis K.; Park, Sung-Hong; Guerra, Jordan A.


    We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012 - 2016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.

  7. Antioxidant activities and total phenol content of Inula viscosa extracts selected from three regions of Morocco

    Directory of Open Access Journals (Sweden)

    Naima Chahmi


    Conclusions: Our results of antioxidant assays were justified and partially supported the popular usage of the tested plants. The high antioxidant activity found in the plant from Sefrou and its great biomass in this region suggested that Inula viscosa is a good source of natural antioxidants compounds which might have benefits for health.

  8. InP based lasers and optical amplifiers with wire-/dot-like active regions

    DEFF Research Database (Denmark)

    Reithmaier, J. P.; Somers, A.; Deubert, S.


    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches...

  9. A long-duration active region: Evolution and quadrature observations of ejective events (United States)

    Cremades, H.; Mandrini, C. H.; Fuentes, M. C. López; Merenda, L.; Cabello, I.; López, F. M.; Poisson, M.


    Unknown aspects of the initiation, evolution, and associated phenomena of coronal mass ejections (CMEs), together with their capability of perturbing the fragile technological equilibrium on which nowadays society depends, turn them a compelling subject of study. While space weather forecasts are thus far not able to predict when and where in the Sun will the next CME take place, various CME triggering mechanisms have been proposed, without reaching consensus on which is the predominant one. To improve our knowledge in these respects, we investigate a long-duration active region throughout its life, from birth until decay along five solar rotations, in connection with its production of ejective events. We benefit from the wealth of solar remote-sensing data with improved temporal, spatial, and spectral resolution provided by the ground-breaking space missions STEREO, SDO, and SOHO. During the investigated time interval, which covers the months July - November 2010, the STEREO spacecraft were nearly 180 degrees apart, allowing for the uninterrupted tracking of the active region and its ensuing CMEs. The ejective aspect is examined from multi-viewpoint coronagraphic images, while the dynamics of the active region photospheric magnetic field are inspected by means of SDO/HMI data for specific subintervals of interest. The ultimate goal of this work in progress is to identify common patterns in the ejective aspect that can be connected with the active region characteristics.

  10. 50 CFR 216.250 - Specified activity and specified geographical region. (United States)


    ... Weapon Missions in the Gulf of Mexico § 216.250 Specified activity and specified geographical region. (a... within the Eglin Air Force Base Gulf Test and Training Range within the northern Gulf of Mexico. The... truncatus), Atlantic spotted dolphins (Stenella frontalis), dwarf sperm whales (Kogia simus) and pygmy sperm...

  11. 50 CFR 216.211 - Specified activity and specified geographical region. (United States)


    .... Gulf of Mexico § 216.211 Specified activity and specified geographical region. (a) Regulations in this... Mexico adjacent to the coasts of Texas, Mississippi, Louisiana, Alabama, and Florida. The incidental, but... dolphins, 27 Clymene dolphins, 12 rough-toothed dolphins, 14 striped dolphins, 15 melon-headed whales, 10...

  12. How Much Energy Can Be Stored in Solar Active Region Magnetic Fields? (United States)

    Linker, J.; Downs, C.; Torok, T.; Titov, V. S.; Lionello, R.; Mikic, Z.; Riley, P.


    Major solar eruptions such as X-class flares and very fast coronal mass ejections usually originate in active regions on the Sun. The energy that powers these events is believed to be stored as free magnetic energy (energy above the potential field state) prior to eruption. While coronal magnetic fields are not in general force-free, active regions have very strong magnetic fields and at low coronal heights the plasma beta is therefore very small, making the field (in equilibrium) essentially force-free. The Aly-Sturrock theorem shows that the energy of a fully force-free field cannot exceed the energy of the so-called open field. If the theorem holds, this places an upper limit on the amount of free energy that can be stored: the maximum free energy (MFE) is the difference between the open field energy and the potential field energy of the active region. In thermodynamic MHD simulations of a major eruption (the July 14, 2000 'Bastille' day event) and a modest event (February 13, 2009, we have found that the MFE indeed bounds the energy stored prior to eruption. We compute the MFE for major eruptive events in cycles 23 and 24 to investigate the maximum amount of energy that can be stored in solar active regions.Research supported by AFOSR, NASA, and NSF.

  13. Activity of the hypoxia‐activated pro‐drug TH‐302 in hypoxic and perivascular regions of solid tumors and its potential to enhance therapeutic effects of chemotherapy

    National Research Council Canada - National Science Library

    Saggar, Jasdeep K; Tannock, Ian F


    Many chemotherapy drugs have poor therapeutic activity in regions distant from tumor blood vessels because of poor tissue penetration and low cytotoxic activity against slowly‐proliferating cells. The hypoxia‐activated pro‐drug TH...

  14. Postmastectomy radiotherapy with integrated scar boost using helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rong Yi, E-mail: [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI (United States); Yadav, Poonam [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Vellore Institute of Technology University, Vellore, Tamil Nadu (India); Welsh, James S. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Fahner, Tasha [University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI (United States); Paliwal, Bhudatt [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States)


    The purpose of this study was to evaluate helical tomotherapy dosimetry in postmastectomy patients undergoing treatment for chest wall and positive nodal regions with simultaneous integrated boost (SIB) in the scar region using strip bolus. Six postmastectomy patients were scanned with a 5-mm-thick strip bolus covering the scar planning target volume (PTV) plus 2-cm margin. For all 6 cases, the chest wall received a total cumulative dose of 49.3-50.4 Gy with daily fraction size of 1.7-2.0 Gy. Total dose to the scar PTV was prescribed to 58.0-60.2 Gy at 2.0-2.5 Gy per fraction. The supraclavicular PTV and mammary nodal PTV received 1.7-1.9 dose per fraction. Two plans (with and without bolus) were generated for all 6 cases. To generate no-bolus plans, strip bolus was contoured and overrode to air density before planning. The setup reproducibility and delivered dose accuracy were evaluated for all 6 cases. Dose-volume histograms were used to evaluate dose-volume coverage of targets and critical structures. We observed reduced air cavities with the strip bolus setup compared with what we normally see with the full bolus. The thermoluminescence dosimeters (TLD) in vivo dosimetry confirmed accurate dose delivery beneath the bolus. The verification plans performed on the first day megavoltage computed tomography (MVCT) image verified that the daily setup and overall dose delivery was within 2% accuracy compared with the planned dose. The hotspot of the scar PTV in no-bolus plans was 111.4% of the prescribed dose averaged over 6 cases compared with 106.6% with strip bolus. With a strip bolus only covering the postmastectomy scar region, we observed increased dose uniformity to the scar PTV, higher setup reproducibility, and accurate dose delivered beneath the bolus. This study demonstrates the feasibility of using a strip bolus over the scar using tomotherapy for SIB dosimetry in postmastectomy treatments.

  15. Institutional factor in international economic activity of region and its socio-economic development

    Directory of Open Access Journals (Sweden)

    Elena Leonidovna Andreeva


    Full Text Available The article substantiates the impact of the institutional factor on the development of regional international economic relations. The scope of the study is regional international economic activity (IEA, the subject-matter is the role of the institutional factor in its development. The study purpose is to develop a scientific approach for the assessment of the institutional factor impact on the development of region’s international economic relations. The hypothesis is that the targeted efforts of all participants of IEA of the region (business, authorities, local community to strengthen of theese components of the institutional factor, which have a strong influence on the regional socio-economic development. A methodological approach for the assessment of this influenceis developed. It includes determining three elements of IEA institutionalization—agreements, organizations, events. A three-dimensional model is proposed for the coordination of these elements with 3 groups of countries—developed, developing and CIS, including the Eurasian Economic Union, and also with basic indexes characterizing the qualitative and quantitative contribution of region’s IEA into its socio-economic development. This model is tested on the example of the Sverdlovsk region of Russia for 2003–2015. That has allowed to define various kinds of the effects from strenthening the IEA institutional component, which are expressed in the increase of the export of the region, improvement of its investment attractiveness, the diversification of regional economy as well as the the generation of additional jobs and tax flows increase.

  16. Segmentation of Regions of Interest Using Active Contours with SPF Function

    Directory of Open Access Journals (Sweden)

    Farhan Akram


    Full Text Available Segmentation of regions of interest is a well-known problem in image segmentation. This paper presents a region-based image segmentation technique using active contours with signed pressure force (SPF function. The proposed algorithm contemporaneously traces high intensity or dense regions in an image by evolving the contour inwards. In medical image modalities these high intensity or dense regions refer to tumor, masses, or dense tissues. The proposed method partitions an image into an arbitrary number of subregions and tracks down salient regions step by step. It is implemented by enforcing a new region-based SPF function in a traditional edge-based level set model. It partitions an image into subregions and then discards outer subregion and partitions inner region into two more subregions; this continues iteratively until a stopping condition is fulfilled. A Gaussian kernel is used to regularize the level set function, which not only regularizes it but also removes the need of computationally expensive reinitialization. The proposed segmentation algorithm has been applied to different images in order to demonstrate the accuracy, effectiveness, and robustness of the algorithm.

  17. The generic geometry of helices and their close-packed structures

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob


    with values from the literature for helical polypeptide backbone structures, the alpha-, pi-. 3-10-, and gamma-helices. The alpha-helices are close to being optimally packed in the sense of efficient use of space, i.e. close-packed. They are more densely packed than the other three types of helices...

  18. Resource potential methods using for efficiency of activities in the region increase

    Directory of Open Access Journals (Sweden)

    M. P. Vasiliev


    Full Text Available The article considers impact methods on the economic results, the effectiveness of the regional economic complex should be based on a high quality of the basic characteristics classification of the region state. Application composition techniques to ensure a comprehensive impact on the achievement of this goal should in synthesized form to union, adopt a target orientation of development of the region with the parameters objectively revealing his condition. Ensuring organizational, economic, financial and investment techniques to achieve the planned targets and requires specifying align resource potential of the region with the available capacity of the regional economic complex to promote economic growth, improve the efficiency of operations. The main characteristics of the potential resource opportunities in the region are the skill level of workers, the degree of depreciation of fixed assets and their renewability, increased innovation in the region, its branches and facilities, strengthening of competitive advantages, the annual average number of employees, the cost of fixed and current assets, financial stability. In the region the opportunity to potentially affect the ability of its structural components to achieve the financial and economic performance targets acts as efficiency ability to provide stable dynamics of regional production efficiency, enhance the level of benefits to achieve the planned efficiency used (consumed resource. Applying of certain methods or their entire structure, created to provide a comprehensive impact on the goal achievement, in the synthesized form of target orientation combines regional development with the parameters most objectively revealing his condition. Achieving the appropriate organizational, economic, financial, investment or other measures to achieve planned targets that are expressed by the level of efficiency of activity in the conditions of the most complete involvement and intensity of use in

  19. Analysis on sliding helices and strands in protein structural ...

    Indian Academy of Sciences (India)



    Holm ... enable identification of conserved core of a protein fold it is not clear if the quality of .... Percentage of pairs of secondary structural elements for various SCOP classes (a) alpha helices (b) beta strands. Number of pairs.

  20. 3D printing of a multifunctional nanocomposite helical liquid sensor (United States)

    Guo, Shuang-Zhuang; Yang, Xuelu; Heuzey, Marie-Claude; Therriault, Daniel


    A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents.A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00278h

  1. Microfabricated, 94 GHz, 25 W, Helical Traveling Wave Tube Project (United States)

    National Aeronautics and Space Administration — Teraphysics Corporation completed the Phase I objectives for the electrical design of a 94 GHz, 26 W TWT with 53% overall efficiency, including the helical circuit...

  2. On the viscosity influence on a helical vortex flament evolution

    Directory of Open Access Journals (Sweden)

    Agafontseva M.V.


    Full Text Available Helical vortices whose parameters have a strong influence on the efficiency of the apparatus is often occur in technical devices using swirling flow (cyclones, separators, etc.. To date the internal structure of such vortices is poorly understood. In [1] a model of helical vortex with uniform vorticity distribution in the core is proposed. Vortices arising in real flow always have a smooth vorticity distribution due to the viscosity action. The problem on steady moving helical vortices with the vortex core of small size in an inviscid fluid was solved in [2]. The non-orthogonal ‘helical’ coordinate system was introduced that allowed author to reduce the problem to two dimensional one. However, the velocity of the vortex motion was written only in the form of a quadratures computation of which is difficult. This paper presents first attempt for research on the diffusion and dynamics of a viscous helical vortex.

  3. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji


    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  4. Perfect spin filtering effect in ultrasmall helical zigzag graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Yue, E-mail:


    The spin-polarized transport properties of helical zigzag graphene nanoribbons (ZGNRs) are investigated by first-principles calculations. It is found that although all helical ZGNRs have similar density of states and edge states, they show obviously different transport characteristics depending on the curling manners. ZGNRs curled along zigzag orientation exhibit perfect spin filtering effect with a large spin-split gap near the Fermi level, while ZGNRs curled along armchair orientation behave as conventional conductors for both two spin channels. The spin filtering effect will be weakened with the increase of either ribbon width or curling diameter. The results suggest that ultrasmall helical ZGNRs have important potential applications in spintronics and flexible electronics. - Highlights: • Perfect spin filtering effect has been found in helical ZGNRs. • The effect strongly depends on the curling manners of ZGNRs. • Different transport properties do not induced by distinct electronic properties. • The effect may be weakened with increasing either ribbon width or curling diameter.

  5. Topological states and quantized current in helical organic molecules (United States)

    Guo, Ai-Min; Sun, Qing-Feng


    We report a theoretical study of electron transport along helical organic molecules subject to an external electric field which is perpendicular to molecular helix axis. Our results reveal that topological states can appear in single-helical molecules as well as double-stranded DNA under the perpendicular electric field. In particular, a topological charge pumping can be realized by rotating the electric field in the transverse plane, where during each pumping cycle, an integer number of electrons can transport across the helical molecules at zero bias voltage, with pumped current being quantized. The quantized current constitutes multiple plateaus by scanning the Fermi energy as well as the bias voltage, and holds for various model parameters, since the edge states are topologically protected. These results could pave the way to explore topological states and quantized current in the biological systems and the helical molecules, and help in designing stable molecular devices.

  6. Helical vortices: linear stability analysis and nonlinear dynamics (United States)

    Selçuk, C.; Delbende, I.; Rossi, M.


    We numerically investigate, within the context of helical symmetry, the dynamics of a regular array of two or three helical vortices with or without a straight central hub vortex. The Navier–Stokes equations are linearised to study the instabilities of such basic states. For vortices with low pitches, an unstable mode is extracted which corresponds to a displacement mode and growth rates are found to compare well with results valid for an infinite row of point vortices or an infinite alley of vortex rings. For larger pitches, the system is stable with respect to helically symmetric perturbations. In the nonlinear regime, we follow the time-evolution of the above basic states when initially perturbed by the dominant instability mode. For two vortices, sequences of overtaking events, leapfrogging and eventually merging are observed. The transition between such behaviours occurs at a critical ratio involving the core size and the vortex-separation distance. Cases with three helical vortices are also presented.

  7. Packing of Helices: Is Chirality the Highest Crystallographic Symmetry?

    Directory of Open Access Journals (Sweden)

    Romain Gautier


    Full Text Available Chiral structures resulting from the packing of helices are common in biological and synthetic materials. Herein, we analyze the noncentrosymmetry (NCS in such systems using crystallographic considerations. A comparison of the chiral structures built from helices shows that the chirality can be expected for specific building units such as 31/32 or 61/65 helices which, in hexagonal arrangement, will more likely lead to a chiral resolution. In these two systems, we show that the highest crystallographic symmetry (i.e., the symmetry which can describe the crystal structure from the smallest assymetric unit is chiral. As an illustration, we present the synthesis of two materials ([Zn(2,2’-bpy3](NbF62 and [Zn(2,2’-bpy3](TaF62 in which the 3n helices pack into a chiral structure.

  8. Helical Screw Expander Evaluation Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McKay, R.


    A functional 1-MW geothermal electric power plant that featured a helical screw expander was produced and then tested in Utah in 1978 to 1979 with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing operation on two-phase geothermal fluids. The Project also produced a computer-equipped data system, an instrumentation and control van, and a 1000-kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Additional testing was performed in Mexico in 1980 under a cooperative test program using the same test array, and machine efficiency was measured at 62% maximum with the rotors partially coated with scale, compared with approximately 54% maximum in Utah with uncoated rotors, confirming the importance of scale deposits within the machine on performance. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  9. Vibrational properties of a regular helical Se chain (United States)

    Nakamura, Kazuma; Ikawa, Atsushi


    In this paper we calculated the phonon dispersion curves and the infrared (IR)/Raman spectra of an infinite regular helical selenium (Se) chain. The ingredients needed for their calculations, i.e., the force constant matrix, dynamical-charge tensor (DCT), and polarizability-derivative tensor (PDT), were obtained from ab initio molecular orbital calculations with the second-order Møller-Plesset perturbation theory for a Se chain with finite length. Assignments for the IR and Raman spectra were performed in terms of a rotational angle τ of the helix; i.e., the phonon modes with wave number Q~=0 or τ are IR active, while the phonon modes with Q~=0, τ, or 2τ are Raman active. Therefore, IR and Raman spectroscopy are useful, not only for identifying the static structure but also for deriving the phonon dispersions of the Se chain. From analyses based on a valence force field model, we found that the ab initio phonon dispersion curve of the stretching band strongly depends on the off-diagonal couplings in the force constant matrix and on the chain geometry, especially the bond angle. The ab initio DCT and PDT were also analyzed with the so-called bond-current and bond-polarizability models, respectively. We found that these simple models reproduce the ab initio IR/Raman intensities quite accurately.

  10. Mapping of protein phosphatase-6 association with its SAPS domain regulatory subunit using a model of helical repeats

    Directory of Open Access Journals (Sweden)

    Edelson Jessica R


    Full Text Available Abstract Background Helical repeat motifs are common among regulatory subunits for type-1 and type-2A protein Ser/Thr phosphatases. Yeast Sit4 is a distinctive type-2A phosphatase that has dedicated regulatory subunits named Sit4-Associated Proteins (SAPS. These subunits are conserved, and three human SAPS-related proteins are known to associate with PP6 phosphatase, the Sit4 human homologue. Results Here we show that endogenous SAPS subunit PP6R3 co-precipitates half of PP6 in cell extracts, and the SAPS region of PP6R3 is sufficient for binding PP6. The SAPS domain of recombinant GST-PP6R3 is relatively resistant to trypsin despite having many K and R residues, and the purified SAPS domain (residues 1-513 has a circular dichroic spectrum indicative of mostly alpha helical structure. We used sequence alignments and 3D-jury methods to develop alternative models for the SAPS domain, based on available structures of other helical repeat proteins. The models were used to select sites for charge-reversal substitutions in the SAPS domain of PP6R3 that were tested by co-precipitation of endogenous PP6c with FLAG-tagged PP6R3 from mammalian cells. Mutations that reduced binding with PP6 suggest that SAPS adopts a helical repeat similar to the structure of p115 golgin, but distinct from the PP2A-A subunit. These mutations did not cause perturbations in overall PP6R3 conformation, evidenced by no change in kinetics or preferential cleavage by chymotrypsin. Conclusion The conserved SAPS domain in PP6R3 forms helical repeats similar to those in golgin p115 and negatively charged residues in interhelical loops are used to associate specifically with PP6. The results advance understanding of how distinctive helical repeat subunits uniquely distribute and differentially regulate closely related Ser/Thr phosphatases.

  11. Contribution of iron yoke on helical coils for RHIC

    CERN Document Server

    Tominaka, T; Katayama, T


    In order to estimate the field contribution due to an axially symmetric iron yoke for a helical magnet, a three-dimensional magnetic scalar potential problem with helical symmetry is solved. It is confirmed that the asymptotic forms for potential and field coincide with those for the two-dimensional magnet, in the limit of large twist pitch length. Then, it is also confirmed that the obtained analytical expression for the magnetic field is consistent with the numerical field calculation. (8 refs).

  12. Comparison between helical computed tomography angiography and intraoperative findings

    Directory of Open Access Journals (Sweden)

    Abijit Shetty


    Conclusions: Helical CT is important in delineating the arterial, venous, and ureteral anatomy and can show the important incidental findings. Left renal donors and males have more variations in their renal anatomy. Technically challenging laparoscopic nephrectomy on the multiple-vessel-side donor is possible with the aid of helical CT. The importance of the CT in evaluating donor renal anatomy for a technically challenging laparoscopic donor nephrectomy is commendable.

  13. Supramolecular helical porphyrin arrays using DNA as a scaffold


    Bouamaied, Imenne; Nguyen, ThaoNguyen; Ruhl, Thomas; Stulz, Eugen


    A diphenyl porphyrin substituted nucleotide was incorporated site specifically into DNA, leading to helical stacked porphyrin arrays in the major groove of the duplexes. The porphyrins show an electronic interaction which is significantly enhanced compared to the analogous tetraphenyl porphyrin (TPP) as shown in the large exciton coupling of the porphyrin B-band absorbance. Analogous to the TPP-DNA, an induced helical secondary structure is observed in the single strand porphyrin-DNA. The mod...

  14. Tokamak startup using point-source dc helicity injection. (United States)

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C


    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  15. Helical containers with classical and quantum fluids in rotating frame


    Okulov, A. Yu.


    The examples of the classical liquids confined by rotating helical boundaries are considered and these examples are compared with rotating helical reservoir filled by ultracold bosonic ensemble. From the point of view of observer who co-rotates with classical liquid trapped by reservoir the quantum fluid will move translationally alongside rotation axis while in laboratory frame the quantum fluid will stay in rest. This behavior of quantum ensemble which is exactly opposite to the classical c...

  16. Interface currents and magnetization in singlet-triplet superconducting heterostructures: Role of chiral and helical domains (United States)

    Romano, Alfonso; Noce, Canio; Vekhter, Ilya; Cuoco, Mario


    Chiral and helical domain walls are generic defects of topological spin-triplet superconductors. We study theoretically the magnetic and transport properties of superconducting singlet-triplet-singlet heterostructure as a function of the phase difference between the singlet leads in the presence of chiral and helical domains inside the spin-triplet region. The local inversion symmetry breaking at the singlet-triplet interface allows the emergence of a static phase-controlled magnetization and generally yields both spin and charge currents flowing along the edges. The parity of the domain wall number affects the relative orientation of the interface moments and currents, while in some cases the domain walls themselves contribute to spin and charge transport. We demonstrate that singlet-triplet heterostructures are a generic prototype to generate and control nondissipative spin and charge effects, putting them in a broader class of systems exhibiting spin-Hall, anomalous Hall effects and similar phenomena. Features of the electron transport and magnetic effects at the interfaces can be employed to assess the presence of domains in chiral/helical superconductors.

  17. Controlling lanthanide exchange in triple-stranded helicates. A way to optimize molecular light-upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Davood; Nozary, Homayoun; Piguet, Claude [Department of Inorganic, Analytical and Applied Chemistry, University of Geneva (Switzerland); Suffren, Yan; Hauser, Andreas [Department of Physical Chemistry, University of Geneva (Switzerland)


    The kinetic lability of hexadentate gallium-based tripods is sufficient to ensure thermodynamic self-assembly of luminescent heterodimetallic [GaLn(L3){sub 3}]{sup 6+} helicates on the hour time scale, where Ln is a trivalent 4f-block cation. The inertness is, however, large enough for preserving the triple-helical structure when [GaLn(L3){sub 3}]{sup 6+} is exposed to lanthanide exchange. The connection of a second gallium-based tripod further slows down the exchange processes to such an extent that spectroscopically active [CrErCr(L4){sub 3}]{sup 9+} can be diluted into closed-shell [GaYGa(L4){sub 3}]{sup 9+} matrices without metal scrambling. This feature is exploited for pushing molecular-based energy-transfer upconversion (ETU) at room temperature. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Control of magnetic islands in the STOR-M tokamak using resonant helical fields (United States)

    Elgriw, S.; Liu, D.; Asai, T.; Hirose, A.; Xiao, C.


    The resonant interaction between magnetohydrodynamic (MHD) instability modes and the externally applied helical magnetic field is demonstrated in the Saskatchewan Torus-Modified (STOR-M) tokamak. The study is conducted both numerically and experimentally using a 2D MHD equilibrium code in the former and an (l = 2, n = 1) helical coil carrying a short current pulse in the latter. It is shown numerically that the resonant helical current can efficiently suppress the magnetic islands resonating on the (m = 2, n = 1) magnetic surface when the value of the safety factor at the plasma edge is relatively low (STOR-M during low-q ohmic discharges with high MHD activities. The amplitude and frequency of (2, 1) Mirnov fluctuations are significantly reduced after the activation of the resonant field. Lesser suppression in sideband islands is also observed. Moreover, a phase of improved plasma confinement, characterized by a reduction in Hα emission level, a reduction in loop voltage and an increase in the soft x-ray emission, is induced after application of the resonant field.

  19. Helicity decomposition of ghost-free massive gravity (United States)

    de Rham, Claudia; Gabadadze, Gregory; Tolley, Andrew J.


    We perform a helicity decomposition in the full Lagrangian of the class of Massive Gravity theories previously proven to be free of the sixth (ghost) degree of freedom via a Hamiltonian analysis. We demonstrate, both with and without the use of nonlinear field redefinitions, that the scale at which the first interactions of the helicity-zero mode come in is {Λ_{{3}}} = {left( {{M_{text{Pl}}}{m^{{2}}}} right)^{{{1}/{3}}}} , and that this is the same scale at which helicity-zero perturbation theory breaks down. We show that the number of propagating helicity modes remains five in the full nonlinear theory with sources. We clarify recent misconceptions in the literature advocating the existence of either a ghost or a breakdown of perturbation theory at the significantly lower energy scales, {Λ_{{5}}} = {left( {{M_{text{Pl}}}{m^{{4}}}} right)^{{{1}/{5}}}} or {Λ_{{4}}} = {left( {{M_{text{Pl}}}{m^{{3}}}} right)^{{{1}/{4}}}} , which arose because relevant terms in those calculations were overlooked. As an interesting byproduct of our analysis, we show that it is possible to derive the Stückelberg formalism from the helicity decomposition, without ever invoking diffeomorphism invariance, just from a simple requirement that the kinetic terms of the helicity-two, -one and -zero modes are diagonalized.

  20. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity

    Directory of Open Access Journals (Sweden)

    Liang eZhou


    Full Text Available Lantibiotics are ribosomally synthesized (methyllanthionine containing peptides which can efficiently inhibit the growth of Gram-positive bacteria. As lantibiotics kill bacteria efficiently and resistance to them is difficult to be obtained, they have the potential to be used in many applications, e.g. in pharmaceutical industry or food industry. Nisin can inhibit the growth of Gram-positive bacteria by binding to lipid II and by making pores in their membrane. The C-terminal part of nisin is known to play an important role during translocation over the membrane and forming pore complexes. However, as the thickness of bacterial membranes varies between different species and environmental conditions, this property could have an influence on the pore forming activity of nisin. To investigate this, the so-called hinge region of nisin (residues NMK was engineered to vary from one to six amino acid residues and specific activity against different indicators was compared. Antimicrobial activity in liquid culture assays showed that wild type nisin is most active, while truncation of the hinge region dramatically reduced the activity of the peptide. However, one or two amino acids extensions showed only slightly reduced activity against most indicator strains. Notably, some variants (+2, +1, -1, -2 exhibited higher antimicrobial activity than nisin in agar well diffusion assays against Lactococcus lactis MG1363, Listeria monocytogenes, Enterococcus faecalis VE14089, Bacillus sporothermodurans IC4 and Bacillus cereus 4153 at certain temperatures.

  1. Ratios of helicity amplitudes for exclusive ρ{sup 0} electroproduction on transversely polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Akopov, N.; Elbakian, G.; Gharibyan, V.; Marukyan, H.; Petrosyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Akopov, Z.; Borissov, A.; Deconinck, W.; Holler, Y.; Rostomyan, A.; Zihlmann, B. [DESY, Hamburg (Germany); Aschenauer, E.C.; Nowak, W.D. [DESY, Zeuthen (Germany); Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Warsaw (Poland); Belostotski, S.; Kisselev, A.; Manaenkov, S.I.; Veretennikov, D.; Vikhrov, V. [B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); VU University, Department of Physics and Astronomy, Amsterdam (Netherlands); Bryzgalov, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y. [Institute for High Energy Physics, Moscow Region (Russian Federation); Capitani, G.P.; De Sanctis, E.; Muccifora, V.; Reolon, A.R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy); Ciullo, G.; Lenisa, P.; Pappalardo, L.L.; Statera, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Contalbrigo, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); De Leo, R.; Lagamba, L.; Vilardi, I. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Dueren, M. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Ellinghaus, F. [University of Colorado, Nuclear Physics Laboratory, Boulder, CO (United States); Felawka, L. [TRIUMF, Vancouver, BC (Canada); Frullani, S.; Garibaldi, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Gruppo Collegato Sanita, Rome (Italy); Istituto Superiore di Sanita, Rome (Italy); Gavrilov, G. [DESY, Hamburg (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); TRIUMF, Vancouver, BC (Canada); Goloskokov, S.V.; Shutov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Jackson, H.E.; Reimer, P.E. [Argonne National Laboratory, Physics Division, Argonne, IL (United States); Joosten, S. [Ghent University, Department of Physics and Astronomy, Gent (Belgium); University of Illinois, Department of Physics, Urbana, IL (United States); Kaiser, R.; Lehmann, I.; Rosner, G.; Seitz, B. [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Karyan, G. [DESY, Hamburg (Germany); Yerevan Physics Institute, Yerevan (Armenia); Kozlov, V.; Terkulov, A. [Lebedev Physical Institute, Moscow (Russian Federation); Kravchenko, P. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); Kroll, P.; Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Lapikas, L. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); Lorenzon, W. [University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Miyachi, Y.; Shibata, T.A. [Tokyo Institute of Technology, Department of Physics, Tokyo (Japan); Movsisyan, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Yerevan Physics Institute, Yerevan (Armenia); Nass, A.; Rith, K. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Riedl, C. [DESY, Zeuthen (Germany); University of Illinois, Department of Physics, Urbana, IL (United States); Ryckbosch, D.; Tytgat, M.; Haarlem, Y. van [Ghent University, Department of Physics and Astronomy, Gent (Belgium); Schnell, G. [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain); Ghent University, Department of Physics and Astronomy, Gent (Belgium); Truty, R. [University of Illinois, Department of Physics, Urbana, IL (United States); Hulse, C. van [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Ghent University, Department of Physics and Astronomy, Gent (Belgium); Yaschenko, S. [DESY, Hamburg (Germany); Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Collaboration: The HERMES Collaboration


    Exclusive ρ{sup 0}-meson electroproduction is studied by the HERMES experiment, using the 27.6 GeV longitudinally polarized electron/positron beam of HERA and a transversely polarized hydrogen target, in the kinematic region 1.0 GeV{sup 2} < Q{sup 2} < 7.0 GeV{sup 2}, 3.0 GeV < W < 6.3 GeV, and -t{sup '} < 0.4 GeV{sup 2}. Using an unbinned maximum-likelihood method, 25 parameters are extracted. These determine the real and imaginary parts of the ratios of several helicity amplitudes describing ρ{sup 0}-meson production by a virtual photon. The denominator of those ratios is the dominant amplitude, the nucleon-helicity-non-flip amplitude F{sub 0(1)/(2)0(1)/(2)}, which describes the production of a longitudinal ρ{sup 0}-meson by a longitudinal virtual photon. The ratios of nucleon-helicity-non-flip amplitudes are found to be in good agreement with those from the previous HERMES analysis. The transverse target polarization allows for the first time the extraction of ratios of a number of nucleon-helicity-flip amplitudes to F{sub 0(1)/(2)0(1)/(2)}. Results obtained in a handbag approach based on generalized parton distributions taking into account the contribution from pion exchange are found to be in good agreement with these ratios. Within the model, the data favor a positive sign for the π - ρ transition form factor. By also exploiting the longitudinal beam polarization, a total of 71 ρ{sup 0} spin-density matrix elements is determined from the extracted 25 parameters, in contrast to only 53 elements as directly determined in earlier analyses. (orig.)

  2. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. (United States)

    Zheng, Nan; Song, Ziyuan; Yang, Jiandong; Liu, Yang; Li, Fangfang; Cheng, Jianjun; Yin, Lichen


    The delivery performance of non-viral gene vectors is greatly related to their intracellular kinetics. Cationic helical polypeptides with potent membrane penetration properties and gene transfection efficiencies have been recently developed by us. However, they suffer from severe drawbacks in terms of their membrane penetration mechanisms that mainly include endocytosis and pore formation. The endocytosis mechanism leads to endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes appreciable cytotoxicity at high concentrations. With the attempt to overcome such critical challenges, we incorporated aromatic motifs into the design of helical polypeptides to enhance their membrane activities and more importantly, to manipulate their membrane penetration mechanisms. The aromatically modified polypeptides exhibited higher cellular internalization level than the unmodified analogue by up to 2.5 folds. Such improvement is possibly because aromatic domains promoted the polypeptides to penetrate cell membranes via direct transduction, a non-endocytosis and non-pore formation mechanism. As such, gene cargos were more efficiently delivered into cells by bypassing endocytosis and subsequently avoiding endosomal entrapment, and the material toxicity associated with excessive pore formation was also reduced. The top-performing aromatic polypeptide containing naphthyl side chains at the incorporated content of 20mol% revealed notably higher transfection efficiencies than commercial reagents in melanoma cells in vitro (by 11.7 folds) and in vivo (by 9.1 folds), and thus found potential utilities toward topical gene delivery for cancer therapy. Cationic helical polypeptides, as efficient gene delivery materials, suffer from severe drawbacks in terms of their membrane penetration mechanisms. The main cell penetration mechanisms involved are endocytosis and pore formation. However, the endocytosis mechanism has the limitation of endosomal

  3. 3-D Modeling of Thermal Structure in Active Regions on the Solar Surface (United States)

    Mok, Y.; Lionello, R.; Mikic, Z.; Linker, J.


    The thermal structure of a magnetically active region depends on a complicated balance between plasma heating, radiative cooling and the highly anisotropic thermal conduction guided by the magnetic field. It is also affected by plasma convection if siphon flows exist as a result of dynamic imbalance of pressure gradient, gravity and magnetic force. The difficulty of the numerical simulation lies in the wide ranges of density and temperature, separated by a narrow transition region with enormous gradients. Early studies of 1-D models (Mok et. al. 1991) provide a guidance on the thermal structure along individual field lines. A slightly more advanced 2-D model (Mok and Van Hoven 1993) produces a differential emission measure that is remarkably consistent with observations on the quiet sun. Active regions, however, require a 3-D model. We have implemented the necessary thermodynamics into our 3-D MHD code for this study. By starting with a magnetogram of an active region, we first establish an overlying magnetic structure. We then compute the thermal structure in the atmosphere. One of the most poorly understood physical processes in the energy balance is the plasma heating. We have computed the thermal structure based on various heating models and will compare their resulting emission measures. Mok, Schnack, and Van Hoven, 1991, Solar Phys. 132, 95. Mok and Van Hoven, 1993, Solar Phys. 146, 5. Work supported by the Sun Earth Connection Theory Program of NASA.

  4. Taste-Elicited Activity in Facial Muscle Regions in 5-8-Week-Old Infants. (United States)

    Armstrong, Jessica E; Laing, David G; Jinks, Anthony L


    The state of development of the sense of taste in humans during the first few months of life is only partially understood. Since taste plays a critical role in the feeding and nutrition of infants a better understanding of taste development during early life is required. Currently, information about the sense of taste in pre-verbal infants is obtained by analysis of videotaped facial expressions using the Baby FACS coding system. A potentially more objective faster procedure for assessing facial expressions not investigated in infants is electromyography (EMG). The method has been successfully used to study taste-elicited responses in the mid-face muscle regions of the levator labii and zygomaticus major of 6-9-year-olds and in a range of facial muscle regions in adults. Accordingly, this study aimed to investigate taste in young infants using EMG to 1) measure activity simultaneously in 4 facial muscle regions in response to 3 common tastants and 2) determine whether the activities of one or more muscle regions is needed to provide evidence of perception of a tastant by an infant. The results indicated that multiple facial muscle regions responded simultaneously but differentially to non-sweet and sweet tastants and recordings of activities from 3 or 4 regions simultaneously indicated that almost 100% of infants responded to the unpleasant tastes of quinine and citric acid, and 80% to sucrose. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:

  5. Physical Activity Disparities Between US-born and Immigrant Children by Maternal Region of Origin. (United States)

    Kimbro, Rachel Tolbert; Kaul, Bhavika


    We examined and compared patterns in physical activity participation for children of US-born and immigrant mothers from seven world geographic regions, and tested whether the physical activity differences were attenuated by socioeconomic status or maternal language proficiency. Using the Early Childhood Longitudinal Study-Kindergarten data (N = 18,850) we utilized logistic regression to predict adequate vigorous physical activity and participation in group and individual sports for kindergarten children. US-born children of US-born parents have significantly higher rates of physical activity compared to immigrant children. Children of Mexican, Southeast Asian, and Caribbean immigrants were especially unlikely to participate in sports. These disparities were not significantly attenuated by socioeconomic status, but accounting for language proficiency reduced some differences between the US-born and immigrant children, particularly for group sports participation. Researchers interested in improving the physical activity patterns of second-generation children should consider the relevance of language barriers in promoting healthy living.

  6. Field line and particle orbit analysis in the periphery of the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yutaka; Oikawa, Shun-ichi [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (Japan); Watanabe, Tsuguhiro [National Inst. for Fusion Science, Toki, Gifu (Japan)


    Magnetic field lines and particle orbits are analyzed in the periphery of the Large Helical Device (LHD), which is called chaotic field line region. The inner and outer borders of the chaotic field line region are determined precisely. It is found that the particles confined in the chaotic field line region are classified into two groups that are passing particles and reflected particles. Passing particles have long lifetime, because of the long connection length of the chaotic field line. Reflected particles are confined because they are trapped by the magnetic mirror in the chaotic field line region due to the strong adiabaticity. There exist the exceptional particles among the reflected particles. The mechanisms of the exceptional particles are described by the analysis of the magnetic structure in the chaotic field line region. The precise comparison between R{sub ax}=3.75 m and R{sub ax}=3.6 m magnetic configuration is carried out. (author)

  7. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow


    advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun......Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D...

  8. Structural details (kinks and non-α conformations) in transmembrane helices are intrahelically determined and can be predicted by sequence pattern descriptors (United States)

    Rigoutsos, Isidore; Riek, Peter; Graham, Robert M.; Novotny, Jiri


    One of the promising methods of protein structure prediction involves the use of amino acid sequence-derived patterns. Here we report on the creation of non-degenerate motif descriptors derived through data mining of training sets of residues taken from the transmembrane-spanning segments of polytopic proteins. These residues correspond to short regions in which there is a deviation from the regular α-helical character (i.e. π-helices, 310-helices and kinks). A ‘search engine’ derived from these motif descriptors correctly identifies, and discriminates amongst instances of the above ‘non-canonical’ helical motifs contained in the SwissProt/TrEMBL database of protein primary structures. Our results suggest that deviations from α-helicity are encoded locally in sequence patterns only about 7–9 residues long and can be determined in silico directly from the amino acid sequence. Delineation of such variations in helical habit is critical to understanding the complex structure–function relationships of polytopic proteins and for drug discovery. The success of our current methodology foretells development of similar prediction tools capable of identifying other structural motifs from sequence alone. The method described here has been implemented and is available on the World Wide Web at PMID:12888523

  9. Helical Birods: An Elastic Model of Helically Wound Double-Stranded Rods

    KAUST Repository

    Prior, Christopher


    © 2014, Springer Science+Business Media Dordrecht. We consider a geometrically accurate model for a helically wound rope constructed from two intertwined elastic rods. The line of contact has an arbitrary smooth shape which is obtained under the action of an arbitrary set of applied forces and moments. We discuss the general form the theory should take along with an insight into the necessary geometric or constitutive laws which must be detailed in order for the system to be complete. This includes a number of contact laws for the interaction of the two rods, in order to fit various relevant physical scenarios. This discussion also extends to the boundary and how this composite system can be acted upon by a single moment and force pair. A second strand of inquiry concerns the linear response of an initially helical rope to an arbitrary set of forces and moments. In particular we show that if the rope has the dimensions assumed of a rod in the Kirchhoff rod theory then it can be accurately treated as an isotropic inextensible elastic rod. An important consideration in this demonstration is the possible effect of varying the geometric boundary constraints; it is shown the effect of this choice becomes negligible in this limit in which the rope has dimensions similar to those of a Kirchhoff rod. Finally we derive the bending and twisting coefficients of this effective rod.

  10. Importance of the tryptophans of gramicidin for its lipid structure modulating activity in lysophosphatidylcholine and phosphatidylethanolamine model membranes. A comparative study employing gramicidin analogs and a synthetic α-helical hydrophobic polypeptide

    NARCIS (Netherlands)

    Aranda, F.J.; Killian, J.A.; Kruijff, B. de


    The importance of the tryptophan residues of gramicidin for the lipid structure modulating activity of this pentadecapeptide was investigated by studying the interaction of gramicidin analogs A, B, C (which have a tryptophan, phenylalanine and tyrosine in position 11, respectively) and

  11. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity (United States)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.


    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  12. Influence of rifting episodes on seismic and volcanic activity in the southern Red Sea region (United States)

    Viltres, Renier; Ruch, Joël; Doubre, Cécile; Reilinger, Rob; Ogubazghi, Ghebrebrhan; Jónsson, Sigurjón


    Rifting episodes cause large changes to the state of stress in the surrounding crust, both instantaneously (elastic stress transfer) and in the years following the episodes (viscoelastic stress transfer), and can significantly influence occurrence of future earthquakes and volcanic eruptions. Here we report on a new project that aims at studying the stress impact of rifting episodes and focuses on the southern Red Sea, Afar and Gulf of Aden region, which has seen a significant increase in rifting activity during the past decade. The Afar rift system experienced a major rifting episode (Dabbahu segment) in 2005-2010 and the southern Red Sea also appears to have had one, indicated by three volcanic eruptions in 2007, 2011-12, and 2013 (the first in the area in over a century), accompanied by several seismic swarms. In addition, Gulf of Aden had an exceptionally strong seismic swarm activity starting in late 2010 that was associated with intrusion of magma in a separate rifting episode. To explore the influence of these recent rifting episodes in the region we will use new geodetic observations, seismicity analysis and modeling. We have analyzed new GPS data collected in Eritrea, in Afar, and in southern Saudi Arabia. Comparisons with older surveys has not only resulted in better GPS velocities for the observed sites, but also revealed changes to velocities at some sites influenced by the rifting activity. We use the results along with seismic data to better constrain the timing, magnitude and duration of the rifting activity in the region. We will then apply elastic and visco-elastic stress transfer modeling to assess the associated stress changes, in particular at locations where volcanic eruptions or intrusions have occurred or where significant seismicity has been detected. The project should provide new information about the impact rifting events and episodes can have on regional volcanic and earthquake activity and how rifting episodes may influence one another.

  13. α-Peptide-Oligourea Chimeras: Stabilization of Short α-Helices by Non-Peptide Helical Foldamers. (United States)

    Fremaux, Juliette; Mauran, Laura; Pulka-Ziach, Karolina; Kauffmann, Brice; Odaert, Benoit; Guichard, Gilles


    Short α-peptides with less than 10 residues generally display a low propensity to nucleate stable helical conformations. While various strategies to stabilize peptide helices have been previously reported, the ability of non-peptide helical foldamers to stabilize α-helices when fused to short α-peptide segments has not been investigated. Towards this end, structural investigations into a series of chimeric oligomers obtained by joining aliphatic oligoureas to the C- or N-termini of α-peptides are described. All chimeras were found to be fully helical, with as few as 2 (or 3) urea units sufficient to propagate an α-helical conformation in the fused peptide segment. The remarkable compatibility of α-peptides with oligoureas described here, along with the simplicity of the approach, highlights the potential of interfacing natural and non-peptide backbones as a means to further control the behavior of α-peptides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride (United States)

    Jo, Janggun; Yang, Xinmai


    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  15. Discrete molecular dynamics can predict helical prestructured motifs in disordered proteins.

    Directory of Open Access Journals (Sweden)

    Dániel Szöllősi

    Full Text Available Intrinsically disordered proteins (IDPs lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD simulations combined with replica exchange (RX method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available.

  16. Eastern region represents a worrying cluster of active hepatitis C in Algeria in 2012. (United States)

    Bensalem, Aïcha; Selmani, Karima; Hihi, Narjes; Bencherifa, Nesrine; Mostefaoui, Fatma; Kerioui, Cherif; Pineau, Pascal; Debzi, Nabil; Berkane, Saadi


    Algeria is the largest country of Africa, peopled with populations living a range of traditional/rural and modern/urban lifestyles. The variations of prevalence of chronic active hepatitis care poorly known on the Algerian territory. We conducted a retrospective survey on all patients (n = 998) referred to our institution in 2012 and confirmed by us for an active hepatitis C. Half of the hepatitis C virus (HCV) isolates were genotyped. Forty Algerian regions out of the 48 were represented in our study. Three geographical clusters (Aïn-Temouchent/SidiBelAbbes, Algiers, and a large Eastern region) with an excess of active hepatitis C were observed. Patients coming from the Eastern cluster (Batna, Khenchela, Oum el Bouaghi, and Tebessa) were strongly over-represented (49% of cases, OR = 14.5, P < 0.0001). The hallmarks of Eastern region were an excess of women (65% vs. 46% in the remaining population, P < 0.0001) and the almost exclusive presence of HCV genotype 1 (93% vs. 63%, P = 0.0001). The core of the epidemics was apparently located in Khenchela (odds ratio = 24.6, P < 0.0001). This situation is plausibly connected with nosocomial transmission or traditional practices as scarification (Hijama), piercing or tattooing, very lively in this region. Distinct hepatitis C epidemics are currently affecting Algerian population. The most worrying situation is observed in rural regions located east of Algeria. J. Med. Virol. 88:1394-1403, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Susceptibility profile of Salmonella against the antibacterial activity of propolis produced in two regions of Brazil

    Directory of Open Access Journals (Sweden)

    R. O. Orsi


    Full Text Available Propolis antibiotic action has been widely investigated. This assay was carried out in order to observe the in vitro antibacterial activity of propolis against Salmonella enteritidis isolated from food and Salmonella typhimurium isolated from human infections. Propolis was collected by Apis mellifera in two regions of Brazil (Mossoró, Rio Grande do Norte State; and Urubici, Santa Catarina State. Both strains survival percentage decreased with time of incubation in Ethanolic Extracts of Propolis (EEP, demonstrating bactericidal effect after 24 hours. It was also observed that EEP from Mossoró was more effective than that from Urubici. The control of the propolis solvent - 70% ethanol - was less effective than EEP, showing only a bacteriostatic effect. We can conclude that propolis shows an activity against Gram-negative bacteria that varies according to the geographical region where it was collected by bees.

  18. Entrepreneurial activity and regional development: an introduction to this special issue

    Directory of Open Access Journals (Sweden)

    Maribel Guerrero


    Full Text Available The main objective of this special issue is to analyze the relationship between entrepreneurial intention and entrepreneurial activity and its impact on regional development. The last convulsive decade, with expansionary and recessionary economic cycles, offers a good opportunity to study how economic cycles affect the propensity of becoming an entrepreneur and, in turn, to observe how entrepreneurial activity contributes to change (improvement in the economy.Previous studies have analyzed the complicated endogenous relationship between entrepreneurship and economic growth, but these studies have examined the countries’ performance under a static view. This special issue focuses on analyzing complex entrepreneurial behavior from a sub-national perspective (examining several regions in the Spanish autonomous communities and a dynamic view (using data from several years, which adds rigor and valuable knowledge to this research field.

  19. Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing (United States)

    Niedra, Janis M.


    A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.


    Directory of Open Access Journals (Sweden)

    P.I. Ogorodnikov


    Full Text Available The problems of the innovation and investment activity in the industrial sphere at the regional level are regarded in the article The problems are regarded on the basis of the optimum employment of all elements factors and mechanisms including them into whole contour of technological structure integration modes and modernized techniques machines systems and active productive potential and power modern basic innovations The integral criteria were formulated They help to evaluate inter-branch differentiation of the efficacy of the manufacturing factors use and its impact on the economical effectiveness of the whole industry The methodical prove of the rational use of different types of the technical progress in the industrial sub-brunches of the region are presented.

  1. Antibacterial activity of Apis mellifera L. propolis collected in three regions of Kenya

    Directory of Open Access Journals (Sweden)

    E. M. Muli


    Full Text Available The present study aimed at investigating the susceptibility of the microorganisms Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis to ethanolic extracts of propolis (EEP from three regions of Kenya (Taita, Tana and Samburu. Propolis was extracted using four different concentrations of ethanol: pure, 70%, 50%, and 30%. Ethanol (70% and Streptomycin were used as controls. The agar diffusion method using filter paper disks was employed. Antibacterial activity was determined as an equivalent of the inhibition zones diameters (in millimeters after incubation at 37°C for 24h. Significant differences in the antibacterial activities of propolis were observed among the three regions, depending on the test microorganisms and on the procedure used for the preparation of propolis extract. Bacillus subtilis and Staphylococcus aureus were the most susceptible bacteria and 70% EEP had the best antibacterial effect.

  2. High-resolution Observations of Active Region Moss and its Dynamics (United States)

    Morton, R. J.; McLaughlin, J. A.


    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases along the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s-1 for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.

  3. Optimization based on benefit of regional energy suppliers of distributed generation in active distribution network (United States)

    Huo, Xianxu; Li, Guodong; Jiang, Ling; Wang, Xudong


    With the development of electricity market, distributed generation (DG) technology and related policies, regional energy suppliers are encouraged to build DG. Under this background, the concept of active distribution network (ADN) is put forward. In this paper, a bi-level model of intermittent DG considering benefit of regional energy suppliers is proposed. The objective of the upper level is the maximization of benefit of regional energy suppliers. On this basis, the lower level is optimized for each scene. The uncertainties of DG output and load of users, as well as four active management measures, which include demand-side management, curtailing the output power of DG, regulating reactive power compensation capacity and regulating the on-load tap changer, are considered. Harmony search algorithm and particle swarm optimization are combined as a hybrid strategy to solve the model. This model and strategy are tested with IEEE-33 node system, and results of case study indicate that the model and strategy successfully increase the capacity of DG and benefit of regional energy suppliers.

  4. Altered regional and circuit resting-state activity associated with unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Xingchao Wang

    Full Text Available The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial deprivation from unilateral auditory loss (UHL would similarly affect the neural circuitry of cognitive processes in addition to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal controls. In sensory regions, we found decreased regional homogeneity (ReHo in the bilateral calcarine cortices in UHL. However, there was an increase of ReHo in the right anterior insular cortex (rAI, the key node of cognitive control network (CCN and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC, a key node in the default mode network (DMN. Moreover, seed-based resting-state functional connectivity analysis showed an enhanced relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional organization of the cognitive control network.

  5. Aldrin-induced stimulation of locomotor activity and brain regional glutamate. (United States)

    Jamaluddin, S; Poddar, M K


    Single administration of aldrin (2-10 mg/kg) to adult male albino rats (120-130 g) enhanced locomotor activity (LA), with the maximum effect reached 2 h after treatment. The measurement of steady state levels of glutamate, glutamine and the activities of their metabolizing enzymes in different regions of the brains of rats treated with aldrin under its nontolerant condition showed that aldrin enhanced the activity of the neuronal glutamate system in the cerebral cortex, cerebellum and hypothalamus. Moreover, treatment with the glutamatergic NMDA receptor antagonist D,L-2-amino-7-phosphonoheptanoic acid, in the absence and presence of aldrin, reduced the LA of control rats and attenuated the aldrin-induced increase in LA of treated rats. These results suggest that aldrin-induced activation of the central glutamate system may be a cause of stimulation of LA with aldrin under its nontolerant condition.

  6. Radical-scavenging activity and phenolic constituents of propolis from different regions of Argentina. (United States)

    Kumazawa, Shigenori; Ahn, Mok-Ryeon; Fujimoto, Takunori; Kato, Masashi


    Propolis is a resinous substance collected by honeybees from various plant sources. The composition of propolis depends on the type of vegetation and the area of collection. We examined the radical-scavenging activity of propolis from the following regions of Argentina: Mendoza, Rio Negro, La Pampa, and Entre Rios. Ethanol extracts of propolis (EEP) were prepared and their 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities were evaluated. Furthermore, the major constituents in EEP were identified by HPLC with photodiode array (PDA) detection, and each component was quantitatively analysed. Almost all of the propolis samples, except La Pampa, had radical-scavenging activity. Propolis with strong radical-scavenging activity contained large amounts of antioxidative compounds, such as caffeic acid, ferulic acid and caffeic acid phenethyl ester.

  7. Associations between initial change in physical activity level and subsequent change in regional body fat distributions

    DEFF Research Database (Denmark)

    Ezekwe, Kelechi A; Adegboye, Amanda R A; Gamborg, Michael


    BACKGROUND: Few studies have examined which lifestyle factors relate to the development of fat distribution. Therefore, the identification of the determinants of changes in fat deposition is highly relevant. METHODS: The association between the change in physical activity (PA) and the subsequent...... changes in regional body fat distributions was examined. In total, 1,236 men and 1,201 women were included at baseline and participated in the Danish MONICA (MONItoring Trends and Determinants in CArdiovascular Disease) study. A questionnaire was used to assess PA at 5 and 11 years after baseline...... examination, while waist circumference (WC) and hip circumference (HC) were measured at both follow-ups. RESULTS: Among men, WC increased in the constant active group to a lesser extent than in the non-constant active group (3.4 vs. 4.1 cm; p = 0.03) concerning leisure time physical activities (LTPA...

  8. The Role of Magnetic Helicity in Structuring the Solar Corona (United States)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.


    Two of the most widely observed and striking features of the Suns magnetic field are coronal loops, which are smooth and laminar, and prominences or filaments, which are strongly sheared. Loops are puzzling because they show little evidence of tangling or braiding, at least on the quiet Sun, despite the chaotic nature of the solar surface convection. Prominences are mysterious because the origin of their underlying magnetic structure filament channels is poorly understood at best. These two types of features would seem to be quite unrelated and wholly distinct. We argue that, on the contrary, they are inextricably linked and result from a single process: the injection of magnetic helicity into the corona by photospheric motions and the subsequent evolution of this helicity by coronal reconnection. In this paper, we present numerical simulations of the response of a Parker (1972) corona to photospheric driving motions that have varying degrees of helicity preference. We obtain four main conclusions: (1) in agreement with the helicity condensation model of Antiochos (2013), the inverse cascade of helicity by magnetic reconnection in the corona results in the formation of filament channels localized about polarity inversion lines; (2) this same process removes most complex fine structure from the rest of the corona, resulting in smooth and laminar coronal loops; (3) the amount of remnant tangling in coronal loops is inversely dependent on the net helicity injected by the driving motions; and (4) the structure of the solar corona depends only on the helicity preference of the driving motions and not on their detailed time dependence. We discuss the implications of our results for high-resolution observations of the corona.


    Time series of exposures of active regions on the sun were obtained at the Solar Observatory, Harestua, with a Zeiss Coude refractor (D=15 cm) and a Lyot monochromator with a passband halfwidth of 0.65 A. By a graphic method the mean lifetime of 574 fibrills on 81 selected negatives was determined to be 4 hours. This value may be as much as


    Directory of Open Access Journals (Sweden)

    Svetlana N. Zhuravlev


    Full Text Available The article gives a detailed analysis ofthe views of the organizations surveyedby economic activity. Due to the fact that the share of the manufacturing sector ofthe Moscow region in 2012. It accountedfor 23.1% of the GRP it is advisable to start with the sector. Manufacturing in accordance with the approved classification are divided into high-tech (110 surveyed organizations, high-medium technology(259 organizations and low-level andlow-tech.

  11. Active Contours for Multispectral Images With Non-Homogeneous Sub-Regions (United States)


    that the derivative enhances noise. As a second-order derivative, the Laplacian is even more sensitive to noise. An alternative is convolving an image ...amount of memory significantly increases depending on the number of bands B and the resolution of image intensity ∆I. For example, a 24bit RGB image ...Active Contours for Multispectral Images with Non-homogeneous Sub-regions Wesley Snyder Dept. of Electrical and Computer Engineering North Carolina

  12. Can Innovation Enhance Entrepreneurial Activities of a Region? An Analysis Utilizing the Entrepreneurial Remedy Model (EREM).


    Abouzeedan, Adli; Edgar, Boo; Hedner, Thomas


    In contrast to the Entrepreneurial Recycling Model (EREC), the Entrepreneurial Remedy Model (EREM) demands an active role of innovation to create an environment where small and medium size companies (SMEs) are developed. The EREM may provide a conceptual platform which may explain why developed regions have succeeded in maintaining a healthy entrepreneurial environment, while the less developed have failed to do that. Further, the Open Innovation concept is brought into the discussion connect...

  13. Soft Skills: An Important Asset Acquired from Organizing Regional Student Group Activities


    Jeroen de Ridder; Pieter Meysman; Olugbenga Oluwagbemi; Thomas Abeel


    Contributing to a student organization, such as the International Society for Computational Biology Student Council (ISCB-SC) and its Regional Student Group (RSG) program, takes time and energy. Both are scarce commodities, especially when you are trying to find your place in the world of computational biology as a graduate student. It comes as no surprise that organizing ISCB-SC-related activities sometimes interferes with day-to-day research and shakes up your priority list. However, we una...

  14. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating (United States)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.


    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  15. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. (United States)

    Oparin, Peter B; Mineev, Konstantin S; Dunaevsky, Yakov E; Arseniev, Alexander S; Belozersky, Mikhail A; Grishin, Eugene V; Egorov, Tsezi A; Vassilevski, Alexander A


    A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.

  16. Antimicrobial peptides: the role of hydrophobicity in the alpha helical structure

    Directory of Open Access Journals (Sweden)

    Pandurangan Perumal


    Full Text Available The antimicrobial peptides (AMPs are a class of molecule obtained from plants, insects, animals, and humans. These peptides have been classified into five categories: 1. Anionic peptide, 2. Linear alpha helical cationic peptide, 3. Cationic peptide, 4. Anionic and cationic peptides with disulphide bonds, and 5. Anionic and cationic peptide fragments of larger proteins. Factors affecting AMPs are sequence, size, charge, hydrophobicity, amphipathicity, structure and conformation. Synthesis of these peptides is convenient by using solid phase peptide synthesis by using FMOC chemistry protocol. The secondary structures of three synthetic peptides were determined by circular dichroism. Also, it was compared the stability of the α-helical structure and confirmed the percentage of helix of these peptides by using circular dichroism. Some of these AMPs show therapeutic properties like antimicrobial, antiviral, contraceptive, and anticancer. The formulations of some peptides have been entered into the phase I, II, or III of clinical trials. This article to review briefly the sources, classification, factors affecting AMPs activity, synthesis, characterization, mechanism of action and therapeutic concern of AMPs and mainly focussed on percentage of α-helical structure in various medium.

  17. Neural activity in the posterior superior temporal region during eye contact perception correlates with autistic traits. (United States)

    Hasegawa, Naoya; Kitamura, Hideaki; Murakami, Hiroatsu; Kameyama, Shigeki; Sasagawa, Mutsuo; Egawa, Jun; Endo, Taro; Someya, Toshiyuki


    The present study investigated the relationship between neural activity associated with gaze processing and autistic traits in typically developed subjects using magnetoencephalography. Autistic traits in 24 typically developed college students with normal intelligence were assessed using the Autism Spectrum Quotient (AQ). The Minimum Current Estimates method was applied to estimate the cortical sources of magnetic responses to gaze stimuli. These stimuli consisted of apparent motion of the eyes, displaying direct or averted gaze motion. Results revealed gaze-related brain activations in the 150-250 ms time window in the right posterior superior temporal sulcus (pSTS), and in the 150-450 ms time window in medial prefrontal regions. In addition, the mean amplitude in the 150-250 ms time window in the right pSTS region was modulated by gaze direction, and its activity in response to direct gaze stimuli correlated with AQ score. pSTS activation in response to direct gaze is thought to be related to higher-order social processes. Thus, these results suggest that brain activity linking eye contact and social signals is associated with autistic traits in a typical population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Active tectonics around the Mediterranean region: site studies and application of new methodologies

    Directory of Open Access Journals (Sweden)

    Luigi Cucci


    Full Text Available More than 25 years have passed since the definition of Active Tectonics as "tectonic movements that are expected to occur within a future time span of concern to society", formulated in a milestone book by the National Research Council on this topic (Studies in Geophysics, Active Tectonics, National Academy Press, Washington, D.C. 1986, and those words have still to be considered the most suitable and exhaustive way to explain this branch of the Earth Sciences. Indeed only bridging together basic studies ("tectonic movements", rates of occurrence ("time span" and hazard assessment ("society" can we fully evaluate ongoing tectonic activity and its associated hazards. The broad Mediterranean Sea region is a paradigmatic area from this point of view, as on one hand this region displays in a relatively limited geographic extent a great variety of tectonic processes such as plate collision, subduction, volcanic activity, large-magnitude earthquakes, active folding and faulting, vertical uplift and/or subsidence. On the other hand, all the above mentioned tectonic processes can potentially affect a total population of about 450 million, mostly concentrated in fast-growing urban areas and/or close to industrial compounds and critical facilities often located nearby hazard sources. […

  19. IRI Task Force Activity at ICTP: Proposed improvements for the IRI region below the F peak (United States)

    Radicella, S. M.; Bilitza, D.; Reinisch, B. W.; Adeniyi, J. O.; Gonzalez, M. E. Mosert; Zolesi, B.; Zhang, M. L.; Zhang, S. R.

    The Aeronomy and Radiopropagation Laboratory of the International Center for Theoretical Physics (ICTP) in Trieste, Italy has hosted special IRI Task Force Activities (TFAs) annually since 1994. This article reviews the format and results of the 1994, 1995, and 1996 TFAs. The prime focus of these TFAs has been the F1 region and the bottomside F2 region. Each meeting has tackled a specific subset of modeling problems using morning round-table discussions and afternoon computer sessions to solve the `problem of the day'. Data, models and related software were provided by the participants on electronic media or were retrieved over the internet. As a result of this effort several improvements have been proposed for the IRI description of the region below the F2 peak: (1) A more accurate description of the probability of the existence of the F1 layer, (2) A more realistic description of the bottomside thickness parameters, (3) A set of new anchor points to define the intermediate region between the E valley top and the bottomside F2 region.

  20. Low Brightness Temperature in Microwaves at Periphery of Some Solar Active Regions

    Directory of Open Access Journals (Sweden)

    Ryabov B. I.


    Full Text Available The microwave regions with low brightness temperature are found to overlap the regions of the depressed coronal emission and open field lines at the periphery of two solar active regions (ARs. The imaging microwave observations of the Sun with the Nobeyama Radio heliograph at 1.76 cm, the MRO-14 radio telescope of Metsähovi Radio Observatory at 0.8 cm, and the RT-32 of Ventspils International Radio Astronomy Centre in the range 3.2-4.7 cm are used. To reduce the noise in the intensity distribution of the RT-32 maps of the Sun, one wavelet plane of “à trous” wavelet space decomposition is subtracted from each map. To locate the open-field regions, the full-Sun coronal magnetic fields with the potential field source surface (PFSS model for RSS = 1.8 Rʘ are simulated. We conclude that the revealed LTRs present narrow coronal hole-like regions near two ARs and imply an extra investigation on the plasma outflow.

  1. Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics (United States)

    Cabral, João; Mendes, Virgílio Brito; Figueiredo, Paula; Silveira, António Brum da; Pagarete, Joaquim; Ribeiro, António; Dias, Ruben; Ressurreição, Ricardo


    A GPS-based crustal velocity field for the SW Portuguese territory (Algarve region, SW Iberia) was estimated from the analysis of data from a network of campaign-style GPS stations set up in the region since 1998, complemented with permanent stations, covering an overall period of 16.5 years. The GPS monitoring sites were chosen attending to the display of the regional active faults, in an attempt to detect and monitor any related crustal straining. The residual horizontal velocities relative to Eurasia unveil a relatively consistent pattern towards WNW, with magnitudes that noticeably increase from NNE to SSW. Although the obtained velocity field does not evidence a sharp velocity gradient it suggests the presence of a NW-SE trending crustal shear zone separating two domains, which may be slowly accumulating a slightly transtensional right-lateral shear strain. Based on the WNW velocity differential between the northeastern block and the southwestern block, a shear strain rate accumulation across the shear zone is estimated. This ongoing crustal deformation is taken as evidence that a nearby major active structure, the São Marcos - Quarteira fault, may be presently accumulating strain, therefore being potentially loaded for seismic rupture and the generation of a large magnitude earthquake. Further inferences are made concerning the interseismic dynamic loading of other major onshore and offshore active structures located to the west.


    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)


    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1–4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s{sup −1}, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  3. Microbial diversity in an anaerobic digester with biogeographical proximity to geothermally active region. (United States)

    Mahajan, Rishi; Nikitina, Anna; Nozhevnikova, Alla; Goel, Gunjan


    Anaerobic digestion of agricultural biomass or wastes can offer renewable energy, to help meet the rise in energy demands. The performance of an anaerobic digester considerably depends upon the complex interactions between bacterial and archaeal microbiome, which is greatly influenced by environmental factors. In the present study, we evaluate a microbial community of digester located at two different geographical locations, to understand whether the biogeographical proximity of a digester to a geothermally active region has any influence on microbial composition. The comparative microbial community profiling, highlights coexistence of specific bacterial and archaeal representatives (especially, Prosthecochloris sp., Conexibacter sp., Crenarchaeota isolate (Caldivirga sp.), Metallosphaera sp., Pyrobaculum sp. and Acidianus sp.) in a digester with close proximity to geothermally active region (Site I) and their absence in a digester located far-off from geothermally active region (Site II). A Sörensen's index of similarity of 83.33% and 66.66% for bacterial and archaeal community was observed in both the reactors, respectively.

  4. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly. (United States)

    Griffin, James S; Wells, George F


    Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations.

  5. Fish as Indicators of Disturbance in Streams Used for Snorkeling Activities in a Tourist Region (United States)

    Teresa, Fabricio Barreto; Romero, Renato De Mei; Casatti, Lilian; Sabino, José


    A set of metrics that reflect various aspects of population and fish community structure in streams used for snorkeling was evaluated in the tourist region of Bodoquena Plateau, Brazil, with the purpose of biomonitoring the impacts of such activities. Observations were made while snorkeling in two sites (active = with tourism; inactive = without tourism) and along the gradient of daily tourist activity (before, during and after the passage of tourists) in two streams. Five metrics discriminated active from inactive sites: (i) the abundance of Crenicichla lepidota and (ii) the incidence of reproductive activity in Crenicichla lepidota which were greater in inactive sites, regardless the gradient of daily tourist activity; (iii) the feeding pattern of Prochilodus lineatus, which differed among sites and along the gradient of daily tourist activity; (iv) the abundance of Moenkhausia bonita, which was higher in the active sites and significantly increased along the gradient of daily tourist activity in one stream but decrease along the gradient in other stream; (v) the abundance of Hyphessobrycon eques, which was greater in inactive sites, regardless the gradient of daily tourist activity. With the exception of metric "iv", the metrics were mediated by the reduction in habitat structural complexity due to snorkeling disturbance. The definition of these metrics is relevant because the degradation of ecosystem structural elements is one of the main impacts of recreational activities on aquatic environments. The easy recognition of target species and high water transparency throughout the year ensures the feasibility of these metrics in monitoring programs and may be applied by technicians after quick guides and training.

  6. Stable double helical iodine chains inside single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Zhen [College of Science, Liaoning University of Technology, Jinzhou, Liaoning, 121001 (China); Liu, Chun-Jian [College of Mathematics and Physics, Bohai University, Jinzhou, Liaoning, 121000 (China); Lv, Hang [Institute of New Energy, Bohai University, Jinzhou, Liaoning, 121000 (China); Liu, Bing-Bing, E-mail: [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China)


    The helicity of stable double helical iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic interaction energy. Our results present clear images of stable double helical structures inside SWCNTs. The optimum helical radius and helical angle increase and decrease with increasing diameter, respectively. The tube's diameter plays a leading role in the helicity of encapsulated structures, while the tube's chirality may induce different metastable structures. This study indicates that the observed double helical iodine chains in experiments are not necessarily the optimum structures, but may also be metastable structures. - Highlights: • The stable double helical iodine chain inside single-walled carbon nanotubes is proposed. • The influence of tube's diameter and chirality on the stability of encapsulated iodine chains is studied. • The metastable double helical structures may be co-existence with the stable structure but not in the same tubes.

  7. Regulated shift from helical to polar localization of Listeria monocytogenes cell wall-anchored proteins. (United States)

    Bruck, Serawit; Personnic, Nicolas; Prevost, Marie-Christine; Cossart, Pascale; Bierne, Hélène


    Many virulence factors of Gram-positive bacterial pathogens are covalently anchored to the peptidoglycan (PG) by sortase enzymes. However, for rod-shaped bacteria little is known about the spatiotemporal organization of these surface proteins in the cell wall. Here we report the three-dimensional (3D) localization of the PG-bound virulence factors InlA, InlH, InlJ, and SvpA in the envelope of Listeria monocytogenes under different growth conditions. We found that all PG-anchored proteins are positioned along the lateral cell wall in nonoverlapping helices. However, these surface proteins can also become localized at the pole and asymmetrically distributed when specific regulatory pathways are activated. InlA and InlJ are enriched at poles when expressed at high levels in exponential-phase bacteria. InlA and InlH, which are σ(B)dependent, specifically relocalize to the septal cell wall and subsequently to the new pole in cells entering stationary phase. The accumulation of InlA and InlH in the septal region also occurs when oxidative stress impairs bacterial growth. In contrast, the iron-dependent protein SvpA is present at the old pole and is excluded from the septum and new pole of bacteria grown under low-iron conditions. We conclude that L. monocytogenes rapidly reorganizes the spatial localization of its PG proteins in response to changes in environmental conditions such as nutrient deprivation or other stresses. This dynamic control would distribute virulence factors at specific sites during the infectious process.

  8. Level of habitual physical activity in children and adolescents from the Region of Murcia (Spain). (United States)

    López Sánchez, Guillermo Felipe; González Víllora, Sixto; Díaz Suárez, Arturo


    The level of physical activity of people is a very important issue internationally. The aim of this study was to analyze the level of habitual physical activity in children and adolescents from the Region of Murcia (Spain). With this purpose, the questionnaire Physician-based Assessment and Counseling for Exercise (PACE) was administered to 1055 children and adolescents (532 males and 523 females), aged between 3 and 18 years. The results showed that the sample studied does not do enough physical activity, according to the recommendations of the World Health Organization, as they do at least 60 min of physical activity only an average of 3.29 days/week (SD = 1.84). Besides, 77 % of the schoolchildren studied is inactive according to the classification of PACE questionnaire. According to sex, there are more active boys (31.2 %) than active girls (14.9 %) and, on average, boys do more physical activity than girls, almost a day more per week.

  9. The C-Terminal Region of G72 Increases D-Amino Acid Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Sunny Li-Yun Chang


    Full Text Available The schizophrenia-related protein G72 plays a unique role in the regulation of D-amino acid oxidase (DAO in great apes. Several psychiatric diseases, including schizophrenia and bipolar disorder, are linked to overexpression of DAO and G72. Whether G72 plays a positive or negative regulatory role in DAO activity, however, has been controversial. Exploring the molecular basis of the relationship between G72 and DAO is thus important to understand how G72 regulates DAO activity. We performed yeast two-hybrid experiments and determined enzymatic activity to identify potential sites in G72 involved in binding DAO. Our results demonstrate that residues 123–153 and 138–153 in the long isoform of G72 bind to DAO and enhance its activity by 22% and 32%, respectively. A docking exercise indicated that these G72 peptides can interact with loops in DAO that abut the entrance of the tunnel that substrate and cofactor must traverse to reach the active site. We propose that a unique gating mechanism underlies the ability of G72 to increase the activity of DAO. Because upregulation of DAO activity decreases d-serine levels, which may lead to psychiatric abnormalities, our results suggest a molecular mechanism involving interaction between DAO and the C-terminal region of G72 that can regulate N-methyl-d-aspartate receptor-mediated neurotransmission.

  10. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, D.G.; Weinberger, D.R.; Jones, D.W.; Zigun, J.R.; Coppola, R.; Handel, S.; Bigelow, L.B.; Goldberg, T.E.; Berman, K.F.; Kleinman, J.E. (Clinical Brain Disorders Branch, Saint Elizabeths, National Institute of of Mental Health, WA (USA))


    To explore the role of monoamines on cerebral function during specific prefrontal cognitive activation, we conducted a double-blind placebo-controlled crossover study of the effects of 0.25 mg/kg oral dextroamphetamine on regional cerebral blood flow (rCBF) as determined by 133Xe dynamic single-photon emission-computed tomography (SPECT) during performance of the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task. Ten patients with chronic schizophrenia who had been stabilized for at least 6 weeks on 0.4 mg/kg haloperidol participated. Amphetamine produced a modest, nonsignificant, task-independent, global reduction in rCBF. However, the effect of amphetamine on task-dependent activation of rCBF (i.e., WCST minus control task) was striking. Whereas on placebo no significant activation of rCBF was seen during the WCST compared with the control task, on amphetamine significant activation of the left dorsolateral prefrontal cortex (DLPFC) occurred (p = 0.0006). Both the mean number of correct responses and the mean conceptual level increased (p less than 0.05) with amphetamine relative to placebo. In addition, with amphetamine, but not with placebo, a significant correlation (p = -0.71; p less than 0.05) emerged between activation of DLPFC rCBF and performance of the WCST task. These findings are consistent with animal models in which mesocortical catecholaminergic activity modulates and enhances the signal-to-noise ratio of evoked cortical activity.

  11. Linking graph features of anatomical architecture to regional brain activity: A multi-modal MRI study. (United States)

    Lee, Tien-Wen; Xue, Shao-Wei


    Previous empirical research has treated regional neural responses and network architecture separately. However, anecdotal reports have suggested a close relationship between the two. This study aims to investigate the influence of structural connectivity on regional spontaneous activities. Datasets of structural magnetic resonance imaging (sMRI), resting state functional MRI (rs-fMRI) and diffusion weighted imaging (DWI) of 36 right-handed healthy subjects (average age 27.4) were selected from the NKI Rockland sample. In the sMRI data, the cerebral cortex was parcellated into 70 regions of interest (ROIs) according to an anatomical atlas. Two indices were calculated from rs-fMRI for each ROI: the regional homogeneity (ReHo) and the amplitude of low frequency fluctuation (ALFF). Diffusion tensor imaging was computed from DWI and was converted to tractography. Four graph indices of structural connectivity were retrieved from the tractography results and the 70 ROIs, as follows: nodal degree, clustering coefficient, local efficiency and betweenness centrality. ReHo values were significantly correlated with all 4 graph features, whereas ALFF values were significantly correlated with nodal degrees and clustering coefficients. Both ReHo and ALFF tended to increase with segregation (clustering coefficient and local efficiency) and decrease with centrality (nodal degree and betweenness centrality). Though derived from local spontaneous activities, ReHo and ALFF may reflect the network properties of the underlying anatomical architecture. The results supported the hypothesis that the properties of the network structure may shape the regional neural response profiles. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Double Helical Gear Performance Results in High Speed Gear Trains (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles


    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  13. Emergence of helicity +/- 2 modes (gravitons) from qbit models

    CERN Document Server

    Gu, Zheng-Cheng


    It was shown that photons (i.e. helicity $\\pm 1$ gapless excitations) can emerge from a qbit model (i.e. a quantum spin model) on a 3D lattice. In this paper, we study the possibility of the emergence of helicity $\\pm 2$ gapless excitations (i.e. the gravitons) from two quantum spin models. In the first quantum spin model (called the L-type model), the helicity $\\pm 2$ gapless excitations are shown to appear as the only type of low energy excitations. Within a perturbative calculation, the dispersion of the gapless helicity $\\pm 2$ is found to be $\\eps_{\\v{k}} \\propto |\\v{k}|^3$. The appearance of the gapless helicity $\\pm2$ modes suggests that the ground state of the quantum spin model is a new state of matter. In the second model (called the N-type model) the collective modes are strongly interacting and there is no reliable approach to understand its low energy dynamics. Using a spin-wave/quantum-freeze approach (which is shown to reproduce the correct emergent U(1) gauge theory in a quantum rotor model), ...

  14. Cross-Linked Collagen Triple Helices by Oxime Ligation. (United States)

    Hentzen, Nina B; Smeenk, Linde E J; Witek, Jagna; Riniker, Sereina; Wennemers, Helma


    Covalent cross-links are crucial for the folding and stability of triple-helical collagen, the most abundant protein in nature. Cross-linking is also an attractive strategy for the development of synthetic collagen-based biocompatible materials. Nature uses interchain disulfide bridges to stabilize collagen trimers. However, their implementation into synthetic collagen is difficult and requires the replacement of the canonical amino acids (4R)-hydroxyproline and proline by cysteine or homocysteine, which reduces the preorganization and thereby stability of collagen triple helices. We therefore explored alternative covalent cross-links that allow for connecting triple-helical collagen via proline residues. Here, we present collagen model peptides that are cross-linked by oxime bonds between 4-aminooxyproline (Aop) and 4-oxoacetamidoproline placed in coplanar Xaa and Yaa positions of neighboring strands. The covalently connected strands folded into hyperstable collagen triple helices (Tm ≈ 80 °C). The design of the cross-links was guided by an analysis of the conformational properties of Aop, studies on the stability and functionalization of Aop-containing collagen triple helices, and molecular dynamics simulations. The studies also show that the aminooxy group exerts a stereoelectronic effect comparable to fluorine and introduce oxime ligation as a tool for the functionalization of synthetic collagen.

  15. Peptide tessellation yields micrometre-scale collagen triple helices (United States)

    Tanrikulu, I. Caglar; Forticaux, Audrey; Jin, Song; Raines, Ronald T.


    Sticky-ended DNA duplexes can associate spontaneously into long double helices; however, such self-assembly is much less developed with proteins. Collagen is the most prevalent component of the extracellular matrix and a common clinical biomaterial. As for natural DNA, the ~103-residue triple helices (~300 nm) of natural collagen are recalcitrant to chemical synthesis. Here we show how the self-assembly of short collagen-mimetic peptides (CMPs) can enable the fabrication of synthetic collagen triple helices that are nearly a micrometre in length. Inspired by the mathematics of tessellations, we derive rules for the design of single CMPs that self-assemble into long triple helices with perfect symmetry. Sticky ends thus created are uniform across the assembly and drive its growth. Enacting this design yields individual triple helices that, in length, match or exceed those in natural collagen and are remarkably thermostable, despite the absence of higher-order association. The symmetric assembly of CMPs provides an enabling platform for the development of advanced materials for medicine and nanotechnology.

  16. Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions. (United States)

    Díaz, Sebastián A; Troncoso, Roberto E


    Single magnetic skyrmion dynamics in chiral magnets with a spatially inhomogeneous Dzyaloshinskii-Moriya interaction (DMI) is considered. Based on the relation between DMI coupling and skyrmion helicity, it is argued that the latter must be included as an extra degree of freedom in the dynamics of skyrmions. An effective description of the skyrmion dynamics for an arbitrary inhomogeneous DMI coupling is obtained through the collective coordinates method. The resulting generalized Thiele equation is a dynamical system for the center of mass position and helicity of the skyrmion. It is found that the dissipative tensor and hence the Hall angle become helicity dependent. The skyrmion position and helicity dynamics are fully characterized by our model in two particular examples of engineered DMI coupling: half-planes with opposite-sign DMI and linearly varying DMI. In light of the experiment of Shibata et al (2013 Nat. Nanotechnol. 8 723) on the magnitude and sign of the DMI, our results constitute the first step toward a more complete understanding of the skyrmion helicity as a new degree of freedom that could be harnessed in future high-density magnetic storage and logic devices.

  17. Generation of Subwavelength Plasmonic Nanovortices via Helically Corrugated Metallic Nanowires. (United States)

    Huang, Changming; Chen, Xianfeng; Oladipo, Abiola O; Panoiu, Nicolae C; Ye, Fangwei


    We demonstrate that plasmonic helical gratings consisting of metallic nanowires imprinted with helical grooves or ridges can be used efficiently to generate plasmonic vortices with radius much smaller than the operating wavelength. In our proposed approach, these helical surface gratings are designed so that plasmon modes with different azimuthal quantum numbers (topological charge) are phase-matched, thus allowing one to generate optical plasmonic vortices with arbitrary topological charge. The general principles for designing plasmonic helical gratings that facilitate efficient generation of such plasmonic vortices are derived and their applicability to the conversion of plasmonic vortices with zero angular momentum into plasmonic vortices with arbitrary angular momentum is illustrated in several particular cases. Our analysis, based both on the exact solutions for the electromagnetic field propagating in the helical plasmonic grating and a coupled-mode theory, suggests that even in the presence of metal losses the fundamental mode with topological charge m = 0 can be converted to plasmon vortex modes with topological charge m = 1 and m = 2 with a conversion efficiency as large as 60%. The plasmonic nanovortices introduced in this study open new avenues for exciting applications of orbital angular momentum in the nanoworld.

  18. Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nishikawa


    Full Text Available In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton ( e − – p + and electron–positron ( e ± relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI and the Mushroom instability (MI. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e − – p + jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e ± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.

  19. Regional Socioeconomic Inequalities in Physical Activity and Sedentary Behavior Among Brazilian Adolescents. (United States)

    Werneck, André O; Oyeyemi, Adewale L; Fernandes, Rômulo A; Romanzini, Marcelo; Ronque, Enio R V; Cyrino, Edilson S; Sardinha, Luís B; Silva, Danilo R


    This study aims to describe the regional prevalence and patterns of physical activity (PA) and sedentary behavior among Brazilian adolescents. Data from the Brazilian Scholar Health Survey, a nationally representative survey of ninth-grade adolescents [mean age: 14.29 y (14.27-14.29)] conducted in 2015 (n = 101,445), were used. Outcomes were television viewing, sitting time (ST), total PA, and active traveling collected via self-administered questionnaire. Information on frequency of physical education classes and type of school was collected from the school's director. Frequencies with 95% confidence intervals were used to determine the prevalence and patterns of outcomes. Higher prevalence of PA (≥300 min/wk) and ST (>4 h/d) was found in Midwest (PA = 38.0%; ST = 44.5%), South (PA = 37.6%; ST = 50.1%), and Southeast (PA = 36.1%; ST = 49.3%) compared with Northeast (PA = 29.7%; ST = 36.9%) and North (PA = 34.4%; ST = 34.8%) regions of Brazil. ST was higher among adolescents from private schools (51.5%) than public schools (42.9%), whereas active traveling was greater among students of public schools than private schools (62.0% vs 34.4%). Most inequalities in outcomes between capital and interior cities were in the poorest regions. The results indicate that national plans targeting regional inequalities are needed to improve PA and to reduce sedentary behavior among Brazilian adolescents.

  20. Simulation of impurity transport in the peripheral plasma due to the emission of dust in long pulse discharges on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    M. Shoji


    Full Text Available Two different plasma termination processes by dust emission were observed in long pulse discharges in the Large Helical Device. One is a plasma termination caused by large amounts of carbon dust released from a lower divertor region. The other is termination caused by stainless steel (iron dust emission from the surface of a helical coil can. The effect of the dust emission on the sustainment of the long pulse discharges are investigated using a three-dimensional edge plasma transport code (EMC3-EIRENE coupled with a dust transport code (DUSTT. The simulation shows that the plasma is more influenced by the iron dust emission from the helical coil can than by the carbon dust emission from the divertor region. The simulation revealed that the plasma flow in divertor legs is quite effective for preventing dust from terminating the long pulse discharges.

  1. Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity. (United States)

    Kalenscher, Tobias; Lansink, Carien S; Lankelma, Jan V; Pennartz, Cyriel M A


    Oscillations of local field potentials (LFPs) in the gamma range are found in many brain regions and are supposed to support the temporal organization of cognitive, perceptual, and motor functions. Even though gamma oscillations have also been observed in ventral striatum, one of the brain's most important structures for motivated behavior and reward processing, their specific function during ongoing behavior is unknown. Using a movable tetrode array, we recorded LFPs and activity of neural ensembles in the ventral striatum of rats performing a reward-collection task. Rats were running along a triangle track and in each round collected one of three different types of rewards. The gamma power of LFPs on subsets of tetrodes was modulated by reward-site visits, discriminated between reward types, between baitedness of reward locations and was different before versus after arrival at a reward site. Many single units in ventral striatum phase-locked their discharge pattern to the gamma oscillations of the LFPs. Phase-locking occurred more often in reward-related than in reward-unrelated neurons and LFPs. A substantial number of simultaneously recorded LFPs correlated poorly with each other in terms of gamma rhythmicity, indicating that the expression of gamma activity was heterogeneous and regionally differentiated. The orchestration of LFPs and single-unit activity by way of gamma rhythmicity sheds light on the functional architecture of the ventral striatum and the temporal coordination of ventral striatal activity for modulating downstream areas and regulating synaptic plasticity.

  2. Free Radical Scavenging Activity and Anthocyanin Profile of Cabernet Sauvignon Wines from the Balkan Region

    Directory of Open Access Journals (Sweden)

    Blaga Radovanović


    Full Text Available The present study is focused on anthocyanin derivatives characterizing the antioxidant activity of Cabernet Sauvignon wines produced from different vineyard regions in the Balkans. These bioactive compounds were quantified with a high performance liquid chromatography (HPLC-diode array detection (DAD method. The antiradical activity was estimated by the ability of the wine to scavenge the stable 2,2`-diphenyl-1-picrylhydrazyl free radical (DPPH·. The results show that the total anthocyanin content varied from 205.88 to 1940.28 mg/L, depending on agroclimatic factors and the enological practices of the corresponding vineyard region. The most prominent antocyanin in all investigated Cabernet Sauvignon wines was malvidin-3-O-monoglucoside, which accounted for 50.57% of total content, followed by its acetyl derivatives, 15.45%, and p-coumaryl derivatives 5.66%. The relationship between the anthocyanin derivatives and free radical scavenging activity is discussed. A high correlation between total anthocyanin content and DPPH· scavenging ability of tested wines was confirmed (r2 = 0.9619. The significant correlations were obtained between antiradical activity and the sum of 3-monoglucoside (r2 = 0.95594, the sum of 3-acetyl-3-glucoside (r2 = 0.9728 and the sum of p-coumaryl-3-glucoside (r2 = 0.8873 of wine samples. It can be concluded that, the anthocyanin composition can be used as biochemical marker for the authenticity of red grape cultivar and their corresponding single-cultivar wine.

  3. Free radical scavenging activity and anthocyanin profile of Cabernet Sauvignon wines from the Balkan region. (United States)

    Radovanović, Blaga; Radovanović, Aleksandra


    The present study is focused on anthocyanin derivatives characterizing the antioxidant activity of Cabernet Sauvignon wines produced from different vineyard regions in the Balkans. These bioactive compounds were quantified with a high performance liquid chromatography (HPLC)-diode array detection (DAD) method. The antiradical activity was estimated by the ability of the wine to scavenge the stable 2,2;-diphenyl-1-picrylhydrazyl free radical (DPPH(*)). The results show that the total anthocyanin content varied from 205.88 to 1940.28 mg/L, depending on agroclimatic factors and the enological practices of the corresponding vineyard region. The most prominent antocyanin in all investigated Cabernet Sauvignon wines was malvidin-3-O-monoglucoside, which accounted for 50.57% of total content, followed by its acetyl derivatives, 15.45%, and p-coumaryl derivatives 5.66%. The relationship between the anthocyanin derivatives and free radical scavenging activity is discussed. A high correlation between total anthocyanin content and DPPH scavenging ability of tested wines was confirmed (r(2) = 0.9619). The significant correlations were obtained between antiradical activity and the sum of 3-monoglucoside (r(2) = 0.95594), the sum of 3-acetyl-3-glucoside (r(2) = 0.9728) and the sum of p-coumaryl-3-glucoside (r(2) = 0.8873) of wine samples. It can be concluded that, the anthocyanin composition can be used as biochemical marker for the authenticity of red grape cultivar and their corresponding single-cultivar wine.

  4. Regional groundwater storage changes in the Indian subcontinent: The role of anthropogenic activities (United States)

    Bhanja, S. N.; Mukherjee, A.; Rodell, M.; Velicogna, I.; Pangaluru, K.; Famiglietti, J. S.


    A large number of people around the globe depend on groundwater as a source of fresh water. Groundwater dependence will be further intensified by the world's exponentially increasing population and climate change. Therefore, quantification of groundwater storage (GWS) changes is a critical issue in the densely populated regions of the world. Approximately, 90% of groundwater withdrawals are associated with irrigational activities in the Indian subcontinent. We used a combination of Gravity Recovery and Climate Experiment (GRACE) observations, hydrological data from the Global Land Data Assimilation System (GLDAS) together with groundwater level measurements and ERA-Interim precipitation, for the period 2003-2012 to estimate regional GWS changes and to regionally evaluate the anthropogenic and climatic forcing control on the observed changes. Rapid GWS depletion (>10 mm/year) has been observed in the northern and eastern parts of the Indian subcontinent. Most of the groundwater depleted regions coincide with the highly fertile alluvial aquifers of Ganges-Brahmaputra basin, which is subjected to intense groundwater withdrawals associated with crop irrigation. Our GWS change estimates are consistent with ground-based water level measurements (n> 13,000) from the region. Over this ten year period, GWS data show little to moderate replenishments in southern and western regions of Indian subcontinent, probably because of advanced water resource management in these areas. Precipitation is the key factor controlling the renewability of groundwater resources, however, precipitation during the period was generally near normal to historical levels, suggesting strong anthropogenic influence on GWS change in the northern and eastern parts of India during the study period.

  5. Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes (United States)

    Orlandi, P.


    Finite-difference second-order accurate direct simulation of a turbulent pipe has been used to investigate how the turbulence production and dissipation change when a solid body rotation is applied. It is shown that when the helicity increases, the dissipation is reduced. It is asserted that to have a drag reduction the external action should be such as to disrupt the symmetry of right- and left-handed helical structures. In this study the Navier-Stokes equations in rotational form permit the turbulent energy production to be split into a part related to the energy cascade from large to small scales and into a part related to the convection by large scales. The full simulation data have shown the latter is greater than the former in the wall region and that, on the contrary, these two terms balance each other in the central region. From the pdf of the former, it has been shown how the vortical structures are changed in the wall region by the background radiation and how they are related to the changes in the energy production.

  6. An attempted substitute study of total skin electron therapy technique by using helical photon tomotherapy with helical irradiation of the total skin treatment: a phantom result. (United States)

    Lin, Chi-Ta; Shiau, An-Cheng; Tien, Hui-Ju; Yeh, Hsin-Pei; Shueng, Pei-Wei; Hsieh, Chen-Hsi


    An anthropomorphic phantom was used to investigate a treatment technique and analyze the dose distributions for helical irradiation of the total skin (HITS) by helical tomotherapy (HT). Hypothetical bolus of thicknesses of 0, 10, and 15 mm was added around the phantom body to account for the dose homogeneity and setup uncertainty. A central core structure was assigned as a "complete block" to force the dose tangential delivery. HITS technique with prescribed dose (D p ) of 36 Gy in 36 fractions was generated. The radiochromic EBT2 films were used for the dose measurements. The target region with 95.0% of the D p received by more than 95% of the PTV was obtained. The calculated mean doses for the organs at risk (OARs) were 4.69, 3.10, 3.20, and 2.94 Gy for the lung, heart, liver, and kidneys, respectively. The measurement doses on a phantom surface for a plan with 10 mm hypothetical bolus and bolus thicknesses of 0, 1, 2, and 3 mm are 89.5%, 111.4%, 116.9%, and 117.7% of D p , respectively. HITS can provide an accurate and uniform treatment dose in the skin with limited doses to OARs and is safe to replace a total skin electron beam regimen.

  7. An Attempted Substitute Study of Total Skin Electron Therapy Technique by Using Helical Photon Tomotherapy with Helical Irradiation of the Total Skin Treatment: A Phantom Result

    Directory of Open Access Journals (Sweden)

    Chi-Ta Lin


    Full Text Available An anthropomorphic phantom was used to investigate a treatment technique and analyze the dose distributions for helical irradiation of the total skin (HITS by helical tomotherapy (HT. Hypothetical bolus of thicknesses of 0, 10, and 15 mm was added around the phantom body to account for the dose homogeneity and setup uncertainty. A central core structure was assigned as a “complete block” to force the dose tangential delivery. HITS technique with prescribed dose (Dp of 36 Gy in 36 fractions was generated. The radiochromic EBT2 films were used for the dose measurements. The target region with 95.0% of the Dp received by more than 95% of the PTV was obtained. The calculated mean doses for the organs at risk (OARs were 4.69, 3.10, 3.20, and 2.94 Gy for the lung, heart, liver, and kidneys, respectively. The measurement doses on a phantom surface for a plan with 10 mm hypothetical bolus and bolus thicknesses of 0, 1, 2, and 3 mm are 89.5%, 111.4%, 116.9%, and 117.7% of Dp, respectively. HITS can provide an accurate and uniform treatment dose in the skin with limited doses to OARs and is safe to replace a total skin electron beam regimen.

  8. Tropical Cyclone Activity in Regional and Grid-Refined Global Simulations (United States)

    Hashimoto, A.


    Most electric power and transmission facilities in Japan operate for half a century or more, so it is important to ensure against general fatigue and damage from extreme weather and climate events. There is therefore a critical demand for useful assessments of the present weather and accurate predictions of future weather and climate. Tropical Cyclones (TCs) are among the most destructive weather phenomenon to the industry. This study compares simulated TC activity in regional climate simulations using the Weather Research and Forecasting (WRF) model and global climate simulations using the Model for Prediction Across Scales (MPAS) specifically to identify the benefits of global variable resolution simulation. Horizontal refinement to approximately 20km grid spacing over the Northwest Pacific is achieved through nesting for WRF and MPAS uses a variable resolution mesh. The ability of these two simulation approaches to capture TC activity is examined in single-year continuous simulations from May 2005 to April 2006. Compared to surface station and satellite derived rainfall datasets, tropical precipitation patterns are reproduced reasonably well by both models, but the annual precipitation totals are overestimated. Similarly, using an automated TC identification and tracking algorithm, results show that both models reproduce well TC genesis regions, tracks, wind-pressure relationships, and intensification rate, but TC frequencies are overestimated by both models. These results indicate that global variable resolution simulation is a suitable tool to study regional climate and TC activity. Future work will use MPAS to simulate longer periods of current and future climate to provide a unique view of the future change TC activity over Japan, tailored to the needs of the electric power industry.

  9. Interstitial plasmin activity with epsilon aminocaproic acid: temporal and regional heterogeneity. (United States)

    Reust, Daryl L; Reeves, Scott T; Abernathy, James H; Dixon, Jennifer A; Gaillard, William F; Mukherjee, Rupak; Koval, Christine N; Stroud, Robert E; Spinale, Francis G


    Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in vivo region specific temporal changes in PLact after EACA administration. Pigs (25 to 35 kg) received EACA (75 mg/kg, n = 7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney, and quadricep muscle. The microdialysate contained a plasmin-specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90, and 120 minutes after EACA/vehicle infusion. Epsilon aminocaproic acid caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes, and at 30, 60, and 120 minutes, respectively (p < 0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p < 0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes after infusion, and were fivefold higher in the renal compartment and fourfold higher in the myocardium, when compared with the liver or muscle (p < 0.05). Using a large animal model and in vivo microdialysis measurements of plasmin activity, the unique findings from this study were twofold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region-specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. Copyright (c) 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Activation of midbrain and ventral striatal regions implicates salience processing during a modified beads task.

    Directory of Open Access Journals (Sweden)

    Christine Esslinger

    Full Text Available INTRODUCTION: Metacognition, i.e. critically reflecting on and monitoring one's own reasoning, has been linked behaviorally to the emergence of delusions and is a focus of cognitive therapy in patients with schizophrenia. However, little is known about the neural processing underlying metacognitive function. To address this issue, we studied brain activity during a modified beads task which has been used to measure a "Jumping to Conclusions" (JTC bias in schizophrenia patients. METHODS: We used functional magnetic resonance imaging to identify neural systems active in twenty-five healthy subjects when solving a modified version of the "beads task", which requires a probabilistic decision after a variable amount of data has been requested by the participants. We assessed brain activation over the duration of a trial and at the time point of decision making. RESULTS: Analysis of activation during the whole process of probabilistic reasoning showed an extended network including the prefronto-parietal executive functioning network as well as medial parieto-occipital regions. During the decision process alone, activity in midbrain and ventral striatum was detected, as well as in thalamus, medial occipital cortex and anterior insula. CONCLUSIONS: Our data show that probabilistic reasoning shares neural substrates with executive functions. In addition, our finding that brain regions commonly associated with salience processing are active during probabilistic reasoning identifies a candidate mechanism that could underlie the behavioral link between dopamine-dependent aberrant salience and JTC in schizophrenia. Further studies with delusional schizophrenia patients will have to be performed to substantiate this link.

  11. Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons. (United States)

    Dibattista, Michele; Amjad, Asma; Maurya, Devendra Kumar; Sagheddu, Claudia; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna


    The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of -261 pA was measured at -50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.

  12. Regional homogeneity of intrinsic brain activity in happy and unhappy individuals. (United States)

    Luo, Yangmei; Huang, Xiting; Yang, Zhen; Li, Baolin; Liu, Jie; Wei, Dongtao


    Why are some people happier than others? This question has intrigued many researchers. However, limited work has addressed this question within a neuroscientific framework. The present study investigated the neural correlates of trait happiness using the resting-state functional magnetic resonance imaging (rs-fMRI) approach. Specifically, regional homogeneity (ReHo) was examined on two groups of young adults: happy and unhappy individuals (N = 25 per group). Decreased ReHo in unhappy relative to happy individuals was observed within prefrontal cortex, medial temporal lobe, superior temporal lobe, and retrosplenial cortex. In contrast, increased ReHo in unhappy relative to happy individuals was observed within the dorsolateral prefrontal cortex, middle cingulate gyrus, putamen, and thalamus. In addition, the ReHo within the left thalamus was negatively correlated with Chinese Happiness Inventory (CHI) score within the happy group. As an exploratory study, we examined how general trait happiness is reflected in the regional homogeneity of intrinsic brain activity in a relatively small sample. Examining other types of happiness in a larger sample using a multitude of intrinsic brain activity indices are warranted for future work. The local synchronization of BOLD signal is altered in unhappy individuals. The regions implicated in this alteration partly overlapped with previously identified default mode network, emotional circuitry, and rewarding system, suggesting that these systems may be involved in happiness.

  13. Evolution of the Active Region NOAA 12443 based on magnetic field extrapolations: preliminary results (United States)

    Chicrala, André; Dallaqua, Renato Sergio; Antunes Vieira, Luis Eduardo; Dal Lago, Alisson; Rodríguez Gómez, Jenny Marcela; Palacios, Judith; Coelho Stekel, Tardelli Ronan; Rezende Costa, Joaquim Eduardo; da Silva Rockenbach, Marlos


    The behavior of Active Regions (ARs) is directly related to the occurrence of some remarkable phenomena in the Sun such as solar flares or coronal mass ejections (CME). In this sense, changes in the magnetic field of the region can be used to uncover other relevant features like the evolution of the ARs magnetic structure and the plasma flow related to it. In this work we describe the evolution of the magnetic structure of the active region AR NOAA12443 observed from 2015/10/30 to 2015/11/10, which may be associated with several X-ray flares of classes C and M. The analysis is based on observations of the solar surface and atmosphere provided by HMI and AIA instruments on board of the SDO spacecraft. In order to investigate the magnetic energy buildup and release of the ARs, we shall employ potential and linear force free extrapolations based on the solar surface magnetic field distribution and the photospheric velocity fields.

  14. Context differences reveal insulator and activator functions of a Su(Hw binding region.

    Directory of Open Access Journals (Sweden)

    Alexey A Soshnev


    Full Text Available Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs. The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw BRs depends on the genomic environment, predicting that Su(Hw BRs represent a diverse collection of genomic regulatory elements.

  15. Effects of multiple-helicity fields on ion temperature gradient modes

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Sugama, H. [Graduate Univ. for Advanced Studies, Toki, Gigu (Japan)


    Effects of multiple-helicity magnetic fields on ion temperature gradient (ITG) modes in toroidal helical systems like the Large Helical Device (LHD) are studied by means of the linear gyrokinetic theory. Especially, dependence of the real frequency, growth rate, and the eigenfunction of the ITG mode on sideband-helicity fields added to the main helical component is investigated. Comparison between multiple-helicity effects on the ITG mode with those on the neoclassical ripple transport is presented, and optimization of the magnetic configuration for better plasma confinement is discussed. (author)

  16. Method for Sampling Alpha-Helical Protein Backbones

    Energy Technology Data Exchange (ETDEWEB)

    Fain, Boris; Levitt, Michael


    We present a novel technique of sampling the configurations of helical proteins. Assuming knowledge of native secondary structure, we employ assembly rules gathered from a database of existing structures to enumerate the geometrically possible 3-D arrangements of the constituent helices. We produce a library of possible folds for 25 helical protein cores. In each case the method finds significant numbers of conformations close to the native structure. In addition we assign coordinates to all atoms for 4 of the 25 proteins. In the context of database driven exhaustive enumeration our method performs extremely well, yielding significant percentages of structures (0.02%--82%) within 6A of the native structure. The method's speed and efficiency make it a valuable contribution towards the goal of predicting protein structure.

  17. Electrostatic braiding and homologous pairing of DNA double helices. (United States)

    Cortini, Ruggero; Kornyshev, Alexei A; Lee, Dominic J; Leikin, Sergey


    Homologous pairing and braiding (supercoiling) have crucial effects on genome organization, maintenance, and evolution. Generally, the pairing and braiding processes are discussed in different contexts, independently of each other. However, analysis of electrostatic interactions between DNA double helices suggests that in some situations these processes may be related. Here we present a theory of DNA braiding that accounts for the elastic energy of DNA double helices as well as for the chiral nature of the discrete helical patterns of DNA charges. This theory shows that DNA braiding may be affected, stabilized, or even driven by chiral electrostatic interactions. For example, electrostatically driven braiding may explain the surprising recent observation of stable pairing of homologous double-stranded DNA in solutions containing only monovalent salt. Electrostatic stabilization of left-handed braids may stand behind the chiral selectivity of type II topoisomerases and positive plasmid supercoiling in hyperthermophilic bacteria and archea. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Geometric scalings for the electrostatically driven helical plasma state (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.


    A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .

  19. Helical Nanomachines for Fast Mechanical Mapping of Heterogeneous Environments

    CERN Document Server

    Ghosh, Arijit


    Artificial micro and nano machines have been envisioned and demonstrated as potential candidates for variety of applications, ranging from targeted drug or gene delivery, cell manipulation, environmental sensing and many more. Here, we demonstrate the application of helical nanomachines that can measure and map the local rheological properties of a complex heterogeneous environment. The position of the helical nanomachine was controlled precisely using magnetic fields, while the instantaneous orientation provided an estimation of the viscosity of the surrounding medium with high spatial and temporal accuracy. Apart from providing viscosity estimates in purely viscous and viscoelastic media with shear rate independent viscosity (Boger fluids), their motion was also found to be extremely sensitive to fluid elasticity. Taken together we report a promising new technique of mapping the rheological properties of a complex fluidic environment by helical nanomachines with high spatial and temporal resolutions, a func...

  20. The large-scale dynamics of magnetic helicity

    CERN Document Server

    Linkmann, Moritz


    In this Letter we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a non-local inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic fields. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero-flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.