WorldWideScience

Sample records for helical device plasmas

  1. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    International Nuclear Information System (INIS)

    Toi, K.

    2002-01-01

    MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)

  2. Plasma parameter estimations for the Large Helical Device based on the gyro-reduced Bohm scaling

    International Nuclear Information System (INIS)

    Okamoto, Masao; Nakajima, Noriyoshi; Sugama, Hideo.

    1991-10-01

    A model of gyro-reduced Bohm scaling law is incorporated into a one-dimensional transport code to predict plasma parameters for the Large Helical Device (LHD). The transport code calculations reproduce well the LHD empirical scaling law and basic parameters and profiles of the LHD plasma are calculated. The amounts of toroidal currents (bootstrap current and beam-driven current) are also estimated. (author)

  3. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  4. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  5. Behavior of plasma facing surface in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2002-01-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  6. Behavior of plasma facing surface in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T.; Nobuta, Y. [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo, Hokkaido (Japan); Sagara, A. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2002-11-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  7. Behavior of plasma facing surfaces in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2003-01-01

    Material probes have been installed at the inner walls along the poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was thoroughly cleaned by helium glow discharge conditioning. For the 3rd and 4th campaigns, graphite tiles were installed over the entire divertor strike region, and then the wall condition was significantly changed compared to the case of a stainless steel wall. Graphite erosion took place during the main discharges and the eroded carbon was deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, the amount of retained discharge gases such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristic of the LHD wall is a large retention of helium gas since the wall temperature is limited to below 368 K. In order to reduce the recycling of discharge gas, wall heating before the experimental campaign and surface heating between the main discharge shots are planned. (author)

  8. Behavior of plasma facing surface in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2002-10-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each the campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  9. Bursty fluctuation characteristics in SOL/divertor plasmas of large helical device

    International Nuclear Information System (INIS)

    Ohno, N.

    2006-01-01

    Full text: Fluctuation properties in the SOL plasmas were intensively studied to understand the crossfield plasma transport, which determines the SOL structure and heat/particle deposition onto the first wall. Recent studies in tokamaks showed that the SOL density fluctuation is highly intermittent. Convective cross-field transport associated with the intermittent events would have strong influence on recycling processes and impurity generation from the first wall. On the other hand, in helical devices, there are few systematic studies on the SOL fluctuation property focusing on the intermittent bursty fluctuations related to plasma blob transport. Recent theory predicts that the blobs propagate toward a low field side in tokamaks. On the other hand, in the Large Helical Device (LHD), the direction of the gradient in B is not uniform because the high-field and the low-field sides rotates poloidally along the torus in the helical system. Comparison between the intermittent bursty fluctuations in the edge plasma of tokamaks and helical devices makes it possible to understand the essential physics of the blob transport. Recently, fast camera observation showed the radial motion of filaments in the edge of the LHD, suggesting the convective cross-field transport. In this paper, bursty fluctuation properties in the edge of the LHD have been investigated by analyzing the ion saturation currents measured with a probe array embedded in an outboard divertor plate. Statistical analysis based on probability distribution function was employed to determine the intermittent evens in the density fluctuation. Large positive bursty events were often observed in the ion saturation current measured with a divertor probe near a divertor leg at which the magnetic line of force connected to the area of a low-field side with a short connection length. Condition averaging result of the positive bursty events indicates the intermittent feature with a rapid increase and a slow decay is

  10. Intermittent transport in edge plasma with a 3-D magnetic geometry in the Large Helical Device

    International Nuclear Information System (INIS)

    Tanaka, H.; Masuzaki, S.; Ohno, N.; Morisaki, T.; Tsuji, Y.

    2013-01-01

    Blobby plasma transport is a universally observed phenomenon in magnetic confinement devices, and it is considered to be closely related to edge plasma physics. We have investigated such an intermittent event observed inside the divertor region of the Large Helical Device by using a fast-scanning Langmuir probe with two electrodes. Ion saturation current fluctuations showed negative spikes in the divertor leg and positive spikes in the private region. Further, the time delay between the two fluctuations followed a unique trajectory in the positive-skewness region. We found common as well as different fluctuation characteristics between the LHD and tokamaks. We discuss the analysis results in relation to the blob-generation and propagation behaviors in the three-dimensional magnetic geometry around the divertor leg. In addition, we quantitatively estimated the blob propagation velocity and size based on a theoretical assumption

  11. Simulation analysis of dust-particle transport in the peripheral plasma in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Masuzaki, Suguru; Kawamura, Gakushi; Yamada, Hiroshi; Tanaka, Yasunori; Uesugi, Yoshihiko; Pigarov, Alexander Yu.; Smirnov, Roman D.

    2014-01-01

    The function of the peripheral plasma in the Large Helical Device (LHD) on transport of dusts is investigated using a dust transport simulation code (DUSTT) in a non-axisymmetric geometry. The simulation shows that the transport of the dusts is dominated by the plasma flow (mainly by ion drag force) formed in the peripheral plasma. The trajectories of dusts are investigated in two probable situations: release of spherical iron dusts from the inboard side of the torus, and drop of spherical carbon dusts from a divertor plate installed near an edge of an upper port. The trajectories in these two situations are calculated in various sized dust cases. From a viewpoint of protection of the main plasma from dust penetration, it proves that there are two functions in the LHD peripheral plasma. One is sweeping of dusts by the effect of the plasma flow in the divertor legs, and another one is evaporation/sublimation of dusts by heat load onto the dusts in the ergodic layer. (author)

  12. Edge plasma diagnostics in the compact helical system (CHS) device using fast neutral lithium beam

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Mario

    1992-05-01

    This paper reports the research activities of the author on using fast neutral lithium beam edge plasma diagnostic, at the Japanese National Institute for Fusion Science compact helical system (CHS). (author). 20 figs.

  13. Bursty fluctuation characteristics in SOL/divertor plasmas of Large Helical Device

    International Nuclear Information System (INIS)

    Ohno, N.; Masuzaki, S.; Morisaki, T.; Ohyabu, N.; Komori, A.; Budaev, V.P.; Miyoshi, H.; Takamura, S.

    2006-10-01

    Bursty electrostatic fluctuation in the scrape off layer (SOL) and the divertor region of the Large Helical Device (LHD) have been investigated by using a Langmuir probe array on a divertor plate and a reciprocating Langmuir probe. Large positive bursty events were often observed in the ion saturation current measured with a divertor probe near the divertor leg at which the magnetic line of force connected to the area of a low-field side with a short connection length. Condition averaging result of the positive bursty events indicates the intermittent feature with a rapid increase and a slow decay is similar to that of plasma blobs observed in tokamaks. On the other hand, at a striking point with a long connection length, negative spikes were observed. Statistical analysis based on probability distribution function (PDF) was employed to investigate the bursty fluctuation property. The observed scaling exponents disagree with the predictions for the self-organized criticality (SOC) paradigm. (author)

  14. Statistical properties of edge plasma turbulence in the Large Helical Device

    Science.gov (United States)

    Dewhurst, J. M.; Hnat, B.; Ohno, N.; Dendy, R. O.; Masuzaki, S.; Morisaki, T.; Komori, A.

    2008-09-01

    Ion saturation current (Isat) measurements made by three tips of a Langmuir probe array in the Large Helical Device are analysed for two plasma discharges. Absolute moment analysis is used to quantify properties on different temporal scales of the measured signals, which are bursty and intermittent. Strong coherent modes in some datasets are found to distort this analysis and are consequently removed from the time series by applying bandstop filters. Absolute moment analysis of the filtered data reveals two regions of power-law scaling, with the temporal scale τ ≈ 40 µs separating the two regimes. A comparison is made with similar results from the Mega-Amp Spherical Tokamak. The probability density function is studied and a monotonic relationship between connection length and skewness is found. Conditional averaging is used to characterize the average temporal shape of the largest intermittent bursts.

  15. Modelling ion cyclotron emission from KSTAR tokamak and LHD helical device plasmas

    Science.gov (United States)

    Dendy, Richard; Chapman, Ben; Reman, Bernard; Chapman, Sandra; Akiyama, Tsuyoshi; Yun, Gunsu

    2017-10-01

    New high quality measurements of ion cyclotron emission (ICE) from KSTAR and LHD greatly extend the scope and diversity of plasma conditions under which ICE is observed. Variables include the origin (fusion reactions or neutral beam injection) and energy (sub- or super-Alfvénic) of the minority energetic ions that drive ICE; the composition of the bulk plasma (hydrogen or deuterium) which supports the modes excited; plasma density in the emitting region, and the timescale on which it changes; and toroidal magnetic field geometry (tokamak or helical device). Future exploitation of ICE as a diagnostic for energetic ion populations in JET D-T plasmas and in ITER rests on quantitative understanding of the physics of the emission. This is tested and extended by current KSTAR and LHD measurements of ICE. We report progress on direct numerical simulation using full orbit ion kinetic codes that solve the Maxwell-Lorentz equations for hundreds of millions of particles. In the saturated regime, these simulations yield excited field spectra that correspond directly to the measured ICE spectra under diverse KSTAR and LHD regimes. At early times, comparison of simulation outputs with linear analytical theory confirms the magnetoacoustic cyclotron instability as the basic driver of ICE. Supported by RCUK Energy Programme Grant EP/P012450/1, NRF Korea Grant 2014M1A7A1A03029881, NIFS budget ULHH029 and Euratom.

  16. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  17. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  18. Development of net-current free heliotron plasmas in the Large Helical Device

    International Nuclear Information System (INIS)

    Komori, A.; Yamada, H.; Kaneko, O.; Kawahata, K.; Mutoh, T.; Ohyabu, N.; Imagawa, S.; Ida, K.; Nagayama, Y.; Shimozuma, T.; Watanabe, K.Y.; Mito, T.; Kobayashi, M.; Nagaoka, K.; Sakamoto, R.; Ohdachi, S.; Sakakibara, S.; Ashikawa, N.; Igami, H.; Kasahara, H.; Kubo, S.; Kumazawa, R.; Nishiura, M.; Masuzaki, S.; Tanaka, K.; Toi, K.; Yoshinuma, M.; Narushima, Y.; Tamura, N.; Saito, K.; Seki, T.; Sudo, S.; Tanaka, H.; Tokuzawa, T.; Yanagi, N.; Yokoyama, M.; Yoshimura, Y.; Akiyama, T.; Chikaraishi, H.; Emoto, M.; Funaba, H.; Goncharov, P.; Goto, M.; Ichiguchi, K.; Ido, T.; Ikeda, K.; Yoshida, N.; Inagaki, S.; Idei, H.; Feng, Y.; Weller, A.; Fukuda, T.; Mitarai, O.; Murakami, S.; Nakamura, Y.; Hino, T.; Ohno, N.; Okamura, T.; Iio, S.; Chowdhuri, M.; Ezumi, N.; Garcia, L.; Ichimura, M.; Irie, M.; Isayama, Akihiko; Iwamae, Atsushi; Takenaga, Hidenobu; Urano, Hajime

    2008-10-01

    Remarkable progress in the physical parameters of net-current free plasmas has been made in the Large Helical Device (LHD) since the last Fusion Energy Conference in Chengdu, 2006 (O. Motojima et al., Nucl. Fusion 47 (2007) S668). The beta value reached 5 % and a high beta state beyond 4.5% from the diamagnetic measurement has been maintained for longer than 100 times the energy confinement time. The density and temperature regimes also have been extended. The central density has exceeded 1.0x10 21 m -3 due to the formation of an Internal Diffusion Barrier (IDB). The ion temperature has reached 6.8 keV at the density of 2x10 19 m -3 , which is associated with the suppression of ion heat conduction loss. Although these parameters have been obtained in separated discharges, each fusion-reactor relevant parameter has elucidated the potential of net-current free heliotron plasmas. Diversified studies in recent LHD experiments are reviewed in this paper. (author)

  19. Extension of operation regimes and investigation of three-dimensional current-less plasmas in the Large Helical Device

    International Nuclear Information System (INIS)

    Kaneko, O.

    2012-11-01

    The Large Helical Device (LHD) has shown the advantages of heliotron plasma for fusion reactor from operational point of view not only such as disruption free and steady state operation, but also as high density and stable high beta operation. Since the last Fusion Energy Conference in Daejon in 2010 (Yamada, 2011 Nucl. Fusion 51 094021), physical understanding as well as parameter improvement of net-current free helical plasmas has progressed successively. The current efforts are focused on optimization of plasma edge condition to extend the operation regime towards higher ion temperature and more stable high density. In LHD a part of open helical divertors are being modified to the baffle-structured closed ones to aim at active control of the edge plasma. It has been demonstrated that the neutral pressure in the closed helical divertor was more than 10 times higher than that in the open helical divertor. The central ion temperature has exceeded 7 keV. This high-T i plasma was obtained by a carbon pellet injection and the kinetic-energy confinement was improved by a factor of 1.5. Transport analysis of the high-T i plasmas has shown that the ion-thermal conductivity and the viscosity reduced after the pellet injection. Study of physics in 3-D geometry is highlighted in the topics of the response to Resonant Magnetic Perturbation such as ELM mitigation and divertor detachment. Novel approaches of non-local and non-diffusive transport have also been advanced. In this paper, highlighted results in these two years are overviewed. (author)

  20. Impact of bumpiness control on edge plasma in a helical-axis heliotron device

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Watanabe, S.; Fujikawa, S.; Okada, H.; Kobayashi, S.; Yabutani, H.; Nagasaki, K.; Nakamura, H.; Torii, Y.; Yamamoto, S.; Kaneko, M.; Arimoto, H.; Motojima, G.; Kitagawa, H.; Tsuji, T.; Uno, M.; Matsuoka, S.; Nosaku, M.; Watanabe, N.; Nakamura, Y.; Hanatani, K.; Kondo, K.; Sano, F.

    2007-01-01

    In the helical-axis heliotron configuration, bumpiness of the confinement field ε b is introduced to control the plasma transport. The plasma performance were experimentally investigated in Heliotron J for three configurations with ε b = 0.01, 0.06 and 0.15 at ρ = 2/3. The obtained volume-averaged stored energy depends on the configuration. To understand the observed difference in global energy confinement, the ε b -control effects on the edge plasma is discussed. For ε b = 0.01, the plasma density and temperature in the peripheral region is low compared to other cases. This poor plasma edge relates to the observed low stored energy or poor energy confinement for ε b = 0.01

  1. Two approaches to the reactor-relevant high-beta plasmas with profile control in the Large Helical Device

    International Nuclear Information System (INIS)

    Ohdachi, S.; Watanabe, K.Y.; Sakakibara, S.

    2008-10-01

    From detailed optimization of configuration, volume averaged beta ∼ 5% has been achieved in the Large Helical Device(LHD). While the heating efficiency was the main point to be optimized in this approach, to form a more peaked pressure profile is another promising approach towards the high beta regime. A higher electron density profile with a steeper pressure gradient has been formed by pellet injection. From the MHD stability analysis, this peaked pressure profile is stable against the ideal MHD modes. By both approaches, the central plasma β 0 reaches about 10%. (author)

  2. Direct measurement of refracted trajectory of transmitting electron cyclotron beam through plasma on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    Takahashi Hiromi

    2015-01-01

    Full Text Available The electron-cyclotron (EC -beam refraction due to the presence of plasma was investigated in the Large Helical Device. The transmitted-EC-beam measurement system was constructed and the beam pattern on the opposite side of the irradiated surface was measured using an IR camera. Clear dependence of the EC-beam refraction on the electron density was observed and the beam shift in the toroidal direction showed good agreement with the ray-trace calculation of TRAVIS. The influence of the peripheral density profile and the thermal effect on the beam refraction were discussed.

  3. Modification of the magnetic field structure of high-beta plasmas with a perturbation field in the Large Helical Device

    International Nuclear Information System (INIS)

    Sakakibara, S; Suzuki, Y; Narushima, Y; Watanabe, K Y; Ohdachi, S; Ida, K; Yoshinuma, M; Narihara, K; Yamada, I; Tanaka, K; Tokuzawa, T; Yamada, H; Takemura, Y

    2013-01-01

    The effect of resonant magnetic perturbation (RMP) on MHD characteristics is investigated in high-beta plasmas of the Large Helical Device. The ramp-up and static m/n = 1/1 RMP field are applied in medium- (∼2%) and high- (∼4%) beta plasmas in order to find beta dependences of mode penetration, MHD activities and confinement. The results show that the threshold of mode penetration linearly increases with the beta value and/or plasma collisionality. The threshold of mode penetration in the RMP ramp-up experiments is roughly consistent with the static RMP case. The beta value gradually decreases with the RMP field strength before mode penetration, which is caused by a reduction in the pressure inside the ι/2π = 1 resonance. The width of the magnetic island after the penetration becomes larger than the given RMP field, and it is further enhanced by the increment of the beta value. (paper)

  4. Development of the plasma operational regime in the large helical device by the various wall conditioning methods

    International Nuclear Information System (INIS)

    Nishimura, K.; Ashikawa, N.; Masuzaki, S.; Miyazawa, J.; Sagara, A.; Goto, M.; Peterson, B.J.; Komori, A.; Noda, N.; Ida, K.; Kaneko, O.; Kawahata, K.; Kobuchi, T.; Kubo, S.; Morita, S.; Osakabe, M.; Sakakibara, S.; Sakamoto, R.; Sato, K.; Shimozuma, T.; Takeiri, Y.; Tanaka, K.; Motojima, O.

    2005-01-01

    Experiments in the large helical device have been developing since the first discharge in 1998. Baking at 95 deg C, electron cyclotron resonance discharge cleaning, glow discharge cleaning, titanium gettering and boronization were attempted for wall conditioning. Using these conditioning techniques, the partial pressures of the oxidized gases, such as H 2 O, CO and CO 2 , were reduced gradually and the plasma operational regime enlarged. The glow discharge cleaning with the various working gases, such as hydrogen, helium, neon and argon, was effective in increasing the plasma purity. By this method, we obtained a central ion temperature of 10 keV. Boronization, which was started from FY2001, was also effective in reducing the radiation losses from impurities and in enlarging the density operational regime. We obtained a plasma stored energy of 1.31 MJ and an electron density of 2.4 x 10 20 m -3

  5. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  6. Simulation of impurity transport in the peripheral plasma due to the emission of dust in long pulse discharges on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    M. Shoji

    2017-08-01

    Full Text Available Two different plasma termination processes by dust emission were observed in long pulse discharges in the Large Helical Device. One is a plasma termination caused by large amounts of carbon dust released from a lower divertor region. The other is termination caused by stainless steel (iron dust emission from the surface of a helical coil can. The effect of the dust emission on the sustainment of the long pulse discharges are investigated using a three-dimensional edge plasma transport code (EMC3-EIRENE coupled with a dust transport code (DUSTT. The simulation shows that the plasma is more influenced by the iron dust emission from the helical coil can than by the carbon dust emission from the divertor region. The simulation revealed that the plasma flow in divertor legs is quite effective for preventing dust from terminating the long pulse discharges.

  7. Plasma characteristics of long-pulse discharges heated by neutral beam injection in the Large Helical Device

    Science.gov (United States)

    Takeiri, Y.; Nakamura, Y.; Noda, N.; Osakabe, M.; Kawahata, K.; Oka, Y.; Kaneko, O.; Tsumori, K.; Sato, M.; Mutoh, T.; Shimozuma, T.; Goto, M.; Ida, K.; Inagaki, S.; Kado, S.; Masuzaki, S.; Morita, S.; Nagayama, Y.; Narihara, K.; Peterson, B. J.; Sakakibara, S.; Sato, K.; Shoji, M.; Tanaka, K.; de Vries, P. C.; Sudo, S.; Ohyabu, N.; Motojima, O.

    2000-02-01

    Long-pulse neutral beam injection heating has been achieved in the large helical device (LHD). Two different confinement states are observed for different averaged densities in the long-pulse plasmas. A quasi-steady-state plasma was sustained for 21 s with an injection power of 0.6 MW, where the central plasma temperature was around 1 keV with a line-averaged electron density of 0.3 × 1019 m-3 . The discharge duration can be so extended as to keep the plasma properties in the short-pulse discharge. The energy confinement time is nearly the same as that of the short-pulse discharge, which is 1.3 times as long as the international stellarator scaling ISS95. At higher densities, a relaxation oscillation phenomenon, observed as if the plasma would breathe, lasted for 20 s with a period of 1-2 s. The phenomenon is characterized with profile expansion and contraction of the electron temperature. The density oscillation is out of phase with the temperature oscillation and is related to the density clamping phenomenon. The observed plasma properties are shown in detail for the `breathing' oscillation phenomenon. Possible mechanisms for the breathing oscillation are also discussed, with a view of the screening effect near the last closed magnetic surface and the power balance between the heating and the radiation powers. The long-pulse heating results indicate unique characteristics of the LHD where no special feedback stabilization is required due to absence of disruption and no need for current drive.

  8. Plasmoid behavior in helical plasmas

    International Nuclear Information System (INIS)

    Ishizaki, R.; Nakajima, N.

    2009-01-01

    Full text: It is well known that an ablation cloud; a high density and low temperature plasmoid, drifts to the lower field side in tokamak plasmas, which leads to a good performance on fueling in tokamak. Such a good performance, however, has not been obtained yet in the planar axis heliotron; Large Helical Device (LHD) experiments, even if a pellet has been injected from the high field side. The purpose of the study is to clarify the difference on the plasmoid motion between tokamak and LHD plasmas by using the MHD simulation including ablation processes. It is found in tokamaks that the drift motion is induced by a tire tube force and 1/R force in the major radius direction, and that the pressure and density of the plasmoid have oscillation due to fast compressional Alfven wave. On the other hand, the upper and lower portions surrounding the plasmoid center drift to the higher field side, because 1/R force by magnetic field becomes negative in the major radius direction since the magnetic field surrounding the plasmoid is accumulated by the extremely large ablation pressure and the magnetic pressure perturbation becomes positive. It is also found that the plasmoid does not drift when the perturbation of the plasmoid is small. In addition, the motion of the plasmoid is investigated in LHD plasmas in four cases that the plasmoids are initially located at the inner and outer sides of the torus on the vertically and horizontally elongated poloidal cross sections. The plasmoids drift to the lower field sides in all cases. However, in the case that it is located at the inner side of the torus on the horizontally elongated poloidal cross section, it is found that the plasmoid drifts in the negative direction of the major radius and subsequently drifts in the positive direction of it. In other words, the plasmoid finally drifts in the positive direction of the major radius the same as the plasmoid located at the outer side of the torus. This fact might be one of the

  9. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  10. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  11. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  12. Drift mode calculations for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2000-01-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for a case for the Large Helical Device (LHD) [A.Iiyoshi, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.Fusion 39, 1245 (1999)]. This calculation retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. Results for toroidal drift waves destabilized by trapped particle dynamics and ion temperature gradients are presented, using three-dimensional magnetohydrodynamics equilibria reconstructed from experimental measurements. The effects of helically-trapped particles and helical curvature are investigated

  13. Microinstability Studies for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2002-01-01

    Fully kinetic assessments of the stability properties of toroidal drift modes have been obtained for cases for the Large Helical Device (LHD). This calculation employs the comprehensive linear microinstability code FULL, as recently extended for nonaxisymmetric systems. The code retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. These effects include trapped particles, FLR, transit and bounce and magnetic drift frequency resonances, etc., for any number of plasma species. Results for toroidal drift waves destabilized by trapped electrons and ion temperature gradients are presented, using numerically-calculated three-dimensional MHD equilibria. These are reconstructed from experimental measurements. Quasilinear fluxes of particles and energy for each species are also calculated. Pairs of LHD discharges with different magnetic axis positions and with and without pellet injection are compared

  14. PLASMA DEVICE

    Science.gov (United States)

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  15. Re-entering fast ion effects on NBI heating power in high-beta plasmas of the Large Helical Device

    International Nuclear Information System (INIS)

    Seki, Ryosuke; Watanabe, Kiyomasa; Funaba, Hisamichi; Suzuki, Yasuhiro; Sakakibara, Satoru; Ohdachi, Satoshi; Matsumoto, Yutaka; Hamamatsu, Kiyotaka

    2011-10-01

    We calculate the heating power of the neutral beam injection (NBI) in the = 4.8% high-beta discharge achieved in the Large Helical Device (LHD). We investigate the difference of the heating efficiency and the heating power profile between with and without the re-entering fast ion effects. When the re-entering fast ion effects are taken into account, the heating efficiency in the co injection of the NBI (co-NBI case) is improved and it is about 1.8 times larger than that without the re-entering effects. In contrast, the heating efficiency with the re-entering effects in the counter injection of the NBI (ctr-NBI case) rarely differs from that without the re-entering ones. We also study the re-entering fast ion effects on the transport properties in the LHD high beta discharges. It is found that the tendency of the thermal conductivities on the beta value is not so much sensitive with and without the re-entering effects. In addition, we investigate the difference in the re-entering fast ion effects caused by the field strength and the magnetic configuration. In the co-NBI case, the re-entering fast ion effects on the heating efficiency increases with the decrease of the field strength. In the contrast, the re-entering fast ion effects in the ctr-NBI case rarely differs by changing the field strength. (author)

  16. Determination of electron temperature and density at plasma edge in the Large Helical Device with opacity-incorporated helium collisional-radiative model

    International Nuclear Information System (INIS)

    Goto, M.; Sawada, K.

    2014-01-01

    Spectra of neutral helium in the visible wavelength range are measured for a discharge in the Large Helical Device (LHD). The electron temperature (T e ) and density (n e ) are derived from the intensity distribution of helium emission lines. For that purpose, a collisional-radiative model developed by Sawada et al. [Plasma and Fusion Res. 2010;5:001] which takes the reabsorption effect into account is used. It is found that incorporation of the reabsorption effect is necessary to obtain a set of T e and n e giving consistent line intensity distribution with the measurement, and that those parameters obtained vary as the line-averaged n e changes in the course of time. The position where the helium line emission dominantly takes place is located with the help of T e and n e profiles measured by the Thomson scattering system. The result indicates that the emission position is almost fixed at the place where the connection length of the magnetic field lines to the divertor plate leaps beyond 10 m. Because intense neutral atom line emission suggests the vigorous ionization of neutral atoms, the helium line emission location determined here can be regarded as the effective boundary of the plasma. - Highlights: • The reabsorption effect is included in the helium collisional-radiative model. • Electron temperature and density are derived for the Large Helical Device (LHD). • Line emission location is found to be little changed during the discharge. • This measurement method can be used to determine the position of effective plasma boundary

  17. Exabyte helical scan devices at Fermilab

    International Nuclear Information System (INIS)

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs

  18. l=1 helical axis heliotron device in Kyoto university

    International Nuclear Information System (INIS)

    Nagasaki, K.; Sano, F.; Mizuuchi, T.; Hanatani, K.; Okada, H.; Obiki, T.

    1999-01-01

    Helical systems are an attractive candidate for magnetic fusion reactor. Recently, there has been great progress in theoretical research of three dimensional magnetic field structures, resulting in several kinds of confinement optimization being proposed for toroidal magnetic confinement system. For example, some sophisticated ideas have appeared on stage such as quasi-helical symmetry and quasi-isodynamic system. To find experimentally which way is the best Optimisation, a new helical axis heliotron device, so called 'Heliotron J', is under construction in the Institute of Advanced Energy, Kyoto University, Japan. In this conference, the basic concept and the present status will be presented. In the conventional plane axis helical system, it was difficult to have both good particle confinement and good MHD stability simultaneously. The goal of Heliotron J project is to clarify their compatibility in the spatial axis toroidal device. The best way for Optimising the helical magnetic field configuration will be explored by investigating the plasma response to the change in the field components. The main subjects for plasma experiment are: demonstration of the existence of good magnetic flux surfaces, reduction of neoclassical transport in collisionless regime, MHD Stabilisation in high β plasma, controllability of bootstrap current, good confinement of high energy particles

  19. Dynamics of three-dimensional radiative structures during RMP assisted detached plasmas on the large helical device and its comparison with EMC3-EIRENE modeling

    Science.gov (United States)

    Pandya, Shwetang N.; Peterson, Byron J.; Kobayashi, Masahiro; Ida, Katsumi; Mukai, Kiyofumi; Sano, Ryuichi; Miyazawa, Junichi; Tanaka, Hirohiko; Masuzaki, Suguru; Akiyama, Tsuyoshi; Motojima, Gen; Ohno, Noriyasu; LHD Experiment Group

    2016-04-01

    The resonant magnetic perturbation (RMP) island introduced in the stochastic edge of the large helical device (LHD) plasma plays an important role in the stabilization of the plasma detachment (Kobayashi et al 2013 Nucl. Fusion 53 093032). The plasma enters in the sustained detachment phase in the presence of an RMP once the line averaged density exceeds a critical value with a given input power. During detachment the enhanced radiation from the stochastic edge of the LHD undergoes several spatiotemporal changes which are studied quantitatively by an infrared imaging video bolometer (IRVB) diagnostic. The experimental results are compared qualitatively and quantitatively with the radiation predicted by the 3D transport simulation with fluid model, EMC3-EIRENE. A fair amount of qualitative agreement, before and after the detachment, is reported. The issue of overestimated radiation from the model is addressed by changing the free parameters in the EMC3-EIRENE code till the total radiation and the radiation profiles match closely, within a factor of two with the experimental observations. A better quantitative match between the model and the experiment is achieved at higher cross-field impurity diffusion coefficient and lower sputtering coefficient after the detachment. In this article a comparison, the first of its kind, is established between the quantified radiation from the experiments and the synthetic image obtained from the simulation code. This exercise is aimed towards validating the model assumptions against the experimentally measured radiation.

  20. Pressure-induced shift of the plasma in a helical system with ideally conducting wall

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2004-01-01

    The global plasma shift is calculated analytically for a helical system with an ideal wall. The derived expression for the plasma shift, incorporating both the finite-β plasma expansion and the opposing reaction of the nearby ideal wall, can be used for interpreting the observable high-β equilibrium effects in LHD and other helical devices. (author)

  1. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  2. Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

    International Nuclear Information System (INIS)

    Motojima, O.; Yamada, H.; Komori, A.; Ohyabu, N.; Mutoh, T.; Kaneko, O.; Kawahata, K.; Mito, T.; Ida, K.; Imagawa, S.; Nagayama, Y.; Shimozuma, T.; Watanabe, K.Y.; Masuzaki, S.; Miyazawa, J.; Morisaki, T.; Morita, S.; Ohdachi, S.; Ohno, N.; Saito, K.; Sakakibara, S.; Takeiri, Y.; Tamura, N.; Toi, K.; Tokitani, M.; Yokoyama, M.; Yoshinuma, M.; Ikeda, K.; Isayama, A.; Ishii, K.; Kubo, S.; Murakami, S.; Nagasaki, K.; Seki, T.; Takahata, K.; Takenaga, H.

    2007-01-01

    The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5 x 10 20 m -3 , which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high β and long pulse

  3. Divertors for Helical Devices: Concepts, Plans, Results, and Problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2004-01-01

    With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields

  4. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  5. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  6. Effect of loss cone on confinement in toroidal helical device

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Hanatani, K.

    1988-12-01

    Analytical estimation is given on the loss cone in the toroidal helical devices in the presence of the radial electric field and the modulation of the helical ripple. The minimum energy of particles entering the loss cone is calculated. The modulation is not always effective in reducing the loss in the presence of the radial electric field. The plasma loss due to the loss cone is estimated in the collisionless limit. The radial electric field is estimated in the presence of the loss cone. It is found that the transition to the solution with positive radial electric field, which is necessary to achieve the high-ion-temperature mode, becomes difficult. This difficulty is large for the systems with the small helical ripple. (author)

  7. Measurement of toroidal plasma current in RF heated helical plasmas

    International Nuclear Information System (INIS)

    Besshou, Sakae

    1993-01-01

    This report describes the measurement of toroidal plasma current by a semiflexible Rogowski coil in a helical vacuum chamber. A Rogowski coil measures the toroidal plasma current with a resolution of 0.1 kA, frequency range of up to 1 kHz and sensitivity of 6.5 x 10 -9 V · s/A. We measured the spontaneous toroidal plasma current (from -1.2 to +1.2 kA) under electron cyclotron resonance heating at 0.94 T toroidal field in the Heliotron-E device. We found that the measured direction of toroidal plasma current changes its sign as in the predicted behavior of a neoclassical diffusion-driven bootstrap current, depending on the horizontal position of the plasma column. We explain the observed plasma currents in terms of the compound phenomenon of an ohmic current and a neoclassical diffusion-driven current. The magnitude of the neoclassical current component is smaller than the value predicted by a collisionless neoclassical theory. (author)

  8. Overview of results from the Large Helical Device

    International Nuclear Information System (INIS)

    Yamada, H.

    2010-11-01

    The physical understanding of net-current free helical plasmas has progressed in the Large Helical Device (LHD) since the last Fusion Energy Conference in Geneva, 2008. The experimental results from LHD have promoted detailed physical documentation of features specific to net-current-free 3-D helical plasmas as well as complementary to the tokamak approach. The primary heating source is NBI with a heating power of 23 MW, and ECH with 3.7 MW plays an important role in local heating and power modulation in transport studies. The maximum central density has reached 1.2 x 10 21 m -3 due to the formation of an Internal Diffusion Barrier (IDB) at the magnetic field of 2.5 T. The IDB has been maintained for 3 s by refueling with repetitive pellet injection. The plasma with a central ion temperature reaching 5.6 keV exhibits the formation of an Internal Transport Barrier (ITB). The ion thermal diffusivity decreases to the level predicted by neoclassical transport. This ITB is accompanied by spontaneous toroidal rotation and an Impurity Hole which generates an impurity-free core. Impurity Hole is due to a large outward convection of impurities in spite of the negative radial electric field. The magnitude of the Impurity Hole is enhanced in the magnetic configuration with larger helical ripple and for higher Z impurities. Another mechanism to suppress impurity contamination has been identified at the plasma edge with a stochastic magnetic field. A helical system shares common physics issues with tokamaks such as 3-D equilibria, transport in a stochastic magnetic field, plasma response to a Resonant Magnetic Perturbation (RMP), divertor physics, and the role of radial electric field and meso-scale structure. (author)

  9. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  10. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  11. Rotation influence on the plasma helical instability

    International Nuclear Information System (INIS)

    Gutkin, T.I.; Tsypin, V.S.; Boleslavskaya, G.I.

    1980-01-01

    The influence of the rotation on helical instability of a plasma with the fixed boundaries (HIFB) is investigated taking into account the compressibility. A case of infinitely long cylinder with distributed current is considered. Cases when a rotating plasma is confined by current magnetic field are analytically considered. It is shown that in the case of the fixed boundary taking into account the compressibility in the HIFB increment increases and the picture of the rotation influence on HIFB considerably changes. Besides, it is shown that in the case of high plasma pressures HIFB can stabilize as a result of the rotation

  12. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described of providing electron beam heating of a high-density plasma to drive a fast liner to implode a structured microsphere. An annular relativistic electron beam is used to heat an annular plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the annular plasma then converges on a fast liner to explosively or ablatively drive the liner to convergence to implode the structured microsphere. (U.K.)

  13. Characteristic features of edge transport barrier formed in helical divertor configuration of the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K.; Ohdachi, S.; Watanabe, F.

    2006-10-01

    In a helical divertor configuration of the Large Helical Device (LHD), transport barrier was formed through low to high confinement (L-H) transition in the plasma edge region including ergodic field layer of which region is in the magnetic hill. The plasma stored energy or the averaged bulk plasma beta dia > (derived from diamagnetic measurement) starts to increase just after the transition. In the case that both dia > and line-averaged electron density e > at the transition are relatively high as dia >≥1.5% and e >≥2x10 19 m -3 , the increase is hampered by rapid growth of edge MHD modes and/or small ELM like activities just after the transition. On the other hand, the transition at lower e > (≤1.5x10 19 m -3 ) and dia > (<2%) leads to a continuous increase in the stored energy with a time scale longer than the global energy confinement time, without suffering from these MHD activities near the edge. The ETB typically formed in electron density profile extends into ergodic field layer defined in the vacuum field. The width of ETB is almost independent of the toroidal field strength from 0.5T to 1.5T and is much larger than the poloidal ion gyro-radius. When resonant helical field perturbations are applied to expand a magnetic island size at the rational surface of the rotational transform ι/2π=1 near the edge, the L-H transition is triggered at lower electron density compared with the case without the field perturbations. The application of large helical field perturbations also suppresses edge MHD modes and ELM like activities. (author)

  14. Electron cyclotron beam measurement system in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  15. Free-boundary equilibrium studies for the large helical device

    International Nuclear Information System (INIS)

    Gardner, H.J.; Ichiguchi, K.

    1993-06-01

    A free-boundary version of the VMEC three-dimensional equilibrium code, together with a code, DIAGNO, to determine the response to a set of magnetic diagnostic coils has been applied to the Large Helical Device. Two sequences of equilibria were considered: one where an external vertical field was used to keep the plasma centered and another where the outwardly shifting plasma was truncated by a limiter. The predictions of a simple cylindrical model have been verified for a diamagnetic loop. A set of simple response curves has been obtained which should be useful for the analysis and control of the finite plasma. The ideal Mercier criterion suggests that the centered plasma might be more stable. (author)

  16. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  17. Reduction of ion thermal diffusivity associated with the transition of the radial electric field in neutral-beam-heated plasmas in the large helical device.

    Science.gov (United States)

    Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M

    2001-06-04

    Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.

  18. Helical type thermonuclear device and control method

    International Nuclear Information System (INIS)

    Ishigaki, Yukio.

    1990-01-01

    In a conventional helical type thermonuclear device, electric current flows in the toroidal direction under magnetic fields of helical coils and vertical magnetic coils, by which a circulating electric field is caused. Therefore, there is a problem that electrons as a seed are generated by cosmic rays, etc., the electrons are confined in a magnetic field boundary, are accelerated by the circulating electric field, to reach a high energy level, collide against structures in a vacuum vessel and emit a great amount of X-rays. Then, compensation coils for offsetting the magnetic fields generated upon energization and deenergization of the vertical magnetic coils and the power source therefor are disposed at the positions opposing to each other on both sides of the vertical magnetic coils for controlling the variation coefficient rate of electric current upon energization and deenergization of the vertical magnetic coils. Since the compensation coils also offset the magnetic field generated upon energization and deenergization of the vertical magnetic field coils by this control, the circulating magnetic field is not caused in the vacuum vessel to reduce the X-ray radiation by electrons at high energy level. (N.H.)

  19. Chaotic coordinates for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Suzuki, Y. [National Institute for Natural Sciences, National Institute for Fusion Sciences, 322-6 Oroshi, Toki, 509-5292 (Japan)

    2014-10-15

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that flux surfaces become “straight” and islands become “square.”.

  20. Self-sustained detachment in the Large Helical Device

    International Nuclear Information System (INIS)

    Miyazawa, J.; Masuzaki, S.; Sakamoto, R.; Arimoto, H.; Kondo, K.; Tamura, N.; Shoji, M.; Nishiura, M.; Murakami, S.; Funaba, H.; Peterson, B.J.; Sakakibara, S.; Kobayashi, M.; Tanaka, K.; Narihara, K.; Yamada, I.; Morita, S.; Goto, M.; Osakabe, M.; Ashikawa, N.; Morisaki, T.; Nishimura, K.; Yamada, H.; Ohyabu, N.; Komori, A.; Motojima, O.

    2006-01-01

    Self-sustained detachment has been obtained in the Large Helical Device (LHD). Strong hydrogen gas puffing of ∼200 Pa m 3 s -1 after a density feedback phase detaches the plasma from the divertor plates with high reproducibility. High electron density of over 1 x 10 20 m -3 is sustained without gas puffing until the heating beam stops and a high-density flat top for 2 s has been demonstrated. Throughout the self-sustained detachment phase, the minor radius of the hot plasma column shrinks to ∼90% of the last-closed-flux-surface, which corresponds to the ι-bar ι/2π = 1/q =1 rational surface. This new state has been named the 'Serpens mode', for self-regulated plasma edge 'neath the last-closed-flux-surface. Global energy confinement of the Serpens mode is compared with the international stellarator scaling 1995 (ISS95) and the recently established scaling for high-density LHD plasmas (HD scaling), where shrinking confinement volume and shallow penetration of the heating beams are taken into account. Although the energy confinement of the Serpens mode seems deteriorated compared with ISS95, as in the case of high-density attached plasmas, it is consistent with the HD scaling. This suggests that the energy confinement properties of detached plasmas in LHD are similar to those in high-density attached plasmas

  1. Plasma shutdown device

    International Nuclear Information System (INIS)

    Hosogane, Nobuyuki; Nakayama, Takahide.

    1985-01-01

    Purpose: To prevent concentration of plasma currents to the plasma center upon plasma shutdown in a torus type thermonuclear device by the injection of fuels to the plasma center thereby prevent plasma disruption at the plasma center. Constitution: The plasma shutdown device comprises a plasma current measuring device that measures the current distribution of plasmas confined within a vacuum vessel and outputs a control signal for cooling the plasma center when the plasma currents concentrate to the plasma center and a fuel supply device that supplies fuels to the plasma center for cooling the center. The fuels are injected in the form of pellets into the plasmas. The direction and the velocity of the injection are set such that the pellets are ionized at the center of the plasmas. (Horiuchi, T.)

  2. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  3. Transport analysis of oscillatory state for plasma dynamics in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2012-11-01

    In helical plasmas, two kinds of the oscillation for the plasma quantities are experimentally observed. Firstly, the limit cycle phenomena in the temporal evolution of the electrostatic potential, namely the electric pulsation, have been observed in the core region. The temporally self-generated oscillation of the radial electric field is shown as a simulation result in the core region. The dependence of the transition point for the radial electric field on the source is examined. Secondly, the density limit oscillation in the helical device was reported. To realize the oscillation phenomena at the density limit, the temporal evolution of the density profile is newly included in a simulation when the radiative loss is calculated in the edge region. Two stationary plasma states, where the transport loss or radiative loss is dominant in the edge region, are obtained. The dynamics of the plasma quantity is found to show the transition from the transport-dominated state to the radiation-dominated state. (author)

  4. Divertors for helical devices: Concepts, plans, results and problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2003-01-01

    With LHD and W7-X stellarator development is now taking a large leap forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control, and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large stellarators were carefully prepared in smaller scale devices like Heliotron E, CHS and W7-AS. While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller scale experiments like Heliotron-J, CHS and NCSX will be used for the further development of divertor concepts. The two divertor configurations that are presently being investigated, are the helical and the island divertor, as well as the local island divertor (LID), which was successfully demonstrated on CHS and just went into operation on LHD. Presently, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor which will allow quasi continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi steady-state operating scenario in a newly found high density H-mode operating regime, which benefits from high energy and extremely low impurity confinement times, with edge radiation levels of up to 90 % and sufficient neutral compression in the subdivertor region (> 10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios and toroidal asymmetries due to symmetry breaking error fields, etc. will be discussed. (orig.)

  5. Comparative divertor-transport study for helical devices

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kobayashi, M.

    2008-10-01

    Using the island divertors (ID) of W7-AS and W7-X and the helical divertor (HD) of LHD as examples, the paper presents a comparative divertor transport study for three typical helical devices of different machine-size following two distinct divertor concepts, aiming at identifying common physics issues/effects for mutual validation and combined studies. Based on EMC3/EIRENE simulations supported by experimental results, the paper first reviews and compares the essential transport features of the W7-AS ID and the LHD HD in order to build a base and framework for a predictive study of W7-X. Revealed is the fundamental role of the low-order magnetic islands in both divertor concepts. Preliminary EMC3/EIRENE simulation results for W7-X are presented and discussed with respect to W7-AS and LHD in order to show how the individual field and divertor topologies affect the divertor transport and performance. For instance, a high recycling regime which is absent from W7-AS and LHD is expected for W7-X. Topics addressed are restricted to the basic function elements of a divertor such as particle flux enhancement and impurity retention. In particular, the divertor function on reducing the influx of intrinsic impurities is examined for all the three devices under different divertor plasma conditions. Special attention is paid to examining the island screening potential of intrinsic impurities which has been predicted for all the three devices under high divertor collisionality conditions. The results are discussed in conjunction with the experimental observations for high density divertor plasmas in W7-AS and LHD. (author)

  6. Magnetic configuration dependence of the shafranov shift in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kobuchi, T; Ida, K; Yamada, H; Yokoyama, M; Watanabe, K Y; Sakakibara, S; Yoshinuma, M [National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki-City, 509-5292 (Japan)

    2006-06-15

    The dependence of the Shafranov shift on magnetic field configuration, toroidicity and central rotational transform {iota}(0) in neutral beam heated plasma has been experimentally investigated in the Large Helical Device. The toroidicity of the plasma is controlled by the quadrupole field, while the central {iota}(0) is controlled by changing the distance of the current centre of the helical coil to the plasma. It is experimentally confirmed that both the lower toroidicity and the higher {iota}(0) contribute to the reduction of the Shafranov shift as predicted by the three-dimensional equilibrium code, VMEC.

  7. Linear theory of microwave absortion in fusion plasmas. A study of the electron cyclotron resonance and its particularization to a helical axis device for magnetic confinement

    International Nuclear Information System (INIS)

    Castejon M, F.

    1989-01-01

    The study of the Linear Theory microwave propagation and absorption in the the frequency range of electron cyclotron resonance, in a magnetized plasma, is developed. This study is particularized to the flexible heliac TJ-II, whose main characteristics are dsetailed in a memory chapter, as an interesting case example for its peculiar magnetic configuration. As a preliminary phase, a cold plasma model is useds to analyze the resonance accessibility and the approximated density limits which will be obtainable in each electron cyclotron resonance harmonic. This analysis was used to find the suitable positions for the microwave injection in TJ-II. An analytical weakly relativistic model for the dielectric tensor is developed, valid for oblique propagation, that takes account of the effect of superthermal electrons. Second order Larmor radius effects are included, so that the Quasi-Electrostatic branch of X mode can be studied. A numerical study is then presented on the absorption properties of TJ-II. Since the TJ-II geometry is complex and its magnetic field distribution is very different from that of a tokamak, ray tracing calculations are necessary to consider refraction effects. The ray tracing codse RAYS, developed in the Oak Ridge National Laboratory (U.S.A.), was take and adapted to the helical magnetic configuration of the TJ-II. The absorption model described above was then included in RAYS. For completeness, an introduction to the Quasi Linear Theory, natural prolongation of this work, is included at the end of the memory, ands the effects of taking into account the quasi linear evolution of the distribution function are described. (Author)

  8. Repetitive fueling pellet injection in large helical device

    International Nuclear Information System (INIS)

    Yamada, H.; Sakamoto, R.; Viniar, I.; Oda, Y.; Kikuchi, K.; Lukin, A.; Skoblikov, S.; Umov, A.; Takaura, K.; Onozuka, M.; Kato, S.; Sudo, S.

    2003-01-01

    A repetitive pellet injector has been developed for investigation of fueling issues towards the steady-state operation in Large Helical Device (LHD). The goal of this approach is achievement of the plasma operation for longer than 1000 s. A principal technical element of the pellet injector is solidification of hydrogen and extrusion of a solid hydrogen rod through a cryogenic screw extruder cooled by Giffard-McMahon (GM) cryo-coolers. Continuous operation of more than 10000 pellet launches at 10 Hz has been demonstrated. The reliability of pellet launch exceeds 99%. The pellet mass and velocity, the consumption of propellant gas and quality of pellets have been successfully tested to fit the experimental requirement in LHD

  9. Repetitive fueling pellet injection in large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H. E-mail: hyamada@lhd.nifs.ac.jp; Sakamoto, R.; Viniar, I.; Oda, Y.; Kikuchi, K.; Lukin, A.; Skoblikov, S.; Umov, A.; Takaura, K.; Onozuka, M.; Kato, S.; Sudo, S

    2003-09-01

    A repetitive pellet injector has been developed for investigation of fueling issues towards the steady-state operation in Large Helical Device (LHD). The goal of this approach is achievement of the plasma operation for longer than 1000 s. A principal technical element of the pellet injector is solidification of hydrogen and extrusion of a solid hydrogen rod through a cryogenic screw extruder cooled by Giffard-McMahon (GM) cryo-coolers. Continuous operation of more than 10000 pellet launches at 10 Hz has been demonstrated. The reliability of pellet launch exceeds 99%. The pellet mass and velocity, the consumption of propellant gas and quality of pellets have been successfully tested to fit the experimental requirement in LHD.

  10. A real-scale helical coil winding trial of the Large Helical Device

    International Nuclear Information System (INIS)

    Senba, T.; Yamamoto, T.; Tamaki, T.; Asano, K.; Suzuki, S.; Yamauchi, T.; Uchida, K.; Nakanishi, K.; Yamagiwa, T.; Suzuki, S.; Miyoshi, R.; Sasa, H.; Watanabe, S.; Tatemura, M.; Hatada, N.; Yamaguchi, S.; Imagawa, S.; Yanagi, N.; Satow, T.; Yamamoto, J.; Motojima, O.

    1995-01-01

    A real-scale helical coil winding trial of the Large Helical Device (LHD) has been conducted for a study of coil winding configuration and winding methods and for exhibiting the state of the art. It includes construction and test run of a specifically designed winding machine and development of various manufacturing methods for accurate coil winding. It has been carried out in Hitachi Works before in situ winding, and has provided much needed engineering data for construction of the LHD. (orig.)

  11. Design of central control system for large helical device (LHD)

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kaneko, H.; Yamaguchi, S.; Watanabe, K.Y.; Taniguchi, Y.; Motojima, O.

    1993-11-01

    The world largest superconducting fusion machine LHD (Large Helical Device) is under construction in Japan, aiming at steady state operations. Its basic control system consists of UNIX computers, FDDI/Ethernet LANs, VME multiprocessors and VxWorks real-time OS. For flexible and reliable operations of the LHD machine a cooperative distributed system with more than 30 experimental equipments is controlled by the central computer and the main timing system, and is supervised by the main protective interlock system. Intelligent control systems, such as applications of fuzzy logic and neural networks, are planed to be adopted for flexible feedback controls of plasma configurations besides the classical PID control scheme. Design studies of its control system and related R and D programs with coil-plasma simulation systems are now being performed. The construction of the LHD Control Building in a new site will begin in 1995 after finishing the construction of the LHD Experimental Building, and the hardware construction of the LHD central control equipments will be started in 1996. A first plasma production by means of this control system is expected in 1997. (author)

  12. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  13. Core electron-root confinement (CERC) in helical plasmas

    International Nuclear Information System (INIS)

    Yokoyama, M.; Ida, K.; Maassbcrg, H.

    2006-10-01

    The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r , in the core region are common fractures for this improved confinement. Such observations are consistent with a transition to the electron-root' solution of the ambipolarity condition for E r in the context of the neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The electron heat diffusivity is much reduced due to the electron-root E r compared to that with E r =0 assumed, which clearly demonstrates that 1/v ripple diffusion (ν being the collision frequency) in low-collisional helical plasmas could be overcome. The magnetic configuration properties play important roles in this transition, and thresholds are found for the collisionality and electron cyclotron heating (ECH) power. (author)

  14. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  15. Geometric scalings for the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.

    2017-12-01

    A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .

  16. Density limit studies in the large helical device

    International Nuclear Information System (INIS)

    Peterson, B.J.; Miyazawa, J.; Nishimura, K.

    2005-01-01

    Steady state densities of up to 1.6 x 10 20 m -3 have been sustained using gas puff fuelling and NBI heating up to 11 MW in the Large Helical Device (LHD). The density limit in LHD is observed to be ∼ 1.6 times the Sudo limit. The density is ultimately limited by radiative collapse which is attributed to the onset of a radiative thermal instability of the light impurities in the edge region of the plasma based on several observations. First of all the onset of the radiative thermal instability is tied to a certain edge temperature threshold. Secondly, the onset of thermal instability occurs first in oxygen and then carbon as expected from their cooling rate temperature dependencies. Finally, radiation profiles show that as the temperature drops and the plasma collapses the radiating zone broadens and moves inward. In addition, comparison with the total radiated power behaviour indicates that Carbon is the dominant radiator. Two dimensional tomographic inversions of AXUVD array data and comparison of modelling with images of radiation brightness from imaging bolometers and indicate that the poloidal asymmetry which accompanies the radiative collapse is toroidally symmetric. Ain addition to the operational density limit where the discharge is terminated by radiative collapse, a confinement limit has been recognized in LHD. This confinement limit appears at lower density than the operational density limit, similar to the saturated ohmic confinement observed in tokamaks. To investigate the physics behind this degradation, the parameter dependence of the thermal diffusivity, χ, has been investigated. While the temperature dependence in ISS95 is as strong as the gyro-Bohm model of χ ∝ T e 1.5 , weaker T e dependence of χ ∝ T e 0.5 appears in the high-density regime. Such weak T e dependence results in the weak density dependence of the global energy confinement as τ E ∝ n e 13 -bar. (author)

  17. Interplay of energetic ions and Alfven modes in helical plasmas

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Yakovenko, Yu.Y.; Yamazaki, K.; Nakajima, N.; Narushima, Y.; Toi, K.; Yamamoto, S.

    2003-08-01

    Alfven eigenmodes and their destabilization by energetic ions in stellarators, mainly, in the Large Helical Device (LHD) plasmas, are considered. A general expression for the instability growth rate is derived, which generalizes that obtained in Ref. [Ya.I. Kolesnichenko et al., Phys. Plasmas 9, 517 (2002)] by taking into account the finite magnitude of the perturbed longitudinal magnetic field. The structures of the Alfven continuum and Alfven eigenmodes, as well as the resonances of the wave-particle interaction, are studied. A numerical simulation of the destabilization of Alfven waves with low mode numbers during neutral-beam injection in a particular LHD shot is carried out. The obtained solutions represent even and odd core-localized Toroidicity-induced Alfven Eigenmodes, the calculated frequencies and the mode numbers being in agreement with experimental data. The growth rates of the instabilities are calculated. This work was done during the stay of Ya.I. Kolesnichenko in NIFS as a Guest Professor from January 26, 2003 to April 25, 2003. (author)

  18. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  19. Bifurcation of equilibria between with and without a large island in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Ohyabu, N; Narushima, Y; Nagayama, Y; Narihara, K; Morisaki, T; Komori, A [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan)

    2005-09-01

    A rapid bifurcation of the equilibria with and without a large island (n/m = 1/1) has been observed in the medium to high beta large helical device discharges. A large island imposed by an external resonant field is suddenly suppressed nearly perfectly by the plasma effects when the beta at the {iota}/2{pi} = 1 surface exceeds a critical value. The critical beta value is nearly proportional to the externally imposed resonant field normalized by the main field strength.

  20. Theoretical transport analysis of density limit with radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2010-11-01

    The confinement property in helical toroidal plasmas is clarified. The analysis is performed by use of the one-dimensional transport equations with the effect of the radiative loss and the radial profile of the electric field. The analytical results in the edge region show the steep gradient in the electron temperature, which indicates the transport barrier formation. Because of the rapid increase of the radiative loss at the low electron temperature, the anomalous heat diffusivity is reduced near the edge. Next, the efficiency of the heating power input in the presence of the radiative loss is studied. The scaling of the critical density in helical devices is also derived. (author)

  1. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  2. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  3. Design study on divertor plates of Large Helical Device (LHD)

    International Nuclear Information System (INIS)

    Noda, N.; Kubota, Y.; Sagara, A.

    1992-10-01

    A conceptual design has been completed for the divertor plates of the Large Helical Device (LHD, R = 3.9 m, a p = 50 ∼ 60 cm, B h = 3 ∼ 4T/ superconducting coils of NbTi) and the detailed technical design is now in progress. The design concept and the status of research and development (R and D) programs are described. (author)

  4. Properties of the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal

    2018-02-01

    A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r safety factor q0(r ) just above the pitch of the electrodes m /n =1 in the interior, where the plasma is nearly force-free. However, at the edge the current density has a component perpendicular to the magnetic field B. This perpendicular current density drives nearly Alfvénic helical plasma flows, a notable feature of these states. This state is being studied for its possible application in DC electrical transformers. We present results on several issues of importance for these applications: the transient leading to the steady state; the twist and writhe of the field lines and their relation with the current density; the properties of the current density streamlines and length of the current density lines connected to the electrodes; the sensitivity to changes in the velocity boundary conditions; the effect of varying the radial resistivity profile; and the effects of a concentrated electrode potential.

  5. From plasma crystals and helical structures towards inorganic living matter

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G E; Fortov, V E; Gusein-Zade, N G; Klumov, B A; Vladimirov, S V

    2007-01-01

    Complex plasmas may naturally self-organize themselves into stable interacting helical structures that exhibit features normally attributed to organic living matter. The self-organization is based on non-trivial physical mechanisms of plasma interactions involving over-screening of plasma polarization. As a result, each helical string composed of solid microparticles is topologically and dynamically controlled by plasma fluxes leading to particle charging and over-screening, the latter providing attraction even among helical strings of the same charge sign. These interacting complex structures exhibit thermodynamic and evolutionary features thought to be peculiar only to living matter such as bifurcations that serve as 'memory marks', self-duplication, metabolic rates in a thermodynamically open system, and non-Hamiltonian dynamics. We examine the salient features of this new complex 'state of soft matter' in light of the autonomy, evolution, progenity and autopoiesis principles used to define life. It is concluded that complex self-organized plasma structures exhibit all the necessary properties to qualify them as candidates for inorganic living matter that may exist in space provided certain conditions allow them to evolve naturally

  6. Theory of dynamics in long pulse helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Toda, S.; Yokoyama, M.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    2001-01-01

    Self-organized dynamics of toroidal helical plasma, which is induced by the nonlinear transport property, is discussed. Neoclassical ripple diffusion is a dominant mechanism that drives the radial electric field. The bifurcation nature of the electric field generation gives rise to the electric field domain interface, across which the electric field changes strongly. This domain interface is an origin of internal transport barrier in helical systems. This nonlinearity gives rise to the self-organized oscillations; the electric field pulsation is one of the examples. Based on the model of density limit, in which the competition between the transport loss and radiation loss is analyzed, dynamics near the density limit of helical systems is also discussed. (author)

  7. Plasma control device

    International Nuclear Information System (INIS)

    Matsutomi, Akiyoshi.

    1995-01-01

    Plasma position and shape estimation values are outputted based on measured values of coil current. When the measured values of the position and the shape are judged to be abnormal, position and shape estimation values estimated by a plasma position and shape estimation means are outputted as position and shape feed back values to a plasma position and shape control means instead of the position and shape measured values. Since only a portion of the abnormal position and shape measured values may also be replaced with the position and shape estimation values, errors in the plasma position and shape feed back values can be reduced as a whole. In addition, even if the position and shape measured values are abnormal or if they can not be measured, plasma control can be continued by alternative position and shape estimation values, thereby enabling to avoid interruption of plasma control. Since the position and shape estimation values are obtained not only with the measured values of coil current but also with the position and shape estimation values, the accuracy is improved. Further, noises superposed on the position and shape measured values are filtered, and the device is stabilized compared with a prior art device. (N.H.)

  8. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  9. Physics of electron internal transport barrier in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Toda, S.; Fujisawa, A.; Ida, K.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.; Diamond, P.H.

    2006-10-01

    The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas. (author)

  10. Achieved capability of the superconducting magnet system for the large helical device

    International Nuclear Information System (INIS)

    Satow, T.; Imagawa, S.; Yanagi, N.

    2001-01-01

    The Large Helical Device (LHD) is a plasma physics experimental device with a magnetic stored energy of 960 MJ, consisting of two sc (superconducting) helical coils and six sc poloidal coils. The trial operation and the first plasma discharge of the eight-year Phase I project for LHD were finished on 31 March 1998 as initially planned. The second experimental campaign was conducted by additional heating using two NBI devices. The third campaign started in June 1999 and was finished in January 2000. Many plasma heating tests up to a plasma field of 2.90 T were carried out. Major test results on the sc magnet system for LHD are as follows: (1) The LHD cryogenic system succeeded in 13,400-hour operation and proved its high reliability. (2) A central field of 2.91 T at a radius of 3.60 m was achieved at an H-I current of 11.08 kA, H-M current of 11.83 kA and an H-O current of 12.02 kA. (3) All six poloidal coils were excited stably. (4) Nine flexible sc bus-lines with a total length of 497 m were operated stably and safe. (author)

  11. Recent Results of Helical Nonneutral Plasmas on Compact Helical System (CHS)

    International Nuclear Information System (INIS)

    Himura, H.; Yamamoto, Y.; Sanpei, A.; Masamune, S.; Wakabayashi, H.; Isobe, M.

    2006-01-01

    First of all, non-constant space potential φs and electron density ne on magnetic surfaces of helical nonneutral plasmas are verified experimentally. The difference in φs enlarges significantly at the outer region inside the closed magnetic surfaces, and the corresponding equipotential surfaces are inferred to shift upward vertically with respect to magnetic surfaces. Meanwhile, larger value of ne is clearly observed in the downward region (z < 0) of magnetic surfaces, which seems to be consistent with the φs measurement. These results are the first evidence which strongly suggests the equilibrium proposed for nonneutral plasmas confined in closed magnetic surfaces. Secondly, in order to investigate the mechanism of the multiple disruption of helical nonneutral plasmas observed in experiments, space and time evolutions of electron flux are measured carefully inside the magnetic surfaces, when the plasma disruption occurs. Surprisingly, a set of data show that the observed disruption is at first happened at ρ ∼ 0.8, where ρ is the normalized minor radius, and then, it seems to propagate inside magnetic surfaces

  12. Development of Integrated Simulation System for Helical Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Yokoyama, M.; Nakajima, N.; Fukuyama, A.; Watanabe, K. Y.; Funaba, H.; Suzuki, Y.; Murakami, S.; Ida, K.; Sakakibara, S.; Yamada, H.

    2005-07-01

    Recent progress of computers (parallel/vector-parallel computers, PC clusters, for example) and numerical codes for helical plasmas like three-dimensional MHD equilibrium codes, combined with the development of the plasma diagnostics technique, enable us to do the detailed theoretical analyses of the individual experimental observations. Now, it is pointed out that the experimental data analysis from the viewpoints of integrated physics is an important issue to understand the confinement physics globally. In addition to that, there are international movements towards the integrated numerical simulation study. One is several proposals of integrated modeling of burning tokamak plasmas, motivated by the ITER activity. The integrated numerical simulation will be a good help to draw up new experimental plans especially for burning plasma experiments. Another movement is international collaborations on the confinement database and neoclassical transport in helical plasmas/stellarators. These backgrounds motivate us to start the development of the integrated simulation system which has a modular structure and user-friendly interfaces. The integrated simulation system, which is based on the hierarchical and multi-scale (time and space) modeling, will also be a platform for theoreticians to test their own model such as turbulent transport model. In this paper, we will show the strategy of developing the integrated simulation system and present status of the development. Especially, we discuss the modeling of the time evolution of the plasma net current profile, which is equivalent to the time evolution of the rotational transform profile, in the resistive time scale. (Author)

  13. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  14. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae-I.

    2001-01-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)

  15. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.

    2000-03-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)

  16. Experiments on helical modes in magnetized thin foil-plasmas

    Science.gov (United States)

    Yager-Elorriaga, David

    2017-10-01

    This paper gives an in-depth experimental study of helical features on magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at University of Michigan. Three types of cylindrical liner loads were designed to produce: (a) pure magneto-hydrodynamic (MHD) modes (defined as being void of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) using a non-imploding geometry, (b) pure kink modes using a non-imploding, kink-seeded geometry, and (c) MRT-MHD coupled modes in an unseeded, imploding geometry. For each configuration, we applied relatively small axial magnetic fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible self-emission on a fast framing camera. The azimuthal mode number was carefully identified with a tracking algorithm of self-emission minima. Our experiments show that the helical structures are a manifestation of discrete eigenmodes. The pitch angle of the helix is simply m / kR , from implosion to explosion, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Thus, the pitch angle increases (decreases) during implosion (explosion) as R becomes smaller (larger). We found that there are one, or at most two, discrete helical modes that arise for magnetized liners, with no apparent threshold on the applied Bz for the appearance of helical modes; increasing the axial magnetic field from zero to 0.5 T changes the relative weight between the m = 0 and m = 1 modes. Further increasing the applied axial magnetic fields yield higher m modes. Finally, the seeded kink instability overwhelms the intrinsic instability modes of the plasma. These results are corroborated with our analytic theory on the effects of radial acceleration on the classical sausage, kink, and higher m modes. Work supported by US DOE award DE-SC0012328, Sandia National Laboratories

  17. Monte Carlo simulation study of the ICRF minority heating in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Nakajima, N.; Ohnishi, M.; Okada, H.

    1993-10-01

    A Monte Carlo simulation code is developed for the ICRF heating in helical systems, which takes into account finite beta effects, complicated orbits of high energetic particles, Coulomb collisions, and interactions between the particles and the applied waves. The code is used to investigate the ICRF minority heating in the Large Helical Device. The configuration of the magnetic fields changes significantly due to finite beta effects in the Large Helical Device. The resonance layer position is found to be crucial to the heating efficiency as the plasma beta increases. When the strength of the resonance magnetic field is set to the value at the magnetic axis, the higher heat efficiency is obtained and no clear difference of the heat efficiency due to the finite beta effects is found at the high ICRF wave power region. However the radial profile of the transferred power to majority ions and electrons from minority ions changes by the deformation of the trapped particle orbits due to the finite beta effects. The heat efficiency is improved if the radial electric field, E r , is positive (E r is directed radially outward) and it is also improved by supplying 3 He minority ions rather than proton minority ions. (author)

  18. Plasma control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To obtain the optimum controllability for the plasmas and the thermonuclear device by selectively executing control operation for proportion, integration and differentiation (PID) by first and second controllers respectively based on selection instruction signals. Constitution: Deviation between a vertical direction equilibrium position: Zp as the plasma status amount measured in a measuring section and an aimed value Zref thereof is inputted to a first PID selection controller. The first controller selectively executes one of the PID control operations in accordance with the first selection signal instruction instructed by a PID control operation instruction circuit. Further, Zp is also inputted to a second PID selection controller, which selectively executes one of the PID control operations in accordance with the second selection instruction signal in the same manner as in the first controller. The deviation amount u between operations signals u1 and u2 from the first and second PID selection controllers is inputted to a power source to thereby supply a predetermined current value to control coils that generate equilibrium magnetic fields for making the vertical direction equilibrium position of plasmas constant. (Kamimura, M.)

  19. Formation of edge transport barrier in the ergodic field layer of helical divertor configuration on the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K; Ohdachi, S; Watanabe, F; Narihara, K; Morisaki, T; Sakakibara, S; Morita, S; Goto, M; Ida, K; Masuzaki, S; Miyazawa, K; Tanaka, K; Tokuzawa, T; Watanabe, K W; Yoshinuma, M

    2006-01-01

    On the Large Helical Device (LHD), low to high confinement (L-H) transition and edge transport barrier (ETB) formation were observed in the low beta regime ((β dia ) dia ): volume-averaged beta derived from diamagnetic measurement) as well as in relatively high beta regime (>1.5%). In most of ETB plasmas electron density preferentially increases in the edge region without a substantial rise of the edge electron temperature. The ETB zone develops inside the ergodic field layer calculated in the vacuum field. The ETB formation strongly destabilizes edge coherent modes such as m/n = 2/3 or 1/2 (m, n: poloidal and toroidal mode numbers), because the plasma edge region is in the magnetic hill. The ETB is partially destroyed by the combination of these edge MHD modes and ELM-like activities. For a particular experimental condition, the forced generation of a sizable m/n = 1/1 magnetic island near the edge by application of external field perturbations facilitates the L-H transition at a lower electron density and suppresses edge MHD modes and ELM-like activities to lower levels

  20. Experimental study of membrane pump for plasma devices

    International Nuclear Information System (INIS)

    Suzuki, Hajime; Ohyabu, Nobuyoshi; Nakamura, Yukio; Sagara, Akio; Motojima, Osamu; Livshits, A.; Notkin, M.; Busnyuk, A.; Komatsu, Kazuyuki

    1998-01-01

    Recycling control is a key to improve fusion plasma performance. The membrane pump has potential advantages for hydrogen pumping in fusion devices. However, there are unsolved issues for using membrane pump in LHD (Large Helical Device). The first issue is characteristics of the membrane pump under high incident hydrogen atom flux. The second issue is relationship between the surface condition and the pumping efficiency. Impurities from plasma may change the surface condition of the membrane. In order to solve these issues, a membrane pump system was fabricated and installed in a linear plasma device at NIFS (National Institute for Fusion Science). The membrane pump was successfully operated. (author)

  1. Transport analysis of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2004-01-01

    A set of transport equations is analyzed which induces the radial transition of the electric field. A temperature profile which is related with the transport barrier is obtained by use of the theoretical model for the anomalous transport diffusivities. A dependence on the different initial condition is found even if the same values of the control parameters are used in calculations. A study of the temporal evolution of E r is done. We examine the test of the adopted theoretical model for the anomalous transport diffusivities compared with the experimental result in Large Helical Device (LHD). (authors)

  2. 10 years of engineering and physics achievements by the Large Helical Device project

    International Nuclear Information System (INIS)

    Yamada, H.; Imagawa, S.; Takeiri, Y.; Kaneko, O.; Mutoh, T.; Mito, T.; Chikaraishi, H.; Hamaguchi, S.; Ida, K.; Igami, H.; Ikeda, K.; Kasahara, H.; Kobayashi, M.; Kubo, S.; Kumazawa, R.; Maekawa, R.; Masuzaki, S.; Miyazawa, J.; Morisaki, T.; Morita, S.

    2009-01-01

    This article reviews 10 years of engineering and physics achievements by the Large Helical Device (LHD) project with emphasis on the latest results. The LHD is the largest magnetic confinement device among diversified helical systems and employs the world's largest superconducting coils. The cryogenic system has been operated for 50,000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of NBI, 2.9 MW of ICRF and 2.1 MW of ECH. Negative-ion-based ion sources with the accelerating voltage of 180 keV are used for a tangential NBI with the power of 16 MW. The ICRF system has full steady-state operational capability with 1.6 MW. In these 10 years, operational experience as well as a physics database have been accumulated and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantage of helical systems in LHD. Highlighted physical achievements are high beta (5% at the magnetic field of 0.425 T), high density (1.1 x 10 21 m -3 at the central temperature of 0.4 keV), high ion temperature (T i of 5.2 keV at 1.5 x 10 19 m -3 ), and steady-state operation (3200 s with 490 kW). These physical parameters have elucidated the potential of net-current free helical plasmas for an attractive fusion reactor. It also should be pointed out that a major part of these engineering and physics achievements is complementary to the tokamak approach and even contributes directly to ITER.

  3. Study of the loss cone feature using neutral particle analyzer in large helical device

    International Nuclear Information System (INIS)

    Ozaki, T.; Goncharov, P.; Sudo, S.; Sanuki, H.; Watanabe, T.; Murakami, S.

    2005-01-01

    It is very important to control the trapped particle by the helical ripple to realize the helical type plasma fusion device. High-energy particles generated by the ion cyclotron resonance heating and the neutral beam injection (NBI) heating have a wide pitch angle distribution by the initial heating mechanism and the atomic process in plasma. The particle with large pitch angle has a complicated orbit, sometimes the loss orbit at certain energy and pitch angle, although the particle with large parallel component against magnetic field line is well confined along the magnetic surface. The loss region in the phase space, so call a loss cone, can be clarified by measuring the pitch angle distribution of the high-energy particle. To this purpose, the lost ion has been directly measured near the plasma. Here the charge exchange neutral particle between the high-energy ion and the background neutral is measured to obtain the pitch angle of the high-energy ion in the plasma. In the large helical device (LHD), we have used two different neutral particle analyzers, the time-of-flight (TOF-NPA) and the silicon detector (SD-NPA) neutral particle analyzer. NBI heating in long discharge is suitable for this purpose in LHD. Three NBIs are tangentially injected to minimize the particle number toward the loss cone region in LHD. The energy of the high-energy ion supplied from NBI decreases by the plasma electron. The pitch angle scattering is occurred by the plasma ion at the energy of the several times of the electron temperature. Therefore we can easily compare the experimental pitch angle distribution with the simulation result, which is obtained by considering the initial pitch angle distribution and the atomic process. The pitch angle distribution from 40 to 100 degrees can be obtained by horizontal scanning the TOF-NPA during the long discharge over 100 seconds sustained by the NBI 2 (co-injection) at the magnetic axis (R ax ) of 3.6 m. The trapped particle by the helical

  4. Effect of the helically-trapped energetic-ion-driven resistive interchange modes on energetic ion confinement in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    The effect of the helically-trapped energetic-ion-driven resistive interchange modes (EICs) on energetic ion confinement is studied in the Large Helical Device deuterium plasmas. Neutron diagnostics such as the neutron flux monitor and the vertical neutron camera (VNC) are used in order to measure neutrons mainly created by beam-plasma reactions. The line-integrated neutron profiles are obtained by VNC in magnetohydrodynamic-quiet plasma with various neutral beam (NB) injection patterns. The profiles are consistent with that expected by the beam ion density calculated using orbit-following simulations. Significant decreases of the total neutron emission rate (S n) and the neutron counting rate of the VNC (C n) in central cords are observed to be synchronized with EIC bursts with perpendicular-NB injection. The drop rates of both S n and C n increase with EIC amplitude and reach around 50%. The line-integrated neutron profiles before and after EIC burst show that in the central cords, C n decrease due to EIC burst whereas there is almost no change in the other cords. The experimental results suggests that the effect of EIC on helically-trapped beam ion is substantial, however the effect of passing beam ion is not significant.

  5. Confinement studies of helical-axis Heliotron plasmas

    International Nuclear Information System (INIS)

    Sano, F.; Mizuuchi, T.; Kondo, K.

    2005-01-01

    The L-H transition in the helical-axis heliotron, Heliotron J, was investigated. For ECH-only, NBI-only and ECH+NBI combination heating plasmas, the confinement quality of the H-mode was examined with special regard to the magnetic configuration, the vacuum edge iota value of which was chosen as a label of the configuration. The experimental iota dependence of the H ISS95 -factor (τ E exp /τ E ISS95 ) has revealed that there exist the specific configurations for which the high-quality H-modes (1.3 ISS95 p , was calculated and compared with the experiment. Edge plasma characteristics are also measured and discussed with regard to the E r -shear formation at the transition. (author)

  6. Internal transport barrier in tokamak and helical plasmas

    Science.gov (United States)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the

  7. Design and development of the large helical device TV Thomson scattering

    International Nuclear Information System (INIS)

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.

    2004-01-01

    We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data

  8. Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas

    Czech Academy of Sciences Publication Activity Database

    Lorenzini, R.; Martines, E.; Piovesan, P.; Terranova, D.; Zanca, P.; Zuin, M.; Alfier, A.; Bonfiglio, D.; Bonomo, F.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Escande, D.F.; Fassina, A.; Franz, P.; Gobbin, M.; Innocente, P.; Marrelli, L.; Pasqualotto, R.; Puiatti, M.E.; Spolaore, M.; Valisa, M.; Vianello, N.; Martin, P.; Apolloni, L.; Adámek, Jiří; Agostini, M.; Annibaldi, S.V.; Antoni, V.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bolzonella, T.; Brombin, M.; Brotánková, Jana; Buffa, A.; Buratti, P.; Cavinato, M.; Chapman, B.E.; Chitarin, G.; Dal Bello, S.; De Lorenzi, A.; De Masi, G.; Ferro, A.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Grando, L.; Guazzotto, L.; Guo, S.C.; Igochine, V.; Liu, Y.Q.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Martini, S.; McCollam, K.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Peruzzo, S.; Piovan, R.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Reusch, J.A.; Rostagni, G.; Rubinacci, G.; Sarff, J.S.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Sopplesa, A.; Spagnolo, S.; Spizzo, G.; Taliercio, C.; Toigo, V.; Villone, F.; White, R.B.; Yadikin, D.; Zaccaria, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zohm, H.

    2009-01-01

    Roč. 5, č. 8 (2009), s. 570-574 ISSN 1745-2473 Institutional support: RVO:61389021 Keywords : plasma * fusion * ITER * helical equilibrium Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 15.491, year: 2009

  9. Experimental demonstration of plasma startup by coaxial helicity injection

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Hamp, W.T.; Izzo, V.A.; O'Neill, R.G.; Redd, A.J.; Sieck, P.E.; Smith, R.J.

    2004-01-01

    Experimental results on the transfer of a coaxial-helicity-injection (CHI) produced discharge to inductive operation are reported. CHI assisted plasma startup is more robust than inductive only operation and reduces volt-seconds consumption. After handoff to inductive operation, the initial 100 kA of CHI produced current drops to 50 kA, then ramps up to 180 kA, using only 30 mVs, about 40% higher than that produced by induction alone. Results show that initiation of CHI discharges at lower densities produce higher levels of coupling current. Coupling a CHI produced discharge to induction from a precharged central solenoid has produced record currents of 290 kA using only 52 mWb of central solenoid flux. CHI discharges can also be generated while the central transformer is in the process of being precharged, during which period it induces a negative loop voltage on the CHI discharge. These significant results were obtained on the Helicity Injected Torus-II (HIT-II) [T.R. Jarboe, Fusion Technol. 15, 7 (1989)] spherical torus experiment (major/minor radius of 0.3/0.2 m and elongation of 1.5)

  10. Homodyne reflectometer for NBI interlock on Large Helical Device

    International Nuclear Information System (INIS)

    Tanaka, Kenji; Ito, Yasuhiko; Kawahata, Kazuo; Tokuzawa, Tokihiko; Osakabe, Masaki; Takeiri, Yasuhiko; Ejiri, Akira

    2001-01-01

    Neutral Beam Injection (NBI) under low density causes serious damage on vacuum vessel wall. It is necessary to stop NBI when electron density becomes lower than 1x10 19 m -3 . This needs reliable density monitor for NBI interlock. A three-channel homodyne reflectometer was installed on Large Helical Device (LHD) and was used for NBI interlock. 28.5, 34.9 and 40.2 GHz Gunn oscillators were used with O mode injection. Their O mode cut off density correspond to 1x10 19 , 1.5x10 19 and 2x10 19 m -3 respectively. The simple homodyne detection is presently used. When the density reaches to the cutoff density, the reflected signals are detected. The reflected signal consists of DC signal due to local and reflected power, and AC signal due to position of cut off layer and density fluctuation. Since the change of DC signal at lower and higher than cut off density was very small, root mean square (RMS) value of AC signal were used for interlock signal. This interlock system is successfully working from the beginning of the NBI experiments campaign on LHD. (author)

  11. Role of low-order rational surfaces in transport barrier formation on the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K.; Tanaka, K.; Watanabe, F.

    2010-11-01

    In the Large Helical Device, edge transport barrier (ETB) was formed by H-mode transition near the low-order rational surfaces, that is, at the ι/2π=1 resonant layer (ι/2π: the rotational transform) in outward-shifted plasmas of R ax =3.9m (R ax : the magnetic axis position in the vacuum field), and the ι/2π=2 resonant layer in inward-shifted plasmas of R ax =3.6m. The ι/2π=1 and 2 resonant layers reside in the stochastic field region existing just outside the last closed magnetic surface (LCFS). In the outward-shifted plasmas, H-modes without edge localized modes (ELM-free H-modes) followed by giant ELMs were obtained, while H-modes with high frequency and low amplitude ELMs were obtained in the inward-shifted plasmas. A new type of barrier formation induced by TAE bursts was observed in the plasmas of R ax =3.6m, where the transport barrier is formed near the ι/2π=1 surface locates inside LCFS. (author)

  12. Radio emission from a helical electron beam-plasma system in a twisted magnetic field

    International Nuclear Information System (INIS)

    Krishan, V.

    1982-01-01

    The excitation of electromagnetic radiation near the harmonics of electron plasma frequency from a helical electron beam travelling parallel to a helical magnetic field through a stationary inhomogeneous plasma is studied. The motivation behind this study is to explain the observed characteristics of the type III solar radio bursts and thus to predict the nature of the plasma system responsible for the generation of these radio bursts. (author)

  13. Role of recycling flux in gas fuelling in the Large Helical Device

    International Nuclear Information System (INIS)

    Miyazawa, J.; Masuzaki, S.; Yamada, H.

    2004-01-01

    The 'effective' fuelling efficiency of hydrogen gas puffing ranges from 10% to 50% in the Large Helical Device. A local increase in neutral particle pressure at the gas puff port was measured in the experiment. The pressure increase rate corresponds to ∼ 10% of the gas puff flux. The other 90% of the gas puff flux increases the density and/or the plasma outflow. A particle balance model reveals that the recycling flux estimated from the particle flux on the divertor plates increases during the gas puffing. It is shown that the high effective fuelling efficiency is possibly due to the large recycling flux. At the limit of small recycling flux, the effective fuelling efficiency decreases to ∼10%. In the helium gas puff discharge, the effective fuelling efficiency is larger than the hydrogen gas puffing and approaches 100%. This can be related to the large recycling coefficient of more than 0.95. (author)

  14. Proposed high speed pellet injection system 'HIPEL' for Large Helical Device

    International Nuclear Information System (INIS)

    Sudo, S.; Kanno, M.; Kaneko, H.; Saka, S.; Shirai, T.; Baba, T.

    1993-11-01

    From the results of the simulation study including pellet ablation and 1-D transport code, it is found that a high speed pellet injector with pellet velocity of more than 3 km/s is necessary for the penetration of the pellet with diameter of 3 mm into the core region under the expected plasma condition of Large Helical Device (LHD) of heliotron/stellarator type with superconducting coils at NIFS in Japan. Therefore, a two stage pellet injector was constructed and tested successfully in order to obtain the pellet velocity range of 3 km/s. Based upon the above results, a high speed flexible multiple-pellet injection system 'HIPEL' for LHD is proposed. HIPEL consists of independent (1) 10 two-stage gun barrels and (2) 10 single-stage gun barrels. It has multi purposes such as refueling and flexible density profile control, diagnostics and the other functions. (author)

  15. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  16. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  17. Plasma position control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To conduct position control stably to various plasmas and reduce the burden on the control coil power source. Constitution: Among the proportional, integration and differentiation controls, a proportional-differentiation control section and an integration control section are connected in parallel. Then, a signal switching circuit is disposed to the control signal input section for the proportional-differentiation control section such that either a present position of plasmas or deviation between the present plasma position and an aimed value can be selected as a control signal depending on the control procedures or the state of the plasmas. For instance, if a rapid response is required for the control, the deviation between the present plasma position and the aimed value is selected as the input signal to conduct proportional, integration and differentiation controls. While on the other hand, if it is intended to reduce the burden on the control coil power source, it is adapted such that the control signal inputted to the proportional-differentiation control section itself can select the present plasma position. (Yoshihara, H.)

  18. Numerical study on formation process of helical nonneutral plasmas using electron injection from outside magnetic surfaces

    International Nuclear Information System (INIS)

    Nakamura, Kazutaka; Himura, Haruhiko; Masamune, Sadao; Sanpei, Akio; Isobe, Mitsutaka

    2009-01-01

    In order to investigate the formation process of helical nonneutral plasmas, we calculate the orbits of electron injected in the stochastic magnetic field when the closed helical magnetic surfaces is correspond with the equipotential surfaces. Contrary to the experimental observation, there are no electrons inward penetrating. (author)

  19. Preliminary result on quantitative analysis using Zn-like tungsten EUV spectrum in Large Helical Device

    International Nuclear Information System (INIS)

    Morita, Shigeru; Dong, Chunfeng; Wang, Erhui

    2013-01-01

    Tungsten study through visible, vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectroscopy has been recently started in Large Helical Device (LHD) for developing the diagnostic method in International Thermonuclear Experimental Reactor (ITER) and understanding the tungsten transport in helical system. In order to study the tungsten spectra from core plasmas of LHD, several tungsten spectra are observed in EUV range by injecting a carbon pellet with tungsten. Zn-like tungsten spectrum with 4p-4s transition is clearly identified at 60.9Å in high-temperature phase (T_e ≥ 2.3 keV) of NBI discharges in addition to several unresolved transition arrays with 6g-4f, 5g-4f, 5f-4d, 5g-4f, 4f-4d and 4d-4p transitions in range of 10-70Å. Radial profile of the Zn-like tungsten is also successfully observed with enough intensity in order of 10"1"6 photons.cm"-"2.s"-"1. The radial emissivity profile reconstructed from the chord-integrated intensity profile is analyzed with combination of HULLAC code for emission coefficient calculation of the Zn-like transition and impurity transport code included ADPAK code for calculation of ionization and recombination rate coefficients. Thus, a total tungsten ion density of 3.5x10"1"0 cm"-"3 at the plasma center is reasonably obtained in discharge with central electron density of 4x10"1"3 cm"-"3 as the first experimental trial. The present result demonstrates that the Zn-like 4p-4s transition is applicable to the tungsten diagnostics in high-temperature plasmas. (author)

  20. Monte Carlo simulation study of ICRF minority heating in the large helical device

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Ohnishi, M.; Okada, H.

    1994-01-01

    A Monte Carlo simulation code is developed for ion cyclotron range of frequencies (ICRF) heating in helical systems, which takes into account finite beta effects, complicated orbits of high energetic particles, Coulomb collisions and interactions between particles and the applied waves. The code is used to investigate ICRF minority heating in the Large Helical Device (LHD). The configuration of the magnetic fields changes significantly due to finite beta effects in the LHD. The resonance layer position is found to be crucial to the heating efficiency as the plasma beta increases. When the strength of the resonance magnetic field is set to the value at the magnetic axis, a higher heat efficiency is obtained and no clear difference of the heat efficiency due to finite beta effects is found in the high ICRF wave power region. However, the radial profile of the power transferred to majority ions and electrons from minority ions changes because of the deformation of the trapped particle due to the finite beta effects. The heat efficiency is improved if the radial electric field, E r , is positive (E r is directed radially outward) and it is also improved by supplying 3 He minority ions rather than proton minority ions. (author). 26 refs, 11 figs, 2 tabs

  1. Plasma facing device of thermonuclear device

    International Nuclear Information System (INIS)

    Sumita, Hideo; Ioki, Kimihiro.

    1993-01-01

    The present invention improves integrity of thermal structures of a plasma facing device. That is, in the plasma facing device, an armour block portion from a metal cooling pipe to a carbon material comprises a mixed material of the metal as the constituent material of the cooling pipe and ceramics. Then, the mixing ratio of the composition is changed continuously or stepwise to suppress peakings of remaining stresses upon production and thermal stresses upon exertion of thermal loads. Accordingly, thermal integrity of the structural materials can further be improved. In this case, a satisfactory characteristic can be obtained also by using ceramics instead of carbon for the mixed material, and the characteristic such as heat expansion coefficient is similar to that of the armour tile. (I.S.)

  2. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Science.gov (United States)

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  3. Stability of plasma cylinder with current in a helical plasma flow

    Science.gov (United States)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  4. Possible control scenario of radial electric field by loss-cone-particle injection into helical device

    International Nuclear Information System (INIS)

    Motojima, Osamu; Shishkin, A.A.; Inagaki, Shigeru; Watanabe, Kiyomasa

    1999-08-01

    The possibility of controlling the radial electric field of toroidal plasmas by injecting high energy electrons along the reversible loss cone orbit of the helical magnetic traps is investigated. It is well known that the radial electric field plays an important role in the confinement improvement scenario especially in the low collisional regime under the physics picture of neoclassical theory. For this purpose, it is made clear that the most suitable particles are transit particles, which show a transition from helically trapped orbits to blocked ones. It is also found that a parallel AC electric field launched from outside assists this transition and makes it possible for particles to penetrate deeply into the plasma. In addition we clarify that the viscosity of the plasma coupled with the helical field configuration provide a bifurcation of plasma states and its stable solution results in confinement improvement. (author)

  5. High-power and steady-state operation of ICRF heating in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Shinya, T. [The University of Tokyo, Kashiwa 2777-8561 (Japan)

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.

  6. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Hill, D.N.; Stallard, B.W.; Bulmer, R.; Cohen, B.; Holcomb, C.T.; Hooper, E.B.; McLean, H.S.; Moller, J.; Wood, R.D.

    2003-01-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (∼1 kV) are produced, giving the highest sustained voltage ∼500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B-tilde)/B≥2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments

  7. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    Science.gov (United States)

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-07

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  8. Distributed processing and network of data acquisition and diagnostics control for Large Helical Device (LHD)

    International Nuclear Information System (INIS)

    Nakanishi, H.; Kojima, M.; Hidekuma, S.

    1997-11-01

    The LHD (Large Helical Device) data processing system has been designed in order to deal with the huge amount of diagnostics data of 600-900 MB per 10-second short-pulse experiment. It prepares the first plasma experiment in March 1998. The recent increase of the data volume obliged to adopt the fully distributed system structure which uses multiple data transfer paths in parallel and separates all of the computer functions into clients and servers. The fundamental element installed for every diagnostic device consists of two kinds of server computers; the data acquisition PC/Windows NT and the real-time diagnostics control VME/VxWorks. To cope with diversified kinds of both device control channels and diagnostics data, the object-oriented method are utilized wholly for the development of this system. It not only reduces the development burden, but also widen the software portability and flexibility. 100Mbps EDDI-based fast networks will re-integrate the distributed server computers so that they can behave as one virtual macro-machine for users. Network methods applied for the LHD data processing system are completely based on the TCP/IP internet technology, and it provides the same accessibility to the remote collaborators as local participants can operate. (author)

  9. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  10. EUV Spectra of High Z Impurities from Large Helical Device and Atomic Data

    International Nuclear Information System (INIS)

    Kato, T.; Suzuki, C.; Funaba, H.; Sato, K.; Murakami, I.; Kato, D.; Sakaue, H.; O’Sullivan, G.; Harte, C.; White, J.; D’Arcy, R.; Tanuma, H.; Nakamura, N.

    2017-01-01

    The results of experiments on high Z impurity injection in the Large Helical Device at the National Institute for Fusion Science are described. Spectra from Xe, Sn and W ions were recorded in the extreme ultraviolet spectral region. Two different situations were observed in the case of Xe and Sn, depending on whether or not the plasma underwent radiative collapse. If the plasma was stable, the spectrum consisted of a number of strong lines and in both cases the strongest contribution was from 4p - 4d transitions of Cu-like ions. If the plasma underwent radiative collapse in each case it was dominated by an intense unresolved transition array with some strong lines overlapping it resulting from 4p 6 4d m - 4p 5 4d m+1 + 4p 6 4d m-1 4f transitions. For tungsten, radiative collapse was not observed though the spectrum here was dominated by the same array which lies between 4.5 and 7 nm with some additional contribution at the same wavelength from 4d 10 4f m - 4d 9 4f m+1 and 4d 10 4f m - 4d 10 4f m-1 5d transitions in lower stages also. From observation and comparison with other sources, it is shown that the spectra are dominated by resonance transitions to the ground state of the emitting ions, in marked contrast to results from charge exchange spectra that had been recorded to assist with ion stage separation. In the case of tungsten, no sharp lines are seen though the profile of the unresolved array structure changes with plasma temperature and the origin of these changes can be traced to differences in the populations of contributing ions. New assignments for lines of Xe XVIII, Sn XIX and Sn XVII of 4p - 4d transitions are listed in Tables. Strong lines of W, Xe and Sn ions in EUV range are also tabulated. (author)

  11. ECRH experiments in an extended power regime on the large helical device

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; LHD Experimental Group

    2003-01-01

    The Large Helical Device (LHD) is the largest Heliotron-type device (L 2, m = 10) The magnetic field for plasma confinement is produced by a pair of helical coils and three pairs of poloidal coils. The magnetic configuration can be adjusted by these external coils. These coils are all superconducting coils and enable steady state operation. The major and the minor radii of the produced plasmas are typically 3.6 m and 0.6 m, respectively. Plasma experiments in LHD have been proceeded since 1998. A lot of diagnostic devices have been installed to make precise plasma measurement spatially and temporally. Heating power reaches 9 MW for Neutral Beam Injection (NBI), 2.7 MW for Ion Cyclotron Range of Frequency heating (ICRF) and 1.8 MW for Electron Cyclotron Resonance Heating (ECRH). Achieved plasma parameters have been improved in each experimental campaign. In the latest experimental campaign, some improvements of the ECRH system led to interesting results related to the electron physics, such as the attainment of over 10 keV electron temperature and the improvement of core confinement in low collisionality regime. This paper reports the improvement of the ECRH system in the latest campaign and some experimental results related to the local electron heating in an extended power regime. In the Section 2 we will describe the improvements of the ECRH system for experiments in higher power region. Using this system, localized ECRH with high power density was performed. Experimental results obtained will be given in Section 3. The final section will be devoted to the following conclusions. In the latest experimental campaign, seven gyrotron systems were operable. One transmission line which was evacuated in whole system was installed in addition to the six existed 88.9 mm lines in atmospheric pressure. This line allows to transmit over 500 kW power. Flexible experiments could be performed by the inward shift of a scanning range of the existed antennas and by an installation

  12. Studies of MHD stability using data mining technique in helical plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd

    2010-01-01

    Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)

  13. New Modular Heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1994-04-01

    A new helical system ('Modular Heliotron') with improved modular coils compatible with efficient closed helical divertor and good plasma confinement property is proposed based on a Heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. The Modular Heliotron with standard coil winding law (reference Modular Heliotron) was previously proposed, but it is found that this is not appropriate to keep clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional Heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved Modular Heliotron permits larger gap angle between adjacent modules and produces more clean helical divertor configuration than the reference Modular Heliotron. All these helical system are created by only modular coils without poloidal coils. (author)

  14. New modular heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1995-01-01

    A new helical system ('modular heliotron') with improved modular coils compatible with an efficient closed helical divertor and a good plasma confinement property is proposed, based on a heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. A modular heliotron with standard coil winding law (the reference modular heliotron) was previously proposed, but it is found that this was not appropriate to keep a clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved modular heliotron permits a larger gap angle between adjacent modules and produces a cleaner helical divertor configuration than the reference modular heliotron. All these helical systems are created by only modular coils without poloidal coils. (author). Letter-to-the-editor. 11 refs, 7 figs

  15. Generation and analysis of plasmas with centrally reduced helicity in full-tungsten ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Alexander

    2016-03-01

    The most promising concepts for harnessing nuclear fusion are toroidal devices like tokamaks, where a plasma is confined by helically twisted magnetic field lines. To provide the twisting of the field lines, a tokamak relies on a toroidal current in the plasma, which is largely generated by a transformer. As such, conventional tokamaks are limited to pulsed operation. Moreover, this current makes tokamak plasmas prone to numerous confinement degrading magnetohydrodynamic (MHD) instabilities that can emerge at locations where the field line helicity q takes on rational values like 1/1, 3/2 or 2/1, i.e. sawteeth or neoclassical tearing modes (NTMs). This thesis presents studies of plasmas with centrally elevated q-profiles created by external electron-cyclotron and neutral beam current drive (ECCD/NBCD) under steady-state conditions in the full-tungsten tokamak ASDEX Upgrade. Without the usually monotonic q-profile, instabilities of low helicity disappear, thereby improving the plasma stability. Furthermore, elevating q increases the amount of so-called (toroidal) bootstrap current, which the plasma drives by itself in the presence of pressure gradients, thereby reducing the reliance on the transformer. In the best case, an advanced tokamak (AT) could thus run in steady state. Additionally, an elevated and thus flat/slightly reversed q-profile is thought to improve confinement by impeding turbulent transport. Reconstruction of the tailored q-profile is accomplished with the new integrated data equilibrium (IDE) code and information from a key diagnostic that is based on the Motional Stark Effect (MSE). During the course of this work it was discovered that the MSE diagnostic suffers from interference from polarised background light. A prototype mitigation system was successfully tested. Also, non-linearities in the diagnostic's optical relay system were found and a calibration scheme devised to take them into account. Both the conventional approach of AT

  16. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  17. Investigation of the toroidal dependence of first wall conditions in the Large Helical Device

    International Nuclear Information System (INIS)

    Hino, T.; Ashikawa, N.; Masuzaki, S.; Sagara, A.; Komori, A.; Yamauchi, Y.; Nobuta, Y.; Matsunaga, Y.

    2010-11-01

    The non-uniform wall conditions such as the fuel hydrogen retention and the erosion/deposition have been investigated in the Large Helical Device (LHD) by using toroidally and poloidally distributed material probes. They were installed in every experimental campaign from 2003 to 2010, and the evolutions of the wall conditions were clearly obtained. The wall conditions significantly depended on the operational procedures and the positions of in-vessel devices such as anodes for glow discharge and the ICRF antennas. The toroidal profiles for the amounts of retained hydrogen and helium, and the depth of wall erosion, were systematically measured. The hydrogen, helium and neon glow discharges have been conducted by using two anodes before and after the hydrogen or helium main discharges. The amount of retained hydrogen was large in the vicinity of the anodes, and drastically decreased as increase of the campaign number. This reduction well corresponds to the time period used for the hydrogen glow discharge conditioning. The erosion depth was large at the walls relatively close to the anodes, which is owing to the sputtering during the helium and neon glow discharges. The depositions of carbon and boron also depended on the positions of NBI and diborane gas inlet used for boronization, respectively. The amount of the retained helium was large at the walls close to the anodes owing to the helium glow discharge. The amount of retained helium became large at the walls close to the ICRF antennas owing to the implantation of high energy helium during the helium main discharge with the ICRF heating. In the present study, the toroidal dependences of the gas retention and the erosion/deposition in LHD were obtained, and the effects of the in-vessel devices on these plasma wall interactions were clarified. (author)

  18. Remote control of Alfven eigenmode sensing system on the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. [Nagoya University, Department of Energy Engineering and Science, Furo-cho, Chikusa-ku, Nagoya City, Aichi (Japan)], E-mail: ito.takafumi@lhd.nifs.ac.jp; Toi, K. [Nagoya University, Department of Energy Engineering and Science, Furo-cho, Chikusa-ku, Nagoya City, Aichi (Japan); National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu (Japan); Matsunaga, G. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2008-04-15

    An active sensing system of Alfven eigenmodes (AEs), which consists of a set of toroidally distributed loop antennas and several bi-polar power supplies, has been developed in the large helical device (LHD). The power supplies are controlled with a function generator receiving a control pattern of antenna current and the driving frequency from a personal computer (PC) in an LHD control room. This sensing method is based on the analysis of the frequency dependence of a transfer function that is derived by the ratio of the Fourier-transformed magnetic probe signal ('plasma response') to antenna current one ('exciter signal'). Typically, the driving frequency of the antenna current is swept linearly in time from 10 kHz to 500 kHz for 2 s in the LHD experiment. The sensing system is fully controlled through Ethernet LAN with easy extendable GUI. Configuration and control scheme of the active sensing system of AEs are presented in this paper. An initial result of the system operation is also described.

  19. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    Science.gov (United States)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  20. Remote control of Alfven eigenmode sensing system on the large helical device

    International Nuclear Information System (INIS)

    Ito, T.; Toi, K.; Matsunaga, G.

    2008-01-01

    An active sensing system of Alfven eigenmodes (AEs), which consists of a set of toroidally distributed loop antennas and several bi-polar power supplies, has been developed in the large helical device (LHD). The power supplies are controlled with a function generator receiving a control pattern of antenna current and the driving frequency from a personal computer (PC) in an LHD control room. This sensing method is based on the analysis of the frequency dependence of a transfer function that is derived by the ratio of the Fourier-transformed magnetic probe signal ('plasma response') to antenna current one ('exciter signal'). Typically, the driving frequency of the antenna current is swept linearly in time from 10 kHz to 500 kHz for 2 s in the LHD experiment. The sensing system is fully controlled through Ethernet LAN with easy extendable GUI. Configuration and control scheme of the active sensing system of AEs are presented in this paper. An initial result of the system operation is also described

  1. Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Roger Raman; Jarboe, Thomas R.; Bell, Michael G.; Dennis Mueller; Nelson, Brian A.; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

    2005-01-01

    The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX

  2. The internal disruption as hard Magnetohydrodynamic limit of 1/2 sawtooth like activity in large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J. [Department of Physics, Universidad Carlos III, 28911 Leganes, Madrid (Spain); Watanabe, K. Y.; Ohdachi, S. [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan)

    2012-08-15

    Large helical device (LHD) inward-shifted configurations are unstable to resistive MHD pressure-gradient-driven modes. Sawtooth like activity was observed during LHD operation. The main drivers are the unstable modes 1/2 and 1/3 in the middle and inner plasma region which limit the plasma confinement efficiency of LHD advanced operation scenarios. The aim of the present research is to study the hard MHD limit of 1/2 sawtooth like activity, not observed yet in LHD operation, and to predict its effects on the device performance. Previous investigations pointed out this system relaxation can be an internal disruption [J. Varela et al., 'Internal disruptions and sawtooth like activity in LHD,' 38th EPS Conference on Plasma Physics (2011), P5.077]. In the present work, we simulate an internal disruption; we study the equilibria properties before and after the disruptive process, its effects on the plasma confinement efficiency during each disruptive phase, the relation between the n/m = 1/2 hard MHD events and the soft MHD events, and how to avoid or reduce their adverse effects. The simulation conclusions point out that the large stochastic region in the middle plasma strongly deforms and tears the flux surfaces when the pressure gradient increases above the hard MHD limit. If the instability reaches the inner plasma, the iota profiles will be perturbed near the plasma core and three magnetic islands can appear near the magnetic axis. If the instability is strong enough to link the stochastic regions in the middle plasma (around the half minor radius {rho}) and the plasma core ({rho}<0.25), an internal disruption is driven.

  3. Explosion of optimal high-beta operation regime by magnetic axis swing in the Large Helical Device

    International Nuclear Information System (INIS)

    Sakakibara, S.; Ohdachi, S.; Watanabe, K.Y.

    2010-11-01

    In Large Helical Device (LHD), the volume averaged beta value dia > as high as 5.1% was achieved in FY2007-2008 experiments. High beta operation regime was explorated by the programmed control of magnetic axis position, which characterizes MHD equilibrium, stability and transport. This control became enable by increasing capability of poloidal coil power supply. The experiments made clear the effect of magnetic hill on MHD activities in high-beta plasmas with more than 4%. Also it enabled to access the ideal stability boundary with keeping high-beta state. The strong m/n=2/1 mode leading minor collapse in core plasma appeared with the inward shift of the magnetic axis. (author)

  4. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  5. Electrostatic fluctuations measured in low temperature helical plasmas with low collisionality

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ikeda, R.; Ito, T.; Toi, K.; Suzuki, C.; Matsunaga, G.

    2004-01-01

    Electrostatic fluctuations have been measured by Langmuir probes from edge to core plasma region in low temperature helical plasmas which are produced by 2.45 GHz microwaves at very low field less than 0.1 T. The principal dimensionless parameters of the plasmas, that is, the normalized electron-ion collision frequency ν ei , and averaged plasma β φ and others are in the same range of them in high temperature plasmas, except the normalized gyro radius ρ s . The data on fluctuation characteristics from the dimensionally similar low temperature plasmas may give an important insight into the understanding of turbulent transport in high temperature plasmas. Dependences of fluctuation amplitudes on the radial electric field shear, ρ s and ν ei are investigated. Electrostatic fluctuations propagating in electron-diamagnetic drift direction have been observed in the plasma edge region and in ion-diamagnetic drift direction in the plasma core region. (authors)

  6. Numerical modeling of formation of helical structures in reversed-field-pinch plasma

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Ichiguchi, K.; Todo, Y.; Sanpei, A.; Oki, K.; Masamune, S.; Himura, H.

    2012-11-01

    Nonlinear three-dimensional magnetohydrodynamic(MHD) simulations have been executed for the low-aspect-ratio reversed-field-pinch (RFP) plasma to reveal the physical mechanism of the formation processes of helical structures. The simulation results show a clear formation of n=4 structure as a result of dominant growth of resistive modes, where n represents the toroidal mode number. The resultant relaxed helical state consists of a unique bean-shaped and hollow pressure profile in the poloidal cross section for both cases of resonant and non-resonant triggering instability modes. The results are partially comparable to the experimental observations. The physical mechanisms of those processes are examined. (author)

  7. Studies of energetic-ion-driven MHD instabilities in helical plasmas with low magnetic shear

    International Nuclear Information System (INIS)

    Yamamoto, S.; Ascasibar, E.; Jimenez-Gomez, R.

    2012-11-01

    We discuss the features of energetic-ion-driven MHD instabilities such as Alfvén eigenmodes (AEs) in three-dimensional magnetic configuration with low magnetic shear and low toroidal field period number (N p ) that are characteristic of advanced helical plasmas. Comparison of experimental and numerical studies in Heliotron J with those in TJ-II indicates that the most unstable AE is global AE (GAE) in low magnetic shear configuration in spite of the iota and the helicity-induced AE (HAE) is also the most unstable AE in the high iota configuration. (author)

  8. Simulation of MHD instability effects on burning plasma transport with ITB in tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Yamada, I.; Taniguchi, S.; Oishi, T.

    2009-01-01

    Full text: The high performance plasma behavior is required to realize economic and environmental-friendly fusion reactors compatible with conventional power plant systems. To improve plasma confinement, the formation of internal transport barrier (ITB) is anticipated, and its behavior is analyzed by the simulation code TOTAL (Toroidal Transport Linkage Analysis). This TOTAL code comprises a 2- or 3-dimensional equilibrium and 1-dimensional predictive transport code for both tokamak and helical systems. In the tokamak code TOTAL-T, the external current drive, bootstrap current, sawtooth oscillation, ballooning mode and neoclassical tearing mode (NTM) analyses are included. The steady-state burning plasma operation is achieved by the feedback control of pellet injection fuelling and external heating power control. The impurity dynamics of iron and tungsten is also included in this code. The NTM effects are evaluated using the modified Rutherford Model with the stabilization of the ECCD current drive. The excitation of m=2/n=1 NTM leads to the 20 % reduction in the central temperature in ITER-like reactors. Recently, the external non-resonant helical field application is analyzed and its stabilization properties are evaluated. The pellet injection effects on ITB formation is also clarified in tokamak and helical plasmas. Relationship between sawtooth oscillation and impurity ejection is recently simulated in comparison with experimental data. In this conference, we will show above-stated new results on MHD instability effects on burning plasma transport. (author)

  9. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  10. Magnetic field structure near the plasma boundary in helical systems and divertor tokamaks

    International Nuclear Information System (INIS)

    Nagasaki, Kazunobu; Itoh, Kimitaka

    1990-02-01

    Magnetic field structure of the scrape off layer (SOL) region in both helical systems and divertor tokamaks is studied numerically by using model fields. The connection length of the field line to the wall is calculated. In helical systems, the connection length, L, has a logarithmic dependence on the distance from the outermost magnetic surface or that from the residual magnetic islands. The effect of axisymmetric fields on the field structure is also determined. In divertor tokamaks, the connection length also has logarithmic properties near the separatrix. Even when the perturbations, which resonate to rational surfaces near the plasma boundary, are added, logarithmic properties still remain. We compare the connection length of torsatron/helical-heliotron systems with that of divertor tokamaks. It is found that the former is shorter than the latter by one order magnitude with similar aspect ratio. (author)

  11. Effects of finite-β and radial electric fields on neoclassical transport in the Large Helical Device

    International Nuclear Information System (INIS)

    Kanno, R.; Nakajima, N.; Sugama, H.; Okamoto, M.; Ogawa, Y.

    1997-01-01

    Effects of finite-β and radial electric fields on the neoclassical transport in the Large Helical Device are investigated with the DKES (Drift Kinetic Equation Solver) code. In the finite-β configuration, even orbits of deeply trapped particles deviate significantly from magnetic flux surfaces. Thus, neoclassical ripple transport coefficients in the finite-β configuration are several times larger than those in the vacuum configuration under the same condition of temperatures and radial electric fields. When the plasma temperature is several keV, a bifurcation of the electric fields appears under the ambipolarity condition, and sufficient large radial electric fields can be generated. As a result, the ExB drift rectifies orbits of particles and improves significantly the transport coefficients in the finite-β configuration. (author)

  12. Theory of anomalous transport in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.

    1992-03-01

    Theoretical model of the anomalous transport in Torsatron/Heliotron plasmas is developed, based on the current-diffusive interchange instability which is destabilized due to the averaged magnetic hill near edge. Analytic formula of transport coefficient is derived. This model explains the high edge transport, the power degradation and energy confinement scaling law and the enhanced heat-pulse thermal conduction. (author)

  13. Confinement physic study in a small low-aspect-ratio helical device CHS

    International Nuclear Information System (INIS)

    Okamura, S.; Matsuoka, K.; Akiyama, R.

    1999-01-01

    The configuration parameter of the plasma position relative to the center of the helical coil winding is very effective one for controlling the MHD stability and the trapped particle confinement in Heliotron/Torsatron systems. But these two characteristics are contradictory to each other in this parameter. The inward shifted configuration is favorable for the drift-orbit-optimization but it is predicted unstable with the Mercier criterion. Various physics problems, such as electric field structure, plasma rotation and MHD phenomena, have been studied in CHS with a compromising intermediate position. With this standard configuration, CHS has supplied experimental results for understanding general toroidal confinement physics and low-aspect-ratio helical systems. In the recent experiments, it was found that the wide range of inward shifted configurations gives stable plasma discharges without any restriction to the special pressure profile. Such enhanced range of operation made it possible to study experimentally the drift-orbit-optimized configuration in the Heliotron/Torsatron systems. The effect of configuration improvement was studied with plasmas in a low collisionality regime. (author)

  14. Neoclassical current and plasma rotation in helical systems

    International Nuclear Information System (INIS)

    Nakajima, N.; Okamoto, M.

    1991-01-01

    In order to clarify geometrical effects of the magnetic field on the neoclassical theory in general toroidal systems, the neoclassical parallel particle flow, heat flux, current and plasma rotation of a multispecies plasma are examined using the moment approach on the basis of the original papers under the assumptions of no fluctuations, no external sources and losses except for a fast ion beam and an external inductive electric field, steady state, and |u a | Ta where u a and v Ta are the macro and thermal velocity of species a, respectively. Hence, we might have a point of view of unifying understanding the neoclassical theory in general toroidal systems. Three collisionality regimes, i.e., the 1/ν (in non-axisymmetric toroidal systems) or banana (in axisymmetric toroidal systems), plateau, and Pfirsch-Schlueter collisionality regimes are examined separately. (author) 8 refs

  15. Plasma position control device for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Fujita, Jun-ya; Ioki, Kimihiro

    1995-10-03

    The present invention concerns plasma position control coils having a feeder line structure not requiring high strength for the support portion. Namely, the coils are formed by twisting feeder lines extended from plasma position control coils in a vacuum vessel. The twisted feeder lines are supported using an appropriate structural member. Electromagnetic load is generated to the feeder lines being extended from the position control coils and traversing toroidal fields at a current introduction lines and at current delivery lines respectively. However, since the feeder lines have substantially spiral shape consisting of two twisted lines, the electromagnetic load and the moment caused by the generated load which are inversed to each other are off set. Accordingly, only extremely small force is exerted on the fittings which support the feeder lines. Therefore, small strength may suffice for the fittings and the gaps of mounting the fittings may be made longer. (I.S.).

  16. Plasma position control device for thermonuclear device

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Fujita, Jun-ya; Ioki, Kimihiro.

    1995-01-01

    The present invention concerns plasma position control coils having a feeder line structure not requiring high strength for the support portion. Namely, the coils are formed by twisting feeder lines extended from plasma position control coils in a vacuum vessel. The twisted feeder lines are supported using an appropriate structural member. Electromagnetic load is generated to the feeder lines being extended from the position control coils and traversing toroidal fields at a current introduction lines and at current delivery lines respectively. However, since the feeder lines have substantially spiral shape consisting of two twisted lines, the electromagnetic load and the moment caused by the generated load which are inversed to each other are off set. Accordingly, only extremely small force is exerted on the fittings which support the feeder lines. Therefore, small strength may suffice for the fittings and the gaps of mounting the fittings may be made longer. (I.S.)

  17. Phase diagram of structure of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2002-01-01

    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E r for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  18. Helical temperature perturbations associated with tearing modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1994-06-01

    An investigation is made into the electron temperature perturbations associated with tearing modes in tokamak plasmas, with a view to determining the mode structure using Electron Cyclotron Emission (ECE) data. It is found that there is a critical magnetic island width below which the conventional picture where the temperature is flattened inside the separatrix is invalid. This effect comes about because of the stagnation of magnetic field lines in the vicinity of the rational surface and the finite parallel thermal conductivity of the plasma. For islands whose widths lie below the critical value there is no flattening of the electron temperature inside the separatrix. Such islands have quite different ECE signatures to conventional magnetic islands. In fact the two island types could, in principle, be differentiated experimentally. It should also be possible to map out the outer ideal magnetohydrodynamical eigenfunctions using ECE data. Islands whose widths are much less than the critical value are not destabilized by the perturbed bootstrap current, unlike conventional magnetic islands. This effect is found to have a number of very interesting consequences and may, indeed, provide an explanation for some puzzling experimental results regarding error field induced magnetic reconnection. All islands whose widths are much greater than the critical width possess a boundary layer on the separatrix which enables heat to be transported from one side of the island to the other via the X-point region. The structure of this boundary layer is described in some detail. Finally, the critical island width is found to be fairly substantial in conventional tokamak plasmas, provided that the long mean free path nature of parallel heat transport and the anomalous nature of perpendicular heat transport are taken into account in the calculation

  19. Bifurcation of plasma cylinder equilibrium into a stationary helical flow with magnetic islands

    International Nuclear Information System (INIS)

    Gubarev, V.F.; Dmitrenko, A.G.; Fesenko, A.I.

    1985-01-01

    Introduction of the low-hydrodynamic viscosity into the system of nonlinear MHD-equations enabled to use the bifurcation theory for the investigation into nonlinear phenomena connected with a tearing mode. The existance of a stable stationary helical flow with magnetic islands in the vicinity of a neutral curve is established. Fransfer from an axisymmetric equilibrium of a plasma cylinder to a helical one takes place only under soft conditions at both sides of the neutral curve. This result confirms the fact that the tearing mode, actually, is not an instability and may be con sidered only as a reason of formation of equilibrium with splitted magnetic surfaces. Really, changing the q 0 parameter (q 0 is the value proportional to a value of stability margin) at the plasma filament boundary a plasma equilibrium is attained corresponding to a stable branch of the bifurcation curve. In this case, a stable branch of the bifurcation curve corresponds to a helical stationary flow with magnetic islands in the instabwility region determined from the linear theory

  20. [Magnetic helicity and current drive in fusion devices]. Final technical report

    International Nuclear Information System (INIS)

    1998-01-01

    The research program focused on two main themes: (i) magnetic helicity and (ii) current drive by low-frequency waves. At first these themes seemed unrelated, but as time progressed, they became interwoven, and ultimately closely connected. A sub-theme is that while the MHD model of a plasma stimulates many intriguing counter-intuitive ideas for creating and sustaining magnetic confinement configurations, usually the crux of these schemes involves some sort of breakdown of MHD, i.e., involves physics which transcends MHD

  1. Confinement improvement in H-mode-like plasmas in helical systems

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1993-06-01

    The reduction of the anomalous transport due to the inhomogeneous radial electric field is theoretically studied for toroidal helical plasmas. The self-sustained interchange-mode turbulence is analysed for the system with magnetic shear and magnetic hill. For the system with magnetic well like conventional stellarators, the ballooning mode turbulence is studied. Influence of the radial electric field inhomogeneity on the transport coefficients and fluctuations are quantitatively shown. Unified theory of the transport coefficients in the L-mode and H-mode-like plasmas are presented. (author)

  2. Extension of high T{sub e} regime with upgraded electron cyclotron resonance heating system in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H., E-mail: takahashi.hiromi@LHD.nifs.ac.jp; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); and others

    2014-06-15

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012, and the total injection power of Electron cyclotron resonance heating (ECRH) reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature of 13.5 keV with the line-averaged electron density n{sub e-fir} = 1 × 10{sup 19} m{sup −3}. The electron thermal confinement clearly improved inside the electron internal transport barrier, and the electron thermal diffusivity reached neoclassical level. The global energy confinement time increased with increase of n{sub e-fir}. The plasma stored energy of 530 kJ with n{sub e-fir} = 3.2 × 10{sup 19} m{sup −3}, which is 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  3. Helical-type device and laser fusion. Rivals for tokamak-type device at n-fusion development in Japan

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Under the current policy on the research and development of nuclear fusion in Japan, as enunciated by the Atomic Energy Commission of Japan, the type of a prototype fusion reactor will be chosen after 2020 from tokamak, helical or some other type including the inertial confinement fusion using lasers. A prototype fusion reactor is the next step following the tokamak type International Thermonuclear Experimental Reactor (ITER). With the prototype reactor, the feasibility as a power plant will be examined. At present the main research and development of nuclear fusion in Japan are on tokamak type, which have been promoted by Japan Atomic Energy Research Institute (JAERI). As for the other types of nuclear fusion, researches have been carried out on the helical type in Kyoto University and National Institute for Fusion Science (NIFS), the mirror type in Tsukuba University, the tokamak type using superconductive coils in Kyushu University, and the laser fusion in Osaka University. The features and the present state of research and development of the Large Helical Device and the laser fusion which is one step away from the break-even condition are reported. (K.I.)

  4. Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Satake, S.; Goto, T.; Seki, R.; Nunami, M.; Funaba, H.; Yamada, I.; Suzuki, C.; Sakamoto, R.; Motojima, G.; Yamada, H.; Sagara, A., E-mail: miyazawa@lhd.nifs.ac.jp [National Institute for Fusion Science, Toki (Japan); Yokoyama, M.; Suzuki, Y.; Masaoka, Y.; Murakami, S. [Departement Nuclear Engineering, Kyoto University, Kyoto (Japan)

    2012-09-15

    Full text: Theoretical analyses on the MHD equilibrium, the neoclassical transport, and the alpha particle transport, etc., are being carried out for a helical fusion DEMO reactor named FFHR- d1, using radial profiles extrapolated from LHD. FFHR-d1 is a heliotron type DEMO reactor of which the conceptual design activity has been launched since 2010. It is possible to sustain the burning plasma without auxiliary heating (i.e., self-ignition) in FFHR-d1, since there is no need of plasma current drive in heliotron plasmas. The device size is 4 times enlarged from LHD, i.e., the major radius of helical coil center is 15.6 m, the magnetic field strength at the helical coil center is 4.7 T, and the fusion output is {approx} 3 GW. One of the distinguished subjects in FFHR-d1 compared with the former FFHR design series is the robust similarity with LHD. The arrangement of superconducting magnet coils in FFHR-d1 is similar to that of LHD, except a pair of planar poloidal coils omitted to maximize the maintenance ports. This makes reasonable to assume a similar MHD equilibrium as observed in LHD for FFHR-d1, as long as the beta profiles in these two are similar. In FFHR-d1, radial profiles of density and temperature are determined by multiplying proper enhancement factors on those obtained in LHD, according to the DPE (Direct Profile Extrapolation) method. The enhancement factors are calculated consistently with the gyro-Bohm model. Therefore, the global confinement properties as expressed in ISS95 or ISS04 are kept in FFHR-d1. A large Shafranov shift is foreseen in FFHR-d1 due to its high-beta property. This leads to deterioration in the neoclassical transport and alpha particle confinement. Effectiveness of plasma position control and/or magnetic configuration optimization has been examined to solve this problem and to check the validity of extrapolated profiles. According to these analyses, it is concluded that the self-ignition condition can be achieved in FFHR-d1 by

  5. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  6. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  7. Possibility of simulation experiments for fast particle physics in the large helical device (LHD)

    International Nuclear Information System (INIS)

    Sato, K.N.; Murakami, S.; Nakajima, N.; Itoh, K.

    1995-01-01

    The confinement of fusion produced or high energy particles is one of the most important issues to be studied in the helical confinement system. A preliminary study has been carried out on the possibility of developing techniques for simulation experiments for the study of high energy particle physics in the Large Helical Device (LHD) project. Candidate methods have been considered as follows: (a) a high energy (∼ 3.5 MeV) He 0 beam injection method; (b) a medium energy (∼ 200 keV) H 0 beam injection method; (c) a method involving high energy tail production by an ICRF wave and/or a method of reaction rate enhancement by an ICRF wave; and (d) a method involving the combination of neutral beam injection and ICRF wave. Various features of each method have been considered. Although the high energy He 0 beam injection method has some advantages, the technique for production of this beam is extremely difficult because of the difficulties of the production of both negative helium and ground state neutral helium by neutralization. It is pointed out, on the other hand, that a wide range of simulation experiments for fast particle physics may be carried out even by the medium energy beam method, because the typical orbit deviation (e.g. equivalent super-banana size in a classical sense) can be largely controlled by controlling the magnetic field configuration in the case of a helical system, for example by shifting the magnetic axis. This is one of the unique features of a helical system in contrast to an axisymmetric system. (author). 12 refs, 6 figs, 2 tabs

  8. Analysis of the three-dimensional trajectories of dusts observed with a stereoscopic fast framing camera in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, M., E-mail: shoji@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Tanaka, Y. [Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Pigarov, A.Yu.; Smirnov, R.D. [University of California at San Diego, La Jolla, CA 92093 (United States); Kawamura, G.; Uesugi, Y.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan)

    2015-08-15

    The three-dimensional trajectories of dusts have been observed with two stereoscopic fast framing cameras installed in upper and outer viewports in the Large Helical Device (LHD). It shows that the dust trajectories locate in divertor legs and an ergodic layer around the main plasma confinement region. While it is found that most of the dusts approximately move along the magnetic field lines with acceleration, there are some dusts which have sharply curved trajectories crossing over the magnetic field lines. A dust transport simulation code was modified to investigate the dust trajectories in fully three dimensional geometries such as LHD plasmas. It can explain the general trend of most of observed dust trajectories by the effect of the plasma flow in the peripheral plasma. However, the behavior of the some dusts with sharply curved trajectories is not consistent with the simulations.

  9. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  10. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  11. Parameter Dependence of Inward Diffusion on Injected Electrons in Helical Non-Neutral Plasmas

    International Nuclear Information System (INIS)

    Wakabayashi, H.; Himura, H.; Fukao, M.; Yoshida, Z.

    2003-01-01

    Experimental studies on an electron injection into a helical magnetic field and characteristics of non-neutral plasmas have been performed. It is found that the space potential φs has a weak dependence on the injection angle except for a narrow 'window' region in which φs significantly drops. A calculation shows that because of the electric field Eg of the electron gun (e-gun), the emitted electrons are launched quasi-parallel to the helical magnetic field B, regardless of α. This seems to agree with the observation. The 'window' seen in the data may be attributed to an current-driven instability which might result in the insufficient electron penetration or the degradation of electron confinement in the magnetic surface

  12. Observation of helical structure in a low energy plasma focus pinch

    International Nuclear Information System (INIS)

    Rout, R.K.; Shyam, A.

    1989-01-01

    Helical structure and hot spots were observed in a Mather-type plasma focus operated at 3 KJ of bank energy. The experiments were carried out with the help of a fast optical framing camera and two X-ray pin-hole cameras with different filters. It was observed that initially a conical pinch (with base diameter of 6 mm and length of 14 mm) with temperature of ≅ 10 2 eV was formed. This pinch disintegrated after ≅ 50 ns by a single lobe sausage instability into a central high temperature (≅ 10 3 eV) filament of 1 mm diameter and 8 mm length containing a high emissivity helical structure. This helix is probably responsible for generation of axial magnetic field and relaxation of the focus pinch. Hot spots of high X-ray intensity and temperature (≅ 10 3 eV) were also observed much beyond the filament region. (author)

  13. Observation of disruptions in tokamak plasma under the influence of resonant helical magnetic fields

    International Nuclear Information System (INIS)

    Araujo, M.; Vannucci, A.; Caldas, I.

    1996-01-01

    Disruptive instabilities were investigated in the small tokamak TBR-1 during the application of resonant helical magnetic fields created by external helical windings. Indications were found that the main triggering mechanism of the disruptions was the rapid increase of the m=2/n=1 mode which, apparently after reaching a certain amplitude, interacts with other resistive modes: the internal 1/1 mode in the case of minor disruptions. After the coupling, the growth of the associated islands would create a chaotic field line distribution in the region between the corresponding rational magnetic surfaces which caused the gross particle transport and, finally, destroyed the confinement. In addition, investigations on higher Z eff discharges in which a mixture of helium and hydrogen was used resulted in much more unstable plasmas but apparently did not alter basic characteristics of the disruptions

  14. Integrated discharge scenario for high-temperature helical plasma on LHD

    International Nuclear Information System (INIS)

    Nagaoka, K.; Takahashi, H.; Murakami, S.

    2014-10-01

    Discharge scenario of high temperature plasma with helical configuration has been significantly progressed. The increase of central ion temperature due to reduction of wall recycling was clearly observed. The neutral particle profile was measured with a high-dynamic range of Balmer-α spectroscopy, and the reduction of neutral density was identified after helium conditioning main discharges. The peaking of ion heating profile and the reduction of charge exchange loss of energetic ions play an important role for improvement of ion heat transport in the core. The ion ITB and electron ITB have been successfully integrated due to superposition of centrally focused electron cyclotron heating to the ion ITB plasma, and the high temperature regime of T i ∼T e has been significantly extended. The normalized temperature gradient of ion and electron (R/L T ) were observed to exceed 10, indicating the significant improvement of both ion and electron heat transports at the barrier position. The positive radial electric field was observed by heavy ion beam probe, while the negative radial electric field was observed in ion ITB plasmas. The ion temperature gradient was observed to decrease with the increase of temperature ratio (T e /T i ). This experiment demonstrated that the profile control is a key to combine ion ITB and electron ITB and have a potential to improve the performance of helical plasmas. (author)

  15. Dusty plasma phase in a steady state plasma device

    International Nuclear Information System (INIS)

    Liang Xiaoping; Zheng Jian; Ma Jinxiu; Liu Wangdong; Zhuang Ge; Xie Jinlin; Wang Congrong; Yu Changxuan

    2000-01-01

    A DC discharge dusty plasma device used for study of waves in dusty plasma is introduced. A dusty plasma column is produced with about 30 cm in length and about 8.4 cm in diameter. The electron saturation current of Langmuir probe is obviously decreasing while the dust grains are present in the plasma. The negative charge on dust grains is directly proportional to the rotation rate of the dispenser. And the dust grains carry up to 40% of the negative charges in the whole plasma

  16. A Model for Straight and Helical Solar Jets: II. Parametric Study of the Plasma Beta

    Science.gov (United States)

    Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.

    2016-01-01

    Context. Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g. in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. Methods. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma beta on the generation and properties of solar-like jets. Results. The parametric study validates our model of jets for plasma beta ranging from 10(sup 3) to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various beta less than or equal to 1. We show that the plasma beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Conclusions. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.

  17. Microwave produced plasma in a Toroidal Device

    Science.gov (United States)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  18. Plasma Start-up in HIT-II and NSTX using Transient Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Mueller, D.; Bell, M.G.; Ono, M.

    2008-01-01

    The method of transient coaxial helicity injection (CHI) has previously been used in the HITII experiment at the University of Washington to produce 100 kA of closed flux current. The generation of the plasma current by CHI involves the process of magnetic reconnection, which has been experimentally controlled in the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory to allow this potentially unstable phenomenon to reorganize the magnetic field lines to form closed, nested magnetic surfaces carrying a plasma current up to 160 kA. This is a world record for non-inductive closed-flux current generation, and demonstrates the high current capability of this method

  19. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  20. High beta plasma operation in a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results

  1. Plasma Surface interaction in Controlled fusion devices

    International Nuclear Information System (INIS)

    1990-05-01

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  2. Device fabrication by plasma etching

    International Nuclear Information System (INIS)

    Mogab, C.J.

    1980-01-01

    Plasma etching as applied to many of the materials encountered in the fabrication of LSI's is complicated by loading effect-the dependence of etch rate on the integrated surface area to be etched. This problem is alleviated by appropriate choice of etchant and etching conditions. Appropriate choice of system parameters, generally most concerned with the inherent lifetime of etchant species, may also result in improvement of etch rate uniformity on a wafer-by-wafer basis

  3. Cryogenic structural material and design of support structures for the Large Helical Device

    International Nuclear Information System (INIS)

    Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi

    1997-01-01

    This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)

  4. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Takahashi, H.

    2012-11-01

    Electrode biasing experiments were tried in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition were compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outward. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (author)

  5. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Sato, Y.; Kanno, M.; Tachibana, J.; Okamoto, A.; Sasao, M.; Takahashi, H.; Masuzaki, S.; Shoji, M.; Ashikawa, N.; Tokitani, M.; Yokoyama, M.; Suzuki, Y.; Satake, S.; Ido, T.; Shimizu, A.; Suzuki, C.; Inagaki, S.; Takayama, M.

    2013-01-01

    Electrode biasing experiments were carried out in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance in an electrode characteristic, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition was compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outwards. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (paper)

  6. Near UV-visible line emission from tungsten highly-charged ions in Large Helical Device

    International Nuclear Information System (INIS)

    Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Oishi, T.; Morita, S.; Fujii, K.; Nakamura, N.; Koike, F.; Sasaki, Akira; Ding, X.-B.; Dong, C.-Z.

    2015-01-01

    Wavelengths of emission lines from tungsten highly-charged ions have been precisely measured in near UV-visible range (320 - 356 nm and 382 - 402 nm) at Large Helical Device (LHD) by tungsten pellet injection. The tungsten emission lines were assigned based on its line-integrated intensity profiles on a poloidal cross section. The ground-term magnetic-dipole (M1) lines of W 26+,27+ and an M1 line of a metastable excited state of W 28+ , whose wavelengths have been determined by measurements using electron-beam-ion-traps (EBITs), are identified in the LHD spectra. The present results partially compliment wavelength data of tungsten highly-charged ions in the near UV-visible range. (author)

  7. Electron cyclotron emission measurements by means of a grating polychromator on the large helical device

    International Nuclear Information System (INIS)

    Vries, P.C. de; Kawahata, K.; Nagayama, Y.; Inagaki, S.; Sasao, H.; Ito, Y.

    2001-01-01

    The electron cyclotron emission (ECE) spectrum at the large helical device (LHD) is measured by a 14-channel grating polychromator. During standard operation, the polychromator monitors second harmonic frequencies (100-150 GHz). At sufficient high density, the second harmonic X-mode polarisation is optically thick and can be used to determine the temperature profile. However, the large magnetic field shear in LHD affects the ECE polarisation. This effect has been studied numerically. The wave polarisation was found to rotate in the laboratory frame. Experiments have been carried out by means of a polarisation rotator in the diagnostic waveguide system, which confirmed the calculations. By a proper setting of the polarisation rotator, the rotation can be corrected and pure X-mode is detected. Temperature profiles have been measured successfully by the polychromator

  8. Electron cyclotron emission measurements by means of a grating polychromator on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Vries, P.C. de; Kawahata, K.; Nagayama, Y.; Inagaki, S.; Sasao, H.; Ito, Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-03-01

    The electron cyclotron emission (ECE) spectrum at the Large Helical Device (LHD) is measured by a 14-channel grating polychromator. During standard operation the polychromator monitors 2nd harmonic frequencies (100-150 GHz) with a spectral resolution of 1.5 GHz. At sufficient high density the 2nd harmonic X-mode polarization is optically thick and can be used to determine the temperature profile. However, the large magnetic field shear in LHD affects the ECE polarization. This effect has been studied numerically. The wave polarization was found to rotate in the laboratory frame. Experiments have been carried out by means of a polarization rotator in the diagnostic waveguide system, which confirmed the calculations. By a proper setting of the polarization rotator, the rotation can be corrected and pure X-mode is detected. Temperature profiles have been measured successfully by the polychromator. (author)

  9. Electron cyclotron emission measurements by means of a grating polychromator on the Large Helical Device

    International Nuclear Information System (INIS)

    Vries, P.C. de; Kawahata, K.; Nagayama, Y.; Inagaki, S.; Sasao, H.; Ito, Y.

    2000-01-01

    The electron cyclotron emission (ECE) spectrum at the Large Helical Device (LHD) is measured by a 14-channel grating polychromator. During standard operation the polychromator monitors 2nd harmonic frequencies (100-150 GHz) with a spectral resolution of 1.5 GHz. At sufficient high density the 2nd harmonic X-mode polarization is optically thick and can be used to determine the temperature profile. However, the large magnetic field shear in LHD affects the ECE polarization. This effect has been studied numerically. The wave polarization was found to rotate in the laboratory frame. Experiments have been carried out by means of a polarization rotator in the diagnostic waveguide system, which confirmed the calculations. By a proper setting of the polarization rotator, the rotation can be corrected and pure X-mode is detected. Temperature profiles have been measured successfully by the polychromator. (author)

  10. Elmo bumpy square plasma confinement device

    Science.gov (United States)

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  11. Magnetohydrodynamic helical structures in nominally axisymmetric low-shear tokamak plasmas

    International Nuclear Information System (INIS)

    Graves, J P; Brunetti, D; Cooper, W A; Reimerdes, H; Halpern, F; Pochelon, A; Sauter, O; Chapman, I T

    2013-01-01

    The primary goal of hybrid scenarios in tokamaks is to enable high performance operation with large plasma currents whilst avoiding MHD instabilities. However, if a local minimum in the safety factor is allowed to approach unity, the energy required to overcome stabilizing magnetic field line bending is very small, and as a consequence, large MHD structures can be created, with typically dominant m = n = 1 helical component. If there is no exact q = 1 rational surface the essential character of these modes can be modelled assuming ideal nested magnetic flux surfaces. The methods used to characterize these structures include linear and non-linear ideal MHD stability calculations which evaluate the departure from an axisymmetric plasma state, and also equilibrium calculations using a 3D equilibrium code. While these approaches agree favourably for simulations of ITER relevant hybrid regimes in this paper, the relevance of the ideal MHD model itself is tested through empirical examination of helical states in MAST and TCV. While long lived modes in MAST do not have island structures, some of the continuous mode oscillations exhibited in high elongation experiments in TCV indicate that resistivity may play a role in further weakening the ability of the tokamak core to remain axisymmetric. The simulations and experiments consistently highlight the need to control the safety factor in hybrid scenarios planned for future fusion grade tokamaks such as ITER. (paper)

  12. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  13. Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1997-01-01

    This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({ω Alf (r)} min Alf (r)} max ) and discrete range, DR, where global Alfven eigenmodes, GAEs (ω Alf (r)} min ) exist, are considered. (Here, ω Alf (r) ≡ ω Alf [n(r), B 0 (r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author)

  14. Influence of the helical resonant fields on the plasma potential in the TBR-1 Tokamak

    International Nuclear Information System (INIS)

    Ribeiro, C.; Silva, R.P. da; Caldas, I.L.; Fagundes, A.N.; Sanada, E.K.

    1990-01-01

    This work describes an experimental work that are in progress in TBR-1 tokamak about the influence of resonant helical fields on the plasma potential. TBR-1 is a small tokamak in operation in the Physics Institute of University of Sao Paulo and used for basic research, diagnostic development and personal formation. Its main parameters are: R(Major Radius) = 0.30 m; a v (Vessel Radius) = 0.11 m; a(Plasma Radius) = 0.08 m; R/a(Aspect Ratio) = 3.75; B φ (Toroidal Field) = 5 kG; n e0 (Central Electron Density) ≅ 7 x 10 18 m -3 ; T e0 (central electron temperature) ≅ 200 eV. (Author)

  15. The use of a commercial QA device for daily output check of a helical tomotherapy unit

    International Nuclear Information System (INIS)

    Alaei, Parham; Hui, Susanta K.; Higgins, Patrick D.; Gerbi, Bruce J.

    2006-01-01

    Helical tomotherapy radiation therapy units, due to their particular design and differences from a traditional linear accelerator, require different procedures by which to perform routine quality assurance (QA). One of the principal QA tasks that should be performed daily on any radiation therapy equipment is the output constancy check. The daily output check on a Hi-Art TomoTherapy unit is commonly performed utilizing ionization chambers placed inside a solid water phantom. This provides a good check of output at one point, but does not give any information on either energy or symmetry of the beam, unless more than one point is measured. This also has the added disadvantage that it has to be done by the physics staff. To address these issues, and to simplify the process, such that it can be performed by radiation therapists, we investigated the use of a commercially available daily QA device to perform this task. The use of this device simplifies the task of daily output constancy checks and eliminates the need for continued physics involvement. This device can also be used to monitor the constancy of beam energy and cone profile and can potentially be used to detect gross errors in the couch movement or laser alignment

  16. Influence of external 3D magnetic fields on helical equilibrium and plasma flow in RFX-mod

    International Nuclear Information System (INIS)

    Piovesan, P; Bonfiglio, D; Bonomo, F; Cappello, S; Carraro, L; Cavazzana, R; Gobbin, M; Marrelli, L; Martin, P; Martines, E; Momo, B; Piron, L; Puiatti, M E; Soppelsa, A; Valisa, M; Zanca, P; Zaniol, B

    2011-01-01

    A spontaneous transition to a helical equilibrium with an electron internal transport barrier is observed in RFX-mod as the plasma current is raised above 1 MA (Lorenzini R et al 2009 Nature Phys. 5 570). The helical magnetic equilibrium can be controlled with external three-dimensional (3D) magnetic fields applied by 192 active coils, providing proper helical boundary conditions either rotating or static. The persistence of the helical equilibrium is strongly increased in this way. A slight reduction in the energy confinement time of about 15% is observed, likely due to the increased plasma-wall interaction associated with the finite radial magnetic field imposed at the edge. A global helical flow develops in these states and is expected to play a role in the helical self-organization. In particular, its shear may contribute to the ITB formation and is observed to increase with the externally applied radial field. The possible origins of this flow, from nonlinear visco-resistive magnetohydrodynamic (MHD) and/or ambipolar electric fields, will be discussed.

  17. Thin low Z coatings for plasma devices

    International Nuclear Information System (INIS)

    Norem, J.; Bowers, D.A.

    1978-05-01

    Coating the walls of the vacuum chamber with beryllium or some other low Z material has been proposed as a possible means of solving the problems of high Z influx into plasmas. We attempt to demonstrate that very thin, low Z coatings are compatible with the operation of plasma devices and beneficial to plasma performance. We determine that the thickness of coating material required is only about 10 monolayers. In a radiation environment, radiation-induced solute segregation should help to maintain the integrity of such thin coatings against diffusion and other processes. We discuss the properties of these thin coatings and possible means of in situ application and maintenance. Since deposition of plasma impurities on the walls will occur anyway, we discuss injection of solid pellets into the plasma as a direct way of introducing impurities which would ultimately serve as coating material

  18. Overview of transport and MHD stability study and impact of magnetic field topology in the Large Helical Device

    International Nuclear Information System (INIS)

    Ida, K.; Nagaoka, K.; Kasahara, H.; Yoshinuma, M.; Ohdachi, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K.Y.; Kaneko, O.; Komori, A.; Inagaki, S.; Evans, T.; Kamiya, Kensaku

    2014-10-01

    The progress of physics understanding and concurrent parameter extension since the last IAEA-FEC 2012 in the Large Helical Device is overviewed. High ion and electron temperature plasma (T i (0) ∼ T e (0) ∼ 6 keV) with simultaneous ion and electron internal transport barrier (ITB) is obtained by controlling recycling and heating deposition. Associated with the formation of a transport barrier, a sign flip of the non-diffusive term of impurity/momentum transport (residual stress and convection flow) is observed. The impact of the topology of 3-D magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum and particle/impurity transport and MHD stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1x10 19 m -3 and with high electron and ion temperatures (T i (0) ∼ T e (0) ∼ 2 keV) resulting in 3.36 GJ of input energy is achieved. (author)

  19. Flaw detection device for plasma facing wall in thermonuclear device

    International Nuclear Information System (INIS)

    Doi, Akira.

    1996-01-01

    The present invention concerns plasma facing walls of a thermonuclear device and provides a device for detecting a thickness of amour tiles accurately and efficiently with no manual operation. Namely, the position of the plasma facing surface of the amour tile is measured using a structure to which the amour tiles are to be disposed as a reference. Also in a case of disposing new armor tiles, the position of the plasma facing surface of the armor tiles is measured to thereby measure the wearing amount of the amour tiles based on the difference between the reference and the measured value. If a measuring means capable of measuring a plurality of amour tiles at once is used efficiency of the measurement and the detection can be enhanced. Several ten thousands of amour tiles are disposed to the plasma facing wall in a large scaled thermonuclear device, and a plenty of time was required for the detection. However, the present invention can improve the accuracy for the measurement and detection and provide time and labors-saving. (I.S.)

  20. Requirements for accuracy of superconducting coils in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K; Yanagi, N; Ji, H; Kaneko, H; Ohyabu, N; Satow, T; Morimoto, S; Yamamoto, J; Motojima, O [National Inst. for Fusion Science, Chikusa, Nagoya (Japan); LHD Design Group

    1993-01-01

    Irregular magnetic fields resonate with the rational surface of the magnetic confinement systems, form magnetic islands and ergodic layers, and destruct the plasma confinement. To avoid this confinement destruction the requirement of an accuracy of 10[sup -4] in the magnetic field is adopted as the magnetic-accuracy design criterion for the LHD machine. Following this criterion the width of the undesirable magnetic island is kept less than one tenth of the plasma radius. The irregular magnetic field from the superconducting (SC) helical and poloidal coils is produced by winding irregularity, installing irregularity, cooling-down deformations and electromagnetic deformations. The local irregularities such as feeders, layer connections, adjacent-conductor connections of the coils also produce an error field. The eddy currents on the supporting shell structure of SC coils, the cryostat, etc. are also evaluated. All irregular effects are analyzed using Fourier decomposition and field mapping methods for the LHD design, and it is confirmed that the present design of the superconducting coil system satisfies the design criterion for these field irregularities. (orig.).

  1. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L.

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  2. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  3. Beam acceleration in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, R.; Banjanac, R.; Dragic, A.; Maric, Z.; Stanojevic, J.; Udovicic, V. E-mail: udovicic@atom.phy.bg.ac.yu; Vukovic, J

    2001-06-01

    The proton beam emission from the small 8 kJ plasma focus device operated with the H{sub 2} filling was analyzed. Maximum energy and yield were obtained using NTD. The fast protons were registered with the energy up to 500 keV using the polycarbonate absorbers with the different thickness.

  4. Beam acceleration in plasma focus device

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Banjanac, R.; Dragic, A.; Maric, Z.; Stanojevic, J.; Udovicic, V.; Vukovic, J.

    2001-01-01

    The proton beam emission from the small 8 kJ plasma focus device operated with the H 2 filling was analyzed. Maximum energy and yield were obtained using NTD. The fast protons were registered with the energy up to 500 keV using the polycarbonate absorbers with the different thickness

  5. Coaxial plasma gun in the high density regime and injection into a helical field

    Energy Technology Data Exchange (ETDEWEB)

    Schaer, S.F. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1994-02-01

    A modified coaxial gun in the high density regime of 20-70 mT of He restgas, energized by a 1200 HV sinusoidally damped capacitor discharge with peak currents of 86 kA in a potential range of 10-15 kV, was investigated. The acceleration of the current sheet inside the gun was studied, and an MHD current element model derived, in good agreement with experiment, indicating that thermal diffusion can be neglected during the acceleration phase and furthermore explains the sheet velocity limitation. At the muzzle the plasma is magnetized by inducing a toroidal current through a permanent radial field, generating poloidal field. The injection of the generated current-carrying plasma torus into the driftspace was studied by means of a diamagnetic probe array, for 1) toroidal bias field, and 2) helical bias field. The inner electrode (negative polarity) is continued into the driftspace by a considerably thinner, pyrex insulated central conductor, generating the toroidal bias. Quasi-Tokamak geometry is reached in the helical case. The necessary axial bias field strength was then calculated. Second half-period breakdown was observed, thus a positive electrode was present most of the time. This is a unique way to achieve autopreionisation. Plasma gun operation is very much breakdown dependent, specially in the region of the muzzle. This made it necessary to construct a special compensation coil for the axial field coil. The mean torus speed in the driftspace was 2.2 cm/{mu}sec. The tori were azimuthally homogeneous and exhibited enhanced stability. Transverse expansion at ejection and in the driftspace is prevented by a unique rarefaction wave-pattern resulting from the Mach 50 flow. The toroidal current was observed to decay continuously, not abruptly. No n type or oscillatory instabilities were encountered. These findings are important for future designs of guns where a stable and homogenous torus is needed, such as magnetic confinement injectors. (author) 39 figs., 38 refs.

  6. Coaxial plasma gun in the high density regime and injection into a helical field

    International Nuclear Information System (INIS)

    Schaer, S.F.

    1994-02-01

    A modified coaxial gun in the high density regime of 20-70 mT of He restgas, energized by a 1200 HV sinusoidally damped capacitor discharge with peak currents of 86 kA in the potential range of 10-15 kV, was investigated. The acceleration of the current sheet inside the gun was studied, and an MHD current element model derived, in good agreement with experiment, indicating that thermal diffusion can be neglected during the acceleration phase and furthermore explains the sheet velocity limitation. At the muzzle the plasma is magnetized by inducing a toroidal current through a permanent radial field, generating poloidal field. The injection of the generated current-carrying plasma torus into the driftspace was studied by means of a diamagnetic probe array, for 1) toroidal bias field, and 2) helical bias field. The inner electrode (negative polarity) is continued into the driftspace by a considerably thinner, pyrex insulated central conductor, generating the toroidal bias. Quasi-Tokamak geometry is reached in the helical case. The necessary axial bias field strength was then calculated. Second half-period breakdown was observed, thus a positive electrode was present most of the time. This is a unique way to achieve autopreionisation. Plasma gun operation is very much breakdown dependent, specially in the region of the muzzle. This made it necessary to construct a special compensation coil for the axial field coil. The mean torus speed in the driftspace was 2.2 cm/μsec. The tori were azimuthally homogeneous and exhibited enhanced stability. Transverse expansion at ejection and in the driftspace is prevented by a unique rarefaction wave-pattern resulting from the Mach 50 flow. The toroidal current was observed to decay continuously, not abruptly. No n type or oscillatory instabilities were encountered. These findings are important for future designs of guns where a stable and homogenous torus is needed, such as magnetic confinement injectors. (author) 39 figs., 38 refs

  7. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. Compression Models for Plasma Focus Devices

    International Nuclear Information System (INIS)

    Gonzalez, Jose; Calusse, Alejandro; Ramos, Ruben; Rodriguez Palomino, Luis

    2003-01-01

    Using a numerical model that calculates the dynamics of Plasma Focus devices, we compared the results of three different compression models of the plasma pinch.One of the main objectives in this area is to develop a simplified model to calculate the neutron production of Plasma Focus devices, to study the influence of the main parameters in this neutron yield.The dynamics is thoroughly studied, and the model predicts fairly well values such as maximum currents and times for pinch collapse.Therefore, we evaluate here different models of pinch compression, to try to predict the neutron production with good agreement with the rest of the variables involved.To fulfill this requirement, we have experimental results of neutron production as a function of deuterium filling pressure in the chamber, and typical values of other main variables in the dynamics of the current sheet

  9. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  10. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  11. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  12. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Science.gov (United States)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  13. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    International Nuclear Information System (INIS)

    Morita, S.; Goto, M.; Murakami, I.; Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T.; Hasuo, M.; Koike, F.; Nakamura, N.; Sasaki, A.; Wang, E. H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W +24-+33 , measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W 44+ ) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×10 10 cm −3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W 26+ ) at 3893.7Å is identified as the ground-term fine-structure transition of 4f 23 H 5 - 3 H 4 . The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed

  14. Electron cyclotron emission from optically thin plasma in compact helical system

    International Nuclear Information System (INIS)

    Idei, Hiroshi; Kubo, Shin; Hosokawa, Minoru; Iguchi, Harukazu; Ohkubo, Kunizo; Sato, Teruyuki.

    1994-01-01

    A frequency spectrum of second harmonic electron cyclotron emission was observed for an optically thin plasma produced by fundamental electron cyclotron heating in a compact helical system. A radial electron temperature profile deduced from this spectrum neglecting the multiple reflections effect shows a clear difference from that measured by Thomson scattering. We relate the spectrum with the electron temperature profile by the modified emission model including the scrambling effect. The scrambling effect results from both mode conversion and change in the trajectory due to multiple reflections of the emitting ray at the vessel wall. The difference between the two temperature profiles is explained well by using the modified emission model. Reconstruction of the electron temperature profile from the spectrum using this model is also discussed. (author)

  15. Effects of MHD-activity-induced low-n error magnetic fields on the neoclassical viscosities in helical plasmas

    International Nuclear Information System (INIS)

    Nishimura, Shin

    2009-01-01

    Effects of the perturbed magnetic field with low toroidal mode numbers (n) are considered. One cause of this type of perturbation, which has recently been studied in tokamaks, is MHD-activities. In helical/stellarator, this low-n perturbation is sometimes artificially added for island diverters. In viewpoint of the neoclassical viscosities, these perturbed magnetic fields affect on both of bounce center drifts of toroidally trapped and ripple-trapped particles. However, in usual neoclassical analyses in helical/stellarator devices assuming periodic magnetic field strength, these effects had not been studied. For future studies in helical/stellarator devices, a method to use bounce-averaged drift kinetic equation for the toroidally trapped particles is proposed. (author)

  16. Pulsed Plasma Lubrication Device and Method

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Bickler, Donald B. (Inventor); D'Agostino, Saverio A. (Inventor)

    2016-01-01

    Disclosed herein is a lubrication device comprising a solid lubricant disposed between and in contact with a first electrode and a second electrode dimensioned and arranged such that application of an electric potential between the first electrode and the second electrode sufficient to produce an electric arc between the first electrode and the second electrode to produce a plasma in an ambient atmosphere at an ambient pressure which vaporizes at least a portion of the solid lubricant to produce a vapor stream comprising the solid lubricant. Methods to lubricate a surface utilizing the lubrication device in-situ are also disclosed.

  17. Conceptual design and development of a superconducting bus-line for the Large Helical Device

    International Nuclear Information System (INIS)

    Mito, T.; Takahata, K.; Yamada, S.; Yamamoto, J.; Uede, T.; Ikeda, M.

    1993-01-01

    A superconducting bus-line is proposed and preliminarily tested as an electrical feeder between the superconducting coils of the Large Helical Device (LHD) and their electrical power supply. The bus-line consists of a superconductor and its cryogenic transfer-line. The superconductor is a specially developed aluminum stabilized NbTi wire, which is installed in the innermost channel of the transfer-line. The vacuum insulated transfer-line consists of four corrugated tubes assembled coaxially. Liquid helium flows through the innermost channel and shield gas flows through another annular channel in the line. We are completing the conceptual design of the bus-line and the installation plan for the LHD experimental hall and are carrying out development of wires, including an investigation of their mechanical properties and electrical insulation. This report describes the conceptual design of the superconducting bus-line for the LHD, and the results we obtained recently during the design and development of a full-scale demonstration facility. (orig.)

  18. Time-resolved triton burnup measurement using the scintillating fiber detector in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Nishitani, T.; Murakami, S.; Seki, R.; Nakata, M.; Takada, E.; Kawase, H.; Pu, N.; LHD Experiment Group

    2018-03-01

    Time-resolved measurement of triton burnup is performed with a scintillating fiber detector system in the deuterium operation of the large helical device. The scintillating fiber detector system is composed of the detector head consisting of 109 scintillating fibers having a diameter of 1 mm and a length of 100 mm embedded in the aluminum substrate, the magnetic registrant photomultiplier tube, and the data acquisition system equipped with 1 GHz sampling rate analogies to digital converter and the field programmable gate array. The discrimination level of 150 mV was set to extract the pulse signal induced by 14 MeV neutrons according to the pulse height spectra obtained in the experiment. The decay time of 14 MeV neutron emission rate after neutral beam is turned off measured by the scintillating fiber detector. The decay time is consistent with the decay time of total neutron emission rate corresponding to the 14 MeV neutrons measured by the neutron flux monitor as expected. Evaluation of the diffusion coefficient is conducted using a simple classical slowing-down model FBURN code. It is found that the diffusion coefficient of triton is evaluated to be less than 0.2 m2 s-1.

  19. Numerical study of whisker field lines in the periphery of the Large Helical Device

    International Nuclear Information System (INIS)

    Akao, Hideki

    1990-01-01

    The behavior of periphery magnetic field lines in the standard Large-Helical Device (l=2 heliotron/torsatron type) configuration is studied numerically. Three different types of behavior are found, corresponding to three different regions: the stochastic region near the outermost magnetic surface, the whisker region, and the inter-whisker region outside the stochastic region. The behavior of whisker and inter-whisker field lines is specifically analyzed. It is found that whisker field lines exhibit both regular and irregular types of behavior, whereas inter-whisker field lines exhibit only regular behavior. The connection lengths for the whisker field lines are usually as long as several tens of toroidal pitches, whereas those for the inter-whisker field lines are usually less than ten toroidal pitch lengths. Whisker field lines are characterized by three fundamental processes; stretching, folding, and nesting associated with the motion of a residual X-point of the separatrix. Simple modeling is performed to reproduce these three fundamental processes. (author)

  20. Internal helical modes with m > 1 in a tokamak with a small shear and high plasma pressure

    International Nuclear Information System (INIS)

    Mikha lovskij, A.B.; Aburdzhaniya, G.D.; Krymskij, A.M.

    1979-01-01

    Internal helical modes with m>1 in a circular cross-section tokamak with a small shear and large value of the parameter β (β is the ratio between the mean plasma pressure and the mean pressure of the poloidal magnetic field) are investigated. The equations obtained are used to study the destabilizing effects leading to helical instabilities. The role of destabilizing effects is regarded both in local and in a nonlocal approximations on the assumption that the radial plasma pressure is distributed parabolically and that the radial current distribution is also parabolic though slightly varying. It has been established that the profiling of current may lead to the tokamak plasma stability with respect to the modes under investigation. A tokamak with a small shear has been shown to be more stable relative to these modes than that with a large shear

  1. External kinks in plasmas with helical boundary deformation and net toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Ardelea, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-11-01

    The investigation of the global ideal magnetohydrodynamic (MHD) stability of plasmas with helical boundary shape and nonvanishing toroidal plasma current constitutes the principal aim of this work. Global external modes with small values of m,n (typically n = 1,2,3 and m = n+1) are studied, where m and n are the poloidal and toroidal mode numbers, respectively. The first and main part of the work concentrates on fixed boundary equilibria generated by systematically varying parameters such as the type and the magnitude of the boundary deformation, the number of equilibrium field periods N{sub per}, the aspect ratio, the toroidal current density profile, {beta} and the pressure profile. Due to the periodicity of the equilibrium, couplings between Fourier perturbation components with different toroidal mode numbers n occur and lead to the apparition of families of modes. The study of a particular (m,n) mode has to take into account all (m{sub l}, n{sub l}) perturbation components with n{sub 1} belonging to the same family as n. The stability analysis is carried out in the parameter region where the inverse rotational transform (the safety factor in the traditional tokamak notation) q{<=}2.0 and {beta}{<=}2%. A particular property of the configurations investigated is that equilibrium Fourier components (m{sub e}, N{sub per}n{sub e}) which are involved in the couplings between the (m,n) mode studied and the (m{sub k},n{sub k}) perturbation components with m{sub k}>n{sub k}>n that exhibit resonances in the q>1 region are very small. As a consequence, the contributions of the (m,n)x(m{sub k},n{sub k}) couplings to the potential energy are very weak. It is shown that a helical boundary deformation can stabilize the n=1,2,3 external modes; if {delta} is a measure of the plasma boundary deformation, then windows of stability [{delta}{sub min}, {delta}{sub max}] may exist for a large variety of equilibrium parameters. (author) figs., tabs., 44 refs.

  2. Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S.; Komoshvili, K. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences

    1997-05-01

    This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({l_brace}{omega}{sub Alf}(r){r_brace}{sub min} < {omega} < {l_brace}{omega}{sub Alf}(r){r_brace}{sub max}) and discrete range, DR, where global Alfven eigenmodes, GAEs ({omega} < {l_brace}{sub Alf}(r){r_brace}{sub min}) exist, are considered. (Here, {omega}{sub Alf}(r) {identical_to} {omega}{sub Alf}[n(r), B{sub 0}(r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author).

  3. Plasma position and shape control device for thermonuclear device

    International Nuclear Information System (INIS)

    Takeuchi, Kazuhiro; Abe, Mitsushi; Kinoshita, Shigemi.

    1993-01-01

    A plasma position and shape control system is constituted with a measuring device, a quenching probability calculation section and a control calculation section. A quenching probability is calculated in the quenching probability calculation section by using a measuring data on temperature, electric current and magnetic field of superconductive coils, based on a margin upto a limit value. The control calculation section selects a control method which decreases applied voltage or current instruction value as the quenching probability of the coils is higher. Since the quenching probability of the superconductive coils can be forecast and a state of low quenching danger can be selected, the safety of the device is improved. When the quenching danger is allowed to a predetermined value, a wide operation region can be provided. (N.H.)

  4. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    Science.gov (United States)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  5. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  6. LHD helical divertor

    International Nuclear Information System (INIS)

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  7. Materials and devices for all-optical helicity-dependent switching

    Science.gov (United States)

    Salah El Hadri, Mohammed; Hehn, Michel; Malinowski, Grégory; Mangin, Stéphane

    2017-04-01

    Since the first observation of ultrafast demagnetization in Ni thin films by Beaurepaire et al 20 years ago, understanding the interaction between ultrashort laser pulses and magnetization has become a topic of huge interest. In 2007, an intriguing discovery related to ultrafast demagnetization was the observation of all-optical switching (AOS) of magnetization in ferrimagnetic GdFeCo alloy films using only femtosecond laser pulses. This review discusses the recent studies elucidating several key issues regarding the all-optical switching phenomenon. Although AOS had long been restricted to GdFeCo alloys, it turned out to be a more general phenomenon for a variety of ferrimagnetic as well as ferromagnetic materials. This discovery helped pave the way for the integration of all-optical writing in data storage industries. Nevertheless, theoretical models explaining the switching in GdFeCo alloy films do not appear to apply in the other materials, thus questioning the uniqueness of the microscopic origin of all-optical switching. By investigating the integration of all-optical switching in spintronic devices, two types of all-optical switching mechanism have been distinguished: a single-pulse heat-only switching in ferrimagnetic GdFeCo alloys, and a two regime helicity-dependent switching in both ferrimagnetic TbCo alloys and ferromagnetic Co/Pt multilayers. Another key issue discussed in this review is the necessary condition for the observation of all-optical switching. Many models have been proposed but are strongly challenged by the discovery of such switching in ferromagnets. A comprehensive investigation of the magnetic parameters governing all-optical switching demonstrate that its observation requires magnetic domains larger than the laser spot size during the cooling process; such a criterion is common for both ferri- and ferro-magnets. These investigations strongly improve our understanding and give intriguing insights into the rich physics of the ultrafast

  8. Improved signal to noise ratio and sensitivity of an infrared imaging video bolometer on large helical device by using an infrared periscope

    International Nuclear Information System (INIS)

    Pandya, Shwetang N.; Sano, Ryuichi; Peterson, Byron J.; Mukai, Kiyofumi; Enokuchi, Akito; Takeyama, Norihide

    2014-01-01

    An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolution of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ 0 = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details

  9. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Arimoto, H.; Shoji, T.; Garcia, J.

    2009-01-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO 2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO 2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  10. Particle-in-cell simulation of helical structure onset in plasma fiber with dust grains

    International Nuclear Information System (INIS)

    Kulhanek, Petr; Bren, David; Kaizr, Vaclav; Pasek, Jan

    2002-01-01

    Fully three dimensional PIC program package for the helical pinch numerical simulation was developed in our department. Both electromagnetic and gravitational interactions are incorporated into the model. Collisions are treated via Monte Carlo methods. The program package enabled to prove the conditions of onset of spiral and helical structures in the pinch

  11. Arc plasma devices: Evolving mechanical design from numerical

    Indian Academy of Sciences (India)

    A recipe for obtaining mechanical design of arc plasma devices from numerical ... to the plasma of the mixture of molecular gases like nitrogen and oxygen. ... Temperature field, associated fluid dynamics and electrical characteristics of a ...

  12. Recent results on medium-size plasma-focus device

    International Nuclear Information System (INIS)

    Miklaszewski, R.; Kasperczuk, A.; Paduch, M.; Tomaszewaski, K.; Wereszczynski, Z.

    1992-01-01

    A brief history of investigation carried out on the PF-150 plasma-focus device is presented. Essential results concerning the dynamics of plasma sheath are summarized. The present state of investigation and main areas of interest are shown. (author)

  13. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  14. Plasma devices for focusing extreme light pulses

    International Nuclear Information System (INIS)

    Fuchs, J.; Gonoskov, A.A.; Nakatsutsumi, M.; Nazarov, W.; Quere, F.; Sergeev, A.M.; Yan, X.Q.

    2014-01-01

    Since the inception of the laser, there has been a constant push toward increasing the laser peak intensity, as this has lead to opening the exploration of new territories, and the production of compact sources of particles and radiation with unprecedented characteristics. However, increasing the peak laser intensity is usually performed by enhancing the produced laser properties, either by lowering its duration or increasing its energy, which involves a great level of complexity for the laser chain, or comes at great cost. Focusing tightly is another possibility to increase the laser intensity, but this comes at the risk of damaging the optics with target debris, as it requires their placement in close proximity to the interaction region. Plasma devices are an attractive, compact alternative to tightly focus extreme light pulses and further increase the final laser intensity. (authors)

  15. Current scaling of plasma focus devices

    International Nuclear Information System (INIS)

    Schiuma, C.; Herold, H.; Kaeppeler, H.J.; Shakhatre, M.; Auluck, S.K.H.

    1990-03-01

    In continuation of the work by G. Decker et al. on current and neutron yield scaling of plasma focus devices an analytical solution for the circuit equation (with resistance R = 0) in the compression phase was derived. Together with the solution for the rundown phase from G. Decker et al, which was extended for finite resistance (R ≠ 0), there follows an analytical scaling theory for maximum and pinch currents. At the same time there exists the possibility to discuss the influence of finite resistance on current variation and scaling parameters. The model solutions were checked out by numerical integrations of the current equation. While at the beginning of the rundown phase the ohmic resistance cannot be neglected (the magnitude R/L plays an important role), its influence at the end of the rundown phase and in the compression phase is negligible. The theoretically determined values are compared with the results of numerous probe measurements. (orig.)

  16. Helical system. History and current state of helical research

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2017-01-01

    This paper described the following: (1) history of nuclear fusion research of Japan's original heliotron method, (2) worldwide development of nuclear fusion research based on helical system such as stellarator, and (3) worldwide meaning of large helical device (LHD) aiming to demonstrate the steady-state performance of heliotron type in the parameter area extrapolable to the core plasma, and research results of LHD. LHD demonstrated that the helical system is excellent in steady operation performance at the world's most advanced level. In an experiment using deuterium gas in 2017, LHD achieved to reach 120 million degrees of ion temperature, which is one index of nuclear fusion condition, demonstrated the realization of high-performance plasma capable of extrapolating to future nuclear fusion reactors, and established the foundation for full-scale research toward the realization of nuclear fusion reactor. Besides experimental research, this paper also described the helical-type stationary nuclear fusion prototype reactor, FFHR-d1, which was based on progress of large-scale simulation at the world's most advanced level. A large-scale superconducting stellarator experimental device, W7-X, with the same scale as LHD, started experiment in December 2015, whose current state is also touched on here. (A.O.)

  17. Magnetic pulse compression circuits for plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V; Presura, R [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Two magnetic pulse compression circuits (MPCC), for two different plasma devices, are presented. The first is a 20 J/pulse, 3-stage circuit designed to trigger a low pressure discharge. The circuit has 16-18 kV working voltage, and 200 nF in each stage. The saturable inductors are realized with toroidal 25 {mu}m strip-wound cores, made of a Fe-Ni alloy, with 1.5 T saturation induction. The total magnetic volume is around 290 cm{sup 3}. By using a 25 kV/1 A thyratron as a primary switch, the time compression is from 3.5 {mu}s to 450 ns, in a short-circuit load. The second magnetic pulser is a 200 J/pulse circuit, designed to drive a high average power plasma focus soft X-ray source, for X-ray microlithography as the main application. The 3-stage pulser should supply a maximum load current of 100 kA with a rise-time of 250 - 300 ns. The maximum pulse voltage applied on the plasma discharge chamber is around 20 - 25 kV. The three saturable inductors in the circuit are made of toroidal strip-wound cores with METGLAS 2605 CO amorphous alloy as the magnetic material. The total, optimized mass of the magnetic material is 34 kg. The maximum repetition rate is limited at 100 Hz by the thyratron used in the first stage of the circuit, the driver supplying to the load about 20 kW average power. (author). 1 tab., 3 figs., 3 refs.

  18. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  19. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  20. Study on edge plasma physics and particle control in the Heliotron-E device

    Energy Technology Data Exchange (ETDEWEB)

    Mizuuchi, T; Obiki, T; Noda, N; Matsuura, H; Kondo, K; Akaishi, K; Motojima, O; Kaneko, H; Zushi, H; Takeiri, Y

    1989-04-01

    The edge plasma physics and the particle control under the intrinsic magnetic limiter configuration of a helical system have been studied with the Heliotron-E device, where currentless plasmas of T/sub e//le/1-2 keV, T/sub i//le/1 keV and anti n/sub e//le/2x10/sup 20//m/sup 3/ are produced by a combination of ECRH, NBI and/or ICRH. It is indicated that the separatrix region of the heliotron device is able to act as a divertor magnetic field. According to calculations of the magnetic field line in the edge region, the separatrix region has some different characteristics from the scrape-off layer in tokamak devices; the existence of a fine structure in the separatrix region and asymmetry of the region in toroidal and poloidal directions are observed. A localized pattern of the heat load on the first wall is experimentally observed. This agrees with the heat-load profile expected from the magnetic configuration and the distribution of the plasma in the edge region. A carbonization of the first wall is successfully applied to the Heliotron E device for reduction of metallic impurity contents. The heat load at the divertor trace decreased and that on the other part of the first wall increased in the high recycling conditions after the carbonization. (orig.).

  1. Doppler-shift spectra of Hα lines from negative-ion-based neutral beams for large helical device neutral beam injection

    International Nuclear Information System (INIS)

    Oka, Y.; Ikeda, K.; Takeiri, Y.; Tsumori, K.; Kaneko, O.; Nagaoka, K.; Osakabe, M.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Grisham, L.; Umeda, N.; Honda, A.; Ikeda, Y.; Yamamoto, T.

    2006-01-01

    The velocity spectra of the negative-ion-(H - ) based neutral beams are studied in high-performance large-area ion sources during injection into large helical device fusion plasmas. We are conducting systematic observations in standard neutral beam injection to correlate beam spectra with source operating conditions. Almost all of the transmitted beam power was at full acceleration energy (∼170 keV). The small stripping beam component which was produced in the extraction gap was evaluated to be about 9%-22% by amplitude of the measured spectra for the sources in beam lines 1 and 2. H - production uniformity from the spectrum profile was 86%-90% for three sources. For the longest pulse injection during 74 and 128 s, a full energy component tended to decrease with time, while the accelerator gap stripping tail tended to increase slightly with time, which is attributed to beam-induced outgassing in the accelerator. A higher conductance multislot ground grid accelerator appeared to show little growth in the accelerator gap beam stripping during long pulses compared to the conventional multiaperture ground grid. The beam uniformity appeared to vary in part with the Cs uniformity on the plasma grid

  2. Global stability of plasmas with helical boundary deformation and net toroidal current against n=1,2 external modes

    International Nuclear Information System (INIS)

    Ardela, A.; Cooper, W.A.

    1996-01-01

    In this paper we resume a numerical study of the global stability of plasma with helical boundary deformation and non null net toroidal current. The aim was to see whether external modes with n=1,2 (n toroidal mode number) can be stabilized at values of β inaccessible to the tokamak. L=2,3 configurations with several aspect ratios and different numbers of equilibrium field periods are considered. A large variety of toroidal current densities and different pressure profiles are taken into account. Mercier stability is also investigated. (author) 4 figs., 6 refs

  3. Global numerical modeling of magnetized plasma in a linear device

    DEFF Research Database (Denmark)

    Magnussen, Michael Løiten

    Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

  4. 21 CFR 864.9205 - Blood and plasma warming device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood and plasma warming device. 864.9205 Section 864.9205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That Manufacture...

  5. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  6. In-liquid plasma devices and methods of use thereof

    KAUST Repository

    Cha, Min Suk

    2017-08-10

    Devices and methods for generating a plasma in a liquid are provided. A low- dielectric material can be placed in contact with the liquid to form an interface a distance from an anode. A voltage can be applied across the anode and a cathode submerged in the liquid to produce the plasma. A variety of devices are provided, including for continuous operation. The devices and methods can be used to generate a plasma in a variety of liquids, for example for water treatment, hydrocarbon reformation, or synthesis of nanomaterial.

  7. Matching of dense plasma focus devices with fission reactors

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1978-01-01

    The potential role of dense plasma focus devices as compact neutron sources for fissile fuel breeding in conjunction with existing fission reactors is considered. It is found that advanced plasma focus devices can be used effectively in conjunction with neutronically efficient fission reactors to constitute ''self-sufficient'' breeders. Correlations among the various parameters such as the power output and conversion ratio of the fission reactor with the neutron yield and capacitor bank energy of the dense plasma focus device are presented and discussed

  8. Configuration studies of LHD plasmas

    International Nuclear Information System (INIS)

    Okamoto, M.

    1997-01-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration

  9. Configuration studies of LHD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao

    1997-03-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration. (author)

  10. Ionization effects and linear stability in a coaxial plasma device

    Science.gov (United States)

    Kurt, Erol; Kurt, Hilal; Bayhan, Ulku

    2009-03-01

    A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities ( i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate Im ( σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.

  11. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  12. Neon-like Iron Ion Lines Measured in NIFS/Large Helical Device (LHD) and Hinode /EUV Imaging Spectrometer (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tetsuya; Hara, Hirohisa [National Astronomical Observatory, National Institutes of Natural Sciences 2-21-1 Osawa Mitaka Tokyo, 181-8588 (Japan); Murakami, Izumi; Kato, Daiji; Morita, Shigeru [SOKENDAI (Graduate University for Advanced Studies) Hayama, Miura-gun, Kanagawa, 240-0193 (Japan); Sakaue, Hiroyuki A.; Suzuki, Chihiro; Tamura, Naoki [National Institute for Fusion Science, National Institutes of Natural Sciences 322-6 Oroshi-cho, Toki Gifu, 509-5292 (Japan); Yamamoto, Norimasa [Chubu University 1200 Matsumoto-cho, Kasugai Aichi, 487-0027 (Japan); Nakamura, Nobuyuki, E-mail: watanabe@uvlab.mtk.nao.ac.jp [The University of Electro-Communications 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan)

    2017-06-10

    Line intensities emerging from the Ne-sequence iron ion (Fe xvii) are measured in the laboratory, by the Large Helical Device at the National Institute for Fusion Science, and in the solar corona by the EUV Imaging Spectrometer (EIS) on board the Hinode mission. The intensity ratios of Fe xvii λ 204.6/ λ 254.8 are derived in the laboratory by unblending the contributions of the Fe xiii and xii line intensities. They are consistent with theoretical predictions and solar observations, the latter of which endorses the in-flight radiometric calibrations of the EIS instrument. The still remaining temperature-dependent behavior of the line ratio suggests the contamination of lower-temperature iron lines that are blended with the λ 204.6 line.

  13. New pellet production and acceleration technologies for high speed pellet injection system 'HIPEL' in large helical device

    International Nuclear Information System (INIS)

    Viniar, I.; Sudo, S.

    1994-12-01

    New technologies of pellet production and acceleration for fueling and diagnostics purposes in large thermonuclear reactors are proposed. The technologies are intended to apply to the multiple-pellet injection system 'HIPEL' for Large Helical Device of NIFS in Japan. The pellet production technology has already been tested in a pipe-gun type pellet injector. It will realize the repeating pellet injection by means of decreasing of the pellet formation time into the pipe-gun barrel. The acceleration technology is based upon a new pump tube operation in two-stage gas gun and also upon a new conception of the allowable pressure acting on a pellet into a barrel. Some preliminary estimations have been made, and principles of a pump tube construction providing for a reliable long term operation in the repeating mode without any troubles from a piston are proposed. (author)

  14. Diagnostics of peripheric plasma in thermonuclear devices

    International Nuclear Information System (INIS)

    Vojtsenya, V.S.; Tereshin, V.I.

    1986-01-01

    Review of basic methods, applied or developed for peripheral plasma diagnostics is given, including electric probes of various types, collecting probes for studying impurity ion and main plasma component characteristics, spectroscopic and corpuscular-optical methods, laser fluorescence spectroscopy, mass-spectrometry, heavy ion and atom (lithium and hydrogen) beam methods. Ranges of plasma parameters their measurements being provided by the methods indicated are presented

  15. Numerical study of two-fluid flowing equilibria of helicity-driven spherical torus plasmas

    International Nuclear Information System (INIS)

    Kanki, T.; Nagata, M.; Uyama, T.

    2004-01-01

    Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) are numerically determined by using the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluids near the central conductor are tied to an external toroidal field and ion fluids are not. The magnetic configurations change from the high-q HD-ST (q>1) with paramagnetic toroidal field and low-β (volume average β value, ∼ 2%) through the helicity-driven spheromak and RFP (reverse field pinch) to the ultra low-q HD-ST (0 ∼ 18%) as the external toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift is dominant in the flowing two-fluid. (authors)

  16. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    monocytic leukemia cancer cells ( THP -1) were also tested and the results 19 demonstrate that a preference for apoptosis in plasma treated THP -1...unanswered questions. We have tested the effects of indirect exposure of non-thermal air plasma on monocytic leukemia cancer cells ( THP -1) and deciphering... tested and the results are shown in Fig. above. The results demonstrate that a preference for apoptosis in plasma treated THP -1 cells under

  17. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    Science.gov (United States)

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

  18. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  19. Analysis of plasma behavior and electro-magnetic interaction between plasma and device

    International Nuclear Information System (INIS)

    Kobayashi, Tomofumi

    1980-01-01

    A simulation program for the analysis of plasma behavior and the electromagnetic interaction between plasma and device has been developed. The program consists of a part for the analysis of plasma behavior (plasma system) and a part for the analysis of the electro-magnetic interaction between plasma and devices (circuit system). The parameters which connect the plasma system and the circuit system are the electric resistance of plasma, the internal inductance, and the plasma current. For the plasma system, the simultaneous equations which describe the density distribution of plasma particles, the temperature distribution of electrons and ions, and the space-time variation of current density distribution were derived. The one-dimensional plasma column in γ-direction was considered. The electric resistance and the internal inductance can be deduced. The circuit components are a current transformer, a vertical field coil, a quadrupole field coil, a vacuum chamber and others. An equation which describes plasma position and the shape of cross section is introduced. The plasma position can be known by solving the Mukhavatov's formula of equilibrium. By using this program, the build-up process of plasma current in JT-60 was analysed. It was found that the expansion of plasma sub radius and the control of current distribution by gas injection are the effective methods to obtain high temperature and high density plasma. The eddy current induced in a vacuum vessel shields 40 percent of magnetic field made in the plasma region by a vertical field coil. (Kato, T.)

  20. Behavior of magnetic islands in 3D MHD equilibria of helical devices

    International Nuclear Information System (INIS)

    Hayashi, T.; Sato, T.; Nakajima, N.

    1994-09-01

    Magnetic island formation in three-dimensional finite-β equilibria in the H-1 Heliac is studied by using the HINT code. It is found that the size of a dangerous island should increase with β but that a destruction of the equilibrium at low β is avoided because the rotational transform evolves to exclude the rational surface concerned. At higher β there is evidence of near-resonant flux surface deformations which may lead to an equilibrium limit. A reconnected equilibrium at still higher β exhibits a double island structure which is similar to homoclinic phase portraits which have been observed after separatrix reconnection in Hamiltonian systems. Physical mechanism of the island formation in finite-β helical equilibria is investigated to confirm there are cases where the global effect of the Pfirsch-Schlueter currents is important. The earlier theory is extended to elucidate the occurence of the complete self-healing of island when the resistive interchange criterion satisfied. (author)

  1. The HelCat basic plasma science device

    Science.gov (United States)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  2. Dual-function magnetic structure for toroidal plasma devices

    International Nuclear Information System (INIS)

    Brown, R.L.

    1978-01-01

    This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring

  3. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  4. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  5. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  6. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2014-10-01

    by Remote Exposure of Resistive Barrier Cold Plasma." Biotechnology and Bioengineering, vol. 111, No. 3. p. 565 - 574 (2014). 16. Magesh...remote exposure of resistive barrier cold plasma.” Biotechnology and Bioengineering. (Accepted for publication in the next issue in 2013) 11. Magesh...foes-Safety-and-Security--1945) 4. “University Touts ’Superbug’ Killing Technology”, Quality Assurance and Food Safety Magazine , July 2013. (Link

  7. Device of supporting a vacuum plasma vessel

    International Nuclear Information System (INIS)

    Kanoi, Minoru; Hori, Yasuro.

    1980-01-01

    Purpose: To improve the earthquake-resistance of a vacuum plasma vessel by equalizing the natural vibrations of a vibrating system formed by supporting mechanisms of the respective sectors of the vessel. Constitution: The vacuum plasma vessel is constructed of bellows interposed among a plurality of thick sector-like rings and the rings, which are respectively supported by supporting mechanisms. Thus, the vibrating systems are divided into the rings interposed with the bellows, arms as the supporting mechanisms, and posts. The natural vibrations of these vibrating systems are equalized to each other by suitably adjusting the configurations and the sized of the arms and the posts or the weight or the like of the rings. Therefore, the respective rings become vibrated at the natural vibrations equal to each other so as to largely reduce the stresses produced at both ends of the bellows. Accordingly, it can remarkably improve the earthquake-resistance of the entire plasma vessel. (Sekiya, K.)

  8. Chaos control and taming of turbulence in plasma devices

    DEFF Research Database (Denmark)

    Klinger, T.; Schröder, C.; Block, D.

    2001-01-01

    Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply...... to plasma instabilities. In the present paper we discuss recent progress in chaos control and taming of turbulence in three different plasma "model" experiments: (1) Chaotic oscillations in simple plasma diodes, (2) ionization wave turbulence in the positive column of glow discharges, and (3) drift wave...

  9. Plasma dynamics in a staged pinch device

    International Nuclear Information System (INIS)

    Khattak, N.A.D.; Ahmed, Z.; Mirza, A.M.; Murtaza, G.

    1998-01-01

    Plasma parameters in fiber initiated fast and dense theta-pinch plasma driven by an annular finite-thickness gas-puff Z-pinch are studied. The imploding gas-puff Z-pinch plasma traps an axial magnetic field B/sub z/, compressing it to large values (of the order of several megagauss) in an extremely short time. The rapidly changing magnetic flux of this field induces an azimuthal current on the surface of the coaxially placed fiber, with a rise time an order of magnitude shorter than the applied Z-pinch current. The shorter rise time of the current stabilizes the pinch against sausage mode of MHD instabilities. Our numerical results demonstrate that for a relatively thick gas-puff layer, the compression occurs before the current saturates. At the peak compression the fuel densities of the order of 10/sup 25/ cm/sup -3/ and temperature above 10 keV can be achieved on a time scale of 0.1 nanoseconds, yielding the Lawson Criterion parameters n tau is approximately equal to 10/sup 14/ sec cm/sup -3/ for D-T fuel. The snow-plow effect incorporated in our model exercise a strong influence on the onset and growth rate of sausage and Rayleigh-Taylor (R-T) modes of instabilities. Imposing a rotational velocity on the outer thin gas-puff plasma can control the Rayleigh-Taylor instability. Numerical results indicate that the choice of the spin velocity is critical. Large values of the spin velocity, though provide stabilization against the R-T instability at the final stage of compression, however, it adversely reduce the plasma parameters so essential to achieve controlled fusion. Our analysis, therefore, suggests that a judicious choice of the spin velocity is necessary to obtain the desired temperature and density, especially when we seed D-T fiber plasma with a small fraction of high-Z Kr impurity to initiate the radiative collapse. (author)

  10. Intrinsic suppression of turbulence in linear plasma devices

    Science.gov (United States)

    Leddy, J.; Dudson, B.

    2017-12-01

    Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.

  11. Magnetic confinement in plasmas in nuclear devices

    International Nuclear Information System (INIS)

    Tull, C.G.

    1979-01-01

    The main emphasis of the magnetic fusion energy research program today lies in the development of two types of confinement schemes: magnetic mirrors and tokamaks. Experimental programs for both of these confinement schemes have shown steady progress toward achieving fusion power breakeven. The scaling of the current machines to a reactor operating regime and newly developed methods for plasma heating will very likely produce power breakeven within the next decade. Predictions are that the efficiency in a fusion power plant should exceed 32%

  12. Parametric studies in a small plasma focus device

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Silva, P.; Wyndham, E.

    1996-01-01

    Very high temperature and density plasmas can be produced in modest size plasma focus devices at the kJ level. Much of the scaling parameters on the plasma focus have been evaluated, though many questions still remain. The modest cost and simple construction allows easy modification to the device and the discharge parameters. In this paper the authors report on a small plasma focus device, which is set-up to investigate the effect of some of those modifications on the plasma, with detailed experimental diagnostics. Experiments have been carried out in various gases and with mixtures of different ratios. Extended operating range from below 0.5 torr upwards has been achieved with the implementation of the auxiliary discharge circuit. Despite the low voltage and low energy operation, energetic beam formation has been observed at the time of the final compression, prior to disruption. Current sheath formation and evolution has been characterized using the magnetic probes array, in correlation with beam formation and plasma emission. The relationship of the current sheath structure and that of the pinched plasma, as shown by the filtered X-ray pinhole camera, has been investigated

  13. Helical structures in vertically aligned dust particle chains in a complex plasma

    Science.gov (United States)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  14. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    Science.gov (United States)

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  15. Study on impurity screening in stochastic magnetic boundary of the Large Helical Device

    International Nuclear Information System (INIS)

    Kobayashi, M.; Morita, S.; Feng, Y.

    2008-10-01

    The impurity transport characteristics in the scrape-off layer associated with a stochastic magnetic boundary of LHD are analyzed. The remnant islands with very small internal field line pitch in the stochastic region play a key role in reducing the impurity influx. The thermal force driven impurity influx is significantly suppressed when the perpendicular energy flux exceeds the parallel one inside the islands due to the small pitch. Application of the 3D edge transport code, EMC3-EIRENE, confirmed the impurity retention (screening) effect in the edge region. It is also found that the edge surface layers are the most effective region to retain (screen) impurities because of the flow acceleration and plasma cooling via short flux tubes. The carbon emission obtained in experiments is in good agreement with the modelling results, showing the impurity retention (screening) potential of the stochastic magnetic boundary. (author)

  16. A motional Stark effect diagnostic analysis routine for improved resolution of iota in the core of the large helical device.

    Science.gov (United States)

    Dobbins, T J; Ida, K; Suzuki, C; Yoshinuma, M; Kobayashi, T; Suzuki, Y; Yoshida, M

    2017-09-01

    A new Motional Stark Effect (MSE) analysis routine has been developed for improved spatial resolution in the core of the Large Helical Device (LHD). The routine was developed to reduce the dependency of the analysis on the Pfirsch-Schlüter (PS) current in the core. The technique used the change in the polarization angle as a function of flux in order to find the value of diota/dflux at each measurement location. By integrating inwards from the edge, the iota profile can be recovered from this method. This reduces the results' dependency on the PS current because the effect of the PS current on the MSE measurement is almost constant as a function of flux in the core; therefore, the uncertainty in the PS current has a minimal effect on the calculation of the iota profile. In addition, the VMEC database was remapped from flux into r/a space by interpolating in mode space in order to improve the database core resolution. These changes resulted in a much smoother iota profile, conforming more to the physics expectations of standard discharge scenarios in the core of the LHD.

  17. Fast-ion transport during repetitive burst phenomena of toroidal Alfven eigenmodes in the Large Helical Device

    International Nuclear Information System (INIS)

    Nishiura, M.; Isobe, M.; Yamamoto, S.

    2008-10-01

    Alfven instabilities induced fast-ion losses have been directly observed for the first time by a newly developed scintillator lost ion probe (SLIP) in the Large Helical Device (LHD). The SLIP can measure the pitch angle and gyro radius of escaped fast ions toward loss region. Neutral beam driven Alfven Eigenmodes (AEs) are excited under the reactor relevant conditions: the ratio of fast ion (beam) speed υ b and Alfven speed υ A is more than 0.3 - 4.0. The beta value for fast ions is considered roughly to be ∼10%. Non-linear phenomena related to Alfven instabilities are observed under such conditions. During repetitive Toroidal Alfven Eigenmode (TAE) bursts, synchronized fast ion losses are observed by SLIP. From the orbit calculation the measured fast ion with pitch angle of 130 degrees and beam energy of 150 keV surely pass through the locations of TAE gaps. The orbit analysis found that the observed fast ions interact strongly with the excited TAEs. This result becomes the first experimental evidence of radial transport of fast ions predicted theoretically during TAE activities. In addition, from the correlation between stored energy degradation and fast-ion loss rate, it is found that fast-ion losses induced by TAE activities with low toroidal mode numbers categorize two phenomena without and with fast- ion loss enhancements, which indicate the fast-ion redistribution and loss. (author)

  18. Experimental validation of models for Plasma Focus devices

    International Nuclear Information System (INIS)

    Rodriguez Palomino, Luis; Gonzalez, Jose; Clausse, Alejandro

    2003-01-01

    Plasma Focus(PF) Devices are thermonuclear pulsators that produce short pulsed radiation (X-ray, charged particles and neutrons). Since Filippov and Mather, investigations have been used to study plasma properties. Nowadays the interest about PF is focused in technology applications, related to the use of these devices as pulsed neutron sources. In the numerical calculus the Inter institutional PLADEMA (PLAsmas DEnsos MAgnetizados) network is developing three models. Each one is useful in different engineering stages of the Plasma Focus design. One of the main objectives in this work is a comparative study on the influence of the different parameters involved in each models. To validate these results, several experimental measurements under different geometry and initial conditions were performed. (author)

  19. Physics and technology of large plasma focus devices

    International Nuclear Information System (INIS)

    Herold, H.

    1990-01-01

    This paper reports on the plasma focus (PF) which produces a high temperature (0,5 to 1 keV), high density (5 · 10 18 cm -3 ), short living (up to 500 ns) fusion plasma in a very simple and cheap device. In the focus plasma, fusion processes take place with an energy efficiency which is not surpassed even by large Tokamak or Inertial Confinement Fusion devices. But this fusion efficiency and the high fusion neutron yield are not the only impetus to PF research. Due to the high energy density in the focus plasma (j ≥ 10 6 A/cm 2 exclamation point), many very interesting, mostly nonlinear phenomena take place which led to high intensity electron, ion and radiation emission. Micro- and macro instabilities, turbulence and selforganization processes develop. Most of these phenomena are not or only poorly understood

  20. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    International Nuclear Information System (INIS)

    Andreev, Pavel A.

    2015-01-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction

  1. Overview of quasi single helicity experiments in reversed field pinches

    International Nuclear Information System (INIS)

    Martin, P.; Marrelli, L.; Spizzo, G.

    2003-01-01

    We report the results of an experimental and theoretical project dedicated to the study of Quasi Single Helicity Reversed Field Pinch plasmas. The project has involved several RFP devices and numerical codes. It appears that QSH spectra are a feature common to all the experiments. (author)

  2. Electrical characteristics of a small plasma focus device

    International Nuclear Information System (INIS)

    Choi, P.; Favre, M.; Silva, P.; Chuaqui, H.; Wyndham, E.

    1996-01-01

    Efficient plasma focus operation relies on uniform initial breakdown across the insulator surface. The basic plasma focus electric circuit is discussed in order to highlight circuit modifications that produce high voltage oscillation at the initial breakdown time. Superimposed on the main discharge voltage, such oscillating voltage has been found in real systems to enhance the initial gas breakdown by localizing the initial current path across the insulator surface. PSPICE circuit simulations are compared with electric signals from different operational plasma focus devices. (author). 3 figs., 7 refs

  3. Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device

    International Nuclear Information System (INIS)

    Popovich, P.; Carter, T. A.; Friedman, B.; Umansky, M. V.

    2010-01-01

    The properties of linear instabilities in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] are studied both through analytic calculations and solving numerically a system of linearized collisional plasma fluid equations using the three-dimensional fluid code BOUT[M. Umansky et al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully modified to treat cylindrical geometry. Instability drive from plasma pressure gradients and flows is considered, focusing on resistive drift waves and the Kelvin-Helmholtz and rotational interchange instabilities. A general linear dispersion relation for partially ionized collisional plasmas including these modes is derived and analyzed. For Large Plasma Device relevant profiles including strongly driven flows, it is found that all three modes can have comparable growth rates and frequencies. Detailed comparison with solutions of the analytic dispersion relation demonstrates that BOUT accurately reproduces all characteristics of linear modes in this system.

  4. Divertor, thermonuclear device and method of neutralizing high temperature plasma

    International Nuclear Information System (INIS)

    Ikegami, Hideo.

    1995-01-01

    The thermonuclear device comprises a thermonuclear reactor for taking place fusion reactions to emit fusion plasmas, and a divertor made of a hydrogen occluding material, and the divertor is disposed at a position being in contact with the fusion plasmas after nuclear fusion reaction. The divertor is heated by fusion plasmas after nuclear fusion reaction, and hydrogen is released from the hydrogen occluding material as a constituent material. A gas blanket is formed by the released hydrogen to cool and neutralize the supplied high temperature nuclear fusion plasmas. This prevents the high temperature plasmas from hitting against the divertor, elimination of the divertor by melting and evaporation, and solve a problem of processing a divertor activated by neutrons. In addition, it is possible to utilize hydrogen isotopes of fuels effectively and remove unnecessary helium. Inflow of impurities from out of the system can also be prevented. (N.H.)

  5. Development of a real-time simulation tool towards self-consistent scenario of plasma start-up and sustainment on helical fusion reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2017-06-01

    This study closely investigates the plasma operation scenario for the LHD-type helical reactor FFHR-d1 in view of MHD equilibrium/stability, neoclassical transport, alpha energy loss and impurity effect. In 1D calculation code that reproduces the typical pellet discharges in LHD experiments, we identify a self-consistent solution of the plasma operation scenario which achieves steady-state sustainment of the burning plasma with a fusion gain of Q ~ 10 was found within the operation regime that has been already confirmed in LHD experiment. The developed calculation tool enables systematic analysis of the operation regime in real time.

  6. In-liquid plasma devices and methods of use thereof

    KAUST Repository

    Cha, Min; Hamdan, Ahmad Bassam

    2017-01-01

    Devices and methods for generating a plasma in a liquid are provided. A low- dielectric material can be placed in contact with the liquid to form an interface a distance from an anode. A voltage can be applied across the anode and a cathode

  7. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  8. Plasma processing of soft materials for development of flexible devices

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Plasma-polymer interactions have been studied as a basis for development of next-generation processing of flexible devices with soft materials by means of low-damage plasma technologies (soft materials processing technologies). In the present article, interactions between argon plasmas and polyethylene terephthalate (PET) films have been examined for investigations of physical damages induced by plasma exposures to the organic material via chemical bonding-structure analyses using hard X-ray photoelectron spectroscopy (HXPES) together with conventional X-ray photoelectron spectroscopy (XPS). The PET film has been selected as a test material for investigations in the present study not merely because of its specific applications, such as a substrate material, but because PET is one of the well defined organic materials containing major components in a variety of functional soft materials; C-C main chain, CH bond, oxygen functionalities (O=C-O bond and C-O bond) and phenyl group. Especially, variations of the phenyl group due to argon plasma exposures have been investigated in the present article in order to examine plasma interactions with π-conjugated system, which is in charge of electronic functions in many of the π-conjugated electronic organic materials to be utilized as functional layer for advanced flexible device formations. The PET films have been exposed to argon plasmas sustained via inductive coupling of RF power with low-inductance antenna modules. The HXPES analyses exhibited that the degradations of the oxygen functionalities and the phenyl group in the deeper regions up to 50 nm from the surface of the samples were insignificant indicating that the bond scission and/or the degradations of the chemical bonding structures due to photoirradiation from the plasma and/or surface heating via plasma exposure were relatively insignificant as compared with damages in the vicinity of the surface layers.

  9. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  10. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source

    International Nuclear Information System (INIS)

    Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S.; Firman, Taylor; Prager, James R.; Ziemba, Timothy; Wrobel, Jonathan S.

    2013-01-01

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10 19 m −3 to 1 × 10 19 m −3 . Deuterium spheromak formation is possible with density as low as 2 × 10 18 m −3 . The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented

  11. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Firman, Taylor; Prager, James R.; Ziemba, Timothy [Eagle Harbor Technologies, Inc., 119 W. Denny Way, Suite 210, Seattle, Washington 98119 (United States); Wrobel, Jonathan S. [979B West Moorhead Circle, Boulder, Colorado 80305 (United States)

    2013-10-15

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup −3} to 1 × 10{sup 19} m{sup −3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup −3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

  12. Method of controlling plasma discharge in a thermonuclear device

    International Nuclear Information System (INIS)

    Kawasaki, Kozo; Ishida, Takayuki; Takemaru, Koichi; Kawasaki, Takahide.

    1982-01-01

    Purpose: To prolong the plasma discharging period by previously increasing the temperature at the thick portion of a vacuum container prior to the plasma discharge to thereby decrease the temperature difference caused by the plasma discharge between the thick portion and the bellows. Method: Temperature values at the outer surface of the thick portion and the bellows of a vacuum container detected by temperature sensors are applied to the input processing section of a temperature control device, and baking control is carried out by way of the output processing section so that each of the portions of the vacuum container may be maintained at the temperature set by the temperature setting section based on the calculation performed in the control processing section. By previously increasing the temperature β at the thick portion higher by about 100 0 C than the temperature α for the bellows in the baking treatment prior to the plasma discharge, the plasma discharge period during which the temperature levels at both of the portions are reversed after the plasma discharge and the temperature difference arrives at a predetermined level i.g., of 100 0 C can significantly be prolonged as compared with the case where the plasma discharge is started at the same temperature for both of the portions. (Yoshino, Y.)

  13. Pulsed x-ray generation from a plasma focus device

    International Nuclear Information System (INIS)

    Zambra, M; Bruzzone, H; Sidelnikov, Y; Kies, W; Moreno, C; Sylvester, G; Silva, P; Moreno, J; Soto, L

    2003-01-01

    Dynamical pinches coupled to electrodes like the dense Z-pinch or the dense plasma focus have been intensively studied in the last four decades for their high fusion efficiency and their application potential. Though the expectations of the eighties of the last century, scaling these pinches up to fusion reactors, did not come true, the development of fast and powerful experiments resulted in new insights in pinch physics and paved the way for developing compact dynamical pinches as pulsed neutron and X-radiation sources for many applications. There is a permanent and growing interest in the research community for understanding and determining the generation properties of X-rays, neutrons and charged particles emitted from a high-temperature high-density plasmas, especially in the plasma focus configuration. The Plasma Physics and Plasma Technology Group of the CCHEN has developed the SPEED4 fast-plasma focus device, in collaboration with the Plasma Physics Group of the Dusseldorf University, in order to perform experimental studies such as X-ray and neutron emission, and electron and ion beam characterization (author)

  14. A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime

    Science.gov (United States)

    Joshi, Garima; Ravi, G.; Mukherjee, S.

    2018-06-01

    A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.

  15. Plasma response to electron energy filter in large volume plasma device

    International Nuclear Information System (INIS)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-01-01

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma

  16. Current and Perspective Applications of Dense Plasma Focus Devices

    Science.gov (United States)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  17. Current and Perspective Applications of Dense Plasma Focus Devices

    International Nuclear Information System (INIS)

    Gribkov, V. A.

    2008-01-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement--MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy

  18. Progress with helicity injection current drive

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Raman, R.; Nelson, B.A.

    2003-01-01

    Coaxial Helicity Injection (CHI) experiments in the NSTX and HIT-II devices are reported. NSTX has produced toroidal currents of 0.4 MA and pulse lengths of up to 0.33 s. These discharges nearly fill the NSTX main chamber, and show the n=1 rotating distortion characteristic of high-performance CHI plasmas. CHI has been used in HIT-II to provide a closed flux startup plasma for inductive drive. The CHI startup method saves transformer volt-seconds and greatly improves reproducibility and reliability of inductively driven discharges, even in the presence of diminishing wall conditions. (author)

  19. Helical-D pinch

    International Nuclear Information System (INIS)

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  20. Plasma Sheath Behavior in a Coaxial Discharge Device

    International Nuclear Information System (INIS)

    EL-Aragi, G.; Soliman, H.M.; Masoud, M.M.

    2001-01-01

    The behavior of the plasma sheath has been studied experimentally and theoretically for 3 kJ coaxial discharge device. The discharge takes place in argon gas with pressure of 0.8 mbar. The experiments are conducted with a 10 kV bank charging voltage, which corresponds to 110 kA peak discharge current with time period of 34 μs. The experimental investigations have been studied using a magnetic probes and a miniature Rogowsky coil. A snowplough model is used to drive an analytical solution of the plasma sheath behavior in axial direction. Measurements of radial distribution of plasma sheath current density J r at the muzzle, show that J r has the following relation, J r is proportional to r -1.1 . From the experimental results and theoretical calculations of axial distribution of azimuthal magnetic field induction and plasma sheath velocity, the inclination angle between the normal of the plasma sheath with the axial distance at any axial position is evaluated and it has approximately a constant value for most axial distances. Also, the axial motion of plasma sheath acceleration is estimated experimentally a max = 0.13 x 10 12 ' cm / s 2 at z = 11 cm and from theoretical calculations a max = 0.15 x 10 12 cm/ s 2 at max z = 1.6 cm. A comparison of the experimental results with the theoretical calculations, under the assumption of the snowplough model are not in agreement. (author)

  1. dc-plasma-sprayed electronic-tube device

    Science.gov (United States)

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  2. Production of radioisotopes within a plasma focus device

    International Nuclear Information System (INIS)

    Angeli, E.; Tartari, A.; Frignani, M.; Molinari, V.; Mostacci, D.; Rocchi, F.; Sumini, M. . E-mail address of corresponding author: domiziano.mostacci@mail.ing.unibo.it

    2005-01-01

    In recent years, research conducted in the US and in Italy has demonstrated production of radioisotopes in Plasma Focus (PF) devices, and particularly, on what could be termed 'endogenous' production, to wit, production within the plasma itself, as opposed to irradiation of targets. This technique relies on the formation of localized small plasma zones characterized by very high densities and fairly high temperatures. The conditions prevailing in these zones lead to high nuclear reaction rates, as pointed out in previous work by several authors. Further investigation of the cross sections involved has proven necessary to model the phenomena involved. In this paper, the present status of research in this field is reviewed, both with regards to cross section models and to experimental production of radioisotopes. Possible outcomes and further development are discussed. (author)

  3. Plasma diagnostics in the CECI device through visible spectroscopy

    International Nuclear Information System (INIS)

    Ueda, M.; Kayama, M.E.; Aso, Y.

    1991-11-01

    In this paper we discuss the application of a visible spectrometer which was used to diagnose a plasma produced in an RFP device, called CECI. A Jobin Yvon, HR-640 S spectrometer with a photomultiplier detector was used to measure the Doppler broadening of lines emitted by the plasma, and allowed to measure the ion temperatures of the order of 2-3 eV. The electron temperature of 40-50 eV was determined by the method of He I line intensity ratio. The spectroscopically determined ion temperature is in better accordance with the 10 eV electron temperature obtained with an electrostatic probe. The line emissions of He II, H I, C II and O II were compared with signals from other diagnostics, and their correlations indicated the presence of MHD instabilities in the plasma. (author)

  4. Deposition of aluminium nanoparticles using dense plasma focus device

    International Nuclear Information System (INIS)

    Devi, Naorem Bilasini; Srivastava, M P; Roy, Savita

    2010-01-01

    Plasma route to nanofabrication has drawn much attention recently. The dense plasma focus (DPF) device is used for depositing aluminium nanoparticles on n-type Si (111) wafer. The plasma chamber is filled with argon gas and evacuated at a pressure of 80 Pa. The substrate is placed at distances 4.0 cm, 5.0 cm and 6.0 cm from the top of the central anode. The aluminium is deposited on Si wafer at room temperature with two focused DPF shots. The deposits on the substrate are examined for their morphological properties using atomic force microscopy (AFM). The AFM images have shown the formation of aluminium nanoparticles. From the AFM images, it is found that the size of aluminium nanoparticles increases with increase in distance between the top of anode and the substrate for same number of DPF shots.

  5. Active trajectory control for a heavy ion beam probe on the compact helical system

    International Nuclear Information System (INIS)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Crowley, T.P.; Hamada, Y.; Hidekuma, S.; Kojima, M.

    1996-05-01

    A 200 keV heavy ion beam probe (HIBP) on the Compact Helical System torsatron/heliotron uses a newly proposed method in order to control complicated beam trajectories in non-axisymmetrical devices. As a result, the HIBP has successfully measured potential profiles of the toroidal helical plasma. The article will describe the results of the potential profile measurements, together with the HIBP hardware system and procedures to realize the method. (author)

  6. Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices

    Directory of Open Access Journals (Sweden)

    S. Wiesen

    2017-08-01

    Full Text Available Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs. For an electricity-producing fusion power plant at power density Psep/R>15MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures, SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation

  7. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Science.gov (United States)

    Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-01

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  8. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, I., E-mail: eu13z002@steng.u-hyogo.ac.jp; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-15

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  9. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  10. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    NYGREN, RICHARD E.; STAVROS, DIANA T.

    2000-01-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed

  11. A new linear plasma device for various edge plasma studies at SWIP

    Science.gov (United States)

    Xu, Min; Zheng, Pengfei; Tynan, George; Che, Tong; Wang, Zhanhui; Guo, Dong; Wei, Ran

    2017-10-01

    To facilitate the plasma-material interactions (PMI) studies, Southwestern Institute of Physics (SWIP) has constructed a linear plasma device. It is comprised of a source chamber (Φ 0.4 m), a target chamber (Φ 0.9 m), 15 magnets with different sizes, and power supplies with the total power of a few hundred kilowatts, etc. A maximum magnetic field of 0.3 Tesla along the axial direction can be produced. The current of each of the 15 magnets can be independently controlled. More than 60 ports are available for diagnostics, with the sizes vary from Φ 50 mm to Φ 150 mm. Rectangular ports of 190 mm × 270 mm are also available. 12 ports looking at the sample holder are specially designed for ion beam injection, of which the axes are 25 to the chamber axis. The device is equipped with a LaB6 hot cathode plasma source, which is able to generate steady-state H/D/He plasmas with a diameter of Φ 100 mm, density of 1x1019 /m3 , and a particle flux of 1022 1023 n/m2 .s. The electron temperature is usually a few eV. Further, a Helicon RF plasma source is also planned for plasma transport studies. Int'l Sci & Tech Cooperation Program of China (No. 2015DFA61760).

  12. Challenges for Plasma Diagnostic in a Next Step Device (FIRE)

    International Nuclear Information System (INIS)

    Young, Kenneth M.

    2002-01-01

    The physics program of any next-step tokamak such as FIRE [Fusion Ignition Research Experiment] sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g., ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, i n fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for the TFTR [Tokamak Fusion Test Reactor] is essential; it must be qualified well before moving into D-T [deuterim-tritium] experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described

  13. Augmentation and Control of Burn Rates in Plasma Devices

    National Research Council Canada - National Science Library

    Bourham, Mohamed

    1999-01-01

    Interaction of electrothermal plasmas with solid propellants necessitates thorough understanding of plasma-propellant interface physics, momentum and energy transfer, plasma flow regimes, and mixing processes...

  14. An investigation of the plasma behaviour in a Filippov type plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Mahabadi, T D [Plasma Physics Research Center, I.A.U, PO Box 14665-678, Tehran (Iran, Islamic Republic of); Tafreshi, M A [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2007-09-15

    Plasma behaviour in the 90 kJ Filippov type plasma focus (PF) device Dena, is studied both experimentally and theoretically. The latest experimental data obtained by the use of the Dena facility are presented. Then the experimental data are compared with the simulated data obtained through the ML model. This study shows that the ML model, to a good extent, is capable of predicting the plasma behaviour in the Filippov type PF. The experimental and the theoretical results show that the increment of the discharge voltage leads to an almost linear decrement of the pinch time. It is also shown that the increment of the pressure leads to a decrement of the current sheath expansion velocity. Finally, a semiempirical method for determination of the permitted values of the current efficiency factor and the mass shedding factor is presented.

  15. Perspectives on confinement in helical systems

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae

    1989-01-01

    A review on recent experimental results and theoretical models on anomalous transport and density limit in toroidal helical devices is presented. Importance of transport problems is discussed. Experiments on Heliotron-E, Wendelstein-VIIA and new devices, i.e., ATF, Wendelstein-VIIAS and CHS, are reviewed and an overview on confinement property is given. From recent experimental results one sees that there are anomalous transport, which increases with temperature, and density limit, and that they limit the energy confinement time as well as the attainable beta value. The confinement characteristics of the scrape off layer plasma and loss cone loss are discussed, and perspectives on the high temperature plasma are given. These anomalous transport and density limit will be difficult obstacles in realizing a reactor grade plasma in helical systems. It is an urgent task to draw a realistic picture of the confinement based on the present data base. The relevant knowledge now would be critically essential for the successful development of the research in 1990's. (author) 102 refs

  16. Role of thermo-physical properties on design and development of thermal plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.

    2014-01-01

    Thermal plasma devices find wide application in variety of technological areas like cutting, welding, spray coating, waste management, material processing, chemical reduction, nano-synthesis, novel material synthesis etc. Highly non-linear behavior of the plasma properties coupled with inherent instabilities, extremely high temperature, high gradients in thermal, and flow field, presence of thermal and chemical non-equilibrium make design and development of the plasma generating devices a challenging task as power levels of the devices increase

  17. TPA device for demonstration

    International Nuclear Information System (INIS)

    1980-02-01

    The TPA (torus plasma for amature) is a small race-trac type device made by the technical service division to demonstrate basic properties of plasma such as electron temperature, conductivity, effect of helical field for toroidal drift, and shape of plasma in mirror and cusp magnetic field in linear section. The plasmas are produced by RF discharge (-500W) and/or DC discharge (-30 mA) within glass discharge tube. Where major radius is 50 cm, length of linear section is 50 cm, toroidal magnetic field is 200 gauss. The device has been designed to be compact with only 100 V power source (-3.2 KW for the case without helical field) and to be full automatic sequence of operation. (author)

  18. Neon-like Iron Ion Lines Measured in NIFS/Large Helical Device (LHD) and Hinode/EUV Imaging Spectrometer (EIS)

    Science.gov (United States)

    Watanabe, Tetsuya; Hara, Hirohisa; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Morita, Shigeru; Suzuki, Chihiro; Tamura, Naoki; Yamamoto, Norimasa; Nakamura, Nobuyuki

    2017-06-01

    Line intensities emerging from the Ne-sequence iron ion (Fe XVII) are measured in the laboratory, by the Large Helical Device at the National Institute for Fusion Science, and in the solar corona by the EUV Imaging Spectrometer (EIS) on board the Hinode mission. The intensity ratios of Fe XVII λ 204.6/λ 254.8 are derived in the laboratory by unblending the contributions of the Fe XIII and XII line intensities. They are consistent with theoretical predictions and solar observations, the latter of which endorses the in-flight radiometric calibrations of the EIS instrument. The still remaining temperature-dependent behavior of the line ratio suggests the contamination of lower-temperature iron lines that are blended with the λ 204.6 line.

  19. Characterization of bismuth nanospheres deposited by plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: cscientific2@aec.org.sy [IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Mrad, O. [Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  20. Characterization of bismuth nanospheres deposited by plasma focus device

    International Nuclear Information System (INIS)

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-01-01

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed

  1. Helical-tokamak hybridization concepts for compact configuration exploration and MHD stabilization

    International Nuclear Information System (INIS)

    Oishi, T.; Yamazaki, K.; Arimoto, H.; Baba, K.; Hasegawa, M.; Ozeki, H.; Shoji, T.; Mikhailov, M.I.

    2010-11-01

    To search for low-aspect-ratio torus systems, a lot of exotic confinement concepts are proposed so far historically. One of the authors previously proposed the tokamak-helical hybrid called TOKASTAR (Tokamak-Stellarator Hybrid) to improve the magnetic local shear near the bad curvature region. This is characterized by simple and compact coil systems with enough divertor space relevant to reactor designs. Based on this TOKASTAR concept, a toroidal mode number N=2 C (compact) -TOKASTAR machine (R - 35 mm) was constructed. The rotational transform of this compact helical configuration is rather small to confine hot ions, but can be utilized as a compact electron plasma machine for multi-purposes. The C-TOKASTAR has a pair of spherically winding helical coils and a pair of poloidal coils. Existence of magnetic surface and electron confinement property in C-TOKASTAR device were investigated by an electron-emission impedance method. Calculation of the particle orbit also supports that closed magnetic surface is formed in the cases that the ratio between poloidal and helical coil current is appropriate. Another aspect of the research using TOKASTAR configuration includes the evaluation of the effect of the outboard helical field application to tokamak plasmas. It is considered that outboard helical field has roles to assist the initiation of plasma current, to improve MHD stability, and so on. To check these roles, we made TOKASTAR-2 machine (R - 0.12 m, B - 1 kG) with ohmic heating central coil, eight toroidal field coils, a pair of vertical field coils and two outboard helical field coil segments. The electron cyclotron heating plasma start-up and plasma current disruption control experiments might be expected in this machine. Calculation of magnetic field line tracing has revealed that magnetic surface can be formed using additional outer helical coils. (author)

  2. Preliminary Results Of A 600 Joules Small Plasma Focus Device

    International Nuclear Information System (INIS)

    Lee, S. H.; Yap, S. L.; Wong, C. S.

    2009-01-01

    Preliminary results of a 600 J (3.7 μF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltage across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0±0.5 μbar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.

  3. Compact and tunable focusing device for plasma wakefield acceleration

    Science.gov (United States)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  4. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    Science.gov (United States)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  5. Hard X-ray sources from miniature plasma focus devices

    International Nuclear Information System (INIS)

    Raspa, V.; Silva, P.; Moreno, J.; Zambra, M.; Soto, L.

    2004-01-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, ∼ 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, ∼ 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  6. Hard X-ray sources from miniature plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Silva, P.; Moreno, J.; Zambra, M.; Soto, L. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    2004-07-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, {approx} 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, {approx} 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  7. Enhanced Control for Local Helicity Injection on the Pegasus ST

    Science.gov (United States)

    Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.

    2017-10-01

    Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. Interaction of dense nitrogen plasma with SS304 surface using APF plasma focus device

    Science.gov (United States)

    Afrashteh, M.; Habibi, M.; Heydari, E.

    2012-04-01

    The nitridation of SS304 surfaces is obtained by irradiating nitrogen ions from Amirkabir plasma focus device, which use multiple focus deposition shots at optimum distance 10 cm from the anode. The Vickers Micro-Hardness values are improved more than twice for the nitrided samples comparing to the nonnitrided ones. The X-ray diffraction (XRD) analysis is carried out in order to explore the phase changes in the near surface structure of the metals. The results of Scanning Electron Microscopy (SEM) indicate changes in surface morphology which are the emergence of smooth and uniform film on the surface of the nitrided metals.

  9. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)

    2016-12-15

    Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms

  10. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  11. Spectral dependence, efficiency and localization of non-inductive current drive via helicity injection by global Alfven waves in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K.; Cuperman, S.; Bruma, C. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences

    1997-04-01

    A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-{beta} MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3{<=} m {<=} 3 and toroidal wavenumbers -20{<=} n {<=}20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the `net` current drive is positive (i.e. flows in the direction of the equilibrium current j{sub 0z} for m = -1, -2, -3 and -20 {<=} n {<=} -1 as well as for m +1, +2, +3 and n > 10); (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author).

  12. Spectral dependence, efficiency and localization of non-inductive current drive via helicity injection by global Alfven waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1997-01-01

    A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-β MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3≤ m ≤ 3 and toroidal wavenumbers -20≤ n ≤20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the 'net' current drive is positive (i.e. flows in the direction of the equilibrium current j 0z for m = -1, -2, -3 and -20 ≤ n ≤ -1 as well as for m +1, +2, +3 and n > 10; (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author)

  13. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  14. Engineering design of plasma generation devices using Elmer finite element simulation methods

    Directory of Open Access Journals (Sweden)

    Daniel Bondarenko

    2017-02-01

    Full Text Available Plasma generation devices are important technology for many engineering disciplines. The process for acquiring experience for designing plasma devices requires practice, time, and the right tools. The practice and time depend on the individual and the access to the right tools can be a limiting factor to achieve experience and to get an idea on the possible risks. The use of Elmer finite element method (FEM software for verifying plasma engineering design is presented as an accessible tool that can help modeling multi-physics and verifying plasma generation devices. Furthermore, Elmer FEM will be suitable for experienced engineer and can be used for determining the risks in a design or a process that use plasma. A physical experiment was conducted to demonstrate new features of plasma generation technology where results are compared with plasma simulation using Elmer FEM.

  15. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  16. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  17. Generalized helicity and its time derivative

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  18. Sausage instability of Z-discharged plasma channel in LIB-fusion device

    International Nuclear Information System (INIS)

    Murakami, H.; Kawata, S.; Niu, K.

    1982-07-01

    Current-carring plasma channels have been proposed for transporting intense ion beams from diodes to a target in a LIB-fusion device. In this paper, the growth rate of the most dangerous surface mode, that is, axisymmetric sausage instability is examined for the plasma channel. The growth rate is shown to be smaller than that of the plasma channel with no fluid motion in a sharp boundary. It is concluded that the stable plasma channel can be formed. (author)

  19. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  20. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  1. Efficiencies of the ICRF minority heating in the CHS and LHD plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Nakajima, N.; Mutoh, T.

    1994-01-01

    ICRF minority heatings are investigated in the plasmas of the Compact Helical System (CHS) and the Large Helical Device (LHD) by means of the orbit following Monte Carlo simulation. It is found that the heating efficiency decreases with increase of the absorption power by minority ions and depends strongly on the magnetic field strength and the field configuration. (author)

  2. On the spatial behavior of background plasma in different background pressure in CPS device

    International Nuclear Information System (INIS)

    Samantaray, Subrata; Paikaray, Rita; Sahoo, Gourishankar; Das, Parthasarathi; Ghosh, Joydeep; Sanyasi, Amulya Kumar

    2015-01-01

    Blob formation and transport is a major concern for investigators as it greatly reduces the efficiency of the devices. Initial results from CPS device confirm the role of fast neutrals inside the bulk plasma in the process of blob formation and transport. 2-D simulation of curvature and velocity shear instability in plasma structures suggest that in the presence of background plasma, secondary instability do not grow non-linearly to a high level and stabilizes the flow. Adiabaticity effect also creates a radial barrier for interchange modes. In the absence of background plasma the blob fragments even at the modest level of viscosity. The fast neutrals outside bulk plasma supposed to stabilize the system. The background plasma set up is aimed at creating fast neutrals outside main plasma column, hence; the background plasma set up is done in CPS device. The spatial behavior of plasma column in between electrodes is different for different base pressure in CPS device. The spatial variation of electron temperature of plasma column between electrodes is presented in this communication. Electron temperature is measured from emission spectroscopy data. The maximum electron temperature (line averaged) is ∼ 1.5 eV. (author)

  3. Helically symmetric experiment, (HSX) goals, design and status

    International Nuclear Information System (INIS)

    Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.

    1995-01-01

    HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab

  4. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  5. Contributions to the 7th International Conference on plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains three papers presented in the 7th International Conference on plasma surface interactions in controlled fusion devices held in Princeton (USA) 5-9 May 1986, all referred to the FT Tokamak

  6. Potential formation in the plasma confinement region of a radio-frequency plugged linear device

    International Nuclear Information System (INIS)

    Fujita, Hideki; Kumazawa, Ryuhei; Howald, A.M.; Okamura, Shoichi; Sato, Teruyuki; Adati, Keizo; Garner, H.R.; Nishimura, Kiyohiko.

    1987-08-01

    Plasma potential formation in an open-ended plasma confinement system with RF plugging (the RFC-XX-M device) is investigated. The plasma potential in the central confinement region is measured with a heavy ion beam probe system and potentials at the RF plug section are measured with multi-grid energy analyzers. The measured plasma potential is compared with that deduced from the generalized Pastukhov formula. Results show that the plasma potential develops as an ambipolar potential to equate ion and electron end losses. During RF plugging, electrons are heated by Landau damping, while ions are not heated since adiabatic conditions apply during ion plugging in this experiment. (author)

  7. Study of the Plasma Evolution in the PF-1000 Device by Means of Optical Diagnostics

    International Nuclear Information System (INIS)

    Kasperczuk, A.; Kumar, R.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Scholz, M.; Tomaszewski, K.

    2002-01-01

    Investigation of a plasma evolution was carried out in a PF-1000 device with the following parameters: diameter of the inner electrode -24.4 cm, diameter of the outer one -36.8 cm, charging voltage in the range of 30-40 kV and deuterium pressure in the range of 1-5 1 To study the evolution of the plasma, an optical frame camera and YAGlaser shadowgraphy, both with exposure times of about 1 ns, were employed. Among the cases analyzed of plasma focus discharges, two types of plasma sheath disturbance can be distinguished: type I - classical MHD m = 0 instability (a wave with four maxima in the main), type 11 - singular great scale disturbance. On the basis of the plasma images, the dynamics of the plasma sheath, characteristic periods of the plasma evolution and plasma dimensions were determined. In order to reconstruct the spatial distribution of the electron density a special method was prepared

  8. Nonlinear stability of m=1 flute mode in a nonparaxial open plasma device

    International Nuclear Information System (INIS)

    Lanskij, I.M.; Stupakov, G.V.

    1991-01-01

    Plasma flute stability as to high shifts under strong effects of ion Larmor finite radius conditions is studied. System consisting of long axisymmetric paraxial mirror device with stabilizing cells at its edges is considered. Variation of plasma energy as to its shift as a whole is calculated. It is shown, that depending on stabilizer type the force bringing plasma back in equilibrium state with shift growth may both increase and decrease

  9. Arc plasma devices: Evolving mechanical design from numerical ...

    Indian Academy of Sciences (India)

    feeds power into the system for sustained operation. Depending ... distribution, velocity profiles, device efficiency, spatial concentration of nascent active species .... where V is the arc voltage and ϕ is the work function of the anode material. The first .... to predict correct potential drop within the device in a number of designs.

  10. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    International Nuclear Information System (INIS)

    Mariotti, D.

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  11. Surface ionization wave in a plasma focus-like model device

    International Nuclear Information System (INIS)

    Yordanov, V; Blagoev, A; Ivanova-Stanik, I; Veldhuizen, E M van; Nijdam, S; Dijk, J van; Mullen, J J A M van der

    2008-01-01

    A numerical particle in cell-Monte Carlo model of the breakdown in the plasma focus device simulates the development of an ionization wave sliding along the insulator. In order to validate this model a planar model device is created. The pictures of the discharges taken by a fast optical camera show that we have qualitative agreement between the model and the experimental observations.

  12. Surface ionization wave in a plasma focus-like model device

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, V; Blagoev, A [Faculty of Physics, University of Sofia, 5 James Bourchier Blvd, BG-1164, Sofia (Bulgaria); Ivanova-Stanik, I [IPPLM, 23 Hery St, PO Box 49, PL-00-908 Warsaw (Poland); Veldhuizen, E M van; Nijdam, S; Dijk, J van; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: v.yordanov@phys.uni-sofia.bg

    2008-11-07

    A numerical particle in cell-Monte Carlo model of the breakdown in the plasma focus device simulates the development of an ionization wave sliding along the insulator. In order to validate this model a planar model device is created. The pictures of the discharges taken by a fast optical camera show that we have qualitative agreement between the model and the experimental observations.

  13. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    International Nuclear Information System (INIS)

    Veranda, M; Bonfiglio, D; Cappello, S; Chacón, L; Escande, D F

    2013-01-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (I P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values. (paper)

  14. Platelet-rich plasma: updating of extraction devices

    Directory of Open Access Journals (Sweden)

    Raquel Moreno

    2016-12-01

    Full Text Available Propose: To describe PRP extraction devices, through a review of kits available in Spain, taking into account AEMPS and SEFH working groups (GPS, Farmacotecnia, Hemoderivados groups contributions. Methods: Three independent searches about PRP extraction devices were carried out. Device suppliers were contacted and an individually meeting was called with each one. Characteristics of each device was reviewed by virtual demonstration. A kits comparison chart was made with all the information acquired. Kits were classified as Closed-Technique and Opened- Technique in accordance with the AEMPS technical committee report. Results: Ten devices were found: ACP®; Angel®, Cascade®, Endoret ®, GPS®, Magellan®, Minos®, Ortho-pras®, Smart-prepr® and Tricell®. However, we could found out the mechanism in detail of seven of them. Information about Cascade®, Magellan ® and Smart-prepr® kits was not enough. Conclusion: The review provided the main PRP extraction devices available with CE marking and its distinguishing characteristics, however, it is crucial to pay attention to PRP extraction procedure and administration, to guarantee the final product quality. Pharmacy Department must get involved in the device selections due to the close link with the manufactured drug quality. Working together with the AEMPS will contribute to defining extraction procedure specifically.

  15. Modeling and simulation of plasma materials processing devices

    International Nuclear Information System (INIS)

    Graves, D.B.

    1996-01-01

    Plasma processing has emerged as a central technology in the manufacture of integrated circuits (ICs) and related industries. These plasmas are weakly to partially ionized gases, typically operated at a few to several hundred mTorr gas pressure, with neutral temperatures ranging from room temperature to 500 degrees K. Electron mean energies are typically a few eV and ion energies in the bulk plasma are about 0.05-0.5 eV. Positive ions axe accelerated in the sheaths to impact surfaces with energies ranging from about 10 eV to hundreds of eV. These energetic ions profoundly affect rates of surface chemical reactions. One of the consequences of the recent rapid growth in the IC industry has been a greater focus on manufacturing productivity. The capital costs of equipment that is used in manufacturing IC's has become a large fraction of the ∼ $1 billion cost of building a wafer fab. There is now a strong economic incentive to develop workstation-based simulations of plasma chemical reactors in order to design, optimize and control plasma reactors. I will summarize efforts to develop such models, including electromagnetic coupling, and transport and kinetics of charged and neutral species. Length and time scale disparities in the plasma tool challenge current simulation approaches, and I will address strategies to attack aspects of this problem. In addition, I will present some of our recent efforts to exploit molecular dynamics simulations employing empirical potentials to get hints about qualitative mechanisms and ideas on how to formulate rate expressions for plasma-surface chemical processes. Video illustrations of selected sets of ion trajectories impacting near-surface regions of the substrate will be presented

  16. RF-heating and plasma confinement studies in HANBIT mirror device

    International Nuclear Information System (INIS)

    Kwon, M.; Bak, J.G.; Choh, K.K.

    2003-01-01

    HANBIT is a magnetic mirror confinement device. Recently, with almost finishing the first campaign for the basic system development, it started the second campaign for the high-temperature plasma confinement physics study in mirror configuration. Here, we introduce briefly the HANBIT device and report initial physics experiments results on RF-plasma heating and confinement in the simple mirror configuration. It appears that the discharge characteristics of HANBIT are quite different from those in other mirror devices, and an explanation is presented to clarify the difference. (author)

  17. Code improvements and applications of a two-dimensional edge plasma model for toroidal devices

    International Nuclear Information System (INIS)

    Baelmans, M.

    1994-03-01

    This thesis focuses mainly on plasma behaviour in boundary layers of magnetically confined plasmas. Increasing emphasis has been put on edge studies during the last decade, as it became evident that some aspects of Tokamak operations are largely controlled, or even dominated, by edge processes. Therefore, the motivation for this research is to improve understanding of plasma behaviour in general, and edge plasma behaviour in particular, firstly in present experiments, and also to predict edge plasma conditions in future nuclear fusion devices. In a first section some fundamental concepts and principles of controlled fusion are described. Two different types of plasma confinement concepts which have promising features with regard to the above mentioned goal are outlined in a next section, 1.2. In section 1.3 an introduction to plasma edge phenomena is given. In a last section, 1.4, the outline of the thesis is described. (orig.)

  18. Resonant helical fields in tokamaks

    International Nuclear Information System (INIS)

    Okano, V.

    1990-01-01

    Poincare maps of magnetic field lines of a toroidal helical system were made. The magnetic field is a linear superposition of the magnetic fields produced by a toroidal plasma in equilibrium and by external helical currents. Analytical expression for the Poincare maps was no obtained since the magnetic field do not have symmetry. In order to obtain the maps, the equation minus derivative of l vector times B vector = 0 was numerically integrated. In the Poincare maps, the principal and the secondary magnetic island were observed. (author)

  19. Plasma sheath axial phase dynamics in coaxial device

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)); Masoud, M.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt))

    1994-10-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.).

  20. Plasma sheath axial phase dynamics in coaxial device

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1994-01-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.)

  1. Fast mega pixels video imaging of a toroidal plasma in KT5D device

    International Nuclear Information System (INIS)

    Xu Min; Wang Zhijiang; Lu Ronghua; Sun Xiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xiao Delong; Yu Yi; Zhu Zhenghua; Hu Linyin

    2005-01-01

    A direct imaging system, viewing visible light emission from plasmas tangentially or perpendicularly, has been set up on the KT5D toroidal device to monitor the real two-dimensional profiles of purely ECR generated plasmas. This system has a typical spatial resolution of 0.2 mm (1280x1024 pixels) when imaging the whole cross section. Interesting features of ECR plasmas have been found. Different from what classical theories have expected, a resonance layer with two or three bright spots, rather than an even vertical band, has been observed. In addition, images also indicate an intermittent splitting and drifting character of the plasmas

  2. Preliminary results of neutron production in Sahand plasma focus device

    International Nuclear Information System (INIS)

    Siahpoush, V.; Mohammadi, M.A.; Khorram, S.; Shabani, I.; Borhanian, J.; Ashrafi, S.; Naghshara, H.; Moslehi-Fard, M.; Sobhanian, S.

    2004-01-01

    We report in this paper the preliminary results of neutron generation during fusion reaction in deuterium in the Sahand Filipov type plasma focus, recently installed and put in operation at Tabriz University. The special calibration procedure for neutron detection system, using activation method is described

  3. A scalable, micropore, platelet rich plasma separation device.

    Science.gov (United States)

    Dickson, Mary Nora; Amar, Levy; Hill, Michael; Schwartz, Joseph; Leonard, Edward F

    2012-12-01

    We have designed a novel, low energy platelet-rich-plasma (PRP) separator capable of producing 50 mL of PRP in 30 min, intended for military and emergency applications. Blood flows over a 3 mm length of sieve at high rates of shear. A plasma-platelet filtrate passes through the sieve's pores while erythrocytes remain. The filtrate is flowed over a second 3 mm length of smaller-pored sieve that withdraws plasma. Bulk blood volume is maintained by returning platelet-free plasma to the erythrocyte pool, enabling a nearly complete multi-pass platelet extraction. The total percentage of platelets extracted is:θ(T)=1-exp (-V(f)(T)Φ(P)/V) where V is the original plasma volume, V ( f )(T) is the total filtered volume, and ϕ ( P ) is platelet passage ratio (filtrate concentration/bulk average concentration) taken to be constant. Maximum θ(T) occurs at maximum V ( f )(T)× ϕ ( P ) Test microsieves, 3 mm long × 3 mm wide, were used. ϕ ( P ) values measured at various filtrate flow rates (20-100 uL/min) and utilizing various filter pore sizes (1.2-3.5 μm), was as high as 150 %. Maximum V ( f )(T)× ϕ ( P ) was achieved utilizing the 3.5 um filters at the highest flow rate, 100 uL/min. Erythrocyte leakages were always below 2,000/uL, far below the allowable limit stipulated by the American Association of Blood Banking. These data imply that a 13.7 cm(2) filter area is sufficient to achieve the target separation of 50 mL of platelet concentrate in 30 min. The filtration cartridge would consist of multiple microporous strips of 3 mm width arranged in parallel so that each element would see the conditions used in the prototype experiments presented here. Other microfiltration schemes suggest no method of scaling to practical levels.

  4. Plasma surface interaction studies in Japan

    International Nuclear Information System (INIS)

    Hino, T.; Hirohata, Y.; Yamashina, T.

    1994-01-01

    In order to achieve a long burning time period in a fusion reactor, the interactions between the plasma facing materials and the fusion plasma have to be well controlled. Namely, the radiation loss due to impurities and deterioration of the energy confinement time due to fuel particle recyclings have to be suppressed, in addition to the requirement of heat removal based on a high heat flux component. Recently, in Japan, the plasma facing material/component has been very actively developed for ITER and Large Helical Device (LHD). In this review paper, we briefly introduce the following issues, (1) progress of plasma surface interactions in tokamaks and helical devices, (2) development of plasma facing materials, (3) divertor development, (4) boronization, (5) selective pumping of helium ash, (6) tritium retention, and (7) neutron damage of graphite plasma facing material. (author)

  5. Electron density measurement in an evolving plasma. Experimental devices

    International Nuclear Information System (INIS)

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  6. Neutronics Design of Helical Type DEMO Reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Sagara, A.; Goto, T.; Yanagi, N.; Masuzaki, S.; Tamura, H.; Miyazawa, J.; Muroga, T., E-mail: teru@nifs.ac.jp [National Institute for Fusion Science, Toki (Japan)

    2012-09-15

    Full text: Neutronics design study has been performed in a newly started conceptual design activity for a helical type DEMO reactor FFHR-d1. Features of the FFHR-d1 design are enlargement of the basic configurations of reactor components and extrapolation of plasma parameters from those of the helical type plasma experimental machine Large Helical Device (LHD) to achieve the highest feasibility. From the neutronics point of view, a blanket space of FFHR-d1 is severely limited at the inboard of the torus. This is due to the core plasma position shifting to the inboard side under the confinement condition extrapolated from LHD. The first step of the neutronics investigation using the MCNP code has been performed with a simple torus model simulating thin inboard blanket space. A Flibe+Be/Ferritic steel breeding blanket showed preferable performances for both tritium breeding and shielding, and has been adapted as a reference blanket system for FFHR-d1. The investigations indicate that a combination of a 15 cm thick breeding blanket, 55 cm thick WC+B4C shield, i.e., the blanket space of 70 cm, could suppress the fast neutron flux and nuclear heating in the helical coils to the design targets for the neutron wall loading of 1.5 MW/m{sup 2}. Since the outboard side can provide a large space for a 60 cm thick breeding blanket, a fully-covered tritium breeding ratio (TBR) of 1.31 has been obtained in the simple torus model. The neutronics design study has proceeded to the second step using a 3-D helical reactor model. The most important issue in the 3-D neutronics design is a compatibility with the helical divertor design. To achieve a higher TBR and shielding performance, the core plasma has to be covered by the breeding blanket layers as possible. However, the dimensions of the blanket layers are limited by magnetic field lines connecting an edge of the core plasma and divertor pumping ports. After repeating modification of the blanket configuration, the global TBR of 1

  7. Construction and characterization of a plasma focus device and diagnostic test ion

    International Nuclear Information System (INIS)

    Morales Arango, Diana Marsela

    2013-01-01

    In this work we designed and built a Plasma Focus device 2kJ power in order to extend the energy range of devices designed in DPTN CCHEN and study the scaling laws type Plasma Focus Device. The operating parameters of this device are: T/ 4 =907ns, C = 8000nF, L = 42nH, E = 2kJ, lo = 276kA. In such a way to optimize the device tests were performed with various electrode configurations, insulator length, to determine the conditions under which it operates in Plasma Focus mode. Subsequent to the construction tests were performed on devices PF-400J (T /4 = 300ns, C = 880nF, L = 38nH, E = 400J, lo = 168kA) y PF-2kJ (device between the hundreds of joules and kilojoules of energy) diagnostic charged particle emission used the Faraday Cup consisting of a biased graphite collector. For a series of shots on the PF-400J and PF-2kJ operated at 27kV and 20kV respectively kinetic energy distribution of proton between 60keV-150keV were found, deuterons between 60KeV-300KeV. With the idea of optimizing the results in future diagnostic type spectrometer Thompson, spectroscopy and diffraction networks in gas mixture will be implemented

  8. Theoretical and experimental studies on electric field and confinement in helical systems

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Todoroki, J.; Ida, K.; Idei, H.; Iguchi, H.; Yamada, H.

    1994-06-01

    The present study consists of two parts. The first part is oriented to a theoretical model of selfconsistent analysis to determine simultaneously the electric field and loss cone boundary in heliotron/torsatron configurations under the influence of nonclassical particle losses. The second part is referred to the analysis on NBI heated and ECH plasmas in Compact Helical System (CHS) device. A comparison is made between theoretical results and experimental observations. (author)

  9. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Science.gov (United States)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  10. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Energy Technology Data Exchange (ETDEWEB)

    García-Martínez, Pablo Luis, E-mail: pablogm@cab.cnea.gov.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Sede Andina—Universidad Nacional de Río Negro (UNRN), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Lampugnani, Leandro Gabriel; Farengo, Ricardo [Instituto Balseiro and Centro Atómico Bariloche (CAB-CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina)

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  11. Plasma sprayed TiC coatings for first wall protection in fusion devices

    International Nuclear Information System (INIS)

    Groot, P.; Laan, J.G. van der; Laas, L.; Mack, M.; Dvorak, M.

    1989-01-01

    For protection of plasma facing components in nuclear fusion devices thick titanium carbide coatings are being developed. Coatings have been produced by plasma spraying at atmospheric pressure (APS) and low pressure (LPPS) and analyzed with respect to microstructure and chemical composition. Thermo-mechanical evaluation has been performed by applying short pulse laser heat flux tests. The influence of coating thickness and porosity on the resistance to spalling by thermal shocks appears to be more important than aspects of chemical composition. (author)

  12. Measurements of ODAK-3K plasma device using plastic track detectors

    International Nuclear Information System (INIS)

    2010-01-01

    In this study, some testing experiments on the fusion researches with a new-constructed plasma focus (PF) device, namely ODAK-3K are reported. The device has a maximal energy input of 3 kJ and is used for both plasma and D D reaction explorations. Experiments with deuterium have shown that peak current of I p eak=39 kA flows between the electrodes at P=11.5 mbar for the operation voltage of V=14 kV. Average total neutron yield is measured around 3.3x10 5 neutrons per shot using CR-39 plastic detectors located opposite the anode inside the PF chamber

  13. Simulation of photons from plasmas for the applications to display devices

    Science.gov (United States)

    Lee, Hae June; Yoon, Hyun Jin; Lee, Jae Koo

    2007-07-01

    Numerical modeling of the photon transport of the ultraviolet (UV) and the visible lights are presented for plasma based display devices. The transport of UV lights which undergo resonance trapping by ground state atoms is solved by using the Holstein equation. After the UV lights are transformed to visible lights at the phosphor surfaces, the visible lights experience complicated traces inside the cell and finally are emitted toward the viewing window after having some power loss within the cell. A three-dimensional ray trace of the visible lights is calculated with a radiosity model. These simulations for the photons strengthen plasma discharge modeling for the application to display devices.

  14. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-01-01

    Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.

  15. System for deuterium-tritium mixture filling the working chamber of a dense plasma focus device

    International Nuclear Information System (INIS)

    Bondar', A.I.; Vyskubov, V.P.; Gerasimov, S.A.

    1981-01-01

    A gas-vacuum system designed for filling the gas-discharge chamber of a plasma focus device with equal-coaponent deuterium-tritium mixture is described. The system consists of a unit for gaseous mixture prepa ration and a unit for mixture absorption and device evacuation. The system provides the gaseous mixture purification of O 2 and N 2 impurities. Final tritium content in the gas-discharge chamber after tritium removal is not greater than 2x10 8 Bq/l. Tritium content in a sealed box in which the device is placed does not exceed 30 Bq/l that is less than limiting safe value. The conclusion is made that the described system design gives an opportunity to begin experimental studies at plasma focus devices with deuterium-tritium mixture [ru

  16. A model for plasma discharges simulation in Tokamak devices

    International Nuclear Information System (INIS)

    Fonseca, Antonio M.M.; Silva, Ruy P. da; Galvao, Ricardo M.O.; Kusnetzov, Yuri; Nascimento, I.C.; Cuevas, Nelson

    2001-01-01

    In this work, a 'zero-dimensional' model for simulation of discharges in Tokamak machine is presented. The model allows the calculation of the time profiles of important parameters of the discharge. The model was applied to the TCABR Tokamak to study the influence of parameters and physical processes during the discharges. Basically it is constituted of five differential equations: two related to the primary and secondary circuits of the ohmic heating transformer and the other three conservation equations of energy, charge and neutral particles. From the physical model, a computer program has been built with the objective of obtaining the time profiles of plasma current, the current in the primary of the ohmic heating transformer, the electronic temperature, the electronic density and the neutral particle density. It was also possible, with the model, to simulate the effects of gas puffing during the shot. The results of the simulation were compared with the experimental results obtained in the TCABR Tokamak, using hydrogen gas

  17. Ion implantation on nickel targets by means of repetitive plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Vitulli, S.; Rapezzi, L. [ENEA Brasimone, Camugnano, Bologna (Italy); Apicella, M.L.; Samuelli, M. [ENEA Frascati, Frascati, Roma (Italy)

    2004-07-01

    Some test has been done in order to assess the possible use of a plasma focus as an implanter. The device utilized is the repetitive Plasma Focus operating in the ENEA Brasimone Center. The implanted sample is a sheet of Nickel with a surface of 17 cm{sup 2} inserted in a rigid sample at a variable distance from the top of the anode. After irradiation the sample is analyzed with Auger spectroscopy that provides the surface concentration of the various elements on the sample at different implantation depths. The result of the analysis shows that the Plasma Focus is an effective implantation source, even for metallurgical applications. (orig.)

  18. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  19. Effects of admixture gas on the production of {sup 18}F radioisotope in plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Talaei, Ahmad [Nuclear Science and Technology Research Institute (NSTR), Nuclear Science Research School, A.E.O.I., 14155-1339 Tehran (Iran, Islamic Republic of); Sadat Kiai, S.M., E-mail: sadatkiai@yahoo.co [Nuclear Science and Technology Research Institute (NSTR), Nuclear Science Research School, A.E.O.I., 14155-1339 Tehran (Iran, Islamic Republic of); Zaeem, A.A. [Department of Physics, Khaje Nasir University of Technology (K.N. Toosi), 1541846911 Tehran (Iran, Islamic Republic of)

    2010-12-15

    In this article, the effect of admixture gas on the heating and cooling of pinched plasma directly related to the enhancement or reduction of {sup 18}F production through the {sup 16}O({sup 3}He, p){sup 18}F is considered in the plasma focus devices. It is shown that by controlling the velocity of added Oxygen particles mixed with the working helium gas into the plasma focus chamber, one can increase the current and decrease the confinement time (plasma heating) or vice verse (plasma cooling). The highest level of nuclear activities of {sup 18}F was found around 16% of the Oxygen admixture participation and was about 0.35 MBq in the conditions of 20 kJ, 0.1 Hz and after 2 min operating of Dena PF. However, in the same condition, but for the frequency of 1 Hz, the level of activity increased up to 3.4 MBq.

  20. Computer simulation of a plasma focus device driven by a magnetic pulser

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    A plasma focus device, driven by a magnetic pulse compression circuit, is simulated by using a PSPICE proffam. The elaborated program is much simpler than the other existing ones, which analyse the circuit by directly solving a system of integral-differential equations. The pre-pulse voltage and the high-voltage rise-times are obtained for a set of values of the bypass impedance (R or L). The optimum bypass impedance turns out to be an inductance. During the discharge period, the plasma load is considered as an LR impedance, each component being time dependent. A method is presented for giving us the possibility to introduce the time varying impedances in a PSPICE program. Finally, a set of simulation results (plasma current and voltage, plasma magnetic energy, plasma sheath mechanical energy, pinch voltage) is shown. The results are in good agreement with the classical experimental data. (author). 2 figs., 4 refs.

  1. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    International Nuclear Information System (INIS)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-01-01

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian

  2. Density profile measurements from a two-gun plasma focus device

    International Nuclear Information System (INIS)

    Tzeng, C.C.; Yen, C.K.; Yeh, T.R.; Kuo, Y.Y.; Shang, D.J.; Yu, Y.Z.; Hou, W.S.

    1990-01-01

    The dynamics of the plasma evolution in a two-gun plasma focus device has been studied using the laser shadowgraphy as well as the laser interferometry. The experiments were carried out from a 700 kJ two-gun plasma focus device reported earlier, which consisted of a pair of Mather type coaxial electrodes connected muzzle to muzzle. Previous results indicated that the simultaneous formation of the two deuterium plasma foci occurred earlier and then after ∼ 100 ns a disk-shaped plasma of ∼ 1.5 cm in diameter appeared in the middle region between the anodes. It is, therefore, the authors' goal to study the density profiles in the plasma foci and the middle region in order to understand further the formation of the plasma foci and their time evolution. The laser shadowgraphy was done with a XeCl excimer pumped dye laser system which operated at 550 nm with pulse width of ∼ 10 ns. The laser interferometry, on the other hand, was carried out using a TEA-TEA oscillator-amplifier N 2 -laser system with 337.1 nm and subnano-second pulse width. Both results show that the maximum electron density is ≥2 x 10 19 cm -3 and, in addition, the growth of the hydrodynamic instabilities are observed. These results together with the detailed density profiles are presented and discussed

  3. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    Science.gov (United States)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  4. Internal transport barrier physics in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Minami, T.; Fujisawa, A.; Herranz, J.; Ida, K.; Yamagishi, O.; Yamada, H.; Maaberg, H.; Beidler, C.D.; Dinklage, A.; Estrada, T.; Castejon, F.; Murakami, S.

    2005-01-01

    The electron internal transport barrier (eITB) has been observed in wide range of helical systems, such as CHS [eg.,1], LHD [eg., 2], TJ-II [eg., 3] and W7-AS [eg., 4]. The eITB isA defined as highly peaked electron temperature (Te) profile with strongly positive radial electric field (Er) in the central region. These observations are reviewed in this paper to understand the device-independent common findings and also to draw the main differences. This is the first report from the International Stellarator Profile Database Activity. The formation of the strong central positive Er has been understood mainly as a result of the ambipolarity of neoclassical electron and ion fluxes, although some additional convective electron flux such as driven by ECRH is required in some situations. This 'neoclassical' physics peculiar to low collisional regime of helical plasmas provides the commonly observed existence of the ECRH power threshold (which is also depending on the density). This is contrastive characteristics to the ITB observed in tokamaks. The dependence of the ECRH power threshold on the magnetic configuration and on the heating scenario among these devices are currently being examined by taking the effective ripple and the trapped particle fraction as parameters to achieve the comprehensive understanding. The roles of low order rational surfaces on the onset of eITB formation and also on its radial size (location of the footpoint of the eITB) have been indicated in inward shifted configurations in LHD (depending on the relative locations of heating position and 2/1 island) and TJ-II (eITB becomes possible at higher density when 3/2 rational is introduced in the plasma core region). It is speculated that, for the latter case, the resonance causes an extra electron flux to trigger the positive Er. The interplay between low order rational surfaces and the formation of eITB still waits for the systematic experiment and theoretical analysis. The external controllability

  5. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field

    Science.gov (United States)

    Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  6. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    Science.gov (United States)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  7. Critical plasma-wall interaction issues for plasma-facing materials and components in near-term fusion devices

    International Nuclear Information System (INIS)

    Federici, G.; Coad, J.P.; Haasz, A.A.; Janeschitz, G.; Noda, N.; Philipps, V.; Roth, J.; Skinner, C.H.; Tivey, R.; Wu, C.H.

    2000-01-01

    The increase in pulse duration and cumulative run-time, together with the increase of the plasma energy content, will represent the largest changes in operation conditions in future fusion devices such as the International Thermonuclear Experimental Reactor (ITER) compared to today's experimental facilities. These will give rise to important plasma-physics effects and plasma-material interactions (PMIs) which are only partially observed and accessible in present-day experiments and will open new design, operation and safety issues. For the first time in fusion research, erosion and its consequences over many pulses (e.g., co-deposition and dust) may determine the operational schedule of a fusion device. This paper identifies the most critical issues arising from PMIs which represent key elements in the selection of materials, the design, and the optimisation of plasma-facing components (PFCs) for the first-wall and divertor. Significant advances in the knowledge base have been made recently, as part of the R and D supporting the engineering design activities (EDA) of ITER, and some of the most relevant data are reviewed here together with areas where further R and D work is urgently needed

  8. Nonideal, helical, vortical magnetohydrodynamic steady states

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Montgomery, D.

    1991-01-01

    The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)

  9. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    Science.gov (United States)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and

  10. Advanced 65 nm CMOS devices fabricated using ultra-low energy plasma doping

    International Nuclear Information System (INIS)

    Walther, S.; Lenoble, D.; Lallement, F.; Grouillet, A.; Erokhin, Y.; Singh, V.; Testoni, A.

    2005-01-01

    For leading edge CMOS and DRAM technologies, plasma doping (PLAD) offers several unique advantages over conventional beamline implantation. For ultra-low energy source and drain extensions (SDE), source drain contact and high dose poly doping implants PLAD delivers 2-5x higher throughput compared to beamline implanters. In this work we demonstrate process performance and process integration benefits enabled by plasma doping for advanced 65 nm CMOS devices. Specifically, p + /n ultra-shallow junctions formed with BF 3 plasma doping have superior X j /R s characteristics to beamline implants and yield up to 30% lower R s for 20 nm X j while using standard spike anneal with ramp-up rate of 75 deg. C/s. These results indicate that PLAD could extend applicability of standard spike anneal by at least one technology node past 65 nm. A CMOS split lot has been run to investigate process integration advantages unique to plasma doping and to determine CMOS device characteristics. Device data measured on 65 nm transistors fabricated with offset spacers indicate that devices with SDE formed by plasma doping have superior V t roll-off characteristics arguably due to improved lateral gate-overlap of PLAD SDE junctions. Furthermore, offset spacers could be eliminated in 65 nm devices with PLAD SDE implants while still achieving V t roll-off and I on -I off performance at least equivalent to control devices with offset spacers and SDE formed by beamline implantation. Thus, another advantage of PLAD is simplified 65 nm CMOS manufacturing process flow due to elimination of offset spacers. Finally, we present process transfer from beamline implants to PLAD for several applications, including SDE and gate poly doping with very high productivity

  11. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Czech Academy of Sciences Publication Activity Database

    Chernyshova, M.; Gribkov, V. A.; Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E.; Demina, E.V.; Pimenov, V. N.; Maslyaev, S. A.; Bondarenko, G.G.; Vilémová, Monika; Matějíček, Jiří

    2016-01-01

    Roč. 113, December (2016), s. 109-118 ISSN 0920-3796 R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : Radiation damageability * Materials tests * Plasma focus * Plasma streams * Ion beams * Laser interferometrya Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379616306858

  12. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  13. Study on MHD instabilities in the CECI plasma device using Fourier probes

    International Nuclear Information System (INIS)

    Rosal, A.C.; Aso, Y.; Ueda, M.

    1991-01-01

    A magnetic diagnostics called Fourier analyser aiming to study MHD instabilities by Fourier series expansion of poloidal magnetic field for m ≤ 3 modes was developed and tested. The diagnostics will be used in the RFP (reversed field pinch) type toroidal plasma device. (M.C.K.)

  14. Analysis of the interaction of deuterium plasmas with tungsten in the Fuego-Nuevo II device

    Science.gov (United States)

    Ramos, Gonzalo; Castillo, Fermín; Nieto, Martín; Martínez, Marco; Rangel, José; Herrera-Velázquez, Julio

    2012-10-01

    Tungsten is one of the main candidate materials for plasma-facing components in future fusion power plants. The Fuego-Nuevo II, a plasma focus device, which can produce dense magnetized helium and deuterium plasmas, has been adapted to address plasma-facing materials questions. In this paper we present results of tungsten targets exposed to deuterium plasmas in the Fuego Nuevo II device, using different experimental conditions. The plasma generated and accelerated in the coaxial gun is expected to have, before the pinch, energies of the order of hundreds eV and velocities of the order of 40,000 m s-1. At the pinch, the ions are reported to have energies of the order of 1.5 keV at most. The samples, analysed with a scanning electron microscope (SEM) in cross section show a damage profile to depths of the order of 580 nm, which are larger than those expected for ions with 1.5 keV, and may be evidence of ion acceleration. An analysis with the SRIM (Stopping Range of Ions in Matter) package calculations is shown.

  15. Microcavity Plasma Devices and Arrays Fabricated in Semiconductor, Ceramic, or Metal/polymer Structures: A New Realm of Plasma Physics and Photonics Applications

    International Nuclear Information System (INIS)

    Eden, J. G.

    2005-01-01

    Micro discharge, or microcavity plasma, is the broad term that has come to be associated with an emerging class of glow discharge devices in which the characteristic spatial dimension of the plasma is nominally ) dia. Si wafers and operated in the rare gases and Ar/N2 gas mixtures. Also, photodetection in the ultraviolet, visible and near-infrared with microplasma devices has been observed by interfacing a low temperature plasma with a semiconductor. Carbon nanotubes grown directly within the microcavity of microplasma devices improve all key performance parameters of the device, and nanoporous Al2O3 grown onto Al by wet chemical processing yields microplasma devices of exceptional stability and lifetime. The opportunities such structures offer for accessing new avenues in plasma physics and photonics will be discussed. (Author)

  16. A new linear plasma device for the study of plasma waves in the ...

    Indian Academy of Sciences (India)

    Garima Joshi

    2018-05-16

    May 16, 2018 ... magnetic field by Helmholtz coils, both designed and constructed in-house. The plasma .... Vacuum-compatible permanent mag- nets (NdFeB) are ..... ing of the stepper is decided by the motor driver which is controlled by a ...

  17. Observation of Fermi Arc Surface States Induced by Organic Memristive/Memcapacitive Devices with a Double-Helical Polarized Single-Wall Nanotube Membrane for Direct Chelating with Matrix Matelloproteinase-2

    Directory of Open Access Journals (Sweden)

    E. T. CHEN

    2017-07-01

    Full Text Available Matrix Matelloproteinase-2 (MMP-2 plays a key role in many diseases. A new type of dual-functioning device was developed for fast, direct ultrasensitive detection of MMP-2. We report a memristive/memcapacitive device with vertex double-helical polarized biomimetic protein nanotubules forming double membranes with potential gradient mimicking mitochondria’s inner double membrane has developed. We also report Fermi arcs with nodes on the surface of the nanostructured membrane was observed at the first time by using a 3D real-time - energy-current dynamic mapping method based on data obtained from the Cyclic Voltammetry (CV method. The memristive/memcapacitive device comprises a cross- linked organic polymer having single-wall cross-bar polarized nanotube self-assembling membrane (SAM on a gold chip, under an applied potential, a pair of vertex double- helical circular current flow induced the Fermi arcs states occurrence and these Fermi arcs promoted a direct chelating with zinc ions of the MMP-2 to become possible without any antibody, tracer, or reagent used at room temperature was accomplished. We observed the pair of Dirac Cones became alignment and strengthened with each other in the presence of MMP-2 compared without MMP-2. The MMP-2 can be detected with ag/mL level sensitivity and the value of Detection of Limits (DOL reached orders of magnitude lower than published reports with simplified procedures by a Chronoamperometry (CA method and a Double Step Chronopotentiometry (DSCPO method using NIST SRM 965A standard human serum, respectively. The results show a feasible application for developing the commercial fast and real-time MMP monitoring devices for various diseases.

  18. Resonant helical fields in the TBR tokamak

    International Nuclear Information System (INIS)

    Bender, O.W.

    1986-01-01

    The influence of external resonant helical fields (RHF) in the tokamak TBR plasma discharges was investigated. These fields were created by helical windings wounded on the TBR vessel with the same helicity of rational magnetic surfaces, producing resonant efects on these surfaces. The characteristics of the MHZ activity (amplitude, frequency and poloidal and toroidal wave numbers, m=2,3,4 and n=1, respectively) during the plasma discharges were modified by eletrical winding currents of the order of 2% of the plasma current. These characterisitics were measured for diferent discharges safety factors at the limiter (q) between 3 and 4, with and without the RHF, with the atenuation of the oscillation amplitudes and the increasing of their frequencies. The existente of expontaneous and induced magnetic islands were investigated. The data were compared with results obtained in other tokamaks. (author) [pt

  19. Coaxial helicity injection and n=1 relaxation activity in the HIST spherical torus

    International Nuclear Information System (INIS)

    Nagata, M.

    2002-01-01

    Coaxial Helicity Injection (CHI) has demonstrated non-inductive current generation of spherical tokamak (ST) and spheromak plasmas on several devices. In order to understand comprehensively the role of the n=1 instability and relaxation on current generation processes in helicity-driven spherical systems, we have investigated dynamics of ST plasmas produced in the HIST device (major radius R=0.30 m, minor radius a=0.24 m, aspect ratio A=1.25, toroidal field B t t <150 kA and discharge time t<5 ms in the ST configuration) by decreasing the external toroidal field (TF) and reversing its sign in time. In results, we have discovered that the ST relaxes towards flipped ST configurations through formation of reversed-field pinches (RFPs)-like magnetic field profiles. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. This self-reversal of the poloidal field is thought to be evidence for 'global helicity conservation'. Furthermore, we have first demonstrated that a flipped ST plasma can be successfully sustained by CHI. (author)

  20. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    Science.gov (United States)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    small laboratory size fusion experiments, as compared to those of the larger laboratories, to report about their latest achievements working with medium size and small scale tokamaks, stellarators, compact tori, dense plasma focus, reversed field pinches, helical devices, linear machines, and other small plasma devices. The Technical Meeting aims at stimulating new synergies which can contribute to better streamline the research outputs to the mainstream fusion research. Previous meetings in the series were held in Budapest, Hungary (1985), Nagoya, Japan (1986), Nice, France (1988), Washington DC, USA (1990), Hefei, China (1991), Wuerzburg, Germany (1992), Campinas, Brazil (1993), Madrid, Spain (1994), Ahmedabad, India (1995), Prague, Czech Republic (1996), Cairo, Egypt (1997), Tokyo, Japan (1998) in Chengdu, China (1999), São Paulo, Brazil (2002), Vienna, Austria (2003) in Mexico City, Mexico (2005), Lisbon, Portugal (2007), in Alushta, Ukraine (2008), Kurchatov, Kazakhstan (2009) and Vienna, Austria (2011). The 1st Costa Rican Summer School on Plasma Physics was held a week before the Joint LAWPP 2014 - 21st IAEA TM RUSFD, and the 2nd Latin American Workshop on Industrial Applications of Plasma Technology (AITP) was organized in parallel with the it. The objective of the AITP Workshop is to enhance the regional academic and industrial cooperation in the field of plasma assisted surface technology. The Joint LAWPP 2014 - 21st IAEA TM RUSFD was held at the Crowne Plaza Corobici Hotel in San José from 27 to 31 January 2014. The LAWPP scientific programme, which was spread along the whole week, had 15 invited speakers, 126 participants from 20 countries around the world. It included 7 plenary talks, 8 invited talks and 12 oral contributed papers were chosen out of 92 submissions. 82 contributions in 25 topics were presented in poster sessions on Monday 27, Tuesday 28 and Thursday 30 January 2014. The 21st IAEA TM RUSFD was held along the LAWPP 2014 from 27 to 29 January

  1. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  2. Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications

    Science.gov (United States)

    Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.

    2017-11-01

    In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.

  3. ERO modeling of Cr sputtering in the linear plasma device PSI-2

    Science.gov (United States)

    Eksaeva, A.; Borodin, D.; Kreter, A.; Nishijima, D.; Pospieszczyk, A.; Schlummer, T.; Ertmer, S.; Terra, A.; Unterberg, B.; Kirschner, A.; Romazanov, J.; Brezinsek, S.; Rasinski, M.; Henderson, S.; O'Mullane, M.; Summers, H.; Bluteau, M.; Marenkov, E.

    2017-12-01

    The prediction of the first wall deterioration and possible plasma contamination by impurities is a high priority task for ITER. 3D Monte-Carlo code ERO is a tool for modeling of eroded impurity transport and spectroscopy in plasma devices useful for experiment interpretation. Chromium (Cr) is a fusion-relevant reactor wall element (e.g. component of RAFM steels expected for use in DEMO). Linear plasma devices including PSI-2 are effective tools for investigations of plasma-surface interaction effects, allowing continuous plasma operation and good control over irradiation parameters. Experiments on Cr sputtering were conducted at PSI-2. In these experiments the Cr erosion was measured by three techniques: mass loss of the sample, quartz micro-balance of deposited impurities at a distance from it and optical emission spectroscopy. Experiments were modeled with the 3D Monte-Carlo code ERO, previously validated by application to similar experiments with tungsten (W). The simulations are demonstrated to reproduce the main experimental outcomes proving the quality of the sputtering data used. A significant focuses of the paper is the usage and validation of atomic data (resent metastable-resolved dataset from ADAS) for interpretation of Cr spectroscopy. Initial population of quasi-metastable state was fitted by matching the modeling with the experimental line intensity profiles.

  4. Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device

    International Nuclear Information System (INIS)

    Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S

    2005-01-01

    The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported

  5. Performance of large electron energy filter in large volume plasma device

    International Nuclear Information System (INIS)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K.; Singh, R.

    2014-01-01

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B x ) of 100 G along its axis and transverse to the ambient axial field (B z ∼ 6.2 G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1 G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n e ∼ 2 × 10 11  cm −3 and T e ∼ 2 eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50 and 600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma

  6. Helically coiled carbon nanotube forests for use as electrodes in supercapacitors

    Science.gov (United States)

    Childress, Anthony; Ferri, Kevin; Podila, Ramakrishna; Rao, Apparao

    Supercapacitors are a class of devices which combine the high energy density of batteries with the power delivery of capacitors, and have benefitted greatly from the incorporation of carbon nanomaterials. In an effort to improve the specific capacitance of these devices, we have produced binder-free electrodes composed of helically coiled carbon nanotube forests grown on stainless steel current collectors with a performance superior to traditional carbon nanomaterials. By virtue of their helicity, the coiled nanotubes provide a greater surface area for energy storage than their straight counterparts, thus improving the specific capacitance. Furthermore, we used an Ar plasma treatment to increase the electronic density of states, and thereby the quantum capacitance, through the introduction of defects.

  7. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  8. Modelling of plasma-antenna coupling and non-linear radio frequency wave-plasma-wall interactions in the magnetized plasma device under ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lu, LingFeng

    2016-01-01

    Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr

  9. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  10. The measurement of potential distribution of plasma in MM-4 fusion device

    International Nuclear Information System (INIS)

    Tian Zhongyu; Ming Linzhou; Feng Xiaozhen; Feng Chuntang; Yi Youjun; Wang Jihai; Liu Yihua

    1988-11-01

    Some experimental results of the potential distribution in MM-4 fusion device are presented by measuring the floating potential of probe. The results showed that the distribution of axial potential is asymmetrical, but the radial potential is symmetrical. There are double ion potential wells in the plasma. The depth of the deepest potential well become deeper is the strength of the magnetic field and injection current are increasing. The location of the deepest well is moved towards the device center along with the increasing of injection energy. This is different from others results. The mechanism of causing this distribution in also discussed

  11. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    Science.gov (United States)

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.

  12. System constitution of plasma high frequency heating device and element equipment

    International Nuclear Information System (INIS)

    Nagashima, Takashi

    1988-01-01

    On the high frequency heating device used for nuclear fusion experiment, the system constitution and the main items of development for the element equipment are described. As for the high frequency heating device, large technical progress was observed in the past 10 years as the second stage heating for tokamaks and one of the main means of current drive. At present, three frequency zones are regarded as promising for plasma high frequency heating in large nuclear fusion devices, and the experiment of 10 MW class is in progress at JT-60, JET and so on. There are electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frquency heating. The basic constitution of these heating devices includes a high frequency source, a transmission system, a connection system, and a common system for control, cooling, record and others. The ECH device using gyrotrons of several tens GHz, the LHRF heating device using large power klystrons up to several GHz and the ICRF heating device up to 200 MHz are briefly explained. The main element equipments composing the high frequency heating systems of several tens MW are discussed. (Kako, I.)

  13. Linear and nonlinear ion beam instabilities in a double plasma device

    International Nuclear Information System (INIS)

    Lee, S.G.; Diebold, D.; Hershkowitz, N.

    1994-01-01

    Ion beam instabilities in the double plasma device DOLI-1 were found to be quite sensitive to the difference between the source and target chamber plasma potentials when those potentials were within an electron temperature T e /e or so of each other. When the target chamber plasma potential of DOLI-1 was ≤ T e /e more positive than the source chamber plasma potential, a global ion beam-ion beam instability was observed. On the other hand, when the maximum target potential was between approximately 0.5 T e /e and 2.0 T e /e below the source potential, an ion-ion beam instability and a soliton associated with it were observed. This soliton is unique in that it is not launched but rather is self generated by the plasma and beam. When the target potential was less than source potential by more than two or so T e /e, the plasma was quite quiescent, which allowed small amplitude wave packet launched by Langmuir probe to be detected

  14. Electro-mechanical probe positioning system for large volume plasma device

    Science.gov (United States)

    Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.

    2018-05-01

    An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.

  15. Review and perspectives of electrostatic turbulence and transport studies in the basic plasma physics device TORPEX

    Science.gov (United States)

    Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian

    2012-10-01

    TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.

  16. Numerical Analysis of Amirkabir Plasma Focus (APF) Device for Neon and Argon Gases

    Science.gov (United States)

    Niknam Sharak, M.; Goudarzi, S.; Raeisdana, A.; Jafarabadi, M.

    2013-04-01

    In this paper the experimental results in different working conditions in Amirkabir Plasma Focus (APF) Device have been compared with the numerical results of a two-dimensional simulation code based on Lee's model. The experiments were done with pure Neon and Argon as operating gases over a wide range of working conditions (gas pressures and discharge voltages). It is observed that by a proper choice for values of the efficiency factors, comparison between numerical and experimental results shows a good agreement.

  17. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  18. Atmospheric pressure plasma jets: an overview of devices and new directions

    International Nuclear Information System (INIS)

    Winter, J; Brandenburg, R; Weltmann, K-D

    2015-01-01

    Atmospheric pressure plasma jets have a long history of more than 50 years. During this time their design and plasma generation mechanism has been developed and adapted to various fields of applications. This review aims at giving an overview of jet devices by starting with a brief history of their development. This is followed by an overview of commonly used terms and definitions as well as a survey of different classification schemes (e.g. geometry, excition frequency or specific energy input) described in literature. A selective update of new designs and novel research achievments on atmospheric pressure plasma jets published in 2012 or later shows the impressive variety and rapid development of the field. Finally, a brief outlook on the future trends and directions is given. (paper)

  19. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  20. Design and development of a LIBS system on linear plasma device PSI-2 for in situ real-time diagnostics of plasma-facing materials

    Directory of Open Access Journals (Sweden)

    X. Jiang

    2017-08-01

    Full Text Available Laser induced breakdown spectroscopy (LIBS is a strong candidate for detecting and monitoring the H/D/T content on the surface of plasma facing components (PFCs due to its capability of fast direct in situ measurement in extreme environment (e.g., vacuum, magnetic field, long distance, complex geometry. To study the feasibilities and encounter the challenges of LIBS on plasma devices, a LIBS system has been set up on the linear plasma device PSI-2. A number of key parameters including laser energy, the influence of magnetic field and the persistence of laser induced plasma are studied. Real-time measurements of deuterium outgassing on tungsten samples exposed to deuterium plasma of 1025 D/m2 are performed in the first 40–130 min after plasma exposure. The experimental results are compared to the calculations in the literature.

  1. Highly ionized copper contribution to the soft X-ray emission in a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Zoita, V; Patran, A [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    In order to discriminate between the contributions of the gas plasma and of the anode (solid or plasma) to the soft X-ray emission in a plasma focus device, a series of experiments was carried out using the following combinations of experimental conditions: various gases, different absorption filters and viewing different regions in front of the centre electrode. The experiments were performed on the IPF-2/20 plasma focus device using the following working gases: helium, neon and helium-argon mixtures. The diagnostics used: magnetic probe for current derivative, PIN diode for the minimum pinch radius detection, PIN diodes for the soft X-ray emission, scintillator-photomultiplier detector for the hard X-ray emission. From the analysis of the various diagnostics data recorded with very good time correlation, it followed that the soft K-ray signals had a strong contribution from optical transitions of the highly ionised Cu (Cu XX to XXII) emitting in the range 0.8-1.3 nm. (author). 7 figs., 9 refs.

  2. Power accounting of plasma discharges in the linear device Proto-MPEX

    Science.gov (United States)

    Showers, M.; Piotrowicz, P. A.; Beers, C. J.; Biewer, T. M.; Caneses, J.; Canik, J.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Lumsdaine, A.; Kafle, N.; Owen, L. W.; Rapp, J.; Ray, H.

    2018-06-01

    Plasma material interaction (PMI) studies are crucial to the successful development of future fusion reactors. Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a prototype design for the MPEX, a steady-state linear device being developed to study PMI. The primary purpose of Proto-MPEX is developing the plasma heating source concepts for MPEX. A power accounting study of Proto-MPEX works to identify machine operating parameters that could improve its performance, thereby increasing its PMI research capabilities, potentially impacting the MPEX design concept. To build a comprehensive power balance, an analysis of the helicon region has been performed implementing a diagnostic suite and software modeling to identify mechanisms and locations of heat loss from the main plasma. Of the 106.3 kW of input power, up to 90.5% of the power has been accounted for in the helicon region. When the analysis was extended to encompass the device to its end plates, 49.2% of the input power was accounted for and verified diagnostically. Areas requiring further diagnostic analysis are identified. The required improvements will be implemented in future work. The data acquisition and analysis processes will be streamlined to form a working model for future power balance studies of Proto-MPEX. ).

  3. Characterization of light ion beams generated by a plasma focus device

    International Nuclear Information System (INIS)

    Koo, Bon Cheul

    1999-02-01

    Plasma focus device has been studied as neutron and X-ray sources generated from the high pressure fusion reaction during Z-pinch. Recently, the scope of the device is focused on efficient neutron generation, X-ray lithography, preliminary fusion experiment, and ion/electron beam generation devices. A Hexagonal Beam Generator with six parallel capacitors has been developed and generated ion beams from 30kJ(C=6 μ F, V= 100kV) maximum energy. To find the optimum condition of ion beam generation, the correlation among charging voltage(20∼30kV), operation pressure of chamber(0.1∼5 torr), and length of electrode has been studied. To measure ion beam, a Faraday Cup and 3 Rogowski coils were installed. Energy of ion beam was obtained by adopting time-of -flight method between Rogowski coils

  4. Studies of the Hard X-ray Emission from the Filippov Type Plasma Focus Device, Dena

    Science.gov (United States)

    Tafreshi, M. A.; Saeedzadeh, E.

    2006-12-01

    This article is about the characteristics of the hard X-ray (HXR) emission from the Filippov type plasma focus (PF) device, Dena. The article begins with a brief presentation of Dena, and the mechanism of the HXR production in PF devices. Then using the differential absorption spectrometry, the energy resolved spectrum of the HXR emission from a 37 kJ discharge in Dena, is estimated. The energy flux density and the energy fluence of this emission have also been calculated to be 1.9 kJ cm-2 s-1 and 9.4 × 10-5 J cm-2. In the end, after presentation of radiography of sheep bones and calf ribs, the medical application of the PF devices has been discussed.

  5. Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, C., E-mail: hansec@uw.edu [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Columbia University, New York, New York 10027 (United States); Marklin, G. [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Victor, B. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); Akcay, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Jarboe, T. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); PSI-Center, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    We present simulations of inductive helicity injection in the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) device that treats the entire plasma volume in a single dynamic MHD model. A new fully 3D numerical tool, the PSI-center TETrahedral mesh code, was developed that provides the geometric flexibility required for this investigation. Implementation of a zero-β Hall MHD model using PSI-TET will be presented including formulation of a new self-consistent magnetic boundary condition for the wall of the HIT-SI device. Results from simulations of HIT-SI are presented focusing on injector dynamics that are investigated numerically for the first time. Asymmetries in the plasma loading between the two helicity injectors and progression of field reversal in each injector are observed. Analysis indicates cross-coupling between injectors through confinement volume structures. Injector impedance is found to scale with toroidal current at fixed density, consistent with experimental observation. Comparison to experimental data with an injector drive frequency of 14.5 kHz shows good agreement with magnetic diagnostics. Global mode structures from Bi-Orthogonal decomposition agree well with experimental data for the first four modes.

  6. Numerical simulation of current-free double layers created in a helicon plasma device

    Science.gov (United States)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-01

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.

  7. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  8. Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jesuraj, P. Justin; Parameshwari, R. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India); Kanthasamy, K.; Koch, J. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Pfnür, H. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Laboratorium für Nano- und Quantene$ngineering, Schneiderberg 30, D-30167, Hannover (Germany); Jeganathan, K., E-mail: kjeganathan@yahoo.com [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India)

    2017-03-01

    Graphical abstract: Plasma treated Graphene oxide for hole injection enhancement in OLEDs. - Highlights: • Oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma exposed graphene oxide (GO) sheets have been demonstrated as hole buffer layers in OLEDs. • O{sub 2} plasma exposure induces assimilation of oxygen contents in GO lattice resulting in improved work function that reduced the hole injection barrier further. Whereas, H{sub 2} plasma contrastingly reduced the GO by excluding oxygen which ensuing lower work function. • X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigations reveal the capricious amount of oxygen in GO lattice and its corresponding work function variations. • GO and O{sub 2} plasma treated GO significantly improves the current efficiency of OLEDs more than one order with notable reduction in turn on voltage. - Abstract: The hole injection layer (HIL) with high work function (WF) is desirable to reduce the injection barrier between anode and hole transport layer in organic light emitting devices (OLED). Here, we report a novel approach to tune the WF of graphene oxide (GO) using oxygen and hydrogen plasma treatment and its hole injection properties in OLEDs. The mild exposure of oxygen plasma on GO (O{sub 2}-GO) significantly reduces the injection barrier by increasing the WF of anode (4.98 eV) through expansion of C−O bonds. In contrast, the hole injection barrier was drastically increased for hydrogen plasma treated GO (H{sub 2}-GO) layers as the WF is lowered by the contraction of C−O bond. By employing active O{sub 2}-GO as HIL in OLEDs found to exhibit superior current efficiency of 4.2 cd/A as compared to 3.3 cd/A for pristine GO. Further, the high injection efficiency of O{sub 2}-GO infused hole only device can be attributed to the improved energy level matching. Ultraviolet and X-ray photoelectron spectroscopy were used to correlate the WF of HIL infused anode towards the enhanced performance of

  9. DLTS Analysis and Interface Engineering of Solution Route Fabricated Zirconia Based MIS Devices Using Plasma Treatment

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Koteswara Rao, K. S. R.

    2018-02-01

    In this work, we have fabricated low-temperature sol-gel spin-coated and oxygen (O2) plasma treated ZrO2 thin film-based metal-insulator-semiconductor devices. To understand the impact of plasma treatment on the Si/ZrO2 interface, deep level transient spectroscopy measurements were performed. It is reported that the interface state density ( D it) comes down to 7.1 × 1010 eV-1 cm-2 from 4 × 1011 eV-1 cm-2, after plasma treatment. The reduction in D it is around five times and can be attributed to the passivation of oxygen vacancies near the Si/ZrO2 interface, as they try to relocate near the interface. The energy level position ( E T) of interfacial traps is estimated to be 0.36 eV below the conduction band edge. The untreated ZrO2 film displayed poor leakage behavior due to the presence of several traps within the film and at the interface; O2 plasma treated films show improved leakage current density as they have been reduced from 5.4 × 10-8 A/cm2 to 1.98 × 10-9 A/cm2 for gate injection mode and 6.4 × 10-8 A/cm2 to 6.3 × 10-10 A/cm2 for substrate injection mode at 1 V. Hence, we suggest that plasma treatment might be useful in future device fabrication technology.

  10. Process automation system for integration and operation of Large Volume Plasma Device

    International Nuclear Information System (INIS)

    Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2016-01-01

    Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

  11. Process automation system for integration and operation of Large Volume Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2016-11-15

    Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

  12. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    Science.gov (United States)

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  13. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    International Nuclear Information System (INIS)

    Neu, R.

    2006-01-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures

  14. Research program for plasma confinement and heating in ELMO bumpy torus devices

    International Nuclear Information System (INIS)

    Dandl, R.A.; Dory, R.A.; Eason, H.O.

    1975-06-01

    A sequence of experimental devices and related research activities which leads progressively toward an attractive full-scale reactor is described. The implementation of the steps in this sequence hinges on the development of microwave power sources, with high specific power levels, at millimeter wavelengths. Two proposed steps in this sequence are described. The first step proposed here, denoted EBT-S, requires increasing the EBT magnetic field to permit microwave heating at 18 and 28 GHz, as compared to the present 10.6 and 18-GHz configuration. A three-fold increase in plasma density, some increase in the temperatures, and an opportunity to test the validity of the transport models presently used to predict the plasma parameters are anticipated. This step will provide important operating experience with the 28-GHz power supplies, which are prototype tubes for millimeter sources at 120 GHz In the second step a new superconducting bumpy torus, EBT-II, would be fabricated to permit microwave heating at 90 and 120 GHz. This device would be designed to produce plasma densities and temperatures comparable to those of present-day tokamaks. This report reviews the experimental and theoretical research on EBT that has been carried out to date or formulated for the near future, and provides a status report as well as a research program plan. (U.S.)

  15. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M., E-mail: kushagra.lalit@gmail.com; Mattoo, S. K. [Institute for Plasma Research, Gandhinagar (India)

    2016-07-15

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  16. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    Kinetic and magnetic helicities do not affect the renormalized parameters, ... Generation of magnetic field in plasma, usually referred to as 'dynamo', is one of the ..... energy fluxes for the inertial-range wave numbers where the same power.

  17. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  18. Introduction to the m = 1 helicity source

    International Nuclear Information System (INIS)

    Platts, D.A.; Jarboe, T.R.; Wright, B.L.

    1985-01-01

    The m = 1 Helicity Source, formerly called the Kinked Z-pinch, was developed as part of the Electrode Studies program at Los Alamos. The Electrode Studies program was initiated to study the control of electrode erosion in long discharge duration spheromak sources. Erosion control is necessary to reduce plasma impurities and to obtain adequate electrode lifetimes. The first task of the Electrode Studies program is to determine, from among a variety of configurations including the coaxial one, a helicity source geometry with good prospects for erosion control. The more efficient the helicity source the easier it will be to control erosion, but the source most also be easy to diagnose and modify if it is to be a useful test bed. The various erosion control techniques which have been proposed will require extensive experimentation to evaluate and optimize. Proposed techniques include, using refractory metals, profiling of the electrodes and magnetic fields, and various gas injection schemes including porous electrodes. It is considered necessary to do these experiments on an optimized helicity source so that the electrode geometries and plasma properties will be relevant. Therefore the present Electrode Studies program is aimed at developing an improved helicity source design

  19. Simulation of electrical discharge in a 3.6 Joule miniature plasma focus device using SIMULINK

    International Nuclear Information System (INIS)

    Jafari, H.; Habibi, M.

    2014-01-01

    A novel technique has been developed and studied in this paper to simulate the electrical discharge circuit of a 3.6 J miniature plasma focus device (PFD) and investigate the effect of inductance variation on voltage spike and current dip. The technique is based on a correlation between the electrical discharge circuit and plasma dynamics in a very small PFD that operates at the energy of 3.6 J. The simulation inputs include the charging voltage, capacitor bank capacitance, current limiter resistance, bypass resistance as well as the time-dependent inductance and resistance of the plasma sheath which are calculated by assuming the plasma dynamics as transit times in going from one phase to the next. The variations of the most important elements in the circuit (i.e. the constant and breakdown inductances) and their effects on the current dip are studied in PFDs with low and high constant inductance. The model demonstrated for achieving a good pinch in the PFD, although the total inductance of the system should be low; however there is always an optimum inductance which causes an appropriate pinch. Furthermore, the electrical power produced by the pulsed power supply, the mechanical energy as well as the magnetic energy which are transferred into the plasma tube were obtained from simulation. The graph of electrical power demonstrated a high instantaneous increment in the power transferred into the plasma as one of the greatest advantages of the pulsed power supply. The simulation was performed using software tools within the MATLAB/SIMULINK simulation environment. The PFD, generating neutrons in the range of 10 6 to 10 10 neutrons per pulse will have substantial use in the physics and engineering applications. (authors)

  20. High performance operational limits of tokamak and helical systems

    International Nuclear Information System (INIS)

    Yamazaki, Kozo; Kikuchi, Mitsuru

    2003-01-01

    The plasma operational boundaries of tokamak and helical systems are surveyed and compared with each other. Global confinement scaling laws are similar and gyro-Bohm like, however, local transport process is different due to sawtooth oscillations in tokamaks and ripple transport loss in helical systems. As for stability limits, achievable tokamak beta is explained by ideal or resistive MHD theories. On the other hand, beta values obtained so far in helical system are beyond ideal Mercier mode limits. Density limits in tokamak are often related to the coupling between radiation collapse and disruptive MHD instabilities, but the slow radiation collapse is dominant in the helical system. The pulse length of both tokamak and helical systems is on the order of hours in small machines, and the longer-pulsed good-confinement plasma operations compatible with radiative divertors are anticipated in both systems in the future. (author)

  1. Tokamak startup using point-source dc helicity injection.

    Science.gov (United States)

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  2. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  3. Studies on divertor effects by means of the Doublet-III high-temperature plasma device

    International Nuclear Information System (INIS)

    Shimada, Michiya

    1982-12-01

    The diverter action on impurity removal, helium ash compression and radiative cooling was studied in Doublet-3, placing emphasis on the applicability to reacting plasma grade devices such as Intor. The following principal results were obtained with a single-null poloidal diverter without the diverter chamber and the diverter throat (referred to as ''open diverter''), and the diverter coils being installed outside the vacuum chamber. The diverter reduced metallic impurities in the central plasma volume, carbon influx and radiation loss, and changed a typically peaked radiation power profile to a hollow profile. In helium-seeded diverter discharge, helium gas pressure near the diverter rose with the increase of main plasma density, and the pressure was high enough to demonstrate the possibility of helium ash exhaust in a diverted tokamak. The radiation power in the diverter volume significantly increased with the increasing main plasma density to as much as 50 % of the input ohmic power. The remote radiation cooling reduced the thermal load on the diverter plate, and the electron temperature near the diverter plate was cooled down. The source of this remote radiative cooling power was the mixture of line radiation of hydrogen neutral and oxygen. (Kako, I.)

  4. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    Science.gov (United States)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  5. Equilibrium and stability studies for high beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Cooper, W.A.; Charlton, L.A.

    1983-01-01

    The equilibrium and stability properties of high β plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (Asub(p) <= 8), the self-stabilizing effect of the magnetic axis shift is large enough to open a direct path to the second stability regime. (author)

  6. Equilibrium and stability studies for high-beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Cooper, W.A.

    1983-01-01

    The equilibrium and stability properties of high-#betta# plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (A/sub p/ less than or equal to 8), the self-stabilizing effect of the magnetic-axis shift is large enough to open a direct path to the second-stability regime

  7. Palm top plasma focus device as a portable pulsed neutron source

    International Nuclear Information System (INIS)

    Rout, R. K.; Niranjan, Ram; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.; Mishra, P.

    2013-01-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10 4 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of −15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3 He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  8. Nitriding of Ti substrate using energetic ions from plasma focus device

    International Nuclear Information System (INIS)

    Henriquez, A; Bhuyan, H; Favre, M; Bora, B; Wyndham, E; Chuaqui, H; Mändl, S; Gerlach, J W; Manova, D

    2012-01-01

    Plasma Focus (PF) discharge is a pulsed plasma producing discharge that generates high temperature and high density plasma for a short duration. PF devices are known to emit intense ion beams pulses of characteristic energy in the keV to a few MeV range, in a time scale of tens of nanoseconds. We have previously investigated the ion flux and energy spectrum of ion beams emitted from a low energy PF, operating at 20 kV, with 1.8 kJ stored energy. It was observed that the ion beams have wide range of energy and intensity spectra with a clear angular anisotropy. Due to the wide range of ion energy and intensity spectra PF has become a subject of current interest for its applications in material sciences including surface modification and thin film deposition. The purpose of this study is the formation of titanium nitride (TiN) thin film and to investigate the structural properties of the TiN thin films in terms of PF angular positions. Substrates like Ti and Ti/Si were nitrided in a 1.8 kJ PF device at different angular positions with respect to the PF axis in order to correlate their surface properties with ion beam parameters. Preliminary characterizations of the ion implanted substrates have been conducted, using SEM, EDX and XRD. Our results indicate the formation of nanocrystalline TiN thin film only in certain angular positions. Angular dependency of the surface morphology was observed, which shows that the surface features strongly depends on ion beam energy and flux. With increasing angular positions, a reduction in the deposition rate and the sputter rate is observed. A pronounced nanostructured surface is only observed at the axis of the pinched plasma column, indicating the dominant role of sputtering and perhaps melting and fast re-crystallization of the surface in creating the nanostructures.

  9. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    Tafalla, D.; Tabares, F.L.; Ortiz, P.; Herrero, V.J.; Tanarro, I.

    1998-01-01

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  10. Open loop control of filament heating power supply for large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Srivastava, P.K.; Sanyasi, A.K. [Homi Bhabha National Institute, Mumbai 400094 (India); Srivastav, Prabhakar [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Awasthi, L.M., E-mail: kushagra.lalit@gmail.com [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Mattoo, S.K. [Homi Bhabha National Institute, Mumbai 400094 (India)

    2017-02-15

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  11. Open loop control of filament heating power supply for large volume plasma device

    International Nuclear Information System (INIS)

    Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2017-01-01

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  12. Operational characteristics of a high voltage plasma focus device working with deuterium and heavy gas mixture

    International Nuclear Information System (INIS)

    Zoita, V.; Presura, R.; Gherendi, F.; Dumitrescu-Zoita, C.; Aliaga, R.

    1992-01-01

    The addition of a few neon percents to the deuterium gas filling of a medium energy plasma focus device (PFD) changes dramatically the radiation characteristics of the discharge as well as the pinch configuration. One exceptional result is the generation of high aspect ratio pinches shown clearly and reproducibly on X-ray pinhole camera images and on schlieren pictures. Another remarkable result is that these pinches which show no macroscopic instabilities copiously produce neutrons and hard X-rays. This confirms an experimental fact previously identified on a lower voltage PFD: the macroscopic instabilities do not play the decisive role in the neutronic performance of medium energy PFD's. (Author)

  13. A very sensitive ion collection device for plasma-laser characterization.

    Science.gov (United States)

    Cavallaro, S; Torrisi, L; Cutroneo, M; Amato, A; Sarta, F; Wen, L

    2012-06-01

    In this paper a very sensitive ion collection device, for diagnostic of laser ablated-target plasma, is described. It allows for reducing down to few microvolts the signal threshold at digital scope input. A standard ion collector is coupled to a transimpedance amplifier, specially designed, which increases data acquisition sensitivity by a gain ≈1100 and does not introduce any significant distortion of input signal. By time integration of current intensity, an amount of charge as small as 2.7 × 10(-2) pC can be detected for photopeak events.

  14. On fractal properties of equipotentials over a real rough surface faced to plasma in fusion devices

    International Nuclear Information System (INIS)

    Budaev, V.P.; Yakovlev, M.

    2008-01-01

    We consider a sheath region bounded by a corrugated surface of material conductor and a flat boundary held to a constant voltage bias. The real profile of the film deposited from plasma on a limiter in a fusion device was used in numerical solving of the Poisson's equation to find a profile of electrostatic potential. The rough surface influences the equipotential lines over the surface. We characterized a shape of equipotential lines by a fractal dimension. The long-range correlation in the potential field is imposed by the non-trivial fractal structure of the surface. Dust particles bounced in such irregular potential field can accelerate due to the Fermi acceleration. (author)

  15. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices

    Directory of Open Access Journals (Sweden)

    Jian-Zhang Chen

    2015-01-01

    Full Text Available Atmospheric pressure plasma jet (APPJ technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.

  16. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    Science.gov (United States)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  17. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    Science.gov (United States)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  18. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  19. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    International Nuclear Information System (INIS)

    Linke, J.

    2006-01-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation

  20. Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors

    International Nuclear Information System (INIS)

    Pu, Haifeng; Zhou, Qianfei; Yue, Lan; Zhang, Qun

    2013-01-01

    We reported the impact of oxygen plasma treatment on solution-processed amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs). Plasma-treated devices showed higher mobility, larger on/off current ratio, but a monotonically increased SS with plasma treatment time as well. The phenomenon was mainly due to two components in oxygen plasma, atomic oxygen and O 2 + , according to the photoluminescence (PL) measurement. Atomic oxygen reacted with oxygen vacancies in channel layer resulting in an improved mobility, and O 2 + tends to aggregated at the surface acting as trapping states simultaneously. Our study suggests that moderate oxygen plasma treatment can be adopted to improve the device performance, while O 2 + should be eliminated to obtain good interfacial states.

  1. Conversion from mutual helicity to self-helicity observed with IRIS

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  2. 2. Basis of measurement of plasma flow. 2.3 Plasma flow measurements. Spectroscopic methods

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2007-01-01

    The construction of optical system, optical fiber incident system, reciprocal linear dispersion, grating smile and astigmatism of the reflection plane diffraction grating spectrometer are explained in order to measure the plasma flow. The specification of flow measurement and evaluation of 0 point of velocity are stated. For examples of measurements, the fine structures of He II (Δn = 3 - 4) in material and plasma(MAP)-II of Tokyo University, plasma flow measurement by the charge exchange recombination spectroscopy using Large Helical Device and by Zeeman spectroscopy using TRIAM-1M tokamak plasma are stated. (S.Y.)

  3. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    International Nuclear Information System (INIS)

    Pal, A M; Bhattacharya, S; Biswas, S; Basu, S; Pal, R

    2014-01-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere

  4. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    Science.gov (United States)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  5. Synthesis of nanostructured multiphase Ti(C,N)/a-C films by a plasma focus device

    International Nuclear Information System (INIS)

    Ghareshabani, E.; Rawat, R.S.; Sobhanian, S.; Verma, R.; Karamat, S.; Pan, Z.Y.

    2010-01-01

    Nanostructured multiphase Ti(C,N)/a-C films were deposited using a 3.3 kJ pulsed plasma focus device onto silicon (1 0 0) substrates at room temperature. The plasma focus device, fitted with solid titanium anode instead of usual hollow copper anode, was operated with nitrogen and Ar/CH 4 as the filling gas. Films were deposited with different number of shots, at 80 mm from top of the anode and at zero angular position with respect to anode axis. X-ray diffraction results show the diffraction peaks related to different compounds such as TiC 2 , TiN, Ti 2 CN, Ti and TiC 0.62 confirming the deposition of multiphase titanium carbo-nitride composite films on silicon. X-ray photoelectron spectroscopy confirms the formation of Ti-C, C-N, Ti-N, Ti-O and C-C bonds in the films. Scanning electron microscopy reveals that the nanostructure grains are agglomerates of smaller nanoparticles about 10-20 nm in size. Raman studies verify the formation of multiphase Ti(C,N) and also of amorphous graphite in the films. The maximum microhardness value of the composite film is 14.8 ± 1.3 GPa for 30 shots.

  6. Spectral dependence efficiency and localization of non-inductive current-drive via helicity injection by global Alfven waves in Tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1996-01-01

    The non-inductive current drive via helicity injection by Global Alfven eigenmode (GAE) waves is studied. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all these as functions of the characteristics of the waves launched by an external, concentric antenna (i.e, wave frequency and poloidal and toroidal wave numbers). The results reveal the following conclusions. Generation of GAE waves. In the range of poloidal wave numbers -3 0 for m = -l, -2, -3 and -20 10; I-BAR < 0 for m = +1, +2, +3 and n < 10. (iv) The efficiency of the current drive, η = absolute I-BAR/absolute P-BAR, increases in the cases m = -1, -2, -3 with absolute m and absolute 1/n. (v) Detailed information on the relative direction and radial (core) localization of the current drive is obtained. (authors)

  7. State of art data acquisition system for large volume plasma device

    International Nuclear Information System (INIS)

    Sugandhi, Ritesh; Srivastava, Pankaj; Sanyasi, Amulya Kumar; Srivastav, Prabhakar; Awasthi, Lalit Mohan; Mattoo, Shiban Krishna; Parmar, Vijay; Makadia, Keyur; Patel, Ishan; Shah, Sandeep

    2015-01-01

    The Large volume plasma device (LVPD) is a cylindrical device (ϕ = 2m, L = 3m) dedicated for carrying out investigations on plasma physics problems ranging from excitation of whistler structures to plasma turbulence especially, exploring the linear and nonlinear aspects of electron temperature gradient(ETG) driven turbulence, plasma transport over the entire cross section of LVPD. The machine operates in a pulsed mode with repetition cycle of 1 Hz and acquisition pulse length of duration of 15 ms, presently, LVPD has VXI data acquisition system but this is now in phasing out mode because of non-functioning of its various amplifier stages, expandability and unavailability of service support. The VXI system has limited capabilities to meet new experimental requirements in terms of numbers of channel (16), bit resolutions (8 bit), record length (30K points) and calibration support. Recently, integration of new acquisition system for simultaneous sampling of 40 channels of data, collected over multiple time scales with high speed is successfully demonstrated, by configuring latest available hardware and in-house developed software solutions. The operational feasibility provided by LabVIEW platform is not only for operating DAQ system but also for providing controls to various subsystems associated with the device. The new system is based on PXI express instrumentation bus and supersedes the existing VXI based data acquisition system in terms of instrumentation capabilities. This system has capability to measure 32 signals at 60 MHz sampling frequency and 8 signals with 1.25 GHz with 10 bit and 12 bit resolution capability for amplitude measurements. The PXI based system successfully addresses and demonstrate the issues concerning high channel count, high speed data streaming and multiple I/O modules synchronization. The system consists of chassis (NI 1085), 4 high sampling digitizers (NI 5105), 2 very high sampling digitizers (NI 5162), data streaming RAID drive (NI

  8. Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.

    2007-11-01

    In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.

  9. Preliminary investigation on the use of low current pulsed power Z-pinch plasma devices for the study of early stage plasma instabilities

    Science.gov (United States)

    Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.

    2018-01-01

    This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.

  10. Investigation of the neutron production phases of a large plasma focus device

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Herold, H.; Bertalot, L.; Deutsch, R.; Grauf, W.; Jaeger, U.; Kaeppeler, H.J.; Lepper, F.; Oppenlaender, T.; Schmidt, H.; Schmidt, R.; Schwarz, J.; Schwoerer, K.; Shakhatre, M.

    1982-09-01

    Plasma dynamic behavior and neutron production in large focus devices with pinch currents of approximately 1 MA have been studied with theoretical as well as experimental methods. For treating turbulent plasma motion, a hybrid code based on the analytical computer algorithm REDUCE was developed. Experimental diagnostics include schlieren photographs, reaction proton localization with pinhole cameras and neutron measurements with Ag-counters and scintillators. Calculated and measured data concern the 280 kJ, 60 kV operational mode of the POSEIDON plasma focus. It is shown that for large pinch currents ( > 500 kA), neutron emission also appears before m = 0 onset in the intermediate phase. This part of the neutron production becomes predominant for very large currents. The lifetime of this intermediate phase strongly increases with increasing current. According to theory, the late phase of the focus is governed by strong turbulence phenomena. The lifetime of the turbulence packets is approximately 150 ns and seems to explain the long lasting neutron emission in this phase. (orig.)

  11. Investigation of the Effect of Plasma Polymerized Siloxane Coating for Enzyme Immobilization and Microfluidic Device Conception

    Directory of Open Access Journals (Sweden)

    Kalim Belhacene

    2016-12-01

    Full Text Available This paper describes the impact of a physical immobilization methodology, using plasma polymerized 1,1,3,3, tetramethyldisiloxane, on the catalytic performance of β-galactosidase from Aspergillus oryzae in a microfluidic device. The β-galactosidase was immobilized by a polymer coating grown by Plasma Enhanced Chemical Vapor Deposition (PEVCD. Combined with a microchannel patterned in the silicone, a microreactor was obtained with which the diffusion through the plasma polymerized layer and the hydrolysis of a synthetic substrate, the resorufin-β-d-galactopyranoside, were studied. A study of the efficiency of the immobilization procedure was investigated after several uses and kinetic parameters of immobilized β-galactosidase were calculated and compared with those of soluble enzyme. Simulation and a modelling approach were also initiated to understand phenomena that influenced enzyme behavior in the physical immobilization method. Thus, the catalytic performances of immobilized enzymes were directly influenced by immobilization conditions and particularly by the diffusion behavior and availability of substrate molecules in the enzyme microenvironment.

  12. Three-dimensional two-fluid Braginskii simulations of the large plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Dustin M., E-mail: dustin.m.fisher.gr@dartmouth.edu; Rogers, Barrett N., E-mail: barrett.rogers@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Rossi, Giovanni D.; Guice, Daniel S.; Carter, Troy A. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-09-15

    The Large Plasma Device (LAPD) is modeled using the 3D Global Braginskii Solver code. Comparisons to experimental measurements are made in the low-bias regime in which there is an intrinsic E × B rotation of the plasma. In the simulations, this rotation is caused primarily by sheath effects and may be a likely mechanism for the intrinsic rotation seen in LAPD. Simulations show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices in the simulations are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the simulations at previously theorized values reduces the radial particle flux by about a factor of two, from values that are somewhat larger than the experimentally measured flux to values that are somewhat lower than the measurements. This reduction is due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport.

  13. Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, P; Nguyen-Tran, Th; Djeridane, Y; Abramov, A; Johnson, E; Patriarche, G

    2007-01-01

    The synthesis of silicon nanocrystals in standard radio-frequency glow discharge systems is studied with respect to two main objectives: (i) the production of devices based on quantum size effects associated with the small dimensions of silicon nanocrystals and (ii) the synthesis of polymorphous and polycrystalline silicon films in which silicon nanocrystals are the elementary building blocks. In particular we discuss results on the mechanisms of nanocrystal formation and their transport towards the substrate. We found that silicon nanocrystals can contribute to a significant fraction of deposition (50-70%) and that they can be positively charged. This has a strong influence on their deposition because positively charged nanocrystals will be accelerated towards the substrate with energy of the order of the plasma potential. However, the important parameter with respect to the deposition of charged nanocrystals is not the accelerating voltage but the energy per atom and thus a doubling of the diameter will result in a decrease in the energy per atom by a factor of 8. To leverage this geometrical advantage we propose the use of more electronegative gases, which may have a strong effect on the size and charge distribution of the nanocrystals. This is illustrated in the case of deposition from silicon tetrafluoride plasmas in which we observe low-frequency plasma fluctuations, associated with successive generations of nanocrystals. The contribution of larger nanocrystals to deposition results in a lower energy per deposited atom and thus polycrystalline films

  14. A note on helicity

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Newmann, E.T.; Porter, J.; Winicour, J.; Lukacs, B.; Perjes, Z.; Sebestyen, A.

    1981-03-01

    The authors give a formal definition of the helicity operator for integral spin fields, which does not involve their momentum-space decomposition. The discussion is based upon a representation of the Pauli-Lubanski operator in terms of the action on tensor fields by the Killing vectors associated with the generators of the Poincare group. This leads to an identification of the helicity operator with the duality operator defined by the space-time alternating tensor. Helicity eigenstates then correspond to self-dual or anti-self-dual fields, in agreement with usage implicit in the literature. In addiition, the relationship between helicity eigenstates which are intrinsically non-classical, and states of right or left circular polarization in classical electrodynamics are discussed. (author)

  15. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    International Nuclear Information System (INIS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-01-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm. - Highlights: • We investigated a small plasma focus as pulsed x-ray source for radiography applications. • The image quality was studied by several parameters such as image contrast, LSF and MTF. • The x-ray source focal spot was obtained to be ∼0.6 mm using the penumbra imaging method. • The x-ray dose measurement showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. • The profiles of LSF and MTF showed that the cut-off frequency is about 1.5 cycles/mm

  16. Helical CT defecography

    International Nuclear Information System (INIS)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M.; Tornago, S.

    1999-01-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases [it

  17. New formulae for magnetic relative helicity and field line helicity

    Science.gov (United States)

    Aly, Jean-Jacques

    2018-01-01

    We consider a magnetic field {B} occupying the simply connected domain D and having all its field lines tied to the boundary S of D. We assume here that {B} has a simple topology, i.e., the mapping {M} from positive to negative polarity areas of S associating to each other the two footpoints of any magnetic line, is continuous. We first present new formulae for the helicity H of {B} relative to a reference field {{B}}r having the same normal component {B}n on S, and for its field line helicity h relative to a reference vector potential {{C}}r of {{B}}r. These formulae make immediately apparent the well known invariance of these quantities under all the ideal MHD deformations that preserve the positions of the footpoints on S. They express indeed h and H either in terms of {M} and {B}n, or in terms of the values on S of a pair of Euler potentials of {B}. We next show that, for a specific choice of {{C}}r, the field line helicity h of {B} fully characterizes the magnetic mapping {M} and then the topology of the lines. Finally, we give a formula that describes the rate of change of h in a situation where the plasma moves on the perfectly conducting boundary S without changing {B}n and/or non-ideal processes, described by an unspecified term {N} in Ohm’s law, are at work in some parts of D.

  18. IAEA technical committee meeting on research using small fusion devices (abstracts)

    International Nuclear Information System (INIS)

    1999-12-01

    The thirteenth IAEA technical committee meeting on research using small fusion devices are held in Chengdu, P. R. China on 18-20 Oct. , 1999. 41 articles are received and the content includes toroidal systems, helical systems, plasma focus, diagnostic systems, theory and modeling, improving confinement, numerical simulation, innovative concepts and others

  19. Low Damage, High Anisotropy Inductively Coupled Plasma for Gallium Nitride based Devices

    KAUST Repository

    Ibrahim, Youssef H.

    2013-05-27

    Group III-nitride semiconductors possess unique properties, which make them versatile materials for suiting many applications. Structuring vertical and exceptionally smooth GaN profiles is crucial for efficient optical device operation. The processing requirements for laser devices and ridge waveguides are stringent as compared to LEDs and other electronic devices. Due to the strong bonding and chemically inert nature of GaN, dry etching becomes a critical fabrication step. The surface morphology and facet etch angle are analyzed using SEM and AFM measurements. The influence of different mask materials is also studied including Ni as well as a SiO2 and resist bilayer. The high selectivity Ni Mask is found to produce high sidewall angles ~79°. Processing parameters are optimized for both the mask material and GaN in order to achieve a highly anisotropic, smooth profile, without resorting to additional surface treatment steps. An optimizing a SF6/O2 plasma etch process resulted in smooth SiO2 mask sidewalls. The etch rate and GaN surface roughness dependence on the RF power was also examined. Under a low 2mTorr pressure, the RF and ICP power were optimized to 150W and 300W respectively, such that a smooth GaN morphology and sidewalls was achieved with reduced ion damage. The The AFM measurements of the etched GaN surface indicate a low RMS roughness ranging from 4.75 nm to 7.66 nm.

  20. Imploding to equilibrium of helically symmetric theta pinches

    International Nuclear Information System (INIS)

    Sharky, N.N.

    1978-01-01

    The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed

  1. Plasma waves in an inhomogeneous cylindrical plasma

    International Nuclear Information System (INIS)

    Pesic, S.S.

    1976-01-01

    The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied

  2. Dynamic helical CT mammography of breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Fukushima, Hitoshi; Okamura, Ryuji; Nakamura, Yoshiaki; Morimoto, Taisuke; Urata, Yoji; Mukaihara, Sumio; Hayakawa, Katsumi

    2006-01-01

    The purpose of this study was to determine whether dynamic helical computed tomography (CT)-mammography could assist in selecting the most appropriate surgical method in women with breast cancer. Preoperative contrast-enhanced helical CT scanning of the breast was performed on 133 female patients with suspicion of breast cancer at the same time as clinical, mammographic, and/or ultrasonographic examinations. The patients were scanned in the prone position with a specially designed CT-compatible device. A helical scan was made with rapid intravenous bolus injection (3 ml/s) of 100 ml of iodine contrast material. Three-dimensional maximum intensity projection (MIP) images were reconstructed, and CT findings were correlated with surgical and histopathological findings. Histopathological analysis revealed 84 malignant lesions and seven benign lesions. The sensitivity, specificity, and accuracy levels of the CT scanning were 94.6%, 58.6%, and 78.9%. Helical scanning alone revealed additional contralateral carcinomas in three of four patients and additional ipsilateral carcinomas in three of five patients. However, the technique gave false-positive readings in 24 patients. The preoperative CT-mammogram altered the surgical method in six patients. Dynamic helical CT-mammography in the prone position may be one of the choices of adjunct imaging in patients with suspected breast cancer scheduled for surgery. (author)

  3. Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m

    International Nuclear Information System (INIS)

    Mitarai, O.; Sagara, A.; Chikaraishi, H.; Imagawa, S.; Shishkin, A.A.; Motojima, O.

    2006-10-01

    Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, lower density limit margin reduces the external heating power, and over 300 s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils. (author)

  4. Roles of effective helical ripple rates in nonlinear stability of externally induced magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2015-02-15

    Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found that self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.

  5. Limits of deuterium pressure range with neutron production in plasma focus devices

    International Nuclear Information System (INIS)

    Pouzo, J.; Milanese, M.; Piriz, R.; Cortazar, D.; Moroso, R.

    1988-01-01

    In this work we present the experimental curves of neutron yield (Y) respect to the deuterium filling pressure (p) obtained in our plasma focuses device PACO. Y increases with the focus current (I f ) according with the scaling law Y ∼I 4-5 f , but it presents a limited range of p beyond which Y drastically decreases. The higher pressure limit is coincident with recently reported limit due to the energy available to maintain the ionization rate of the neutral gas during the roll-off stage. The lower pressure limit is here explained, through experimental evidences, in terms of a phenomenon connected with the dynamics of the current sheath (cs) during the roll-off stage. (author). 8 refs, 11 figs

  6. Scattering and extinction of ion beams in a dusty plasma device

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2001-01-01

    Collisions of ions with charged dust grains are important for the propagation of low frequency waves such as dust acoustic waves and dust ion-acoustic waves. The collision cross-sectional area of charged dust grains depends on the velocity of an ion beam. The collision cross-sectional area of charged dust grains with beam ions is measured. It is compared with the geometrical cross-sectional area of the grain. The experiment is performed in a dusty double-plasma device with glass beads of 8.9 μm in average diameter. The ion beam current and energy are measured with a directional retarding potential analyzer. It is observed that, when dust density inside the system is increased, the beam current ratio is reduced. From the reduction of the ion beam current, the effective cross-sectional area of the dust particle is estimated as a function of the beam energy

  7. A study of x-ray emission from the anode region in a plasma focus device

    International Nuclear Information System (INIS)

    Jia Wang; Tsinchi Yang

    1988-01-01

    The physical process of x-ray emission from the anode region in a plasma focus device due to the interaction of a powerful electron beam with the metal anode and with ionised metallic vapour from the anode is investigated. The influence of the magnetic field of the beam is taken into consideration. A MC-PIC model (Monte Carlo-particle in cell) is proposed for the process, in which an electron-photon collision cascade is simulated by the MC approach and the time-dependent state of metallic vapour is determined by PIC computation. The time-resolved energy spectra and angular distributions of x-ray emission from the extending anode region are calculated. The time-integrated characteristics of the x-ray emission can be compared with the results of experiments as far as they are available. (author)

  8. Working gas effects on the X-ray emission of a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Cengher, M; Presura, R; Zoita, V [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Experiments on the plasma focus device IPF-2/20 operating with argon, neon and mixtures of argon with deuterium were performed and some X-ray emission parameters measured. The time evolution of the X-ray emission and dependence of the X-ray yield on the working gas composition was analyzed. The softer X radiation was measured with time resolution in the energy bands from 4 to 40 keV, and the hard X-rays for energies above 200 keV. In deuterium-argon mixtures the soft X-ray yield increases both with pressure (for the same ratio of argon) and with the quantity of argon added to deuterium at the same total pressure. For argon or neon the hard X-ray yield is lower than for deuterium-heavy gas mixtures. The softer X-ray yield decreases with pressure both for neon and for argon. (author). 4 figs., 5 refs.

  9. To a question on thermal protection of constructional elements of vacuum-plasma devices

    International Nuclear Information System (INIS)

    Borisko, V.N.; Borisko, S.V.; Zinovev, D.V.; Lapshin, V.I.; Tselujko, A.F.

    2005-01-01

    The progress in development of vacuum-plasma devices is connected with the design and creation of constructional elements from materials, which have a high erosion resistance and can maintain the large specific flux of energy per effective area. Recently as the materials of such constructional elements it was offered to use the reversible sorbents of hydrogen of Zr-V system, which have high-rates of sorption-desorption and large thermal effect of the hydride phases decomposition. In the paper an experimental research of the thermal conditions features of the metal-hydride electrodes, which subjected of the energy loads in the vacuum-plasma devices, are given. The simulation of the energy loads on the electrodes was carried out with the help of gas discharge plasma as there is an possibility to vary the energy spectrum of the bombarding particles and to gather a necessary radiation dose to the material surface. For comparative examinations of various materials under the irradiation by high-energy heavy particles it is the most convenient to use the Penning discharge. In this case, the cathodes made of different materials are under the identical conditions even at the change of working discharge modes. Therefore in the device on the basis of the Penning discharge the cathodes of metal-hydride and stainless steel were set. It was detected, that the increase of the temperature gradient of metal-hydride cathode goes down with the increase of discharge current value. The dependence of operating temperatures difference of cathodes from exposure time has shown that the temperature of the metal-hydride cathode is sufficiently lower than the temperature of the stainless steel cathode. Such a softening of the thermal operation conditions of the metal hydride cathode is caused by thermal decomposition of hydride phases. Besides there is the energy flow dissipation of bombarding particles on the protective gas target formed by desorbed hydrogen. The considerable decrease of

  10. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.; Nasiri, A. [Atomic Energy Organization of Iran, Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (Iran, Islamic Republic of)

    2017-01-15

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  11. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  12. Development of the reactor lithium ampoule device for research of spectral-luminescent characteristics of nuclear-excited plasma

    Energy Technology Data Exchange (ETDEWEB)

    Batyrbekov, E.G. [National Nuclear Center of RK, Kurchatov (Kazakhstan); Gordienko, Yu. N., E-mail: gordienko@nnc.kz [National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yu. V. [National Nuclear Center of RK, Kurchatov (Kazakhstan); Khasenov, M.U. [PI “National Laboratory Astana”, Astana (Kazakhstan); Tazhibayeva, I.L.; Barsukov, N.I.; Kulsartov, T.V.; Zaurbekova, Zh. A.; Tulubayev, Ye. Yu.; Skakov, M.K. [National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • The development procedure of the ampoule device for experiments with nuclear-excited plasma under neutron irradiation is described. • The methods of nuclear reactions’ energy conversion into the energy of optical radiation of nuclear-excited plasma are presented. • A scheme of reactor experiments, the experimental facility and experimental device to carry out the reactor experiments are considered. - Abstract: This paper describes the development procedure of the reactor ampoule device to perform the experiments on study of spectral luminescence characteristics of nuclear-excited plasma formed by products of {sup 6}Li(n,α){sup 3}H reaction under neutron irradiation at the IVG.1 M research reactor. The methods of nuclear reactions’ energy conversion into the energy of optical radiation of nuclear-excited plasma are presented. A scheme of reactor experiments, the experimental facility and experimental device to carry out the reactor experiments are considered in paper. The designed ampoule device is totally meets the requirements of irradiation experiments on the IVG.1M reactor.

  13. Some dynamical properties of very strong double layers in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, T.; Torven, S.

    1987-01-01

    Experimental results on three dynamic properties of very strong double layers observed in a triple plasma device are presented. First, it is observed that when an inductance of sufficient size is inserted in series with the external bias supply used to produce the double layer, disruptions in the plasma current occur accompanied by disruptions in the double layer potential. Second, it is observed that with all external reactances reduced as much as possible, a sort of jitter-motion occurs in the position of the double layer around its equilibrium position. Third, when the external bias supply is pulsed, the initial potential distribution is observed to have an essentially uniform slope, as in the case of a vacuum capacitor. The disruption phenomenon may be explained in terms of the behavior of the potential structure as a function of the bias voltage and this explanation is discussed along with the experimental evidence for its validity. A comparable understanding of the other two phenomena has not been achieved, but in both cases there are qualitative difference between the behavior reported here and what has been observed in Q-machines and these difference are discussed. (author)

  14. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    Science.gov (United States)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  15. Design and construction of automatic operating system of double chamber plasma nitriding device PLC based

    International Nuclear Information System (INIS)

    Saminto; Slamet Santosa; Eko Priyono

    2012-01-01

    The automatic operating system of double chamber plasma nitriding device has been done. The system is used for operating double chamber plasma nitriding automatically as according to the standard operating procedure by pressing push button on the human machine interface (HMI). The system consists of hardware and software. The hardware was constructed using main components T100MD1616+ PLC module and supported by temperature signal conditioner module, Wheatstone bridge module, isolated amplifier module and EMS 30A H Bridge motor driver module. A software program that is planted on T100MD1616+ PLC using ladder diagrams and Tbasic program. Test system functions performed by inserting a set values of temperature and pressure by pressing the button on the human machine interface (HMI). The test results show that the temperature control with a set of values 100 °C obtained stable coverage of 98 °C to 102 °C, (Δ ± 2 °C) with a 2% tolerance and the output voltage of the DAC is 2.436 volts to 2.913 volts. The pressure control with a set of values 2.169 x 10 -1 mbar obtained stable coverage of 1.995 x 10 -1 mbar to 2.205 x 10 -1 mbar, (Δ ± 0.105 x 10 -1 mbar) with a 5% tol. (author)

  16. Hybrid Synthetic Receptors on MOSFET Devices for Detection of Prostate Specific Antigen in Human Plasma.

    Science.gov (United States)

    Tamboli, Vibha K; Bhalla, Nikhil; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Bowen, Jenna L; Allender, Chris J; Estrela, Pedro

    2016-12-06

    The study reports the use of extended gate field-effect transistors (FET) for the label-free and sensitive detection of prostate cancer (PCa) biomarkers in human plasma. The approach integrates for the first time hybrid synthetic receptors comprising of highly selective aptamer-lined pockets (apta-MIP) with FETs for sensitive detection of prostate specific antigen (PSA) at clinically relevant concentrations. The hybrid synthetic receptors were constructed by immobilizing an aptamer-PSA complex on gold and subjecting it to 13 cycles of dopamine electropolymerization. The polymerization resulted in the creation of highly selective polymeric cavities that retained the ability to recognize PSA post removal of the protein. The hybrid synthetic receptors were subsequently used in an extended gate FET setup for electrochemical detection of PSA. The sensor was reported to have a limit of detection of 0.1 pg/mL with a linear detection range from 0.1 pg/mL to 1 ng/mL PSA. Detection of 1-10 pg/mL PSA was also achieved in diluted human plasma. The present apta-MIP sensor developed in conjunction with FET devices demonstrates the potential for clinical application of synthetic hybrid receptors for the detection of clinically relevant biomarkers in complex samples.

  17. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device

    International Nuclear Information System (INIS)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Gekelman, W.; Niemann, C.; Winske, D.

    2014-01-01

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations

  18. Tungsten: An option for divertor and main chamber plasma facing components in future fusion devices

    International Nuclear Information System (INIS)

    Neu, R.; Dux, R.; Kallenbach, A.; Maggi, C.F.; Puetterich, T.; Balden, M.; Eich, T.; Fuchs, J.C.; Gruber, O.; Herrmann, A.; Maier, H.; Mueller, H.W.; Pugno, R.; Radivojevic, I.; Rohde, V.; Sips, A.C.C.; Suttrop, W.; Ye, M.Y.; O'Mullane, M.; Whiteford, A.

    2005-01-01

    The tungsten programme in ASDEX Upgrade is pursued towards a full high-Z device. The spectroscopic diagnostic and the cooling factor of W have been extended and refined. The W-coated surfaces represent now a fraction of 65% (24.8 m2). The only two major components which are not yet coated are the strikepoint region of the lower divertor as well as the limiters at the low field side. While extending the W surfaces, the W concentration and the discharge behaviour have changed gradually pointing to critical issues when operating with a W wall: anomalous transport in the plasma centre should not be too low, otherwise neoclassical accumulation can occur. A very successful remedy is the addition of central RF heating at the 20-30% level. Regimes with low ELM activity show increased impurity concentration over the whole plasma radius. These discharges can be cured by increasing the ELM frequency through pellet ELM pacemaking or by higher heating power. Moderate gas puffing also mitigates the impurity influx and penetration, however at the expense of lower confinement. The erosion yield at the low field side guard limiter can be as high as 10 -3 and fast particle losses from NBI were identified to contribute a significant part to the W sputtering. Discharges run in the upper, W coated divertor do not show higher W concentrations than comparable discharges in the lower C-based divertor. (author)

  19. Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation

    International Nuclear Information System (INIS)

    Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.; Bersuker, G.; Brown, G. A.; Murto, R. W.; Jackson, M. D.; Huff, H. R.; Kraus, P.; Lopes, D.

    2001-01-01

    In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSG oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. [copyright] 2001 American Institute of Physics

  20. Validation study of a drift-wave turbulence model for CSDX linear plasma device

    Science.gov (United States)

    Vaezi, P.; Holland, C.; Thakur, S. C.; Tynan, G. R.

    2017-09-01

    A validation study of self-regulating drift-wave turbulence/zonal flow dynamics in the Controlled Shear Decorrelation Experiment linear plasma device using Langmuir probe synthetic diagnostics is presented in this paper. We use a set of nonlocal 3D equations, which evolve density, vorticity, and electron temperature fluctuations, and include proper sheath boundary conditions. Nonlinear simulations of these equations are carried out using BOUndary Turbulence (BOUT++) framework. To identify the dominant parametric dependencies of the model, a linear growth rate sensitivity analysis is performed using input parameter uncertainties, which are taken from the experimental measurements. For the direct comparison of nonlinear simulation results to experiment, we use synthetic Langmuir probe diagnostics to generate a set of synthetic ion saturation current and floating potential fluctuations. In addition, comparisons of azimuthal velocities determined via time-delay estimation, and nonlinear energy transfer are shown. We observe a significant improvement of model-experiment agreement relative to the previous 2D simulations. An essential component of this improved agreement is found to be the effect of electron temperature fluctuations on floating potential measurements, which introduces clear amplitude and phase shifts relative to the plasma potential fluctuations in synthetically measured quantities, where the simulations capture the experimental measurements in the core of plasma. However, the simulations overpredict the fluctuation levels at larger radii. Moreover, systematic simulation scans show that the self-generated E × B zonal flows profile is very sensitive to the steepening of density equilibrium profile. This suggests that evolving both fluctuations and equilibrium profiles, along with the inclusion of modest axial variation of radial profiles in the model are needed for further improvement of simulation results against the experimental measurements.