WorldWideScience

Sample records for hectorite clay studied

  1. Synthesis and characterization of rubbery epoxy/organoclay hectorite nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The present research investigates the morphology, the mechanical, and the viscoelastic properties of rubbery epoxy/clay nanocomposites synthesized by in situ polymerisation of a prepolymer diglycidyl ether of bisphenol-A crosslinked with an aliphatic diamine based on a polyoxypropylene backbone. The inorganic phase was hectorite, exchanged with octadecylammonium ions in order to give organophilic properties to the phyllosilicate. An ultrasonicator was used to disperse the silicate clay layer into epoxy-amine matrix. The morphology of epoxy-hectorite nanocomposites examined by transmission electron microscopy (TEM showed that mixed delamination or intercalation or microdispersion could occur depending on type of organoclay. Moreover, the mechanical and viscoelastic properties were found to be improved with only the treated hectorite.

  2. From cobalt and zinc adsorption on hectorite and quartz to phyllosilicates heterogeneous nucleation

    International Nuclear Information System (INIS)

    Schlegel, Michel

    1999-01-01

    The sorption mechanism and the crystallochemical environment of divalent Co and Zn on hectorite, a magnesian smectite, and quartz are investigated by combined kinetics chemical studies and polarized-EXAFS (P-EXAFS) spectroscopy. At high ionic strength (0.3 M NaNO 3 ), pH 6.5, and a sorbate/hectorite ratio of ∼50 μmol/g, Zn and Co adsorb via a pH-dependent mechanism. This sorption process coincides with an initial excess release of protons and Mg in the supernatant, and with a long term inhibition of hectorite dissolution. Sorbate cations form mononuclear surface complexes in the continuity of the magnesian octahedral sheet of the clay structure. At low ionic strength, Zn and Co initially sorb rapidly by cation exchange, and form outer-sphere surface complexes. Following this fast sorption process, sorbed ions are progressively transferred from interlayer exchange sites to layer edges sites, where they form inner-sphere surface complexes. Cation exchange sites thus act as transient cationic buffer. At pH 7.3, high ionic strength and sorbate/hectorite ratio (1480 μmol/g), the amplitude and kinetics of Zn sorption depend on the concentration of dissolved Si, [Si]. At [Si] = 30-60 μmol/L, Zn forms small polynuclear complexes of 2-3 atoms located in structural continuity of hectorite octahedral sheets. At [Si] ≅ 540 μmol L -1 , hetero-nucleation and growth of a Zn-rich phyllosilicate occurs in structural continuity of hectorite layers. EXAFS spectra of Co-sorbed quartz first indicate formation of large Co octahedral sheets. However, close examination of atomic contributions revealed that these sheets are connected to Si tetrahedral sheets, meaning that the sorption of Co on quartz leads to the neo-formation of phyllosilicate. The mechanism of this neo-formation is discussed. (author) [fr

  3. Application of natural and modified hectorite clays as adsorbents to removal of Cr(VI) from aqueous solution-Thermodynamic and equilibrium study

    International Nuclear Information System (INIS)

    Guerra, Denis L.; Viana, Rubia R.; Airoldi, Claudio

    2009-01-01

    A hectorite (H) clay sample has been modified with 2-mercaptobenzimidazole (MBI) using homogeneous and heterogeneous routes. Both modification methodologies resulted in similar products, named H HOM and H HET , respectively. These materials were characterized by CO 2 gas adsorption, elemental analysis, nuclear magnetic nuclei of carbon-13 and silicon-29. The effect of two variables (contact time and metal concentration) has been studied using batch technique at room temperature and pH 2.0. After achieving the best conditions for Cr(VI) adsorption, isotherms of this adsorbate on using the chosen adsorbents were obtained, which were fitted to non-linear Sips isotherm model. The maximum number of moles adsorbed was determined to be 11.63, 12.85 and 14.01 mmol g -1 for H, H HOM and H HET , respectively, reflecting the maximum adsorption order of H HET > H HOM > H. The energetic effects (Δ int H o , Δ int G o and Δ int S o ) caused by chromium ion adsorption were determined through calorimetric titrations.

  4. Application of natural and modified hectorite clays as adsorbents to removal of Cr(VI) from aqueous solution-Thermodynamic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis L., E-mail: dlguerra@iqm.unicamp.br [Chemistry Institute, State University of Campinas, P. O. Box 6154, 13084-971, Campinas, Sao Paulo (Brazil); Viana, Rubia R. [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba, Mato Grosso, 768060 900 (Brazil); Airoldi, Claudio [Chemistry Institute, State University of Campinas, P. O. Box 6154, 13084-971, Campinas, Sao Paulo (Brazil)

    2009-12-15

    A hectorite (H) clay sample has been modified with 2-mercaptobenzimidazole (MBI) using homogeneous and heterogeneous routes. Both modification methodologies resulted in similar products, named H{sub HOM} and H{sub HET}, respectively. These materials were characterized by CO{sub 2} gas adsorption, elemental analysis, nuclear magnetic nuclei of carbon-13 and silicon-29. The effect of two variables (contact time and metal concentration) has been studied using batch technique at room temperature and pH 2.0. After achieving the best conditions for Cr(VI) adsorption, isotherms of this adsorbate on using the chosen adsorbents were obtained, which were fitted to non-linear Sips isotherm model. The maximum number of moles adsorbed was determined to be 11.63, 12.85 and 14.01 mmol g{sup -1} for H, H{sub HOM} and H{sub HET}, respectively, reflecting the maximum adsorption order of H{sub HET} > H{sub HOM} > H. The energetic effects ({Delta}{sub int}H{sup o}, {Delta}{sub int}G{sup o} and {Delta}{sub int}S{sup o}) caused by chromium ion adsorption were determined through calorimetric titrations.

  5. Sorption of metal ions on clay minerals. 2: Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, M.L.; Charlet, L.; Manceau, A.

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 {micro}M, 0.3 M NaNO{sub 3}) and ionic strength (0.3 and 0.01 M NaNO{sub 3}, TotCo = 100 {micro}M) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. Spectral simulations revealed the occurrence of {approximately} 2 Mg and {approximately} 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites.

  6. Equilibrium models and kinetic for the adsorption of methylene blue on Co-hectorites

    International Nuclear Information System (INIS)

    Ma Jun; Jia Yongzhong; Jing Yan; Sun Jinhe; Yao Ying; Wang Xiaohua

    2010-01-01

    The adsorption of methylene blue (MB) onto the surface of cobalt doping hectorite (Co-hectorite) was systematically studied. The physical properties of Co-hectorites were investigated, where characterizations were carried out by X-ray diffraction (XRD) and Electron Diffraction Spectrum (EDS) techniques, and morphology was examined by nitrogen adsorption. The sample with a Co content 5% (m/m) had a higher specific surface area than other Co-hectorites. The pore diameters were distributed between 2.5 and 5.0 nm. The adsorption results revealed that Co-hectorite surfaces possessed effective interactions with MB and bases, and greatest adsorption capacity achieved with Co content 5%, where the best-fit isotherm model was the Langmuir adsorption model. Kinetic studies were fitted to the pseudo-second-order kinetic model. The intraparticle diffusion was not the rate-limiting step for the whole reaction.

  7. Organic or organometallic template mediated clay synthesis

    Science.gov (United States)

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  8. Effect of coal mine dust and clay extracts on the biological activity of the quartz surface

    Energy Technology Data Exchange (ETDEWEB)

    Stone, V.; Jones, R.; Rollo, K.; Duffin, R.; Donaldson, K.; Brown, D.M. [Napier University, Edinburgh (United Kingdom). School of Life Science

    2004-04-01

    Modification of the quartz surface by aluminum salts and metallic iron have been shown to reduce the biological activity of quartz. This study aimed to investigate the ability of water soluble extracts of coal mine dust (CMD), low aluminum clays (hectorite and montmorillonite) and high aluminum clays (attapulgite and kaolin) to inhibit the reactivity of the quartz surface. DQ12 induced significant haemolysis of sheep erythrocytes in vitro and inflammation in vivo as indicated by increases in the total cell numbers, neutrophil cell numbers, MIP-2 protein and albumin content of bronchoalveolar lavage (BAL) fluid. Treatment of DQ12 with CMD extract prevented both haemolysis and inflammation. Extracts of the high aluminum clays (kaolin and attapulgite) prevented inhibition of DQ12 induced haemolysis, and the kaolin extract inhibited quartz driven inflammation. DQ12 induced haemolysis by coal mine dust and kaolin extract could be prevented by pre-treatment of the extracts with a cation chellator. Extracts of the low aluminum clays (montmorillonite and hectorite) did not prevent DQ12 induced haemolysis, although the hectorite extract did prevent inflammation. These results suggest that CMD, and clays both low and rich in aluminum, all contain soluble components (possibly cations) capable of masking the reactivity of the quartz surface.

  9. Preparation of Silver Immobilised TiO2-Hectorite for Phenol Removal and Eschericia coli Desinfection

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2013-03-01

    Full Text Available Preparation of silver immobilized TiO2-Hectorite and its application in phenol photooxidation and Eschericia coli bacteria desinfection has been conducted. Material was obtained by two steps of synthesis: preparation of TiO2-Hectorite and silver immobilization into TiO2-Hectorite. Physico-chemical characterization to the prepared material compared to raw hectorite was conducted by X-ray Diffraction, gas sorption analyzer, scanning electron microscope and DRUV-Visible spectrophotometry and for photoactivity study, phenol photooxidation and Eschericia coli desinfection were investigated. The results indicated that the modification to hectorite material improve the physico-chemical character related to its role as photo-catalyst. Kinetic study of phenol photooxidation revealed the role of TiO2 pillarization and silver immobilization in enhancing rate of reaction as well as increased photoactivity of the materials in E. coli desinfection. © 2013 BCREC UNDIP. All rights reservedReceived: 28th September 2012; Revised: 7th December 2012; Accepted: 20th Decemberber 2012[How to Cite: I. Fatimah (2013. Preparation of Silver Immobilised TiO2-Hectorite for Phenol Removal and Eschericia coli Desinfection. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 191-197. (doi:10.9767/bcrec.7.3.4047.191-197][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4047.191-197 ] View in  |

  10. EPR monitoring of the bioavailability of an organic xenobiotic (4-hydroxy-TEMPO) in model clay suspensions and pastes

    Energy Technology Data Exchange (ETDEWEB)

    Dumestre, Alain [Laboratory of Geoenvironmental Science and Engineering, Bradfield Hall, Cornell University, Ithaca, NY 14853 (United States); Spagnuolo, Matteo [Dipartimento di Biologia e Chimica Agro-forestale ed Ambientale, Universita degli Studi di Bari, via Amendola 165/a, 70126 Bari (Italy); Bladon, Rebecca [158 Kottinger Drive, Pleasanton, CA (United States); Berthelin, Jacques [CNRS-LIMOS Laboratoire des Interactions Microorganismes-Mineraux-Matieres Organiques, UMR 7137 du CNRS, Universite Henri Poincare, B.P. 239, F-54506 Vandoeuvre les Nancy (France); Baveye, Philippe [Laboratory of Geoenvironmental Science and Engineering, Bradfield Hall, Cornell University, Ithaca, NY 14853 (United States)]. E-mail: philippe.baveye@cornell.edu

    2006-09-15

    Electron paramagnetic resonance spectroscopy is used to monitor the bioavailability of a nitroxide spin probe, 4-hydroxy-Tempo or Tempol, in Ca-hectorite suspensions and pastes, to bacteria capable of degrading this probe co-metabolically. In nutrient solutions with an initial probe concentration of 1.2 mM and in the absence of hectorite, bacteria are able to denature Tempol and eliminate its paramagnetic signal within 48 h. In the presence of hectorite and after flocculation, the effect of bacteria is significantly delayed, but almost complete denaturation still occurs, after roughly 120 h. When hectorite is added but the bacterial/clay suspension is not centrifuged, Tempol denaturation levels off after about 24 h and reaches a plateau with approximately 45% of Tempol remaining. This plateau does not constitute evidence of limited bioavailability, as is widely assumed, since subsequent addition of nutrients causes the denaturation reaction to proceed to a second plateau, with merely 10% of Tempol remaining. - Spectroscopic data demonstrate that the bioavailability of an organic compound in clay suspensions and pastes strongly depends on conditions that affect bacterial metabolism.

  11. Sorption of Metal Ions on Clay Minerals.

    Science.gov (United States)

    Schlegel; Manceau; Chateigner; Charlet

    1999-07-01

    The local structural environment of Co sorbed on hectorite (a magnesian smectite) has been investigated by polarized EXAFS (P-EXAFS) spectroscopy on a self-supporting film of Co-sorbed hectorite. This sorption sample was prepared by contacting Co and hectorite at pH 6.5 and at high ionic strength (0.3 M NaNO3) to favor pH-dependent sorption reaction over cation exchange. A self-supporting film was elaborated after 120 h of reacting time, when apparent quasi-equilibrium conditions were attained. The half-width at half maximum of the orientation distribution of c* axis of individual clay platelets off the film normal was determined by quantitative texture analysis, and found to be equal to 18.9 degrees. Co K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 0 degrees, 35 degrees, 50 degrees, and 60 degrees; the 90 degrees spectrum was obtained by extrapolation. Spectral analysis led to the identification of the two nearest cationic subshells containing 1.6 +/- 0.4 Mg at 3.03 Å and 2.2 +/- 0.5 Si at 3.27 Å. These distances are respectively characteristic of edge-sharing linkages between Mg and Co octahedra and of corner-sharing linkages between Co octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Co-Mg and Co-Si contributions indicates that Co-Mg pairs are oriented parallel to the film plane, whereas Co-Si pairs are not. These results are interpreted by the formation of Co inner-sphere mononuclear surface complexes located at the edges of hectorite platelets, in the continuity of the (Mg, Li) octahedral sheet. Copyright 1999 Academic Press.

  12. Multi scale experimental study of water and ionic transport in porous charged media: clays

    International Nuclear Information System (INIS)

    Cadene, A.

    2005-10-01

    Clays are porous media of industrial interest. Due to their retention capacities and low permeability to water, they are the principal candidate for the conception of engineered barriers radioactive waste disposal. The main interest of this study is the experimental determination of the cationic and water dynamics in montmorillonite and fluoro-hectorite at low water contents This latter synthetic smectite has been used as a model clay to help the interpretation of the results issued from the first natural one. After a summary on the clayey system, this work reports the many experimental techniques (Atomic Force Microscopy, Photo-Correlation Spectroscopy, Micro-calorimetry, Powder Diffraction) used during the preliminary study concerning structural characterisation of the samples. The study of the sodic form of smectites with the use of a combination of quasi-elastic neutron scattering techniques (Time of Flight and Spin Echo) succeeded to water diffusion coefficients but also to a discernment of the limits of such techniques. Experiments with montmorillonite samples are in agreement with the simulations, so tending to a validation of the models. Experimental data obtained from synthetic hectorites will be in the near future compared to simulations In the last part, this work shows the application of Broad Band Dielectric Spectroscopy for the investigation of ionic dynamic in these porous media. Many models have been developed for the interpretation of the experimental raw data obtained with this technique. (author)

  13. Argilas especiais: o que são, caracterização e propriedades Special clays: what they are, characterization and properties

    Directory of Open Access Journals (Sweden)

    Antonio C. Vieira Coelho

    2007-02-01

    Full Text Available Special clays are a group of clays different from the large volume of clay mineral products named "Industrial Clays": kaolins, ball clays, refractory clays, bentonites, fuller's earths, common clays. Two groups of special clays exist: rare, as in the case of hectorite and sepiolite and restricted areas, as in the case of white bentonite, halloysite and palygorskite (attapulgite. A review is given of the most important producers of the special clays and their properties in the Western World, as well as a discussion of the occurrence of these types of clays in Brazil.

  14. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  15. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  16. Development of Latent Fingermarks on Nonporous and Semiporous Substrates Using Photoluminescent Eu(Phen)2 Complex Intercalated Clay Hybrids with Enhanced Adhesion.

    Science.gov (United States)

    Kim, Aran; Ryu, Seung-Jin; Lee, Jihye; Jung, Hyun

    2018-03-01

    In forensic science, developing latent fingermarks using powders is a critical, general method to identify individuals. Photoluminescent Eu(Phen) 2 complex intercalated clay hybrids have been used to improve the visualization of fingermarks on nonporous (glass and polymer film) and semiporous (euro and dollar banknotes) substrates. An ion exchange reaction has been successfully used to intercalate Eu(Phen) 2 complex ions into the interlayer spacing of two different Na + -clays, Na + -montmorillonite and Na + -hectorite, with different primary particle sizes. To change the surface properties of the obtained hybrid to be more lipophilic, the hydroxyl groups at the edge of the hectorite hybrid were modified with hexadecyltrimethoxysilane via silylation. We investigated the correlation of the size and surface properties of the hybrids with their adhesion to fingermark residues. Fingermarks were successfully visualized using hybrids under UV illumination. In particular, ridge details on semiporous substrates can be more clearly seen using hybrids with smaller primary particles and greater lipophilicity. © 2018 American Academy of Forensic Sciences.

  17. Multi scale experimental study of water and ionic transport in porous charged media: clays; Etude experimentale multiechelle du transport ionique et aqueux en milieu poreux charge: argiles

    Energy Technology Data Exchange (ETDEWEB)

    Cadene, A

    2005-10-15

    Clays are porous media of industrial interest. Due to their retention capacities and low permeability to water, they are the principal candidate for the conception of engineered barriers radioactive waste disposal. The main interest of this study is the experimental determination of the cationic and water dynamics in montmorillonite and fluoro-hectorite at low water contents This latter synthetic smectite has been used as a model clay to help the interpretation of the results issued from the first natural one. After a summary on the clayey system, this work reports the many experimental techniques (Atomic Force Microscopy, Photo-Correlation Spectroscopy, Micro-calorimetry, Powder Diffraction) used during the preliminary study concerning structural characterisation of the samples. The study of the sodic form of smectites with the use of a combination of quasi-elastic neutron scattering techniques (Time of Flight and Spin Echo) succeeded to water diffusion coefficients but also to a discernment of the limits of such techniques. Experiments with montmorillonite samples are in agreement with the simulations, so tending to a validation of the models. Experimental data obtained from synthetic hectorites will be in the near future compared to simulations In the last part, this work shows the application of Broad Band Dielectric Spectroscopy for the investigation of ionic dynamic in these porous media. Many models have been developed for the interpretation of the experimental raw data obtained with this technique. (author)

  18. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  19. Clay Nanoparticles Elicit Long-Term Immune Responses by Forming Biodegradable Depots for Sustained Antigen Stimulation.

    Science.gov (United States)

    Chen, Weiyu; Zuo, Huali; Li, Bei; Duan, Chengcheng; Rolfe, Barbara; Zhang, Bing; Mahony, Timothy J; Xu, Zhi Ping

    2018-05-01

    Nanomaterials have been widely tested as new generation vaccine adjuvants, but few evoke efficient immunoreactions. Clay nanoparticles, for example, layered double hydroxide (LDH) and hectorite (HEC) nanoparticles, have shown their potent adjuvanticity in generating effective and durable immune responses. However, the mechanism by which clay nanoadjuvants stimulate the immune system is not well understood. Here, it is demonstrated that LDH and HEC-antigen complexes form loose agglomerates in culture medium/serum. They also form nodules with loose structures in tissue after subcutaneous injection, where they act as a depot for up to 35 d. More importantly, clay nanoparticles actively and continuously recruit immune cells into the depot for up to one month, and stimulate stronger immune responses than FDA-approved adjuvants, Alum and QuilA. Sustained antigen release is also observed in clay nanoparticle depots, with 50-60% antigen released after 35 d. In contrast, Alum-antigen complexes show minimal antigen release from the depot. Importantly, LDH and HEC are more effective than QuilA and Alum in promoting memory T-cell proliferation. These findings suggest that both clay nanoadjuvants can serve as active vaccine platforms for sustained and potent immune responses. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    Science.gov (United States)

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  1. Effect of clay structure and type of organomodifier on the thermal properties of poly(ethylene terephthalate) based nanocomposites

    International Nuclear Information System (INIS)

    Papageorgiou, George Z.; Karandrea, Eva; Giliopoulos, Dimitrios; Papageorgiou, Dimitrios G.; Ladavos, Athanasios; Katerinopoulou, Aikaterini; Achilias, Dimitris S.; Triantafyllidis, Konstantinos S.; Bikiaris, Dimitrios N.

    2014-01-01

    Graphical abstract: - Highlights: • Poly(ethylene terephthalate) nanocomposites were prepared using 4 different clay types. • Nanomer I30E clay was exfoliated into PET, as it was found from XRD. • The intercalation of Kunipia-CTAB resulted in less pronounced effect on PET crystallization. • The immobilized amorphous fraction, activation energy and nucleation activity were calculated. • Nanomer I30E clay facilitated the crystallization process. - Abstract: In the current investigation, nanocomposites of poly(ethylene terephthalate) (PET) with different types of organo-clays were produced using the melt mixing technique. Two types of commercial inorganic clays (Laponite-synthetic hectorite and Kunipia-montmorillonite) were studied after cation-exchange with hexadecyltrimethylammonium bromide (CTAB) while two commercial organo-modified montmorillonite clays (Nanomer I.30E modified with primary octadecylammonium ions and Cloisite 10A modified with quaternary dimethyl benzyl hydrogenated-tallow ammonium ions) were also investigated. The structure of the nanocomposites was studied by X-ray diffraction measurements. A detailed crystallization analysis was carried out by means of both isothermal and non-isothermal (melt and cold) measurements. All data were analyzed using the simple Avrami equation along with advanced isoconversional methods. The nucleation activity of the filler was investigated in every case. Lauritzen–Hoffman analysis was employed to isothermal data to estimate the nucleation parameters. From all these measurements it was found that the organo-clay I.30E induces the higher crystallization rates and lower activation energy and is more effective regarding the PET crystallization compared to the other types of organo-clays. The I.30E organo-clay nanocomposite exhibited also the higher immobilized amorphous fraction and the higher nucleation parameter K g in the Lauritzen–Hoffman analysis. This is due to its better dispersion and exfoliation

  2. Effect of clay structure and type of organomodifier on the thermal properties of poly(ethylene terephthalate) based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, George Z.; Karandrea, Eva; Giliopoulos, Dimitrios [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece); Papageorgiou, Dimitrios G. [Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki AUTH, GR-54124 Thessaloniki (Greece); Ladavos, Athanasios; Katerinopoulou, Aikaterini [University of Patras, Agrinio 30100 (Greece); Achilias, Dimitris S.; Triantafyllidis, Konstantinos S. [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece); Bikiaris, Dimitrios N., E-mail: dbic@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece)

    2014-01-20

    Graphical abstract: - Highlights: • Poly(ethylene terephthalate) nanocomposites were prepared using 4 different clay types. • Nanomer I30E clay was exfoliated into PET, as it was found from XRD. • The intercalation of Kunipia-CTAB resulted in less pronounced effect on PET crystallization. • The immobilized amorphous fraction, activation energy and nucleation activity were calculated. • Nanomer I30E clay facilitated the crystallization process. - Abstract: In the current investigation, nanocomposites of poly(ethylene terephthalate) (PET) with different types of organo-clays were produced using the melt mixing technique. Two types of commercial inorganic clays (Laponite-synthetic hectorite and Kunipia-montmorillonite) were studied after cation-exchange with hexadecyltrimethylammonium bromide (CTAB) while two commercial organo-modified montmorillonite clays (Nanomer I.30E modified with primary octadecylammonium ions and Cloisite 10A modified with quaternary dimethyl benzyl hydrogenated-tallow ammonium ions) were also investigated. The structure of the nanocomposites was studied by X-ray diffraction measurements. A detailed crystallization analysis was carried out by means of both isothermal and non-isothermal (melt and cold) measurements. All data were analyzed using the simple Avrami equation along with advanced isoconversional methods. The nucleation activity of the filler was investigated in every case. Lauritzen–Hoffman analysis was employed to isothermal data to estimate the nucleation parameters. From all these measurements it was found that the organo-clay I.30E induces the higher crystallization rates and lower activation energy and is more effective regarding the PET crystallization compared to the other types of organo-clays. The I.30E organo-clay nanocomposite exhibited also the higher immobilized amorphous fraction and the higher nucleation parameter K{sub g} in the Lauritzen–Hoffman analysis. This is due to its better dispersion and

  3. Radionuclide sorption and migration studies of getters for backfill barriers

    International Nuclear Information System (INIS)

    Nowak, E.J.

    1980-07-01

    Bentonite and hectorite clay minerals were chosen for study and development as potential backfill materials for testing in the proposed Waste Isolation Pilot Plant (WIPP), a radioactive waste repository and test facility in bedded salt. This choice of materials was based on initial screening results which are presented and on the predicted physical properties of these materials. These properties were verified experimentally in concentrated brines specific to the WIPP site. Distribution coefficients, K/sub d/, were calculated from batch sorption measurements on bentonite and hectorite in the nearly saturated brines A and B. The resulting K/sub d/ values were in the range of (1 to 5) x 10 3 ml/g for europium; (2 to 40) x 10 3 ml/g for plutonium(IV); and (4 to 16) x 10 3 ml/g for americium(III). A silica- and calcite-containing sand mixed with bentonite and hectorite acted as a sorber of americium(III) but was merely an inert diluent for plutonium(IV). Pertechnetate anions (TcO 4 - ) sorbed on activated charcoal with K/sub d/ values in the range of (0.2 to 0.4) x 10 3 ml/g. Pertechnetate, cesium, and strontium ions in brine were not sorbed appreciably by bentonite or hectorite. Although experimental evidence is given for a possible role of solubility in the sorption of europium on getters, other data presented here and evidence from the literature are inconsistent with a simple single reaction sorption mechanism. It is concluded that a backfill containing bentonite on hectorite and activated charcoal is potentially an effective barrier to the migration of Eu(III), Pu(IV), and Am(III) cations and, with further development, to the migration of TcO 4 - anions as well

  4. Cation sorption at the smectite edges: From transition metals to Y and Lu

    International Nuclear Information System (INIS)

    Schlegel, M.L.

    2007-01-01

    Complete text of publication follows: Introduction: Clay minerals can adsorb trace elements in soils and weathering formations, a sorption property which is also a key-point for the use of clay materials in nuclear waste repositories. Retention can occur either by adsorption on the clay basal plane or at the layer edges, depending on physicochemical conditions. Building on previous identification of sorption sites of transition metals [1-3], this study shows how the geometry of Y and Lu surface complexes on layer edges of clay minerals can be identified. Materials and methods: Suspensions of purified clay minerals (hectorite or Al-montmorillonite, 2 and 1 g/L, respectively) were reacted in 0.5 M NaCl at pH 6 (Al-montmorillonite) and 7 (hectorite) with sorbates at concentrations of 50 μM (Y) and 100 μM (Lu). Self-supporting films of reacted clay minerals were obtained by slowly filtering suspension aliquots on cellulose nitrate filters. Yttrium K-edge and Lu L3-edge polarized EXAFS (PEXAFS) spectra of the self-supporting films were collected in fluorescence mode on the FAME beamline (ESRF, France). PEXAFS data were reduced, and analyzed using standard procedures. Results and interpretation: Small but significant angular dependences were observed for all P-EXAFS data, meaning that the Y and Lu binding environments are anisotropic. Coordination spheres of 7 O at 2.36 Angstroms and 8 O at 2.27 Angstroms, were observed for Y and Lu, respectively, comparable with d(Ln-O) distances measured by EXAFS spectroscopy [4]. Lutetium sorbed on Al-montmorillonite was surrounded by an Al-shell at 3.35 Angstroms, consistent with Lu sharing edges with Al octahedra and partially incorporated in a gibbsite-like interlayer. Both Y and Lu sorbed on hectorite were surrounded by cationic shells. Modelling of these cationic contributions yielded one out-of-plane Si/Mg shell at 3.16 Angstroms (Y) or 3.04 Angstroms (Lu), and two in-plane (Mg/Si) shells at 3.50, and 3.97 Angstroms for Y, or

  5. Cation sorption at the smectite edges: From transition metals to Y and Lu

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, M.L. [CEA/DANS/DPC/SCP Lab React Surfaces and Interfaces, F-91191 Gif Sur Yvette (France)

    2007-07-01

    Complete text of publication follows: Introduction: Clay minerals can adsorb trace elements in soils and weathering formations, a sorption property which is also a key-point for the use of clay materials in nuclear waste repositories. Retention can occur either by adsorption on the clay basal plane or at the layer edges, depending on physicochemical conditions. Building on previous identification of sorption sites of transition metals [1-3], this study shows how the geometry of Y and Lu surface complexes on layer edges of clay minerals can be identified. Materials and methods: Suspensions of purified clay minerals (hectorite or Al-montmorillonite, 2 and 1 g/L, respectively) were reacted in 0.5 M NaCl at pH 6 (Al-montmorillonite) and 7 (hectorite) with sorbates at concentrations of 50 {mu}M (Y) and 100 {mu}M (Lu). Self-supporting films of reacted clay minerals were obtained by slowly filtering suspension aliquots on cellulose nitrate filters. Yttrium K-edge and Lu L3-edge polarized EXAFS (PEXAFS) spectra of the self-supporting films were collected in fluorescence mode on the FAME beamline (ESRF, France). PEXAFS data were reduced, and analyzed using standard procedures. Results and interpretation: Small but significant angular dependences were observed for all P-EXAFS data, meaning that the Y and Lu binding environments are anisotropic. Coordination spheres of 7 O at 2.36 Angstroms and 8 O at 2.27 Angstroms, were observed for Y and Lu, respectively, comparable with d(Ln-O) distances measured by EXAFS spectroscopy [4]. Lutetium sorbed on Al-montmorillonite was surrounded by an Al-shell at 3.35 Angstroms, consistent with Lu sharing edges with Al octahedra and partially incorporated in a gibbsite-like interlayer. Both Y and Lu sorbed on hectorite were surrounded by cationic shells. Modelling of these cationic contributions yielded one out-of-plane Si/Mg shell at 3.16 Angstroms (Y) or 3.04 Angstroms (Lu), and two in-plane (Mg/Si) shells at 3.50, and 3.97 Angstroms for Y

  6. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  7. Efficiency of clay-TiO2 nanocomposites on the photocatalytic eliminationof a model hydrophobic air pollutant

    Energy Technology Data Exchange (ETDEWEB)

    Kibanova, Daria; Cervini-Silva, Javiera; Destaillats, Hugo

    2009-01-01

    Clay-supported TiO2 photocatalysts can potentially improve the performance of air treatment technologies via enhanced adsorption and reactivity of target volatile organic compounds (VOCs). In this study, a bench-top photocatalytic flow reactor was used to evaluate the efficiency of hectorite-TiO2 and kaolinite-TiO2, two novel composite materials synthesized in our laboratory. Toluene, a model hydrophobic VOC and a common indoor air pollutant, was introduced in the air stream at realistic concentrations, and reacted under UVA (gamma max = 365 nm) or UVC (gamma max = 254 nm) irradiation. The UVC lamp generated secondary emission at 185 nm, leading to the formation of ozone and other short-lived reactive species. Performance of clay-TiO2 composites was compared with that of pure TiO2 (Degussa P25), and with UV irradiation in the absence of photocatalyst under identical conditions. Films of clay-TiO2 composites and of P25 were prepared by a dip-coating method on the surface of Raschig rings, which were placed inside the flow reactor. An upstream toluene concentration of ~;;170 ppbv was generated by diluting a constant flow of toluene vapor from a diffusion source with dry air, or with humid air at 10, 33 and 66percent relative humidity (RH). Toluene concentrations were determined by collecting Tenax-TA (R) sorbent tubes downstream of the reactor, with subsequent thermal desorption -- GC/MS analysis. The fraction of toluene removed, percentR, and the reaction rate, Tr, were calculated for each experimental condition from the concentration changes measured with and without UV irradiation. Use of UVC light (UV/TiO2/O3) led to overall higher reactivity, which can be partially attributed to the contribution of gas phase reactions by short-lived radical species. When the reaction rate was normalized to the light irradiance, Tr/I gamma, the UV/TiO2 reaction under UVA irradiation was more efficient for samples with a higher content of TiO2 (P25 and Hecto-TiO2), but not for Kao

  8. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  9. Efficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant.

    Science.gov (United States)

    Kibanova, Daria; Cervini-Silva, Javiera; Destaillats, Hugo

    2009-03-01

    Clay-supported TiO2 photocatalysts can potentially improve the performance of air treatment technologies via enhanced adsorption and reactivity of target volatile organic compounds (VOCs). In this study, a benchtop photocatalytic flow reactor was used to evaluate the efficiency of hectorite-TiO2 and kaolinite-TiO2, two novel composite materials synthesized in our laboratory. Toluene, a model hydrophobic VOC and a common indoor air pollutant, was introduced in the air stream at realistic concentrations, and reacted under UVA (lamda(max) = 365 nm) or UVC (lamda(max) = 254 nm) irradiation. The UVC lamp generated secondary emission at 185 nm, leading to the formation of ozone and other short-lived reactive species. Performance of clay-Ti02 composites was compared with that of pure TiO2 (Degussa P25), and with UV irradiation in the absence of photocatalyst under identical conditions. Films of clay-TiO2 composites and of P25 were prepared by a dip-coating method on the surface of Raschig rings, which were placed inside the flow reactor. An upstream toluene concentration of approximately 170 ppbv was generated by diluting a constant flow of toluene vapor from a diffusion source with dry air, or with humid air at 10, 33, and 66% relative humidity (RH). Toluene concentrations were determined by collecting Tenax-TA sorbent tubes downstream of the reactor, with subsequent thermal desorption--GC/MS analysis. The fraction of toluene removed, %R, and the reaction rate, Tr, were calculated for each experimental condition from the concentrations measured with and without UV irradiation. Use of UVC light (UV/TiO2/O3) led to overall higher reactivity, which can be partially attributed to the contribution of gas phase reactions by short-lived radical species. When the reaction rate was normalized to the light irradiance, Tr/Ilamda,the UV/TiO2 reaction under UVA irradiation was more efficient for samples with a higher content of TiO2 (P25 and Hecto-TiO2), but notfor Kao-TiO2. In all

  10. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Kibanova, Daria [Facultad de Quimica, Universidad Nacional Autonoma de Mexico (Mexico); Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana (Mexico); Sleiman, Mohamad [Lawrence Berkeley National Laboratory, Indoor Environment Group, Environmental Energy Technologies Division (United States); Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana (Mexico); NASA Astrobiology Institute (United States); Destaillats, Hugo, E-mail: HDestaillats@lbl.gov [Lawrence Berkeley National Laboratory, Indoor Environment Group, Environmental Energy Technologies Division (United States); Arizona State University, Department of Chemistry and Biochemistry (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Formaldehyde adsorption and photocatalytic elimination on hectorite-TiO{sub 2} nanocomposites. Black-Right-Pointing-Pointer Dark adsorption in dry air >4 times higher than P25 (reference). Black-Right-Pointing-Pointer Dark adsorption in humid air dominated by adsorbed water layer. Black-Right-Pointing-Pointer Photocatalytic removal efficiency proportional to the Ti content, increased with contact time. Black-Right-Pointing-Pointer More complete elimination with 254 + 185 nm irradiation. - Abstract: We investigated the adsorption capacity and photocatalytic removal efficiency of formaldehyde using a hectorite-TiO{sub 2} composite in a bench flow reactor. The same experimental conditions were applied to pure TiO{sub 2} (Degussa P25) as a reference. The catalysts were irradiated with either a UVA lamp (365 nm) or with one of two UVC lamps of 254 nm and 254 + 185 nm, respectively. Formaldehyde was introduced upstream at concentrations of 100-500 ppb, with relative humidity (RH) in the range 0-66% and residence times between 50 and 500 ms. Under dry air and without illumination, saturation of catalyst surfaces was achieved after {approx}200 min for P25 and {approx}1000 min for hectorite-TiO{sub 2}. The formaldehyde uptake capacity by hectorite-TiO{sub 2} was 4.1 times higher than that of P25, almost twice the BET surface area ratio. In the presence of humidity, the difference in uptake efficiency between both materials disappeared, and saturation was achieved faster (after {approx}200 min at 10% RH and {approx}60 min at 65% RH). Under irradiation with each of the three UV sources, removal efficiencies were proportional to the Ti content and increased with contact time. The removal efficiency decreased at high RH. A more complete elimination of formaldehyde was observed with the 254 + 185 nm UV source.

  11. Polymer nanocomposites for lithium battery applications

    Science.gov (United States)

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  12. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  13. Laboratory study of the Flandres clay swelling

    International Nuclear Information System (INIS)

    Khaddaj, Said

    1992-01-01

    The first chapter contains a survey about the swelling of soils, and about the experimental methods used to characterize this phenomenon. A classification of soils in function of their swelling potential is proposed. The second chapter deals with the properties of Flandres clay. Chemical and mineralogical compositions, mechanical properties and free swell index are given. The third chapter contains a presentation of the study of the swelling potential of Flandres clay using the oedometer. Four methods are described and used (free-swell, different pressures, pre-swell and direct-swell). A numerical simulation of free-swell tests is also given. The fourth chapter includes a presentation of the study of the swelling behaviour of Flandres clay using a triaxial cell. Three methods are used: free-swell, pre-swell and different-pressures. The last chapter contains a parametric study of the swelling behaviour of Flandres clay. The influence of some parameters such as sample thickness, initial water content, vertical load and load history is presented. (author) [fr

  14. Study of radionuclide migration in clay formations

    International Nuclear Information System (INIS)

    Antonioli, F.; Bocola, W.

    1985-01-01

    This paper reports the studies on the migration of Cs, Sr and I in clay formations, which are presently considered for the geological disposal of radioactive wastes. The distribution and diffusion coefficients were evaluated by means of experimental techniques and computer procedures, which are presented in this report. The natural clays tested in the laboratory experiments were sampled from the most representative italian basins and from the zone of Mol (Belgium). In addition tests were performed on monomineral clays artificially remade in edometer. The experimental results are in accordance with data found in the literature and show the existence of a good correlation between the observed migration properties and the granulometric and mineralogic characteristics of the natural clays

  15. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  16. Water-clay interactions. Experimental study

    International Nuclear Information System (INIS)

    Gaucher, Eric

    1998-01-01

    Clay minerals contribute to the chemical composition of soil and sediment groundwaters via surface and dissolution/precipitation reactions. The understanding of those processes is still today fragmentary. In this context, our experimental purpose is to identify the contribution of each reaction in the chemical composition of water in a water/clay System. Kaolinite, illite, montmorillonite are the reference clays. After a fine mineralogical study, the exchange equilibria between K + and H + are characterised. Different exchange sites are identified and the exchange capacities and selectivity coefficients are quantified. Then, mixtures of the three clays are equilibrated with acidic and basic (I≤10 -2 M) solutions at 25 deg. C, 60 deg. C, 80 deg. C, during 320 days. The System evolution is observed by chemical analysis of the solutions and mineralogical analysis by TEM. We show that montmorillonite is unstable compared to the kaolinite/amorphous silica assemblage for solutions of pH<7. Aqueous silica is probably controlled by the kinetics of dissolution of the montmorillonite in moderate pH media. In more acidic solutions, amorphous silica precipitates. Al is under control of 'kaolinite' neo-formations. The use of the selectivity coefficients in a numerical simulation shows that K + concentration depends on exchange reactions. The pH has a more complicated evolution, which is not completely understood. This evolution depends on both exchange equilibria and organic acid occurrence. In this type of experiments, we have demonstrated that the equilibrium equations between smectite and kaolinite are inexact. The problem of the thermodynamic nature of clays remains and is not resolved by these solubility experiments. (author) [fr

  17. Performance Study of the Natural Rubber Composite with Clay Minerals

    International Nuclear Information System (INIS)

    Nyo Nyo Myint; Tin Tin Aye; Kyaw Myo Naing; Nyunt Wynn

    2008-03-01

    The preparation, characterization and some applications of natural rubber clay composite have been studied. This study investigated the possibility of natural rubber latex to replace some part of natural clays. In formulation of rubber clay composite from natural rubber latex and various clay minerals, three main steps were involved (i) preparation of latex cream (ii) prevulcanization of latex cream (iii) mixing vulcanized latex compound, with other ingredients. In each step, several parameters have been carefully investigated to optimize the performance of natural rubber clay composite production. The composite products were of better quality and can be considered to be more cost effective.

  18. Moessbauer firing study of Peruvian clays

    International Nuclear Information System (INIS)

    Salazar, R.; Wagner, U.; Wagner, F.E.

    1983-01-01

    In connection with work on ancient ceramics Moessbauer studies of the firing behaviour of six Peruvian clays have been performed in oxidizing and reducing atmospheres. For two clays, one of them is poor, the other one is rich in oxides, the change of the Moessbauer parameters on firing between 100 and 1350 0 C was measured in detail, both with and without preceding reduction. The minerals present at characteristic temperatures are determined by X-ray diffraction and an attempt is made to discuss the physical and chemical processes occurring in the different temperature ranges. (author)

  19. Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

    Directory of Open Access Journals (Sweden)

    Golnaz Jozanikohan

    2015-06-01

    Full Text Available Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopic (SEM studies, and thermal analysis including differential thermal analysis (DTA, and thermogravimetric analysis (TGA techniques were utilized in the characterization of the Shurijeh clay minerals in ten representative samples. The XRF studies showed that silica and aluminum oxides are present quantities. The XRD test was then used to determine the mineralogical composition of bulk components, as well as the clay fraction. The XRD patterns indicated the presence of dominant amount of quartz and plagioclase, with moderate to minor amounts of alkali feldspar, anhydrite, carbonates (calcite and dolomite, hematite and clay minerals. The most common clays in the Shurijeh Formation were illite, chlorite, and kaolinite. However, in very few samples, glauconite, smectite, and mixed layer clay minerals of both illite-smectite and chlorite-smectite types were also recognized. The XRD results were quantified, using the elemental information from the XRF test, showing that each Shurijeh exhibited low to moderate amounts of clay minerals, typically up to 21%. The amount of illite, the most dominant clay mineral, reached maximum of 13.5%, while the other clay types were significantly smaller. Based on the use of SEM and thermal data, the results of the identification of clay minerals, corresponded with the powder X-ray diffraction analysis, which can be taken into account as an evidence of the effectiveness of the thermal analysis technique in clay typing, as a complementary method besides the XRD.

  20. Naphtha interaction with bitumen and clays : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Afara, M.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation described a preliminary study conducted to characterize naphtha interactions with bitumen and clays. Coarse tailings, fluid-fine tailings, and froth treatment tailings are produced as a result of surface mine oil sands operations. Solvents are used to produce the bitumens, but the actual fraction of the solvent that evaporates and contributes to VOCs from tailing ponds is poorly understood. This study examined the interactions between the solvent, bitumen and mineral components in froth treatment tails. The study was conducted with aim of quantifying the VOC or solvent escaping from the froth treatment tailings. Samples containing bitumen, clay, a bitumen-clay mixture, or MFT were spiked with 3000 ppm of solvent. The amount of naphtha released was monitored by gas chromatography, mass spectrometry, and flame ionization detection of the evolved gases. The results were expressed as a percentage of the total hydrocarbon peak area of the sample versus a control. Results of the study showed that the naphtha interacted more strongly with the bitumen than with kaolinite and the clay minerals from the oil sands. Although initial solvent evaporation was reduced in the presence of bitumens and clays, long-term solvent releases will need to be quantified. tabs., figs.

  1. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  2. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  3. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    Science.gov (United States)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  4. A preliminary study on titanium-clay interactions

    International Nuclear Information System (INIS)

    Wersin, P.; Grolimund, D.; Kumpulainen, S.; Brendle, J.; Snellman, M.

    2010-01-01

    bentonite, Opalinus Clay, Illite du Puy) were characterized by XAS. Preliminary results can be summarized as: (1) Natural clay materials contain significant but variable amounts of Ti. The standard purification procedure for bentonites to remove accessories does not or only barely removes Ti. (2) The Ti in the natural clays materials Rokle bentonite, Opalinus Clay, Illite du Puy occurs as microcrystalline TiO 2 (presumably as anatase). On the other hand, the Ti spectra in MX-80 suggest the presence of structural Ti in the smectite, but the evidence is not conclusive so far. (3) The exposure of purified MX-80 to titanium powder at room temperature within a period of five months did not lead to measurable additional Ti in the clay. This was even true for samples exposed to acidic or alkaline conditions where corrosion rates and solubility of Ti are known to be higher. Thereof, the following preliminary conclusions can be drawn: - The Ti content in natural bentonites is concentrated mainly in the so-called clay fraction. Ti occurs therein either as separate small TiO 2 particles (Rokle, Opalinus Clay, Illite du Puy) or as structural Ti. As indicated by the study of Karnland et al. (2006), the properties of natural bentonites are not affected by the presence of Ti. In that study, the bulk properties (swelling pressure, hydraulic conductivity) were very similar for the different bentonites containing variable Ti content, ranging from 0.1 to 4.8 weight % TiO 2 in the purified clay fractions. The transfer rates of Ti from the metallic source, even in reactive powder form, to the clay are very low and no enrichment above background concentrations after several months could be observed. In order to obtain measurable effects, both the corrosion process must be increased and the background concentration must be reduced. Tests with Ti-free clay material at increased temperature are still ongoing and will hopefully enable identification of reacted Ti species. (authors)

  5. Studying the Effect of Crystal Size on Adsorption Properties of Clay

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    Sorption of radionuclides on mineral surfaces strongly affects their fate and mobility in the geosphere. Therefore using of clay minerals as a barrier In LLW repositories can delay the dispersion of radionuclides into environment. That is of fundamental importance for maintaining environmental quality and for the safety and long-term performance of waste repositories. In this study XRD analysis was applied to investigate three different types of clay minerals for quantitative analysis of each type and the Mud Master program for the measurement of the crystallite thickness distribution (CTD) according to of the BWA (Bertaut-Warren Averbach) technique. Six sample s of the three types of clay (Kaolin, Aswan clay and Ball clay) were studied. XRD and Mud Master were used to investigate the relation between CTD and Cs -137 uptake mechanism onto the clay. It was found that the best adsorption capacity related to the kaolinite content and the lowest CTD

  6. Studies of strength and rheological properties of clay-cement fluids

    Energy Technology Data Exchange (ETDEWEB)

    Salamatov, M A

    1979-01-01

    New principles are substantiated and formulated for studying the strength and elastic-plastic-viscous properties of clay-cement plugging fluids on series manufactured displacement instruments. A technique is presented and results are cited from studies of clay-cement plugging fluids of different composition at different stages of stabilization.

  7. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  8. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  9. Comparative study of illite clay and illite-based geopolymer products

    International Nuclear Information System (INIS)

    Sperberga, I; Sedmale, G; Zeila, K; Ulme, D; Stinkulis, G

    2011-01-01

    Quaternary (Q-clay) clayey deposits are one of the dominating parts of mineral raw materials of the sedimentary cover at present area of Latvia. These clays can be characterised by illite content up to 75-80 %. Two ways for use of illite clays were studied: conventional and geopolymers method. Purpose of the second mentioned method was showing the influence of alkali (KOH) on the transformation of Q-clay/illite structure. Obtained products were investigated by IR-spectroscopy, DTA and XRD, pore size distribution was determined as well. Some ceramic properties and compressive strength were determined and compared. IR-spectrum showed the effect of alkali on the transformation of Q-clay/illite structure in three main absorption bands: 3620-3415 cm -1 which is related to the vibrational modes of adsorbed water between SiO 4 and AlO 6 layers; new stronger absorption bands at 1635 cm -1 and 1435 cm -1 indicate on the appearance of vibrations in Q-KOH and are related to the K-O-Si bonds; the most essential changes are vibrations at 850 cm -1 showing the changes in the coordination number of Al from 6 to 4 for Q-KOH. Investigations of the bulk density in dependence on temperature showed the small increase of bulk density for Q-clay while - the relatively remarkable decrease for Q-clay/KOH. Mentioned values correlate with the compressive strength of Q-clay and Q-KOH products.

  10. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    Science.gov (United States)

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  11. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  12. Studies on Tagged Clay Migration Due to Water Movement

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.; Kerpen, W.

    1967-01-01

    55 Fe-tagged clay minerals, produced by hydrothermal synthesis, serve to clarify the question whether clay migration or clay formation in situ is the predominating mechanism in the B t -development of Parabraunerde (sol brun lessive, grey brown podsolic, hapludalf, dernopodsol). They further indicate the possibilities of clay transportation caused by water percolation. Suitable experimental approaches, such as thin-layer chromatography and autoradiography, translocation tests in columns filled with monotypical textural fractions or with undisturbed soil profiles, and synchronous hydrothermal treatment of 55 Fe-con raining material from different horizons of Parabraunerde, to reveal the specific readiness of the different profile zones for 55 Fe-clay production, are described. The possibilities of clay percolation are discussed. (author)

  13. A comparative study on Pb 2+ removal efficiencies of fired clay soils ...

    African Journals Online (AJOL)

    Abstract. Batch adsorption studies were carried out to evaluate the Pb2+ adsorption capacities of three different fired clay soils with different particle size distributions. Adsorption efficiency was observed to increase with an increase in clay content. Adsorption efficiencies of the fired clay soils were also influenced by the firing ...

  14. Studies on Tagged Clay Migration Due to Water Movement

    Energy Technology Data Exchange (ETDEWEB)

    Scharpenseel, H. W. [Institut fuer Bodenkunde der Universitaet Bonn, Federal Republic of Germany (Germany); Kerpen, W. [Arbeitsgruppe, Institut fuer Landwirtschaft der KFA Juelich, Bonn, Federal Republic of Germany (Germany)

    1967-11-15

    {sup 55}Fe-tagged clay minerals, produced by hydrothermal synthesis, serve to clarify the question whether clay migration or clay formation in situ is the predominating mechanism in the B{sub t}-development of Parabraunerde (sol brun lessive, grey brown podsolic, hapludalf, dernopodsol). They further indicate the possibilities of clay transportation caused by water percolation. Suitable experimental approaches, such as thin-layer chromatography and autoradiography, translocation tests in columns filled with monotypical textural fractions or with undisturbed soil profiles, and synchronous hydrothermal treatment of {sup 55}Fe-con raining material from different horizons of Parabraunerde, to reveal the specific readiness of the different profile zones for {sup 55}Fe-clay production, are described. The possibilities of clay percolation are discussed. (author)

  15. Morphology study of polyamide 6/bentonite clay nanocomposites

    International Nuclear Information System (INIS)

    Paz, Rene A.; Araujo, Edcleide M.; Melo, Tomas J.A.; Leite, Amanda M.D.; Medeiros, Vanessa Nobrega; Pessan, Luiz A.; Passador, Fabio R.

    2011-01-01

    Polymer/clay nanocomposites have had much attention in recent years, especially those developed with layered silicates, due to the need for engineering materials more efficient than pure polymers for certain applications. The level of exfoliation of layered silicates in the crystalline structure of polymer matrices has been studied and it has been observed that it affects the behavior of crystalline and therefore the mechanical and physical properties. In this study, polyamide 6 nanocomposites were obtained by the melt intercalation technique, using regional bentonite clay modified with a quaternary ammonium salt in an amount of 3% by weight. XRD and TEM tests showed obtaining nanocomposites with exfoliated structures (author)

  16. Study of Adsorption of Phenanthrene on Different Types of Clay Minerals

    International Nuclear Information System (INIS)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.

    2003-01-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay minerals also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represents ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs

  17. Study of clays by means of Moessbauer spectoscopy

    International Nuclear Information System (INIS)

    Marticorena, B.

    1982-01-01

    A Moessbauer spectroscopic method has been applied to study layers of clays originating from different places and ceramic from Pachacamac, an archeological site near Lima. We have performed a Moessbauer analysis of the samples mentioned above, submitting them to a thermal treatment in order to determine the influcence on the mineral ferrous compounds of the time and the baking atmoshere. The results obtained do not allow us to conclude that such a method is useful either in the case of clays and/or ceramics which are coming from different places or of archeological

  18. Radionuclide sorption studies on abyssal red clays

    International Nuclear Information System (INIS)

    Erickson, K.L.

    1979-01-01

    The radionuclide sorption properties of a widely distributed abyssal red clay are being experimentally investigated using batch equilibration techniques. This paper summarizes sorption equilibrium data obtained when 0.68 N NaCl solutions containing either Tc, U, Pu, Am or Cm were contacted with samples of the red clay and also summarizes some initial results from experiments designed to determine the relative selectivity of the clay for various nuclides. Under mildly oxidizing conditions, the sorption equilibrium distribution coefficients for technetium were essentially zero. At solution-phase nuclide concentrations on the order of 10 -6 M and less and at solution pH values of about 6.9, the distribution coefficients for plutonium were about 3 x 10 3 m1/gm and for uranium, americium, and curium were about 10 5 ml/gm or greater. However, at solution pH values of about 2.7, the distribution coefficients for each of the nuclides were greatly diminished. Initial experiments conducted in order to determine the relative selectivity of the clay for cesium, barium, and cerium, indicated that the silicate phases in the clay were selective for cesium over barium and cerium. These experiments also indicated that the hydrous oxide phases were selective for cerium over barium and for barium over cesium

  19. Sorption study of organic contaminant on raw and modified clay materials

    Directory of Open Access Journals (Sweden)

    Dammak N.

    2013-09-01

    Full Text Available The adsorption of volatile organic compound VOC (o-xylene was studied by a static headspace coupled to gas chromatography in natural and intercalated clay. Vapor–solid adsorption isotherms of o-xylene were measured at 20 °C, 30 °C and 40 °C. Clay was modified with hexadecyl trimetyl ammonium bromide (HDTMA. Absolute values of the amounts of o- xylene adsorbed in intercalated clay were about eighteen times higher than natural clay. The adsorption isotherm were analysed with Langmuir, Freundlich, Langmuir–Freundlich and Toth models. Langmuir–Freundlich model describes well the equilibrium adsorption data. The evaluation of thermodynamic parameters presents an exothermic and spontaneous adsorption process.

  20. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    OpenAIRE

    Gao, Lei; Hu, Guohui; Xu, Nan; Fu, Junyi; Xiang, Chao; Yang, Chen

    2015-01-01

    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...

  1. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. STUDY OF THERMAL AND ACID STABILITY OF BENTONITE CLAY

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available The thermal and acid stability of the bentonite clays (Na- and Ca-bentonite have been tested. The thermal stability testing has been carried out by heating 5 gram of the clays  for five hours at 200, 300 and 500 °C respectively, meanwhile acid stability testing was performed by immersing 5 gram clays into 100 mL sulphuric acid 1M, 2M and 3M for 24 hours. The tested clays, then were characterized by means of X-Ray difractometry and IR-spectroscopy methods. The characterization results showed that upon heating, both Ca- and Na-bentonites indicated same thermal stability. However, upon acid treatment, Na-bentonite was found relatively stabiler and more resistance then Ca-bentonite.   Keywords: bentonite, clay, thermal stability, acid stability.

  3. Mechanical behavior of galleries in deep clay - Study of a concrete example

    International Nuclear Information System (INIS)

    Rousset, G.; Jehan, R.A.; Bonne, A.; Fernique, J.C.

    1985-01-01

    At important depths such as those envisaged for the construction of a radioactive waste disposal, clay appears to be a material of rather weak resistance. One of the first problems to be studied is the technical feasibility of a disposal facility. The time-dependent and strain-softening behavior of the clay plays a significant role in the long term stability of the lined galleries. The in-situ measurements carried out during the digging of a gallery in Boom clay (Belgium), under a 250 m overburden are presented. The data obtained are analyzed by means of an elastoviscoplastic model including strain softening behavior of the clay

  4. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  5. Study of delayed behaviour of clays in deep geologic formations

    International Nuclear Information System (INIS)

    Rousset, G.; Bazargan, B.; Ouvry, J.F.; Bouilleau, M.

    1993-01-01

    This study is a cost-sharing contract with the European Atomic Energy Community within the framework of Research and Development Program on Management, Storage and Radioactive Waste Disposal. The aim of the work presented in this report is to study the time-dependent behaviour of deep clays in Laboratory or in situ, by means of tests of similar geometry, in order to get easy comparisons and to study scale effect. The cylindrical geometry has been chosen as it resembles in situ works (tunnels, galleries) more closely. The first part of the study concerns a new test on hollow-cylinder. The experimental system, set up specially for this study, has allowed to conduct experiments in which 3 loading parameters may be controlled independently. Different types of experiments can therefore be conducted to study various aspects of mechanical behavior of rocks. A comprehensive experimental program was conducted in the particular case of Boom clay. In the second part of the report devoted to in situ creep or relaxation dilatometer tests, by using new techniques or loading paths, it was shown that time-dependent convergence of boreholes can reach significant values, and is dependent on the direction of the borehole. The anisotropy of the initial state of stress was also put in evidence. The proposed constitutive model (part III) appears to be very suitable to explain the behavior of the Boom clay, in view of the experimental results. In particular, the scale effect is low for Boom clay. 15 refs., 58 figs., 10 tabs

  6. Thixotropic Properties of Latvian Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Ruplis, Augusts

    2015-01-01

    This research studies Latvia originated Devon (Tūja, Skaņkalne), quaternary (Ceplīši), Jurassic, (Strēļi) and Triassic (Vadakste) deposit clays as well as Lithuania originated Triassic (Akmene) deposit clays. Thixotropic properties of clay were researched by measuring relative viscosity of clay in water suspensions. Relative viscosity is measured with a hopper method. It was detected that, when concentration of suspension is increased, clay suspension’s viscosity also increases. It happens un...

  7. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  8. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  9. Use of x-ray radiographic methods in the study of clay liners

    International Nuclear Information System (INIS)

    Malone, P.G.; May, J.H.; Brown, K.W.; Thomas, J.C.

    1986-01-01

    X-ray radiography has been widely used in soil investigation to study the distribution of layers in soil cores and the effects of changing conditions (loading or impact) on soil structure. X-ray radiographic techniques also can be useful in studying clays or clay soils used in liners. Laboratory investigations were undertaken to demonstrate that X-ray radiographic techniques could be used to detect density and soil structure changes that usually accompany variations in hydraulic conductivity of clay liners. An example of a real-time test of a simulated bentonite and sand, liner attacked with acid lead nitrate and examples of radiographic examination of clay soil (non-calcareous smectite) samples that have been permeated by lead acetate or lead nitrate are presented. The changes in density and structure can be related to changes observed in hydraulic conductivity during permeation. X-ray radiography easily can be applied to field samples of soil or clay liner materials to detect density and structural changes that occur as the liner and permeating fluid interact. X-ray techniques have applications in both understanding failure mechanisms and forecasting liner performance

  10. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  11. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  12. Atrazine biodegradation modulated by clays and clay/humic acid complexes

    International Nuclear Information System (INIS)

    Besse-Hoggan, Pascale; Alekseeva, Tatiana; Sancelme, Martine; Delort, Anne-Marie; Forano, Claude

    2009-01-01

    The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment. - The biodegradation rate of atrazine was greatly modulated by adsorption of the pesticide and also bacterial cells on clay particles.

  13. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  14. Studying the migration behaviour of radionuclides in boom clay by electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Norbert Maes, H.; Moors, H.; Dierckx, A.; Aertsens, M.; Wang, L.; Canniere, P. de; Put, M. [SCK-CEN, Belgian Nuclear Research Centre, Waste and Disposal - R and D Geological Disposal Mol (Belgium)

    2001-07-01

    Migration studies are an important part in the assessment of the performance of the Boom Clay Formation as a candidate for geological disposal of High-Level radwaste in Belgium. However, classical diffusion experiments take a long time because of the excellent retention characteristics of the Boom Clay. Electrical fields can be used to move ionic species. Especially for low permeability soils/sediments (such as clays), this driving force is far more efficient than a hydraulic gradient. As a consequence, the experimental time can be reduced drastically. This paper gives an overview on the quantitative and qualitative use of electromigration as a powerful technique to study radionuclides migration in clays. The enormous time gain in the determination of migration parameters for strongly retarded radionuclides as {sup 137}Cs{sup +} and {sup 226}Ra{sup 2+} is first demonstrated. Secondly, we want to demonstrate that electromigration has some useful features to study the behaviour of radionuclides with a more complex chemistry like the redox sensitive element uranium and Am-Organic Matter (OM) complexes. In the case of uranium, electromigration provides information on the speciation of the migrating species while for the Am-organic Matter complexes the role of OM as a possible carrier of actinides is investigated. (orig.)

  15. Studying the migration behaviour of radionuclides in boom clay by electromigration

    International Nuclear Information System (INIS)

    Norbert Maes, H.; Moors, H.; Dierckx, A.; Aertsens, M.; Wang, L.; Canniere, P. de; Put, M.

    2001-01-01

    Migration studies are an important part in the assessment of the performance of the Boom Clay Formation as a candidate for geological disposal of High-Level radwaste in Belgium. However, classical diffusion experiments take a long time because of the excellent retention characteristics of the Boom Clay. Electrical fields can be used to move ionic species. Especially for low permeability soils/sediments (such as clays), this driving force is far more efficient than a hydraulic gradient. As a consequence, the experimental time can be reduced drastically. This paper gives an overview on the quantitative and qualitative use of electromigration as a powerful technique to study radionuclides migration in clays. The enormous time gain in the determination of migration parameters for strongly retarded radionuclides as 137 Cs + and 226 Ra 2+ is first demonstrated. Secondly, we want to demonstrate that electromigration has some useful features to study the behaviour of radionuclides with a more complex chemistry like the redox sensitive element uranium and Am-Organic Matter (OM) complexes. In the case of uranium, electromigration provides information on the speciation of the migrating species while for the Am-organic Matter complexes the role of OM as a possible carrier of actinides is investigated. (orig.)

  16. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    International Nuclear Information System (INIS)

    Chaudhary, D.S.; Prasad, R.; Gupta, R.K.; Bhattacharya, S.N.

    2005-01-01

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries

  17. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    Science.gov (United States)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  18. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    Science.gov (United States)

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  19. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  20. Studies on the acid activation of Brazilian smectitic clays

    Directory of Open Access Journals (Sweden)

    Valenzuela Díaz Francisco R.

    2001-01-01

    Full Text Available Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites, activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizing power for soybean, castor, cottonseed, corn and sunflower oils.

  1. Study on Fired Clay Bricks by Replacing Clay with Palm Oil Waste: Effects on Physical and Mechanical Properties

    Science.gov (United States)

    Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.

    2017-06-01

    Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.

  2. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    Science.gov (United States)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  3. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  4. Thixotropic Properties of Latvian Illite Containing Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Niedra, Santa; Dušenkova, Inga; Ruplis, Augusts

    2015-01-01

    Thixotropic properties of Latvian Devonian and Quaternary clays were studied. Dynamic viscosity of the water clay suspensions were measured with a rotating viscometer. Influence of concentration, pH and modifiers on the thixotropic clay properties was analyzed. It was found that Latvian clays have thixotropic properties. Stability of clay suspensions is described with the thixotropy hysteresis loop. Increasing the speed of the viscometer rotation, dynamic viscosity of the clay suspension decr...

  5. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  6. Painting with Clay: A Study of the Masters

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    Plasticine clay is a bendable material that is easily manipulated by students of all ages. It is a great material to work with because it does not dry out from day to day, so high-school students can work on an extended project. They do not have to worry about the clay drying and cracking, and the entire work of art does not have to be completed…

  7. The Ypresian clays as alternative host rock for radioactive waste disposal in Belgium. A transferability study

    International Nuclear Information System (INIS)

    Van Baelen, Herve; Wouters, Laurent; Brassinnes, Stephane; Van Geet, Maarten; Vandenberghe, Noel

    2012-01-01

    Document available in extended abstract form only. For the long-term management of high-level and/or long-lived radioactive waste, ONDRAF/NIRAS advises deep geological repository in a plastic clay host rock. Since the seventies, Oligocene Boom Clay has been extensively studied for this purpose and is, in the Belgian context, considered as the reference host rock with Mol as the reference site for the RD and D. The alternative host rock, the Ypresian clays, has been studied for their basic properties, from the late nineties onwards, with Doel as reference site. This study aims at determining to which extent methodologies, knowledge and know-how can be transferred from Boom Clay to the Ypresian clays, in order to enhance the knowledge of this alternative without excessive research efforts. It evaluates the present knowledge of the Ypresian clays and figures out which elements are sufficiently known and understood, which elements of the Boom Clay can be reused and which need additional research. The Ypresian clays refer to a nearly continuous sequence of non-indurated, clayey layers, deposited early in the Eocene, in an open marine basin. It has a total thickness of 100 m or more and, in the area of interest, it occurs at a few hundreds of meters depth. Apart from a very slight tilt to the north, no major structures are known to affect the Ypresian clays in the investigated area. The lateral continuity inside the Ypresian clays might, however, be compromised by the potential occurrence of small-scale intra-formational faults. Two drilling campaigns, carried out in the framework of potential radioactive waste disposal, allowed to collect new data and describe and compare the Ypresian clays relative to Boom Clay. The grain size distribution of both clays is comparable. Although the minerals they are composed of are the same, the relative proportions within the clay fraction are significantly different, the Ypresian clays containing more smectite and swelling mixed

  8. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  9. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  10. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  11. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  12. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Clay Modeling as a Method to Learn Human Muscles: A Community College Study

    Science.gov (United States)

    Motoike, Howard K.; O'Kane, Robyn L.; Lenchner, Erez; Haspel, Carol

    2009-01-01

    The efficacy of clay modeling compared with cat dissection for human muscle identification was examined over two semesters at LaGuardia Community College in Queens, NY. The 181 students in 10 sections in this study were randomly distributed into control (cat dissection) and experimental (clay modeling) groups, and the results of the muscle…

  14. The application of small-angle neutron scattering to the study of mass transfer in clays

    International Nuclear Information System (INIS)

    Allen, A.J.; Baston, A.H.; Bourke, P.J.; Jefferies, N.L.

    1990-01-01

    An extensive study using small angle neutron scattering (SANS) has been made of the pore structures in London Clay and in Ca-montmorillonite. Using SANS contrast variation techniques, the accessibilities of the pores to D 2 O by diffusion and permeation have been studied. Characterisation of the accessibility to different parts of the pore structure is intended to provide input data for models of radionuclide transport through clay geological barriers, and to improve interpretation of laboratory experiments that measure sorption of radionuclides on clays. (author)

  15. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  16. R and D programme on radioactive waste disposal into geological formations (study of a clay formation)

    International Nuclear Information System (INIS)

    Centre d'Etude de l'Energie Nucleaire, Mol

    1987-01-01

    This report deals with the R and D activities performed by the Belgian Nuclear Research Establishment (SCK/CEN) and its subcontractors concerning the disposal of high-level and long-life conditioned wastes in a deep clay formation, the Boom clay. The studies reported concern equally experimental as theoretical work spread over the following research issues: geochemical characterization of the Boom clay, modelling of radionuclide migration in the clay environment, irradiation effects and corrosion behaviour of candidate canister materials in the Boom clay, geomechanical, construction, backfilling and sealing studies related to underground facilities, regional hydrological investigations of the Mol site and safety and risk analysis. The geomechanical and construction-related studies are to a large extent focused on in situ research, performed along the construction of the underground Hades laboratory. The corrosion studies are also dealing with the preparation of in situ experiments in the same underground laboratory. These various research issues are meant to contribute to the assessment of the technical feasibility and safety of the geological disposal in an argillaceous host formation

  17. Geotechnical studies of Jaitapur marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.

    characterisEd. by high water content and high Atterberg limits. Undrained shear strength varied from 1.8 to 6 KPa. These were moderately sensitive clays. Carbonate content which varied from 3 to 27%, was found to influence engineering properties of the soil...

  18. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  19. Early Pottery Making in Northern Coastal Peru. Part I: Moessbauer Study of Clays

    International Nuclear Information System (INIS)

    Shimada, I.; Haeusler, W.; Hutzelmann, T.; Wagner, U.

    2003-01-01

    We report on an investigation of several ancient clays which were used for pottery making in northern coastal Peru at a kiln site from the Formative period (ca. 2000-800 BC) in the Poma Canal and at a Middle Sican pottery workshop in use between ca. AD 950 and 1050 at Huaca Sialupe in the lower La Leche valley. Neutron activation analysis, 57 Fe Moessbauer spectroscopy and X-ray diffraction were used for the characterisation of the clays. The changes that occur in iron-bearing compounds in the clays depending on the kiln atmosphere and on the maximum firing temperature were studied by Moessbauer spectroscopy and X-ray diffraction. Laboratory firing series under varying controlled conditions were performed to obtain a basic understanding of the different reactions taking place in the clays during firing. The results can be used as models in the interpretation of the Moessbauer spectra observed in ancient ceramics from the same context.

  20. Comparative study of organophilic clays to be used in the gas and petrol industry

    International Nuclear Information System (INIS)

    Rodrigues, S.C.G.; Queiroz, M.B.; Rodrigues, M.G.F.; Pereira, K.R.O.; Valenzuella- Diaz, F.R.

    2009-01-01

    The mixture oil/water occurs in the operations of production, transportation and refining, as well as during the use of its derivatives in the petroleum industry. This kind of water turns into a problem of how to be purified, and how to improve its quality. Researchers have been developed in order to find out water/oil separation processes that will be cheaper and more effective. One of the processes has been the use of organophilic clay utilized as a solver. This project studied two organophilic clays, Brasgel clay PA (sodic activated) and silt clay, which passed through a process of cation exchange with quaternary salt of ammonium cethyltrimethylammonium bromide by direct method. The samples were characterized by X-ray diffraction (XRD), Infrared Spectroscopy (IR), Scanning Electron Microscopy (SEM) and Foster's swelling in petroleum derivative. Foster's swelling was carried out with and without agitation in gasoline, diesel, toluene and lubricating oil. The results indicated the samples was organophilic materials, with improved efficiency of Brasgel clay in gasoline and diesel and when compared to silt clay in the test of capacity for adsorption and Foster's swelling, the results were similar to kerosene and lubricating oil. (author)

  1. Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials

    Science.gov (United States)

    Kostadinova-Avramova, M.; Kovacheva, M.

    2015-10-01

    Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often

  2. The geochemical behaviour of selenium in the Boom Clay system - a XANES and EXAFS study

    International Nuclear Information System (INIS)

    2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Breynaert, Eric; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Dom, Dirk; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Vancluysen, Jacqueline; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Kirschhock, Christine E.A.; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Maes, Andre; Scheinost, Andreas C.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay formation is studied as a reference host formation for the geological disposal of high-level and long-lived radioactive waste for more than 30 years. This formation mainly consists of mixed clay minerals (illite, inter-stratified illite-smectite), pyrite and immobile and dissolved natural organic matter. Since it provides good sorption capacities, very low permeability, and chemically reducing conditions due to the presence of pyrite (FeS 2 ), the Boom clay formation itself is considered to be the main barrier preventing radionuclide migration from the geological repository. Within this concept for geological storage Se 79 has been identified as one of the critical elements contributing to the final dose to man. Although the sorption and migration behaviour of Se in the Boom Clay system has been thoroughly studied, the speciation of Se in the Boom Clay system has never been identified spectroscopically. In all previous studies, the interpretation of the behaviour of Se in Boom Clay conditions has always been based on circumstantial evidence such as solubility measurements or comparison with the spectroscopically identified speciation of Se in model systems. Based on the XANES analysis, selenite is transformed into Se 0 confirming the previously proposed reduction of selenite in the Boom Clay system. Combination of the mass-balance for Se with the results from linear combination analysis of the XANES spectra provided new evidence for the sorption-reduction mechanism proposed to explain the interaction between Se(IV) and the BC solid phase. In addition, evidence was found that that the fate of Se(IV) in the BC system is completely dominated by its interaction with pyrite present in the Boom Clay. The combined EXAFS analysis of Se in Se 0 reference phases (hexagonal, monoclinic, Se-loaded pyrite) allowed to elucidate further details on the short-range structure of the reaction products formed

  3. Experimental study and modelling of selenite sorption onto illite and smectite clays.

    Science.gov (United States)

    Missana, T; Alonso, U; García-Gutiérrez, M

    2009-06-15

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.

  4. Feasibility of using overburden clays for sealing purposes and laboratory testing of the clays

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J. (Vyzkumny Ustav pro Hnede Uhli, Most (Czechoslovakia))

    1992-03-01

    Studies properties of overburden clay from North Bohemian surface coal mines for use as sealants of industrial and household waste that will be dumped at Czechoslovak surface mine sites. Basic requirements of sealing layers are optimum compressibility and impermeability by suitable compacting. Laboratory soil mechanical tests of different clay samples were carried out using the Proctor standard tests (PCS) and the Norwegian Geonor A/S - m 45 instrument. Laboratory tests were used to select the best available clay types with optimum density and moisture content. Experimental results of laboratory tests are provided.

  5. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1988-09-01

    The concept of a geological barrier to radionuclide migration from theoretical radioactive waste repositories has drawn attention to the physico-chemical properties of clays, which are traditionally regarded as retarding media. This report addresses the different mechanisms of transport of radionuclides through clay and in particular focuses on the surface diffusion movement of sorbed cations. The relative contributory importance of the different transport mechanisms is governed by the pore size distributions and interconnections within the clay fabric. Surface diffusion data in the literature have been from experiments using compacted montmorillonite and biotite gneiss. A possible programme of laboratory work is outlined, based on diffusion experiments, which describes the way of measuring the effect of surface diffusion more accurately in clays, mudstones and shales. (author)

  6. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  7. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (Volume 1)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    The results of two years of research on thermomechanics of clays performed within CEC contract Fl1W/0150 are described herein. Previous studies (research contracts with CEC/WAS/380.83.7 l) performed by ISMES have evidenced the need for an improved modelling of the volumetric response of natural clays. In a coupled approach, this leads to an improved prediction of pore-pressure development and dissipation. This is crucial for assessing conditions of a possible local thermal failure as verified in laboratory tests done at ISMES. The first part of the study lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton. It consists in: (a) developing a framework for inclusion of water/soil particle thermally induced interaction into a thermodynamically consistent mixture theory approach (Section 2); (b) studying possible modelling approaches of considering the effective thermal expansion coefficient of pore water dependency on pore water status (Section 2); (c) testing artificial clays to assess pore water thermal expansion dependence on temperature in the presence of different amounts of active clay minerals and also Boom clay (Section 3); (d) performing a laboratory test campaign on Boom clay with special attention to the response in the overconsolidated domain (Section 4). 89 figs., 18 tabs., 102 refs

  8. Study of influence of content organoclay on mechanical properties of propylene and bentonite clay nanocomposites

    International Nuclear Information System (INIS)

    Farias, Giselly M.G.; Costa, Jonei M.; Pachekoski, Wagner; Barbosa, Joseane D. Viana; Farias, Romulo

    2011-01-01

    In this work we studied activated organoclay nanocomposites in pilot scale, obtained by physical mixing in twin screw extruder co-rotating. The organophilic clay content included in the formulation of these compounds ranged from 2 to 6% by weight. The clays were characterized using the techniques of x-ray. Systems PP / clay were characterized by tensile test, flexural and impact strength. The results indicated that there was no loss of mechanical properties and thermo-mechanical properties of the nanocomposite obtained. (author)

  9. Clays and Clay Minerals and their environmental application in Food Technology

    Science.gov (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  10. Microstructure and Thermal Properties of Polypropylene/Clay Nanocomposites with TiCl4/MgCl2/Clay Compound Catalyst

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2015-01-01

    Full Text Available Polypropylene (PP/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD and transmission electron microscopy (TEM examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that the α phase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.

  11. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  12. Influence of carbonate micro-fabrics on the failure strength of Callovo-Oxfordian clay stones and Opalinus Clay

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Dohrmann, R.; Kaufhold, S.; Siegesmund, S.

    2010-01-01

    Document available in extended abstract form only. The potential use of clay stones as host rock for radioactive waste disposal is currently investigated. For this application, hydraulic conductivity, swelling properties, water uptake, rheological and mechanical properties are of great importance. The Opalinus Clay (Mont-Terri, Switzerland) and the Callovo- Oxfordian clay stone (France) are the most frequently studied clay stones. One goal is to develop a numerical model being able to predict the mechanical behaviour of clay stones under repository-like conditions. Experimental investigations reveal that Opalinus Clay and Callovo-Oxfordian clay stone behave different with respect to the dependence of mechanical strength on the carbonate content. The failure strength of Opalinus Clay decreases with increasing carbonate content, whereas it increases with increasing carbonate content when Callovo-Oxfordian clay stone is considered. To supply proper data and enable reliable model assumptions, the use of suitable experimental techniques for the description of the microstructure is indispensable. After mechanical testing, samples were taken perpendicular to the bedding and polished sections were prepared. The micro-fabrics were investigated using scanning electron microscopy (SEM) and image analysis. Backscattered electron (BSE) images were used for the image analysis because carbonates can be extracted by grey level analysis. The image analysis of the extracted particles provides the following parameters: area, longest and shortest axis of an ellipse (surrounding the particle), perimeter, the angle to horizontal (longest axis), and the aspect ratio (longest axis/shortest axis). Callovo-Oxfordian clay stone shows a homogenous distribution of fine-grained carbonates and dovetail connection of calcium carbonate with the clayey matrix. In contrast Opalinus Clay shows large elongated carbonate grains (high aspect ratios) of shell fragments. Cracks are mostly related to these

  13. Study of the influence of the addition of MMT clay in the preparation of biohydrogel based natural polymers

    International Nuclear Information System (INIS)

    Costa, M.P.M.; Ferreira, I.L.M.

    2014-01-01

    In this study, biohydrogels were produced from the combination of two polysaccharides (chitosan and sodium alginate). The concentrations of polysaccharide (0.5 to 3% m / m) and clay (0.5 and 2.0%) were varied. CaCl2 was used as a crosslinking agent. The samples were characterized by thermogravimetry (thermal stability), FTIR (chemical composition), scanning electron microscopy (SEM), and X-ray diffraction. The present work aims to study the influence of different clay content in biohydrogel produced. In the presence of clay, a differentiated morphology was observed by SEM. The degree of swelling was evaluated as a function of the composition of each mixture. The presence of clay caused a significant swelling of the hydrogel on the water absorption when the clay content was increased. The FTIR spectra showed the presence of characteristic bands of each polysaccharide, and the clay. The XRD showed that the amorphous presented biohydrogel behavior. (author)

  14. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  15. Clay mineralogical studies on Bijawars of the Sonrai Basin: palaeoenvironmental implications and inferences on the uranium mineralization

    International Nuclear Information System (INIS)

    Jha, Surendra Kumar; Shrivastava, J.P.; Bhairam, C.L.

    2012-01-01

    Clays associated with the Precambrian unconformity-related (sensu lato) uranium mineralization that occur along fractures of Rohini carbonate, Bandai sandstone and clay-organic rich black carbonaceous Gorakalan shale of the Sonrai Formation from Bijawar Group is significant. Nature and structural complexity of these clays have been studied to understand depositional mechanism and palaeoenvironmental conditions responsible for the restricted enrichment of uranium in the Sonrai basin. Clays ( chlorite> illite > smectite mineral assemblages, whereas, Solda Formation contains kaolinite > illite > chlorite clays. It has been found that the former mineral assemblage resulted from the alteration process is associated with the uranium mineralization and follow progressive reaction series, indicating palaeoenvironmental (cycles of tropical humid to semi-arid/arid) changes prevailed during maturation of the Sonrai basin. The hydrothermal activity possibly associated with Kurrat volcanics is accountable for the clay mineral alterations

  16. Terahertz time-domain spectroscopy response of amines and amino acids intercalated smectites in far-infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Janek, M., E-mail: marian.janek@fns.uniba.sk [Comenius University, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Mlynská dolina CH1, SK-84215 Bratislava (Slovakia); Zich, D. [Comenius University, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Mlynská dolina CH1, SK-84215 Bratislava (Slovakia); Naftaly, M., E-mail: mira.naftaly@npl.co.uk [National Physical Laboratory, Hampton Rd, Teddington, Middlesex TW11 0LW (United Kingdom)

    2014-06-01

    Layered clay minerals from the smectite group with different chemical composition and resulting layer charge (e.g. pyrophyllite, illite, hectorite and montmorillonite) were characterised for their dielectric properties in the far-infrared region using terahertz-time domain spectroscopy (THz-TDS). Samples with distinct cation exchange capacity such as hectorite and montmorillonite were modified using cation exchange reaction with alkylamines or amino acids. The presence of these species in 2D gallery was proved by X-ray diffraction and Fourier transform infrared spectroscopy. The frequency-dependent refractive index of these minerals was determined in the experimentally accessible range of 0.1–3.0 THz (3–100 cm{sup −1}) using THz-TDS. Pristine samples revealed their refractive indices to be 1.82–2.15 at about 1 THz while the modified montmorillonite samples had their refractive indices changed by organic molecules used for their modification to 1.70–2.35 for amines and 1.97–2.36 for amino acids. The presence of organic substances in 2D gallery of clays was detectable despite the relatively high absorption of smectites with magnitude of 100 cm{sup −1}. - Graphical abstract: Display Omitted - Highlights: • “Guest” molecules in “host” layered material were investigated. • Amines and amino-acids were selected as guest molecules. • Natural and synthetic host with smectite phyllosilicate structure were used. • Dielectric properties were investigated by terahertz time domain spectroscopy. • Resonance absorption peaks of guest were detected in far infrared region.

  17. Studies on silica sol-clay particle interactions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Moini, A.; Pinnavaia, T.J.; Michigan State Univ., East Lansing; Thiyagarajan, P.; White, J.W.

    1988-01-01

    SANS data were collected on a series of hydrolyzed silica and silica-clay complexes prepared from a 40 A silica sol and aqueous suspensions of Na + montmorillonite. The hydrolyzed silica product showed a peak centered at Q=0.0856 A -1 corresponding to a distance of 73 A between the sol particles. For such an evaporated gel in which the particles are in close contact, this distance is expected to be very close to the particle diameter indicating partial aggregation of the original spheres. A similar feature was observed in the SANS data for silica-clay products indicating the presence of some unintercalated silica. The intensity of this scattering was found to be dependent on the silica:clay ratio and the reaction time. The SANS data in the region from Q=0.006 to 0.025 A -1 were characteristic of clay scattering and exhibited a power-law behavior. The change in the slope of this curve upon reaction of the clay with the silica sol was interpreted in terms of a separation of clay platelets caused by a binding interaction with the sol particles. (orig.)

  18. THE STUDYING OF COLLOIDAL-CHEMICAL PROPERTIES OF CLAY MINERALS DISPERSIONS

    Directory of Open Access Journals (Sweden)

    A. F. Tymchuk

    2015-02-01

    Full Text Available The element structure is studied, the microscopic analysis of fine-dispersed min­eral systems (ground sediments of a mouth of the river Danube is carried out. The sedimentation process of clay minerals dispersions in solutions of surfactants and macromolecular substances is studied. Concentration intervals of stabilization of investigating dispersions were defined.

  19. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  20. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  1. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Studies on adsorption capacity of clay-Sargassum sp biosorbent for Cr (VI) removal in wastewater from electroplating industry

    Science.gov (United States)

    Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati

    2017-11-01

    Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.

  3. Study of adsorption of zinc in clay smectite type Bofe in system of finite bath

    International Nuclear Information System (INIS)

    Souza, R.S.; Mota, J.D.; Lima, W.S.; Rodrigues, M.G.F.

    2012-01-01

    Clays are demonstrably excellent adsorbents, both for their physical and chemical characteristics and the wide coverage and low cost. Among the various groups of clay minerals, the smectite are noted for having large surface areas. The initial objective of this study was to characterize the clay Bofe through the techniques of X-Ray Diffraction (XRD), X-Ray Spectrometry by Energy Dispersive (EDX) and nitrogen adsorption (BET). To evaluate the adsorption of metal ions zinc (synthetic sewage), we used a system in finite bath, following a factorial design 2 2 , taking as input variables: pH and initial concentrations of zinc (Zn2 +) and output variables: percentage removal and removal capacity. The characterization results showed that Bofe clay belongs to the family of smectite and therefore has great potential for adsorption. (author)

  4. Clay Dispersibility and Soil Friability-Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... as a predictor of clay dispersibility and soil friability. Soil was sampled 3 yr in a field varying in clay content (∼100 to ∼220 g kg−1 soil) and grown with different crop rotations. Clay dispersibility was measured after end-over-end shaking of field-moist soil and 1- to 2-mm sized aggregates either air......-dried or rewetted to −100 hPa matric potential. Tensile strength of 1- to 2-, 2- to 4-, 4- to 8-, and 8- to 16-mm air-dried aggregates was calculated from their compressive strength, and soil friability estimated from the strength–volume relation. Crop rotation characteristics gave only minor effects on clay...

  5. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  6. Study on the Thermal Properties of Some Inorganically Modified Pre- Baked Clay Samples

    International Nuclear Information System (INIS)

    Ahmad, I.; Shakirullah, M.; Ishaq, M.

    2013-01-01

    The paper is focused on the influence of some inorganic modifiers on the thermal stability of the clay-inorganic intercalates. The inorganic modifiers used were NaOH and KOH. Solvent intercalation procedure was used. Clay was modified at 150, 500 and 750 degree C, separately with NaOH and KOH. TGDTA study was performed to evaluate the thermal stability of the resultant intercalates. Intercalation with NaOH and KOH performed at 150 degree C showed significant mass loss. Intercalation with NaOH performed at 500 and 750 degree C, separately showed less mass loss compared to the ones prepared at 150 degree C and hence exhibited thermal stability. In case of intercalation performed with KOH at 500 and 750 degree C separately, the mass loss was comparable to the original pre-baked clay. (author)

  7. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  8. Early Pottery Making in Northern Coastal Peru. Part I: Mössbauer Study of Clays

    Science.gov (United States)

    Shimada, I.; Häusler, W.; Hutzelmann, T.; Wagner, U.

    2003-09-01

    We report on an investigation of several ancient clays which were used for pottery making in northern coastal Peru at a kiln site from the Formative period (ca. 2000-800 BC) in the Poma Canal and at a Middle Sicán pottery workshop in use between ca. AD 950 and 1050 at Huaca Sialupe in the lower La Leche valley. Neutron activation analysis, 57Fe Mössbauer spectroscopy and X-ray diffraction were used for the characterisation of the clays. The changes that occur in iron-bearing compounds in the clays depending on the kiln atmosphere and on the maximum firing temperature were studied by Mössbauer spectroscopy and X-ray diffraction. Laboratory firing series under varying controlled conditions were performed to obtain a basic understanding of the different reactions taking place in the clays during firing. The results can be used as models in the interpretation of the Mössbauer spectra observed in ancient ceramics from the same context.

  9. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 ± 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area

  10. Study of clay chemical composition in formation of new phases in crystalline materials ceramic

    International Nuclear Information System (INIS)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L.

    2016-01-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  11. Compressibility characteristics of Sabak Bernam Marine Clay

    Science.gov (United States)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  12. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  13. Enrichment and activation of smectite-poor clay

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevica, Inese; Kostjukovs, Juris; Actint, Andris, E-mail: inese.sarcevicha@gmail.com [Department of Chemistry, University of Latvia, Kr. Valdemara street 48, Riga (Latvia)

    2011-06-23

    A new method of smectite clay enrichment has been developed. The method is based on dispersing clay in a phosphate solution and sequential coagulation. The product of enrichment is characterized with X-ray powder diffraction, wavelength dispersive X-ray fluorescence spectrometry, differential thermal analysis and thermogravimetry. Sorption of methylene blue and hexadecylpyridinium bromide on raw and purified clays was studied.

  14. Study of Dronino Iron Meteorite Weathering in Clay Sand Using Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Grigoriy A. Yakovlev

    2016-06-01

    Full Text Available Weathering products of two fragments of Dronino iron ungrouped meteorite found in the wet and drier clay sand were studied using X-ray diffraction and Mössbauer spectroscopy with a high velocity resolution. The products of metal oxidation in the internal and external surface layers were different for both fragments. The weathering products in fragment found in the wet clay sand contain magnetite (Fe3O4, maghemite (γ-Fe2O3, goethite (α-FeOOH and probably ferrihydrite (5Fe2O3∙9H2O while those in fragment found in drier clay sand contained ferric hydrous oxides (FeOOH and siderite (FeCO3 mainly. Concretions found near the first fragment contain ferric hydrous oxides (FeOOH mainly. This work is licensed under a Creative Commons Attribution 4.0 International License.

  15. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  16. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  17. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  18. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  19. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  20. Study of the chemo-hydro-mechanical behavior of stiff clays in the context of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nguyen, Xuan Phu

    2013-01-01

    The present research aims to understand the chemo-hydro-mechanical behavior of stiff clays through two geological formations, the Boom Clay and the Ypresian clays which are considered as possible host formations for the radioactive wastes disposal in Belgium. The volume change behavior was studied in both intact and reconstituted states, and under different conditions: under K0 and isotropic loading, under loading/unloading loops. The results show that the volume change behavior is governed by the competition between the physico-chemical effect and the mechanical effect, characterized by a threshold stress which corresponds to the swelling stress in terms of structure changes. A constitutive law was developed to capture this aspect. The permeability was determined, compared with the results in literature and correlated with the parameters as void ratio. The permeability variation with depth shows the important role of macro-pores in fluids' transfer. The volume change behavior and permeability of intact Boom Clay and Ypresian clays are also influenced by pore water chemical composition changes which modify the diffuse double layer and give rise to the aggregation of clay particles. The elastic parameters, yield curve and failure envelope of Boom Clay and Ypresian clays were identified. A conceptual elasto-plastic model was developed, accounting for the swelling effects and the competition between the physico-chemical effect and the mechanical effect. (author)

  1. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  2. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  3. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-10-12

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs.

  4. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    International Nuclear Information System (INIS)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-01-01

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs

  5. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  6. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  7. Experimental study of thermo-hydro-mechanical behaviour of Callovo-Oxfordian Clay-stone

    International Nuclear Information System (INIS)

    Mohajerani, M.

    2011-01-01

    During the different phases of the exothermic radioactive waste deep disposal (excavation, operation) and after permanent closure, the host rock is submitted to various coupled mechanical, hydraulic and thermal phenomena. Hence, a thorough investigation of the thermo-hydro-mechanical behaviour of the rock is necessary to complete existing data and to better understand and model the short and long term behaviour of the Callovo-Oxfordian (COx) clay formation in Bure (Meuse/Haute-Marne - M/HM), considered by ANDRA as a potential host rock in France.In this work, the compression - swelling behaviour of the COx Clay-stone was first investigated by carrying out a series of high-pressure oedometric tests. The results, interpreted in terms of coupling between damage and swelling, showed that the magnitude of swelling was linked to the density of the fissures created during compression. In a second step, the hydro-mechanical and thermo-hydro-mechanical behaviour of the saturated Clay-stone under a mean stress close to the in situ one were investigated by using two devices with short drainage path (10 mm), namely a isotropic cell and a newly designed hollow cylinder triaxial cell with local displacement measurements. These devices helped to solve two majors problems related to testing very low permeability materials: i) a satisfactory previous sample saturation (indicated by good Skempton values) and ii) satisfactory drainage conditions. Some typical constitutive parameters (Skempton and Biot's coefficients, drained and undrained compressibility coefficients) have been determined at ambient temperature through isotropic compression tests that also confirmed the transverse isotropy of the Clay-stone. The consistency of the obtained parameters has been checked in a saturated poro-elastic framework. Two aspects of the thermo-hydro-mechanical behaviour of the COx Clay-stone have then been investigated through different heating tests and through drained and undrained isotropic

  8. Geosynthetic clay liners - slope stability field study

    International Nuclear Information System (INIS)

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-01-01

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project

  9. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  10. Geological Investigations on Boulder-Clay of E. Groningen

    NARCIS (Netherlands)

    Gijzel, van P.; Overweel, C.J.; Veenstra, H.J.

    1959-01-01

    In this article the results of a study on boulder-clay in the neighbourhood of Winschoten (N.E. Netherlands) are communicated (Chapter I). The underlying sediments of the boulder-clay in this area consist of fine preglacial sands and black clay. In the nuclei of the many drumlins a strongly

  11. Removal of Phenol in Aqueous Solution Using Kaolin Mineral Clay

    International Nuclear Information System (INIS)

    Sayed, M.S.

    2008-01-01

    Kaolin clay were tested for phenol removal as toxic liquid waste from aqueous waste water. Several experimental conditions such as weight and particle size of clay were investigated to study batch kinetic techniques, also the ph and concentration of the phenol solution were carried out. The stability of the Langmuir adsorption model of the equilibrium data were studied for phenol sorbent clay system. Infrared spectra, thermogravimetric and differential thermal analysis techniques were used to characterize the behavior of kaolin clay and kaolin clay saturated with phenol. The results obtained showed that kaolin clay could be used successfully as an efficient sorbent material to remove phenol from aqueous solution

  12. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, A; Grobet, P; Keung, M; Leeman, H; Schoonheydt, R; Toufar, H [eds.

    1995-08-20

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY `95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately.

  13. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  14. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  15. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    In the framework of the feasibility studies on the radioactive waste disposal in deep argillaceous formations, it is now well established that the transport properties of solutes in clay rocks, i.e. parameter values for Fick's law, are mainly governed by the negatively charged clay mineral surface. While a good understanding of the diffusive behaviour of non-reactive anionic and neutral species is now achieved, much effort has to be placed on improving understanding of coupled sorption/diffusion phenomena for sorbing cations. Indeed, several cations known to form highly stable surface complexes with sites on mineral surfaces migrate more deeply into clay rock than expected. Therefore, the overall objective of the EC CatClay project is to address this issue, using a 'bottom-up' approach, in which simpler, analogous systems (here a compacted clay, 'pure' illite) are experimentally studied and modelled, and then the transferability of these results to more complex materials, i.e. the clay rocks under consideration in France, Switzerland and Belgium for hosting radioactive waste disposal facilities, is verified. The cations of interest were chosen for covering a representative range of cations families: from a moderately sorbing cation, the strontium, to three strongly sorbing cations, Co(II), Zn(II) and Eu(III). For the 4 years of this project, much effort was devoted to developing and applying specific experimental methods needed for acquiring the high precision, reliable data needed to test the alternative hypotheses represented by different conceptual-numerical models. The enhanced diffusion of the sorbing cations of interest was confirmed both in the simpler analogous illite system for Sr 2+ , Co(II) and Zn(II), but also in the natural clay rocks, except for Eu(III). First modelling approach including diffusion in the diffuse double layer (DDL) promisingly succeeded in reproducing the experimental data under the various conditions both in

  16. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  17. Effects of clay-seam behavior on WIPP repository design

    International Nuclear Information System (INIS)

    Stone, C.M.; Krieg, R.D.; Branstetter, L.J.

    1981-07-01

    The geology at the southeastern New Mexico WIPP site consists of bedded layers of rock salt, anhydrite, polyhalite, mixtures of those materials, and thin clay seams. In spite of their very small (0.005 m to 0.05 m) thickness, clay seams are important to structural characterization of the WIPP stratigraphy since slip might possibly take place across them. Results of a study to determine the effects of clay seam frictional slip on the closure of a well-defined drift configuration are described. A Mohr-Coulomb dry friction model was used to model the active clay seams. The main thrust of the study was to determine the effects of friction coefficient variability on drift closure. Results show that the drift closure varies by a factor of 3.0 over the range of friction coefficients studied. The maximum slip observed along any clay seam was 0.12 m. For values of μ > .7, virtually no slip occurs along any clay seam

  18. Fixing of heavy metals by some inflated Tunisian clays

    International Nuclear Information System (INIS)

    Gharsalli, Jamel

    2009-01-01

    At the time of discharge of the water polluted in a natural environment and thanks to the properties of retention, adsorption and exchange of ions, clays constitute a natural barrier which will be able to limit the toxicity and the propagation of the pollutants. To contribute to the development of clays layers of Tunisia in the field of water treatments, we undertook with a mineralogical and physicochemical characterization of some inflating clays. The characteristics of these clays will be exploited for the study of the retention by adsorption of some heavy metals. The isotherms of adsorption, of heavy metals in aqueous solution by these natural clays before and after acid activation, are studied. The influence of several parameters on the fixing of heavy metals on clay such as the factors relating to the medium of adsorption (agitation, pH, time of contact, temperature. etc) and those relating to the adsorbent (mass, granulometry, impurities. etc) was studied in order to optimize the operating conditions of adsorptions.

  19. Pure and impure clays and their firing products

    International Nuclear Information System (INIS)

    Murad, E.; Wagner, U.

    1989-01-01

    Moessbauer spectroscopy is highly suited for the study of clays whose industrial uses depend on the iron content. Reactions that take place during clay firing can be readily monitored by Moessbauer spectroscopy. Following dehydroxylation of clay minerals, the quadrupole splitting of octahedrally coordinated iron (III) increases abruptly, but reverts to lower values upon the formation of new, better ordered phases at higher temperatures. It is also shown that iron oxides may account for a considerably higher proportion of the total iron content of many clays than is commonly recognized, and their existence must be taken into consideration for a correct interpretation of the Moessbauer spectra of clays. (orig.)

  20. a study of the physico-chemistry and mineralogy of agbaja clay for ...

    African Journals Online (AJOL)

    MBI

    characterized for particle size distribution, plasticity index, chemical ... m = mass of sample after ignition (g). pH determination. .... the clay must have been of a secondary origin formed from .... The Chemistry and Physics of. Clay and Allied ...

  1. Study of the structural modifications in activated clays by Moessbauer spectroscopy and X-ray diffractometry

    Energy Technology Data Exchange (ETDEWEB)

    Huaypar, Yezena, E-mail: yhuaypar@yahoo.es; Bravo, Jorge, E-mail: jbravoc@unmsm.edu.pe [Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Fisicas (Peru); Gutarra, Abel; Gabriel, Erika [Universidad Nacional de Ingenieria, Facultad de Ciencias (Peru)

    2007-02-15

    In this work we study the changes induced on the structure of a smectite clay by chemical acid activation with HCl using X-ray diffractometry (XRD) and transmission Moessbauer spectroscopy (TMS) techniques. By XRD we were able to determine the mineralogical composition of the clay samples and measure the changes in the interplanar distance associated to the structural modifications in the clays. We measured a reduction in the interplanar distance and reflection intensity as the acid concentration in the activation process increased. TMS allowed us identify and characterize the structural sites occupied by ferric and ferrous iron cations. In addition, we were able to monitor the effects caused by the chemical acid activation on the valence state of the iron cations that occupy these structural sites in the clay. For the treatment at low acid concentration, keeping time and temperature of activation constant, our results showed a strong effect on the ferrous and ferric iron sites, reducing and increasing their adsorption relative areas respectively.

  2. Study of the structural modifications in activated clays by Moessbauer spectroscopy and X-ray diffractometry

    International Nuclear Information System (INIS)

    Huaypar, Yezena; Bravo, Jorge; Gutarra, Abel; Gabriel, Erika

    2007-01-01

    In this work we study the changes induced on the structure of a smectite clay by chemical acid activation with HCl using X-ray diffractometry (XRD) and transmission Moessbauer spectroscopy (TMS) techniques. By XRD we were able to determine the mineralogical composition of the clay samples and measure the changes in the interplanar distance associated to the structural modifications in the clays. We measured a reduction in the interplanar distance and reflection intensity as the acid concentration in the activation process increased. TMS allowed us identify and characterize the structural sites occupied by ferric and ferrous iron cations. In addition, we were able to monitor the effects caused by the chemical acid activation on the valence state of the iron cations that occupy these structural sites in the clay. For the treatment at low acid concentration, keeping time and temperature of activation constant, our results showed a strong effect on the ferrous and ferric iron sites, reducing and increasing their adsorption relative areas respectively.

  3. Corrosion behaviour of carbon steel in the Tournemire clay

    International Nuclear Information System (INIS)

    Foct, F.; Dridi, W.; Cabrera, J.; Savoye, S.

    2004-01-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  4. Preliminary dating study of clay tablet from Neo-Babylonian period

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rodrigo P. da, E-mail: rodrigo.silva@unasp.edu.br [Centro Universitario Adventista de Sao Paulo (UNASP), Sao Paulo, SP (Brazil); Tudela, Diego R.G.; Hazenfratz, Roberto; Munita, Casimiro S., E-mail: camunita@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Tatumi, Sonia H.; Yee, Marcio; Mittani, Juan C. R., E-mail: sonia.tatumi@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Santos, SP (Brazil)

    2013-07-01

    This work focuses on the archaeometric study of three clay tablet fragments named BAB{sub 1}, BAB{sub 2} and BAB{sub 3}. One of them, BAB{sub 1}, probably was manufactured in the Middle East during the Neo-Babylonian period, and contains inscriptions in cuneiform characters. The other two samples BAB{sub 2} and BAB{sub 3} also contain cuneiform characters, but in incomplete sentences. Typological studies in agreement with historical records suggest that the artifacts were manufactured in the 6{sup th} century B.C. during the dynasty of Nebuchadnezzar, Great King of Babylon. The age was determined by thermoluminescence (TL) and optically stimulated luminescence (OSL) methods. The annual dose rate for both TL and OSL dating was calculated with uranium, thorium and potassium concentrations determined by instrumental neutron activation analysis (INAA). Additional studies were performed using electron paramagnetic resonance (EPR) to determine the firing temperature, in order to verify if different firing temperatures were associated to different ages. Finally, X-ray diffraction analysis (XRD) was applied to the fragments to verify potential mineralogical differences, indicating different technological choices in the ceramic manufacture (like the choice of clay pastes and firing temperature). (author)

  5. Preliminary dating study of clay tablet from Neo-Babylonian period

    International Nuclear Information System (INIS)

    Silva, Rodrigo P. da; Tudela, Diego R.G.; Hazenfratz, Roberto; Munita, Casimiro S.; Tatumi, Sonia H.; Yee, Marcio; Mittani, Juan C. R.

    2013-01-01

    This work focuses on the archaeometric study of three clay tablet fragments named BAB 1 , BAB 2 and BAB 3 . One of them, BAB 1 , probably was manufactured in the Middle East during the Neo-Babylonian period, and contains inscriptions in cuneiform characters. The other two samples BAB 2 and BAB 3 also contain cuneiform characters, but in incomplete sentences. Typological studies in agreement with historical records suggest that the artifacts were manufactured in the 6 th century B.C. during the dynasty of Nebuchadnezzar, Great King of Babylon. The age was determined by thermoluminescence (TL) and optically stimulated luminescence (OSL) methods. The annual dose rate for both TL and OSL dating was calculated with uranium, thorium and potassium concentrations determined by instrumental neutron activation analysis (INAA). Additional studies were performed using electron paramagnetic resonance (EPR) to determine the firing temperature, in order to verify if different firing temperatures were associated to different ages. Finally, X-ray diffraction analysis (XRD) was applied to the fragments to verify potential mineralogical differences, indicating different technological choices in the ceramic manufacture (like the choice of clay pastes and firing temperature). (author)

  6. Organo-clay/anthracite filtration for oil removal

    International Nuclear Information System (INIS)

    Moazed, H.; Viragahavan, T.

    1999-01-01

    An advantage of organo-clay compared to other sorbents is that it can selectively remove organic pollutants from contaminated waters. An investigation was conducted to determine the potential of an organo-clay/anthracite mixture as a filter media for the removal of oil from synthetic and real oily waters. Also included in the study were column filtration studies using synthetic and real waste waters to determine the sorptive capacity of the material. In general, oil removal efficiencies in a 300 mm organo-clay/anthracite bed decreased with an increase in flow rates. Results of eight hour studies indicated that the depth of an organo-clay/anthracite bed has a direct effect on oil removal efficiency. The Thomas equation provides a reasonable fit of the data based on breakthrough studies. The model can be used to determine the parameters needed to design full-scale filtration columns. The uptake of oil by an organo-clay/anthracite mixture is well described by an equation including time such as the Weber or Moris model. The maximum solid-phase concentration of the solute values obtained from the Thomas equation were comparable to the values found by a mass balance approach. 12 refs., 8 figs., 4 tabs

  7. Climatic control on clay mineral formation

    Indian Academy of Sciences (India)

    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro ...

  8. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  9. Studying the degradation of polyhydroxybutyrate-co-valerate during processing with clay-based nanofillers

    DEFF Research Database (Denmark)

    Cabedo, Luis; Plackett, David; Gimenez, Enrique

    2009-01-01

    Polyhydroxybutyrate-co-valerate (PHBV) is attracting interest as a new material for packaging applications and nanoparticulate layered silicates are being increasingly explored as a way to improve PHBV film properties. In this context, it is essential to understand how different types of nanofill......Polyhydroxybutyrate-co-valerate (PHBV) is attracting interest as a new material for packaging applications and nanoparticulate layered silicates are being increasingly explored as a way to improve PHBV film properties. In this context, it is essential to understand how different types...... of nanofillers could influence polymer properties. PHBV was processed with three-layered clay types using different mixing methods, and we examined the effect of processing time, clay type, and clay content on polymer molecular weight and composite morphology. PHBV molecular weight (Mw) decreased by 38% after......-ray diffraction studies indicated an intercalated morphology in the presence of modified montmorillonite but good dispersion was also achieved when unmodified kaolinite was blended with PHBV. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009...

  10. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    Science.gov (United States)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  11. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (volume 2)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    This study is composed of two parts: The first part (Volume 1) lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton during thermal dilatation. The second part (volume 2) is devoted to the development and the application of advance constitutive modelling of mechanical behaviour of clays taking into account the extensive tests of Boom clay reported in the first volume. The development concentrated on the improvement of prediction of the volumetric response of clay skeleton: (a) improving the dilatancy prediction at low to high overconsolidation ratios (Section 2). An elasto-plastic constitutive model has been developed to account for this effect (Section 3.2.); (b) modelling of swelling effects (Section 2.5). A preliminary interpretative model for swelling prediction has been developed (Section 2.5). The application part consisted in interpreting the experimental results obtained for Boom clay to calibrate a set of constants (Section 3) for performing numerical analyses (Section 4) for the thermomechanical model already calibrated for Boom clay (Appendix). Interpretation of the tests required an assessment of influence of the strong anisotropy effects revealed by Boom clay on the basis of an interpretative model characterized by a kinematic hardening plasticity and coupled elasticity (section 3)

  12. Experimental and theoretical study of Co sorption in clay montmorillonites

    Science.gov (United States)

    Gil Rebaza, A. V.; Montes, M. L.; Taylor, M. A.; Errico, L. A.; Alonso, R. E.

    2018-03-01

    Montmorillonite (MMT) clays are 2:1 layered structures which in natural state may allocate different hydrated cations such as M-nH2O (M = Na, Ca, Fe, etc) in its interlayer space. Depending on the capability for ion sorption, these materials are interesting for environmental remediation. In this work we experimentally study the Co sorption in a natural Na-MMT using UV-visible spectrometry and XRD on semi-oriented samples, and then analyze the sorption ability of this clay by means of ab initio calculation performed on pristine MMT. The structural properties of Na-MMT and Co-adsorbed MMT, and the hyperfine parameters at different atomic sites were analyzed and compared with the experimental ones for the first, and for the case of the hyperfine parameters, presented for the first time for the last. The theoretical predictions based on total energy considerations confirm that Co incorporation replacing Na is energetically favorable. Also, the basal spacing d001 experimentally obtained is well reproduced.

  13. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    Science.gov (United States)

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components ( i.e. , smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (Δ G *), activation enthalpy (Δ H *), and activation entropy (Δ S *) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10 -2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals

  14. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  15. Development of polymer nanocomposites with regional bentonite clay

    International Nuclear Information System (INIS)

    Araujo, Edcleide M.; Leite, Amanda M.D.; Paz, Rene A. da; Medeiros, Keila M. de; Melo, Tomas J.A.; Barbosa, Josiane D.V.; Barbosa, Renata

    2011-01-01

    nanocomposites with regional bentonite clay were prepared by melt intercalation technique. The clays were studied without modification and modified with four quaternary ammonium salts. It was evidenced by X-ray diffraction that salts were incorporated into the clay structure thus confirming its organophilization. The nanocomposites were evaluated by means of thermal mechanic and flammability tests where presented properties significantly improved their pure polymers. The process of biodegradation of obtained bio nanocomposites was accelerated by the presence of clay. The produced membranes from nanocomposites have potential in the oil-water separation. (author)

  16. Column treatment of brewery wastewater using clay fortified with stone-pebbles

    International Nuclear Information System (INIS)

    Oladoja, N.A.; Ademoroti, C.M.A.; Idiaghe, J.A.; Oketola, A.A.

    2006-01-01

    The study aimed at providing a low-cost treatment for brewery wastewater, which was achieved by mixing clay with stone-pebbles to improve the low permeability of water through clay beds. The combination (clay/stone-pebbles) was used in columns for the treatment of brewery wastewater. The crystal chemistry of the clay samples was studied using X-ray diffractometer. Three principal clay minerals (kaolin, illite and smectite) were detected in the samples. Atomic absorption spectrophotometer was used to study the geochemistry of the clay samples. The results of the geochemical studies showed that all the samples were hydrated aluminosilicates. Performance efficiency studies were conducted to determine the best combination ratio of clay to stone-pebbles, which showed that combination ratio 3:1 (clay/stone pebbles, w/w) performed better. The flow-rate studies showed that brewery wastewater had longer residence time in non fortified clay than in fortified clay. The flow-rate of the wastewater in the percolating media varied from one medium to another. Two modes of treatment (batch and continuous) were used. The effluent passed through the continuous treatment mode had better quality characteristics as compared with the effluent passed through the batch treatment mode. The effect of repeated use of the fortified column on the performance efficiency was also studied. The pH, total solids, and the chemical oxygen demand (COD) of the effluent was monitored over time. The results of the COD monitored over time were analysed using breakthrough curves. The different columns were found to have different bed volumes at both the break through and exhaustion points. (author)

  17. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  18. Fracturing and Self-Healing in the Boom Clay: Evidences and Further Studies

    International Nuclear Information System (INIS)

    Bernier, Frederic

    2001-01-01

    The Boom Clay is considered as a potential host-rock for the disposal of Belgian radioactive waste. During the sinking of a new shaft to extend the underground facility HADES, an important fracturing has been evidenced around the excavation. Fracturing was already observed previously but to a lesser extent. The low support pressure imposed by the primary shaft lining, combined with the large time over which this support condition held, has favoured the decompression of the clay massif through delayed effects, and therefore the development of fracturing. In the frame of the overall performance of a radioactive waste repository, it is of prime importance to understand the fracturing process induced by excavation in Boom Clay, as well as the self-healing process. Some self-healing evidences have been observed around the HADES underground laboratory but need further investigation to be confirmed. This will be done in the SELFRAC EC project (Fractures and Self-healing within the Excavation Disturbed Zone in clays)

  19. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin

    2013-01-01

    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  20. Study of nanostructured clay's application in photoactivated restorative resins, used in dentistry

    International Nuclear Information System (INIS)

    Campos, Luiza Melo de Paiva

    2012-01-01

    The problem caused by polymerization shrinkage is critical, because the resin must remain closely in the tooth cavity while gaining rigidity and decrease its dimensions. Forcing the restorative material to distance or to separate the walls of the cavity, the resulting disruption would lead to microleakage, responsible for other problems such as secondary caries, postoperative soreness and may even cause pulpal changes. This process induces the volumetric change of the compound, given by the union of radicals in the formation of the macromolecule (polymer), causing a decrease in volume. This study aimed to develop new experimental composites through the addition of nano components clay minerals in a polymer matrix-based BisGMA / TEGDMA, to evaluate the possibility of a different dimensional behavior during the polymerization. Were used in this study, experimental composites added nanoparticle clay MMT Cloisite 10A (at concentrations of 50, 55, 60, 65 and 70 wt%) and Cloisite 30B (at concentrations of 50, 55, 60 and 65 wt%), which were then compared with the performance of the experimental composites added with micro-particles of silanized silica hybrid Aerosil OX-50 (at concentrations of 50, 60, 65 and 70 wt%). Was used the methods of characterization: Scanning Electron Microscopy (SEM), Thermal-Mechanical Analysis (TMA), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Absorption Spectroscopy in the Region of the Infrared (FTIR), X-ray Diffraction (XRD), Micro Hardness Knoop, Holographic Interferometry Technique (HIT), Digital Holography (DH), Correlation Image (CI) and Thermography. It was observed that the experimental composites with nanoparticles added clay Cloisite 10A and Cloisite 30B, performed better on tests that measured the polymerization shrinkage (TMA, HIT/HD/IC) and the micro hardness (Knoop), in relation to composites added with Silica Aerosil OX-50. These results may be related to the interaction polymer/clay and the nano

  1. Coupled transport and chemistry in clay stone studied by advective displacement: experiments and model

    International Nuclear Information System (INIS)

    Landesman, C.; Grambow, B.; Bailly, C.; Ribet, S.; Perrigaud, K.; Baty, V.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. Full text of publication entered in this record. For assessing the mass transfer resistance of the Callovo-Oxfordian clay rock formation in case of implementing a nuclear waste repository, various strongly coupled processes need to be understood and quantified both in near and far field: multi-species diffusion/advection, mineral/pore water interaction, interaction with the waste matrix and engineered barrier material, radionuclide retention, colloid transport, pore water chemistry evolution etc. To study many of these processes in their interrelationship simultaneously, a series of high pressure stainless steel advection cell was designed and clay cores from different locations of different calcite and clay contents were machined to fit the inner diameter of the cells with a precision of 50 μm. After assembling, simulated oxygen free clay pore water with bromine tracer was pushed by a High Pressure pump through the reactor by a pressure of up 100 bars at temperatures between 20 and 90 deg. C and the out-flowing water was collected, protected from air and analyzed by ICP-MS, COT meter and ion chromatography in regular time intervals. The water flow rate was between 0.02 and 1.2 mL/ d, corresponding to a clay rock permeabilities between 10 -12 and 10 -14 m/s at 25 deg. C. Permeabilities increase with temperature as expected due to reduction of viscosity of water. The experiments last up to 2 years. The first drops of out flowing allow estimating the initial pore water composition. This is particular useful to assess mobile natural organic matter contents, Se concentrations and temperature effect on clay water composition. Results show that only very small organic molecules are mobile. Temperature had only little effect on water composition. After few months both tritiated (HTO) water and 36 Cl were added and from the evolution of the activities in the out flowing water dispersion coefficients and accessible

  2. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  3. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  4. Adsorption of zinc and lead on clay minerals

    Directory of Open Access Journals (Sweden)

    Katarína Jablonovská

    2006-12-01

    Full Text Available Clays (especially bentonite, zeolite and quartz sand are widely used as landfill barriers to prevent contamination of subsoil and groundwater by leachates containing heavy metals. The sorption of zinc and lead on these clays was studied as a function of time and it was found that the initial 1 h our was sufficient to exchange most of the metal ions. The retention efficiency of clay samples of Zn2+ and Pb2+ follows the order of bentonite > zeolite> quartz sand. Whatever the clay sample, lead is retained more than zinc. The concentration of elements in the solution was followed by atomic adsorption spectrofotometry. Bacillus cereus and Bacillus pumilus, previously isolated from the kaoline deposit Horna Prievrana was added into the clay samples to comparise the accumulation of Zn2+ and Pb2+ from the model solution. The study of heavy metal adsorption capacity of bacteria- enriched clay adsorbent showed a high retention efficiency for lead ions as comparised with zinc ions. Biosorption is considered a potential instrument for the removal of metals from waste solutions and for the precious metals recovery as an alternative to the conventional processes.

  5. Study in laboratory of the influence of temperature on clays creep

    International Nuclear Information System (INIS)

    Boisson, J.Y.; Billotte, J.; Norotte, V.

    1993-01-01

    This study is a research programme on safety of radioactive waste disposal. The objective of the research carried out was the study of the long term effects of the temperature variations on the volume and the texture of clayed soils, notably as function of their initial petrophysical and petrographical characteristics and their preconsolidation state. From the experimental point of view, this study is based on the observation of the volumetrical deformation of samples subjected to thermal loading within 20 and 110 deg C temperature range with periodical measurements of their permeability in an oedometric cell. A complete textural study before and after the experiments allows for a continuous appreciation of the evolution of the texture. A preliminary bibliographical review has shown that the clays characteristics evolution and their uniaxial volumic strain under different temperatures loadings may exhibit an expansive or compactive behaviour due to temperature increase. Some of the parameters such as water content, consolidation state, plasticity, mineralogy and time plays a major part and have been criteria for the choice of four clays for the experimental phase. The experimental device, used and conceived at the Centre de Geologie de l'Ingenieur is a classical oedometric cell with specific modifications due to the very long term tests at high temperatures. The main obtained results are: a compressibility increase between 20 and 110 deg C; a creep module evolution with temperature; a noteworthy creep showing the importance of the time in the strain measurement; an analogy between mechanical consolidation and thermal consolidation ; an highly irreversible behaviour during a cooling phase; a modification of the structure material due to the temperature, but different and less important than modifications due mechanical stresses; the intrinsic permeability appears to be practically independent of the imposed thermal variations

  6. Diffusion, sorption and stability of radionuclide-organic complexes in clays and clay-organic complexes

    International Nuclear Information System (INIS)

    Staunton, S.; Rees, L.V.C.

    1991-01-01

    The dependence on various parameters of the diffusion coefficient of neptunium (V) in clay systems has been studied. The effect of the clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands have been investigated. The diffusion coefficients were compared to those predicted if diffusion occurred only in the liquid phase and adsorption was reversible; agreement was fairly good. An approximation to the diffusion coefficient can thus be obtained from readily measured experimental parameters. There is no evidence of surface phase diffusion. The most significant factor in determining the diffusion coefficient is the magnitude of the distribution ratio, itself highly dependent on the nature of the clay. Neither EDTA nor citrate modified the diffusion coefficient. Although the presence of 1 or 100 mg dm -3 of Aldrich humic acid had little effect on the distribution ratio of neptunium, it caused a lowering of the measured diffusion coefficient. This is interpreted in terms of the limiting liquid phase diffusion coefficient and the true liquid phase impedance factor of neptunium-humic acid complexes. 21 figs; 3 tabs; 20 refs

  7. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  8. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  9. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  10. Scour at Vertical Piles in Sand-Clay Mixtures under Waves

    DEFF Research Database (Denmark)

    Dey, Subhasish; Helkjær, Anders; Sumer, B. Mutlu

    2011-01-01

    Marine sediments often contain sand-clay mixtures in widely varying proportions. This study presents the results of equilibrium scour and time variation of scour depths at circular piles embedded vertically in clay alone and sand-clay mixed beds under waves. Experiments were conducted in a wave...... flume with different proportions of sand-clay mixtures as bed sediments. Test results for the cases of steady current and sand alone under waves are used as references. The equilibrium scour depth reduces with an increase in clay proportion n (by weight) in a sand-clay mixture. Interestingly, the scour...

  11. Study of processing conditions on properties of ABS and clay organically modified nanocomposites

    International Nuclear Information System (INIS)

    Galvan, Danieli; Massucato, Felipe; Bartoli, Julio R.; D'Avila, Marcos A.; Fernandes, Elizabeth G.

    2011-01-01

    Nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clay were prepared by melt intercalation on a co-rotating twin-screw extruder. The independent variables studied were the kind of organoclay (Cloisite 20A and Cloisite 30B) and the screw torque at levels of 45 and 70%. The effect of these variables on the intercalation/exfoliation were accessed by means of the morphological characteristics using X-ray diffraction and the mechanical properties of uniaxial tensile test. The experimental results showed that the incorporation of clay in the polymeric matrix improved the mechanical properties of elastic modulus, yield stress and tensile strength of nanocomposites, being more significant for that containing Cloisite 30B. Torque was also a significant variable for the responses studied. (author)

  12. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    Document available in extended abstract form only. Long-term storage of high-level radioactive waste in deep geologic formations is worldwide the only accepted solution to warranty long term safety. Besides clay and crystalline rocks, salt is one of the potential host-rock candidates, mainly favored in Germany. As salts rocks are highly soluble their barrier integrity against water inflow from the cap rock is questionable. Argillaceous cap rocks or intercalated clay layers may act as protective shield in the hanging wall above a repository, thus providing a multi-barrier system. The aims of our study are twofold: 1) to characterize the mineralogical, hydraulic and rock-mechanical properties of the so-called Red Salt Clay (T4) as natural analogue of a clay barriers represented by different states of induration corresponding to various depth of burial diagenesis; 2) to demonstrate the favoured barrier properties of an argillaceous layer in the top of a salt formation undergoing dynamic processes such as rock bursts. The so-called Red Salt Clay (T4) is deposited as clay rich clastic sediment at the base of the Aller-series forming a persistent lateral layer above the lower Zechstein-series. The thickness of the clay-formation becomes smaller with decreasing distance from the border of the basin, i.e. from ∼15 m at Rossleben, over 7 m at Bernburg to 3.5 m at Zielitz, all in Saxony-Anhalt, D). The mineralogical composition of the Red Salt Clay varies, e.g. average composition for the Teutschenthal area: clay minerals 54% (Chlorite: 8%; Illite/Muscovite: 46%); quartz: 22%; anhydrite: 15%; accessory gypsum; Halite: 6%, Hematite: ∼ 2%). The geochemical and mineralogical composition of the Red Salt Clay represents a final state of natural salt-clay-systems, thus standing as a natural analogue for bentonite-based sealing systems in contact with high-saline solutions (e.g. saturated NaCl-solution, solutions with various Mg 2+ -, K + -, SO 4 2- - concentrations). The

  13. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  14. α-Pinene conversion by modified-kaolinitic clay

    International Nuclear Information System (INIS)

    Volzone, C.; Masini, O.; Comelli, N.A.; Grzona, L.M.; Ponzi, E.N.; Ponzi, M.I.

    2005-01-01

    The isomerization of α-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions

  15. {alpha}-Pinene conversion by modified-kaolinitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C. [CETMIC-Centro de Tecnologia de Recursos Minerales y Ceramica-(CONICET-CIC), C.C. 49, Cno. Centenario y 506 (1897) M.B. Gonnet, Prov., Buenos Aires (Argentina)]. E-mail: volzcris@netverk.com.ar; Masini, O. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Comelli, N.A. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Grzona, L.M. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Ponzi, E.N. [CINDECA (CONICET-UNLP) calle 47 No. 257 (1900) La Plata, Prov., Buenos Aires (Argentina); Ponzi, M.I. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina)

    2005-10-15

    The isomerization of {alpha}-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions.

  16. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    Science.gov (United States)

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  17. Clay characterization of Monte Alegre-RN, Brazil

    International Nuclear Information System (INIS)

    Alencar, M.I.; Ferreira, O.F.; Ren, D.G.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study aimed to characterize the clay from the municipality of Monte Alegre in Rio Grande do Norte. Clay (popularly known as tabatinga) is used in brick kilns for producing bricks and tiles. This study also verified the possibility of using this for industrial ceramics and ceramic tiles. The following techniques were used for characterization: chemical and mineralogical analysis which found the composition of this material the presence of quartz and kaolinite, plasticity index where the result was that the clay has plasticity null; solid residue content was 60, 19%, the determination of loss on ignition was 8.70% on checking the color of the burning got creamy clear. (author)

  18. Technetium migration in natural clays

    International Nuclear Information System (INIS)

    Luebke, Maria

    2015-01-01

    The present work was performed within the joint research project ''Retention of repository relevant radionuclides in argillaceous rocks and saline systems'' (contract no.: 02E10981), funded by the Federal Ministry for Economic Affairs and Energy (BMWi). The aim was to obtain first insights into the interaction of the long-lived fission product technetium and natural clay with regard to a repository for high-level nuclear waste. For this purpose Opalinus Clay from Mont Terri (northern Switzerland) was used as a reference material. The nuclide technetium-99 will contribute to the radiotoxicity of spent nuclear fuel for more than thousand years due to its long half-live. In case of a leakage of the storage vessels, the geochemistry of technetium is determined by its oxidation state, at which only the oxidation states +IV and +VII are relevant. Because of the high solubility and low affinity to sorption on surfaces of minerals, Tc(VII) is considered to be very mobile and thus the most hazardous species. The focuses of this study therefore are diffusion experiments with this mobile species and investigations of the effect of ferrous iron on the mobility and speciation of technetium.rnThe interaction of technetium and Opalinus Clay was studied in sorption and diffusion experiments varying several parameters (pH value, addition of reducing agents, effect of oxygen, diffusion pathways). In the course of this study spatially resolved investigations of the speciation have been performed on Opalinus Clay thin sections and bore cores for the first time. In addition to the speciation, further information regarding elemental distributions and crystalline phases near technetium enrichments were obtained. Supplementary investigations of powder samples allowed determining the molecular structure of technetium on the clay surface.rnBoth the combination of sorption experiments with spectroscopic investigations and the diffusion experiment exhibit a reduction of Tc

  19. Study of process variables on organophilization of Cubati-PB bentonite clays with ionic surfactants

    International Nuclear Information System (INIS)

    Silva, C.D. da; Lima, R.C.O.; Costa, J.M.R.; Silva, E.I.A.; Neves, G.A.; Ferreira, H.C.

    2012-01-01

    The organophilic clays used as agent in the composition dispersed in petroleum drilling fluids, play important roles during drilling. This work aims at the development of several varieties of smectites Cubati-PB for use in drilling fluids for oil with the use of ionic surfactants. We used the following materials: natural bentonite clay Cinza Superior and Verde Superior, from the district of Cubati-PB and ionic quaternary ammonium salt: Praepagen WB®, with 45% active matter. The organoclays were characterized by the laser diffraction, chemical composition by x-ray, differential thermal analysis, thermal gravimetric analysis and x-ray diffraction. Globally found that clays have diffraction and thermal behavior typical of bentonite clay. The results showed showed that the clay used has the potential for application in the process of organophilic and, with respect the process variables has been observed that they do not alter the process organophilization. (author)

  20. Performance of Kaolin Clay on the Concrete Pavement

    Science.gov (United States)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  1. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  2. Methyl methacrylate oligomerically-modified clay and its poly(methyl methacrylate) nanocomposites

    International Nuclear Information System (INIS)

    Zheng Xiaoxia; Jiang, David D.; Wilkie, Charles A.

    2005-01-01

    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

  3. [Mechanism of tritium persistence in porous media like clay minerals].

    Science.gov (United States)

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  4. Quality evaluation of processed clay soil samples.

    Science.gov (United States)

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  5. Ultrasound assisted synthesis of PMMA/clay nanocomposites: Study ...

    Indian Academy of Sciences (India)

    The Young's modulus, breaking stress, elongation at break, toughness, yield stress and yield strain of the nanocomposites as a function of different clay concentrations and ultrasonic power were measured. Particle diameter of the nanocomposites was measured by laser diffraction technique. Oxygen permeability of the ...

  6. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  7. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    Science.gov (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  8. p-Nitrophenol, phenol and aniline sorption by organo-clays

    International Nuclear Information System (INIS)

    Ko, C.H.; Fan Chihhao; Chiang, P.N.; Wang, M.K.; Lin, K.C.

    2007-01-01

    The aims of this study were to make use of organo-clays (i.e., Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A), to remove p-nitrophenol, phenol and aniline of organic pollutants. The organo-clays were characterized by X-ray diffraction (XRD). Sorption isotherm, kinetic and pH effect of p-nitrophenol, phenol and aniline sorbed by four organo-clays were evaluated. The d-spacings (0 0 1) of the XRD peak of Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A are 1.98, 2.76, 1.93 and 2.64 nm, respectively. The d(0 0 1)-spacings of XRD indicated that these p-nitropheno, phenol and aniline could penetrate into the interlayer of clays and expand the d(0 0 1)-spacings. The linear sorption isotherm of constant partition was employed to describe the sorption isotherms of phenols sorbed by organo-clays through hydrophobic-hydrophobic chemical reactions. The parabolic diffusion and power-function of kinetic models were employed to describe properly the kinetic experiments. The rate limiting step of the p-nitrophenol sorption reactions on organo-clays were diffusion-controlled processes (i.e., 15A, 30B, 93A) and chemical-controlled process for 10A organo-clays. The pre-exponential factor of the p-nitrophenol sorbed by four organo-clays showed the trend as follows: 10A > 30B > 93A > 15A. The efficiency of these organo-clays in removing phenol compounds in water treatments merit further study

  9. Experimental study of the effect of high porewater salinity on the physical properties of a natural smectitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2001-03-01

    Natural smectitic clays for backfilling tunnels and shafts in deep repositories may be an alternative to mixtures of bentonite and ballast. Very salt groundwater is known to raise the hydraulic conductivity and reduce the expandability of clay materials in general and of bentonite/ballast mixtures in particular and the present study aimed at determining the impact of salt water on the major physical properties of natural smectitic clays, represented by the German Friedland Ton. The investigation showed that the compactability of the investigated clay is not significantly affected by the water content in contrast to bentonite/ballast fills, and that the conductivity and expandability are acceptable even at salt contents of up to 20 % if the bulk density at saturation is slightly higher than 2000 kg/m{sup 3} . For salt contents up to 3. 5 % the corresponding density is around 1900 kg/m{sup 3}. In general, the investigated clay offers better physical properties than mixtures of bentonite/ballast mixtures with up to 30 % bentonite content.

  10. Experimental study of the effect of high porewater salinity on the physical properties of a natural smectitic clay

    International Nuclear Information System (INIS)

    Pusch, Roland

    2001-03-01

    Natural smectitic clays for backfilling tunnels and shafts in deep repositories may be an alternative to mixtures of bentonite and ballast. Very salt groundwater is known to raise the hydraulic conductivity and reduce the expandability of clay materials in general and of bentonite/ballast mixtures in particular and the present study aimed at determining the impact of salt water on the major physical properties of natural smectitic clays, represented by the German Friedland Ton. The investigation showed that the compactability of the investigated clay is not significantly affected by the water content in contrast to bentonite/ballast fills, and that the conductivity and expandability are acceptable even at salt contents of up to 20 % if the bulk density at saturation is slightly higher than 2000 kg/m 3 . For salt contents up to 3. 5 % the corresponding density is around 1900 kg/m 3 . In general, the investigated clay offers better physical properties than mixtures of bentonite/ballast mixtures with up to 30 % bentonite content

  11. Field studies about radionuclide migration natural analogues and faults in clays

    International Nuclear Information System (INIS)

    Williams, G.M.; Hooker, P.J.; Brightman, M.A.

    1990-01-01

    This report puts together final reports of CEC contracts about the following topics: in situ determination of the effects of organics on the mobility of radionuclides in controlled conditions of groundwater flow (Drigg site); natural analogue studies of radionuclide migration (Loch Lomond, Broubster, Needle's Eye); faults in clays: their detection and characterization (Down Ampney site)

  12. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  13. Quick clay and landslides of clayey soils

    NARCIS (Netherlands)

    Khaldoun, A.; Moller, P.; Fall, A.; Wegdam, G.; de Leeuw, B.; Méheust, Y.; Fossum, J.O.; Bonn, D.

    2009-01-01

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay

  14. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  15. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  16. Clay club catalogue of characteristics of argillaceous rocks

    International Nuclear Information System (INIS)

    2005-01-01

    The OECD/NEA Working Group on the Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations, namely the Clay Club, examines the various argillaceous rocks that are being considered for the deep geological disposal of radioactive waste, i.e. from plastic, soft, poorly indurated clays to brittle, hard mud-stones or shales. The Clay Club considered it necessary and timely to provide a catalogue to gather in a structured way the key geo-scientific characteristics of the various argillaceous formations that are - or were - studied in NEA member countries with regard to radioactive waste disposal. The present catalogue represents the outcomes of this Clay Club initiative. (author)

  17. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  18. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  19. Study of sodium clay modification through polyaniline polymerization

    International Nuclear Information System (INIS)

    Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla

    2015-01-01

    The synthesis of hybrids nanocomposites, such as polyaniline/montmorillonite (Pani/MMT), combines the processability and electrical conductivity of this polymer with the mechanical properties of a ceramic material bringing a multitude of new possibilities for use in high-tech, consumer and industry. With this in mind, we sought to characterize and modify sodium clay through polymerization of polyaniline. The characterization was carried out by X-ray diffraction, infrared spectroscopy by Fourier transformed (FTIR) and spectroscopy by impedance. Through the XRD analysis, it could be inferred that there was a interplanar displacement from 12,4Å (pure sodium montmorillonite) to 15,6Å due to the cation exchange of Na + ions by the anilinium ions, allowing the polymerization interspersed with Pani MMT platelets. By FTIR analysis, presences of the characteristic functional groups of both compounds are detected in the synthesized nanocomposite. Through conductivity and impedance tests it is concluded that the addition of polyaniline decreases the resistive behavior of clay and the electrical conduction becomes possible. (author)

  20. The redox properties of the natural iron-bearing clay mineral ferruginous smectite SWA-1: a combined electrochemical and spectroscopic study

    International Nuclear Information System (INIS)

    Gorski, Christopher A.; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B.

    2012-01-01

    Document available in extended abstract form only. Iron-bearing clay minerals are ubiquitous in the environment and clay-mineral-based materials have been proposed to be part of backfill material in nuclear waste repositories. Laboratory and field studies have confirmed that structural iron (Fe) in clay minerals participates in redox reactions with organic pollutants, metals, and radionuclides, thus influencing their transport and reactivity. Knowledge of the redox properties of Fe-bearing clay minerals is therefore essential for understanding and predicting the fate, mobility, and bioavailability subsurface contaminants. A quantitative understanding of clay mineral redox behavior remains lacking, however, due to constraints in previous experimental approaches and the complex structural changes that accompany changes in the Fe oxidation state. This work provides a quantitative means for measuring the redox properties of Fe-bearing clay minerals, which can be applied to both field and laboratory studies tracking radionuclide-clay mineral redox reactions. Here we use mediated electrochemical reduction and oxidation to determine the electron accepting and donating capacities of several natural Fe-bearing clay minerals with different structural Fe content (2.3 to 21 wt-%) and varied redox histories. Results indicate that the fraction of redox-active Fe in clay minerals is mineral-dependent, and is linked to the thermodynamics of reduction and oxidation as well as to the ability of clay minerals to conduct electrons and facilitate structural re-arrangements required to maintain charge balance. The reduction potential (E H ) characteristics of a natural ferruginous smectite (SWa-1) were further characterized as a function of solution conditions and repeated Fe reduction and oxidation cycles. SWa-1 samples were analyzed with Moessbauer spectroscopy (MS) and X-ray absorption spectroscopy (XAS) to link observed redox potential behavior to structural properties and changes

  1. Experimental study of mechanical behaviour of a clay-stone: application to nuclear waste disposals

    International Nuclear Information System (INIS)

    Chiarelli, A.S.; Shao, J.F.; Ledesert, B.; Hoteit, N.

    2001-01-01

    A study of mechanical behaviour of deep argillaceous rocks from East of France, the 'argilites de l'Est' as a potential host rock for radioactive waste disposal studied by ANDRA, (french national radioactive waste management agency) is presented. Some uniaxial and triaxial compression tests with unloading-reloading cycles were realised on samples from three different depths. Important plastic strains associated to directional degradation of elastic properties show that the two principles strain mechanisms are plasticity and induced anisotropic damage. At microscopic scale, it is related to sliding of clay sheets and oriented microcracks. The influence of mineralogy is that brittle behaviour is more important with calcite while it decreases with clay. (authors)

  2. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  3. Sectioning Clay Models Makes Anatomy & Development Tangible

    Science.gov (United States)

    Howell, Carina Endres; Howell, James Endres

    2010-01-01

    Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…

  4. Hydro-mechanical aspects: glacial loading/erosion - the opalinus clay study

    International Nuclear Information System (INIS)

    Marschall, P.; Kupfer, T.; Kuhlmann, U.

    2004-01-01

    In Nagra's high level waste programme the future geological evolution of the investigation area in the Zurcher Weinland (NE Switzerland) is considered over a time period of around 1 Ma. Uplift, erosion and climatic changes were identified as processes that may affect the long-term performance of a repository for spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW). The possible impact of those long-term processes on the barrier function of the host rock formation (Opalinus Clay) comprises: (i) the change of the vertical hydraulic gradient caused by changing recharge/discharge conditions in the regional aquifer systems; (ii) permeability enhancement of the host rock formation due to the uplift process; and (iii) expulsion of contaminated pore water from the disposal area as a result of repeated glacial loading. Due to the fact that the discharge level of the regional aquifer systems is defined by the Rhine valley and the regional recharge areas are characterised by moderate elevations (typically 2 are not expected within the next several million years. Hence, the topography of NE Switzerland together with the favourable hydraulic properties of the host rock formation prevent efficiently the vertical exchange of groundwater between the regional aquifer systems. Even on geological time scales of millions of years the expected vertical pore water flow through the host rock formation is in the order of 10 -14 m/s and lower. At present, the Opalinus Clay forms a perfect hydraulic barrier. The process of ongoing uplift, however, may give rise to embrittlement of the rock, entailed by permeability enhancement. Evidence for permeability enhancement of Opalinus Clay in shallow depth was observed by Hekel (1994). On the other hand, regional studies confirmed the low permeability of the Opalinus Clay formation in greater depth even when fractured (Gautschi, 2001; Marschall et al., 2003). Such evidence, together with conceptual

  5. Influence of clay organic modifier on morphology and performance of poly(ε-caprolactone/clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2015-01-01

    Full Text Available Two series of poly(e-caprolactone nanocomposites with different organo-modified clays (1 to 8 wt% were prepared by the solution casting method. Organoclays with polar (Cloisite®C30B and nonpolar (Cloisite®C15A organic modifier and with different miscibility with poly(e-caprolactone matrix, were chosen. Exfoliated and/or intercalated nanocomposite’s structures were obtained by using high dilution and an ultrasonic treatment for the composite preparation. The effect of the surface modification and clay content on the morphology, mechanical and thermal properties of the nanocomposites was studied. Scanning electron microscopy excluded the formation of microcomposite. The wide-angle X-ray diffraction analysis revealed that the tendency toward exfoliated structure is higher for the Cloisite®C30B, which had better miscibility with poly(e-caprolactone matrix. Differences in spherulites’ sizes and morphology between two series of the nanocomposites were observed by the optical microscopy performed on as-casted films. Enthalpies of fusion and degrees of crystallinity were higher for nanocomposites than for neat poly(e-caprolactone and increase with the clay loading in both series, as a consequence of the clay nucleating effect. Decreased thermal stability of nanocomposites was ascribed to thermal instability of organic modifiers of the clays. The Halpin-Tsai model was used to compare the theoretically predicted values of the Young’s modulus with experimentally obtained ones in tensile tests.[Projekat Ministarstva nauke Republike Srbije, br. 172062

  6. Study of the application of non-plastic clays from Pocos de Caldas - part 1: chemical-mineralogic characterization

    International Nuclear Information System (INIS)

    Roveri, C.D.; Mariano, N.A.; Faustino, L.M.; Aielo, G.F.; Pinto, L.P.A.; Maestrelli, S.C.

    2011-01-01

    Pocos de Caldas is an important 'hidrotermomineral' center of Brazil, where can be found non-plastic clays deposits with no significant records about its characterization; this fact difficult the studies of industrial application. These nonplastic clays, not used, have been stored in sheds or open, which creates a high cost to the industry, and become an environmental liability. In the present work, the chemical-mineralogical study of six samples of non-plastic clays was realized, to expand the horizons of researches about such materials. This preliminary study showed that, overall, the samples are composed of refractory minerals such as kaolinite and gibbsite, with less significant amounts of other phases such as quartz, illite and vermiculite. The chemical analysis permitted the grouping of raw materials into two groups according to their refractories proprieties, guiding to the subsequent characterization. (author)

  7. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  8. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  9. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  10. Synthesis and Features of Luminescent Bromo- and Iodohectorite Nanoclay Materials

    Directory of Open Access Journals (Sweden)

    Hellen Silva Santos

    2017-11-01

    Full Text Available The smectites represent a versatile class of clay minerals with broad usage in industrial applications, e.g., cosmetics, drug delivery, bioimaging, etc. Synthetic hectorite Na0.7(Mg5.5Li0.3[Si8O20](OH4 is a distinct material from this class due to its low-cost production method that allows to design its structure to match better the applications. In the current work, we have synthesized for the first time ever nanoclay materials based on the hectorite structure but with the hydroxyl groups (OH− replaced by Br− or I−, yielding bromohectorite (Br-Hec and iodohectorite (I-Hec. It was aimed that these materials would be used as phosphors. Thus, OH− replacement was done to avoid luminescence quenching by multiphonon de-excitation. The crystal structure is similar to nanocrystalline fluorohectorite, having the d001 spacing of 14.30 Å and 3 nm crystallite size along the 00l direction. The synthetic materials studied here show strong potential to act as host lattices for optically active species, possessing mesoporous structure with high specific surface area (385 and 363 m2 g−1 for Br-Hec and I-Hec, respectively and good thermal stability up to 800 °C. Both materials also present strong blue-green emission under UV radiation and short persistent luminescence (ca. 5 s. The luminescence features are attributed to Ti3+/TiIV impurities acting as the emitting center in these materials.

  11. Modification of clay-based waste containment materials

    International Nuclear Information System (INIS)

    Adu-Wusu, K.; Whang, J.M.; McDevitt, M.F.

    1997-01-01

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs

  12. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  13. Toxic element composition of multani mitti clay for nutritional safety

    International Nuclear Information System (INIS)

    Waheed, S.; Faiz, Y.; Rahman, S.; Siddique, N.

    2013-01-01

    Geophagy of multani mitti (MM) clay is very common in central Pakistan especially amongst women. It was therefore mandatory to establish baseline levels of toxic elements in this clay for its safe dietary consumption by consumers of different genders, age groups and physical states. Instrumental neutron activation analysis and atomic absorption spectrometry techniques were used to determine the nutritional safety of MM clay for oral intake. All quantified toxic elements were detected at trace levels with composition in the descending order; Pb > Br > As > Sb > Hg > Cd. Comparison of these elements in MM clay with other clays shows that As, Cd, and Pb, are lowest in MM clay while its Br and Hg contents are high. Highest weekly dietary intakes of As, Br, Cd, Hg, and Sb were found to be 18, 0.05, 1.6, 9.2 and 1.1 % of the respective recommended provisional tolerable weekly intakes. The findings of this study show that As, Br, Cd, Hg and Sb in MM clay are well below the tolerance levels. However its Pb concentration is very high and may pose health concerns. The data presented in this study can be used as national base level guideline for geophagy of MM clay by men, women (normal, pregnant and lactating) and children. (author)

  14. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  15. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    Science.gov (United States)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  16. Study of new occurrences of plastic (ball) clays from northeastern Brazil for use in refractory ceramics; Estudo de novas ocorrencias de argilas plasticas (ball clays) do nordeste do Brasil para uso em ceramicas refratarias

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Bastos, P. de M.; Santana, L.N.L.; Menezes, R.R.; Neves, G.A.; Ferreira, H.C., E-mail: julianamelo25@gmail.com, E-mail: paulos@cstr.ufcg.edu.br, E-mail: lisiane.navarro@ufcg.edu.br, E-mail: romualdo.menezes@ufcg.edu.br, E-mail: gelmires.neves@ufcg.edu.br, E-mail: heber.ferreira@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2016-10-15

    The northeast of Brazil has large deposits of ball clays generally situated in Barreiras Formation and are used in white ceramic and refractory materials. These clays are composed of secondary kaolinite and organic matter, being very plastic and when subjected to elevated temperatures burn with white colors and present phase transformations showing mainly crystals formation of mullite and cristobalite. This work aims to study new deposits of ball clays in order to use them to refractory materials production. The clays were characterized by laser diffraction, X-ray diffraction (XRD), X-ray fluorescence, refractoriness, thermal analysis, and scanning electron microscopy (SEM). The samples were pressed and sintered at 1000, 1150, 1250, 1280 and 1400 °C. The characterization after firing was carried out by XRD and SEM. Then, the physical and mechanical properties - absorption, porosity and flexural strength, were determined. The results showed that the clays presented formation of mullite crystals with physical, chemical and mineralogical properties suitable for use in refractory ceramics. (author)

  17. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  18. Possibilities for the storage of radioactive waste in deep clay formations

    International Nuclear Information System (INIS)

    Le Pochat, G.; Lienhardt, M.J.; Peaudecerf, P.; Platel, J.P.; Simon, J.M.; Berest, P.; Charpentier, J.P.; Andre-Jehan, R.

    1984-02-01

    The possible storage sites in deep clay formations have been studied in parts of large French sedimentary basins which prima facie seem to have suitable characteristics. The most suitable areas were chosen on the basis of earlier oil prospecting data consisting of information on seismic movements, diagraphic well-logging data and old samples that happened to have been preserved. At the same time, the lithology of the clay formations can be determined from mineralogical studies on samples taken from boreholes or from outcrops. Before carrying out in situ experiments concerned with the geotechnical characterization of the deep clays, measurements were made in the laboratory on samples obtained in two ways: from tertiary clay outcrops and from cores taken at 950 m in the clay layers during oil well logging. The results of studies carried out on tertiary clays in Les Landes illustrate this procedure

  19. Study of methods for electrical modification of a clay suspension

    Energy Technology Data Exchange (ETDEWEB)

    Karimov, R A; Kudaktina, T T; Parpiyev, T R

    1982-01-01

    As a result of the conducted experiments it was established that the viscosity and maximum static shear stress of the drilling muds prepared on electrically treated water increases 2-3-fold as compared to the muds prepared on standard water. This is explained by the fact that the unipolar treatment results in deep change in the water structure. Under the influence of the electrical current, there is activation, rise in the electrical conductivity, decrease in surface tension, considerable rise in the pH value, etc. The output of clay mud increases 1.5-fold in the clay suspension that is prepared on electrically treated water.

  20. Evaluation of the bleaching flux in clays containing hematite and different clay minerals; Avaliacao do fundente descolorante em argilas contendo hematita e diferentes argilominerais

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos [Universidade Tecnologica Federal do Parana (DAMEC/UFTPR), Pato Branco, PR (Brazil); Morelli, M.R., E-mail: geocrisr@utfpr.edu.com, E-mail: morelli@power.ufscar.br [Universidade Federal de Sao Carlos (DEMa/PPGCEM/UFSCar), SP (Brazil)

    2016-07-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  1. Clay characterization of Boa Saude-RN, Brazil

    International Nuclear Information System (INIS)

    Ren, D.G.; Alencar, M.I.; Ferreira, O.F.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study characterized a sample of clay from the City of Boa Saude of Rio Grande do Norte. Clay is burning clear and used in Monte Alegre in the brick kilns for producing bricks and tiles. This study also verified the possibility of using these in the field of industrial ceramics. The following techniques were used for characterization: chemical and mineralogical analysis, which determined the presence of the following minerals, muscovite, quartz and kaolinite, the plasticity index can be said that the clay has an average plasticity index, also was made organic matter content, residue content, determination of loss on ignition was found that a loss of 9.38%, checking the color of burning gave a gradient of cream to orange with increasing temperature. (author)

  2. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...... capacity was found to be 18.3 meq/100 g at pH 6 and 8.6 meq/100 g at pH 7. A competitive Langmuir sorption isotherm where sorption is dependant on both pH and fluoride concentration is employed to characterise the experimental sorption and desorption data. The sorption and desorption isotherms revealed...

  3. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  4. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  5. Effect of Compaction on Compressive Strength of Unfired Clay Blocks

    International Nuclear Information System (INIS)

    Lakho, N.A.; Zardari, M.A.; Pathan, A.A.

    2016-01-01

    This study investigates the possible use of unfired compacted clay blocks as a substitute of CSEB (Compressed Stabilized Earth Blocks) for the construction of economical houses. Cubes of 150 mm size were cut from the clay blocks which were compacted at various intensities of pressure during the casting. The results show that the compressive strength of the clay cubes increased with the compacting pressure to which the blocks were subjected during casting. The average crushing strength of the cubes, sawed from clay blocks that were subjected to compacting pressure of 7.2 MPa, was found to be 4.4 MPa. This value of compressive strength is about 50 percent more than that of normal CSEB. This study shows that the compacted clay blocks could be used as economical walling material as replacement of CSEB. (author)

  6. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition

    International Nuclear Information System (INIS)

    Benchabane, A.

    2006-11-01

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  7. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  8. The molecular aggregation of pyronin Y in natural bentonite clay suspension

    International Nuclear Information System (INIS)

    Meral, Kadem; Yilmaz, Nuray; Kaya, Mehmet; Tabak, Ahmet; Onganer, Yavuz

    2011-01-01

    The molecular aggregation and spectroscopic properties of Pyronin Y (PyY) in the suspension containing natural bentonite clay were studied using molecular absorption, steady-state and time-resolved fluorescence spectroscopy techniques. Interaction between the clay particles and the cationic dye compounds in aqueous solution resulted in significant changes in spectral properties of PyY compared to its molecular behavior in deionized water at the same concentration. These changes were due to the formation of dimer and aggregate of PyY in the clay suspension as well as the presence of the dye monomer. The H-type aggregates of PyY in the clay suspension were identified by the observation of a blue-shifted absorption band of the dye compared to that of its monomer. In spite of diluted dye concentrations, the H-aggregate of PyY in the clay suspension was formed. The intensive aggregation in the clay suspension attributed to the localized high dye concentration on the negatively charged clay surfaces. Adsorption sites of PyY on the clay particles were discussed by deconvulated absorption and excitation spectra. Fluorescence spectroscopy studies revealed that the fluorescence intensity of PyY in the clay suspension is decreased by H-aggregates drastically. Moreover, the presence of H-aggregates in the clay suspension resulted in the decrease of fluorescence lifetime and quantum yield of PyY compared to those in deionized water. - Highlights: → Molecular behavior of PyY adsorbed on clay surface was followed spectroscopically. → H-aggregates of PyY in the clay suspension were formed at very low dye concentrations. → The intensive H-aggregate structure drastically reduced the fluorescence intensity of PyY. → The fluorescence lifetime and quantum yield of PyY in the clay suspension was discussed.

  9. Removal of clay by stingless bees: load size and moisture selection.

    Science.gov (United States)

    Costa-Pereira, Raul

    2014-09-01

    Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  10. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  11. Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)

    Science.gov (United States)

    Shekhawat, M. S.

    The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.

  12. Characterisation of the wall-slip during extrusion of heavy-clay products

    Science.gov (United States)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (dviscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  13. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  14. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  15. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    Science.gov (United States)

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Geochemistry and mineralogy

    Energy Technology Data Exchange (ETDEWEB)

    Plecas, I.; Dimovic, S.; Orta, M.M.; Alba, M.D.; Alvero, R.; Becerro, A.I.; Castro, M.A.; Chain, P.; Escudero, A.; Naranjo, M.; Pavon, E.; Trillo, J.M.; Vejsada, J.; Vokal, A.; Zadvernyuk, H.P.; Fedorenko, Y.G.; Zlobenko, B.P.; Koromyslichenko, T.I.; Battaglia, S.; Cervelli, M.; Millot, R.; Girard, J.P.; Missana, T.; Garcia-Gutierrez, M.; Alonso, U.; Muurinen, A.; Carlsson, T.; Chain, P.; Alba, M.D.; Becerro, A.I.; Castro, M.A.; Escudero, A.; Gonzalez-Carrascosa, T.; Hurtado, S.; Pavon, E.; Villa, M.; Bourg, I.C.; Sposito, G.; Bourg, A.C.M.; Marques Fernandes, M.; Rabung, Th.; Dahn, R.; Baeyens, B.; Bradbury, M.H.; Breynaert, E.; Maes, A.; Bruggeman, C.; Maes, I.A.; Vancluysen, J.; Credoz, A.; Bildstein, O.; Jullien, M.; Raynal, J.; Petronin, J.C.; Trotignon, L.; Pokrovsky, O.; Jacquier, P.; Beaucaire, C.; Vuillaume, A.L.; Wittebroodt, Ch.; Ly, J.; Page, J.; Savoye, S.; Pitsch, H.; Jacques, D.; Wang, L.; Galunin, E.; Chain, P.; Alba, M.D.; Vidal, M.; Grandia, F.; Domenech, C.; Arcos, D.; Duro, L.; Bruno, J.; Andre, L.; Pauwels, H.; Azaroual, M.; Albrecht, A.; Romero, M.A.; Aerts, S.; Boven, P.; Van Geet, M.; Boever, P. de; Alonso, U.; Albarran, N.; Missana, T.; Garcia-Gutierrez, M.; Truche, L.; Berger, G.; Guillaume, D.; Jacquot, E.; Tournassat, Ch.; Lerouge, C.; Brendle, J.; Greneche, J.M.; Touzelet, St.; Blanc, Ph.; Gaucher, E.C.; Thoenen, T.; Klinkenberg, M.; Kaufhold, S.; Dohrmann, R.; Siegesmund, S.; Liu, D.J.; Bruggeman, C.; Maes, N.; Weber, T.; Trotignon, L.; Pozo, C.; Bildstein, O.; Combarieu, G. de; Frugier, P.; Menut, D

    2007-07-01

    (Ca, Mg) in the Callovo-Oxfordian formation: implications for pore water composition modeling; a Monte Carlo sensitivity analysis of modelled Opalinus clay pore waters from the Mont Terri rock laboratory; the microstructural investigation of Opalinus clay proposal of a carbonate distribution model; the influence of natural organic matter on the sorption behaviour of Eu on illite (as model component for Boom clay); the fate of boron and dynamics of reactive transport processes in the near field of a HLW disposal; the sulfate-reducing bacteria (Desulfovibrio desulfuricans) activity monitored by magnetic measurements in Bure clay-stones (France) and Mont Terri clay-stones (Switzerland); the influence of EDTA and isosaccharinate organic ligands on the uptake and migration of europium in the Callovo-Oxfordian argillite; the experimental determination of thermodynamic properties of a chlorite; the structural incorporation of trivalent f elements into the tri-octahedral clay mineral hectorite; heavy metals migration in argillaceous rocks: on the use of laser-induced breakdown spectroscopy microprobe (Libs microprobe) as a microanalysis tool; the isotopic anomalies observed at the vicinity of fractures in pore water of Tournemire shales: experimental artefacts or local paleo-circulations?; the effect of temperature on the retention capacity of compacted bentonite: an experimental and numerical investigation; the retention of Cs in Boom Clay: comparison of data from batch sorption tests and diffusion experiments on clay cores; the sorption and engineering characteristics of some clay/shale deposits from nigeria as landfill liner; the influence of organic matter composition on iodine sorption: from fresh to thermally matured peat; the observation of microstructure of compacted Bentonite by X-ray micro CT method optimized with computer simulation; the hydration and hydrolysis of Sm{sup 3+} and Eu{sup 3+} in clay interlayer: neutron diffraction study; a molecular simulations of

  17. Discrete analysis of clay layer tensile strength

    International Nuclear Information System (INIS)

    Le, T.N.H.; Ple, O.; Villard, P.; Gourc, J.P.

    2010-01-01

    The Discrete Element Method is used to investigate the tensile behaviour and cracks mechanisms of a clay material submitted to bending loading. It is the case of compacted clay liners in landfill cap cover application. Such as the soil tested in this study is plastic clay, the distinct elements model was calibrated with previous data results by taking into account cohesive properties. Various contact and cohesion laws are tested to show that the numerical model is able to reproduce the failure mechanism. Numerical results are extending to simulate a landfill cap cover and comparing to experimental large scale field bending tests achieved in a real site of storage. (authors)

  18. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Directory of Open Access Journals (Sweden)

    Vernon Reynolds

    Full Text Available Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  19. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  20. PBAT based nanocomposites for medical and industrial applications

    International Nuclear Information System (INIS)

    Fukushima, Kikku; Wu, Meng-Hsiu; Bocchini, Sergio; Rasyida, Amaliya; Yang, Ming-Chien

    2012-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) based nanocomposites were prepared by melt blending PBAT with 5 and 10 wt.% of clay nanoparticles (unmodified and modified montmorillonites, unmodified and modified fluoro-hectorites, and unmodified sepiolites). All nanocomposites showed a good level of clay distribution and dispersion into PBAT, especially nanocomposites with high clay chemical affinity with the polymer matrix. DSC results showed that addition of layered silicates slightly hindered kinetics and extent of crystallization of PBAT; however, sepiolite particles were able to promote polymer crystallization kinetics and the transformation of the PBAT crystal structure to a more ordered form. Similar increases in the thermal stability of PBAT in nitrogen and air were obtained upon addition of all clays, due to a barrier effect of the clays toward polymer decomposition product ablation. Preliminary biocompatibility tests indicated that PBAT based materials with 10% clay content have good biological safety and display almost no cytotoxicity. The addition of all nanofillers increased the hardness of PBAT matrix. The DMA analysis showed that all nanocomposites presented higher E′ values than neat PBAT, indicating that addition of clays improved the mechanical properties of PBAT. For layered silicate nanocomposites, the main influencing factors on the thermo-mechanical properties appeared to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical affinity. The highest E′ values of sepiolite based nanocomposites make this nanoparticle the most attractive material for tissue engineering and environmental industrial applications. Highlights: ► PBAT nanocomposites with high thermo-mechanical properties were obtained. ► The effects of clay presence on PBAT crystalline structure were elucidated. ► The presence of the clays used in PBAT showed good biological safety. ► Sepiolites brought the higher improvements in PBAT

  1. Support to other nuclear waste disposal programmes considering clay as a potential host rock

    International Nuclear Information System (INIS)

    Volckaert, G.

    2009-01-01

    SCK-CEN started to study the Boom Clay as potential host rock for nuclear waste disposal in 1974. Since then, SCK-CEN has been involved in other international projects studying clay as potential host rock in order to get a broader support for disposal in clay and to acquire broader insight in clay behaviour. Besides Belgium, France and Switzerland are currently investigating clay formations as potential host rock for the disposal of radioactive waste. In the Netherlands, clay formations have always been considered as an alternative to disposal in salt. The general interest in clays is increasing: in Germany and The United Kingdom, it was decided a few years ago that besides respectively salt and crystalline rock also clays need to be evaluated. In Eastern and Central Europe, the Slovak republic and Lithuania consider both clay and granite as possible host rocks for spent fuel while in Russia recently a project was started to study the possible disposal of low and medium level waste in a clay formation in the Leningrad area. Within the EC research and development framework programs and the OECD/NEA Clay Club, collaborations were developed between countries studying clay and with a strong involvement of SCK-CEN. The collaboration with the Eastern and Central European countries is supported through the support programme of the Belgian Ministry of Economic affairs. The objectives of these co-operations are to deliver expert services to other nuclear waste disposal programs considering clay as host rock; to to acquire broader international recognition of our expertise and support for the development of nuclear waste disposal in clay; to get a broader insight in the properties and behaviour of clays

  2. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  3. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    Science.gov (United States)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  4. Preparation of nanocomposites polyurethane water bone with clay montmorillonite sodica and organophilic clay

    International Nuclear Information System (INIS)

    Garcia, Claudia P.; Delpech, Marcia C.; Coutinho, Fernanda M.B.; Mello, Ivana L.

    2009-01-01

    Nanocomposites based on water bone polyurethane (NWPU's) were synthesized based on poli(propylene glycol), dimethylolpropionic acid (DMPA), isophorone diisocyanate (IPDI) and hydrazine (HYD), as chain extender. Two kinds of clays were employed: hydrophilic and organophilic. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and the mechanical properties were evaluated. The FTIR results showed the presence of specific groups of clay and the XRD suggested that occurred their intercalation/exfoliation through polyurethane matrix. The mechanical resistance of the systems showed significant increase when compared to water dispersions synthesized without clay. (author)

  5. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  6. Removal of clay by stingless bees: load size and moisture selection

    Directory of Open Access Journals (Sweden)

    RAUL COSTA-PEREIRA

    2014-09-01

    Full Text Available Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  7. The Compressibility and Swell of Mixtures for Sand-Clay Liners

    Directory of Open Access Journals (Sweden)

    Muawia A. Dafalla

    2017-01-01

    Full Text Available Sand-clay liners utilize expansive clay to act as a filler to occupy the voids in the sand and thus reduce the hydraulic conductivity of the mixture. The hydraulic conductivity and transfer of water and other substances through sand-clay mixtures are of prime concern in the design of liners and hydraulic barriers. Many successful research studies have been undertaken to achieve appropriate mixtures that satisfy hydraulic conductivity requirements. This study investigates compressibility and swelling properties of mixtures to ensure that they were acceptable for light structures, roads, and slabs on grade. A range of sand-expansive clay mixtures were investigated for swell and compression properties. The swelling and compressibility indices were found to increase with increasing clay content. The use of highly expansive material can result in large volume changes due to swell and shrinkage. The inclusion of less expansive soil material as partial replacement of bentonite by one-third to two-thirds is found to reduce the compressibility by 60% to 70% for 10% and 15% clay content, respectively. The swelling pressure and swell percent were also found significantly reduced. Adding less expansive natural clay to bentonite can produce liners that are still sufficiently impervious and at the same time less problematic.

  8. Experimental study on the thermo-mechanical behaviour of stiff clay under non-isotropic stress state

    International Nuclear Information System (INIS)

    Tang, Anh Minh; Cui, Yu-Jun; Li, Xiang-Ling

    2012-01-01

    Document available in extended abstract form only. Stiff clay is usually considered as possible host-rock for geological radioactive waste disposal due to its low permeability and its self-sealing capacity. Boom Clay, for instance, is one of the clays currently considered by the Belgian radioactive waste management agency Ondraf/Niras as a potential host for a geological repository. In order to analyse the performance of this material, it is important to understand its behaviour under the coupled thermo-hydro-mechanical solicitations. In laboratory, several studies have been performed to study the volume change of clay under coupled thermomechanical loading. The results show that heating under drained conditions can induce thermal dilation at low confining stress and thermal contraction at high confining stress. On the other hand, compression tests performed at constant temperature show that the compressibility parameters of soil can be modified by temperature change. These features are now well considered in constitutive laws based on the framework of elasto-plasticity. Under undrained conditions, heating can increase pore-water pressure and this behaviour can be simulated using the theoretical thermo-poro-elastic framework. The temperature effect on the soil behaviour under triaxial compression is also often considered. It is commonly accepted that heating decreases the shear strength of clay but this softening can be hidden by the thermal contraction that occurs during heating which can induce at the same time soil hardening. In spite of these existing works, laboratory tests considering the thermo-mechanical loading path that the soil can be subjected to are still rare. Actually, in the case of geological radioactive waste disposal, after the installation of waste canisters, the soil is expected to be heated under non-isotropic stress state. Most of the existing laboratory works show heating tests in odometer cell or triaxial cell under isotropic stress

  9. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  10. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  11. Hyperspectral analysis of clay minerals

    Science.gov (United States)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  12. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    International Nuclear Information System (INIS)

    Li Yuxiang; Qian Guangren; Yi Facheng; Shi Rongming; Fu Yibei; Li Lihua; Zhang Jun

    1999-01-01

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr 2+ , Cs + leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  13. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  14. Poro-elasto-plastic behaviour of dry compacted Fo-Ca clay: experiment and modelling. Application to the re-saturation of an engineered clay barrier

    International Nuclear Information System (INIS)

    Lassabatere, Th.; Imbert, Ch.; Etile, M.A.

    1999-01-01

    Many projects of underground repositories for high level radioactive waste involve an engineered clay barrier, placed between the waste canister and the surrounding rock. When hydrated, this barrier seals the gap and provides a good watertightness. The natural clay powder, dried and compacted, exhibits hydro-mechanical couplings during the hydration. Such a coupled behaviour, interesting for the industrial application, has been clearly demonstrated by many studies and laboratory experiments. But the modelling of this behaviour, in order to predict the hydration of the clay barrier, is difficult. A coupled modelling, based, at a macroscopic scale, on the thermodynamics of unsaturated porous media, is proposed. This thermodynamical model founds a general framework for non linear poro-elastic and poro-elasto-plastic coupled behaviours. The symmetries of this coupling, induced by this thermodynamical framework, let us take into account the often neglected influence of the mechanical state on the hydraulic problem of the re-saturation of the clay. The complete resolution of the flow problem, coupled with the mechanical behaviour, leads us to study the influence of the rheological behaviour chosen for the clay (elastic - linear or no linear -, or elastoplastic) on the evaluation of the duration of the re-saturation of the clay barrier). (authors)

  15. Geochemical effects of electro-osmosis in clays

    KAUST Repository

    Loch, J. P. Gustav

    2010-02-13

    Geochemical effects of electro-osmosis in bentonite clay are studied in the laboratory, where a 6 mm thick bentonite layer is subjected to direct current. Acidification and alkalization near anode and cathode are expected, possibly causing mineral deterioration, ion mobilization and precipitation of new solids. Afterwards the clay is analysed by XRF and anolyte and catholyte are analysed by ICP-MS. In addition, as a preliminary experiment treated bentonite is analysed by high resolution μ-XRF. Electro-osmotic flow is observed. Due to its carbonate content the bentonite is pH-buffering. Alkalization in the catholyte is substantial. Ca, Na and Sr are significantly removed from the clay and accumulate in the catholyte. Recovery in the catholyte accounts for a small fraction of the element-loss from the clay. The rest will have precipitated in undetected solid phases. μ-XRF indicates the loss of Ca-content throughout the bentonite layer. © The Author(s) 2010.

  16. Verification of substitution of bentonites by montmorillonitic clays summary report on Czech montmorillonitic clays

    International Nuclear Information System (INIS)

    Carlson, L.; Keto, P.

    2006-10-01

    Czech bentonites and smectite-rich clays were characterised in order to study if they could be used as buffer and backfill materials instead of non-Czech commercial bentonites. The characterisation work was orgnized by RAWRA (the Czech Radioactive Waste Repository Authority) and the main part of the work was performed in the Czech Republic at Charles University and at Czech Technical University. Parallel and complementary characterisation was conducted in Finland in Sweden. This report was compiled with the aim to summarise the results, and to compare the methods and results gained in different testing laboratories. The characterisation included mineralogical, chemical and geotechnical investigations and experiments on thermal stability and sorption. There were some variations between the results gained in different laboratories. This was mainly due to differences between the testing methods used but also due to heterogeneity of the samples. The Czech bentonite-clays from Rokle and Strance clay deposits contained relatively high amount of swelling minerals and thus can be considered as potential buffer and backfill materials. (orig.)

  17. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  18. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    Science.gov (United States)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  19. Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.

    Science.gov (United States)

    Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi

    2016-01-01

    Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and

  20. Sorption of VX to Clay Minerals and Soils: Thermodynamic and Kinetic Studies

    Science.gov (United States)

    2012-12-01

    Kaolinite, a member of the kaolin family, is a 1:1 clay, consisting of a single silicon-containing tetrahedral sheet linked to a single aluminum...14,15,18,19 The kaolinite is a white-firing, plastic kaolinite mined from claystone deposits in Georgia. This clay, identified as no. 6 tile kaolin , was...Validation of Model Predictions for the Dispersion and Fate of Reactive Chemical Releases in a Sub- Estuary of the Chesapeake Bay. Presented at the 2011

  1. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  2. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  3. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  4. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R and D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  5. Modification of a Brazilian smectite clay with different quaternary ammonium salts

    Directory of Open Access Journals (Sweden)

    Maria Flávia Delbem

    2010-01-01

    Full Text Available In this work, a smectite clay from the State of Paraiba, Brazil, was treated with six different types of ammonium salts, which is an usual method to enhance the affinity between the clay and polymer for the preparation of nanocomposites. The clays, before and after modification, were characterized by X ray diffraction. The conformation of the salts within the platelets of the clay depended on the number of long alkyl chains of the salt. The thermal stability of the clays was also studied. The ammonium salts thermal decomposition was explained in light of their position within the organoclays.

  6. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  7. Studies on incorporation of exfoliated bentonitic clays in polyurethane foams for increasing flame retardancy

    International Nuclear Information System (INIS)

    Quagliano, J; García, Irma Gavilán

    2012-01-01

    In this contribution we report the results of studying the incorporation of exfoliated bentonitic clays into polyurethane foams. A suspension in water of a sodium bentonite from Argentine Patagonia was interchanged with cetyl trimethyl ammonium bromide (CTAB) for 4 h at 80°C, rendering an exfoliated clay, which is nanometric in only one dimension. This nanoclay, when dispersed in the polyurethane, resulted in the same fire retardancy rating (UL-94) than when polyurethane was treated with a commercial nanoclay. Scanning electron microscopy (SEM) at low augmentations of polyurethane samples treated with the synthethized nanoclay (2,5% w/w) showed no differences respect to untreated polyurethane, except for the irregularity of void edges.

  8. Swelling and sedimentation of bentonite clays in bulk and in slits: nuclear magnetic resonance spectroscopy and imaging studies

    International Nuclear Information System (INIS)

    Dvinskikh, S.V.; Furo, I.; Neretnieks, I.

    2010-01-01

    Document available in extended abstract form only. Compacted bentonite clay is currently attracting attention as a promising 'self-sealing' buffer material to build in-ground barriers for the encapsulation of radioactive waste. It is expected to fill up the space between waste canister and surrounding ground by swelling and thus delay flow and migration from the host rock to the canister. Evaluation and understanding of the swelling properties of pre-compacted bentonite are of uttermost importance for designing such buffers. The major goal of our studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during different physical processes in an aqueous environment such as swelling, dissolution, and sedimentation on the time scale from minutes to years. The propagation of the swelling front during clay expansion depending on the geometry of the confining space was also studied. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. The distribution and displacement within the bentonite systems of foreign particles, either natural ones (sand or quartz) or artificially admixed model particles of controlled size were also monitored. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were adapted and used as main experimental techniques. With this approach, spatially resolved movement of the clay/water interface as well as clay particle distributions in gel phase can be monitored. Bulk samples with swelling in a vertical tube and in a horizontal channel were investigated and clay content distribution profiles in the concentration range over five orders of magnitude and with sub-millimetre spatial resolution were

  9. Organophilization and characterization of commercial bentonite clays

    International Nuclear Information System (INIS)

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  10. Research and development programme on radioactive waste disposal in deep geological formation (study of a clay formation)

    International Nuclear Information System (INIS)

    Heremans, R.; Manfroy, P.; Bonne, A.

    1980-01-01

    The experiments carried out at the Mol nuclear research center from 1 January 1976 to 30 June 1978 on the management and storage of radioactive wastes are described. The possibility of underground disposal and storage at Mol has been studied. Mol clay samples and ground water were analysed. Hydrogeological measurement were made together with experiments or heat transfer in clayes. The technical realization and environmental riscks of radioactive underground disposal at Mol are discussed

  11. Behavior of clay exposed to heating

    International Nuclear Information System (INIS)

    Heremans, R.; Buyens, M.; Manfroy, P.

    1978-01-01

    In the frame of his R and D programme on geological burial of solidified radioactive waste, the C.E.N./S.C.K. undertook experimental and theoretical work on the behavior of the Boom clay against heat. The work is performed under contract with the Commission of European Communities. In a first phase a series of chemical and physical properties were determined on clay samples taken at various depths during the core boring performed on the C.E.N./S.C.K. site in 1975. In a second phase, a simulated high level waste heat source was developed and tested in view of representative heat transfer experiments into the geological formation. In parallel to the experimental work, computarized theoretical studies were undertaken aiming an evaluation of heat effect of a vitrified high level waste repository on an underground structure in clay

  12. Permeability response of oil-contaminated compacted clays

    International Nuclear Information System (INIS)

    Silvestri, V.; Mikhail, N.; Soulie, M.

    1997-01-01

    This paper presents the results of a laboratory investigation on the behavior of motor oil-contaminated, partially saturated compacted clays. For the study, both a natural clay and an artificially purified kaolinite, contaminated with 0 to 8% of motor oil, were firstly compacted following the ASTM standard procedure. Secondly, permeability tests were carried out in a triaxial cell on 10 cm-diameter compacted clay specimens. The results of the investigation indicate that increasing percentages of motor oil decrease both the optimum water content and the optimum dry density of the two clays. However, whereas the optimum water content on the average decreases by about 6% when the percentage contamination increases from 0 to 8%, the corresponding decrease in the optimum dry density is less than 3%. Even though the optimum dry density decreases as the percentage of oil increases from 0 to 8%, there is, however, a range in oil content varying between 2 and 4% for which the optimum dry density is slightly greater than that of the untreated soils. As far as the permeability tests are concerned, the results indicate that as the percentage of oil increases, the coefficient of permeability decreases substantially, especially for clay specimens which were initially compacted on the dry side of optimum

  13. An experimental study on stabilization of Pekan clay using polyethylene and polypropylene

    Science.gov (United States)

    Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah

    2017-10-01

    Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds

  14. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.

    Science.gov (United States)

    Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2014-11-11

    With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge

  15. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  16. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  17. Effect of red clay on diesel bioremediation and soil bacterial community.

    Science.gov (United States)

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  18. Spectromicroscopy of Fe distributions in clay microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grundl, T. [Univ. of Wisconsin, Milwaukee, WI (United States); Cerasari, S.; Garcia, A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Clays are ubiquitous crystalline particles found in nature that are responsible for contributing to a wide range of chemical reactions in soils. The structure of these mineral particles changes when the particle is hydrated ({open_quotes}wet{close_quotes}), from that when it is dry. This makes a study of the microscopic distribution of chemical content of these nanocrystals difficult using standard techniques that require vacuum. In addition to large structural changes, it is likely that chemical changes accompany the drying process. As a result, spectroscopic measurements on dried clay particles may not accurately reflect the actual composition of the material as found in the environment. In this work, the authors extend the use of the ALS Spectromicroscopy Facility STXM to high spectral and spatial resolution studies of transition metal L-edges in environmental materials. The authors are studying mineral particles of montmorillonite, which is an Fe bearing clay which can be prepared with a wide distribution of Fe concentrations, and with Fe occupying different substitutional sites.

  19. What Makes a Natural Clay Antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  20. Free volume sizes in intercalated polyamide 6/clay nanocomposites

    DEFF Research Database (Denmark)

    Wiinberg, P.; Eldrup, Morten Mostgaard; Pedersen, N.J.

    2005-01-01

    The effect of incorporating modified clay into a polyamide 6 (PA6) matrix, on the free volume cavity sizes and the thermal and viscoelastic properties of the resulting nanocomposite, was studied with positron annihilation lifetime spectroscopy, differential scanning calorimetry and dynamic...... response of PA6/clay nanocomposites, as compared to unfilled PA6, pointed towards a changed mobility in the non-crystalline regions. At high concentrations of clay (> 19 wt%) an increase of the free volume cavity diameter was observed, indicating a lower chain packing efficiency in the PA6/clay...... nanocomposites. The increased free volume sizes were present both above and below the glass transition temperature of PA6. (c) 2005 Elsevier Ltd. All rights reserved....

  1. Hydration of swelling clay and bacteria interaction. An experimental in situ reaction study

    International Nuclear Information System (INIS)

    Berger, J.

    2008-01-01

    This study reports on the physical-chemical behaviour of swelling di-octahedral clays (smectites) and their interaction with aqueous solutions and bacteria (Shewanella putrefaciens). Experimental results are presented for compacted clays, hydrated under confined volume conditions, using a new type of reaction-cell (the 'wet-cell' of Warr and Hoffman, 2004) that was designed for in situ X-ray diffraction (XRD) measurement. For comparison, dispersed clay systems were studied using standard batch solutions subjected to varying degrees of agitation. The combination of time-dependent in situ XRD measurements with gravimetric measurements and calculated diffraction patterns using the CALCMIX software (Plancon and Drits, 1999) allowed to successful quantification of the dynamics of water uptake and storage. This analytical procedure combined with published water vapour adsorption data enabled determination of the abundance of structured water layers, developed in the interlayer space, and the amount of water contained in different storage sites (interlayers, surfaces and pore spaces). Qualitative information on surface area and textural organization was also estimated based on calculated changes in the average particle thickness and the organization of water layer structures (ordering). Abiotic smectite hydration experiments, using a range of natural and industrial bentonites (SWy-2, IBECO, MX80, TIXOTON), focused on defining the role of the interlayer cation, variable clay packing densities and the ionic strength of the infiltrating solution. The rate of smectite hydration, as expected, was seen to be highly dependent on the type of interlayer cation (enhanced for Ca as opposed to Na) and the ionic strength of solution (enhanced uptake rates with saline solutions, particularly as they infiltrate Na-smectite). A range of dynamic changes in micro textural state occurred as a function of packing density. These changes explain the differences in hydration behaviour observed

  2. Multi-scale experimental and numerical study of the structure and the dynamics of water confined in clay minerals

    International Nuclear Information System (INIS)

    Guillaud, Emmanuel Bertrand

    2017-01-01

    Clay are complex minerals with a multi-scale porosity and a remarkable ability to swell under humid atmosphere. These materials have many applications in catalysis, waste management, construction industry... However, the properties of confined water are still not fully understood, due in particular to the complexity of water itself. The aim of this work is, using mainly molecular simulations and vibrational spectroscopy, to understand the structure and the dynamics of water confined in clay minerals. To evaluate the accuracy of numerical models to describe water confined in clay minerals, and to understand the origin of its structural and dynamical properties, a large part of the work was devoted to the building blocks of clays: pure bulk water, water at the surface of a solid, and salt water. To this extent, the viscoelastic properties of water from the deeply supercooled regime to the boiling temperature were investigated using classical molecular dynamics. The evolution of the friction properties of water on a prototypical solid surface was also analyzed, and the accuracy of ab initio approaches and empirical salt models was studied. In a second part, those results were confronted to the properties of water confined in clay minerals at low and room temperature, studied both experimentally and numerically. Experimental work consisted mostly in extensive far- and -mid infrared absorption spectrometry measurements, whereas numerical work mainly consisted in empirical molecular dynamics simulations. Especially, the existence of confinement- or temperature-induced phase transitions of confined water was investigated. (author)

  3. Do scaly clays control seismicity on faulted shale rocks?

    Science.gov (United States)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  4. Hydroxyapatite clay for gap filling and adequate bone ingrowth.

    Science.gov (United States)

    Maruyama, M; Terayama, K; Ito, M; Takei, T; Kitagawa, E

    1995-03-01

    In uncemented total hip arthroplasty, a complete filling of the gap between femoral prosthesis and the host bone is difficult and defects would remain, because the anatomy of the reamed intramedullary canal cannot fit the prosthesis. Therefore, it seems practical to fill the gap with a clay containing hydroxyapatite (HA), which has an osteoconductive character. The clay (HA clay) is made by mixing HA granules (size 0.1 mm or more) having a homogeneous pore distribution and a porosity of 35-48 vol%, and a viscous substance such as a saline solution of sodium alginate (SSSA). In the first experiment, the ratio of HA granules and sodium alginate in SSSA is set for the same handling properties of HA clay and polymethylmethacrylate bone cement (standard viscosity) before hardening. As a result, the ratio is set for 55 wt% of HA in the clay and 12.5 wt% of sodium alginate in SSSA (i.e., HA:sodium alginate:saline solution = 9.8:1:7). In the second study, the gap between the femoral stem and bone model is completely filled with HA clay. However, the gap is not filled only with HA granules or HA granules mixed with saline solution. In the third animal experiment, using an unloaded model, histology shows that HA clay has an osteoconductive property bridging the gap between the implant and the cortical bone without any adverse reaction. HA clay is considered a useful biomaterial to fill the gap with adequate bone ingrowth.

  5. Study of adsorption of Phenanthrene on Different Types of Clay Minerals; Estudio de Adsorcion de Fenentreno en Diferentes Tipos de Arcillas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M L; Escolano, O; Rodriguez, V; Diaz, F J; Perez, R; Garcia, S; Garcia Frutos, F J

    2003-07-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay mineral also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represent ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs.

  6. GMM - a general microstructural model for qualitative and quantitative studies of smectite clays

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Hoekmark, H.

    1990-12-01

    A few years ago an attempt was made to accommodate a number of basic ideas on the fabric and interparticle forces that are assumed to be valid in montmorillonite clay in an integrated microstructural model and this resulted in an SKB report on 'Outlines of models of water and gas flow through smectite clay buffers'. This model gave reasonable agreement between predicted hydraulic conductivity values and actually recorded ones for room temperature and porewater that is poor in electrolytes. The present report describes an improved model that also accounts for effects generated by salt porewater and heating, and that provides a basis for both quantitative determination of transport capacities in a more general way, and also for analysis and prediction of rheological behaviour in bulk. It has been understood very early by investigators in this scientific field that full understanding of the physical state of porewater is asked for in order to make it possible to develop models for clay particle interaction. In particular, a deep insight in the nature of the interlamellar water and of the hydration mechanisms leading to an equilibrium state between the two types of water, and of forcefields in matured smectite clay, requires very qualified multi-discipline research and attempts have been made by the senior author to initiate and coordinate such work in the last 30 years. Despite this effort it has not been possible to get an unanimous understanding of these things but a number of major features have become more clear through the work that we have been able to carry out in the current SKB research work. Thus, NMR studies and precision measurements of the density of porewater as well as comprehensive electron microscopy and rheological testing in combination with application of stochastical mechanics, have led to the hypothetical microstructural model - the GMM - presented in this report. (au)

  7. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  8. Stools - pale or clay-colored

    Science.gov (United States)

    ... gov/ency/article/003129.htm Stools - pale or clay-colored To use the sharing features on this page, please enable JavaScript. Stools that are pale, clay, or putty-colored may be due to problems ...

  9. Quality evaluation of processed clay soil samples | Steiner-Asiedu ...

    African Journals Online (AJOL)

    Introduction: This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. Methods: The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was ...

  10. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  11. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    Science.gov (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  12. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  13. Clay 2001 dossier: progress report on feasibility studies and research into deep geological disposal of high-level, long-lived waste

    International Nuclear Information System (INIS)

    2001-12-01

    A French Act of Parliament passed on 30 December 1991 set out the main areas of research required to prepare solutions for the long-term management of high-level, long-lived radioactive waste. The three avenues of research listed in the Act included a feasibility study of the deep geological disposal of these waste, with responsibility for steering the study given to ANDRA, France National Agency for Radioactive Waste Management. Following government decisions taken in 1998, the study focused on two types of geological medium, clay and granite. The clay formations study is essentially based on results from an underground laboratory sited at the border between the Meuse and Haute-Marne departments, where the Callovo-Oxfordian argillite beds are being investigated. No site has yet been chosen for an underground laboratory for the granite study, so for the time being this will draw on generic work and on research carried out in laboratories outside France. ANDRA has decided to present an initial report on the results of its research programme, publishing a dossier on the work on clay formations in 2001 with a second dossier covering the work on granite due for release in 2002. This dossier is thus a review of the work carried out by ANDRA on the feasibility study into a radioactive waste repository in a clay formation. It represents one step in a process of studies and research work leading up to the submission of a report due in 2005 containing ANDRA conclusions on the feasibility of a repository in the clay formation. (author)

  14. The effect of freeze-thaw cycles on the hydraulic conductivity of compacted clay

    International Nuclear Information System (INIS)

    Waite, D.; Anderson, L.; Caliendo, J.; McFarland, M.

    1994-01-01

    A study was conducted to investigate the detrimental effects of freeze-thaw on the hydraulic conductivity of compacted clay. The purpose of this study was to determine the effect that molding water content has on the hydraulic conductivity of a compacted clay soil that is subjected to freeze-thaw cycles, and to determine the relationship between the number of freeze-thaw cycles and the hydraulic conductivity of the compacted clay soil. Clay soils compacted and frozen wet of optimum experienced an increase in hydraulic conductivity of approximately 140 fold. The hydraulic conductivity of clay compacted dry of optimum increased ten fold. These results are consistent with recent research which suggests that clay compacted wet of optimum experiences large increases in hydraulic conductivity while the hydraulic conductivity of clay compacted dry of optimum increases to a lesser extent. 12 refs., 9 figs

  15. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    Science.gov (United States)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  16. Hydrogen isotope ratios of clay minerals constituting clay veins found in granitic rocks in Hiroshima Prefecture

    International Nuclear Information System (INIS)

    Kitagawa, Ryuji; Kakitani, Satoru; Kuroda, Yoshimatsu; Matsuo, Sadao; Suzuoki, Tetsuro.

    1980-01-01

    The deuterium content of the constitutional and interlayer water extracted from the clay minerals (illite, montmorillonite, interstratified illite-montmorillonite mineral, kaolinite, halloysite) constituting the clay veins found in the granitic rocks in Hiroshima Prefecture was measured. The clay minerals were heated at 270 deg C to extract the interlayer water, then heated to 1,400 or 1,500 deg C to extract the constitutional water. The deuterium content of the local surface water collected from sampling points was measured. In the clay veins formed along perpendicular joints, the constituent clay minerals change from lower to upper part: illite → montmorillonite → kaolinite → halloysite. The deuterium content values of the constitutional water for illite and montmorillonite were estimated to be -67 to -69% and -86 to -89%, respectively. The deuterium content values of the constitutional water for halloysite range from -68 to -80% and for kaolinite from -63 to -67%. (J.P.N.)

  17. Study of the Boom clay layer as a geochemical barrier for long-lived radionuclides

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Henrion, P.; Put, M.; Cremers, A.

    1985-01-01

    The Boom clay layer below the nuclear site of Mol, Belgium has been thoroughly investigated on its geohydrologic and physicochemical characteristics as well as by laboratory experiments and in situ tests in the underground laboratory. Hydraulic permeabilities have been measured in situ; the chemical composition of the interstitial clay water is related to the mineralogical composition. Radionuclide sorption data and sorption mechanisms are given for Cs, Sr, Eu, Tc, Am, Pu and Np; experimental diffusion coefficients were determined by clay plug migration tests in representative conditions. Results of model calculations for the migration of radionuclides in dense porous media are given for Cs, Sr, Pu and Np

  18. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  19. Pedological ~cterization, Clay Mine:at~ and .~cation of,

    African Journals Online (AJOL)

    namely, very deep, well drained, dark reddish brown to dark brown, sandy clay loams and sandy clays on the steep convex slopes; very deep, well drained, dark brown to dark red, sandy clay loams and; sandy clays on the linear slopes; and very ...

  20. Synthesis and characterization of polymer/clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Cynthia M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia de Materiais; Leal, Elvia [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Processos; Cambium, Karina B.; Sobrinho, Ariosvaldo A.B.; Baracho, Marcos A.R. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Pontes, Luiz R.A. [Universidade Federal da Paraiba, (UFPB), Joao Pessoa, PB (Brazil)

    2004-07-01

    Sea atmosphere present salt rates in order of 3.5%, being sodium chloride (NaCl) found in bigger amounts. The high electrolytic character of NaCl contributes to form corrosion products more energetic. The presence of chloride ions (Cl-) promotes the appearance of ferrous chloride molecules (FeCl{sub 2}), which hydrolysis occurs quickly, leading to the metal deterioration. So, the protection of these surfaces by the use of organic coatings, applied in one or multiple layers, has been a technique strongly spread out to promote the metal mechanical properties conservation. The aim of this work is to study the use of organophilic clay as component in anti corrosive polymeric coatings used in metallic structures of petroliferous industry. It had been formulated acrylic coatings, with and without organophilic clay addition. The samples had been submitted a salt spray fog tests, according to ASTM B-117. The results had showed that the samples addicted with organophilic clay presented anti corrosive properties six times more efficient than the other ones without clay addiction. (author)

  1. Radiation-induced catalysis of fatty acids adsorbed onto clay minerals

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M.; Mosqueira, F.G.

    2015-01-01

    We studied the behavior of small fatty (acetic acid) and dicarboxylic acids (succinic and malonic acids) adsorbed onto Na + -montmorillonite (a clay mineral) and exposed to gamma radiation. A decarboxylation reaction was found to predominate when the clay was present. This preferential synthesis promoted the formation of a compound with one less carbon atom than its target compound. In the system without clay, dimerization was the predominate outcome following radiolysis. (author)

  2. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    Science.gov (United States)

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  3. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  4. Crystal chemistry and Moessbauer spectroscopic analysis of clays around Riyadh for brick industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mutasim I., E-mail: mkhalil@ksu.edu.sa [King Saud University, Department of Chemistry, College of Science (Saudi Arabia)

    2013-04-15

    A total of 30 clay samples were collected from the area around Riyadh city, Saudi Arabia. A complete chemical analysis was carried out using different techniques. X-ray diffraction studies showed that the clay samples were mainly of the smectite group with traces of the kaolinite one. The samples studied were classified as nontronite clay minerals. One of the clay fraction has been studied by Moessbauer spectroscopy as raw clay fraction and after being fired at 950-1,000 Degree-Sign C. The Moessbauer spectra showed accessory iron compounds in the form of hematite and goethite. The structural iron contents disintegrate on firing transforming into magnetic iron oxide and a paramagnetic small particles iron oxide.

  5. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  6. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  7. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Science.gov (United States)

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  8. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  9. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Directory of Open Access Journals (Sweden)

    Anthony R. Moran

    2011-06-01

    Full Text Available Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  10. Se of polymers to control clay swelling

    Energy Technology Data Exchange (ETDEWEB)

    Slobod, R L; Beiswanger, J P.G.

    1968-01-01

    The injection of water to displace oil is one of the main methods used to increase oil recovery. High injection rates are generally desired, and in some cases the flood will not be economic unless high rates are maintained. The presence of clays which swell in the presence of water offers a complication to the problem of maintaining adequate injectivity. In the course of this study it was observed that certain polymers, when present in dilute concentrations in the water, had the ability to reduce the response of these clays to fresh water. Two polymers, one an anionic and the other nonionic, were found to be very effective in controlling the clays present in Berea cores. Successful control of clay swelling was obtained by use of solutions containing as little as 1.0 ppM of polymer, but at this low concentration appreciable volumes of treating solution were required. These results suggest that some minimum amount of polymer must be adsorbed to prevent clay swelling. In Berea sandstone this minimum amount appeared to be of the order of 0.03 mg per cc of pore space. A series of tests made using 10.0 ppM polymer showed that the polymer could be made through the porous system in which 0.066 per mg of polymer was adsorbed per cc of pore space.

  11. The Effect of Art Therapy with Clay on Hopelessness Levels Among Neurology Patients.

    Science.gov (United States)

    Akhan, Latife Utas; Kurtuncu, Meltem; Celik, Sevim

    This study was performed to determine the effect of art therapy with clay on hopelessness levels of patients under treatment in departments of neurology. The study was of one group, pre- and posttest design. This study was performed on patients who were hospitalized in the neurology departments of a university and a state hospital between February and May 2012 in Turkey. The sample for the study comprised 50 neurology patients with diagnoses of epilepsy (17 patients) and stroke (33 patients). The patients in the study were asked to create objects of clay of any shape they desired. Data for the research were collected with a sociodemographic data form and by using the Beck Hopelessness Scale (BHS). While BHS scores of neurology patients before clay therapy were found higher compared to the scores after therapy with clay, there was also a statistically significant difference. After clay therapy, BHS scores were lower in women, in married patients, in patients who suffered from a stroke, people who had chronic disease, people without psychological illness, and in the case of children. The study showed that clay therapy had an impact on the hopelessness levels of neurology patients. Art therapy with clay may be used for rehabilitation purposes in neurology patients, both in the hospital and at home after discharge.

  12. Sorption of Pu onto some kinds of clay

    International Nuclear Information System (INIS)

    Jia Haihong; Si Gaohua; Liu Wei; Yu Jing

    2010-01-01

    There are rich clay mines holding in one area, so it's necessary to know about these clays' sorption capacity to Pu, for building radioactive waste repository in the area. Distribution coefficients of Pu onto different clays were acquired in static method, with the result about 104. The size of clay is different, but the result of Kds is near. In addition, it's estimated how far Pu moves in the most rapid speed in the clay based on these Kids', disregarding the influence of Pu-colloid. In a word, as a kind of backfilling material clays in the area can effectively prevent Pu from moving to environment, and when designing the backfilling layer, it's not necessary to catch clays through NO.200 sieve, if only considering the influence of Kd. (authors)

  13. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  14. Concrete-Opalinus clay interaction

    International Nuclear Information System (INIS)

    Jenni, A.; Maeder, U.; Lerouge, C.; Gaboreau, S.; Schwyn, B.

    2012-01-01

    Document available in extended abstract form only. Designs for deep geologic disposal of radioactive waste foresee cementitious materials as structural elements, backfill or waste matrix. Therefore, studies of interactions between cement and all other materials involved are important. Interactions are mostly driven by chemical gradients in pore water and might lead to mineralogical alterations in the barrier system, which in turn influence properties like swelling pressure, permeability, or specific retention in case of clay materials. Existing laboratory and in-situ studies using clay-stone revealed significant alteration in both cement and clay-stone. Phase dissolution, precipitation, and carbonation, were found to cause an overall porosity increase in the cement with a possible decrease close to the interface, and clogging in the clay-stone [2]. Most of the work was done on cement pastes rather than concretes to avoid analytical complications caused by aggregates, and the scale of investigation was chosen in the range of centimetres rather than micrometers. The Cement-Clay Interaction (CI) experiment at the Mont Terri Underground Laboratory (St. Ursanne, Switzerland) aims at replicating some of the processes at interfaces to be expected.For this purpose, two vertical cylindrical boreholes (384 mm diameter, up to 10 m length) in Opalinus Clay (OPA) were filled with layers of three different concretes and bentonite. The concrete formulations are based on common aggregate content and grain size distributions, combined with three different cements: Portland cement (OPC), ESDRED cement especially designed for repository applications (40% of cement substituted with silica fume), and low alkali cement (LAC, containing slag and nano-silica).In this study, we present a characterisation of the three concrete-OPA interfaces after two years of alteration and deduce possible mechanisms. Backscattered electron (BE) imaging and energy dispersive spectrum (EDX) element mapping

  15. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills.

    Science.gov (United States)

    Parastar, Fatemeh; Hejazi, Sayyed Mahdi; Sheikhzadeh, Mohammad; Alirezazadeh, Azam

    2017-11-01

    Nowadays, the raise of excessive generation of solid wastes is considered as a major environmental concern due to the fast global population growth. The contamination of groundwater from landfill leachate compromises every living creature. Geotextile clay liner (GCL) that has a sandwich structure with two fibrous sheets and a clay core can be considered as an engineered solution to prevent hazardous pollutants from entering into groundwater. The main objective of the present study is therefore to enhance the performance of GCL structures. By changing some structural factors such as clay type (sodium vs. calcium bentonite), areal density of clay, density of geotextile, geotextile thickness, texture type (woven vs. nonwoven), and needle punching density a series of GCL samples were fabricated. Water pressure, type of cover soil and overburden pressure were the environmental variables, while the response variables were hydraulic conductivity and self-healing rate of GCL. Rigid wall constant head permeability test was conducted on all the samples. The outlet water flow was measured and evaluated at a defined time period and the hydraulic conductivity was determined for each sample. In the final stage, self-healing properties of samples were investigated and an analytical model was used to explain the results. It was found that higher Montmorillonite content of clay, overburden pressure, needle punching density and areal density of clay poses better self-healing properties and less hydraulic conductivity, meanwhile, an increase in water pressure increases the hydraulic conductivity. Moreover, the observations were aligned with the analytical model and indicated that higher fiber inclusion as a result of higher needle-punching density produces closer contact between bentonite and fibers, reduces hydraulic conductivity and increases self-healing properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jiang-Jen Lin

    2010-04-01

    Full Text Available Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropyleneamine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE, enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  17. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Science.gov (United States)

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  18. Polymer-clay nanocomposites obtained by solution polymerization ...

    Indian Academy of Sciences (India)

    Clay minerals can be found all over the world.1 Clay minerals have ... salts or covalent bonding with silanes at the OH edges of the clay. ..... Marras S I, Tsimpliaraki A, Zuburtikudis I and ... Mansoori Y, Roojaei K, Zamanloo M R and Imanzadeh.

  19. Utilization of Nkpuma-Akpatakpa clay in ceramics: characterization ...

    African Journals Online (AJOL)

    Nkpuma – Akpatakpa clay was analysed for its ceramics suitability. Chemical, mechanical and spectral characterization of the clay was carried out to obtain more information from this clay found in commercial quantity at Ebonyi State Nigeria. The XRD analysis showed that the principal minerals in the clay are quartz, ...

  20. Preparation and properties of recycled HDPE/clay hybrids

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  1. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  3. Imaging techniques in clay sciences: a key tool to go a step further

    International Nuclear Information System (INIS)

    Robinet, J.C.; Michau, N.; Schaefer, T.

    2012-01-01

    Document available in extended abstract form only. Clay-rocks and clay based materials are greatly considered in nuclear waste geological repository due to their multiple favourable properties (low permeability, low diffusion coefficients, high retention capacity for radionuclides, swelling...). In this context, the study of clays and clay rocks covers a large variety of scientific disciplines such as geology, mineralogy, geomechanics, geochemistry or hydrodynamics. These disciplines are linked together by a common issue which is the understanding and the predicting of clay and clay-rock behaviors and properties under various thermal-hydrological-mechanical- chemical (THMC) conditions. Linking the fundamental forces to macroscopic (from millimeter to several meters) behaviors and properties is nevertheless not straightforward for porous media such as clay-rocks and clay based materials. Currently, it remains a key challenge for the scientific community. Imaging techniques offer solutions to face up this challenge by characterizing the internal microstructure of material and rocks at different levels of resolution. Due to the reactivity of clay minerals with water (swelling, mechanical deformation) or with repository components (mineral transformations at iron, copper or concrete interfaces) and the multi-scale distribution of pore and mineral sizes, classically ranged from nano-meter to millimeter, imaging clay based materials and clay-rocks itself is unanimously recognized as a challenging task. In the 80's, despite several constraints and limits, the microstructure of clays had been intensively imaged using conventional 2D imaging techniques such as optical microscopy, X-ray radiography, scanning electron microscopy or transmission electron microscopy [1]. The images acquired using these techniques have given us a pictorial frame of reference of the internal structures of clay rocks and clay based materials at various resolution levels. They have also highlighted

  4. Basic Deformation Parameters of Solid Clay Bricks and Small Masonry Walls

    Directory of Open Access Journals (Sweden)

    P. Bouška

    2000-01-01

    Full Text Available The basic mechanical properties of clay brick masonry and its components were experimentally investigated in the laboratories of the Klokner Institute. The test specimens of masonry materials and the relevant mechanical properties have been identified in solid clay bricks and cement-lime mortar. The aim of the research activity was to study both the deformability of the prevailing type of clay masonry in the existing buildings, i.e. the masonry made from the solid clay units and the lime-cement mortar, and the most important mechanical properties of masonry components.

  5. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    Document available in extended abstract form only. Frequency-domain induced polarization (IP) measurements consist of imposing an alternative sinusoidal electrical current (AC) at a given frequency and measuring the resulting electrical potential difference between two other non-polarizing electrodes. The magnitude of the conductivity and the phase lag between the current and the difference of potential can be expressed into a complex conductivity with the in-phase representing electro-migration and a quadrature conductivity representing the reversible storage of electrical charges (capacitive effect) of the porous material. Induced polarization has become an increasingly popular geophysical method for hydrogeological and environmental applications. These applications include for instance the characterization of clay materials used as permeability barriers in landfills or to contain various types of contaminants including radioactive wastes. The goal of our study is to get a better understanding of the influence of the clay content, clay mineralogy, and pore water salinity upon complex conductivity measurements of saturated clay-sand mixtures in the frequency range ∼1 mHz-12 kHz. The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite in the frequency range 1.4 mHz - 12 kHz. Four different types of samples were used, two containing mainly kaolinite (80% of the mass, the remaining containing 15% of smectite and 5% of illite/muscovite; 95% of kaolinite and 5% of illite/muscovite), and the two others containing mainly Na-smectite or Na-Ca-smectite (95% of the mass; bentonite). The experiments were performed with various clay contents (1, 5, 20, and 100% in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). In total, 44 saturated clay or clay-sand mixtures were prepared. Induced polarization measurements

  6. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  7. Clay-based geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  8. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  9. Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties

    Energy Technology Data Exchange (ETDEWEB)

    Pack, S.; Kashiwagi, T; Cao, C; Korach, C; Lewin, M; Rafailovich, M

    2010-01-01

    The absorption of resorcinol di(phenyl phosphate) (RDP) oligomers on clay surfaces has been studied in detail and is being proposed as an alternative method for producing functionalized clays for nanocomposite polymers. The ability of these clays to be exfoliated or intercalated in different homopolymers was investigated using both transmission electron microscopy and small-angle X-ray scattering results, compared with contact angle measurements on Langmuir-Blodgett clay monolayers, where the interfacial energies were used as predictors of the polymer/clay interactions. We found that the contact angle between PS/RDP clay monolayer substrates was {approx}2.5{sup o}, whereas the angle for polystyrene (PS)/Cloisite 20A clays substrates was {approx}32{sup o}, consistent with the large degree of exfoliation observed in PS for the RDP-coated clays. The interfacial activity of these clays was also measured, and we found that the RDP-coated clays segregated to the interfaces of PC/poly(styrene-co-acrylonitrile) blends, while they segregated into the poly(methyl methacrylate) (PMMA) domain of PS/PMMA blends. This morphology was explained in terms of the relative energy advantage in placing the RDP versus the Cloisite clays at the interfaces. Finally, we demonstrated the effects of the relative surface energies of the clays in segregating to the blend air interface when heated to high temperatures. The segregation was shown to affect the composition and mechanical properties of the resulting chars, which in turn could determine their flame retardant response.

  10. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  11. Interphase vs confinement in starch-clay bionanocomposites.

    Science.gov (United States)

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Study of the feasibility of the utilization of clays from Poco Fundo (MG) for its use in bricks fabrication

    International Nuclear Information System (INIS)

    Gaspar Junior, L.A.; Souza, M.H.O.; Moreno, M.M.T.

    2012-01-01

    This work aimed to make an analysis of mineralogical (Macroscopic Description and X-Ray Diffraction), chemical (X-Ray Fluorescence and Organic Carbon Analysis) and ceramic (Particle Size Distribution, Mechanical Resistance, Water Absorption, Apparent Porosity, among others) properties of the alluvial clays collected in Poco Fundo county - Minas Gerais State, Brazil - in order to confirm the feasibility of these clays for bricks manufacturing. There were collected 4 samples from the main potteries of the county, and they were nominated PF-01, PF-02, PF-03 and MAC-01. The clays from these region display high content of quartz, kaolinite and present refractory behavior, and the alkalis content (Na 2 O and K 2 O) is low, because the studied area suffered an intense weathering process. The sample PF-03 presented the most promising ceramic results, mainly due to the lower content in silica and higher amounts of organic matter, denoting a clay coming from a swampy area. (author)

  13. Interaction Study of Clay bearing Amphibolite-Crude Oil-Saline Water

    Indian Academy of Sciences (India)

    26

    ... and production (E & P) industry has ventured out for various innovative. 59 ..... amphibolite WA1 is showing an extensive development of clay minerals at the ... distinct regions: (i) in the high frequency region (3100-2800 cm-1) due to the ...

  14. Diffusion of Radionuclides in Bentonite Clay - Laboratory and in situ Studies

    International Nuclear Information System (INIS)

    Jansson, Mats

    2002-12-01

    the bentonite. However, at some spots in the clay, the Tc activity was considerably higher. We ascribe these activity peaks to iron-containing minerals in the bentonite, by which Tc(VII) has been reduced to Tc(IV) and precipitated. The cations Sr 2+ , Cs + and Co 2+ , as well as the anion I-, behaved in the CHEMLAB experiments as expected from laboratory studies. Three experiments in the LOT series are completed. The first two diffusion experiments in LOT were less successful, the first due to the fact that saturation of the bentonite was not obtained during the experimental period and the radionuclides did not move at all. In the second, the uptake of the bentonite parcel was less successful. Water from the drilling flushed away large pieces of the top part of the bentonite and the lower part of the test parcel was super-saturated with water and expanded when released from the rock. The activity distribution in the second experiment was analysed. The Co 2+ profile looked as we had expected, while Cs + had spread more than our calculations indicated. However, the third experiment was successful from emplacement, water saturation and heating to uptake. The activity distribution for both cations was as expected from laboratory studies. Altogether the three different types of experiments give a uniform picture of radionuclide diffusion in bentonite clay for the ions investigated

  15. Modification and characterization of montmorillonite clay for the extraction of zearalenone

    Science.gov (United States)

    Hue, Kerri-Ann Alicia

    Mycotoxins are secondary metabolites of organisms belonging to the fungus kingdom. The cost associated with mycotoxin contamination in the USA and Canada is approximately US $5 billion. Zearalenone (ZEN), a resorcylic acid lactone, is produced by various members of the genus Fusarium . These fungi often colonize a variety of foods and feedstuffs including, corn, sorghum, wheat, oats, barley, and other cereal grains. This metabolite has estrogenic effects in farm animals with pigs being the most sensitive. ZEN induces hyperestrogenism and can cause infertility, reduced sex drive, fetal mummification, and abortions. Clays have successfully been used in the animal feed industry as an adsorbent and binders for certain small, water soluble mycotoxins. These mycotoxins are attracted to the electrical imbalance between the layers of the clays caused by isomorphic substitution of structural atoms. The mycotoxins are sequestered in the clay layers and pass harmlessly through the animal. However, ZEN is water insoluble and is not extracted easily with aluminosilicate clays. Therefore the modification of hydrated sodium calcium aluminosilicate (HSCAS) clays with organic cations has been proposed to render the clays hydrophobic and increase the ZEN binding capacity. The goal of this study was to develop a safe and cost effective organophilic material able to bind and extract zearalenone, to investigate the factors most important to extraction, and to investigate the fundamental properties between the clay-surfactant-mycotoxin systems that lead to extraction. The clay was modified by cation exchange reactions with tricaprylmethylammonium (TCMA) chloride and generic corn oil. The organophilic clays were then characterized using XRD, FTIR, and TGA analytical techniques. These techniques were used to determine the change in fundamental clay properties that would lead to the extraction of ZEN. Desorption studies were performed to determine any increase in toxicity that might be

  16. Study of modified polypropylene nanocomposites by gamma irradiation with addition of cloisite clay

    International Nuclear Information System (INIS)

    Komatsu, Luiz G.H.; Oliani, Washington L.; Parra, Duclerc F.; Lugao, Ademar B.

    2011-01-01

    Nanomaterials, and, in particular, nanoreinforcements for polymer composites have been the subject of intense research, development and commercialization. Clay-containing polymeric nanocomposites (CPNCs) are used as either functional or structural materials, large-volume CPNCs with a commodity or engineering polymer as the matrix, where the mechanical behavior is the main concern (followed by gas-vapor barrier properties, flammability, etc.). This work concerns to the study of the mechanical, thermal and morphological behavior nanocomposite, (HMSPP) Polypropylene High Melt Strength (obtained at dose of 12.5 kGy) and addition of 5 and 10 wt% of organoclay with Cloisite 20A nanocomposite. Agent compatibilizer polypropylene-graft, (PP-g-AM) was added at 3% concentration and the clay was dispersed through melt intercalation technique using a twin-screw extruder). We observed an increase in traction rupture. The mechanical behavior was evaluated by strength, the thermal behavior were evaluated by the technique of differential scanning calorimetry, the morphology of the nanocomposites was studied by scanning electron microscopy, melt flow index and Fourier transformed infrared spectroscopy in nanocomposites Cloisite 20 A at 10% wt. (author)

  17. Towards a numerical run-out model for quick-clay slides

    Science.gov (United States)

    Issler, Dieter; L'Heureux, Jean-Sébastien; Cepeda, José M.; Luna, Byron Quan; Gebreslassie, Tesfahunegn A.

    2015-04-01

    Highly sensitive glacio-marine clays occur in many relatively low-lying areas near the coasts of eastern Canada, Scandinavia and northern Russia. If the load exceeds the yield stress of these clays, they quickly liquefy, with a reduction of the yield strength and the viscosity by several orders of magnitude. Leaching, fluvial erosion, earthquakes and man-made overloads, by themselves or combined, are the most frequent triggers of quick-clay slides, which are hard to predict and can attain catastrophic dimensions. The present contribution reports on two preparatory studies that were conducted with a view to creating a run-out model tailored to the characteristics of quick-clay slides. One study analyzed the connections between the morphological and geotechnical properties of more than 30 well-documented Norwegian quick-clay slides and their run-out behavior. The laboratory experiments by Locat and Demers (1988) suggest that the behavior of quick clays can be reasonably described by universal relations involving the liquidity index, plastic index, remolding energy, salinity and sensitivity. However, these tests should be repeated with Norwegian clays and analyzed in terms of a (shear-thinning) Herschel-Bulkley fluid rather than a Bingham fluid because the shear stress appears to grow in a sub-linear fashion with the shear rate. Further study is required to understand the discrepancy between the material parameters obtained in laboratory tests of material from observed slides and in back-calculations of the same slides with the simple model by Edgers & Karlsrud (1982). The second study assessed the capability of existing numerical flow models to capture the most important aspects of quick-clay slides by back-calculating three different, well documented events in Norway: Rissa (1978), Finneidfjord (1996) and Byneset (2012). The numerical codes were (i) BING, a quasi-two-dimensional visco-plastic model, (ii) DAN3D (2009 version), and (iii) MassMov2D. The latter two are

  18. Assessment of heavy metals leachability from traditional clay pots ...

    African Journals Online (AJOL)

    As heavy metals are toxic in trace concentrations, due to bioaccumulation, traditional clay pots constitute a public health hazard when used as food contact material. However, as the geochemical properties of clay are different from regions to region and the techniques of making them differ, further studies should be ...

  19. Radiation synthesis and characterization of thermo-sensitive PNIPA/clay hydrogels

    International Nuclear Information System (INIS)

    Song Hongyan; He Suqin; Liu Wentao; Zhu Chengshen; Yang Mingcheng

    2007-01-01

    In this work, the thermo-sensitive hydrogels of PNIPA/Clay were synthesized by 60 Co-γ rays irradiation. The effects of organically modified clay and Na + clay, clay content, and dispersing condition on swelling behavior of PNIPA/clay hydrogels were investigated. The results showed that the equilibrium swelling ratio (SR) of the PNIPA/clay hydrogels is better than PNIPA, and the SR of PNIPA/organically modified clay hydrogels is the highest. With clay content increases, the SR of hydrogels became better. The deswelling behavior of hydrogel was improved, the deswelling ratio of the hydrogel with organically modified clay is highest, and ratio of losing water is 83%, while PNIPA is about 50%. The compressive properties of hydrogel composites were also examined. The results showed that the compressive properties of the PNIPA/clay hydrogels were improved distinctly than that of the conventional hydrogels without clay. And with increasing of clay content, the compressive properties of hydrogel composites improve rapidly. When the content of clay is 15%, the maximum compression force of the PNIPA/clay hydrogel is 5.28N, which is 14 times of PNIPA hydrogel and compression strength is 2.5 times. (authors)

  20. Investigationof Clay Mineralogy, Micromorphology and Evolution of Soils in Bajestan Playa

    Directory of Open Access Journals (Sweden)

    Mohammad Ghasemzadeh Ganjehie

    2017-03-01

    Full Text Available Introduction: Playa is one of the most important landscapes in arid regions which covers about 1% of the world's total land area. Study of playas is important from different points of view especially pedology, sedimentology, mineralogy, environmental geology, groundwater and surface water chemistry. More than 60 playas have been identified in Iran. Considering the fact that playas and surrounding landforms are important archive of landscape evolution and paleoenvironmental variations, it seems that less attention has been paid to them so far. Soils are known as indicators of the landscapes evolution. Previous studies in arid regions of Iran imply different periods of deposition and soil formation in playa and alluvial fans or pediments. Bajestan playa is one of the known playa in northeastern Iran, and the largest clay flat exists in this playa. There is no information on the soils and their evolution in Bajestan playa. The objective of this study were to 1 identify the soils in different landforms along a transect from alluvial fan to clay in Bajestan playa 2 determine the morphological, micromorphological and mineralogical characteristics of these soils 3 determine the periods of soil and landform evolution and 4 comparison of soils evolution of the study area to other arid regions of Iran. Material and Methods: The study area of approximately 20000 hectares is located in southeastern of KhorasanRazavi province. The climate of the study area is hot and dry with mean annual temperature and rainfall of 17.3 °C and 193 mm, respectively. Soil moisture regime is aridic with subdivisions of weak aridic and soil temperature regime is thermic. Firstly, landforms and geomorphic surfaces of the study area were recognized based on Google Earth images interpretations and field observations. Four main landforms were recognized in the study area. The landforms from north to the south of the study area were alluvial fan, intermediate alluvial fan- clay flat

  1. Incorporation of nano-clay saponite layers in the organo-clay hybrid films using anionic amphiphile stearic acid by Langmuir–Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Syed Arshad, E-mail: sa_h153@hotmail.com [Department of Physics, Tripura University, Suryamaninagar-799022 (India); Chakraborty, S.; Bhattacharjee, D. [Department of Physics, Tripura University, Suryamaninagar-799022 (India); Schoonheydt, R.A. [Centres for Surface Chemistry and Catalysis, K.U. Leuven, Kasteelpark Arenberg 23, 3001 Leuven (Belgium)

    2013-06-01

    In general cationic amphiphiles are used to prepare organo-clay hybrid film in Langmuir–Blodgett (LB) technique. In this present communication we demonstrated a unique technique to prepare the organo–clay hybrid films using an anionic amphiphile. The T–O–T type clay saponite was incorporated onto a floating stearic acid monolayer via a divalent cation Mg{sup 2+}. Salt MgCl{sub 2} was mixed along with the clay dispersion in the LB trough and amphiphile solution was spread onto the subphase in order to make the organo-clay hybrid films. It was observed that salt (MgCl{sub 2}) concentration on the subphase affects the organization of nano-dimensional clay platelet (saponite) in organo-clay hybrid films at air–water interface as well as in LB films. Noticeable changes in area per molecule and shape of the isotherms were observed and measured at subphases with different salt concentrations. Infrared reflection absorption spectroscopy studies reveal that only an in-plane (996 cm{sup −1}) vibration of ν (Si-O) band occurred when the salt concentration was 10 mM. However, both in-plane (996 cm{sup −1}) and out-of-plane (1063 cm{sup −1}) vibrations of the ν (Si-O) band of saponite occurred when the subphase salt concentration was 100 mM. Also the out-of-plane vibration of ν (OH) of saponite was prominent at higher salt concentration. This is because at lower salt concentration clay sheets remain flat on the surface whereas; at higher MgCl{sub 2} concentration they aggregated and form stacks of saponite layers. Also they may be slightly tilted with a very small tilt angle at higher salt concentration making a favorable condition for both in-plane and out-of-plane vibrations of ν (Si-O) in the hybrid films. Observed decrease in starting area per molecule in the pressure area isotherm measured at higher salt concentration also supports the tilting of clay layers at air–clay dispersion interface. Attentuated total reflectance Fourier transform infrared

  2. Effect of illite clay and divalent cations on bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-12-15

    Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.

  3. Determination of membrane behaviour during transport of pollutants n clay barriers

    International Nuclear Information System (INIS)

    Musso, M.; Pejon, O.

    2010-01-01

    The study of the transport of contaminants in clay barriers had a extensive development in environmental geotechnics. The most studied transport processes are solutes by advection - dispersion and diffusion generated by hydraulic and chemical gradients respectively. Greater attention should be given to the chemical - osmotic flow and behavior membrane clay barriers, since in one case the water molecules move through the existence of a chemical gradient and on the other the means totally or partially inhibits the passage of solutes. The team developed to measure these processes was constructed based on items international literature and performance was verified using two types of materials KCl solution . One material is a bentonite geocomposite (Geosynthetic Clay Liner GCL ) similar to that used by other researchers. The other material is a soil barrier compacted clay (Compacted Clay Liner CCL) Fm. Corumbataí (Permian), belonging to the Paraná basin in the state of Sao Paulo, Brazil . The results show the proper performance of the equipment built . Osmotic pressure generation and membrane performance was verified for both samples. Further corroborated influence of the type of clay mineral in the osmotic pressure generated value and membrane behavior

  4. Geomechanical behaviour of boom clay under ambient and elevated temperature conditions

    International Nuclear Information System (INIS)

    Neerdael, B.; Beaufays, R.; Buyens, M.; Bruyn, D. de; Voet, M.

    1992-01-01

    This research is focused upon in-situ investigations related to the (thermo-) mechanical behaviour of clay. Three main items are covered in this research area: Stress measurements around the underground research facility for radioactive waste disposal using hydraulical stress monitoring stations; detection of micro-fractures in the clay host, mainly using geophysical seismic techniques; long term mechanical behaviour of clay (this last item, studied by ANDRA at Mol, is not described in this paper). The stress monitoring stations appear to be more reliable in getting relative pressure variations with time rather than absolute values of stress, even after studying and improving the characteristics of the surrounding grout. The seismic techniques used to appear to be sensitive and accurate enough for detecting induced fracturation in the clay host, even for the low temperature. This is also in agreement with bench-scale experiments on clay samples intended to quantify the influence of both temperature and consolidation on the velocity. 10 refs., 80 figs., 3 tabs

  5. A comparative UV-vis-diffuse reflectance study on the location and interaction of cerium ions in Al- and Zr-pillared montmorillonite clays

    International Nuclear Information System (INIS)

    Rao, G. Ranga; Mishra, Braja Gopal

    2005-01-01

    The environment, location and interaction of the Ce 3+ ions in the micropores of Al- and Zr-pillared clays have been studied by UV-vis-diffuse reflectance spectroscopy (UV-vis-DRS). The DRS spectra show that the chemical environment of the Ce 3+ ions in cerium exchanged clay is different from that of the Al- and Zr-pillared clays. The Al-Ce pillared clays (Al-Ce-PM) show four distinct absorption bands at 224, 263, 294 and 342 nm in the UV region which are attributed to 4f → 5d interconfigurational transitions of Ce 3+ ions associated with alumina pillars. The O 2- → Ce 3+ charge transfer band observed at 263 nm for Ce-exchanged and Al-Ce-PM clays is blue shifted by 10 nm for Ce-Zr-pillared clays (Ce-Zr-PM) due to fully hydrated Ce 3+ ions. The Ce 3+ ions are incorporated in the Al- and Zr-pillars possibly as AlCeO 3 and Ce x Zr 1-x O 2 particles upon heat treatment

  6. Experimental investigation of clay fly ash bricks for gamma-ray shielding

    Energy Technology Data Exchange (ETDEWEB)

    Mann Harjinder Singh; Mudahar, Gumel Singh [Dept. of Physics, Punjabi University, Patiala (India); Brar, Gurdarshan Singh [Dept. of Higher Education, Additional Project Director, Chandigarh (India); Mann, Kulwinder Singh [Dept. of Applied Sciences, I.K. Gujral Punjab Technical University, Jalandhar (India)

    2016-10-15

    This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency) of clay fly ash bricks were measured with a NaI(Tl) detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

  7. Synthetic clay excels in 90Sr removal

    International Nuclear Information System (INIS)

    Komarneni, Sridhar; Kodama, Tatsuya; Paulus, William J.; Carlson, C.

    2000-01-01

    Tests with actual ground water from Hanford site, and fundamental studies of 2Na + →Sr 2+ exchange equilibria revealed that a synthetic clay is extremely selective for 90 Sr with a high capacity for uptake. Comparative studies with existing Sr selective ion exchangers clearly revealed that the present synthetic clay exhibited the best performance for 90 Sr removal from actual ground water collected from three different locations at Hanford. This novel Sr ion sieve is expected to be useful for the decontamination of the environment after accidental release and contamination with 90 Sr. (c) 2000 Materials Research Society

  8. Raman spectroscopic study of ancient South African domestic clay pottery

    Science.gov (United States)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  9. Investigations of salt mortar containing saliferous clay

    International Nuclear Information System (INIS)

    Walter, F.

    1992-01-01

    Saliferous clay mortar might be considered for combining individual salt bricks into a dense and tight long-term seal. A specific laboratory program was started to test mortars consisting of halite powder and grey saliferous clay of the Stassfurt from the Bleicherode salt mine. Clay fractions between 0 and 45% were used. The interest focused upon obtaining good workabilities of the mixtures as well as upon the permeability and compression strength of the dried mortar samples. Test results: 1) Without loss of quality the mortar can be mixed using fresh water. Apprx. 18 to 20 weight-% of the solids must be added as mixing water. 2) The porosity and the permeability of the mortar samples increases distinctly when equally coarse-grained salt power is used for mixing. 3) The mean grain size and the grain size distribution of the saliferous clay and the salt powder should be very similar to form a useful mortar. 4) The permeability of the mortar samples decreases with increasing clay fraction from 2 10 -12 m 2 to 2 10 -14 m 2 . The investigated samples, however, were large and dried at 100degC. 5) The uniaxial compressive strength of the clay mortar equals, at an average, only 4 MPa and decreases clearly with increasing clay fraction. Moist mortar samples did not show any measurable compressive strength. 6) Moistened saliferous clay mortar may show little temporary swelling. (orig./HP)

  10. COMPARATIVE KINETICS STUDY OF THE THERMAL AND THERMO-OXIDATIVE DEGRADATION OF A POLYSTYRENE-CLAY NANOCOMPOZITE BY TGA AND DSC

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2010-12-01

    Full Text Available The methods of thermogravimetry (TGA and differential scanning calorimetry (DSC have been used to study the thermal and thermo-oxidative degradation of polystyrene (PS and a PS-clay nanocomposite. An advanced isoconversional method has been applied for kinertic analysis. Introduction of the clay phase increasers the activation energy and affects the total heat of degradation, which suggests a change in the reaction mechanism. The obtained kinetic data permit a comparative assessment of the fire resistance of the studied materials

  11. Mineralogy of subducted clay and clay restite in the lower mantle

    Science.gov (United States)

    Armstrong, L.; Skora, S. E.; Walter, M. J.

    2012-12-01

    Seismic tomography indicates that subducting oceanic lithosphere often penetrates the transition zone and eventually the lower mantle [e.g. 1, 2]. While mineralogical changes in the mafic and ultramafic portions of slabs have been well documented experimentally, the phase relations of overlying sediments at pressures above 25 GPa remain poorly studied. This is in part because sediments are expected to partially melt at sub-arc depth (P~2.5-4.5 GPa), and contribute to the genesis of arc magmas. Sediment restites left behind after the extraction of low pressure melts undergo major chemical changes, according to the melting reaction: Coe+Phen+Cpx+H2O = Grt+Ky+Melt [3]. However, sediments may not always melt depending on the thermal regime and volatile availability and composition [3]. Hence, chemically unmodified sediments as well as restites may be entrained to greater depths and contribute to compositional heterogeneity in the deep mantle. Indeed, mineral inclusions with compositions indicative of subducted sedimentary protoliths (CAS-phase; K-hollandite; stishovite) have been reported in 'ultradeep' diamonds and suggest that deep subduction and survival of sediments occurs to at least transition zone depths [4]. With this in mind, we have performed laser heated diamond anvil cell experiments at pressures of 8-80 GPa on two anhydrous glass starting materials: a marine clay and the restite that is left after 50% melt extraction of this clay at 3 GPa and 800 °C [3]. We chose to work with an anhydrous version of the marine clay given that the investigated pressure range exceeds that of phengite stability [5], and phengite is the only hydrous phase in subducted sediments at UHP conditions. The clay was heated along a P-T path representative of a cold subduction geotherm, whereas the clay restite was heated along a hotter subduction geotherm consistent with low pressure melting. Phases were identified by synchrotron X-ray micro-diffraction at beamline I15 of the Diamond

  12. A Classification of Clay-Rich Subaqueous Density Flow Structures

    NARCIS (Netherlands)

    Hermidas, N.; Eggenhuisen, Joris T.; Jacinto, Ricardo Silva; Luthi, S.M.; Toth, Ferenc; Pohl, Florian

    2018-01-01

    This study presents a classification for subaqueous clay-laden sediment gravity flows. A series of laboratory flume experiments were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with

  13. Study of smectite clays of the city Pedra Lavrada - PB for use in water-based drilling fluids

    International Nuclear Information System (INIS)

    Silva, I.A. da; Costa, J.M.R.; Cardoso, M.A.F.; Neves, G.A.; Ferreira, H.C.

    2011-01-01

    Paraiba has large reserves of bentonite clays, with the largest deposits in Boa Vista, PB. Recently new deposits were discovered in the cities of Cubati and Pedra Lavrada-PB, creating great expectations for further expansion of reserves for industrial production. The aim of this work is the study of smectite clays from the city of Pedra Lavrada, PB for use in drilling fluids water based. The characterization was made by the diffraction of laser (AG), thermogravimetric and differential thermal analysis (TGA and DTA), chemical composition by X-ray fluorescence (EDX), X-ray diffraction (XRD), exchange capacity of cations (ECC) and surface area (SA). The results obtained so far showed that the samples presented at its mineral composition smectite, kaolinite and quartz. In relation to rheological properties showed that the bentonite clay sample Dark presents promising features for use in water based drilling fluids. (author)

  14. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    Science.gov (United States)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative

  15. Simulation of the long term alteration of clay minerals in engineered bentonite barriers: nucleation and growth of secondary clay particles

    International Nuclear Information System (INIS)

    Fritz, B.; Clement, A.; Zwingmann, H.; Noguera, C.

    2010-01-01

    Document available in extended abstract form only. The long term stability of clay rich rocks used as barriers to the migration of radionuclides in the environment of nuclear wastes has been intensively studied, looking at the geochemical interactions between clay minerals and aqueous solutions. These studies combine experimental approaches for the short term and numerical modellings for the long term extrapolations, in the frame of the research supported by ANDRA in the French design for High Level Waste (HLW) repository. The main objective of the geochemical numerical tools devoted to clay-solutions interaction processes was to predict the feed-back effects of mineralogical and chemical transformations of clay mineral, in repository conditions as defined by Andra, on their physical and transport properties (porosity, molecular diffusion, permeability). The 1D transport-reaction coupled simulation was done using the code KIRMAT, at 100 deg. C for 100000 years. The fluid considered is that of the Callovo-Oxfordian geological formation (COX) and assumed to diffuse into the clay barrier from one side. On the other side, ferrous iron, is provided by the steel overpack corrosion. Under these conditions, montmorillonite of the clay barrier is only partially transformed into illite, chlorite, and saponite. The simulation shows that only outer parts of the clay barrier is significantly modified, mainly at the interface with the geological environment. These modifications correspond to a closure of the porosity, followed by a decrease of mass transport by molecular diffusion. Near the COX, the swelling pressure of the clays from the barrier is predicted to decrease, but in its major part, the engineered barrier seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure). In this modelling approach, the very important role of secondary clay minerals has to be taken into account with relevant kinetic rate laws; particularly

  16. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  17. Mobility of the dissolved organic matter through intact boom clay cores

    International Nuclear Information System (INIS)

    Put, M.J.; Dierckx, A.; Aertsens, M.; Canniere, P. de

    1998-01-01

    Performance assessment studies are expected to predict the enhancement of the migration of trivalent lanthanides and actinides due to their complexation with organic matter, which play a role as a transport agent [1]. Therefore, the mobility of the dissolved organic matter in the interstitial boom clay water is studied. For the first time, the mobile fraction present in the clay water is concentrated and labelled with a radioisotope to study the mobility of the organic matter in clay and the interaction of the mobile with the non-mobile. The isotopes tested as label are 125 I and 14 C. The 125 I label proved to be unstable and hence discarded. The labelled organic matter is then diluted for migration experiments on boom clay cores under anaerobic conditions. The influence of the molecular size on its mobility is studied by the separation of the labelled organic matter in different size fractions. (orig.)

  18. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  19. Effectiveness Study of Drinking Water Treatment Using Clays/Andisol Adsorbent in Lariat Heavy Metal Cadmium (Cd) and Bacterial Pathogens

    Science.gov (United States)

    Pranoto; Inayati; Firmansyah, Fathoni

    2018-04-01

    Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.

  20. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  1. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin; Ansari, Seema; Estevez, Luis; Hayrapetyan, Suren; Giannelis, Emmanuel P.; Lai, Hsi-Mei

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn't significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  2. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  3. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    2013-01-01

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  4. On the effect of hot water vapor on MX-80 clay

    International Nuclear Information System (INIS)

    Pusch, Roland

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant

  5. On the effect of hot water vapor on MX-80 clay

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant.

  6. Experimental study of water sorption and clays swelling by environmental scanning electron microscopy (ESEM) and digital image analysis

    International Nuclear Information System (INIS)

    Montes-Hernandez, G.

    2002-10-01

    This work deals with the study of water sorption and clays swelling (MX80 bentonite and Paris basin argilites). A new approach by environmental scanning electron microscopy (ESEM) coupled to digital image analysis is proposed to estimate the swelling with time and the relative humidity. The ESEM is a new generation tool, not much used in the clays domain, which allows to study hydrated materials in different conditions of relative humidity. In this work, it is shown that qualitative and quantitative information about clays swelling at the aggregate scale can be obtained. The study of the kinetics allows to identify three swelling steps which are described by a first order kinetic model. The study of water sorption by raw bentonite and the exchange of different cation (Na + , Li + , K + , Ca 2+ , Mg 2+ ) has permitted to analyze the cation influence on the swelling potential. The adsorption kinetics, described by a second order model, depends directly on the relative humidity, on the mass of the sample and on the compensating cation. The study of the texture of the compacted MX80 bentonite in dry and humid conditions has permitted to observe the morphological evolution of the porous network (macro-porosity) during the hydration/dehydration. From different analytical approaches, a diminution of the macro-pores and/or meso-pores size and the opening of inter-aggregate pores is observed when the apparent density increases. The study of the influence of the instantaneous water condensation/evaporation on the argilites shows that the sensitiveness to water increases when the proportion of clay increases. In particular, it is characterized by a cracking partially reversible or irreversible after several condensation/evaporation cycles. (J.S.)

  7. Technetium migration in Boom Clay - Assessing the role of colloid-facilitated transport in a deep clay formation

    International Nuclear Information System (INIS)

    Bruggeman, C.; Martens, E.; Maes, N.; Jacops, E.; Van Gompel, M.; Van Ravestyn, L.

    2010-01-01

    independent study on the migration of natural organic matter was used to extract migration parameters. This independent study relied on both lab-scale and in situ large-scale migration experiments with 14 C-labelled NOM which were performed over a period of 15 years. A classic diffusion-advection equation, including a colloid filtration term and/or non-linear sorption, simulated the experimental data quite well and could also account for the anisotropy of the Boom Clay formation. By using information from independent experiments on processes that were assumed to occur upon transport of Tc through the Boom Clay formation, the degree of freedom of the model was seriously constrained. All parameters used in the reactive transport model (Tc solubility, complexation with inorganic ligands, stability constant for the 'colloid-colloid' interaction process, solid-solution distribution coefficient of aqueous inorganic Tc species) were either taken from established thermodynamic data sources, or from published data of batch experiments. Only the first-order kinetic rate that accounted for slow decoupling of the Tc colloid and the organic matter colloids was fitted. An accurate model simulation could be obtained both for the Tc concentration in the outflowing solution, and the Tc tracer profile across the clay cores used in the setup. The good accuracy between the reactive transport model, batch experimental data and the experimental percolation data shows that the conceptual model is strong enough to handle different types of experimental setups, and allows to make interpolations for different geochemical conditions. Moreover, the model was adapted to make predictions of Tc migration as a NOM-associated colloid over the entire height of the overlying formation. Based on these predictions, we are now able to assess the potential for colloid-facilitated transport of radionuclides by dissolved NOM in Boom Clay. (authors)

  8. Influence of clay, surfactant and presence of dispersant in the non-aqueous fluids rheology

    International Nuclear Information System (INIS)

    Gomes, N.L.; Guedes, I.C.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as a thickening agent in production of non-aqueous fluids and can not be used without a prior treatment to their organic surfaces become hydrophobic. These treated clays are called organoclays, and are usually obtained by adding, in aqueous solution, a quaternary ammonium salt. This work makes a detailed study of the variables involved in the dispersion of the bentonite clays in organophilization process, as well, the type of clay, type of surfactant and the presence of dispersant. It was observed this study that the process variables involved in the dispersion of the clays and organophilization, observed through characterization, have low influence on the peaks related to interplanar basal distance caused by the incorporation of the surfactant and bentonite clays been influential the type of clay and surfactant and the presence of sodium as dispersant agent, on the rheological properties. (author)

  9. Adsorption and desorption of cadmium by synthetic and natural organo-clay complexes

    International Nuclear Information System (INIS)

    Levy, R.; Francis, C.W.; Oak Ridge National Lab., Tenn.

    1976-01-01

    Tracer levels of 109 Cd were used to study the adsorption and desorption of Cd by synthetic and natural organo-clay complexes. Synthetic organo-clay complexes were made by adsorbing humic acid extracted from soil to various forms of 3 ) 2 showed that Cd was adsorbed more tenaciously to the sesquioxides than organo-clay fractions

  10. In-situ nanoscale imaging of clay minerals with atomic force microscopy

    International Nuclear Information System (INIS)

    Bosbach, D.

    2010-01-01

    Document available in extended abstract form only. Clay minerals play a key role in many concepts for high-level nuclear waste repository systems in deep geological formations. Various aspects related to the long-term safety of nuclear disposal are linked to their fundamental physical-chemical properties, in particular with respect to their reactivity in aqueous environments. Atomic Force Microscopy (AFM) allows high resolution imaging of clay minerals in-situ while they are exposed to an aqueous solution. The presentation is intended to provide an overview of examples of AFM studies on clay minerals: 1. AFM is an ideal tool to visualize the shape of individual clay particles down to molecular scales including a quantitative description of for example their aspect ratio. Furthermore, the particle size can be easily extracted from AFM data for individual particles as well as particle size distribution. 2. Surface area of clay minerals is a key issue when discussing heterogeneous reactions such as dissolution, adsorption or (surface) precipitation - total surface area, BET surface area, reactive surface area need to be distinguished. In particular reactive surface area is linked to specific reactive surface sites. AFM is of course able to identify such sites and consequently AFM data allow to characterize and to quantify reactive surface area. 3. The reactivity of clay mineral surfaces in aqueous environments controls the behaviour of clay minerals under repository conditions and also affects the migration/retention of radionuclides. It could be shown that the dissolution of smectite particles under acidic conditions at room temperature primarily occurs at (hk0) particle edges, whereas the reactivity of the (001) basal surfaces is very limited. The heterogeneous (surface) precipitation of secondary iron (hydr)oxides phase could be unraveled by AFM observations. Surface precipitation occurs preferentially at (hk0) edges surfaces. Ignoring the surface site specific

  11. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  12. Pulse heating tests on two reference Belgian clay formations. Laboratory experiments and numerical study

    International Nuclear Information System (INIS)

    Lima, A.; Romero, E.; Vaunat, J.; Gens, A.; Li, X.L.

    2012-01-01

    Document available in extended abstract form only. Two deep clay formations are being investigated in Belgium in connection with the design of a repository for 'High-Level Radioactive Waste': Boom clay at Mol (located between 160 and 270 m depths), considered the reference host formation, and Ypresian clay at Kallo (located between 300 and 450 m depths) as an alternative one. Thermal impact may play an important role on the behaviour of these low-permeability clayey formations. In this context, heating pulse tests on intact borehole samples retrieved in vertical and horizontal directions were carried out on both clays using an axisymmetric heating cell. Heating tests under nearly constant volume conditions and different target temperatures (maximum 85 C) were performed under controlled hydraulic boundary conditions. Attention is focused on the time evolution of temperature and pore water pressure changes during heating and cooling paths -i.e., pore pressure build-up during quasi-undrained heating and later dissipation to the applied hydraulic boundary conditions-. The finite element program CODE-BRIGHT was used to determine thermal parameters by back-analysis and to simulate the experimental results. Table 1 summarises the main properties of these clays. The experimental programme was carried out on a fully-instrumented cell (sample 75 mm diameter and 100 mm high) with a controlled-power heater housed inside the cell. Two miniature pore water pressure transducers located at different heights of the lateral wall of the cell and three thermocouples were used to monitor the sample response. The cell has top and bottom valves to control hydraulic conditions. The protocol of the tests included three main phases: hydration, heating and cooling. Throughout the heating and cooling phases, the bottom drainage was maintained open at a constant water pressure using an automatic pressure/volume controller, while the upper valve was kept closed. Figures 1a and 1c show the time

  13. Geological and technological characteristics of the Ball Clay of the Sao Paulo state

    International Nuclear Information System (INIS)

    Tanno, L.C.; Motta, J.F.M.; Cabral Junior, M.; Saka, S.; Souza, D.D.D.

    1990-01-01

    This paper shows preliminary geological and technological results of studies about ball clay in Sao Paulo State. The works had been carried out by the Institute of Research and technology (IPT) and sponsored by Prominerio, during 88. Ball clay is a special clay utilised in the whiteware industry, mainly in the body preparation of sanitaryware products. This raw material come from two sites in Brazil: Sao Simao and Oeiras. Samples from these two deposits had been studied and classified acording to their adequately in the ceramic process. On the other hand, more than 100 samples from several geological sites of the Sao Paulo State were studied in laboratories. Acording to preliminary tests some of them revealed similar characteristics as brazilian ball clays. These clays were characterized by granulometry analysis, X-ray diffraction and chemical analysis. (author) [pt

  14. Design study for a macropermeability test in an argillaceous formation (Boom clay)

    International Nuclear Information System (INIS)

    Bronders, J.

    1992-01-01

    In the present report a test design has been developed for determining the in-situ permeability of the Boom clay on a large scale at the Mol site (Belgium). Since in the Boom clay at the Mol site an Underground Repository Facility (URF) is operational the test has been designed to be run in or from this facility. The proposal is an in-situ macropermeability test with a set-up comprising a central borehole (metric scale in length) designed to allow various types of control of the water-level, surrounded by a lattice of piezometers installed in the clay mass for the monitoring of the interstitial water pressure changes in function of the various water-level controls. In one part the report describes the potential set-ups and a theoretical background as far as it can be done on the basis of existing literature and experiments. In a second part the method (technical and practical data of a test set-up) is described and documented. The method proposed is largely based on the several years of expertise gained within the field of in-situ migration and hydrogeologic investigations in the Hades-URF. 14 refs., 9 figs., 2 tabs

  15. Some Tests on Heather Field Moraine Clay

    DEFF Research Database (Denmark)

    Jørgensen, Mogens B.; Jacobsen, Moust

    This report deals with oedometer tests on three samples of moraine clay from the Heather Field in the English part of the North Sea. The tests have been carried out in the very unelastic apparatus used in Denmark and with special test procedures differing from the ones used elsewhere. In Denmark...... Moraine Clay covers a large part of the surface, and it has therefore been investigated extensively in the field and in the laboratories during the last 25 years. It is to day - from a geotechnical point of view - the best known clay in Denmark. It could therefore be of some interest to compare...... the English North Sea moraine clays with the corresponding Danish Moraine Clays. The Danish test procedures are explained in details and some comments are given in the hope that they may not be banalities all of them....

  16. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  17. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    Science.gov (United States)

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Directory of Open Access Journals (Sweden)

    Udo Kielmann

    2014-02-01

    Full Text Available Polymer-clay nanocomposites (PCNCs containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid or the clay surface (labeled catamine. Continuous-wave (CW EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack.

  19. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  20. Thermodynamic investigation of surface of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Medout-Marere, V.; Zoungrana, T.; Douillard, J.M.; Partyka, S. [U.P.R.E.S.A., 5072 CNRS, University of Montpellier II, place Eugene Bataillon, Case 015, 34095 Montpellier Cedex (France); Malandrini, H. [Sanofi Recherche-Centre de Recherches, 371 rue du Professeur Blayac, 34000 Montpellier (France)

    1998-06-06

    In this paper values of surface enthalpies and surface Gibbs free energies are given in order to characterize subsurface minerals. These values are obtained by combining standard measurements of adsorption and the Van Oss-Chaudhury-Good model [Van Oss, C.J., Chaudhury, M.K., Good, R.J., 1987. Monopolar surfaces. Adv. Coll. Interface Sci. 28, 35; Van Oss, C.J., Good, R.J., Chaudhury, M.K., 1988. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4, 884; Van Oss, C.J., Giese, R.F., Costanzo, P.M., 1990. DLVO and non-DLVO interactions in hectorite. Clays Clay Min. 38, 151; Van Oss, C.J., Giese, R.F., Li, Z., Murphy, K., Norris, J., Chaudhury, M.K., Good, R.J., 1992. Determination of contact angles and pore sizes of porous media by column and thin layer wicking. J. Adhesion Sci. Technol. 6, 413.]. This model is reviewed and modified with a view to identify the types of interactions at solid-fluid interfaces and interpreting experimental results

  1. Adsorption of copper ions of natural montmorillonite clay

    Directory of Open Access Journals (Sweden)

    Pimneva Ludmila

    2017-01-01

    Full Text Available The prospects of montmorillonite clay using for the extraction of copper ions from natural and waste waters were determined. Specified chemical and phase composition of natural forms of the montmorillonite clay are shown in the article. Quantitative characteristics of adsorption process of copper ions, the statistical exchange capacity is 1,21 (298 К, 1,25 (313 К, 1,43 (333 К. The authors have studied the balance of copper ions by the method of constructing the isotherms. The description of the adsorption process was carried out by the Langmuir, Freundlich and Temkin models. The calculations showed that the best data for the sorption described by Langmuir model. The nature of the interaction of copper ions with montmorillonite clay in natural form is presented. The calculated thermodynamic parameters of the adsorption process, the obtained values of the Gibbs energy have a negative sign -11,5 (298 К, -15,6 (313 К, -16,2 (333 К кJ/mol, that corresponds to a sustainable consolidation of copper ions on the surface of the montmorillonite clay.

  2. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  3. Interaction of polymer with discotic clay particles

    International Nuclear Information System (INIS)

    Auvray, L.; Lal, J.

    1999-01-01

    Normally synthetic well defined monodisperse discotic laponite clays are known to form a gel phase at mass concentrations as low as a few percent in distilled water. Hydrosoluble polymer polyethylene oxide was added to this intriguing clay system, it was observed that it either prevents gelation or slows it down extremely depending on the polymer weight, concentration or the laponite concentration. Small Angle Neutron scattering (SANS) was used to study these systems because only by isotopic labeling can the structure of the adsorbed polymer layers be determined. The contrast variation technique is specifically used to determine separately the different partial structure factors of the clay and polymer. In this way the signal of the adsorbed chains is separated from the signal of the free chains in the dilute regime. Attempts have also been made to characterize the structure in the concentrated regime of laponite with polymer

  4. Synthesis report of geo technic assessment to clay-AGP design: reference concept

    International Nuclear Information System (INIS)

    Farina, P.; Pedraza, L.; Ruiz, F.

    1995-01-01

    This report summarizes the studies on clays for the storage of radioactive wastes. The study is focussed to the geotechnical assessment for the clays. The report presents the methodology analysis, the geotechnical feasibility, minimizing methods, costs and operation

  5. Compaction of microfossil and clay-rich chalk sediments

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2001-01-01

    The aim of this study was to evaluate the role of microfossils and clay in the compaction of chalk facies sediments. To meet this aim, chalk sediments with varying micro texture were studied. The sediments have been tested uniaxially confined in a stainless-steel compaction cell. The sediments are......: 1) Pure carbonate chalk with mudstone texture from Stevns Klint (Denmark), 2) Relatively pure chalk sediments with varying content of microfossils from the Ontong Java Plateau (Western Pacific), 3) Clay-rich chalk and mixed sediments from the Caribbean. The tested samples were characterised...

  6. Feasibility of classification of clay minerals by using PAS

    International Nuclear Information System (INIS)

    Honda, Y; Yoshida, Y; Akiyama, Y; Nishijima, S

    2015-01-01

    After the nuclear power plant disaster, the evaluation of radioactive Cs kept in soil, especially in clay minerals and the elucidation of its movement are urgent subjects to promote decontamination. It is known that the extractable level of Cs depends on the sort of clay minerals. We tried to find the characteristics of clay minerals belonging to phillosilicate group using positron annihilation spectroscopy (PAS) and the relationship between the results of PAS and the amounts of substantially extracted Cs from the clay minerals. The results showed that each clay mineral was found to be distinguishable from other clay minerals by PAS and the extraction rate of Cs was different among those clay minerals, however the direct correlation between the results of PAS and the extraction rates of Cs was not found. (paper)

  7. Study of the behavior of the consistency rates of a clay with the incorporation of waste of burned ceramic blocks

    International Nuclear Information System (INIS)

    Oliveira, Orley Magalhaes de; Crivelari, Rubem Mateus; Munhoz Junior, Antonio Hortencio; Silva-Valenzuela, Maria das Gracas da; Valenzuela-Diaz, Francisco Rolando

    2016-01-01

    One of the important parts in the process of manufacturing a structural ceramic product is its conformation. The clay which is the basis for these products need to have an appropriate plasticity. In Ceramics Industries that produce ceramic blocks and tiles plasticity clay and a key property for this production. This Industries are a lot of pieces that do not pass the quality control for not having a uniform visual appearance or have small cracks, these lots are usually discarded, which leads to material waste and produces a lot of waste. The objective of this work is the study of the behavior of consistency indexes, plastic limit (LP); the liquid limit (LL) and plasticity index (PI) of a clay from Vitoria da Conquista, Bahia, with the addition of several waste percentages of burnt and ground ceramic blocks. Our results demonstrate that the addition of the reject only affect the plasticity of clay from an increase of over 100%, which makes possible its incorporation in ceramic paste. (author)

  8. Retention and loss of water extractable carbon in soils: effect of clay properties.

    Science.gov (United States)

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  9. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    Science.gov (United States)

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  10. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Science.gov (United States)

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  11. Fire retardation of polystyrene/clay nanocomposites: initial study on synergy effect

    Czech Academy of Sciences Publication Activity Database

    Dujková, Z.; Měřínská, D.; Šlouf, Miroslav

    2013-01-01

    Roč. 26, č. 9 (2013), s. 1278-1286 ISSN 0892-7057 Institutional research plan: CEZ:AV0Z40500505 Keywords : fire retardation * synergy * clay Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.134, year: 2013

  12. Technetium behaviour in Boom Clay - a laboratory and field study

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Ilett, D.J.; Cowper, M.M.; Pilkington, N.J.; Tweed, C.J.; Williams, S.J.; Canniere, P.R. de; Wang, L.

    2002-01-01

    This paper describes a study of technetium solubility and migration under chemical conditions representative of those prevailing in a Boom Clay environment. Laboratory and in situ measurements yielded similar aqueous concentrations of technetium, of about 1 x 10 -8 mol dm -3 , close to the concentrations measured for hydrated technetium(IV) oxide TcO 2 .1.6H 2 O in the solubility studies. From fitting the curves of the Tc concentrations as function of time, distribution coefficient (K d ) values were estimated to lie between 0.8 cm 3 g -1 and 1.8 cm 3 g -1 . Exposure of the system at 80 C and to γ-radiation dose rates of several hundred Gy h -1 resulted in only minor differences in behaviour. (orig.)

  13. Multifaceted role of clay minerals in pharmaceuticals

    OpenAIRE

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelli...

  14. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1989-01-01

    Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues

  15. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)/clay composites

    International Nuclear Information System (INIS)

    Marinovic, S.; Vukovic, Z.; Nastasovic, A.; Milutinovic-Nikolic, A.; Jovanovic, D.

    2011-01-01

    Highlights: → We synthesized macroporous composites of poly(GMA-co-EGDMA) and either raw or acid modified clay. → Morphological, textural and thermal properties of the composite with acid modified clay were significantly changed with retained macroporosity. → Composite with raw clay has enhanced thermal stability. - Abstract: In this study, macroporous composites of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) i.e. poly(GMA-co-EGDMA) and clay were prepared by radical suspension copolymerization. The composites with either raw (S 0 ) or acid-modified clay (S A ) were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric (TG) and textural analysis. The morphological, textural and thermal properties of the composite with raw clay (CP-S 0 ) differed slightly from those of the copolymer (CP), with exception of the thermal stability expressed in the shifting of the initial degradation temperature from 125 deg. C for CP to 210 deg. C for CP-S 0 . On the other hand, composite with modified clay (CP-S A ) was a material with significantly changed morphology, porous structure parameters and a qualitatively different thermal behavior in comparison to CP and CP-S 0 . CP-S A had mass residue, after heating at 600 deg. C, three times higher than the amount of S A introduced into the reaction system. This indicates a different manner of incorporation of S A , compared to S 0 , into the composite. Both the obtained composites retained their macroporosity and might be used in all applications that involve macroporous copolymers and, due to the altered thermal properties, their application may be extended.

  16. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. PBAT based nanocomposites for medical and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kikku, E-mail: kikku81@gmail.com [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan (China); Wu, Meng-Hsiu [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan (China); Bocchini, Sergio [Dipartimento di Scienze dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Rasyida, Amaliya; Yang, Ming-Chien [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan (China)

    2012-08-01

    Poly(butylene adipate-co-terephthalate) (PBAT) based nanocomposites were prepared by melt blending PBAT with 5 and 10 wt.% of clay nanoparticles (unmodified and modified montmorillonites, unmodified and modified fluoro-hectorites, and unmodified sepiolites). All nanocomposites showed a good level of clay distribution and dispersion into PBAT, especially nanocomposites with high clay chemical affinity with the polymer matrix. DSC results showed that addition of layered silicates slightly hindered kinetics and extent of crystallization of PBAT; however, sepiolite particles were able to promote polymer crystallization kinetics and the transformation of the PBAT crystal structure to a more ordered form. Similar increases in the thermal stability of PBAT in nitrogen and air were obtained upon addition of all clays, due to a barrier effect of the clays toward polymer decomposition product ablation. Preliminary biocompatibility tests indicated that PBAT based materials with 10% clay content have good biological safety and display almost no cytotoxicity. The addition of all nanofillers increased the hardness of PBAT matrix. The DMA analysis showed that all nanocomposites presented higher E Prime values than neat PBAT, indicating that addition of clays improved the mechanical properties of PBAT. For layered silicate nanocomposites, the main influencing factors on the thermo-mechanical properties appeared to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical affinity. The highest E Prime values of sepiolite based nanocomposites make this nanoparticle the most attractive material for tissue engineering and environmental industrial applications. Highlights: Black-Right-Pointing-Pointer PBAT nanocomposites with high thermo-mechanical properties were obtained. Black-Right-Pointing-Pointer The effects of clay presence on PBAT crystalline structure were elucidated. Black-Right-Pointing-Pointer The presence of the clays used in PBAT showed

  18. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  19. Development of clay characterization methods for use in repository design with application to a natural Ca bentonite clay containing a redox front

    International Nuclear Information System (INIS)

    Karnland, O.; Pusch, R.

    1990-12-01

    Natural smectite clays in the form of 'true' bentonites formed from volcanic ash, or resulting from in-situ weathering of rock, are suitable for a number of sealing options in repositories, both as tightening component of sand/clay backfills and as highly efficient buffer for embedment of canisters, as well as for fracture sealing. The price and quality, in terms of smectite content and type of smectite, vary considerably and an optimum choice of clay for use in repositories has to be based on quantitative quality data. This requires characterization of the clay material for which a test scheme has been worked out. It comprises determination of the granulometrical, chemical, and mineralogical compositions, as well as of certain physical properties. Recent research shows the importance of the type of smectite for the longevity of buffers in repository environment, beidellite being less favourable and saponite superior to montmorillonite, which is the most common smectite species. The test scheme hence includes means of distinguishing between various smectite minerals. The influence of accessory minerals on the chemical integrity of both the smectite and the canister material requires identification also of such minerals, for which the scheme is useful as well. The report summarizes the various test procedures and gives data from application of the scheme to samples from a natural Ca bentonite containing a redox front. This study suggests that a significant part of the iron in the clay fraction is in the form of Fe 2+ in octahedral positions of the montmorillonite of unoxidized natural clay and that it is converted to Fe 3+ on oxidation. Part of the iron is probably in the form of the Fe 2+ Fe 3+ hydroxy compounds that give the unoxidized clay its bluish colour, while they can be assumed to be transformed to yellowish FeOOH forms on oxidation. (author)

  20. Serbian heavy clays behavior: Application in rough ceramics

    Directory of Open Access Journals (Sweden)

    Arsenović Milica V.

    2013-01-01

    Full Text Available This study is focused on the behavior of five new deposits of heavy clays from Serbia, with the aim to evaluate their potential suitability as raw materials in rough ceramic applications. The Pfefferkorn plasticity coefficient (PC and drying susceptibility using Bigot’s curve were measured for each raw sample. Thermodilatometric analysis (TDA showed the behaviour of dry products during firing. Samples groups were fired in the range of 850°C - 1000°C. Water absorption capacity (WAC and compressive strength (CS were done in order to characterize clays after firing. Linear regression models were used to fit the results. Mathematical tools were used to determine statistical difference of major oxides content, shaping moist and compressive strength of dry laboratory products, using post-hoc Tukey`s HSD test. The chemical and mineralogical compositions of samples do not differ considerably, but their possible application does. All studied clays seem to be easily adaptable to a correct brick making process.

  1. EFFECTS OF INORGANIC SALT SOLUTION ON SOME PROPERTIES OF COMPACTED CLAY LINERS

    Directory of Open Access Journals (Sweden)

    KHALID R. MAHMOOD AL-JANABI

    2017-12-01

    Full Text Available Processed and natural clays are widely used to create impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions will be investigated. These solutions used at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%,5%, 10%. Clay used in this study was the CL- clay (kaolinite. The results show that the consistency limits and unconfined compressive strength increased as the concentration of salts increased. While the permeability tends to decrease as salt concentration increased. Also, the compression index decreases as the concentration increased from 2% to 5%. The swelling index tends to increase slightly as the concentration of MnSO4 increased, while its decrease as the concentration of FeCl3. In this paper, it is aimed to investigate the performance of compacted clay liner exposed to the certain chemicals generated by the leachate and their effects on the geotechnical properties of compacted clay liner such consistency limits, permeability coefficient, compressibility characteristics and unconfined compressive strength.

  2. Chemical, mineralogical and ceramic properties of clays from Northern Santa Catarina, Brazil

    International Nuclear Information System (INIS)

    Correia, S.L.; Bloot, E.L.; Folgueras, M.V.; Hotza, D.

    2009-01-01

    Clay materials crop out in the northern Santa Catarina mining district were investigated in order to assess their potential in the ceramic industry. Four different clays (A, B, C and D) were selected. Their chemical composition was obtained by Xray fluorescence and their mineralogy by X-ray diffraction, coupled with numerical rational analysis. Their thermal behaviour was studied by differential thermal analysis. Technological testing consisted in a simulation of the industrial processing performed at a laboratory scale. The test pieces were obtained by pressing and fired in the range of 850-1200 deg C. In each case their technological properties were studied. The main mineralogical phases detected were kaolinite, quartz and mica. Hematite and feldspars may be present in the clays. The clays show two groups of particle sizes almost equally frequent in the range of 1 to 60 μm. The northern Santa Catarina clays are suitable for the production of bricks and earthenware in the 900- 1100 deg C range. (author)

  3. Polyethersulfone/clay membranes and its water permeability

    International Nuclear Information System (INIS)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena; Leite, Amanda Melissa Damiao

    2017-01-01

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  4. Study and development of nanocomposites PBT/bentonite clay treated by ionizing radiation: preparation and characterization

    International Nuclear Information System (INIS)

    Sartori, Mariana do Nascimento

    2014-01-01

    This work describes the preparation and characterization of composites based on poly (butylene terephthalate) - PBT and brazilian modified clay prepared by the melt intercalation. PBT nanocomposites with 3 and 5 % by weight of organically modified clay, by the addition of a quaternary ammonium salt, were prepared by extrusion using a twin-screw extruder machine. After the extrusion process, the materials were injected to obtain specimens tests samples for the characterization tests. Part of the specimens samples were irradiated using an electron beam accelerator with 1.5 MeV at room temperature in the presence of air. Samples of pure PBT and irradiated and non-irradiated nanocomposites were characterized by mechanical tests of tensile, flexural and impact, heat distortion temperature (HDT), X - ray diffraction (XRD), scanning electron microscopy (SEM), melt flow index (MFI) thermogravimetry (TG) and differential scanning calorimetry (DSC) and the correlation between the properties was discussed. The results showed that the addition of clay, in both percentages, promoted an increase greater than 50 % in tensile strength at break and a gain of around 35% in heat distortion temperature when compared to the pure polymer. The treatment with ionizing radiation of electron beam at the doses used in this study showed no significant changes in material properties. (author)

  5. Possible influence of clay contamination on B isotope geochemistry of carbonaceous samples

    International Nuclear Information System (INIS)

    Deyhle, Annette; Kopf, Achim

    2004-01-01

    The authors report results from an experimental study on mixtures of pure endmembers of natural clay and carbonate. The scientific rationale is an evaluation as to what extent B contents and B isotopes of carbonate samples may be obscured as a result of contamination with clay, particularly since both authigenic carbonates and biogenic carbonates (e.g. microfossil tests) often contain some clay. Three aliquots of a series of samples (each containing 0, 20, 40, 60, 80, 100% clay) were analyzed. Set 1 was washed with distilled, de-ionized water; for set 2 the HCl soluble parts were dissolved in 2 M HCl after washing; set 3 was completely digested with 30M HF prior to a series of ion exchanges. Isotope data of the endmembers are 6.6 per mille (100% marble) and -4.6%o (100% clay), with the clay being the dominant B source (ca. 50 ppm compared with 11 B adsorbed =12.9-14.1%o±0.5%o), while no B was mobilized from the carbonate. The HCl-dissolvable B in washed samples of set 2 show slightly increasing B contents with higher clay contents, suggesting that dissolution of the marble as well as B mobilization from the clay account for this trend. δ 11 B isotopes tend towards more negative values when clay content increases, indicating that some structurally-bound B is lost from the sheets of linked (Si, Al)O 4 tetrahedra of the clay mineral. This result shows that not only B adsorption, but possibly diffusion or weathering of broken edges of clay minerals releases some structurally bound B of clay minerals. Set 3, where bulk samples were completely HF-digested, shows as expected a linear increase in B concentrations and decreasing δ 11 B ratios with increasing clay content. The overall results suggest that relatively small amounts of clay (e.g. as contamination in a microfossil test) have no significant impact on the B content and δ 11 B measured for the carbonate, but that care has to be taken if clay exceeds 10wt.% (e.g. carbonate concretions, chimneys, etc.)

  6. A review of WIPP [Waste Isolation Pilot Plant] repository clays and their relationship to clays of adjacent strata

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Kimball, K.M.; Stein, C.L.

    1990-12-01

    The Salado Formation is a thick evaporite sequence located in the Permian Delaware Basin of southeastern New Mexico. This study focuses on the intense diagenetic alteration that has affected the small amounts of clay, feldspar, and quartz washed into the basin during salt deposition. These changes are of more than academic interest since this formation also houses the WIPP (Waste Isolation Pilot Plant). Site characterization concerns warrant compiling a detailed data base describing the clays in and around the facility horizon. An extensive sampling effort was undertaken to address these programmatic issues as well as to provide additional insight regarding diagenetic mechanisms in the Salado. Seventy-five samples were collected from argillaceous partings in halite at the stratigraphic level of the Waste Isolation Pilot Plant (WIPP). These were compared with twenty-eight samples from cores of the Vaca Triste member of the Salado, a thin clastic unit at the top of the McNutt potash zone, and with a clay-rich sample from the lower contact of the Culebra Dolomite (in the overlying Rustler Formation). These settings were compared to assess the influence of differences in brine chemistry (i.e., halite and potash facies, normal to hypersaline marine conditions) and sediment composition (clays, sandy silt, dolomitized limestone) on diagenetic processes. 44 refs., 11 figs., 5 tabs

  7. 1.7.2. The hydrochloric acid decomposition of pre-baked kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of pre-baked kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of pre-baked kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of pre-baked kaolin clays and siallites were determined.

  8. Assessment of clay stiffness and strength parameters using index properties

    Directory of Open Access Journals (Sweden)

    Sayed M. Ahmed

    2018-06-01

    Full Text Available A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is assessed using the site-specific variation of the natural water content with the effective mean stress. Subsequently, an iterative process is envisaged to obtain the clay stiffness and strength parameters. The at-rest earth pressure coefficient, as well as bearing capacity factor and rigidity index related to the cone penetration test, is also acquired from the analyses. Comparisons are presented between the measured clay parameters and the results of corresponding analyses in five different case studies. It is demonstrated that the presented approach can provide acceptable estimates of saturated clay stiffness and strength parameters. One of the main privileges of the presented methodology is the site-specific procedure developed based on the relationships between clay strength and stiffness parameters, rather than adopting direct correlations. Despite of the utilized iterative processes, the presented approach can be easily implemented using a simple spreadsheet, benefiting both geotechnical researchers and practitioners. Keywords: Soft to firm clays, Atterberg limits, Shear wave velocity, Small-strain shear modulus, Constrained modulus, Undrained shear strength, Effective friction angle, Cone penetration test

  9. Precision test method by x-ray absorbent clay

    International Nuclear Information System (INIS)

    Nakadai, Toru; Matsukawa, Hideyuki; Sekita, Jun-ichiro; Murakoshi, Atsushi.

    1982-01-01

    In X-ray penetration photography of such as welds with reinforcing metal and castings of complex shape, the X-ray absorbent clay developed to eliminate various disadvantages of the conventional absorbents was further studied for better application. The results of the usage are as follows. Because the X-ray absorbent is clay, it is flexible in form, and gives good adhesion to test objects. In the welds and castings mentioned, it is effective for reducing the scattered ray, accordingly, it results in superior images. The following matters are described: contrast in radiographs, the required conditions for X-ray absorbents in general, the properties of the absorbent (absorption coefficient, consistency, density), improvement in radiographs by means of the X-ray absorbent clay (wall thickness compensation, masking, the application together with narrow-field irradiation photography). (Mori, K.)

  10. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  11. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  12. Utilization of crushed clay brick in cellular concrete production

    Directory of Open Access Journals (Sweden)

    Ali A. Aliabdo

    2014-03-01

    Full Text Available The main objective of this research program is to study the effect of using crushed clay brick as an alternative aggregate in aerated concrete. Two series of mixtures were designed to investigate the physico-mechanical properties and micro-structural analysis of autoclave aerated concrete and foamed concrete, respectively. In each series, natural sand was replaced with crushed clay brick aggregate. In both series results showed a significant reduction in unit weight, thermal conductivity and sound attenuation coefficient while porosity has increased. Improvement on compressive strength of autoclave aerated concrete was observed at a percentage of 25% and 50% replacement, while in foamed concrete compressive strength gradually decreased by increasing crushed clay brick aggregate content. A comparatively uniform distribution of pore in case of foamed concrete with natural sand was observed by scanning electron microscope, while the pores were connected mostly and irregularly for mixes containing a percentage higher than 25% clay brick aggregate.

  13. Technology and Organisation of Inka Pottery Production in the Leche Valley. Part I: Study of Clays

    International Nuclear Information System (INIS)

    Hayashida, F.; Haeusler, W.; Wagner, U.

    2003-01-01

    We report on an interdisciplinary approach to the study of finds of unfired clay lumps and unfired broken vessels from two workshops in the Leche Valley, north coast of Peru. The material is used as a reference in the study of pottery making at both workshops.

  14. Technology and Organisation of Inka Pottery Production in the Leche Valley. Part I: Study of Clays

    Science.gov (United States)

    Hayashida, F.; Häusler, W.; Wagner, U.

    2003-09-01

    We report on an interdisciplinary approach to the study of finds of unfired clay lumps and unfired broken vessels from two workshops in the Leche Valley, north coast of Peru. The material is used as a reference in the study of pottery making at both workshops.

  15. Characterization of clay (bentonite)/crushed granite mixtures to build barriers against the migration of radionuclides: diffusion studies and physical properties

    International Nuclear Information System (INIS)

    Mingarro, E.; Rivas, P.; Villar, L.P. del; Cruz, B. de la; Gomez, P.; Hernandez, A.; Turrero, M.J.; Villar, M.V.; Campos, R.; Cozar, J.

    1991-01-01

    In Spain, the possibility is being considered of storage of radioactive waste in granitic rocks, using Spanish clays as backfill and sealing materials. The study and selection of these materials is the objective of the project, accomplished with Community financial support under CEC contract No Fl1W-0191-E (TT). With the aim of minimizing the chemical-mineralogical disequilibrium between the granitic rock and the artificial barrier, the possibility has been studied of using molten granite as an additive and illite as clayish material, instead of the normal use of smectite (montmorillonite). The studies have been carried out on 30 commercial Spanish clays and two kinds of granite and have been orientated to the selection of materials and the optimization of the clay-granite mixtures, chemical characterization, mechanics and physics of the mixtures and compacted blocks, determination of their behaviour in the gradient fields of temperature, pressure and chemical potentials and to the determination of the migration parameters. 59 Figs.; 6 Micrograph; 52 Tabs.; 30 Refs

  16. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    ' experiments without any modification. The diffusion of neutral (HTO), anionic ( 36 Cl), and slightly sorbing ( 85 Sr) radionuclides in the Opalinus clay from Mont Terri (Switzerland) was studied using the proposed experimental set-up. (authors)

  17. Active containment systems incorporating modified pillared clays

    International Nuclear Information System (INIS)

    Lundie, P.; McLeod, N.

    1997-01-01

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation

  18. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  19. Validation of water sorption-based clay prediction models for calcareous soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Moosavi, Ali

    2017-01-01

    on prediction accuracy. The soils had clay content ranging from 9 to 61% and CaCO3 from 24 to 97%. The three water sorption models considered showed a reasonably fair prediction of the clay content from water sorption at 28% relative humidity (RMSE and ME values ranging from 10.6 to 12.1 and −8.1 to −4......Soil particle size distribution (PSD), particularly the active clay fraction, mediates soil engineering, agronomic and environmental functions. The tedious and costly nature of traditional methods of determining PSD prompted the development of water sorption-based models for determining the clay...... fraction. The applicability of such models to semi-arid soils with significant amounts of calcium carbonate and/or gypsum is unknown. The objective of this study was to validate three water sorption-based clay prediction models for 30 calcareous soils from Iran and identify the effect of CaCO3...

  20. Controlling harmful algae blooms using aluminum-modified clay.

    Science.gov (United States)

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  2. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  3. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    Science.gov (United States)

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  4. Influence of chemical treatment of clay to obtain polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Rosa, Jeferson L.S.; Marques, Maria F.V.

    2009-01-01

    Commercial clay was chemically treated to prepare a Ziegler-Natta catalyst containing MgCl 2 and clay for the synthesis of polypropylene nanocomposites by in situ polymerization. The performance of this catalyst and materials obtained in propylene polymerization was compared with a reference catalyst (without clay) and with another, whose composition presents the same clay but without prior chemical treatment. Techniques like differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and melt flow index (MFI) measurements were performed. There was a marked reduction in catalytic activity of clay catalysts in comparison with the reference one, and a slight reduction in melting temperature of the polymers produced from first ones. The melt flow index of polymers obtained with treated clay were notably higher than those synthesized with the untreated clay, so the treated clay caused treated the production of PP's with lower molar mass. The clays showed an increase of spacing and irregular stacking of the lamellas, especially if chemically treated. (author)

  5. Moessbauer study of the transformations occurring in egyptian alluvial and calcareous clays during firing

    International Nuclear Information System (INIS)

    Sallam, H.A.; Gomma, N.S.; El Meligy, W.M.; Eissa, N.A.

    1994-01-01

    Egyptian alluvial and calcareous clay samples, which are used in pottery production, were heated at different temperatures in air up to 1100 degree C. The physicochemical transformations were followed up and could be separated in two main stages; i) the dehydroxilation, of the clay mineral, stage for firing up to 700 degree C, ii) the second stage for firing at 900 degree C and higher. In the later stage the effect of calcium content was very pronounced. 2 figs

  6. Migration of leachate solution through clay soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Warith, M M

    1987-01-01

    The problem of domestic solid wastes buried in landfill sites is viewed from the aspect of leachate contamination and migration in the substrate, and the efficiency of natural clay barriers as an expedient economic lining material is assessed. Various chemical constituents of the landfill leachate of an actual waste containment site at Lachenaie (35 km east of Montreal) were determined from samples collected from specially designed basins. Data for companion tests on laboratory columns are also presented. Chemical analysis on samples from the basins and leachates from the columns measured changes in the concentration of: (a) cations (Na, K, Ca, and Mg), (b) anions (Cl, HCO/sub 3/, and CO/sub 3/) (c) total organic carbon (TOC), and (d) heavy metals (Fe, Zn, Pb, and Cu). The physical parameters measured included: (a) pH, and (b) specific conductivity. Predictions, using a dispersion-convection model for concentration profile development for either adsorbed or retained contaminants, were compared with the experimentally determined profiles (both in leaching columns and landfill laboratory model). Another set of experiments was also conducted to evaluate the effect of some organic fluids on the geotechnical properties of different clay soils (natural clay and two reference clay soils: illite and kaolinite). The results from this study have demonstrated that the natural clay soil can be used to adequately contain the different contaminant species usually present in the leachate solutions. Furthermore, the data suggested that under favorable soil conditions, landfill leachates containing low levels of trace metals will not pose a substantial contamination threat to the subsurface environment, provided that a proper thickness of barrier is used.

  7. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  8. The effect of clay content in sands used for cementitious materials in developing countries

    International Nuclear Information System (INIS)

    Fernandes, V.A.; Purnell, P.; Still, G.T.; Thomas, T.H.

    2007-01-01

    The cost of building materials in Less Economically Developed Countries (LEDCs) is one of the single largest contributing factors to housing costs. They are often transported over relatively large distances at considerable expense. Local sands may contain significant amounts of clay, considered by local artisans to be detrimental to concrete strength; however, in an LEDC context, there is little evidence to support this. In this study, the compressive strength and workability of representative LEDC clay-contaminated concrete was determined. Clay-cement interactions were studied using X-Ray Diffraction (XRD). Different clays appeared to have fundamentally different effects on both workability and strength. No chemical interactions were detected. It was concluded that satisfactory concrete could be made from clay-contaminated sand

  9. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  10. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  11. Modelling of clay diagenesis using a combined approach of crystalchemistry and thermochemistry: a case study in the smectite illitization.

    Science.gov (United States)

    Geloni, Claudio; Previde Massara, Elisabetta; Di Paola, Eleonora; Ortenzi, Andrea; Gherardi, Fabrizio; Blanc, Philippe

    2017-04-01

    procedure benefits from: (i) (minor) improvements of the I/O structure of the SSP; (ii) the development of a suite of python scripts to automate the steps needed to augment the thermodynamic database by integrating the external information provided by potential users with the XLS tool and the SSP; (iii) the creation of specific outputs to allow for more convenient handling and inspection of computed parameters of the thermodynamic database. A case study focused on non-isothermal smectite-illite transformation is presented to show the capability of our numerical models to account for clay compaction under 1D geometry conditions. This model considers fluid flow driven by the compaction of a clay layer, and chemistry-fluid flow mutual feedback with the underlying sandstone during the advancement of the diagenesis. Due to this complex interaction, as a result of the smectite-illite transformation in the clays, significant quartz cementation affects the sandstone adjacent to the compacting clay.

  12. An assessment of dioxin levels in processed ball clay from the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, J.; Byrne, C. [USEPA, Stennis Space Ctr. Mississippi (United States); Schaum, J. [USEPA, Washington, DC (United States)

    2004-09-15

    Introduction The presence of dioxin-like compounds in ball clay was discovered in 1996 as a result of an investigation to determine the sources of elevated levels of dioxin found in two chicken fat samples from a national survey of poultry. The investigation indicated that soybean meal added to chicken feed was the source of dioxin contamination. Further investigation showed that the dioxin contamination came from the mixing of a natural clay known as ''ball clay'' with the soybean meal as an anti-caking agent. The FDA subsequently discontinued the use of contaminated ball clay as an anti-caking agent in animal feeds. The source of the dioxins found in ball clay has yet to be established. A comparison of the characteristic dioxin profile found in ball clay to those of known anthropogenic sources from the U.S.EPA Source Inventory has been undertaken, and none of those examined match the features found in the clays. These characteristic features together with the fact that the geologic formations in which the clays are found are ancient suggest a natural origin for the dioxins. The plasticity of ball clays makes them an important commercial resource for a variety of commercial uses. The percentage of commercial uses of ball clay in 2000 included: 29% for floor and wall tile, 24% for sanitary ware, 10% pottery, and 37% for other industrial and commercial uses. The total mining of ball clay in the U.S. for 2003 was 1.12 million metric tons. EPA is examining the potential for the environmental release of dioxins from the processing/use of ball clays and evaluating potential exposure pathways. Part of this overall effort and the subject of this study includes the analysis of dioxin levels found in commercially available ball clays commonly used in ceramic art studios.

  13. Factors that influence the design of modified clays - or how knowing your clay can save your day

    International Nuclear Information System (INIS)

    Gates, W.P.; Slade, P.G.

    1998-01-01

    Full text: Smectites vary greatly in their permanent layer charge characteristics, including total charge, distribution of charge between tetrahedral and octahedral sheets and heterogeneity of charge from flake to flake. Smectites and vermiculites are different from the micaceous layer silicates in their ability to swell by the uptake of cations and polar and non polar solvents. Vermiculites differ from the smectites predominantly in the large contribution of tetrahedrally located charge relative to their total layer charge density. Understanding of the complex relations between layer charge and interlayer space of clay mineral surfaces can be applied toward the design of optimal organically modified clays suitable for environmental and industrial uses. In general, it is known that smectite charge density dictates the total amount of modifying organic cation that can be added to a particular clay, the orientation that the organic cation adopts within the interlayer spaces with respect to the siloxane surfaces of the clay and ultimately, the capacity of specific, organically modified clay to imbibe contaminants or other compounds. These same properties are dependent on the size and configuration of the modifying organic cation(s) as well as the percentage of the exchange capacity utilised, and thus, the amount of specific surface of the clay that is covered by the modifying organic cation. All these factors must be kept in mind in the design of inexpensive and useful modified clays. This paper reports on the application of polarised FT-IR and X-ray diffraction methods to the observation that layer charge density governs the orientation of trimethylphenylammonium (TMPA) cations in the interlayer space of smectites and vermiculites. The TMPA exchanged forms of several smectites and vermiculites were studied, whose layer charges ranged between X=0.37 and X=0.95 e - per formula unit and in which the location of charge varied with respect to the octahedral and

  14. Development of SBR-Nano clay Composites with Epoxidized Natural Rubber as Compatibilizer

    International Nuclear Information System (INIS)

    Rajasekar, R.; Das, Ch.K.; Gert Heinrich, G.; Das, A.

    2009-01-01

    The significant factor that determines the improvement of properties in rubber by the incorporation of nano clay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nano clay will not contribute for the good dispersion of nano filler in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nano clay in the matrix polymer. Epoxidized natural rubber and organically modified nano clay composites (EC) were prepared by solution mixing. The nano clay employed in this study is Cloisite 20A. The obtained nano composites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nano clay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nano clay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.

  15. Quick clay and landslides of clayey soils.

    Science.gov (United States)

    Khaldoun, Asmae; Moller, Peder; Fall, Abdoulaye; Wegdam, Gerard; De Leeuw, Bert; Méheust, Yves; Otto Fossum, Jon; Bonn, Daniel

    2009-10-30

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.

  16. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  17. Titanium alloys as alternative material for the supercontainer shell in the KBS-3H concept. A preliminary Ti-clay interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, Paul (Gruner Ltd (Switzerland)); Grolimund, Daniel (Paul Scherrer Institute (Switzerland)); Kumpulainen, Sirpa; Kiviranta, Leena (BandTech Oy (Finland)); Brendle, Jocelyne (University of Mulhouse (France)); Snellman, Margit (Saanio and Riekkola Oy (Finland))

    2010-12-15

    Ti alloys have been proposed as alternative materials to steel for the supercontainer shell surrounding the bentonite buffer in the KBS-3H disposal concept. Ti-based materials display high strength and are known to behave chemically inert under a variety of conditions. This preliminary study addresses the suitability of titanium as supercontainer material with regard to the performance of the clay buffer. Thus, possible titanium-bentonite interactions which may adversely affect the buffer's safety functions are evaluated by means of a literature and a preliminary experimental assessment. Titanium metals display very low corrosion rates (< 1 nm/a) over a large range of pH and Eh conditions. The corrosion behaviour is governed by the low solubility of tetravalent TiO{sub 2} which forms a passive surface corrosion layer under both oxic and reducing conditions. The interactions between titanium and clay have been barely studied so far. Preliminary long-term data obtained by Prof. Olefjord and co-workers from Chalmers (S) in the 1980s (as part of SKB's canister program) suggests similar corrosion rates in compacted bentonite compared to those measured in water, i.e. <1 nm/a. So far, no work on reaction products from this interaction process has been carried out. Even the speciation of Ti in natural clays is uncertain. In principle, four possible reaction products resulting from Ti-clay interactions are possible: (i) Ti sorbed to the clay surface via cation exchange or specific adsorption, (ii) Ti incorporated in the octahedral or tetrahedral clay structure, (iii) Ti precipitated as separate TiO{sub 2} or mixed (Fe, Ti) oxide, (iv) Ti precipitated as separate silicate phase and (v) polymerized as cross-linked TiO{sub 2} units in the interlayer (Ti pillared clay). The latter two transformation products would have the strongest impact on the buffer, but are improbable on the basis of current knowledge. A preliminary batch-type investigation has been carried out

  18. Titanium alloys as alternative material for the supercontainer shell in the KBS-3H concept. A preliminary Ti-clay interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, Paul [Gruner Ltd (Switzerland); Grolimund, Daniel [Paul Scherrer Institute (Switzerland); Kumpulainen, Sirpa; Kiviranta, Leena [BandTech Oy (Finland); Brendle, Jocelyne [University of Mulhouse (France); Snellman, Margit [Saanio and Riekkola Oy (Finland)

    2010-12-15

    Ti alloys have been proposed as alternative materials to steel for the supercontainer shell surrounding the bentonite buffer in the KBS-3H disposal concept. Ti-based materials display high strength and are known to behave chemically inert under a variety of conditions. This preliminary study addresses the suitability of titanium as supercontainer material with regard to the performance of the clay buffer. Thus, possible titanium-bentonite interactions which may adversely affect the buffer's safety functions are evaluated by means of a literature and a preliminary experimental assessment. Titanium metals display very low corrosion rates (< 1 nm/a) over a large range of pH and Eh conditions. The corrosion behaviour is governed by the low solubility of tetravalent TiO{sub 2} which forms a passive surface corrosion layer under both oxic and reducing conditions. The interactions between titanium and clay have been barely studied so far. Preliminary long-term data obtained by Prof. Olefjord and co-workers from Chalmers (S) in the 1980s (as part of SKB's canister program) suggests similar corrosion rates in compacted bentonite compared to those measured in water, i.e. <1 nm/a. So far, no work on reaction products from this interaction process has been carried out. Even the speciation of Ti in natural clays is uncertain. In principle, four possible reaction products resulting from Ti-clay interactions are possible: (i) Ti sorbed to the clay surface via cation exchange or specific adsorption, (ii) Ti incorporated in the octahedral or tetrahedral clay structure, (iii) Ti precipitated as separate TiO{sub 2} or mixed (Fe, Ti) oxide, (iv) Ti precipitated as separate silicate phase and (v) polymerized as cross-linked TiO{sub 2} units in the interlayer (Ti pillared clay). The latter two transformation products would have the strongest impact on the buffer, but are improbable on the basis of current knowledge. A preliminary batch-type investigation has been carried out to shed

  19. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study

    Science.gov (United States)

    Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika

    2017-10-01

    This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.

  20. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  1. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    International Nuclear Information System (INIS)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-01-01

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  2. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  3. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    Science.gov (United States)

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Comparative study by TG and DSC Of membranes polyamide66/bentonite clay nanocomposite; Estudo comparativo por TG e DSC de membranas de nanocompositos poliamida66/argila bentonitica

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, K.M. de; Kojuch, L R; Araujo, E M; Lira, H.L., E-mail: keilamm@ig.com.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, F [Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Dept. de Quimica

    2010-07-01

    In this study, it was obtained membranes of nanocomposites polyamide66 with 3 and 5% bentonite clay consists of silicates in layers from the interior of Paraiba. The clay was treated with a quaternary ammonium salt in order to make it organophilic. The membranes were prepared by phase inversion technique from the nanocomposites in solution. The clays were characterized by X-ray diffraction (XRD) and thermogravimetry (TG). Also the membranes were characterized by differential scanning calorimetry (DSC) and TG. The XRD and TG confirmed the presence of salt in the clay and thermal stability of the treated clay. For DSC, it was observed that there was no change in melting temperature of the membranes of nanocomposites compared to membrane pure polyamide66. By TG, it was found that the decomposition of the membranes of polyamide66 with treated clay were higher compared with the untreated clay. (author)

  5. Preparation and Characterization of Acid and Alkaline Treated Kaolin Clay

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2013-06-01

    Full Text Available Kaolin was refluxed with HNO3, HCl, H3PO4, CH3COOH, and NaOH of 3M concentration at 110 °C for 4 hours followed by calcination at 550 °C for 2 hours. The physico-chemical characteristics of resulted leached kaolinite clay were studied by XRF, XRD, FTIR, TGA, DTA, SEM and N2 adsorption techniques. XRF and FTIR study indicate that acid treatment under reflux conditions lead to the removal of the octahedral Al3+ cations along with other impurities. XRD of acid treated clay shows that, the peak intensity was found to decrease. Extent of leaching of Al3+ ions is different for different acid/base treatment. The acid treatment increased the Si/Al ratio, surface area and pore volume of the clay. Thus, the treated kaolin clay can be used as promising adsorbent and catalyst supports. © 2013 BCREC UNDIP. All rights reservedReceived: 1st March 2013; Revised: 9th April 2013; Accepted: 19th April 2013[How to Cite: Kumar, S., Panda, A. K., Singh, R.K. (2013. Preparation and Characterization of Acids and Alkali Treated Kaolin Clay. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 61-69. (doi:10.9767/bcrec.8.1.4530.61-69][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4530.61-69] |View in  |

  6. Nuclear magnetic resonance study of the effect of the addition of clay on polypropylene

    International Nuclear Information System (INIS)

    Nogueira, Regina F.; San Gil, Rosane A.S.; Tavares, Maria Ines B.

    2001-01-01

    Polypropylene (PP) samples and polypropylene (PP)/clay (M) composite prepared by melting mixing have been characterized by solution and solid state nuclear magnetic resonance spectroscopy (NMR). The monomer sequences distribution and the influence of time and temperature of mechanical mix on the modifications in the PP structure were investigated by 13 C solution NMR. The solid state NMR investigation showed that the 13 C routine spectra such as MAS and CPMAS allowed obtaining information on the molecular domains of chains, and also permits to evaluate the domains mobility. 29 Si and 27 Al solid state NMR were used to characterize the clay and the PP/M composite samples. The results showed that the heating and friction in the range of temperature and time used in the sample preparation did not affect the distribution of configurational sequence in the PP chains. The effect of clay in the PP/M composite structure could be detected, using both 13 C solution and in 29 Si solid state NMR spectra. (author)

  7. Clay content evaluation in soils through GPR signal processing

    Science.gov (United States)

    Tosti, Fabio; Patriarca, Claudio; Slob, Evert; Benedetto, Andrea; Lambot, Sébastien

    2013-10-01

    The mechanical behavior of soils is partly affected by their clay content, which arises some important issues in many fields of employment, such as civil and environmental engineering, geology, and agriculture. This work focuses on pavement engineering, although the method applies to other fields of interest. Clay content in bearing courses of road pavement frequently causes damages and defects (e.g., cracks, deformations, and ruts). Therefore, the road safety and operability decreases, directly affecting the increase of expected accidents. In this study, different ground-penetrating radar (GPR) methods and techniques were used to non-destructively investigate the clay content in sub-asphalt compacted soils. Experimental layout provided the use of typical road materials, employed for road bearing courses construction. Three types of soils classified by the American Association of State Highway and Transportation Officials (AASHTO) as A1, A2, and A3 were used and adequately compacted in electrically and hydraulically isolated test boxes. Percentages of bentonite clay were gradually added, ranging from 2% to 25% by weight. Analyses were carried out for each clay content using two different GPR instruments. A pulse radar with ground-coupled antennae at 500 MHz centre frequency and a vector network analyzer spanning the 1-3 GHz frequency range were used. Signals were processed in both time and frequency domains, and the consistency of results was validated by the Rayleigh scattering method, the full-waveform inversion, and the signal picking techniques. Promising results were obtained for the detection of clay content affecting the bearing capacity of sub-asphalt layers.

  8. Clay minerals in sandstone uranium deposits: radwaste applications

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1990-01-01

    Clay minerals play an important role in the genesis of uranium deposits in sandstones. They incorporate the rate earths (REE), U, Sb, Th, Cs, Rb, Sr, Y, Ba, and even small amounts of chalcophiles. These minerals possess analog elements for many of the radwaste fission products as well as actinides and some actinide daughters. In sandstone uranium deposits, clay minerals are also associated with sulfide minerals, usually pyrite, and organic carbonaceous matter. The primary clay minerals are usually smectites, illites, chlorites and mixed layer varieties. The integrity of these clay minerals is demonstrated by their retention of formational-mineralization ages determined by Rb-Sr geochronologic investigation of the Grants Mineral Belt of the United States. The importance of the clay minerals as analog for parts of the multi-barrier concept in radwaste disposal is their ability to impede water penetration into - and movement of key elements out of uranium rich zones. The clay minerals further sorb and in other ways incorporate into their structures many fission products and actinide analogs from man-made nuclear wastes. 22 refs., 1 fig., 3 tabs

  9. Towards an assessment of colloid transport in undisturbed clay stone

    International Nuclear Information System (INIS)

    Durce, D.; Landesman, C.; Grambow, B.; Giffaut, E.

    2010-01-01

    Document available in abstract form only. Full text of publication follows: Colloids are known as a potentially important transport vector for sparingly soluble radionuclides in natural water environments. For assessing the mass transfer resistance of the Callovo-Oxfordian clay rock formation for colloid transport, a series of percolation experiments have been performed, using high pressure stainless steel advection cells of different diameters containing clay cores machined to about 50 μm of accuracy to the inner diameter of the cells. Synthetic clay pore water was pushed by a high pressure syringe pump across the clay core. In order to assess the cut-off size for colloid transport, molecules of different molecular weight were injected. C 14 labeled polymaleic acid (PMA) of sizes of 2 and 50 kDa were used. The effect of clay permeability, of water flow rate (injection pressure) and of ionic strength was studied. Low ionic strength experiments (I = 0.001) were realized by replacing the pore water by advective displacement with the required composition. Clay rock permeabilities were between 10 -12 and 10 -14 m/s. Hydrodynamic parameters were determined by HTO and 36 Cl injection. The results show already at 2 kDa and a permeability of 10 -12 m/s strong retention by partial filtration. The experimental results were modeled using simple chromatographic theory. (authors)

  10. Heterogeneous photo-Fenton oxidation with natural clays for phenol and tyrosol remediation

    Directory of Open Access Journals (Sweden)

    Djeffal L.

    2013-09-01

    Full Text Available Due to their excellent properties, clays have been widely used in several applications, particularly in catalysis. In this paper, three clays were used as heterogeneous photo-Fenton catalysts for phenol and tyrosol oxidations. Particular attention was given to the effect of the main operating conditions on the process performance. A total conversion was obtained for both organic pollutants with studied catalysts in 20 minutes reaction. For phenol, a total organic carbon (TOC conversion of 93% was obtained using sieved and calcined smectite clay. The TOC conversion was 60% for tyrosol with the same catalyst. Clays were characterized by chemical analysis, BET, XRD, TPR and SEM.

  11. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    Science.gov (United States)

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Iron-clay interactions under a thermal gradient

    International Nuclear Information System (INIS)

    Jodin-Caumon, Marie-Camille; Mosser-Ruck, Regine; Randi, Aurelien; Cathelineau, Michel; Michau, Nicolas

    2010-01-01

    Document available in extended abstract form only. Repository in deep geological formations is considered as a possible solution for long-term high-level nuclear waste (HLW) management. The concept generally consists in a multiple barriers system including steel canister in a clay host rock. Heat and radiation emissions by HLW, corrosion of the canister and desaturation/re-saturation of the clay may affect the properties of the geological formation. In this context, the possible mineralogical evolutions of clays in contact with metal iron were studied in various conditions simulating those of HLW repository. Most of these studies were carried out at a constant temperature whereas the system will undergo a thermal gradient in time (progressive decrease of the temperature of the HLW with the decrease of its activity) and space (from the waste to the host rock). A thermal gradient may imply mass transport phenomena by convection and diffusion processes as a function of temperature, gradient intensity and the nature of the chemical elements. Here we show the effect of a thermal gradient in space on the interaction between the argillite from the ANDRA underground laboratory at Bure (Meuse/Haute-Marne) and metal iron. Tube-in-tube experiments were carried out. Argillite was put in two previously drilled platinum capsules (Diam. holes: 200 μm). Metal iron (powder and plate) was added in one of the Pt capsule. The Pt capsules were then loaded at the two ends of a gold tube. A fluid (H 2 O or a saline solution) was added and the gold tube was sealed and regularly pinched to form 5 precipitation niches. The iron/argillite mass ratio ranged between 0.3 and 0.5 and the fluid/argillite mass ratio was around 10. A thermal gradient 80 deg. C-150 deg. C or 150 deg. C-300 deg. C was applied to the tube during 3 and 6 months. The end of the gold tube with the Pt capsule containing iron was placed at the hot point (max. temperature 150 deg. C or 300 deg. C) or at the cold point (min

  13. Adsorption of ethyl acetate onto modified clays and its regeneration with supercritical CO2

    Directory of Open Access Journals (Sweden)

    A. M. Cavalcante

    2005-03-01

    Full Text Available Modified clays were used to remove ethyl acetate from aqueous solutions. These clays were regenerated using supercritical CO2. Structural changes in the montmorillonite clay after treatment with quaternary amines were studied. The surface properties of the modified clay changed from highly hydrophilic to highly organophilic. The clay was regenerated by percolation of a stream of CO2 through the porous montmorillonite matrix. Different pressures and temperatures were employed, resulting in different fluid conditions (gas, liquid, and supercritical. The experimental data was fitted with a simplified model. The best desorption result was found under supercritical conditions. A crossover effect was observed. The capacity of the modified clay as a pollutant attenuator remained almost unchanged after a regeneration cycle.

  14. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    Science.gov (United States)

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    Science.gov (United States)

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  16. Neutron activation analysis of essential elements in Multani mitti clay using miniature neutron source reactor

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, S.; Faiz, Y.; Siddique, N.

    2012-01-01

    Multani mitti clay was studied for 19 essential and other elements. Four different radio-assay schemes were adopted for instrumental neutron activation analysis (INAA) using miniature neutron source reactor. The estimated weekly intakes of Cr and Fe are high for men, women, pregnant and lactating women and children while intake of Co is higher in adult categories and Mn by pregnant women. Comparison of MM clay with other type of clays shows that it is a good source of essential elements. - Highlights: ► Multani mitti clay has been studied for 19 essential elements for human adequacy and safety using INAA and AAS. ► Weekly intakes for different consumer categories have been calculated and compared with DRIs. ► Comparison of MM with other type of clays depict that MM clay is a good source of essential elements.

  17. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay

    International Nuclear Information System (INIS)

    Huang Jianhua; Liu Yuanfa; Jin Qingzhe; Wang Xingguo; Yang Jun

    2007-01-01

    The removal of water-soluble Reactive Red MF-3B from aqueous media by sonication-surfactant-modified attapulgite clay was studied in a batch system. The surfactant used was octodecyl trimethyl ammonium chloride (OTMAC). Adsorbent characterizations were investigated using X-ray diffraction, infrared spectroscopy, and surface area analysis. The effects of pH, contact time, initial solute concentration, adsorbent dose, and temperature on the adsorption of Reactive Red MF-3B onto modified clay were investigated. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and second-order adsorption kinetics was observed in the case. Film diffusion was found to be the rate-limiting step. Reactive Red MF-3B adsorption was found to increase with increase temperature. The Reactive Red MF-3B equilibrium adsorption data were fitted to Freundlich and Langmuir isotherm models, the former being found to provide the better fit of the experimental data. Thermodynamic parameters were calculated. From the results it can be concluded that the surfactant-modified clay could be a good adsorbent for treating Reactive Red MF-3B-contaminated waters

  18. The regeneration viability evaluation of zinc on bofe clay columns

    International Nuclear Information System (INIS)

    Araujo, A.L.P. de; Silva, M.G.C da; Gimenes, M.L.; Barros, M.A.S.D.

    2011-01-01

    In this study, the Bofe bentonite clay, calcined at 500 °C was used for removal of zinc in porous bed with multiple cycles of adsorption-desorption. The natural and calcined clay was characterized by N 2 physisorption (BET method), X-ray diffraction (XRD) and thermal analysis). The experiments for the removal of zinc were carried out at room temperature (25 °C) with particle diameter of 0.855 mm and a flow rate of 3 mL/min. The results indicated that over the four cycles of adsorption/desorption of which was submitted, the clay has not lost the capacity for adsorption of metal and that this process may be feasible to replace or complement conventional treatments to remove metals, since that clay was able to reduce the concentration of zinc to the amount recommended by Resolution Nº 357/2005 of CONAMA (5 mg.L -1 ). (author)

  19. A new and improved methodology for qualitative and quantitative mineralogical analysis of Boom Clay

    International Nuclear Information System (INIS)

    Zeelmaekers, E.; Vandenberghe, N.; Honty, M.; De Craen, M.; Derkowski, A.; Van Geet, M.

    2010-01-01

    Document available in extended abstract form only. A good knowledge of the mineralogy of any host formation studied for geological disposal of high-level radioactive waste, is a prerequisite for understanding the geochemical environment which will determine the migration and retention behaviour of radionuclides. In this respect, the Boom Clay mineralogical composition has been extensively studied last decades as reference host formation (e.g. ARCHIMEDEARGILE project, OECD-NEA clay catalogue report) with the aim to provide reliable data for a safety assessment. However, a comparison of the available literature data clearly showed a serious discrepancy among studies, not only in the quantitative, but also in the qualitative mineralogical composition of the Boom Clay (SAFIR II). The reason for such a huge disagreement could be related, among others, to variable grain size distributions of the studied samples (sample heterogeneity) and differences in the methodological approaches. In particular, the unambiguous characterisation of clay minerals and the quantification of mixed-layer phases appeared as an everlasting problem. This study is aimed at achieving a consensus on the qualitative and quantitative mineralogical data of the Boom Clay using the most advanced techniques currently available in the clay science. A new sampling campaign was performed in such a way that samples are (20 in total) more or less regularly distributed over Boom Clay Formation, ensuring that variations in the grain size distributions due to silty clay-clayey silt layers alternations are accounted for. The novel concept based on an analysis at two levels was applied: (1) bulk rock and (2) clay fraction analysis. (1) A bulk rock analysis consists of conventional XRD analysis with the identification of the principal mineral phases. As a next step, the bulk rock was mixed with a ZnO internal standard and experimental diffraction patterns of randomly oriented powders were analyzed using &apos

  20. The use of clays as sorbents and catalysts

    International Nuclear Information System (INIS)

    McCabe, R.W.

    1998-01-01

    The paper attempts to show the structural, physical and chemical properties of clay minerals relate to their laboratory, industrial and environmental uses as sorbents and catalysts. A brief review of the formulae and structures of clays and their relationship to their chemical and physical properties follows. Clay minerals are also useful in environmental protection as they can adsorb crude oils from spills and they are used, sometimes mixed into concrete, as containment barriers for radionuclides caesium 137 and strontium 90. Clay soils can also act as natural barriers to the migration of radionuclides in the environment

  1. Inter-layered clay stacks in Jurassic shales

    Science.gov (United States)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  2. Decantation time of evaluation on bentonite clays fractionation

    International Nuclear Information System (INIS)

    Gomes, J.; Menezes, R.R.; Neves, G.A.; Lira, H.L; Santana, L.N.L.

    2009-01-01

    Bentonite clays present a great number of industrial uses, from petroleum to pharmaceutics and cosmetic industry. The bentonite clay present particles with very fine particles that is responsible by the vast application of these materials. However, commercial clays present wide particle size distribution and a significant content of impurities, particularly quartz, in the form of silt and fine silt. So, the aim of this work is to analyze the effect of the stirring and decantation time in the deagglomeration, purification and size separation of the bentonite clay particles from Paraiba. The clays were characterized by X-ray diffraction and particle size distribution. Based on the results it was observed the decantation time give the elimination of the agglomerates formed by submicrometric particles. The uses of decantation column give separation of the fraction below 200nm. (author)

  3. CATSIUS CLAY PROJECT: Calculation and testing of behaviour of unsaturated clay as barrier in radioactive waste repositories: stage 3: validation exercises at a large in situ scale

    International Nuclear Information System (INIS)

    Alonso, E. E.; Alcoverro, J.

    1999-01-01

    Stage 3 of CATSIUS CLAY Project: Validation Exercises at a Large in situ Scale includes two Benchmarks: Benchmark 3.1: In situ Hydration of Boom Clay Pellets (BACCHUS 2) and Benchmark 3.2: FEBEX Mock-up Test. The BACCHUS 2 in situ test was performed in the HADES underground laboratory (Mol, Belgium) to demonstrate and optimize an installation procedure for a clay based material and to study its hydration process. After drilling a vertical shaft (540 mm in diameter, 3.0 m in length) in the host Boom clay, a central filter (90 mm in diameter) was placed, the remaining space was filled with a mixture of clay pellets and clay powder and the assembly was sealed at the upper end by a resin plug (0.20 m in thickness) over which concrete was poured. The test was instrumented so that it could be used as a validation experiment. Total stress, pore water pressure and water content measurements were performed both in the backfill material and in the surrounding clay massif. Once the installation was complete, the natural hydration of the backfill material began (day 0). To accelerate the hydration process, on day 516 water was injected through the central filter. On day 624, after the saturation of the backfill was reached, the hydraulic circuit was closed and the undrained response of the system backfill-host clay was monitored until an overall steady state was reached. Partners were asked to provide predictions for the evolution of the pore water pressure and total pressure of various points where appropriate sensors are installed. This benchmark addresses the Hydro-Mechanical response of an unsaturated low density clay barrier under natural and artificial hydration. (Author)

  4. CATSIUS CLAY PROJECT: Calculation and testing of behaviour of unsaturated clay as barrier in radioactive waste repositories: stage 3: validation exercises at a large in situ scale

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E E; Alcoverro, J

    1999-07-01

    Stage 3 of CATSIUS CLAY Project: Validation Exercises at a Large in situ Scale includes two Benchmarks: Benchmark 3.1: In situ Hydration of Boom Clay Pellets (BACCHUS 2) and Benchmark 3.2: FEBEX Mock-up Test. The BACCHUS 2 in situ test was performed in the HADES underground laboratory (Mol, Belgium) to demonstrate and optimize an installation procedure for a clay based material and to study its hydration process. After drilling a vertical shaft (540 mm in diameter, 3.0 m in length) in the host Boom clay, a central filter (90 mm in diameter) was placed, the remaining space was filled with a mixture of clay pellets and clay powder and the assembly was sealed at the upper end by a resin plug (0.20 m in thickness) over which concrete was poured. The test was instrumented so that it could be used as a validation experiment. Total stress, pore water pressure and water content measurements were performed both in the backfill material and in the surrounding clay massif. Once the installation was complete, the natural hydration of the backfill material began (day 0). To accelerate the hydration process, on day 516 water was injected through the central filter. On day 624, after the saturation of the backfill was reached, the hydraulic circuit was closed and the undrained response of the system backfill-host clay was monitored until an overall steady state was reached. Partners were asked to provide predictions for the evolution of the pore water pressure and total pressure of various points where appropriate sensors are installed. This benchmark addresses the Hydro-Mechanical response of an unsaturated low density clay barrier under natural and artificial hydration. (Author)

  5. Coal and potash flotation enhancement using a clay binder

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Chen, G.L.; Zhou, X.H.; Zhao, C.; Fan, M.M.; Aron, M.; Wright, J. [University of Kentucky, Lexington, KY (United States)

    2007-07-15

    The adverse effects of clay particles on coal and mineral processing operations such as gravity separation, flotation, filtration and thickening are well known in the mining industry. In particular, the presence of ultra-fine clay particles deteriorates froth flotation performance, which has been attributed to slime coatings that inhibit bubble attachment and to adsorption of the frother and/or collector by the clay particles. The present study was conducted to evaluate the performance of a clay binding agent developed by Georgia-Pacific Resins, Inc. in enhancing coal and mineral flotation performance. Mechanical flotation tests were carried out using coal and potash samples. Process parameters investigated included slurry solids percentage, impeller rotation speed, binder dosage, etc. Flotation results show that the use of GP reagents significantly enhanced flotation efficiency under different conditions. The required binder dosage and conditioning time were about 0.45 kg/t and 0.5 to 1 minute, respectively. More significant improvements in process performance were observed at higher solids percentage and higher impeller rotation speed.

  6. Effect of smectite clays storage in their rheological properties

    International Nuclear Information System (INIS)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C.; Ferreira, H.S.; Ferreira, H.S.

    2017-01-01

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na_2 CO_3 is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na_2 CO_3 ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  7. Numerical study of unsaturated flows and seepage of contaminants from subgrade mill tailings disposal areas equipped with bottom-clay liners

    International Nuclear Information System (INIS)

    Pin, F.G.; Witten, A.J.; Sharp, R.D.; Long, E.C. Jr.

    1983-08-01

    A computer code (MIGRAT) is developed to quantify the migration of moisture and multiple decaying and retarded contaminants in the unsaturated zone. MIGRAT was specifically conceived to assess the impacts of open mine to allow its use in many problems related to shallow, subsurface waste disposal. The model is applied to a generic uranium-mill-tailings pit constructed with a clay-lined bottom and steep unlined sidewalls. The contaminant decays and only one contaminant is retarded. This study shows the anticipated result that moisture and contamination migrate slowly through the bottom clay liner and that, in this migration, concentrations of the retarded contaminant significantly lag the unretarded contaminant. More importantly, this study reveals that the major pathway from the pit to the groundwater is through the sidewall. The time scales for this pathway are much shorter than those associated with the clay liner, and retardation has little effect on the rate of contaminant migration

  8. Acid activation of natural clays aiming their application in adsorption

    International Nuclear Information System (INIS)

    Silva, M.M. da; Sousa, A.K.F. de; Lima, W.S.; Vasconcelos, P.N.M. de; Rodrigues, M. G.F.

    2012-01-01

    Clays of smectite type have wide application in industrial, mainly due to their adsorption properties. However, it is necessary to subject them to chemical treatments to optimize their potential. This study aimed to analyze the effects of acid activation on the clay Brasgel fresh. In the acid activation was used concentrated hydrochloric acid at different concentrations (3M, 4.5 M and 6 M) at a temperature of 70 ° C for 30 minutes. The samples fresh and activated technique were characterized by X-ray Diffraction (XRD). The results show that the properties of clay after activation are improved, it could be used as adsorbents in the treatment of wastewater. (author)

  9. Titanium alloys as alternative material for the supercontainer shell in the KBS-3H concept: A preliminary Ti-clay interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P. [Gruner Ltd, Basel (Switzerland); Grolimund, D. [Paul Scherrer Inst., Villigen (Switzerland); Kumpulainen, S.; Kiviranta, L. [B and Tech Oy, Helsinki (Finland); Brendle, J. [Mulhouse Univ. (France); Snellman, M. [Saanio and Riekkola Oy, Helsinki (Finland)

    2011-12-15

    Ti alloys have been proposed as alternative materials to steel for the supercontainer shell surrounding the bentonite buffer in the KBS-3H disposal concept. Ti-based materials display high strength and are known to behave chemically inert under a variety of conditions. This preliminary study addresses the suitability of titanium as supercontainer material with regard to the performance of the clay buffer. Thus, possible titanium-bentonite interactions which may adversely affect the buffer's safety functions are evaluated by means of a literature and a preliminary experimental assessment. Titanium metals display very low corrosion rates (< 1 nm/a) over a large range of pH and Eh conditions. The corrosion behaviour is governed by the low solubility of tetravalent TiO{sub 2} which forms a passive surface corrosion layer under both oxic and reducing conditions. The interactions between titanium and clay have been barely studied so far. Preliminary long-term data obtained by Prof. Olefjord and co-workers from Chalmers (S) in the 1980ies (as part of SKB's canister program) suggests similar corrosion rates in compacted bentonite compared to those measured in water, i.e. 1 nm/a. So far, no work on reaction products from this interaction process has been carried out. Even the speciation of Ti in natural clays is uncertain. In principle, four possible reaction products resulting from Ti-clay interactions are possible: (i) Ti sorbed to the clay surface via cation exchange or specific adsorption, (ii) Ti incorporated in the octahedral or tetrahedral clay structure, (iii) Ti precipitated as separate TiO{sub 2} or mixed (Fe, Ti) oxide, (iv) Ti precipitated as separate silicate phase and (v) polymerized as cross-linked TiO{sub 2} units in the interlayer (Ti pillared clay). The latter two transformation products would have the strongest impact on the buffer, but are improbable on the basis of current knowledge. A preliminary batch-type investigation has been carried out

  10. Thermal and x-ray investigations of kowak clay in northwestern ...

    African Journals Online (AJOL)

    A study of some properties of clays collected from selected sites in Kowak deposit in Tarime District was carried out in order to assess their suitability as raw materials in ceramic and its related industries. The silica (SiO2) content in the clays is predominant, and is about 66.89% followed by alumina (Al2O3) that is 20.2%.

  11. Poly(ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties

    International Nuclear Information System (INIS)

    Ejder-Korucu, Mehtap; Gürses, Ahmet; Karaca, Semra

    2016-01-01

    Highlights: • PEO/clay nanocomposites were prepared via solution intercalation. Complete exfoliation occurs in samples of 0.5 and 2.0 CEC. • The impaired helical structure of PEO in nanocomposite structures had been verified based on the results of FTIR studies. • The crystallization temperature of PEO/OMMT nanocomposites is low compared to raw polymer. • The increase of melting temperatures indicates the increase of the stability of PEO in case of availability of clay. • The tensile strength, yield strength, % stretching of nanocomposite samples increase compared to raw polymer at all CEC rates. - Abstract: Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and also investigation of some mechanical properties of the composites. Formation of nanocomposite was confirmed by XRD analysis. The increasing tendency of exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. An increase in PEO crystallinity in case of nanocomposite, was confirmed by an increase in the heat of melting as indicated by DSC. Improvement in tensile properties in all respect was observed for nanocomposites with clay content.

  12. Characterization of edible clay (multani mitti) using INAA (abstract)

    International Nuclear Information System (INIS)

    Waheed, S.; Fiaz, Y.

    2011-01-01

    Multani Mitti is basically clay commonly used in cosmetics, medicines. It is also used for cleansing of body and hair and eating specially women (pregnant and lactating) and children. 16 Essential major, minor and trace elements (Ba, Co, Cr, Cs, Fe, K, Mg, Mn, Mo, Na, Rb, Se Sr, Ti, V and Zn) have been determined in Multani Mitti (MM) clay using instrumental neutron activation analysis (INAA) technique were studied in collected clay samples from Rakhi Gaj located 40 Km from D. G. Khan, Pakistan. These samples were analyzed by Instrumental Neutron Activation Analysis (INAA) to detect the elemental hazard assessment. Radioassay schemes for three sets of elements after neutron irradiation and cooling were evolved to avoid matrix effects. The composition of MM clay shows major elements in descending order as Fe > K > Mg > Na > Mn > Zn > V > Rb > Cr >Ba followed by minor elements as Sr >Co > Cs with trace levels of Se. Data have been compared with clays available in literature globally. Intakes of essential elements were calculated for pregnant, lactating women and children. Intakes were found comparable to WHO levels except Fe and Cr. Risk assessment was measured using mathematical model. The quality assurance of data was performed using Standard Reference Materials (SRMs) of a similar matrix (IAEA Lake sediment SL-1 and IAEA Soil S-7). (author)

  13. Crystallization and unusual rheological behavior in poly(ethylene oxide)–clay nanocomposites

    KAUST Repository

    Kelarakis, Antonios; Giannelis, Emmanuel P.

    2011-01-01

    We report a systematic study of the crystallization and rheological behavior of poly(ethylene oxide) (PEO)-clay nanocomposites. To that end a series of nanocomposites based on PEOs of different molecular weight (103 < MW < 105 g/mol) and clay

  14. Gassmann Modeling of Acoustic Properties of Sand-clay Mixtures

    Science.gov (United States)

    Gurevich, B.; Carcione, J. M.

    The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief's velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.This difference is explained by the fact

  15. Methods for obtention of PS/clay nanocomposites

    International Nuclear Information System (INIS)

    Lins, Pedro G.; Valera, Ticiane S.; Coelho, Caio P.D.; Demarquette, Nicole R.

    2009-01-01

    In this work, nanocomposites of Polystyrene (PS) and organoclay were obtained using a twin-screw extruder and a mixer Haake. A commercial clay named Cloisite 20A was used. The clay and the nanocomposites were characterized by X-Ray Diffraction. The rheological properties were investigated carrying out small amplitude oscillatory strain (SAOS). The results of X-ray diffraction showed that the polymer was incorporated by the organoclay. The results of SAOS indicated a better clay dispersion for the samples obtained using the mixer. (author)

  16. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  17. Traditional mining and mineralogy of geophagic clays from Limpopo ...

    African Journals Online (AJOL)

    Geophagic clays consumed were whitish, yellowish, khaki and black; mined from hills and mountains, river beds, valleys, excavation sites and termitaria. Geophagic individuals from Free State preferred whitish geophagic clays; and sometimes khaki. Yellowish clays were preferred mostly by geophagic individuals from ...

  18. Clay jojoba oil facial mask for lesioned skin and mild acne--results of a prospective, observational pilot study.

    Science.gov (United States)

    Meier, Larissa; Stange, Rainer; Michalsen, Andreas; Uehleke, Bernhard

    2012-01-01

    External application of clay facial masks is a cosmetic procedure generally used to reduce skin lesions and to improve overall skin condition. Collecting pilot data about self-treatment with clay jojoba oil masks on participants with acne-prone, lesioned skin and acne. Open, prospective, observational pilot study: Participants received written information, instructions, and questionnaires without direct contact with the study physician. For 6 weeks, they applied the masks 2-3 times per week. The primary outcome is the difference of skin lesions: baseline vs. after 6 weeks. 194 participants (192 female, 2 male, mean age (± SE) (32.3 ± 0.7 years) returned questionnaires and diaries. 133 of these participants returned complete and precise lesion counts (per-protocol (PP) collective). A 54% mean reduction in total lesion count was observed after 6 weeks of treatment with clay facial mask. Both inflammatory and non-inflammatory skin lesions were reduced significantly after treatment compared to baseline: Median counts (MC) of pustules per affected participant were reduced from 7.0 ± 0.9 to 3.0 ± 0.5 (mean individual reduction (MIR) = 49.4%), the MC of the papules from 3.5 ± 2.2 to 1.0 ± 0.4 (MIR = 57.3%), the MC of cysts from 2.0 ± 0.8 to 0.5 ± 0.4 (MIR = 68.6%) and the MC of comedones from 26.5 ± 6.3 to 16.0 ± 4.0 (MIR = 39.1%). DLQI-average score decreased from 5.0 ± 4.5 (mean ± SE) before to 2.1 ± 2.8 after treatment. The present study gives preliminary evidence that healing clay jojoba oil facial masks can be effective treatment for lesioned skin and mild acne vulgaris. Copyright © 2012 S. Karger AG, Basel.

  19. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    Science.gov (United States)

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The effect of clay incorporation on the mechanical properties of fluoroelastomer

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto; Oliveira, Jonathan Pereira de; Lugao, Ademar Benevolo

    2015-01-01

    In this work was studied the effect of clay incorporation in the mechanical properties of fluoroelastomer (FKM). The polymer matrix that was used is a compound of the commercial terpolymer of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, with 70% of fluor content. This type of polymer is known for its resistance to high temperature and chemical products; it has low fuel permeation which allowing be used as sealant and especially as o-ring product. The incorporation of clay was carried to avoid excessive swelling and to observe the effect in the mechanical properties, for this application was used commercial clay, Cloisite® at 1 and 2% in weigh. The incorporation of clay into the FKM was carried out in a two roll cylinder. After that, the samples with and without clay loading were submitted to gamma radiation at 20 kGy in order to observe the changes in the polymer matrix. The characterization techniques used were: mechanical testes (stress - strain), rheometric properties and degree of swelling. After radiation process, was observed an increase in the swelling degree for the irradiated samples in relation to the pristine one. The incorporated samples with 1 and 2% of clay showed an increase in the elongation which can indicate a decrease in hardness of the polymer matrix. (author)